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Tolerance to infections is defined as the ability of a host to limit the impact of a
given pathogen burden on host performance. Uncoupling resistance and tolerance is a
challenge, and there is a need to be able to separate them using specific trait recording or
statistical methods. We present three statistical methods that can be used to investigate
genetics of tolerance-related traits. Firstly, using random regressions, tolerance can be
analyzed as a reaction norm slope in which host performance (y -axis) is regressed against
an increasing pathogen burden (x-axis). Genetic variance in tolerance slopes is the genetic
variance for tolerance. Variation in tolerance can induce genotype re-ranking and changes
in genetic and phenotypic variation in host performance along the pathogen burden
trajectory, contributing to environment-dependent genetic responses to selection. Such
genotype-by-environment interactions can be quantified by combining random regressions
and covariance functions. To apply random regressions, pathogen burden of individuals
needs to be recorded. Secondly, when pathogen burden is not recorded, the cure
model for time-until-death data allows separating two traits, susceptibility and endurance.
Susceptibility is whether or not an individual was susceptible to an infection, whereas
endurance denotes how long time it took until the infection killed a susceptible animal
(influenced by tolerance). Thirdly, the normal mixture model can be used to classify
continuously distributed host performance, such as growth rate, into different sub-classes
(e.g., non-infected and infected), which allows estimation of host performance reduction
specific to infected individuals. Moreover, genetics of host performance can be analyzed
separately in healthy and affected animals, even in the absence of pathogen burden and
survival data. These methods provide novel tools to increase our understanding on the
impact of parasites, pathogens, and production diseases on host traits.
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INTRODUCTION
Tolerance and resistance are two different defense mechanisms
to defend against pathogens and parasites. Resistance is the abil-
ity of a host to prevent pathogen entry and to control pathogen
life cycle in a way to reduce pathogen burden within a host indi-
vidual. Tolerance to infections, in turn, is defined as the ability
of the host to limit the impact of a given pathogen burden on
host health, performance, and ultimately on host fitness (Clunies-
Ross, 1932; Painter, 1958; Albers et al., 1987; Simms and Triplett,
1994; Simms, 2000) (Figure 1).

Being able to uncouple resistance and tolerance is essen-
tial for several reasons. Firstly, they have different impact
on the arms-race co-evolution between the host and the
pathogen (Mauricio et al., 1997; Rausher, 2001; Bishop and
MacKenzie, 2003; Best et al., 2008). Moreover, both in ani-
mals and plants, tolerance and resistance are weakly geneti-
cally correlated, and thus they are genetically different traits
(Leimu and Koricheva, 2006; Ødegård et al., 2011b; Kause
et al., 2012). Finally, animal and plant breeders should exploit
both increased resistance and tolerance to ensure global food
security.

In addition to pathogens, tolerance can be assessed against
abiotic factors such as temperature, heavy metals, or against
production diseases causing damage to body tissues (Ravagnolo
and Misztal, 2000a,b; Schat et al., 2002; Bloemhof et al., 2012;
Kause et al., 2012). Naturally, production diseases, such as ascites,
are not standard disease traits caused by a pathogen or parasite
infection. Thus, there is no co-evolution between a host and a
production disease, and the production disease does not evolve
in response to the evolution of the host. Nevertheless, improved
resistance and tolerance can be both used to reduce the harmful
effects of production diseases on farmed animals, motivating their
tolerance analysis (Kause et al., 2012). From hereon in this paper,
pathogen burden is used as a general term to refer to a pathogen
load of an individual, for instance, number or biomass of ecto-
and endoparasites, number of pathogens in a blood sample, or
severity of a production disease. In plants, pathogen burden may
refer to the biomass or number of herbivores, or percentage of leaf
area lost to herbivores.

The objective of this paper is to present recent statistical
advances in the genetic analysis of tolerance-related traits.
Firstly, random regression models have been applied to
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FIGURE 1 | Tolerance to infections. Tolerance is the reaction norm slope
of host performance regressed against individual’s pathogen burden. The
lines represent performance of three genotypes with a different degree of
tolerance.

tolerance analysis. They allow a sophisticated genetic analysis
of traits defined as functions as well as the quantification of
genotype-by-environment interactions (G × E) induced by infec-
tions (Kause, 2011; Kause et al., 2012). Secondly, Ødegård et al.
(2011b,c) introduced a cure model to separate “susceptibility”
and “endurance” from challenge test data with time-until-death
observations (without having any knowledge about infection sta-
tus of the animals). The first trait is comparable to resistance,
while endurance may be influenced by tolerance. “Susceptibility”
can be defined as whether or not the animal is liable to die as a
result of an infection (i.e., long-term survival, which is likely asso-
ciated with resistance), while “endurance” is defined as how long
time it takes before a potential infection kills the animal (which
is likely associated with tolerance). Both endurance and suscepti-
bility may show genetic variation, and may be viewed as different
genetic factors affecting survival under an infection. Finally, nor-
mal mixture models can be extended to involve responses in
host performance traits (e.g., growth curves) specific to healthy
and affected individuals (Wang and Bodner, 2007; Madsen et al.,
2008).

RANDOM REGRESSION MODELS
Tolerance is by definition the change in host performance as a
function of pathogen burden (Simms, 2000), and hence, it is
natural to apply random regression models to estimate genetic
parameters and breeding values for tolerance (Kause, 2011).
Using random regressions, tolerance can be analyzed as a reaction
norm in which host performance (on y-axis) is regressed against
pathogen burden of individuals (on x-axis) (Box 1). It is impor-
tant to note that pathogen burden is measured separately from
each individual, and it is not a general environmental characteris-
tic. The slope of such a regression is consistent with the definition
of tolerance (Figure 1), and hence genetic variance in regression
slopes is the genetic variance for tolerance (Kause, 2011).

The intercept of the tolerance regression is interpreted as
the host performance in a pathogen-free environment, and the
genetic correlation between the slope and the intercept quantifies
the degree to which host performance under no infection is

Box 1 | A random regression model.

An animal model random regression model is of the form:
yi = b0 + b1PBurden + b0i + b1i PBurdeni + εi , where yi is

host performance of an individual i at its pathogen burden
PBurden, b0 is the fixed population mean intercept, b1 PBurden
is the fixed population mean tolerance slope, b0i is the random
genetic effect of intercept for an individual i, b1iPBurdeni is the
random genetic effect of tolerance slope for an individual i, and
εi is the random error term. Both b0i and b1i are modeled with a
pedigree, allowing the estimation of their genetic variance.

Covariance functions. Genetic variance of host performance
as a function of pathogen burden can be calculated: as

x’PBurdenGxPBurden, where G =
[

σ2
b0 σb0b1

σb0b1 σ2
b1

]
, σ2

b0 and σ2
b1 are

genetic variances for intercept and slope, respectively, and σb0b1
is covariance between the two terms (Kolmodin and Bijma, 2004).
The term xPBurden is a vector [1 PBurden]′ in which PBurden
refers to a pathogen burden value on the x-axis. A genetic correla-
tion between the performance of non-infected (PBurden = 0) and
infected individuals at a certain PBurden value can be calculated

as: rG = x ′
0GxPBurden√

x ′
0Gx0 × x ′

PBurdenGxPBurden

, where G is the genetic

(co)variance matrix of slope and intercept, x0 is a vector of [1 0]′,
and xPBurden is as described earlier (Calus et al., 2004).

genetically traded off with tolerance. Moreover, genetic correla-
tions of the slope and intercept with third-party traits can be
estimated by extending the random regression model to multitrait
animal or sire model (Kause et al., 2012).

In animals, pathogen burden is typically a continuously dis-
tributed trait, especially when a population is under a natural
pathogen infection (Stear et al., 1995; Kuukka-Anttila et al.,
2010). Even in a challenge test in which all individuals are exposed
to the same initial pathogen load, variation among individuals
in resistance creates continuous variation in pathogen burden.
Random regression models allow genetic analysis of tolerance
along a continuous pathogen burden trajectory. In animal breed-
ing, random regression models have been commonly applied to
the reaction norm analysis of G × E (Henderson, 1982; Meyer
and Hill, 1997; Calus et al., 2004; Schaeffer, 2004; Lillehammer
et al., 2009).

TOLERANCE-INDUCED VARIATION IN HOST PERFORMANCE
Genetic variation in tolerance may induce G × E in host per-
formance, leading to changes in genetic variation of host per-
formance along an increasing pathogen burden trajectory. For
instance, in Figure 1, genetic variance in host performance is
elevated along increased pathogen burden due to diverging tol-
erance reaction norms. In poultry, pigs, and aquaculture species,
breeding nucleuses may be held infection-free due to biosecurity
reasons, whereas commercial production and/or collection of sib
and progeny information for breeding value estimation occurs
at field farms with diverse diseases present. Such a design may
induce G × E due to variation in the level of tolerance, which
should be accounted for in breeding value evaluations.

In an infection-free environment, individual variation in host
performance, e.g., in growth rate, is due to variation in genetic
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potential for growth and unexplained environmental variation.
Under infection, in turn, individual variation in both resistance
and tolerance induce additional variation into host performance.
Some individuals are fully resistant or are not exposed to an
infection, and thus their growth is not influenced by the infec-
tion. Some individuals are infected, and the degree to which
their growth rate is reduced depends on their pathogen burden
and the level of tolerance. Growth of fully tolerant individuals
is not affected, whereas growth of very sensitive ones is greatly
reduced.

Despite the large number of studies dealing with the changes
induced by biotic (e.g., diet) and abiotic factors in gen-
eral (Hoffmann and Merilä, 1999; Kause and Morin, 2001;
Charmantier and Garant, 2005), there has been only a limited
focus on infection-induced changes in genetic parameters and the
consequent environment-specific genetic responses to selection
(van der Waaij et al., 2000). Infections are indeed known to induce
changes in heritability of host performance traits (Charmantier
et al., 2004; Pakdel et al., 2005; Zerehdaran et al., 2006; Kause
et al., 2007, 2012; Vehviläinen et al., 2008; Lewis et al., 2009).

Yet, currently we do not know how much of the phenotypic vari-
ation in host performance is in fact created by infections and
the associated tolerance. A study by Kause et al. (2012) showed
that coefficient of phenotypic variation in broiler body weight
was elevated from 11.5% when birds were healthy, to 19.1%
when birds were severely affected by ascites. Similarly, coefficient
of genetic variation was increased from 4.9% to 7.9%, imply-
ing the changes in variance can be extensive (Figure 2). It is
hypothesized that in populations exposed to infections, a large
proportion of phenotypic variance in host traits is induced by
infections and the associated individual variation in resistance
and tolerance.

Random regression models combined with covariance func-
tions (Kirkpatrick et al., 1990; Meyer and Hill, 1997) provide
means to quantify the changes in phenotypic and genetic vari-
ances in host traits along a continuous pathogen burden tra-
jectory (Kause, 2011; Kause et al., 2012). Given the genetic
(co)variance estimates of tolerance slope and intercept estimated
using random regressions, the changes in genetic variance in host
performance can be calculated using formulas (Box 1; Figure 2).

FIGURE 2 | Tolerance analysis using random regressions and covariance

functions illustrated using data on 7-week body weight and heart ratio

of broilers [reproduced from Kause et al. (2012); http://creative

commons.org/licenses/by/3.0/]. Heart ratio, the ratio of right ventricular
weight to total heart weight, is an indicator of ascites resistance, the birds
with higher than 27–30% heart ratio typically being ascitic (Wideman et al.,
1998). Tolerance is the change in body weight as a function of increasing
ascites severity, measured as the hearth ratio. (A) Population average

tolerance curve with body weight on y-axis and ascites severity on x-axis.
(B) Frequency distribution of estimated breeding values for tolerance slopes
of individuals, showing sensitive (steep negative slope) and more tolerant
(weak negative slope) genotypes. (C) Increased coefficients of phenotypic
and genetic variation in body weight as a function of ascites severity,
showing ascites molds trait variation. (D) Genetic correlation between
healthy birds and birds with different degree of ascites severity, showing
ascites creates genotype re-ranking (Kause et al., 2012).
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The same logic can be applied to the maternal and environmental
components of (co)variance.

TOLERANCE-INDUCED GENOTYPE RE-RANKING IN HOST
PERFORMANCE
Crossing tolerance reaction norms create genotype re-ranking in
host performance traits across pathogen burden trajectory. This
is similar to any genotype re-ranking across environmental gra-
dients (Via and Lande, 1985), with the difference that now the
environment is pathogen burden of individuals (Kause et al.,
2012). The two forms of G × E, scaling effect and genotype re-
ranking, facilitate environment-dependent genetic responses, yet
the re-ranking is more severe issue for selective breeding because
genotypes in one environment are not necessarily the best ones in
the other environments. Re-ranking across environments can be
quantified by a genetic correlation between measurements in two
environments for a given trait (Falconer, 1952).

The degree of re-ranking between any two pathogen burden
levels can be calculated by combining random regression results
with covariance functions (Box 1). For instance, ascites induced
moderate genotype re-ranking in broiler body weight, the genetic
correlation of healthy birds with weakly affected birds being
unity but with severely affected birds 0.45 (Kause et al., 2012;
Figure 2). In field data sets with multiple environments, infection
pressure is typically not the only environmental factor varying
across environments, yet the effect of pathogen burden on G × E
could be revealed using a combined reaction norm and multi-
trait model (Windig et al., 2011), in which pathogen burden is
modeled as a continuous reaction norm and the discrete envi-
ronments capturing other environmental factors are modeled as
separate discrete traits. Performing extensive infection-challenge
tests is impractical in many farm animal species, but the com-
bined reaction norm and multi-trait model may be an effective
additional method for revealing the degree of G × E induced by
infections.

Infections do not induce only genotype re-ranking and a
change in variance but also changes in the correlation structure of
resistance, growth, and reproduction traits (de Greef et al., 2001;
Kause et al., 2005, 2012; Zerehdaran et al., 2006; Kuukka-Anttila
et al., 2010). The modification of genetic architecture of host traits
by pathogens, parasites, and production diseases, mediated by
tolerance genetics, may play a more fundamental role in animal
breeding and microevolution than has been previously thought.

DATA REQUIREMENTS FOR RANDOM REGRESSION
Obtaining a solid x-axis is a major challenge for the toler-
ance analysis in animals because the x-axis should consists of
individual-level quantitative data on pathogen burden (e.g., num-
ber of parasites, pathogen biomass). Qualitative data on burden
(infected vs. non-infected individuals) creates biased estimates
of genetic variance for tolerance (Kause, 2011). Moreover, if the
x-axis consists of the average burdens of each environment, rather
than individual-level burden measurements, then high host per-
formance of a genotype at a given pathogen burden can be a
result of high resistance and/or high tolerance, impeding a proper
tolerance analysis. The analyzed host performance trait, in turn,

can be feed intake, growth, reproduction, survival or a physio-
logical trait, which together can be used to reveal mechanisms
contributing to variation among genotypes in tolerance.

A split-family design with both an infection-free control and
an experimental challenge test is the most effective design for
tolerance analysis. In this way, infected animals are a random
sample of their family and thus there will be a real causal rela-
tionship between host performance and pathogen burden (Tiffin
and Inouye, 2000; Kause, 2011). This requires, however, that all
the challenged individuals get the same pathogen burden level.
This rarely is the case because individuals have innate individ-
ual variation in resistance, creating variation in pathogen burden
even in a challenge test. Variation in resistance can be potentially
related to the host performance traits used on the y-axis in the
tolerance regression, biasing the estimate of genetic variation for
tolerance (Tiffin and Inouye, 2000; Kause, 2011). As an alterna-
tive to the control-and-challenge test design, all individuals can
be first recorded under infection-free conditions (e.g., for mature
body weight), and then re-recorded after experimental exposi-
tion to equal pathogen burden level. However, such an analysis
is unjustified in cases in which host performance shows natu-
ral temporal variation (e.g., variation in growth curves), which
is thus confounded with tolerance (Albers et al., 1987; Bisset and
Morris, 1996; Woolaston and Windon, 2001). Trypanotolerance
of African cattle has been analyzed as a change in body weight in
response to an experimental infection by Trypanosoma congolense,
but although the number of parasites in the blood of individuals
was recorded, it was not used to standardize the host performance
changes of individuals (Hanotte et al., 2003; van der Waaij et al.,
2003).

Under naturally occurring infection, it is possible that either
high (or low) performing individuals are infected, leading to
biased estimates of genetic variation for tolerance (Tiffin and
Inouye, 2000; Kause, 2011). This is a major weakness of field
data sets, because it is well established that individuals with
initially different growth or life-history trait levels may be dif-
ferently exposed to infections, parasites and production diseases
(Arendt, 1997; Rauw et al., 1998), confounding the cause-and-
effect relation between pathogen burden and reduction in host
performance.

Random regression models require large sample sizes, e.g.,
within sire families. Decrease in family size leads to upward-
biased genetic variance estimates for tolerance slope (Kause,
2011). This can be illustrated in a sire model set up. When a small
number of individuals are sampled for each sire family, the sam-
ple is no longer representative of the true distribution and single
observations have strong impact on the slope estimate. For some
families the slope is underestimated, for others overestimated, and
thus genetic variance estimate for slope is artificially increased.
With heritability of 0.3 for tolerance slope, more than 50 sibs per
family are required to obtain unbiased estimates of slope vari-
ance using a sire model analysis (Kause, 2011). Moreover, genetic
correlation between tolerance slope and intercept is easily biased
downward when family size is low. An upward (downward) bias
in the slope of a family pushes the intercept downward (upward),
creating an artificial negative genetic trade-off when it does not
exist in reality. This can be avoided by using high family sizes and
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high number of non-infected individuals that force the intercept
of a genotype to be placed close to the real value (Mauricio et al.,
1997; Kause, 2011).

When each host individual has only a single performance
record, it is possible to estimate genetic variance and breeding val-
ues for tolerance slope, but not its residual variance. Heritabilities
for tolerance slope can be estimated when each individual has sev-
eral performance observations, e.g., the initial performance under
conditions of no infection and thereafter the performance after an
infection. By using regression slopes of individuals as raw obser-
vations in the genetic analysis, both environmental and genetic
components of slope variance and heritability can be estimated
(Schaeffer, 2004).

Random regression can be applied to non-linear reaction
norms (Kirkpatrick et al., 1990; Meyer and Hill, 1997; Schaeffer,
2004) and plateau-linear regression models (Ravagnolo and
Misztal, 2000a,b; Kause et al., 2012), and thus the impact of
pathogens on host performance does not need to be analyzed as a
linear relationship.

A CURE MODEL FOR TIME-UNTIL-DEATH DATA
The random regression approach requires individual-level data
on pathogen burden which may be challenging to record. The
cure model for time-until-death data provides a possibility to
analyze genetics of resistance (or susceptibility) and endurance
without a need for pathogen burden recording.

Many studies, especially on aquaculture species, have analyzed
survival or time-until-death in a challenge test in which individu-
als are experimentally exposed to a specific pathogen (Ødegård
et al., 2011a). Moreover, survival analysis has been applied to
time-until-death data when mortality factors remain unknown
(e.g., Ducrocq and Casella, 1996; Serenius and Stalder, 2004;
Vehviläinen et al., 2010). A typical assumption in such analyses
is that individuals with high probability of survival are resistant.
However, an individual can survive if it has either high resis-
tance, or low resistance but high tolerance (Figure 3), or was
never exposed to a pathogen. The cure survival models are used
for modeling of time-until-death data which include a fraction of
non-susceptible animals, i.e., animals that are not liable to die as
a result of the infection (Farewell, 1982). Ødegård et al. (2011c)
developed a cure model aiming to distinguish two traits, “suscep-
tibility” and “endurance,” from time-until-death data. These two
concepts may be comparable with resistance and tolerance.

In a survival analysis the infection status of each animal is
typically unknown. Under pathogen attack, some animals may
be fully capable of avoiding death (non-susceptible), either by
resisting the infection, or by a successful recovery after the ini-
tial infection due to high tolerance (Figure 3). Furthermore, the
degree of tolerance may also vary among the susceptible individ-
uals, potentially causing variation in their expected time-until-
death. As mortality is usually recorded over a limited follow-up
period, a fraction of susceptible animals are also likely to be alive
at the time of recording. For susceptible animals, the ability to
survive depends on the expected time-until-death of the animal,
which may show genetic variation. Hence, analogy of the terms
“endurance” and “susceptibility” with tolerance and resistance are
not necessarily clear-cut in a survival analysis, due to the fact that

FIGURE 3 | Contribution of resistance and tolerance to mortality due

to a specific pathogen. Only individuals without resistance and tolerance
will eventually die given a sufficiently long follow-up period. When having a
limited follow-up period, individuals with high tolerance may still be alive at
the end of an experiment.

one only observes the extreme outcomes of an infection (whether
or not an animal dies). Although “endurance” and “susceptibil-
ity” are impossible to separate on individual survivors, these two
factors may still be distinguished on a family level using longitudi-
nal survival analysis (i.e., short-term mortality rates vs. long-term
survival).

A classical survival analysis of time-until-death assumes that
all individuals are at risk and that all will eventually die given
a sufficiently long follow-up period. When studying lifespan in
general this is necessarily true, but may not hold when testing
for mortality due to a specific pathogen. For non-susceptible ani-
mals time-until-death will necessarily be censored, irrespective
of the follow-up time, and survival time may thus be a poor
indicator for specific pathogen resistance. The endurance reflects
the expected mortality per time-unit among susceptible individ-
uals, but will have no effect on survival of the non-susceptible
individuals (Farewell, 1982).

The survivors are likely a mixture of non-susceptible long-
term survivors and a fraction of susceptible (but highly endure)
animals being still alive, and the true condition of each animal
is unknown (unless the animal dies). In the cure model, proba-
bilities of the alternative settings (non-susceptible or susceptible
but still alive) can be estimated while simultaneously taking into
account variation in endurance among the surviving animals
(Ødegård et al., 2011c; Box 2).

The cure model has been applied to time-until-death data in
farmed shrimp challenge-tested with the Taura syndrome virus
(Ødegård et al., 2011b). It was estimated that although 72%
of the shrimp survived, only 62% could be considered non-
susceptible. The underlying heritability (±SE) for susceptibility
was high (0.41 ± 0.07), while the heritability of endurance was
low, albeit significant (0.07 ± 0.03). The most striking result
was that endurance and susceptibility were seemingly distinct
genetic traits (rG = 0.22 ± 0.25). The low genetic variation for
endurance and the genetic independency of endurance and sus-
ceptibility are in line with the results on other animal species
(Kause et al., 2012). These results have substantial impact on
how disease challenge-testing should be performed. If the aim
is to improve long-term survival under an infection pressure,
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Box 2 | A cure model.

In a mixed population of susceptible (z = 1) and non-susceptible
(z = 0) animals the probability for an individual being still alive
(censored) (c = 0) at time t is:

Pr(c = 0|t) = Pr(c = 0|t, z = 1)Pr(z = 1)

+ Pr(c = 0|t, z = 0)Pr(z = 0)

= Pr(c = 0|t, z = 1)Pr(z = 1) + (
1 − Pr(z = 1)

)
,

where Pr(z = 1) is the prior probability of being susceptible and
Pr(c = 0|t, z = 0) = 1. The probability of being still alive for sus-
ceptible animals, Pr(c = 0|t, z = 1), is a function of the endurance
of the animal. Furthermore, if survival time is split into a series of
binary survival scores (e.g., s1 to st , where 0 indicates survival),
this probability is:

Pr(c = 0|t, z = 1) =
t∏

j=1

Pr(sj = 0|z = 1),

where Pr(sj = 0|z = 1) is the probability of surviving a period j,
given that the animal is susceptible. Highly endure animals will
have higher probabilities of surviving each sub-period and thus
also higher probability of surviving until end of follow-up period.
Putative non-susceptible animals will always survive.

For animals that die during the follow up period, susceptibility
status is known (z = 1), while for surviving animals the true sus-
ceptibility status is not observable. Still, for these individuals the
probability of being susceptible can be calculated as:

Pr(z = 1|c = 0, t) = Pr(c = 0|t, z = 1)Pr(z = 1)

Pr(c = 0|t)

The proposed cure model allows for individual variation in
both prior probability of being susceptible as well as in the
endurance of susceptible animals (Ødegård et al., 2011b,c). A
detailed description of the cure model is given in Ødegård et al.
(2011c).

selective breeding should focus on susceptibility. This implies that
the follow-up period should continue until the vast majority of
susceptible animals have died, ensuring that the observed end-
survival largely resembles the fraction of non-susceptible animals
in the population.

NORMAL MIXTURE MODELS
Normal mixture models can be used to analyze genetics of host
performance, e.g., growth rate, within a population consisting of
individuals affected and unaffected by a pathogen, even in the
absence of pathogen burden and time-until-death data.

Finite normal mixture models have earlier been proposed for
analysis of infection-affected, continuously distributed pheno-
types, assuming that the true infection statuses of individuals
are unknown (Detilleux and Leroy, 2000; Ødegård et al., 2003,
2005; Gianola et al., 2004). The mixture model attempts to iden-
tify hidden categories (e.g., non-infected and infected) among the
observations, assuming that the continuous scale observations
originate from two normal distributions differing in mean and

Box 3 | A normal mixture model.

In a mixed population of infected (z = 1) and healthy (z = 0)
animals, the density of an observation y can be written as:

P(y) = P(y|z = 0)Pr(z = 0) + P(y|z = 1)Pr(z = 1).

The probability of an animal being infected is thus:

Pr(z = 1|y) = P(y|z = 1)Pr(z = 1)

P(y|z = 0)Pr(z = 0) + P(y|z = 1)Pr(z = 1)
·

A detailed description of the normal mixture model is given in
Ødegård et al. (2003, 2005).

FIGURE 4 | An example of a two-component mixture distribution.

The dotted lines are the unobserved distributions of non-infected “healthy”
individuals (70% of the observation) with ∼N(−1.0, 1.0) and infected
“diseased” individuals (30%) with ∼N(1.0, 1.0). The solid line represents
the resulting distribution of the observed phenotypes. Trait values are given
on x-axis and the frequencies of observations on y-axis.

(potentially) variance (Box 3; Figure 4). For instance, the broiler
ascites example given in Figure 2 can be analyzed using a mixture
model analysis assuming that the heart ratio has two underly-
ing distributions, one for non-infected and one for ascitic birds
(Zerehdaran et al., 2006). Another example of a mixture trait is
somatic cell scores in milk of dairy cattle (Madsen et al., 2008).
Somatic cell score is at low level in non-infected cows, but increase
to high levels in cases of (unobserved) subclinical mastitis. Hence,
the observed somatic cell scores may be viewed as a mixture of
two normal distributions (non-infected and mastitic). In Atlantic
salmon Salmo salar L., diseases such as infectious pancreas necro-
sis and pancreas disease can kill a fraction of the animals, but
may also reduce subsequent growth of affected survivors. Hence,
after an outbreak, observed growth of survivors may be viewed
as a mixture trait depending on the individuals’ previous health
status.

Classical selection aims at changing a trait in the desired direc-
tion. However, for mixture traits the variation is partly explained
by mixing of the two (or more) sub-distributions with differ-
ent means, and partly by variation within each sub-distribution
(Figure 4). Hence, if the aim is to reduce the incidence of the
infection rather than altering the observed continuous host trait
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itself, simple directional selection for the latter (e.g., for somatic
cell score) may not be optimal. The mixture model opens new
possibilities for selection, and can be used to directly select for
reduced infection risk. Additionally, the trait recorded on infected
and non-infected animals may be viewed as two distinct sub-traits
whose genetic variances and their genetic correlation can be esti-
mated. This resembles the G × E analysis performed with random
regression models (Figure 2) with the difference that the mixture
model does not take into account that infected individuals may
have different pathogen burdens.

Normal mixture models typically assume that an individ-
ual is either infected or not, and that infection has a certain
effect on the phenotype (Figure 4). However, variation in envi-
ronmental pathogen load and in individual tolerance for the
infection imply that the effect of an infection may vary sub-
stantially among individuals and environments. The proposed
mixture models may be extended to allow for individual responses
to infection (Madsen et al., 2008). Alternatively, the model may
be extended to a growth mixture model (Wang and Bodner,
2007). The growth mixture models assume that the observa-
tions come from different latent trajectories, i.e., health status
does not only affect the expectation of individual observations,
but also the slope of a phenotypic trajectory (growth curves).
Infected and non-infected animals could show different tra-
jectories, with the non-infected ones being unaffected by the
pathogen, while the infected individuals being variably affected
by the pathogen burden. Such models may be useful to ana-
lyze resistance and infection-affected traits observed on animals
with unknown infection status and in environments with variable
pathogen loads.

APPLICATION OF THE METHODS IN BREEDING PROGRAMMES
Random regression models are routinely applied in farm ani-
mal breeding programs, e.g., for milk test-day models in dairy
cows and for growth curves (Schaeffer, 2004). Similarly, random
regression models can be implemented to select for tolerance,
given suitable data are available. The cure model approach for the
analysis of time-until-death data (Veerkamp et al., 2001; Ødegård
et al., 2011a) have been implemented in the DMU software,
allowing the estimation of genetic parameters and breeding val-
ues for practical breeding (Madsen and Jensen, 2010). To our
knowledge, the cure model has not been implemented in routine
genetic evaluations in any breeding program. Árnason (1999) and
Urioste et al. (2007) have proposed a bivariate linear-threshold
model which can be used to analyze whether an animal sur-
vived (a threshold trait) and how long it took until death (a
linear trait). Such a model resembles the cure model and is

straightforward to apply in multi-trait breeding value evalua-
tions. Also the normal mixture model has been implemented
in the DMU software (Madsen and Jensen, 2010), and is there-
fore available for multi-trait genetic evaluations, but to our
knowledge, has not yet been implemented in routine genetic
evaluations.

The cure model has been applied to survival data in aqua-
culture species, leading to altered recommendations for routine
disease-challenge testing (Ødegård et al., 2011b). Historically,
challenge tests in aquaculture species have been terminated at
intermediate cumulative mortalities to ensure maximum vari-
ation in binary survival data. However, this approach is only
proper given that endurance and susceptibility are equivalent
traits, which is not necessarily the case. The current advice is to
continue testing until mortality naturally ceases, even at levels
above 50% mortality (Ødegård et al., 2011a).

So far, only a limited number of breeding programs have con-
sidered selecting for tolerance. Some African cattle breeding pro-
grams are specifically selecting for trypanotolerance-related traits,
the tolerance being a major breeding objective trait (Hanotte
et al., 2003; van der Waaij et al., 2003). In contrast, regardless
of the extensive studies conducted in Australia and New Zealand
on nematode tolerance in sheep, a decision has been made not
to record and select for tolerance because of the need to let
animals to suffer and production to be reduced for tolerance
to be expressed (Albers et al., 1987; Bisset and Morris, 1996;
Woolaston and Windon, 2001). The novel statistical methods
and the increasing awareness of the detailed physiological mech-
anisms of tolerance (Medzhitov et al., 2012) may provide more
opportunities for tolerance selection in farm animals.

CONCLUSIONS
The recent statistical developments provide tools to increase
our understanding of genetics of alternative strategies to defend
against parasites, pathogens, and production diseases. Most of the
statistical methods can be applied in breeding value evaluations to
breed for tolerance. Moreover, the methods presented here pro-
vide tools to quantify genotype-by-pathogen burden interactions
that may explain a significant proportion of phenotypic variation
in traits within populations that are exposed to various infections
and production diseases. The traits whose variation is affected
are typically production traits that are selected for in breeding
programs. To be able to unambiguously select for the genetic
potential of a production trait, the effects of resistance and tol-
erance should be separated from it. The methods presented in
this paper provide potential to construct more effective breeding
programs to increase both productivity and animal health.
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