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Abstract

Alice and Bob use Aravind’s version of the Bell-Kochen-Specker

theorem to fend off awkward questions about what exactly they were

doing in Amsterdam last week.

1 Introduction

Jacobs and Wiseman[1] use a story about a robbery to illustrate Bell’s the-
orem, discussed in Mermin’s version[2] based on the Greenberger-Horne-
Zeilinger (GHZ) state of three qubits [3]. They ask if a story can be con-
structed around Aravind’s recent version [4] of the Bell-Kochen-Specker the-
orem [5, 6]. Aravind’s proof is a particularly clear and simple demonstra-
tion of the incompatibility between quantum mechanics and our intuitive
classical ways of thinking about the physical world. He shows how an en-
tangled state of four qubits (for example, the spin states of four electrons)
can be used by two separated people, with no means of communication, to
perform a joint task that would appear to be impossible without communi-
cation. This and similar applications of quantum entanglement have become
known as “pseudo-telepathy.”[7] Although it cannot be used as an instanta-
neous method of communication, pseudo-telepathy is possibly even closer to
the science-fiction idea of telepathy than quantum teleportation[8] is to its
science-fiction namesake. It is therefore an attractive subject for describing
the peculiarities of quantum information to students and the general public,
and one that is particularly well suited to illustration in story form.

Such a story was told in a little play which was part of the Merchant
Adventurers’ Science Discovery lecture, a public lecture given in York in
March 2006. The script of this playlet is given in Sec. II. The theory of the
device used by Alice and Bob is explained in Sec. III.
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2 The script: Alice and Bob Get Away With

It

The play was first performed in the Merchant Adventurers’ Hall, York, on 7
March 2006. The part of Alice was played by Chris Higgins, that of Bob by
Ged Murray. The Lecturer was Tony Sudbery.

The lecturer has just explained the EPR experiment and why it led Ein-
stein, Podolsky and Rosen to conclude that each qubit has definite properties
which determine the results of all possible experiments on the qubit.

Lecturer: But Einstein was wrong. John Bell showed that there are situ-
ations where we can’t understand the effects of entanglement by
saying that each side has its own independent properties. And
this is what gives entanglement its power: it gives rise to telepor-
tation, [8] telepathy, [7] and —

BOB (coming up from audience): Hey, wait a minute. You don’t expect
us to believe this crap, do you? Parallel universes, telepathy,
teleportation. . .We came here for a serious science lecture, and
you give us science fiction. This is the Merchant Adventurers’
Hall, you know, not the City Screen.

Lecturer: It’s Bob!

Alice (coming up from audience): Just you be quiet, Bob Murray, and hear
what he’s got to say. You might learn something if you give your
ears a chance.

Lecturer: Alice! It’s all coming true.

Alice: Did you mention telepathy? That’s the only thing that would help
us in our current problem.

Lecturer: What problem is that?

Alice: We’ve just got to get our stories straight about last week.

Bob: Won’t you ever give up? I’ve proved to you that we’re never going to
be able to do that the way you want to.

Alice (sarcastically): Mathematically, I suppose.

Bob: Well, yes.

Lecturer: Sounds interesting. Tell me more.

Alice: We’re accountants, and last week we were in Amsterdam looking at
the accounts of three branches of our client’s company. Their head
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office thinks there’s some funny business going on. Tomorrow we’ll
be debriefed separately. A senior accountant will look at one of
the branches with Bob, and our head of IT will look at the email
traffic between the branches on one of the three days that we were
there. We’ve got all the data, but we’ll have to tell them exactly
which branch we visited on which day.

Lecturer: What’s the problem? Why don’t you just tell them what you
did?

Bob and Alice exchange looks.

Lecturer: I see. I didn’t know accountants had such interesting lives. Well,
why can’t you get together beforehand and decide on your story?

Alice: The thing is, it will make life much easier if we can say we did things
in a particular way. On each day we should visit at least one
branch; maybe just one, but if we go on to a second one we must
also visit the third on the same day, otherwise the first two will
have time to discuss things and warn the third one. We don’t
have to have inspected all three branches, but if we do visit one
we must go twice – after the first visit we would look up our
records in the evening and then go back to check the next day.

Bob: So when they ask Alice what we did on one of the three days, we want
to say we went to either one or three branches; and when they
ask me what we did about one of the branches, I want to say that
either we didn’t visit it or we visited it on two days. But we can’t
put together a schedule that does that! If we make either one or
three visits on each of three days, then altogether we would have
made an odd number of visits (three odd numbers add up to an
odd number), but if we visit each branch either no times or twice,
that makes an even number of visits in total.

Lecturer: Surely your bosses can work that out just as well as you can.
They can’t expect you to have done the impossible.

Alice: No, but if we don’t do it this way they will want to probe a lot
further. It would save a lot of awkward questions if we can be
sure that whatever they ask us, we have an answer that fits these
rules. But we’ve got to be sure that when they compare notes our
stories are compatible — we must both say that we went to the
same branch on the same day.

Lecturer: I’m not sure that I really understand why you want to do this —
I don’t think I want to know. But yes, entanglement can do it for
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you. As if you weren’t entangled enough already.
Let me see if I’ve got it straight. You have to convince your

bosses that you undertook a schedule of visits to the three dif-
ferent branches, A, B and C, on the three days that you were in
Amsterdam. So you could fill in the grid in Table 1 by putting a
tick in the appropriate square if you visited a particular branch
on a particular day. Alice will be asked to fill in one of the rows,
and she wants to do so with an odd number of ticks; Bob will have
to fill in one of the columns, and he wants to put an even number
of ticks. But you want to be sure that you both put the same
thing in the square where Alice’s row and Bob’s column intersect.
Right?

Branch A Branch B Branch C
Tuesday
Wednesday
Thursday

Table 1: The grid to be filled in by Alice and Bob

Alice and Bob (together): Right.

Lecturer: You’re right, you can’t do that with a complete schedule. What you
need is the Quantum Entangulator. Here you are – you each have
a handset, cunningly disguised as a soft toy (a cat, as it happens).
Each of these contains a pair of electrons, and a measuring device
which will do an experiment on the electrons and translate the
result into an answer to the question you have been asked, obeying
the restrictions you’ve described. The electrons are all entangled
together in such a way that the answers are guaranteed to fit
together.

Let’s test it. Switch them on. Now, Alice, suppose you’re
asked which branches you visited on Tuesday. Press button 1 to
find out what you should answer.

Alice: It says B.

Lecturer: And Bob, suppose you’re asked on which days you visited branch
B. Press button B to find your answer.

Bob: Tuesday and Wednesday.

Lecturer: You see! They match up. And they always will. As Bob proved,
the answers cannot be programmed in advance; there is no phys-
ical connection between the two ends of the Entangulator — no
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wires, no phone line, no radio; but they are guaranteed to give
compatible answers.

Bob: Fantastic! The university should patent this!

Lecturer: Not our idea, I’m afraid, Bob. [4]

Alice: But have they realized what they’ve got here? When I got my diary
entry from my end of the Entangulator, Bob’s end immediately
got the information about the branch they were asking about.
No radio or anything — so it was going faster than light! You’ve
really beaten Einstein in a big way here. It may not matter now,
but think what it will mean in the future! Like, when spaceships
are trying to send messages over huge distances — beating the
speed of light will be really important then.

Lecturer: Calm down, Alice. I agree it looks good — but how are you going
to use it?

Alice: Well, I put my message in the entangulator thingy, and it immediately
comes out at Bob’s end.

Lecturer: But Alice, when you use the entangulator tomorrow morning,
you’ll never put anything into it. You only get something out
of it — and you have no control over what that is. Bob gets a
corresponding thing out, but there’s no way you can make that
be the message you want to send.

Other people have suggested that something was moving
faster than light in the entangulator, but they really ought to
know better.[9] When you activate your side of it, it seems to
change Bob’s side, it’s true, because it changes the possible an-
swers that can be flashed up on his screen; some answers be-
come impossible. But Bob doesn’t know that. Just because he
doesn’t get a particular answer on a single occasion, he can’t de-
duce that it’s become impossible. He doesn’t get any information
until you’ve told him independently what answer you got.

In general, there’s a theorem that entanglement can never be
used by itself to send signals. [10] In particular, it can’t commu-
nicate faster than light. So if you want to send Bob a kiss in the
quantum wonderland, you’ll just have to do it the old-fashioned
way.
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3 The Explanation

The entangulator contains four qubits, two in Alice’s cuddly toy and two in
Bob’s, in the state

|Ψ〉 = |00〉A|00〉B + |01〉A|01〉B + |10〉A|10〉B + |11〉A|11〉B, (1)

which can be written as

|Ψ〉 = |E1〉A|E1〉B + |E2〉A|E2〉B + |E3〉A|E3〉B + |E4〉A|E4〉B (2)

where |E1〉, . . . |E4〉 is any orthonormal basis of two-qubit states that have
real coefficients when expanded in the basis |00〉, |01〉, |10〉, |11〉. Hence if
Alice measures her two qubits in any such basis and obtains the result |Ei〉,
Bob’s qubit will be projected into the same state |Ei〉. The measurements
made by Alice and Bob are shown in Table 2:

Branch A Branch B Branch C
Tuesday I ⊗ σz σz ⊗ I −σz ⊗ σz

Wednesday σx ⊗ I I ⊗ σx −σx ⊗ σx

Thursday σx ⊗ σz σz ⊗ σx −σy ⊗ σy

Table 2: The measurements made by Alice and Bob

Each row and each column of Table 2 contains a set of three commuting
two-qubit observables. Each row therefore determines a basis of two-qubit
states, namely the simultaneous eigenvectors of the observables in that row.
The transformation matrices between these bases are purely real, so any of
the bases could serve as |E1〉, . . . , |E4〉 in Eq. (2).

When she is asked about a particular day, Alice measures the commuting
observables in the corresponding row of the table, and converts the result into
an answer to the question about which branches they visited that day: if the
observable under branch X is measured to have the value −1, she says that
they visited branch X that day; if the value is +1 she says they didn’t visit it.
This measurement projects Bob’s pair of qubits onto the same simultaneous
eigenstate. When he is asked when they visited branch X, he measures the
commuting observables in the corresponding column, and converts the result
into an answer to the question of when they visited this branch, in a similar
way to Alice. If the observable in the Tuesday row has the value −1, he says
they visited branch X on Tuesday; otherwise they didn’t. Because his state
is now an eigenstate of the observable that is common to his set and Alice’s,
he is bound to obtain the same value for this observable. He therefore gives
the same answer as Alice to the question in the square common to his column
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and her row. Thus, they both agree as to whether they visited his branch on
her day.

The product of the observables in each row is −I ⊗ I, while the product
of the observables in each column is I⊗I. The result of Alice’s measurement
therefore includes −1 an odd number of times — she says that they visited an
odd number of branches on each day — while the result of Bob’s measurement
includes −1 an even number of times – he says that they visited each branch
an even number of times. Whatever they were doing in Amsterdam, they
get away with it.
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