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  ABSTRACT 

  This study investigated the accuracy of direct ge-
nomic breeding values (DGV) using a genomic BLUP 
model, genomic enhanced breeding values (GEBV) 
using a one-step blending approach, and GEBV using 
a selection index blending approach for 15 traits of 
Nordic Red Cattle. The data comprised 6,631 bulls of 
which 4,408 bulls were genotyped using Illumina Bovine 
SNP50 BeadChip (Illumina, San Diego, CA). To vali-
date reliability of genomic predictions, about 20% of the 
youngest genotyped bulls were taken as test data set. 
Deregressed proofs (DRP) were used as response vari-
ables for genomic predictions. Reliabilities of genomic 
predictions in the validation analyses were measured as 
squared correlations between DRP and genomic predic-
tions corrected for reliability of DRP, based on the bulls 
in the test data sets. A set of weighting (scaling) factors 
was used to construct the combined relationship matrix 
among genotyped and nongenotyped bulls for one-step 
blending, and to scale DGV and its expected reliability 
in the selection index blending. Weighting (scaling) fac-
tors had a small influence on reliabilities of GEBV, but 
a large influence on the variation of GEBV. Based on 
the validation analyses, averaged over the 15 traits, the 
reliability of DGV for bulls without daughter records 
was 11.0 percentage points higher than the reliability 
of conventional pedigree index. Further gain of 0.9 per-
centage points was achieved by combining information 
from conventional pedigree index using the selection 
index blending, and gain of 1.3 percentage points was 
achieved by combining information of genotyped and 
nongenotyped bulls simultaneously applying the one-
step blending. These results indicate that genomic se-
lection can greatly improve the accuracy of preselection 
for young bulls in Nordic Red population, and the one-

step blending approach is a good alternative to predict 
GEBV in practical genetic evaluation program. 
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  INTRODUCTION 

  Genomic selection has been widely applied in dairy 
cattle breeding (Hayes et al., 2009a; VanRaden et 
al., 2009; Harris and Johnson, 2010; Su et al., 2010; 
VanRaden and Sullivan, 2010). Currently, a typical ge-
nomic evaluation in dairy cattle involves several steps. 
First, pseudo-observations are derived from raw data. 
For example, traditional EBV, daughter deviations 
or deregressed proofs (DRP) can be used as pseudo-
observations. Estimated breeding values and daughter 
deviations are usually obtained from a BLUP model 
that integrates a pedigree-based relationship matrix. 
Deregressed proofs (Goddard, 1985; Schaeffer, 1985) 
can be derived from EBV and the effective daughter 
contributions (Jairath et al., 1998; Schaeffer, 2001). 
Second, direct genomic breeding values (DGV) are 
predicted using a genomic prediction model from pseu-
do-observations of reference animals and genome-wide 
SNP markers. Finally, DGV are combined with tradi-
tional parent averages (PA) or pedigree indexes (PI) 
to obtain genomic enhanced breeding values (GEBV). 

  Many statistical models have been proposed to predict 
DGV, which differ in the assumption of distributions of 
SNP effects. A linear BLUP approach (Meuwissen et 
al., 2001; VanRaden, 2008; Goddard and Hayes, 2009; 
Hayes et al., 2009b) assumes that effects of all SNP are 
normally distributed with equal variance. BayesA and 
similar approaches (Meuwissen et al., 2001; Meuwis-
sen and Goddard, 2004; Su et al., 2010) assume that 
variances of SNP effects differ among loci. BayesB and 
other variable selection approaches (Meuwissen et al., 
2001; Meuwissen and Goddard, 2004; Villumsen et al., 
2009; Su et al., 2010) assume heterogeneous variances 
of SNP effects, with most SNP having zero or very 
small effects and a few having moderate to large effects. 
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Simulation studies with the assumption that few 
QTL have a large effect and most QTL have a small 
effect have shown that the predictive ability of BayesA 
and BayesB was better than BLUP approaches (Meu-
wissen et al., 2001; Lund et al., 2009; Guo et al., 
2010). However, experiences with real dairy cattle data 
indicate that limiting the number of SNP markers to 
only those with large effects has resulted in reduced 
accuracy (Cole et al., 2009; Su et al., 2010), and that 
a linear BLUP model performed well for most traits 
(Hayes et al., 2009a; VanRaden et al., 2009). Linear 
BLUP models (at either the SNP level or the individual 
animal level) have become popular approaches in prac-
tical genomic evaluations because they are simple and 
have low computational requirements.

The accuracies of genomic predictions can be im-
proved by combining information of traditional EBV 
(PA or PI). VanRaden et al. (2009) proposed a blend-
ing approach using a selection index that includes 
DGV, traditional PA (or PI) calculated from the whole 
population, and PA (or PI) calculated from the data of 
genotyped animals only. A more sophisticated approach 
is to predict GEBV by integrating genomic, pedigree, 
and phenotype information in a single-step procedure 
(Legarra et al., 2009; Misztal et al., 2009; Aguilar et 
al., 2010; Christensen and Lund, 2010). However, this 
single-step approach might have a high computational 
demand in the cases of large data sets when applying 
complex models (e.g., multi-trait test-day model), and 
might not easily be implemented in genomic prediction 
using a combined reference population that includes 
genotyped foreign bulls, such as the Eurogenomics ref-
erence population (Lund et al., 2010).

A compromise between efficient blending and efficient 
implementation is to apply the methodology of the 
single-step procedure (Misztal et al., 2009; Aguilar et 
al., 2010; Christensen and Lund, 2010) but using DRP 
or daughter deviations of bulls as response variable, 
instead of raw data. In this context, the term “one-
step blending” was used to distinguish from the original 
single-step procedure. The objective of this study was 
to investigate the reliability and unbiasedness of GEBV 
using the one-step blending approach for Nordic Red 
Cattle (RDC) and compare it with DGV from a linear 
genomic BLUP model (GBLUP) and GEBV from a 
selection index blending approach.

MATERIALS AND METHODS

Data

Estimated breeding values from the Nordic genetic 
evaluation in October 2010 were used to derive DRP 
(Jairath et al., 1998; Schaeffer, 2001) for 15 traits 

(Table 1) of RDC bulls born from 1980 to 2006. Der-
egression was carried out using Mix99 package (Lidauer 
and Strandén, 1999; Strandén and Mäntysaari, 2010). 
Most of the evaluated bulls were genotyped using the 
Illumina Bovine SNP50 BeadChip (Illumina, San Di-
ego, CA). After editing SNP data with criteria of minor 
allele frequency of 0.01 and locus average GenCall score 
of 0.60, 45,168 SNP markers were used in the genomic 
analyses. In total, 6,631 bulls had DRP for at least one 
trait, and of these, 4,408 bulls also had SNP genotypes. 
The pedigree for the bulls was built by tracing 7 gen-
erations back, which led to a pedigree file including 
23,358 animals.

The data were divided into a reference data set 
(training data set) and a test data set. Bulls born be-
fore October 1, 2001, were considered reference data, 
such that approximately the 20% youngest genotyped 
bulls were in the test data set for most of traits. It 
was required that DRP in the reference data set had 
reliability larger than 10%, and DRP in the test data 
set had reliability larger than 20%. Furthermore, only 
genotyped bulls were kept in the test data set. Thus, 
the test data set for a given trait was the same for 
validation of genomic predictions using the different 
approaches. The numbers of bulls in the reference and 
test data sets for each trait are shown in Table 1. The 
total numbers of bulls in reference data sets (REFt) 
ranged from 3,022 to 5,532 with an average of 4,742. 
The numbers of genotyped bulls in reference data sets 
(REFs) ranged from 2,269 to 3,421 with an average 
of 3,175. The numbers of bulls in test data sets were 
between 635 and 987 with an average of 898. The DRP 
of REFt were used to estimate GEBV using a one-step 

Table 1. Number of bulls in total reference data set (REFt), genotyped 
reference data set (REFs), and test data set 

Trait REFt REFs Test

Milk 5,532 3,421 924
Fat 5,532 3,421 924
Protein 5,532 3,421 924
Fertility 4,827 3,377 941
Birth index 4,904 3,410 987
Calving index 5,317 3,359 971
Udder health 5,531 3,421 979
Other diseases1 4,957 3,409 767
Body conformation 3,022 2,269 900
Feet and legs 3,780 2,820 899
Udder conformation 3,797 2,820 901
Milking ability 3,711 2,818 897
Temperament 3,709 2,819 896
Longevity 5,440 3,416 635
Yield2 5,532 3,421 924
Average 4,742 3,175 898
1Other diseases: diseases other than udder (includes mainly reproduc-
tive and metabolic diseases).
2Yield index: EBVYield = 4 × EBVProtein + EBVFat − EBVMilk.
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blending approach, and the DRP of REFs were used to 
estimate DGV using a linear GBLUP model.

Statistical Analysis

The DGV were predicted using a linear GBLUP 
model. Two approaches were used to predict GEBV; 
one was a selection index blending approach and the 
other was a one-step blending approach.

Linear GBLUP. The following linear GBLUP 
model (VanRaden, 2008; Hayes et al., 2009b) was used 
to predict DGV:

 y = 1μ + Zg + e,  [1]

where y was the vector of DRP of genotyped reference 
bulls, μ was the overall mean, g was the vector of addi-
tive genetic effects, e was the vector of random residu-
als, 1 was the vector with its elements of 1, and Z was 
the design matrix associating g with response variables.

Genetic and environmental effects were assumed to 
follow normal distributions, g 0 G∼ N g, σ2( ) and 

e N e∼ 0, ,Dσ2( )  where σg
2 was additive genetic variance, 

G was the realized genomic relationship matrix, σe
2 was 

residual variance, and D was a diagonal matrix with 
element dii = 1/w, where w was a weighting factor for 
the ith DRP. The weighting factor w r rDRP DRP= −( )2 21  
(VanRaden, 2008; Garrick et al., 2009) was applied to 
account for heterogeneous residual variances due to dif-
ferent reliabilities of DRP rDRP

2( ).
The genomic relationship matrix was defined as G = 

MM’/Σ2piqi, where qi and pi were the frequencies of 
allele 1 (A1) and allele 2 (A2) at locus i, respectively; 
and M was n × m matrix (n = number of animals, m 
= number of marker loci) that specified SNP genotype 
coefficients at each locus. The coefficients of ith column 
in the M matrix were 0–2pi for genotype A1A1, 1–2pi 
for A1A2, and 2–2pi for A2A2. The G matrix was further 
normalized so that the average of diagonal coefficients 
was equal to 1 (Forni et al., 2011). The DGV for an 
individual was defined as DGV g.= ˆ

Selection Index Blending. According to Van-
Raden et al. (2009), the selection index used to esti-
mate GEBV was

 GEBV(I) = b1DGV + b2PIs + b3PIt,  [2]

where PIt and PIs were the traditional EBV or pedigree 
index estimated from the full data set or from the data 
used to predict DGV, respectively. In the present study, 
PIt was estimated from the DRP in data set REFt, and 

PIs was estimated from the DRP in data set REFs. This 
meant that PI ≈ 0.5EBV of sire + 0.25EBV of mater-
nal grandsire + 0.125EBV of maternal great-grandsire 
for most bulls in the test data set.

The equation system for the selection index was

b1V11 + b2V12 + b3V13 = V11,

b1V12 + b2V22 + b3V23 = V22,

b1V13 + b2V23 + b3V33 = V33,

where V11, V22, and V33 were the reliabilities of DGV, 
PIt, and PIs, respectively. We defined V12 = V22, V23 = 
V22, and V13 = V22 + (V11 − V22) (V33 − V22)/(1 − 
V22). To ensure that matrix V was positive definite, V11 
and V33 were constrained to be greater than V22. In the 
present study, V11, V22, and V33 were obtained by in-
verting the coefficient matrix of the corresponding 
model. The expected reliability of the GEBV was 
rGEBV I( ) .2 = + +b V  b V  b V1 11 2 22 3 33

A set of scaling factors (S) was used to scale V11 (due 
to possible overestimation of reliabilities of DGV) and 
DGV (due to possible inflation of DGV) as 
V SV and DGV11 11* * .= = SDGV  The detailed results 
for each trait are presented based on the index with a 
scaling factor appropriate for most of the traits.

One-Step Blending. Following Legarra et al. 
(2009), Aguilar et al. (2010), and Christensen and Lund 
(2010), the one-step blending model had the same form 
as model [1] but used more information sources. Thus,

 y = 1μ + Za + e,  [3]

where y was the vector of DRP from all reference bulls, 
including both genotyped and nongenotyped bulls, and 
a was the vector of additive genetic effects. Because 
this model used information from all available bulls, 
the estimated additive genetic value was defined as 
GEBV. Here, GEBV obtained from this model was 
denoted as GEBV(o); that is, GEBV a.(o) = ˆ

Genetic values were assumed to follow a normal dis-
tribution, a 0 Gp∼ N a, ,σ2( )  where σa

2 was additive ge-
netic variance, and Gp was the genetic relationship 
matrix constructed by combining information of SNP 
markers and pedigree. Then,

 G
G G A A

A A G A A G A A A A A A
P =

+ −

−

− − − −
α α

α α

11
1

12

21 11
1

21 11
1

11
1

12 22 21 11
1

122

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 

 and G G Aα α α= + −(1 ) 11, 
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where A11 was a sub-matrix of pedigree-based rela-
tionship matrix (A) for genotyped animals, A22 was 
a sub-matrix of A for nongenotyped animals, A12 (or 
A21) was a sub-matrix of A describing the relationship 
between genotyped and nongenotyped animals, G was 
genomic relationship matrix as defined above, and α 
was the relative weight on marker-based relationship 
matrix and (1 − α) on pedigree-based relationship coef-
ficients for genotyped animals. The inverse of Gp was

 G
G A 0
0 0

Ap
−

− −
−=

−⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
+1

1
11

1
1α . 

In the present study, the influence of α on GEBV 
was investigated by varying α from 0.70 to 0.90. De-
tailed results for each trait are presented based on the 
scenario with a relative weight appropriate for most of 
the traits.

In both the GBLUP and the one-step blending mod-
el, variance components were estimated using average 
information restricted maximum likelihood algorithm 
(Gilmour et al., 1995; Johnson and Thompson, 1995). 
The analyses were carried out using the DMU package 
(Madsen et al., 2010).

Validation of Genomic Prediction

Reliability of genomic predictions (DGV and GEBV) 
was assessed as (1) expected reliability obtained by in-
verting the coefficient matrix of the mixed model equa-
tions (Henderson, 1975; Meyer, 1989); that is, model-

based reliability r PEV
e

a

2
2

1≈ −
σ

, where PEV was predic-

tion error variance; and (2) squared correlation between 
genomic prediction and DRP for bulls in the test data 
set, corrected with respect to reliability of average 

DRP; that is, r
rv

I DRP DRP I a

2
2

2 2 2 2 2
≈

( )
≈

Cov , Cov ( , )2I DRP I a
σ σ σ σ

, where I 

was genomic prediction, and a was true breeding value, 
termed as validated reliability in the context. Unbiased-
ness of genomic predictions was measured as the regres-
sion of DRP on the genomic prediction. A necessary 
condition for unbiased prediction was that the regres-
sion coefficient did not deviate significantly from 1. To 
make comparison with traditional PI, the same criteria 
were also applied in PI.

RESULTS

Heritabilities used in the deregression and average 
reliabilities of DRP in different data sets are shown in 
Table 2. Reliabilities of DRP were not completely con-
sistent with heritabilities of the traits, because the sizes 
of data and the numbers of daughters having records 
differed among the traits. Reliabilities of DRP for bulls 
in REFs and REFt were much higher than those in test 
data sets for most traits because bulls in the test data 
sets were younger and had fewer daughters with records 
or fewer daughters with later lactation records. Reli-
abilities of DRP for bulls in REFt were slightly lower 
than those in REFs, indicating that the nongenotyped 
bulls generally had relatively fewer daughters with re-
cords. Averaged over the 15 traits, reliability of DRP 
was 79.8% in REFs, 78.5% in REFt, and 74.0% in the 
test data set.

A set of relative weights (α = 0.70, 0.75, 0.80, 0.85, 
and 0.90) on marker-based relationship was used to 

Table 2. Heritability (h2) of the traits, reliability of DRP rDRP
2( ) in total reference data set (REFt), genotyped 

reference data set (REFs), and test data set 

Trait h2

rDRP
2( ) 
 

(%) in REFt

rDRP
2( ) 
 

(%) in REFs

rDRP
2( ) 
 

(%) in Test

Milk 0.39 93.6 94.7 91.7
Fat 0.39 93.6 94.7 91.7
Protein 0.39 93.6 94.7 91.7
Fertility 0.04 76.2 78.6 67.1
Birth index 0.06 75.7 77.0 73.7
Calving index 0.03 65.6 66.3 59.3
Udder health 0.04 88.8 90.5 79.7
Other diseases 0.02 60.9 62.4 46.1
Body conformation 0.30 80.0 81.2 79.1
Feet and legs 0.10 56.1 57.4 54.4
Udder conformation 0.25 75.0 75.9 75.7
Milking ability 0.26 79.4 81.4 80.0
Temperament 0.13 70.8 73.1 70.2
Longevity 0.10 74.3 74.9 57.4
Yield 0.39 93.6 94.7 91.7
Average 0.19 78.5 79.8 74.0



Journal of Dairy Science Vol. 95 No. 2, 2012

GENOMIC SELECTION FOR NORDIC RED CATTLE 913

construct the relationship matrix Gp when using the 
one-step blending, and a set of scaling factors (0.80, 
0.85, 0.90, 0.95, and 1.00) was used to scale DGV and 
its reliability when using the selection index blending. 
As shown in Table 3, averaged over the 15 traits, the 
Akaike information criterion (Akaike, 1974) decreased 
with decreasing weight, and reached a minimum at a 
weight of 0.70 when using one-step blending. In other 
words, the goodness of fit increased with decreasing 
effect of genomic-based relationship within the range 
of weights, and the best fitting was at a weight of 0.70. 
The expected reliabilities of GEBV were reduced with 
decreasing weighting factor in one-step blending and 
with decreasing scaling factor in selection index blend-
ing. The highest validated reliabilities were obtained 
with weight of 0.80 in one-step blending. However, 
within the range of these weights, the differences be-
tween the validated reliabilities were very small. In 
selection index blending, scaling had no notable effect 
on validated reliability. On the other hand, regression 
coefficients of DRP on GEBV increased considerably 
with decreasing weight in one-step blending and the 
scales in selection index blending.

Table 4 presents the expected reliability for PIt, PIs, 
and DGV, for GEBV from one-step blending with 
weight on genomic-based relationship being 0.80, and 
for GEBV from selection index blending with scale of 
0.90, for each trait. The expected reliabilities for PIt 
were slightly higher than those for PIs, implying a small 
contribution of nongenotyped bulls to PI of bulls in 
test data sets. The expected reliabilities for DGV and 
GEBV were much higher than those for PI, indicat-
ing that SNP markers provided more information than 
pedigree alone. The DGV were predicted from marker 
information and DRP of bulls in a relatively small data 
set (REFs), whereas GEBV made use of combined in-
formation from markers, pedigree, and DRP of bulls 
in a large data set (REFt). However, the expected reli-
abilities of GEBV were lower than reliabilities of DGV. 
This was because a value of 0.9 was used to scale the 
expected reliabilities of DGV in the selection index, and 

a value of 0.8 was used as weight on genomic relation-
ship matrix in the one-step blending model. This also 
suggested that the expected reliability of DGV could 
be overestimated.

As shown in Table 5, the validated reliabilities of PI, 
DGV, and GEBV were much lower than the expected 
reliability for all traits, except for other diseases. On 
average, validated reliabilities were lower than the cor-
responding expected reliabilities by 11 to 13 percentage 
points for PI and GEBV and by 18 percentage points 
for DGV. Validated reliabilities ranged from 10.2 to 
32.8% (average 19.9%) for PIt, 10.0 to 30.1% (aver-
age 18.3%) for PIs, 16.0 to 45.4% (average 30.9%) for 
DGV, 16.1 to 46.7% (average 31.8%) for GEBV from 
the selection index blending, and from 15.9 to 47.8% 
(average 32.2%) for GEBV from the one-step blending. 
The highest validated reliability of genomic predic-
tion was found for fat, possibly due to a known gene 
(DGAT) with a large effect on fat percentage (Grisart 
et al., 2004). Averaged over the 15 traits, the validated 
reliabilities of DGV were 11.0 percentage points higher 
than reliability of PIt. The further gain of genomic 
prediction by combining information of traditional PI 
was 0.9 percentage points using the selection index 
blending, and 1.3 percentage points using the one-step 
blending.

Regression coefficients of DRP on genetic predictions 
for bulls in the test data set are shown in Table 6. The 
regression coefficients of DRP on PI ranged from 0.763 
to 1.087 with an average of 0.896 for PIt, and from 
0.758 to 1.008 with an average of 0.865 for PIs. The 
range was between 0.752 and 1.125 with an average of 
0.890 for DGV. These results indicated that the varia-
tion of PI and DGV was overestimated for most traits 
(regression coefficients were much lower than 1). By 
using a weight of 0.8 on the genomic relationship ma-
trix in the one-step blending model and scaling DGV 
by 0 9.  and its expected reliability by 0.90 in the selec-
tion index, the bias in variation of genetic prediction 

Table 3. Akaike information criterion (AIC) for the one-step blending approach, expected reliability re
2( ) and validated reliability rv

2( ) of genomic 
enhanced breeding values (GEBV), and regression coefficient (b) of deregressed proofs (DRP) on GEBV using the one-step blending approach 
[GEBV(o)] with different weights on genomic relationships, and using the selection index blending approach [GEBV(I)] with different scaling 
factors averaged over the 15 traits 

One-step Selection index

Weight AIC re
2 GEBV(o) (%) rv

2 GEBV(o) (%) bGEBV(o) Scale re
2 GEBV(I) (%) rv

2 GEBV(I) (%) bGEBV(I)

0.90 44,004 47.26 32.06 0.916  1.00 49.47 31.82 0.899
0.85 43,991 45.77 32.15 0.927  0.95 47.09 31.83 0.921
0.80 43,982 44.32 32.19 0.941  0.90 44.71 31.83 0.947
0.75 43,978 42.91 32.16 0.953  0.85 42.33 31.82 0.973
0.70 43,977 41.56 32.08 0.967  0.80 40.03 31.81 1.001
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was reduced greatly. Thus, the regressions ranged from 
0.821 to 1.139 with an average of 0.946 for GEBV from 
the selection index blending and from 0.805 to 1.105 
with an average of 0.941 for GEBV from the one-step 
blending.

DISCUSSION

The present study assessed the accuracy of genomic 
prediction in RDC. According to the validation analy-
sis, reliability of DGV was higher by 11 percentage 
points than that of traditional PI, averaged over the 
15 traits. Although only one-third of bulls in the pres-
ent data were nongenotyped, combining information of 
traditional PI led to a further gain of 0.9 percentage 
points for genomic prediction using the selection index 
blending, and 1.3 percentage points using the one-step 
blending.

The 2 blending approaches used the same informa-
tion sources but different algorithms. We found that 
the reliability of GEBV from the one-step blending 
was slightly higher than that from the selection index 
blending. The selection index blending involves 2 steps. 
First, PIt, PIs, and DGV, as well as their reliabilities, 
are estimated from different data sets and models. 
Second, these estimates are used to calculate GEBV. 
Thus, any uncertainty from the first step is not taken 
into account in the second step (Christensen and Lund, 
2010). In the one-step blending, using a combination 
of genomic relationship matrix and pedigree-based 
relationship matrix, all information is used to predict 

GEBV simultaneously, avoiding several assumptions 
and parameters required in multiple-step methods 
(Aguilar et al., 2010; Forni et al., 2011). This is likely 
why the one-step blending produced more accurate 
GEBV than the selection index blending. In addition, 
the one-step blending is easier to implement in practi-
cal genetic evaluations and, when applied on data of 
bull DRP, the computational demand is similar to the 
demand for predicting DGV using a GBLUP model. 
On the other hand, selection index blending has the 
flexibility to increase reliability of GEBV by increasing 
the accuracy of DGV using more sophisticated models 
(e.g., Bayesian variable selection models).

In the present study, a set of weights was used to 
construct Gp in the one-step blending model and a set 
of scaling factors was used in the selection index. As 
shown in Table 6, the average regression coefficient of 
DRP on DGV over the 15 traits was 0.890, indicating 
an inflation of DGV. Inflation of genetic evaluations 
using genomic information would cause top young 
bulls to have an unfair advantage over older progeny-
tested bulls (Aguilar et al., 2010). Using a weight of 
0.80 on genomic relationship in the one-step blending 
model and a scale of 0.9 for DGV and its reliability in 
the selection index seemed appropriate in the present 
analyses, according to the validation analysis. First, 
the regression of DRP on GEBV increased to be 0.941 
(one-step blending) and 0.946 (selection index). Second, 
these factors resulted in the highest reliability of GEBV 
averaged over the 15 traits. This showed the impor-

Table 4. Expected reliability of pedigree index from total reference data set re PIt
2( ), pedigree index from 

genotyped reference data set re PIs
2( ), direct genomic breeding value from the genomic BLUP model re DGV

2( ), 
genomic enhanced breeding value from the selection index blending approach re GEBV I

2
 ( )( ) and from the one-step 

blending approach re GEBV o
2
 ( )( ) 

Trait re PIt
2  (%) re PIs

2  (%) re DGV
2  (%) re GEBV I

2
 ( ) (%)1 re GEBV o

2
 ( ) (%)2

Milk 31.6 30.2 53.5 49.1 47.9
Fat 32.1 30.8 53.5 48.9 48.6
Protein 32.2 30.9 54.0 49.5 48.8
Fertility 31.6 30.4 49.5 45.4 44.7
Birth index 28.6 27.4 44.1 40.6 39.8
Calving index 29.9 28.5 42.2 39.1 39.2
Udder health 31.5 29.9 50.2 46.3 46.1
Other diseases 31.8 30.2 47.1 43.5 44.1
Body conformation 31.4 29.6 46.1 42.8 42.8
Feet and legs 29.7 28.6 42.0 38.7 38.4
Udder conformation 32.2 30.8 49.0 45.1 45.0
Milking ability 30.9 29.9 49.5 45.3 43.9
Temperament 29.7 28.6 44.0 40.5 40.4
Longevity 32.2 30.8 50.7 46.6 46.0
Yield 32.3 31.0 53.9 49.4 49.0
Average 31.2 29.8 48.6 44.7 44.3
1GEBV(I) was obtained from the selection index blending where rDGV

2  was scaled down by 0.90 and DGV by 
0 9. .

2GEBV(o) was obtained from the one-step blending with α = 0.80.
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tance of choosing appropriate weight or scaling factors 
in blending procedures. Aguilar et al. (2010) found the 
highest regression coefficient (0.92) at a weight (λ) of 
0.5 in their single-step model for final score in US Hol-
stein, but with a 2 percentage point loss in reliability 
of GEBV. Alternatively, Liu et al. (2011) reported that 
bias of genomic prediction could be reduced by includ-
ing a residual polygenic effect in a SNP-BLUP model 

and suggested that the optimal proportions of residual 
polygenic variance to total additive genetic variance 
would be between 5 and 10% for most traits. Chris-
tensen and Lund (2010) proposed to determine weight 
in a single-step model according to likelihood of REML 
analysis and found that a weight close to 1 was ap-
propriate in their stimulation data. However, likelihood 
from REML analysis measures the goodness of fit but 

Table 5. Validated reliability of pedigree index from total reference data set rv PIt
2( ), pedigree index from 

genotyped reference data set rv PIs
2( ), direct genomic breeding value from the genomic BLUP model rv DGV

2( ), 
genomic enhanced breeding value from the selection index blending approach rv GEBV I

2
 ( )( ) and from the one-step 

blending approach rv GEBV o
2
 ( )( )  

Trait rv PIt
2  (%) rv PIs

2  (%) rv DGV
2  (%) rv GEBV I

2
 ( ) (%)1 rv GEBV o

2
 ( ) (%)2

Milk 19.4 18.1 35.8 36.2 36.7
Fat 25.1 22.8 45.4 46.7 47.8
Protein 19.9 16.7 34.6 36.3 37.2
Fertility 16.6 15.7 29.7 30.9 31.4
Birth index 10.2 10.0 19.5 19.7 19.8
Calving index 11.1 11.0 16.0 16.1 15.9
Udder health 17.1 14.4 24.4 26.3 26.2
Other diseases 32.8 30.1 30.1 32.0 32.9
Body conformation 30.6 28.4 45.0 45.8 45.5
Feet and legs 14.8 16.6 29.6 27.8 26.5
Udder conformation 23.5 23.0 32.1 31.7 32.0
Milking ability 13.9 12.7 29.7 30.7 30.1
Temperament 18.9 18.6 30.0 29.8 29.6
Longevity 24.1 19.8 25.9 29.4 32.5
Yield 20.6 17.2 36.1 37.9 38.8
Average 19.9 18.3 30.9 31.8 32.2
1GEBV(I) was obtained from the selection index blending where rDGV

2  was scaled down by 0.90 and DGV by 
0 9. .

2GEBV(o) was obtained from the one-step blending with α = 0.80.

Table 6. Regression coefficients of deregressed proofs (DRP) on pedigree index from total reference data set 
(bPIt), pedigree index from genotyped reference data set (bPIs), direct genomic breeding value from the genomic 
BLUP model (bDGV), genomic enhanced breeding value from the selection index blending approach (bGEBV(I)), 
and from the one-step blending approach (bGEBV(o)) 

Trait bPIt bPIs bDGV bGEBV(I)
1 bGEBV(o)

2

Milk 0.840 0.810 0.863 0.912 0.913
Fat 0.955 0.919 0.969 1.025 1.024
Protein 0.869 0.781 0.849 0.911 0.918
Fertility 0.964 0.951 0.934 1.006 1.024
Birth index 0.890 0.894 0.984 1.039 1.044
Calving index 0.887 0.887 0.941 0.993 0.954
Udder health 0.921 0.885 0.851 0.908 0.886
Other diseases 0.950 0.929 0.782 0.836 0.811
Body conformation 0.896 0.900 0.958 0.989 0.959
Feet and legs 0.937 1.008 1.125 1.139 1.105
Udder conformation 0.809 0.814 0.798 0.821 0.805
Milking ability 0.763 0.758 0.832 0.877 0.886
Temperament 0.803 0.803 0.842 0.880 0.864
Longevity 1.087 0.846 0.752 0.926 0.978
Yield 0.874 0.790 0.870 0.933 0.936
Average 0.896 0.865 0.890 0.946 0.941
1GEBV(I) was obtained from the selection index blending where rDGV

2  was scaled down by 0.90 and DGV by 
0 9. .

2GEBV(o) was obtained from the one-step blending with α = 0.80.
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not the accuracy and unbiasedness of prediction. For 
predicting genetic merit of the candidates without their 
own or offspring records, it is necessary to perform a 
validation analysis to assess an appropriate weight.

As mentioned above, a weight of 0.80 in the one-
step blending and a scale of 0.90 in the selection index 
blending led to highest validated reliability of GEBV 
without serious inflation, averaged over the 15 traits. 
However, the weight and scale were not optimal for 
every single trait with regard to reliability and unbi-
asedness of GEBV. For example, smaller values might 
be better for the traits udder confirmation and other 
diseases. For these 2 traits, the regression coefficients 
of DRP on GEBV from selection index blending were 
0.811 and 0.836, and those on GEBV from one-step 
blending were 0.805 and 0.811, at current weight and 
scale. Because the optimal weight and scale for differ-
ent traits could be different, it could be beneficial to 
use trait-specific weight and scale in the one-step and 
the selection index blending approaches. Similarly, Liu 
et al. (2011) reported that the optimal partitions of 
the additive genetic variance into the residual poly-
genic and SNP-based components were trait-dependent 
in their analysis using a SNP-BLUP model, including 
SNP effects and residual polygenic effects. In addi-
tion, we observed in the current study that PI was also 
inflated. To get more accurate and unbiased GEBV, 
more sophisticated weighting and scaling strategies in a 
blending procedure are required.

The present study showed that the validated reli-
abilities were much lower than the expected reliabilities 
with the largest difference for DGV. This suggested that 
either the expected reliabilities overestimated the true 
reliabilities or the validated reliabilities underestimated 
the true reliability or both (VanRaden et al., 2009; Su 
et al., 2010). The expected reliabilities might be over-
estimated if the markers cannot explain all additive 
genetic variance or if the markers overfit the data. On 
the other hand, reliability might be underestimated in 
the validation analysis. The validated reliabilities were 
measured as the squared correlation divided by reliabil-
ity of DRP for bulls in the test data. The measure of 
reliability was unbiased only if the validation bulls were 
a random sample. However, the bulls in this study were 
selected from elite parents based on PI. This directional 
selection would reduce the correlation between PI and 
genomic predicted breeding values and consequently, 
underestimate the reliabilities of genomic predictions. 
The underestimation would be most severe for strongly 
selected traits. Uimari and Mäntysaari (1993) deter-
mined that 10% selection based on PI reduced the 
expected correlation between PI and daughter-based 
EBV by half; that is, from 0.62 to 0.31. VanRaden et 
al. (2009) proposed to measure reliability of genomic 

predictions as validated reliability of genomic predic-
tion plus the difference between expected and validated 
reliabilities of PI. Using this procedure, the mean reli-
ability of the 15 traits was 43.1% for GEBV from the 
selection index blending and 43.5% from the one-step 
blending, which was very close to the expected reli-
abilities. However, this measure was only valid if the 
expected reliability of PI was unbiased. Given the ar-
guments above, it was reasonable to assume that the 
true reliabilities of genomic predictions in the present 
study were in the range between the validated and the 
expected reliabilities.

The one-step blending approach in the present study 
is not a regular single-step approach (Misztal et al., 
2009; Aguilar et al., 2010; Christensen and Lund, 
2010). The single-step approach predicts GEBV based 
on original phenotypic records of the whole popula-
tion, and therefore avoids uncertainty arising during 
the steps from original phenotypic records to DRP, and 
enables the use of information of bull dams. In addi-
tion, the regular single-step model can avoid prediction 
bias due to preselection of young animals on Mendelian 
sampling variations. In general, the regular single-step 
approach does not cost much additional time compared 
with traditional BLUP model with pedigree-based re-
lationship matrix (Tsuruta et al., 2011). However, it 
might have a high computational demand in the case 
of large data set applying complex models such as a 
multi-trait test-day model. Moreover, it is debatable 
whether it is desirable to include records of bull dams 
in the data for genomic predictions, because the records 
might be biased due to preferential treatment (Uimari 
and Mantysaari, 1993; Aguilar et al., 2010), especially 
for yield traits. In contrast to the regular single-step 
model, the proposed one-step blending is easier to im-
plement in routine genomic evaluations. In addition to 
its low computational demands, the one-step blending 
is convenient for genomic prediction when a reference 
population includes genotyped foreign bulls.

CONCLUSIONS

The results from this study indicate that genomic se-
lection can greatly improve the accuracy of preselection 
for young bulls, and reliability of genomic prediction 
can be improved by combining information of tradi-
tional EBV or nongenotyped animals. The one-step 
blending approach is a natural procedure to integrate 
information of genotyped and nongenotyped animals 
through a relationship matrix combining marker and 
pedigree information; it is also easy to implement. 
Therefore, the one-step blending approach could be a 
good alternative to predict GEBV in practical genetic 
evaluation program.
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