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Abstract Systemic fungal endophytes of grasses can produce
high concentrations of alkaloids that are known to deter
invertebrate herbivores and reduce their abundance, especially
in agronomic grasses. Grass endophytes may also influence
invertebrate community diversity and composition. Here, we
examined in a common garden experiment with wild tall
fescue plants and the agronomic cultivar Kentucky 31, whether
infection by Neotyphodium coenophialum, the genetic back-
ground (origin) of the host plant, abiotic factors, and their
interactions affected the invertebrate communities living on
tall fescue. We collected a total of 18650 invertebrates from
the 480 tall fescue plants, identified them to 97 morphological
taxa (mainly to family level) representing five feeding guilds
(herbivores, detritivores, omnivores, predators and parasi-
toids). In contrast to past literature, endophyte infection did
not affect abundances of any taxon or feeding guild, or
taxonomic diversity and the composition of the invertebrate
community. Instead, the invertebrate community of native tall
fescue appears to be primarily driven by environmental
conditions and niche differentiation among taxonomical
groups of invertebrates. We propose that community
approaches are required to understand of the role of
endophytes on arthropod abundances and diversity in nature.

Keywords Endophytic fungi . Tall fescue . Invertebrate
diversity and community structure . Functional guild .

Herbivory . Genetic variation

Introduction

Asexual Neotyphodium endophytes (family Clavicipitaceae)
form symbiotic relationships with many cool-season grasses
belonging to the sub-family Pooidae (Clay 1988, 1990).
Infections are systemic and the endophyte is transmitted
vertically to the next generation through seeds (Schardl et al.
2004; Clay and Schardl 2002). Tall fescue (Schedonorus
phoenix (Scop. Holub.) [ = Lolium arundinaceum (Schreb.)
Darbysh. = Schedonorus arundinaceus (Schreb.) Dumort])
has been widely used as forage and turf grass in the
United States for decades (Ball et al. 1993). Thus, one of
the most studied grass–endophyte associations is the N.
coenophialum and tall fescue symbiosis (Saikkonen et al.
2006, 2010). Tall fescue cultivars are dominated by a
widely-adapted cultivar named “Kentucky 31” (hereafter
referred to as K-31), which has a long growing season and
is resistant to pests, drought, poor soil conditions, and
variations in soil pH (Ball et al. 1993). Based on the
research of this grass–endophyte system, the relationship
between the endophytic fungus and its host has generally
been thought to be mutualistic (Clay 1988; Clay et al.
1993; Saikkonen et al. 2006; Schardl and Phillips 1997).
Recent studies have shown, however, that this relationship
can vary from mutualism to antagonism, depending on the
genotype of the fungus and the host as well as environ-
mental conditions, especially in native grasses (Cheplick
et al. 1989; Cheplick and Faeth 2009; Faeth 2002; Faeth
and Saikkonen 2007; Faeth and Sullivan 2003). Saikkonen
et al. (1998, 2004, 2006) therefore proposed that the
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prevailing concept of endophytes as mutualists is likely
historical and system based rather than based on evidence
from natural populations.

In the case of the tall fescue–N. coenophialum symbiosis,
much of the research has been done in the United States on
agronomic cultivars such as K-31 (Saikkonen et al. 2006),
although the origins of this grass are in Eurasia. In these
agronomic cultivars planted outside their native distributional
range, Neotyphodium is widely known to cause detrimental
effects (e.g., toxicosis) on vertebrate grazers in high-nutrient
agronomic environments (Ball et al. 1993; Clay 1989, 1990;
Saikkonen et al. 2006, 2010; Schardl and Phillips 1997).
These effects are related to high concentrations of alkaloids
(Clay 1990; Lyons et al. 1986), which are known to deter
both vertebrate and invertebrate herbivores (Bacon 1995;
Bacon et al. 1977; Bazely et al. 1997; Siegel and Bush 1996,
1997; Vicari et al. 2002). Because alkaloids are nutrient-rich
compounds, their synthesis has cost to other basic plant
growth and reproductive functions (Faeth 2002; Faeth and
Bultman 2002; Faeth and Fagan 2002). These costs may
outweigh the benefits of the endophyte infection in most
environments, but particularly so in nutrient-poor envi-
ronments in nature (Ahlholm et al. 2002; Faeth 2002;
Lehtonen et al. 2005). Thus, in its native habitat, infected
wild tall fescue may produce lower levels and fewer types
of alkaloids than its cultivated and selective-bred varieties
in nutrient-rich environments in the introduced range
(Saikkonen et al. 1998, 2010; Siegel and Bush 1996; but
see Piano et al. 2005).

Recent evidence supports this idea: (1) the levels and
composition of alkaloids produced varies among fungal
species and genotypes (e.g., Piano et al. 2005; Siegel and
Bush 1997), also (2), alkaloid types and levels in natural
populations vary more than those in agronomic grasses
(Bony et al. 2001; Faeth and Saikkonen 2007), (3) the
number of non-toxic endophyte-infected grasses exceed
toxic ones (Faeth 2002), and (4) in some cases, infection
decreased, rather than increased, the herbivore resistance of
the host plant (Faeth and Shochat 2010; Jani et al. 2010;
Saikkonen et al. 1998; Schulthess and Faeth 1998).

Altough well-studied in agronomic cultivars such as
K-31 in introduced areas, the interactions between tall
fescue and Neotyphodium endophytes are still largely
ignored in their native range in Europe (Saari et al. 2010;
Zabalgogeazcoa and Bony 2005), probably because tall
fescue is not a preferred livestock forage grass (Niemeläinen
et al. 2001) and livestock toxicosis is rare (Zabalgogeazcoa
and Bony 2005). The nature and ecological importance of
the tall fescue–N. coenophialum symbiosis may be different
in its native range (Saikkonen 2000; Saikkonen et al. 1998;
Siegel and Bush 1996).

We examined whether the N. coenophialum endophyte
infection and the origin of the host plant as well as abiotic

factors and their possible interactions affect the inverte-
brate community living on tall fescue. Besides herbivores,
fungal endophytes may also affect detritivores (e.g.,
Lemons et al. 2005) and the natural enemies of herbivores
(Faeth and Shochat 2010; Hartley and Gange 2009; Jani et
al. 2010; Omacini et al. 2001) or render herbivores more
or less susceptible to natural enemies by affecting their
attack rates (Benrey and Denno 1997; Saari et al. 2010)
and delaying herbivore development (e.g. Breen 1994;
Clay et al. 1985; Popay and Rowan 1994). However, there
are only a few studies that have considered the impact of
grass endophytes on arthropod communities or functional
groups (e.g., Afkhami and Rudgers 2009; Faeth and
Shochat 2010; Jani et al. 2010). In this study, we used a
whole-invertebrate community survey of a controlled
common garden experiment to test how invertebrate
diversity and community structure, and the number of
individuals in functional invertebrate taxa and guilds
differs between (i) endophyte infected (E+), endophyte
free (E-), and manipulatively endophyte-free (ME-) tall
fescue, (ii) host plants of different origin (wild populations
from Åland, Gotland, coastal Sweden and one agronomical
cultivar, K-31 from USA), and (iii) host plants growing
in different abiotic environments (nutrient and water
treatments). Based on the past studies on defensive
endophyte-grass mutualism (Saikkonen et al. 2010) and
the few recent studies on how endophytes structure
arthropod communities in tall fescue (Rudgers and Clay
2008), we predicted that: (1) endophyte infection decreases
invertebrate diversity and community structure, (2) the
abundances of plant feeding invertebrates (herbivores,
omnivores and detritivores) are highly variable, but in
general, lower in endophyte infected (E+) host plants
compared with endophyte-free plants, particularly in the
fertilized plants, (3) the agricultural cultivar (K-31) shows
strong deterrence to plant feeding invertebrates, and (4)
endophyte infection may both positively and negatively
affect the natural enemies of herbivores (predators and
parasitoids).

Materials and methods

Plant and seed material

To test the effect of infection, host plant origin, and
environmental factors (water and nutrient treatments), in
August 2005, we collected seeds from multiple natural
tall fescue populations by the Baltic Sea in localities
that were geographically separated from each other by
approximately 500 km. These were the island of Åland
(8 populations), the island of Gotland (9 populations),
and the west coast of Sweden (6 populations). 10 to 50
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individuals were collected from each population, and
three seeds from each plant individual were stained for
microscopic examination of the endophyte infection
status (Saha et al. 1988). Neotyphodium coenophialum
infectivity varied between 85–100% in all tall fescue
populations from the three locations. Uninfected (E-) and
infected (E+) seeds were combined separately from
populations within each of the three study areas (Åland,
Gotland, and coastal Sweden). In other words, we pooled
all E- seeds and then all E+ from the populations within
each location to create three batches of E- seeds and three
batches of E+ seeds that represented the three geographic
origins. In addition to plants from natural tall fescue
populations, we used E+ and E- K-31 (from T. Phillips,
University of Kentucky) cultivar seeds in our experi-
ment. To test the role of the endophyte on invertebrate
communities while controlling for plant genotypic
background, we experimentally removed the endophyte
from portion of E+ seeds (manipulatively endophyte-
free plants = ME-). To kill the fungus while the seeds
remained viable, the E+ seeds were heat–treated by
keeping the seeds in warm water (56-57°C) for 10–
20 min.

All tall fescue seeds from natural populations, K-31
cultivar and endophyte-removed seeds were germinated on
moist tissue paper in Petri-dishes in a greenhouse and
planted 7 days after germination to individual pots with
sand and peat mixture.
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Table 1 Invertebrate taxa collected from the experimental plants

Taxon Number of
individuals

Feeding guild

Diptera 1393 herbivorous

704 detritivorous

328 omnivorous

25 predatory

3 parasitic

Hymenoptera 46 herbivorous

606 parasitic

Collembola 8360 detritivorous

Hemiptera 197 herbivorous

51 predatory

Homoptera 37 herbivorous

Coleoptera 28 herbivorous

379 predatory

589 detritivorous

Araneae
(Arachnida)

281 predatory

Acari (Arachnida) 4017 omnivorous / parasitic

Thysanoptera 62 (guild not identified)

Fungal Diversity (2011) 47:109–118 111



Field experiment

To test the role of endophyte infection, plant geographic
origin and environmental factors, a common garden field
experiment was established at Botanical Garden, Univer-
sity of Turku, Finland in 2004. The study site is at the
edge of the northern distribution range of natural tall
fescue populations and has been in cultivation in the
past. It was tilled in the summer 2004 without nutrient
application. The experimental area was fenced to prevent
large vertebrates (e.g., rabbits, deer) from browsing the
plants. However, smaller vertebrates (e.g., voles) and
invertebrates were allowed to freely access the area. The
space between experimental plants was either mowed,
hand weeded or sprayed with herbicide two times during
the growing season to prevent interspecific competition
in the field.

The experimental design was a randomized block
consisting of 10 blocks, each divided to 4 plots. The four
plots in each block were randomly designated to one of
the four treatments: (i) control (C) receiving only
ambient water and nutrients, (ii) water treatment (W)
with 3 litres of water applied to each plant separately
three times a week from June to August, (iii) nutrient
treatment (N) where 1dl of N-P-K-fertilizer (Nurmen Y2,
Kemira KnowHow,[N-P-K/20-6-6])/plant was applied
two times during the growing season, and (iv) water–
nutrient treatment (WN) combining both water and
nutrient applications. The treatments were applied during
the period of 2005–2006.

Tall fescue plants with 2-3 tillers were planted in August
2004 about 0.5 meters apart from each other and from the
edge of the plot. Forty plants from each origin (natural
populations A = Åland, G = Gotland, and S = coastal
Sweden; cultivars K = “Kentucky 31”) and infection status
(E+, E-, ME-) were randomly chosen. Thus, there were 12
plants in each of the 40 plots for a total of 480 plants used
in the present study. The infection status of all individual

plants was confirmed in 2006 via seed staining (Saha et al.
1988). The biomass of the above-ground plant parts was
removed, dried and weighed in autumn at the end of the
growing season 2006.

Collection and identification of invertebrates

Invertebrates were collected from each plant individual
with an Insect Vortis Vaccuum® sampler (Burkard Ltd.,
UK) in July 2006. Every plant was vacuumed in the
same way for 10 s from the middle of the plant. The
samples were placed into reclosable plastic bags and
frozen immediately after sampling. Invertebrates were
then later counted, identified to family level under a
microscope, and assigned to the following five feeding
guilds based on the key family and species characteristics in
literature: herbivores, omnivores, detritivores, predators and
parasitoids (Table 1).

Statistical analyses

We used ANCOVA (with plant biomass as a covariate)
in the Mixed model procedure of SAS statistical
software (SAS Utilities 9.1) to analyze the effects of
endophyte status (E+, E-, and ME-), water and nutrient
treatments (W, N, WN, and C), plant origin (A, G, K,
S), and block (1–10) on the abundances of invertebrates
in the feeding guilds (herbivores, omnivores, detriti-
vores, predators and parasitoids) and taxonomical
groups with sufficient sample sizes for meaningful
statistical analyses (herbivorous, detritivorous, omnivo-
rous, parasitic, and predatory dipterans; Acari; Hyme-
nopterans; spiders; collembolas, and detritivorous and
predatory Coleopterans) Treatment, origin, endophyte,
and their possible interactions were considered to be
fixed factors in all models, whereas block was a
random factor. Plant biomass was used as a covariate,
because plant size may influence invertebrate abundan-

Table 3 The effects of endophyte status (E+ = endophyte infected,
E- = endophyte-free, and manipulatively endophyte-free = ME-),
water and nutrient treatments (C = control, N = nutrient, W = water, and

WN = water + nutrient), plant origin (A = Åland, G = Gotland, and
S = coastal Sweden; K = cultivar “Kentucky 31”) and plant biomass on
abundances of herbivores, detritivores and predators

Herbivores Detritivores Omnivores Parasitoids Predators

df F p F p F p F p F p

Endophyte status (E) 2 0.35 0.7036 0.80 0.4484 0.29 0.8330 2.14 0.1192 2.31 0.1007

Treatment (TRT) 3 3.10 0.0268 15.05 <0.0001 0.71 0.5471 0.63 0.5987 15.38 <0.0001

Plant origin (PO) 3 1.61 0.1870 3.99 0.0080 0.52 0.5932 4.59 0.0036 1.04 0.3730

E * TRT 6 2.62 0.0169 2.63 0.0165 0.50 0.8089 0.55 0.7674 0.68 0.6681

E * PO 6 0.74 0.6199 0.26 0.9565 0.87 0.5156 0.75 0.6119 1.04 0.3987

TRT * PO 9 1.94 0.0449 0.72 0.6885 0.44 0.9142 1.46 0.1591 1.45 0.1662

Plant biomass 1 9.67 0.0020 10.28 0.0015 0.04 0.8338 0.78 0.3781 3.22 0.0734
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ces. Plant size was significantly increased by watering
and fertilization (df=3, F=17.07, p<0.0001)(C: mean=
395 g, SE=16.4; N: mean=414 g, SE=22.1; W: mean=
422 g, SE=15.2; WN: mean=587 g, SE=24.2) except in
the case of the K- 31 cultivar. Results on plant growth and
performance will be reported and discussed in more detail
elsewhere.

The effects of endophyte status (E+, E-, and ME-),
water and nutrient treatments (W, N, WN, and C), plant
origin (A, G, K, S) and plant biomass on taxonomic
invertebrate diversity were examined in two ways. First,
we tested the effects of the explanatory factors and their
interactions on species numbers and the Shannon
diversity index by a mixed model analysis of covariance

Table 4 Means and standard errors (SE) of taxonomic groups of
invertebrates showing statistically significant (a) interactive effects of
water and nutrient treatments (C = control, N = nutrient, W = water,
and WN = water + nutrient) and endophyte status (E+ = endophyte

infected, E- = endophyte-free, andmanipulatively endophyte-free =ME-),
(b) effects of plant origin (A = Åland, G = Gotland, and S = coastal
Sweden; K = cultivar “Kentucky 31”) and (c) interactive effects of water
and endophyte status (see Table 2)

Taxon

a Herbivorous Diptera Omnivorous Diptera Collembola

Treatment Endophyte status n mean SE mean SE mean SE

C E+ 39 2.7 2.7 1.2 0.37 9.4 1.76

E- 39 3.4 3.4 0.5 0.14 10.2 2.03

ME- 40 3.7 3.7 0.6 0.12 11.7 2.54

W E+ 39 3.2 3.2 0.7 0.15 20.7 3.27

E- 40 2.6 2.6 0.6 0.13 14.3 2.31

ME- 39 2.1 2.1 0.8 0.25 11.4 1.81

N E+ 32 2.4 2.4 0.6 0.14 21.8 3.36

E- 37 2.4 2.4 0.5 0.13 28.7 5.10

ME- 34 3.6 3.6 0.6 0.13 25.9 3.66

WN E+ 38 3.9 3.9 0.7 0.18 33.7 6.22

E- 34 4.6 4.6 1.6 0.36 18.8 3.87

ME- 34 3.3 3.3 0.5 0.14 22.0 3.80

b Detritivorous Diptera Hymenoptera Collembola Coleoptera

Plant origin n mean SE mean SE mean SE mean SE

Åland 118 1.9 0.24 1.8 0.17 24.3 2.34 1.9 0.33

Gotland 113 1.65 0.19 1.2 0.17 17.7 2.06 1.2 0.26

K-31 99 1.1 0.14 0.96 0.12 13.9 1.78 0.8 0.14

Sweden 115 1.6 0.17 1.4 0.13 18.4 2.10 1.3 0.18

c Herbivorous Diptera Detritivorous Diptera Coleoptera

Treatment Plant origin n mean SE mean SE mean SE

C Åland 30 2.8 0.47 1.0 0.25 0.3 0.10

Gotland 29 3.3 0.60 1.2 0.25 0.3 0.11

K-31 29 3.1 0.44 0.9 0.20 0.4 0.15

Sweden 30 3.6 0.32 1.0 0.26 0.4 0.12

W Åland 28 2.9 0.53 1.8 0.39 0.5 0.15

Gotland 30 1.9 0.31 2.0 0.37 0.4 0.09

K-31 30 2.7 0.45 1.0 0.25 0.5 0.16

Sweden 30 3.1 0.64 1.6 0.35 0.7 0.22

N Åland 30 2.9 0.47 1.1 0.22 2.2 0.58

Gotland 26 2.8 0.40 1.2 0.31 1.7 0.40

K-31 19 2.6 0.63 1.1 0.27 1.7 0.45

Sweden 28 2.8 0.44 1.3 0.27 1.7 0.33

WN Åland 30 6.1 0.76 3.9 0.72 4.5 1.00

Gotland 28 3.6 0.65 2.2 0.52 2.7 0.89

K-31 21 2.2 0.71 1.4 0.38 1.0 0.33

Sweden 27 3.3 0.71 2.6 0.37 2.4 0.53
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(ANCOVA) with plant biomass as a covariate, using
the Mixed procedure of SAS statistical software
(SAS Utilities 9.1). The plant-specific Shannon index
value (H’) was calculated as follows: H 0 ¼ �P

i pi lnðpiÞ
where pi is the proportion of individuals in the i the
taxonomical groups in the experimental plants. Compared
to species number or richness, the advantage of the
Shannon index is that it incorporates the number of
taxonomical groups and their evenness. Second, to
examine the amount of variation (%) that endophyte
status, water and nutrient treatments and plant origin
explained in the invertebrate community composition, we
used a partial Canonical Correspondence Analysis CCA
(Borcard et al. 1992) with CANOCO 4 software (Ter Braak
and Šmilauer 1998). Only the variation explained by
statistically significant environmental variables was parti-
tioned (Økland 1999). The default options of CANOCO
(except log x + 1 data transformation and downweighing of
rare species) were used. The significance of the first CCA
axis and the CCA model, as well as each environmental
variable was evaluated by Monte Carlo permutation tests
(500 permutations) in all analyses. Nutrient and water
treatments along with plant biomass appeared to be
significant (p<0.01) in CCA.

Results and discussion

Recent literature indicates that fungal endophytes alter
invertebrate communities in both agronomic and wild grass
populations (Rudgers and Clay 2007; Benrey and Denno
1997; Faeth and Shochat 2010; Hartley and Gange 2009;
Jani et al. 2010; Lemons et al. 2005; Omacini et al. 2001;
Saari et al. 2010). However, the Neotyphodium endophyte
infection failed to influence the abundances of the taxa or
feeding guild, or overall taxonomic diversity and compo-
sition of the invertebrate community in our experimental

common garden study of wild tall fescue plants collected
across the northern distribution range of the species and the
well studied tall fescue K-31 cultivar. Instead, the inverte-
brate community of native tall fescue in this experiment
appears to be primarily driven by environmental conditions
interacting with plant geographic origin.

Invertebrate abundance and community composition

A total of 18650 invertebrates were collected and identified
to family level from the experimental plants. Springtails
(Collembola), mites (Acari), and flies and midges (Diptera)
comprised 48%, 23% and 14% of the individual invertebrates,
respectively (a total of 85%) (Table 1). The rest 15% of the
invertebrates were Coleopterans (6%), Hymenopterans (4%),
spiders (2%), and Hemipterans (2%). Only one percentage of
species remained unidentified. 56% and 24% of the
invertebrate community consisted of detritivores and para-
sitoids, respectively, because of the high number of
detritivorous Collembola and Acari mites and parasitic
Hymenopterans in our samples (Table 1). Only 10% of all
invertebrates were herbivores, but this feeding guild was
taxonomically the most diverse comprising of 42 identified
taxa.

E+ plants did not differ from E- and ME- plants in the
abundance of any taxonomic invertebrate group (Table 2)
or feeding guild (Table 3). However, endophyte infection
affected the abundance of herbivorous and omnivorous
dipterans, and collembolas interactively with water and
nutrient treatments. For example, the abundance of
herbivorous dipterans was higher on watered and fertilized
E- and E+ plants compared to the other treatment and
infection combinations, whereas the abundance of omniv-
orous dipterans was highest on watered and fertilized E-
plants, second highest on untreated E+ plants, and lowest
on fertilized E- plants (Table 4a). In contrast to dipterans,
detritivorous Collembola (springtails) were much more
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status (E+, E-, and ME-) and
water and nutrient treatments
(W, N, WN, and C) on the total
number of herbivores (a) and
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abundant and appeared to prefer watered and fertilized E+
plants (Table 4a; see also Faeth and Shochat 2010).
Likewise, the total number of herbivores and detritivores
did not show a common trend of preference or avoidance
of E+ or E- plants in either low or high nutrient
environments (Table 2, Fig. 1).

Plant origin significantly affected the abundances of
detritivorous Diptera, Hymenoptera, Collembola and Cole-
optera (Table 2), as their mean abundances was highest on
plants collected from Åland and lowest on the cultivar
“Kentucky 31” in all groups (Table 4b). In the cases of
Coleoptera and both herbivorous and detritivorous Diptera,
abundances varied among plant origins interactively with
water and nutrient treatment (Table 2), but were highest on
plants from Åland and lowest on the K-31 when the plant
was watered and fertilized (Table 4c). This indicates
differences in resistance among plant genotypes in different
environments.

Plant size appears to be positively related to invertebrate
abundance. Plant biomass explained significantly the numbers
of herbivorous, detrivorous and parasitic dipterans, spiders
(Araneae), and mites (Acari) (Table 2), and the abundances of
these taxa were positively correlated with plant size
except in the case of parasitic dipterans (herbivorous Diptera:
n=445, r=0.21, p=<0.0001; detritivorous: n=445, r=0.26,
p=<0.0001; parasitic Diptera: n=445, r=0.06, p=<0.2035;
Collembola: n=445, r=0.24, p=<0.0001; Araneae: n=445,
r=0.13, p=0.0074). Likewise, the total number of both

herbivores and detritivores positively correlated with
plant biomass (Herbivores: n=445, r=0.22, p=<0.0001;
detritivores: n=445, r=0.26, p=<0.0001).

Invertebrate richness

Invertebrate richness followed the same trends as taxonomic
groups. Neither the number of taxa nor Shannon diversity
index varied by the infection status of the plant (Table 5).
Instead, invertebrate richness was positively correlated with
plant size (plant biomass—the number of taxa: n=444, r=
0.27, p=<0.0001; plant biomass—the Shannon diversity
index: n=444, r=0.15, p=0.0016) and it was significantly
higher on fertilized plants (Table 5, Fig. 2).

Invertebrate community structure

Canonical Correspondence Analysis (CCA) suggests that
invertebrate community well mirrors abiotic environmental
conditions and the size of the plant. Most of the variation in
the taxonomical composition was highly dependent on
nutrient (Axis 1 in Fig. 3a) and water (Axis 2 in Fig. 3a)
availability in the soil. The sum of all canonical eigenvalues
was 0.131. The first axis explained 3.2% of taxon variation
and 57.6% of the variation of the taxon-environment
relationship. In the Monte Carlo test, the significance for
the first axis was P=0.002 (F=14.2) and for all axes P=
0.002 (F=2.8). Treatment explained 73.3% of the variation,
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df Taxon number Shannon diversity index

F p F p

Endophyte status (E) 2 0.88 0.4148 0.37 0.6931

Treatment (TRT) 3 11.05 <0.0001 6.07 0.0005

Plant origin (PO) 3 1.52 0.2086 0.80 0.4923

E * TRT 6 1.95 0.0714 0.60 0.7268

E * PO 6 1.25 0.2815 1.29 0.2605

TRT * PO 9 1.12 0.3456 1.03 0.4159

Plant biomass 1 12.23 0.0005 4.38 0.0369

Table 5 The effects of
endophyte status (E+ = endophyte
infected, E- = endophyte-free, and
manipulatively endophyte-free =
ME-), water and nutrient treat-
ments (C = control, N = nutrient,
W = water, and WN = water +
nutrient), plant origin (A= Åland,
G = Gotland, and S = coastal
Sweden; K = cultivar “Kentucky
31”) and plant biomass on
identified taxon numbers and the
Shannon diversity index
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whereas the proportion of the other factors remained
smaller (plant origin 9.9%, endophyte status 7.6%, plant
biomass 6.9%) and statistically insignificant (C: F=7.0, P=
0.002; W: F=5.5, P=0.002; N: F=8.1, P=0.002; NW: F=
3.8, P=0.002; Biomass of the plant: F=1.986, P=0.002; E+:
F=1.161, P=0.2196; E-: F=0.815, P=0.7884; ME-: F=
0.955, P=0.5250; A: F=1.083, P=0.3593; G: F=0.902, P=
0.6727; S: F=0.729, P=0.9022; K: F=0.884, P=0.6966).

However, there was no common structure in the inverte-
brate community related to endophyte status, plant origin or
water and nutrient treatments across the taxonomical groups or

feeding guilds (Fig. 3). In contrast, CCA indicates that each
taxonomical group in a feeding guild appears to prefer
different environments and the taxonomical diversity of a
feeding guild is in relation to specialization in resource
use according to the idea of niche partitioning (Elton
1927; Hutchinson 1961; Richards et al. 2000; Diehl 2003).
For example, the herbivore feeding guild was taxonomically
most diverse (42 taxa), but the place of herbivore taxa in the
experimental water and nutrient environments were not
identical (Fig. 3b) In other words, the species clearly do not
occupy exactly the same host type.

a b
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Fig. 3 Canonical Correspon-
dence Analysis (CCA) of the
relationship between taxonomical
groups and examined biotic
(endophyte status of the plant,
plant origin and plant biomass)
and abiotic (water and nutrient
treatments) environmental
factors. Significant environmental
variables (a) (W = water,
N = nitrogen, WN = water and
nitrogen, C = control) and
plant biomass (BIOM) are shown
with five taxonomical
invertebrate groups: herbivores
(b), detritivores (c), omnivores
(d), parasitoids (e) and predators
(f). Eigenvalue for the first axis
was 0.171 and for the second
axis 0.056
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Conclusions

Our results demonstrate that (1) the taxonomical diversity and
complexity of an invertebrate community can be very high
even in relatively simple plant communities, and (2) the
diversity is commensurate with primary production and
environmental factors that interact with plant origin rather
than endophyte infections. Furthermore, invertebrate commu-
nity, particularly the most diverse feeding guild, herbivores,
showed strong differentiation along the examined water and
nutrient gradients. This may drive the community structure of
invertebrate herbivores in a patchy environment. The lack of
increased or decreased herbivore resistance might be partly
explained by the fact that alkaloids in native European tall
fescue are not of the type or level that reduce (Afkhami and
Rudgers 2009) or promote (Faeth and Shochat 2010; Jani et
al. 2010) plant feeding invertebrates. However, such differ-
ences in alkaloid profiles and other plant characteristics due
to differences among plant or endophyte genotypes fails to
explain the lack of taxon, feeding guild and community level
responses with the cultivar K-31.

We propose that empirical whole-community approaches
are required to understand the importance of endophytes and
other mechanisms driving plant populations and invertebrate
communities feeding on them. Accumulating evidence from
endophyte mediated interactions has revealed that endophytes
can negatively affect plant feeding herbivores (Saikkonen et
al. 2010). However, the accumulating evidence also indicates
that diversity in results and interpretations of the general
importance of endophytes in grassland communities
increases as new model systems appear. Current literature
appears to be strongly biased by two model species, tall
fescue and perennial ryegrass and their few cultivars such as
K-31, in introduced and agronomic environments, and this
has distracted the literature (Saikkonen et al. 2006, 2010). By
using wild tall fescues in their native continent, we were able
to show that environmental conditions and host plant origin
override endophyte effects on invertebrate diversity, com-
munity structure, and feeding guilds.
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