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Abstract. Dynamic Time Warping (DTW) is a time domain based method and widely used in 

various similar recognition and data mining applications. This paper presents a phase 

compensation based DTW to process the motor current signals for detecting and quantifying 

various faults in a two-stage reciprocating compressor under different operating conditions. 

DTW is an effective method to align up two signals for dissimilarity analysis. However, it has 

drawbacks such as singularities and high computational demands that limit its application in 

processing motor current signals for obtaining modulation characteristics accurately in 

diagnosing compressor faults. Therefore, a phase compensation approach is developed to 

reduce the singularity effect and a sliding window is designed to improve computing 

efficiency. Based on the proposed method, the motor current signals measured from the 

compressor induced with different common faults are analysed for fault diagnosis. Results 

show that residual signal analysis using the phase compensation based DTW allows the fault 

related sideband features to be resolved more accurately for obtaining reliable fault detection 

and diagnosis. It provides an effective and easy approach to the analysis of motor current 

signals for better diagnosis in the time domain in comparison with conventional Fourier 

Transform based methods. 

Keywords: Reciprocating Compressor, Dynamic Time Warping, Motor Current Signal, Phase 

Compensation 

1. Introduction 

Electrical motor current signals have been widely investigated to analyse the health of the induction 

machine [1, 2]. The influence of mechanical problems that result in rotor disturbances [1] and the 

presence of load imbalance [3] can be detected through analysing the induction machine stator current 

signals. Moreover, recent studies [4] have shown that the supply currents can contain components 

related to abnormalities in downstream equipment such as compressors, pumps, rolling mills, mixers, 

crushers, fans, blowers and material conveyors, showing that the electrical current based method can 

be used for diagnosing a wide range of machines. Moreover, it has the merits of remote 

implementation compared with the main stream vibration method. 

However, the key technique used for current signal analysis is based on Fourier Transform (FT) to 

extract weak fault sideband contents from signals predominated with a supply frequency component 
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and its higher order harmonics. Although it produces satisfactory results, the FT-based method is 

subject to a number of generic limitations: aliasing, spectral leakage and picket-fence effect. In 

particular, the latter two factors which often lead to large errors in spectrum estimation so that the 

weak signature due to faults cannot be resolved properly for accurate fault detection and diagnosis. 

Although many methods have been developed to improve the limitations of the FT based methods, it 

never eliminated these completely. In addition, the computation complexity is high which limits its 

application in real-time condition monitoring. 

Thus it seems that techniques based entirely on the time domain signals can avoid the shortcomings 

of the frequency analysis. In fact, time domain based methods, especially time synchronous average 

(TSA) [5], have received intensive investigation in recent years for monitoring rotating machines and 

gained many successful applications. However, a shaft mark signal from an additional channel is 

needed in implementing TSA based monitoring, which leads to increased cost to applications. 

Moreover, the common task with time series data is comparing one with another in order to detect the 

differences between them for further analysis in most applications, such as signature matching [6], 

speech recognition [7] and condition monitoring [8]. However, the case is often that the two time 

series in the time domain have similar overall component shapes, but out of synchronization [9] as 

shown in Figure 1(a). Dynamic Time Warping is a method for aligning such two time series 

efficiently. The fundamental principle behind DTW is to stretch or compress two time series in order 

to make one resemble the other as much as possible. DTW finds an optimal warping path between the 

two time series by using dynamic programming to calculate the minimal cumulative distance. Figure 

1(b) shows the alignment of two time series processed by DTW. 

The DTW has been acknowledged as a valuable algorithm applied in many areas. Bellman, R. and 

Kalaba, R. first introduced it on adaptive control processes [10]. Then it has been popularized in the 

application of word and speed recognition [7, 11-13], electro-cardiogram analysis [14-16], clustering 

of gene expression profiles [17, 18], biometrics [19, 20], process monitoring [21], and data mining and 

time series clustering [7, 22]. Recently, Zhen, D. et al have explored it in processing signals from 

motors for condition monitoring and shown promising results in that the aligned signals by DTW do 

not lose information and is suitable for fault diagnosis. DTW can also be used to suppress the supply 

frequency contents and highlight the sideband contents [8, 23]. However, although the DTW has been 

successfully used in many areas, the singularities effect and calculation time are the main limitations 

in the real application of DTW. Keogh, E. and Pazzani, M. [9] introduced the “singularities” behaviour 

in the application of DTW, which can lead to inaccurate alignments where a single point on one time 

series maps onto a large subsection of another time series. In addition, if the length of the two time 

series is N and M respectively, the accumulated distance matrix will have N×M entries, and then the 

time complexity will be 0(NM) [24, 29]. This will be especially problematic for embedded systems 

that have limited resources. In the study of proposed approach, phase estimation and compensation 

techniques are used to improve the singularities effect of DTW and a sliding window is designed to 

process the time series using DTW in frame in order to improve the time complexity of DTW 

calculation for its real-time application. 

The rest of the paper will be organized as follows. In section 2, the singularity effect of DTW is 

studied to identify its influence on signal alignment. Section 3 introduces the phase compensation 

method to reduce the singularities effect and highlight the reliability and accuracy of DTW algorithm 

for dissimilarity recognition. The proposed method for feature extraction based on DTW is detailed in 

section 4. Section 5 presents the evaluation results using the proposed method. Finally, we discuss 

related issues and conclude in section 6. 
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Figure 1 Time series aligned by DTW 

 

2. Dynamic Time Warping Singularities 

DTW is an effective algorithm for measuring dissimilarity between time series and has been widely 

used in various applications. However, DTW warps the X-axis based on the values variability in the 

Y-axis and the difference between the two points from the two time series is minimal in terms of 

values. This comparison of values makes the DTW ignore the trend of the points for local 

accelerations and decelerations in the whole time series. In other words, DTW algorithm only 

considers the Y-axis value of a data point, but does not consider its local and global features. 

Therefore, an undesirable alignment where a single point on the one time series maps onto a large 

subsection of another time series will take place during the processing of DTW. This undesirable 

alignment is called ‘singularities’ which is proposed by Eamonn and Michael [9]. DTW may fail to 

align a pair of sequences on their common trends or patterns due to singularity effects, especially 

when singularities appear at the ends of the aligned time series. Figure 2 illustrates typical singularities 

located at samples of 8, 20, 32 and 45 in signal 2 where one point on signal 2 maps on numerous 

points on signal 1. 

Various improvements have been proposed to process the singularities and hence to enhance the 

accuracy of DTW alignment. Keogh et al [9] developed Derivative Dynamic Time Warping (DDTW) 

which has the ability of not only considering the Y-axis of the data points, but also considering the 

higher level feature of local feature. DDTW estimates the first derivative of the aligned time series and 

replaces the value of each data point with its estimated first derivative which can be considered as a 

local feature of the data point that expresses the relationship with two adjacent neighbours. The 

estimation of the first derivative of a data point is the average of the data point and its left and right 

neighbour points. It is more robust to outliers than any estimate considering only two data points for 

the comparison. Moreover, DDTW considers the square of the difference of the estimated derivatives 

as the point-to-point distance instead of the Euclidean distance which is used in DTW. However, 

global features, in other words, the overall shapes or significant features that take place in the whole 

time series, may be unable to follow in DDTW. With the purpose of capture trends or local and global 

features of a time series during the alignment process, Ying Xie and Bryan Wiltgen [25] developed a 

Feature Based Dynamic Time Warping (FBDTW) method to align two time series based on the local 

and global features of each data point and the improvement of singularities is obvious. Moreover, 
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many other methods have also been proposed to improve the singularities, such as windowing [13], 

slope weighting [6, 12], and step patterns [6, 13]. All these methods may moderate the effects of 

singularities, but the improvement is limited when the singularities occurred at the starting or ending 

of the aligned time series which can lead to larger distortion and cause inaccurate alignment.  

 
Figure 2 Example of singularities in DTW application 

 
Figure 3 Singularities located in the ends 

Figure 3 gives an example of singularities located at the ends of the aligned time series during the 

DTW procedure. In Figure 3(a), signal 1 is an amplitude modulated signal while signal 2 is a pure 

sinusoidal signal. The frequency of the carrier signal of signal 1 is the same with the frequency of 
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signal 2, but the two signals have different initial phases and amplitudes. The two signals are aligned 

by DTW and the point alignments are shown in Figure 3(b), which indicates the singularities during 

the DTW processing, especially at the ends of the signals. From Figure 3(c), it can be seen that the 

alignment is poor at the starting and ending of the time series, which can lead to inaccurate 

dissimilarity estimation. The residual signal comparing the two time series is shown in Figure 3(d). It 

is clear that the residual signal is unreliable due to the data jump in the ends caused by singularities 

during DTW procedure. The singularities located in the ends may be due to the phase shift based on 

analysing the DTW processing shown in Figure 3. 

According to the definition of DTW in [9, 22], the optimal warping path is selected through finding 

the minimal distance in the accumulated distance matrix which is built based on the distance matrix. 

The elements of the distance matrix are the point-to-point Euclidean distance between the two time 

series. If there is a phase shift between the two time series, the Euclidean distance between the first 

points of the two time series is not the minimal in the first column or row of the distance matrix. 

Therefore, the distribution of the accumulated distance matrix is changed accordingly and hence the 

optimal warping path selected according to step patterns [6] could not approached to the diagonal of 

the accumulated distance matrix as much as anticipated. Moreover, the accumulated error of the 

accumulated distance matrix will be increased due to the increased values in the distance matrix 

caused by the phase shift between the two time series. The accumulated error leads to inaccurate 

minimal distance findings in the dynamic programming of DTW and hence more warping jumps will 

occur, especially at the starting and ending of the aligned time series due to the first or last point on 

one time series maps onto numerous points on the other time series, as shown in Figure 3(b), which 

causes the singularities. 

 
Figure 4 SD of DTW residual signals with different phase shifts 

To study the impact of phase shift on singularities, different phase shifts    from 0 to   between the 

two time series are explored. Figure 4 shows the standard deviation (SD) of the DTW residual signals 

from different pairs of time series of different phase shifts. The phase shift is 0 denotes the two aligned 

signals which have the same initial phase, whereas   means an opposite phase between two signals. It 

reveals that with the increase of the phase shift, the SD value of DTW residual signal is increased 

clearly, demonstrating that larger phase shift leads to larger accumulated error in accumulated distance 

matrix and greater data jumps in the residual signal. This shows that DTW produces different 

dissimilarity results at different phase shifts even if the two signatures in comparison are the same. 

0 1/6 1/4 1/3 1/2 3/4 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Phase Shift (PI)

S
D

 o
f 
R

e
s
id

u
a

l 
S

ig
n

a
l

Comparison of Standard Deviation (SD)



 

 

 

 

 

 

6 

 

This will lead to uncertainty of fault diagnosis when comparing measured signals with different phases 

due to different acquisition time instants. 

3. Phase Compensation Based Dynamic Time Warping 

To verify the ability of phase compensation in the singularity effects improvement, phase estimation 

and compensation are carried out on the two time series before DTW is implemented. An initial phase 

needs to be estimated for a preliminary alignment between the two aligned time series. In the proposed 

method, the initial phase estimation is developed by a phase matching approach. Assuming that two 

time series with the same length but with different initial phases are expressed in Equation (1) and 

shown in Figure 3(a), 

                                                      (1) 

In the initial phase estimation, the Euclidean distance given by Equation (2) is used to measure the 

differences between the two time series at different phases  . As the phase   varies from 0 to 2  in a 

step of      , thus, the Euclidean distances of the two time series can be obtained. 

                  
  

                      (2) 

where,     indicates one time series without phase shift, and         denotes another time series 

with a certain phase shift of   , and   is the number of points in the time series.   should have N 

elements according to the increase of the phase  , where N is the number of changes of  . Therefore, 

each phase angle    should correspond to one Euclidean distance    in the matrix  . The initial phase 

shift can be obtained by finding the phase angle    which corresponds to the minimal Euclidean 

distance in the matrix  . 

                    Subject to                      (3) 

                     (4) 

Thus the phase of the time series    can be compensated using the estimated phase angle    to 

obtain minimal initial phase shaft compared with the time series   . 

Figure 5(a) shows the result of phase estimation and compensation of the two time series which is 

shown in Figure 3(a). It can be seen that the overall waveform of the two time series are matched 

better after phase compensation. From the processing results of DTW shown in Figure 5(b) and (c) 

and DTW residual signal shown in Figure 5(d), it is clear that the singularities at the ends of the 

aligned time series as shown in Figure 3(b) are moved out and this proves that phase compensation is 

able to improve the singularity effects of DTW and reduce the data jumps at the ends of DTW residual 

signal. Therefore, more accurate results of dissimilarity recognition by DTW can be obtained after 

processing by phase compensation. 
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Figure 5 Singularity effect of DTW with phase compensation 

Figure 6 shows the comparison of SD values between phase compensation and non-compensation. 

It can be seen that without phase compensation, the SD values increase with the phase shifts between 

the two time series. However, the SD values of DTW residual signals obtained from the two time 

series after phase compensation are all similar. This means that the phase compensation can reduce the 

effect of singularities to maintain the minimal value of dissimilarity between the two signals of 

different phase shifts, which in turn allows accurate feature extraction for obtaining reliable fault 

detection and diagnosis. 
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Figure 6 Comparison of SD of DTW residual signals 

4. Feature Extraction of Motor Current 

In order to extract the features of motor current signal for fault detection and diagnosis, the 

characteristics of the current signal need to be analysed appropriately. Moreover, effective data 

processing procedures based on DTW should be premeditated to obtain accurate feature extraction 

results. 

4.1 Motor Current Signal 

The electrical current signal is a typical amplitude modulation (AM) signal [4]. A reciprocating 

compressor system consists of an induction motor, in which the compressor has two basic working 

processes including compression and expansion. The working process gives rise to a periodically 

varying load to the driving motor due to the compressor requiring more power in compression than in 

expansion [26]. This varying load leads to high oscillation in the measured current signal. Figure 7 

shows the motor current signals measured from a two-stage reciprocating compressor under the 

conditions of healthy and faulty valve leakage. From the waveform of the current signal shown in 

Figure 7(a), it can be seen that the amplitude of the current waveform from the valve leakage is 

slightly higher than that of the healthy condition and the current signals are modulated by a dynamic 

load fluctuating. It is also very clear that the two current signals have similar waveforms but with clear 

phase shift. 

In the spectra, as shown in Figure 7(b), it can be seen that the main frequency contents contained in 

current signals are the supply frequency which is about 50Hz and the load fluctuating frequency of 

7.3Hz which corresponds to the working frequency of the compressor. The carrier frequency 

components at the supply frequency 50Hz have high amplitudes and the sideband contents at about 

50±7.3Hz are also very clear. Nevertheless, the amplitude of the two sideband contents will change 

with the degree of load and speed fluctuations. The upper sideband content results from the lower 

sideband content due to a nonlinear effect caused by the interaction of magnetic flux, load and speed 

fluctuations [27, 28]. Therefore, the motor current signals contain useful information for compressor 

fault detection. 
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Figure 7 Waveform and spectra of current signals from compressor  

However, the components at 50Hz have a clear spectral leakage due to the limitation of FT 

calculation. This leakage will lead to an error in estimating the amplitude at 50Hz, which causes in 

turn more difficulties in identifying and quantifying the weak sidebands which are the main features 

used for compressor fault diagnosis. It means that the features obtained in the frequency domain 

degrade fault diagnosis performance and a more accurate estimation of the sideband characteristics 

need to be used. 

4.2 Feature Extraction Procedure 

To separate the fluctuating component from the supply component as accurately as possible in motor 

current signals, a DTW approach based on the introduction of a reference signal which has the same 

frequency contents with the supply power is suggested to apply to the current signals for feature 

extraction. The approach has the data manipulation steps as follows. 

Step1: Data Pre-processing 

The purposes of data pre-processing is to suppress the inevitable random noise. It is carried out by a 

low-pass filter with the cut-off frequency of 120Hz so to remove both the high order harmonics of 

supply frequency and any random noise originated from measurement and power supply system. This 

will ensure that the DTW and frequency estimations can be implemented reliably. 

Step2: Reference Signal Generation 

The reference signal is defined as a sinusoidal signal with the frequency and amplitude calculated 

from the filtered measured signal. Supposing that the filtered measured signal is             , the 

amplitude of the reference signal is estimated by 

        
 

 
   

 
      (5) 

The frequency is estimated by the zero-across detection method. It finds the zero crossing points in 

a predetermined time interval and counts the number of cycles   that occur in the time interval to 

obtain the frequency estimation as 

               (6) 

where    is the sampling frequency. Thus the reference signal can be generated by  

                          (7) 

Step3: Phase Estimation and Compensation 

The initial phase shifts between the measured current signal and reference signal is estimated based on 

the method proposed in section 3. The estimated phase shift    can be obtained by Equation (4), and 
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hence the reference signal can be regenerated as Equation (8) to have minimal initial phase compared 

with the filtered measured signal. 

                            (8) 

Step4: Window Length Determination 

A sliding window is designed to improve the computing efficiency of DTW implementation. The 

estimation of the minimum length of the sliding window for DTW processing can be found by 

calculating the load fluctuating components which corresponds to the working speed of the 

compressor.  

               (9) 

And the load fluctuating components can be calculated, 

               (10) 

where   and   are the speed and transmission ratio of the compressor, respectively. The actual 

length of the sliding window may be several times of the minimal length      depending on data 

processing tasks. For benchmarking proposed methods with FT based methods, the length of the 

sliding window is set to 3 times of      so that the FT based results can have a sufficient resolution 

for sideband features extraction in the frequency domain. 

In addition, to align the reference signal and the filtered measured signal, the length of the 

reference signal should be the same with that of the sliding window for high efficiency in DTW 

implementation and memory allocation. 

Step5: DTW Implementation 

After designing the reference signal and determining the length of the sliding window, the DTW 

algorithm can be applied to process the reference signal and the measured signal selected by frame by 

frame. The two signals are aligned in the time domain after being processed by DTW, and hence a 

residual signal can be obtained by subtracting the reference signal by the measured signal and the 

dissimilarity between the two signals can be shown by the residual signal. The window is sliding along 

the measured signal. Therefore, the DTW can be implemented efficiently in each sliding window to 

reveal the differences. 

Figure 8 shows the interim results of DTW processing at each key step in a typical sliding window. 

The measured signal is presented with an initial phase when the data is collected in Figure 8(a) and the 

reference signal is presented with 0 initial phase. Obviously, these two signals are shifted from each 

other greatly and cannot be compared directly. Figure 8(b) shows the result after phase compensation 

on the reference signal through the initial phase matching. It can be seen that the overall waveforms 

are better matched, but many detailed portions in the waveform are still not matched sufficiently well 

for comparison. After DTW processing, the measured signal and reference signal are matched to their 

optimal as shown in Figure 8(c) and hence the dissimilarity can be revealed by subtraction directly. 

The phase estimation and compensation is a low consumption process, and its time-consuming is only 

0.5% of DTW implementation when the sampling frequency is at 24 kHz. Figure 8(d) shows the 

residual signal obtained by the subtraction. Clearly the residual signal highlights the major differences 

between the waveforms that are shown in Figure 8(a) which is around the peak portion of the 

amplitude modulation when the motor has been applied by higher load during the compensation 

process, which has the higher effects of mechanical process. As a result of this signal enhancement, a 

more accurate feature can be extracted from this residual signal. 

Step6: Feature Detection 

The aim of applying DTW to process signal is to recognize the differences between the two signals 

with higher accuracy, and the residual signal is used to demonstrate the differences. Therefore, the 

detection can be made through analysing the residual signal. In the proposed method, the RMS values 

of the residual signal are employed to measure the amplitude of the residual signals. Compared with 

peak values, the RMS values produce a more reliable feature when the form of AM modulation varies 

with different operating conditions and fault cases. Obviously, a higher RMS value indicates a greater 

difference between the reference signal and the measured signal and hence it indicates the deviation 

degree of the signal from sinusoidal due to the modulation effects under compressor conditions. 
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Figure 8 DTW processing motor current signal 

5. Experimental Evaluation 

To evaluate the performance of the proposed approach in fault detection and diagnosis, electrical 

current signals are collected from a two-stage reciprocating compressor induced with a number of 

common faults. The signals are then processed by proposed approach to produce fault detection and 

diagnosis results. In addition, the results are also compared with that from traditional FT analysis. 

5.1 Experimental Tests  

The reciprocating compressor has a common two-stage construction which allows air to be 

compressed as high as 10bar. It is driven by a 2.5kw three-phase four-pole induction motor through a 

V-belt with a transmission ratio of 3.2. During the tests, the compressor is induced with three 

comment faults: discharge valve leakage, transmission belt looseness and inter-cooler leakage. These 

faults can induce low operating efficiency and potential damage to the compressors. The leakage is 

usually caused by thermal impacts and mechanical vibrations and the belt looseness is a typical feature 

with the texture of the belt showing some damage. The three types of faults are induced individually to 

the compressor for evaluating the effectiveness of the proposed method in detecting these faults. The 

valve leakage is produced by drilling a 1mm hole in the discharge valve plate. The distance between 

two belt pulleys is reduced by 2mm for belt looseness. The case of inter-cooler leakage is induced by 

adjusting the tightness of the connecting bolt for the degrees of leakage, which is often a consequence 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

0

10
DTW processing: (a) Original Signals 

 

 

Stator current

Reference signal

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

0

10
(b) Signals with Initial Phase Shift

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-10

0

10
(c) DTW Alignment

A
m

p
li
tu

d
e

 (
A

)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-2

0

2
(d) DTW Residual Signal

Samples



 

 

 

 

 

 

12 

 

of the resonance of the connection line. In addition, the faults, loads and speeds setting in the 

experimental process are listed in Table 1, and the experimental setup is shown schematically in 

Figure 9. 

 
Figure 9 The experimental setup 

 

Table 1 Faults and Loads in using Experimental testing  

Conditions Load-1 

(bar) 

Load-2 

(bar) 

Load-3 

(bar) 

Load-4 

(bar) 

Load-5 

(bar) 

Load-6 

(bar) 

Nominal 

Speed (rpm) 

Health 4.8 5.5 6.2 6.9 7.6 8.3 1400 

Valve leakage 4.8 5.5 6.2 6.9 7.6 8.3 1400 

Inter-cooler 

leakage 

4.8 5.5 6.2 6.9 7.6 8.3 1400 

Belt 

looseness 

4.8 5.5 6.2 6.9 7.6 8.3 1400 

During the tests, one phase in the three-phase motor current is measured by a Hall effect-based 

current transducer with frequency response from DC to 1.5 kHz. The current signal is collected by a 

high speed ADC system at a resolution of 16bit. For each fault the data is collected at 6 different 

discharge pressures from 4.8bar to 8.3bar, which covers the operating pressure range specified by the 

manufacturer. Each collection is 50000 points which is more than 2 seconds in duration for a sampling 

rate of 24.3 kHz. This data length covers about 12 compressor cycles which is sufficient for random 

noise suppression in an average process. In addition, the high sampling rate allows high accuracy to be 

obtained in waveform parameter calculation. 

5.2 Faults Detection and Diagnosis 

The measured current signals are processed by the proposed method to obtain residual signals 

respective to each case and operating pressures by using the proposed DTW based approach. During 

the processing, the sliding window is set to 10500 points in length so that it includes about 3 

compressor cycles, which allows sufficiently good frequency resolution in FT based analysis in the 

comparison study. To quantify these differences for separating these fault cases, RMS values of the 

residual signals are calculated for all cases. Figure 10 shows the RMS values of residual signals from 

different fault cases at different discharge pressures. It is clear that the RMS values of the residual 

current signals change with the degree of load oscillation. When the compressor operates at a special 

discharge pressure, such as 6.2bar, the RMS values of the residual signals are also changing with the 

different kinds of fault cases. The RMS value of the residual signal under the fault of valve leakage is 

higher than that of healthy condition and the RMS value of the residual signal under the fault of belt 

looseness is the lowest in the four fault cases. Moreover, when the discharge pressures increases, the 

RMS values of the residual signals are increasing accordingly under each kind of fault case. This 
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means that if there is a fault in the compressor, the load fluctuation characteristics will be altered and 

hence the RMS values and its distinctive will be different from that when the compressor is healthy 

with the increase of the discharge pressures. Based on this analysis, the faults can be detected by an 

RMS linear classifier in association with the discharge pressures. 

 
Figure 10 DTW residual signal based detection and diagnosis 

5.3 Comparison Conventional Analysis 

To benchmark the performance of the proposed method, the modulation characteristics of the current 

signals are analysed by two conventional methods: FFT based spectrum technique which leads to a 

sideband amplitude as detection feature and Hilbert transform analysis which produces an envelope 

level as the detection feature. 
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Figure 11 Sidebands from FFT based detection and diagnosis 

In performing FFT calculation a hanning window is used to reduce the spectral leakage effects. 

Figure 11 shows the results from the spectrum analysis technique. The feature extraction is carried out 

by extracting the spectral peak values of the sideband contents which are used to reveal the differences 

between different operating conditions. It can be seen that the sideband amplitudes are unable to 

produce a full separation result between different fault cases under various loads. 

In calculating the envelope, a band pass filter with 80Hz bandwidth is applied to the measured 

current signals and then a FFT based Hilbert transform method is used to obtain the envelope signals. 

Figure 12 shows the RMS values of envelope signals for different fault cases under the different 

operating discharge pressures. It shows that the envelope analysis can also allow a full separation 

between the fault cases under the operating conditions of interest. The overall trend is very similar to 

the results of the proposed DTW based method, demonstrating that the proposed method is able to 

capture the modulation characteristics with good accuracy. However, as the RMS values of envelope 

signals are calculated in the time domain hence spectral leakage etc may be minimised in the time 

domain envelope signals. 

 

Figure 12 Envelope signal based detection and diagnosis 

A careful comparison of the results of the analysis of the proposed method and envelope based 

analysis also finds that the deviation of RMS values of envelope signal is slightly wider than that of 

DTW residual signals, where concentrated distribution demonstrates accurate and reliable detection 

results. Figure 13 shows the relative standard deviation (RSD) for the three methods. It has found that 

the proposed DTW based method has the smallest deviation among the three analysis techniques, 

which indicates that the proposed method can produce more reliable diagnostic results. 
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Figure 13 Comparison of standard deviation of three analysis techniques 

6. Conclusions 

This work shows that the analysis of motor current signals using a phase compensation DTW method 

has the significant potential to detect and identify the presence of incipient faults in motor drive 

machines. The initial phase estimation and compensation can improve the singularity effect of DTW 

and enhance the accuracy and reliability of dissimilarity recognition. The results show that the 

sideband features or modulation characteristics in current signals can be extracted by DTW through 

the introduction of a reference signal of the same frequency with the supply power, which leads to a 

residual signal that contains mainly the sideband contents.  

This residual signal is then further analyzed to extract accurate and effective features from the 

motor current signals measured under different conditions. Based on the analysis, RMS value is 

developed to classify common compressor faults including valve leakage, intercooler leakage and belt 

looseness. The analysis results indicate that the phase compensation based DTW method can be 

employed to extract accurate features of the current signals and RMS values of the residual signals can 

be used to differentiate the faulty from the healthy and identify the difference between other fault 

cases under various loads of discharge pressures. Moreover, the accuracy and reliability of detection 

and classification from phase compensation based DTW analysis is higher than that from FFT 

spectrum and envelope analysis. In addition, the proposed processing procedure which is based 

entirely on the time domain analysis is computationally efficient and easier to apply to real-time 

monitoring. 
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