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Abstract

This paper introduces novel non-contact methods for detecting faults in heat
seals of food packages. Two alternative imaging technologies are investigated;
laser scatter imaging and polarised light stress images. After segmenting the
seal area from the rest of the respective image, a classifier is trained to de-
tect faults in different regions of the seal area using features extracted from
the pixels in the respective region. A very large set of candidate features,
based on statistical information relating to the colour and texture of each re-
gion, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is
used to automatically select the best features for discriminating faults from
non-faults. With this approach, different features can be selected and op-
timised for the different imaging methods. In experiments we compare the
performance of classifiers trained using features extracted from laser scatter
images only, polarised light stress images only, and a combination of both
image types. The results show that the polarised light and laser scatter
classifiers achieved accuracies of 96% and 90%, respectively, while the com-
bination of both sensors achieved an accuracy of 95%. These figures suggest
that both systems have potential for commercial development.

1. Introduction

A large proportion of food purchased for home consumption is sold in
packages. Heat-sealed packs such as the trays used in this study perform a
number of functions apart from merely containing the food. One purpose is to
provide a physical barrier against contaminants which might harm the quality
of the food. Also food may have been packaged in a controlled atmosphere,
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such as nitrogen or carbon dioxide, intended to slow the processes that lead
to food going bad.

A recent study of 105 packaging facilities at 11 factory sites (Dudbridge
and Turner, 2009) concluded that in the UK alone, a potential 480,000 tonnes
of food waste per year could be generated through unsound seals in food
packaging. 24% of heat seals were identified in the factory audits carried out
as being at risk of failure, yet only 1% of packs were identified by factory
tests as being sufficiently damaged to be rejected. The majority of facili-
ties used off-line contact methods for inspecting seal integrity, where part of
the inspection mechanism must physically touch the pack. Another alter-
native, ultrasound, often uses water as a contact element since conventional
ultrasound does not travel through the air, although advances in air-coupled
ultrasound have taken place recently, with Pallav et al. (2009) reporting the
ability to detect a 2mm wide foreign body in cheese. In general, contact
methods cannot inspect every pack on a production line at high speed, or
may interfere with the sealing process or the product itself.

The objective of the research presented in this paper is to investigate non-
contact methods for detecting faults in heat sealed food trays using two al-
ternative imaging technologies. Polarised light stress images are produced by
passing linear polarised light through a translucent material, which changes
the polarisation of the light, resulting in coloured stress patterns when the
light is passed through a second polarising filter, as seen in Figure 1. Laser
scatter images are produced by measuring the amount of laser light that is
deflected due to irregularities in the material being measured. For both tech-
nologies we then use conventional computer vision techniques to analyse the
resulting images.

A limitation of typical machine vision system is that the set of image
features for pattern recognition has to be designed by the system engineer
to work with a specific configuration of product, imaging system and op-
erating conditions. Such systems typically do not generalise well to other
configurations where the required image systems may differ from those used
to design the original system, or the selected features may be suboptimal
for the task at hand. By contrast, this paper applies an adaptive boosting
algorithm called AdaBoost (Freund and Schapire, 1999) to automatically se-
lect good features for a particular pattern recognition task. A small subset of
features is selected from a very large set of candidate features, which measure
statistical properties of the colour and texture distribution within the respec-
tive image region. Thus the selected features used to build the final pattern



recognition system are optimised for the particular imaging technology under
investigation.

In the experiments presented, we compare the performance of classifiers
trained using features extracted from laser scatter images only, polarised light
stress images only, and a combination of both image types. The results show
that the polarised light and laser scatter classifiers achieved accuracies of
96% and 90%, respectively, while the combination of both sensors achieved
an accuracy of 95%. These figures suggest that both systems have potential
for commercial development.

1.1. Related work

1.1.1. Seal integrity

Sivaramakrishna et al. (2007) used an automated squeeze test system to
inspect the quality of seals in brick type packages, i.e. cardboard packages
used to hold liquids, which are often seen on supermarket shelves as milk
or juice cartons. When the pack had been sealed but before it was fully
folded into place, the system applied pressure to the pack and checked for
resistance. The system took less than 30 seconds to assess each pack and
detected 89% of faults of 100 micron diameter.

The use of ultrasound scanning to detect faulty food package seals is
described in Raum et al. (1998). Ultrasound signals were bounced off an
area of package seal, showing a difference in the amplitude (loudness) of
the reflected signal at certain frequencies depending on whether the seal
contained a fault or not. Adams (2000) describes a method for ultrasound
scanning of medical packaging, resulting in a similar difference which he
explains as being due to the inability of ultrasound to travel through air,
meaning that the ultrasound transmitted into air-filled faults only passes
through the first layer before bouncing back.

Morita et al. (2007) used terahertz radiation to scan package seals. Ter-
ahertz radiation, located between infrared and millimeter radiation, has ad-
vantages over light in that many materials which are opaque to the visible
spectrum are only translucent with regards to the terahertz band, allowing
a terahertz sensor to inspect the seals of opaque packages as though they
were translucent. Water-filled channels proved harder to detect than air-
filled channels, but it was shown that on a conveyor moving at 500mm/s
the system could detect air-filled channels much smaller than 50 microns in
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Harper et al. (1995) describe the use of light penetration tests to inspect
the thickness of the seals, whereby a translucent seal allows more light to pass
through if the adhesive is not thick enough to ensure a strong seal. However
this is no longer a common cause of seal faults, perhaps due to better quality
control during pack manufacturing.

1.1.2. Polarised light

In most cases, polarised light analysis of translucent materials is done by
shining a white light through a linear polarising filter, which passes through
the translucent materials, then through a polarising filter positioned at an
orientation of 90 ° relative to the first filter. Alternatively, an LCD monitor
can be used as a source of white polarised light (Rehorst, 2006) since the
same method is used in every pixel of an LCD monitor to allow or block
the light from passing through. This approach was used for the experiments
described in this paper.

The use of polarised light to produce stress patterns was first described
by Auguste Michel-Lévy in 1884. The colours are formed due to the bire-
fringence of the observed material, causing the light passing through it to
split into two. As shown in Figure 1, on reaching a polarising filter, only
the section of the light waves aligned with the filter can pass through, which
forces the light rays to recombine into a single light wave. The properties
of the transparent material that the waves have passed through will cause
them to become offset to one another, so recombining them will produce a
new light wave with different frequency (McCrone et al., 1984).

The use of this kind of stress analysis in translucent materials is well
known in other applications. A common use is in glass blowing to ensure that
the newly-formed glass shape does not have obvious weak points that will be
prone to breakage (Coelho et al., 2011). Following the same principle, the use
of polarised lasers to analyse the strains on microcircuitry was described in
Inzinga et al. (2009). Given the microscopic nature of the pieces that make
up a single semiconducting component, it is necessary to observe stresses in
these pieces that might shorten the working life of the semiconductor.

Gadow et al. (2009) used the term PLOTA, Polarised Light Optical Tex-
ture Analysis, to describe the combination of polarised light stress analysis
with computer vision. In an example, they showed that the texture of the
polarised light stress pattern on different parts of an injection-moulded gear
ring was an indicator of how much strain that area could be safely put un-
der, allowing the manufacturing process to be modified to focus the material
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strength in the areas of the gear which will be exposed to the strongest forces
when in operation.

1.1.3. Laser scatter

Laser scatter, sometimes called laser speckle, refers to the way in which
a laser can be seen to deform or spread out based on the properties of the
surface it is shining onto. By measuring the amount of scatter, it is possible
to determine various properties of the surface in question. For example, the
amount of scatter produced by shining a laser beam onto the surface of a
kiwifruit (Baranyai and Zude, 2009), or a peach (Lu and Peng, 2006), can give
a good indication of the firmness of the fruit, which can provide an indication
of the ripeness or quality of the fruit. Cho and Han (1999) performed similar
tests on apples, using a red laser and image features relating to the colour
channels of a CCD sensor to estimate the firmness of the apples.

In medicine, laser scatter has been used to identify skin affected by the dis-
ease scleroderma, since the condition causes lesions characterised by changes
to the fibrous nature of the skin, which causes a laser beam to scatter more in
one direction than the other. De Vries et al. (2000) took biopsies of skin with
and without these lesions and took images with a laser beam being shone
onto the skin. It was observed that the laser spot on lesioned skin tended to
have a higher ratio between the major and minor axes than the laser spot on
non-lesioned skin.

Wong et al. (1997) used laser scatter measurements to identify the level
of wear on CNC machine tools. The mean and standard deviation of the
intensity of a line of laser light was measured and a good correlation was
found between the level of wear and the standard deviation of the laser’s
intensity distrubution.

Figure 2 shows photographs of a laser pointer shone through a good pack
seal and a faulty pack seal. The laser spot from the pointer visibly scatters
further in all directions in the presence of a fault. This is a typical scatter
setup, where a narrow beam of laser light is shone on or through an object
and the laser dot is photographed. As an alternative, the laser beam can be
spread into a line by a shaped lens, allowing it to shine onto a whole row of
a pack at a time. This has limitations in only being able to observe scatter
in one direction but it can scan the entire width of a pack per frame. Figure
3 shows this kind of laser beam in operation.



2. Materials and methods

2.1. Pack sealing and fault production

The experiments were conducted using a set of transparent rigid plastic
trays, of the type shown in Figure 4, which were sealed with transparent
flexible film using an Ishida tray sealing machine shown in Figure 5. These
tray sealers work by pressing the film against the tray and applying a high
temperature, which melts together a coating on the underside of the film and
the top of the tray, producing an airtight bond.

The most common cause of seal faults is contamination of the area be-
tween the tray and film, so to produce artificial faults we used copper wire to
contaminate this area. In previous experiments we attempted to use human
hair but that required adhesive to be used and there were concerns that the
adhesive might be detected by the sensor. The wire was temporarily fixed
to the outside of each pack using poster putty and bent across the seal area.
Effort was made to ensure that the position and orientation of the wire was
randomly distributed, which was aided by a tendency of the wires to shift
during the sealing process.

Faults were produced using 125 micron copper wire, which was only at-
tached to the outside of the pack to make it easier to remove the whole
wire. This also allowed all trace of the wire to be removed, avoiding the risk
of marking the inside of the pack in a way that might affect the classifier.
Tungsten or molybdenum wire could be used for future tests to allow the
production of smaller faults. After the faults had been produced, all of the
trays were carefully inspected and 3 trays were removed from the original set
of 120 trays because additional unintended faults were observed in the seals
of these trays, leaving an experimental data set of 117 trays (60 containing
faults, and 57 containing no faults).

2.2. Image acquisition

Two methods were used to capture images of the packs: polarised light
and laser scatter imaging, as described in the following paragraphs. All
images were recorded in the dark to reduce interference from ambient light.

Polarised white light, when passed through a translucent object then
through a linear polarising filter, takes on a coloured pattern based on the
properties of the object it has passed through. The colours tend to vary in
regions where a seal is improperly formed. Figure 6 shows an example with



four clearly visible faults. This image was taken with a camera and a home-
made polariscope constructed from an LCD monitor shown in Figure 7. An
LCD monitor showing a white screen was laid flat on a table. A Sony Alpha
200 digital SLR camera was fixed to a stand and positioned looking directly
down at the monitor. A polarising filter was then positioned on the camera
to block the light from the monitor. The polarising filters on the monitor
and on the camera then take the role of the two polarising filters shown in
Figure 1.

Laser scatter imaging involves recording a sequence of images of a moving
object as it passes under a laser line. The system we employed, built into
the SICK Ranger camera, produces two channels of intensity data. The first,
known as the direct channel, consists of the intensity of the laser line at
its centre, while the second consists of the intensity of the laser at a point
beyond its normal area. This second channel, known as the scatter channel,
indicates how the laser light is being scattered, as shown in Figure 8. This
output resembles the method used by a line-scan camera but using a multiple
line sensor, sometimes referred to as band-scan. The camera setup used to
take these images is shown in Figure 3. Figure 6 also shows the pack seal in
the scatter and direct channels. Three of the four seal faults are immediately
obvious as bright patches, with the fourth being detectable by the software.
The bright area flare close to the middle of the seal is a common feature,
allowing the classifier to look for anomalies in its form to detect whether
there is a fault in that location.

2.3. Image pre-processing

The first stage of image pre-processing was to locate the seal on each
pack. Using polarised light images it is easy to segment the box from the
background, since the background is black due to being blocked by the polar-
ising filter. A template-fitting approach was then applied. The angle of the
pack was measured by locating the centre of the pack, then the pack image
was rotated to position the pack horizontally. The lengths of both axes of
the pack were then measured. The template was then scaled to the same size
as the pack, rotated to the same angle as the pack in the original image and
positioned so that it shared a centroid with the pack in the image.

For laser scatter images this approach proved unreliable since the edge
was not always visible. Manual markup was therefore used to indicate to the
system where the seal was located. In an industrial application, this problem



could be solved by placing a guide rail on either side of the conveyor belt to
ensure that each pack passes in a known position and orientation.

Once the seal had been located, the seal area on the side of the packs
investigated was subdivided into 16 regions as shown in Figure 9, where each
region was approximately 1/20 of the length of the pack. For the subsequent
analysis, a separate classifier was trained to detect faults for each of the
affected regions, as described in the following sections.

If a pack were to be deformed then the seal might not be in the location
specified by the template. This would be likely to produce anomalies in the
laser scatter image at the areas around the deformity. Under polarised light,
the deformity could be detected since the area around the pack is black,
allowing the shape to be examined. However, for the purposes of the “proof
of concept” study presented in this paper, we did not investigate the issue of
deformed packs.

2.4. Feature extraction

The next step of image processing is to extract image features that should
help to indicate the presence or absence of faults in a given image region.
As described in Section 2.3, the pixels that make up the seal are known and
divided into regions of interest. A number of different filters are applied to the
channels of the original images, described in the following subsections, and
then the results are summarised by region to provide the input features for
classification with the machine learning algorithm described in Section 2.5.
The pipeline of processing steps involved in feature extraction is described
as follows.

2.4.1. Input channels

First the respective image types are separated into channels, with each
channel comprising a 2-D array with the same resolution as the input image.
For polarised light images, there are four channels: red (R), green (G), blue
(B) and intensity (I = 3(R+ G + B)). For laser scatter images, there are
two channels: scatter (S) and direct (D).

2.4.2. Gradient and range filtering

In this step, the input channels described above are passed through a
number of different filters in parallel: range, horizonal gradient, vertical gra-
dient and non-directional gradient, described as follows. The output of this
step includes the original 6 channels plus the four filtered versions of these 6



channels. This has the effect of increasing the number of channels for subse-
quent processsing by a factor of 5, producing 20 channels of data for polarised
light images and 10 channels for laser scatter images.

Range filter. The range statistic describes the difference between the highest
and lowest pixel values in a 3 x 3 area centered on the pixel of interest. The
result is the highest pixel value minus the lowest pixel value.

Gradient filters. The Sobel filter, as used in our experiments, is a discrete
differentiation operator, which computes an approximation of the gradient of
the image intensity function at a given point. This is known as a sharpening
filter since it will tend to highlight lines and edges in images.

The gradient formulas for horizontal and vertical gradients, respectively,
can be represented as:

-1 0 +1 -1 -2 -1
G,=|—-2 0 42| %A, Gy=10 0 0]=xA
-1 0 +1 +1 42 +1

where * is the convolution operator and A is the matrix being processed, in
this case one channel (e.g. colour channel) of a given image. A non-directional
representation of the gradient can also be produced by adding together the
absolute values of both directional gradients G = |G| + |G,

2.4.3. Entropy filtering

In this step, an entropy filter is applied to all of the channels obtained from
the previous step, described as follows. The output of this step includes the
unfiltered versions plus the entropy-filtered versions of these channels. This
has the effect of increasing the number of channels for subsequent processsing
by a factor of 2, producing 40 channels of data for polarised light images and
20 channels for laser scatter images.

The entropy of a set of image pixels refers to an estimate of their informa-
tion content based on the relative frequency of occurrence of the grey levels in
the corresponding image region. The entropy filter ignores the spatial layout
of the pixels and instead considers the distribution of grey levels, in our case
those in a 9 x 9 grid centered on the pixel of interest. The entropy of a set
of values is calculated by taking a histogram of all the values presented and
then normalising the histogram so that the total of all bins equals 1, giving a
probability distribution. The entropy is then given as — > (p;logs(p;)), where

p; is the probability of occurrence for grey level i.



2.4.4. Additional virtual channels for polarised light images

While the steps described above are applied to both polarised light and
laser scatter images, the polarised light images offer the opportunity to pro-
vide additional features relating particularly to the colour channels.

In initial experiments it was found that where a particular statistic had
been calculated for the red, green and blue channels separately, it could
also be advantageous to include the minimum, maximum and range (i.e.
maximum minus minimum) of the three values (R, G and B) to provide
additional candidate features for possible selection by the machine learning
classifier (AdaBoost). So, for example, the “minimum range” statistic for
a particular pixel would be calculated as the minimum of the red, green
and blue range-filtered values for that pixel. This approach was found to
be particularly useful when using the minimum entropy for the three colour
channels, because a fault tended to be characterised by a spike in the entropy
of all three colour channels, while a spike in one or two of the colour channels
was not uncommon but tended not to represent a fault.

This step has the effect of adding an additional 3 x 10 = 30 channels for
the polarised light images, producing 70 channels of data for polarised light
images (including the 40 channels from the previous step), while the number
of channels (20) remains unaffected for the laser scatter images.

2.4.5. Regional summary features

Finally, the above filtered data, comprising 70 channels (images) for po-
larised light images and 20 channels (images) for laser scatter images, are
summarised statistically by region, according to the image regions defined
in Section 2.3 and Fig. 9. Six different region summary statistics are cal-
culated per channel, namely the mean, variance, skewness, minimum value,
maximum value, and range (maximum minus minimum) value of all the pixel
values in the corresponding region. This step has the effect of producing six
output features for each of the channels, producing a total of 420 features per
region for polarised light images and 120 features per region for laser scatter
images.

In general, one could add as many features as desired to improve the
performance of the trained classifier, because the approach used for classi-
fication, described in the following section, includes automatic selection of
the most useful features for a particular pattern recognition task from a very
large set of candidate features. Once the classifier has been trained, only the
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selected features need to be calculated when the trained classifier is deployed
in the intended application.

2.5. Classification

The AdaBoost algorithm (Freund and Schapire, 1999) is used to build a
classifier, which combines results from so-called “weak” classifiers into one
“strong” classifier that performs better than any of the weak classifiers alone.
In our case, each of the weak classifiers consists of a decision stump, or one-
level decision tree, constructed from a single image feature. For each decision
stump, a threshold feature value is selected, and the stump contains two
leaves, one for values below and one for values above the threshold.

The high performance of the final strong classifier is due to the emphasis
put on the training examples which are most difficult to classify during the
learning process. This method is called boosting. During training AdaBoost
makes a number of iterations through the training data. Each time it finds
the next best image feature to improve the number of correctly classified
examples, prioritising those examples which were misclassified previously. In
each iteration one feature is selected and assigned a weight and a threshold
to create a new weak classifier. The weak classifiers are then combined into
a strong classifier, where each weak classifier has a weighted vote in the
classification of a given example.

The Real AdaBoost algorithm proposed by Schapire and Singer (1999) is
a generalisation of this algorithm that provides a lower error rate by allowing
weak classifiers to vote by their individual degree of certainty instead of
simply voting yes or no. In our MATLAB implementation we used the Real
AdaBoost implementation within the GML AdaBoost Toolbox (Vezhnevets,
2006) to select weak classifiers from a set of every possible threshold of every
individual region feature to produce a strong classifier.

In our system the Real AdaBoost algorithm was used to classify individual
regions of seal images into two categories: regions with faults and regions
without faults, based on the features defined in Section 2.4. The reduced
set of selected weak classifiers allows for preprocessing only the most useful
features in the final trained system, saving considerable computation time.
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3. Results and discussion

3.1. Training and testing

The data set used in these experiments consisted of 117 translucent plas-
tic trays, sealed in the Ishida heat-sealing machine as described above. 60
packs were faulty, with up to 5 faults per pack, and 57 packs contained no
faults. Faults were introduced into one side of each pack only. The following
experiments were carried out on a hold-one-out regime, with each one of the
117 packs being tested using a system trained with the other 116 packs. This
approach allowed us to work with a relatively small data set and still make
use of a relatively large amount of training data.

Ground truth data was produced by taking a greyscale image of each
tray under polarised light, then manually drawing in faults in colour. In
most cases the faults were visible in the greyscale images while in others it
was necessary to measure the location on the pack and mark the location on
the image accordingly.

As described in Section 2.3, the seal area on the side of the packs inves-
tigated was subdivided into 16 regions as shown in Figure 9. Out of these
16 regions, a total of 13 regions contained at least one fault in the packs in
the database (the other 3 regions contained no faults in any of the packs).
A separate classifier was trained to detect faults for each of these 13 regions,
i.e. to declare whether the region contains a fault or not. For each of these
regions, the corresponding ground truth information (recording whether or
not the region contained a fault in reality) was obtained by reference to the
manually recorded data, with a region being classified as faulty if it contained
at least one fault.

3.2. System performance

The output of the classifier for each inspected region of the seal is a
binary value, which indicates whether the seal region is considered to contain
a fault (positive) or no faults (negative). By comparing these outputs with
the presence or absence of faults in the ground truth data, we calculated the
following statistics:

e TP - true positive, the number of regions that were classified as faulty
and matched ground truth;

e [P - false positive, the number of regions that were classified as faulty
but did not match ground truth;
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e TN - true negative, the number of regions that were classified as non-
faulty and matched ground truth;

o FN - false negative, the number of regions that were classified as non-
faulty but did not match ground truth.

From these statistics we calculated the following metrics:

o sensitivity = 77
e specificity = %.
_ TP+TN
® ACCUrACY = Tp TN FPTFN

As shown in Table 5, the classifier achieved an accuracy of 96% when
trained using polarised light, 90% when trained using laser scatter data and
95% when trained using both sensors. Adding the laser scatter data to the
polarised light training data resulted in a minor reduction in the sensitivity
of the classifier.

The current implementation of the system is in MATLAB running on a 2.8
GHz processor. For the 13 classifiers trained on polarised light images, feature
extraction for the seal area took 83.4 seconds, with classification taking a
further 0.009 seconds. For the 13 classifiers trained on laser scatter images,
feature extraction for the seal area took 29.0 seconds, with classification
taking a further 0.014 seconds. After training, only a relatively small number
of features need to be calculated for the selected weak classifiers, due to the
feature selection using AdaBoost, saving considerable processing time. This
code has not been optimised, and much faster processing times could be
expected with a compiled programming language such as C++ for real-time
applications.

The polarised light methods used here assume a translucent pack for
the light to pass through, however the same techniques can be used with
reflected polarised light, as seen in Figure 10. For industrial application
this would probably use a specialised multiple-polarisation camera (FluxData
Inc., 2011).

3.8. Preferred features

A summary of the features selected for classification is shown in Tables
1 and 2. This example was trained on all 117 packs although for the hold-
one-out experiments only 116 packs were used at a time. The differences in
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selected features were minor. Most notable for polarised light based classifi-
cation is the prevalence of features based on the entropy of either raw colours,
gradient or range features. The most common feature type selected is the
entropy of the range, i.e. the distribution of the highest and lowest values in
the 3 x 3 square centered on each pixel. The most commonly selected region
summary statistic is the variance. Of the statistics which are not statistical
moments, the maximum is selected most often, which is likely to be because
faults are quite small but represent significant spikes in the input data com-
pared to smooth seal areas. With laser scatter images, the most commonly
chosen feature types are those relating to gradients or ranges rather than
entropy. The mean is chosen more often than any other statistic, and the
direct channel is preferred in 27 cases compared to 17 features for the scatter
channel.

When using polarised light, the system required a total of 15 selected fea-
tures (out of 420 candidate features) to obtain the highest overall accuracy of
the image types investigated (see Table 3 for the full list of features selected).
When the polarised light and laser scatter features were used together, the
system required a total of 16 features (out of 540 candidate features) to
achieve a similar level of accuracy (see Table 4 for the full list of features
selected). Laser scatter required 45 features (out of 120 candidate features)
to obtain a lower accuracy (table omitted for brevity). Here, the entropy
of the gradient and range features within the polarised light image proved
to be important. In contrast with using laser scatter images alone, when
combined with polarised light the direct channel was used equally with the
scatter channel. This is probably because the direct channel is closer to be-
ing a simple camera, which would be similar to but simpler than a polarised
light image.

When using polarised light, the classifier often chose features relating to
the minimum, maximum or range of the three colour channels, as described in
Section 2.4.4, rather than to the individual colour channels. Some classifiers
were able to produce adequate results using only one or two polarised light
features, due to the uniformity of those particular seal regions. This was
more common in regions toward the left end of the seal as viewed in Figure
6, which might be due to the differences in how the film is cut toward the
pull-tab at the right end. No correlation was observed between the number of
faults in a region and the number of weak classifiers selected for that region.
Using laser scatter features tends to also require more features for classifiers
toward the right of the seal, though still requiring more features throughout.
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4. Conclusions and further work

Polarised light imaging and laser scatter imaging both offer methods for
inspecting heat-sealed packages, achieving overall accuracy rates of 96% and
90%, respectively, when detecting faults in a database of 117 translucent
tray seals. In theory these sensors can both be applied to other types of
heat-sealed tray packs, including those which are not entirely composed of
transparent materials. Further work should include non-clear trays, smaller
faults (Raum et al. (1998) cite evidence that bacteria can pass through faults
of no less than 33 microns in diameter) and testing with real-world pack faults
in an industrial environment.

Overall, polarised light and laser scatter techniques show good promise for
development of a commercially viable, non-contact seal inspection method
which could eventually be implemented in the majority of tray packing fa-
cilities to reduce worldwide food waste from package seal faults, estimated
at 480,000 tonnes of food waste, or around 8 kg for every citizen, in the UK
alone.
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6. Figures and tables
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Figure 1: Demonstration of the process by which white polarised light changes to coloured
polarised light when producing a stress pattern.

Figure 2: A laser pointer shone through a seal fault (top) and a good seal (bottom) -
this simple test shows that there is a potential for scatter features to determine faulty
seals from good seals. The fault increases scatter in all directions but most significantly
perpendicular to the fault. Non-red pixels have been darkened for emphasis.
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Figure 3: The laser scatter camera used in these experiments, a SICK Ranger E with an
Invisio 100mW laser.
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Figure 4: The tray type used in these experiments; this one contains pasta while the ones
in the experiments were empty.

Figure 5: The Ishida heat sealing machine used in these experiments.
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(a) Stress image
R L | |

(c) Laser direct

(d) Ambient light

Figure 6: A stress image, laser scatter image, laser direct image and image under ambient
light of a pack seal. Arrows have been added to the stress and laser images to indicate
the presence of four faults in the seal, which are not visible in the ambient light image.
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Figure 7: The makeshift polariscope used to make the polarised light stress patterns,
comprising an LCD monitor and a CCD camera with a linear polarising filter at 90° to
the polarisation of the light coming from the LCD. The item to be inspected is placed
between the two.
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Figure 8: Two images demonstrating how the SICK ranger detects laser scatter details.
The image on the left shows a laser not being scattered at all, so the pixels along the red
line are never brightened while the image on the right shows two small scatter effects on
the same laser, one of which is sufficient to brighten three of the pixels on the red line.

Figure 9: The classification regions for the seal in Figure 6.

Figure 10: A pack with a sizable crease in the plastic film, highlighted under both plain
light and a false-colour image comprised of three different polarisations of light. Intensity
images for 0°, 45° and 90° polarisations were used to provide the red, green and blue
colour channels, respectively. While the fault is visible in both images, it is far more
obvious in the seal region under the polarised image.
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’ Filter type \ Polarised \ Laser \ Combined ‘

Raw 0 ) 0
Range 2 9 0
Gradient 3 17 3
Entropy (Raw) 0 2 1
Entropy (Range) 6 4 7
Entropy (Gradient) 4 8 5
Total | 15 | 45 | 16

Table 1: The number of features selected from the polarised light, laser scatter and com-
bined feature sets according to the filters described in Sections 2.4.1 to 2.4.3.

] Channel type | Polarised \ Laser \ Combined ‘
red - 0
green -
blue
max(R,G,B)
min(R,G,B)
range(R,G,B)
intensity -
scatter 17
direct - 28

| Total 15 45| 16

= DN QO | W =

NN O =N DN W~

Table 2: The number of features selected from the polarised light, laser scatter and com-
bined feature sets according to the channels described in Sections 2.4.1 and 2.4.4.
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Filter type

\ Channel type \ Region statistic

Range entropy intensity mean
Horizontal gradient entropy | red max
Range entropy min(R,G,B) | skew
Range entropy max(R,G,B) | skew
Range entropy range(R,G,B) | max
Vertical gradient entropy blue mean
Vertical gradient entropy blue var
Horizontal gradient green mean
Horizontal gradient green max
Horizontal gradient blue mean
Range entropy min(R,G,B) | var
Range entropy max(R,G,B) | var
Vertical gradient entropy green var
Range blue min
Range max(R,G,B) | var

Table 3: The full list of features selected by AdaBoost for polarised light images.
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Filter type

\ Channel type \ Region statistic

Range entropy min(R,G,B) | skew
Range entropy max(R,G,B) | skew
Range entropy range(R,G,B) | var
Range entropy range(R,G,B) | max
Vertical gradient entropy blue mean
Vertical gradient entropy blue var
Horizontal gradient green mean
Horizontal gradient blue mean
Range entropy min(R,G,B) | var
Range entropy max(R,G,B) | var
Range entropy range(R,G,B) | var
Vertical gradient range(R,G,B) | min
Horizontal gradient entropy | direct mean
Horizontal gradient entropy | direct min
Colour entropy scatter mean
Gradient entropy scatter mean

Table 4: The full list of features selected by AdaBoost for the combination of laser scatter
and polarised light images.

] \ Sensitivity \ Specificity \ Accuracy

Polarised light 0.96 0.96 0.96
Laser scatter 0.88 0.90 0.90
Both 0.94 0.96 0.95

Table 5: The performance of the classifier using polarised light and/or laser scatter images.
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