-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by University of Hertfordshire Research Archive

Measurement-Based Timing Analysis

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Ratschner

Institut fur Technische Informatik,
Technische Universitat Wien, Vienna, Austria

Abstract. In this paper we present a measurement-based worst-casatiore

time (WCET) analysis method. Exhaustive end-to-end eiatdime measure-
ments are computationally intractable in most cases. Torerewe propose to
measure execution times of subparts of the application eadethen compose
these times into a safe WCET bound.

This raises a number of challenges to be solved. First, ta¢e question of how
to define and subsequently calculate adequate subpartmd&echuge amount
of test data is required enforcing the execution of selepttls to perform the
desired runtime measurements.

The presented method provides solutions to both problema.riumber of ex-

periments we show the usefulness of the theoretical cos@emt the practical
feasibility by using current state-of-the-art industrialse studies from project
partners.

1 Introduction

In the last years the number of electronic control systerasri@eased rapidly. In order
to stay competitive, more and more functionality is intéggdainto a growing number
of powerful and complex computer hardware. Due to theserambsin control systems
engineering, new challenges for analyzing the timing bedtaxf real-time computer
systems arise.

Resulting from the temporal constraints for the correctapen of such a real-time
system, predictability in the temporal domain is a strirtgerperative to be satisfied.
Therefore, itis necessary to determine the timing behafittre tasks running on a real-
time computer system. Worst-case execution time (WCETlyaisds the research field
investigating methods to assess the worst-case timingvketad real-time tasks [1].

A central part in WCET analysis is to model the timing behawbthe target plat-
form. However, manual hardware modelling is time-consg@nd error prone, espe-
cially for new types of highly complex processor hardwaneoider to avoid this effort
and to address the portability problem in an elegant mamneyprid WCET analysis
approach has been developed. Execution-time measureamethis instrumented appli-
cation executable substitute the hardware timing modehamdombined with elements
from static static timing analysis.

There are also other approaches of measurement-based tmatysis. For exam-
ple, Petters et al. [2] modifies the program code to enforeesttecution of selected
paths. The drawback of this approach is that the measurepigsmoand the final pro-
gram cannot be the same. Bernat et al. [3] and Ernst et ala[dliate a WCET estimate

* This work has been supported by the FIT-IT research projdcidel-based Development of
Distributed Embedded Control Systems (MoDECS)”.


https://core.ac.uk/display/5223224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from the measured execution times of decomposed progratieseniVhile the last two
approaches like our technique also partition the prograrthtomeasurements, they do
not address the challenging problem of systematic geoerafiinput data for the mea-
surements. Heuristic methods for input-data generatioa haen developed [5] which
alone are not adequate to ensure a concrete coverage fonthg tmeasurements.

2 Basic Concepts

In this section, basic concepts for modeling a system by oreasent-based timing
analysis are introduced. These include modeling the pmgepresentation, the se-
mantics, and the physical hardware.

2.1 Static Program Representation

A control flow graph(CFG) is used to model the control flow of a program. A CFG
G = (N, E, s,t) consists of a set of nodéé representindpasic blocksa set of edges
E : N x N representing the control flow, a unique entry nedand a unique end node
t. A basic blockcontains a sequence of instructions that is entered at tfiariieg and
the only exit is at the end, i.e., only the last instructioryrba a control-flow changing
instruction. The current support for function calls is d@yegunction inlining.

2.2 Execution Path Representation
We introducepathsin order to describe execution scenarios (Def. 1).

Definition 1. Path / Execution Path / Sub-Path

Givena CFGG = (N, E, s,t), a pathr from nodez € N to nodeb € N is a sequence
of nodesr = (ng,n1,...,n,) (representing basic blocks) such tha = a, n, = b,
andv 0 <i < n: (n;,n;+1) € E . The length of such a pathis n + 1.

An execution paths defined as a path starting fromand ending ir¢. I7 denotes the
set of allexecution pathef the CFGG, i.e., all paths that can be taken through the
program represented by the CFG.

A sub-pathis a subsequence of @xecution path

If programs are analyzed the set of feasible paths, i.e seéhef paths that can be
actually executed is of special interest (because exd@lysilie execution times of these
paths can influence the timing behavior).

Our approach, based on model-checking, allows to checkethsHility of a path
(see Def. 2). To ensure the termination of the analysis, the@ainchecker is stopped if
it cannot perform the analysis of a path within a certain amad time. However, in
this case the feasibility of the respective paths has to belad manually.

Definition 2. Feasibility of paths

Given that the set of execution paths of a progr&ns modeled by its CF&, we call a
pathm € G feasible iff there exist input data for prograrR enforcing that the control-
flow followsr. Conversely, paths that are not feasible are callgdasible Defining /7
as the paths of the CFG anfd/ as the set of feasible paths, it holds thiat C I7.



3 The Principle of Measurement-Based Timing Analysis

The measurement-based timing analy@4BTA) method is a hybrid WCET analysis
technique, i.e., it combines static program analysis witlyr@amic part, the execution-
time measurements. As shown in Figure 1, the following stepgperformed [6]:

Analyzer &
[ :
10 ﬁ Analysis phase ¢
Execution time @
measurement M h
framework easurement phase ﬂ& . h

Calculation

tool \{ Calculation phase J

s

J
Fig. 1. The three phases of measurement-based timing analysis

1. Analysis PhaseFirst the source code is parsed and static analyzes exatct p
information. Then, the program is partitioned into segragwhich are defined in Sec-
tion 4. The segment size is customizable to keep the numbdiffefent paths for
the later measurement phase tractable. To assess theierdue that a task spends
within each of the identified program segments, adequatelé¢a are needed to guide
the program’s execution into all the paths of a segment.&test data are generated au-
tomatically. Besides applying random test-data vectodsteguristics, bounded model
checking for test-data generation is introduced.

As described in Section 4, when using model checking, wergéméor each program
segment and instrumented instance of the source-code.

In contrast to methods that work on object-code level, theo@e analysis ensures a
high level of portability because ANSI C is a well establidlprogramming language
in control systems engineering. Additionally, C is alsoduas output format of code
generation tools like Real-Time Workshop (Mathworks Inar)TargetLink (dSpace
GmbH).

2. Measurement Phas@&he generated test data force program execution onto the
required paths within the program segments. The measueligsan times are cap-
tured by code instrumentations that are automatically geee and placed at program
segment boundaries. The instrumented programs are egesmudetimed on the target
platform.

3. Calculation PhaseThe obtained execution times and path information are com-
bined to calculate a final WCET bound. This calculation usebniques from static
WCET analysis. It utilizes the path information acquiredtie static analysigphase.
(see l.)

In case of complex hardware where the instruction timingetiels on the execution his-
tory, MBTA can still provide safe WCET bounds when using éipktate enforcement



at the beginning of each segment to eliminate state vanisitior example, the pipeline
could be flushed or the cache content could be invalidatedesloaded.

The contributions of this measurement-based worst-caseutign time analysis
(MBTA) method are:

Avoidance of explicit hardware modelling. In contrast to pure static WCET analysis
methods [1], this approach does not require to build a stipated execution-time
model for each instruction type. In fact, the actual timirghavior of instructions
within their context is obtained from execution-time maasoents on the concrete
hardware.

Automated test-data generationusing model checking. This allows us¢ompletely
generate all required and feasible test data. In the firsgtraxents we used sym-
bolic model checking. Later, bounded model checking turoedto be superior
wrt. model size and computation times.

Parametrizable complexity reduction. The control-flow graph partitioning algorithm
allows a parameterizable complexity reduction of the asialprocess (i.e., the
number of required execution-time measurements and tkeo$ithe test data set
can be chosen according to the available computing resgu@a the reverse side,
the accuracy of the analysis decreases by reducing the muhtests. This allows
for an adaptation to user demands and available resources.

Modular tool architecture. The tool structure is completely modular. It is possible to
improve the components for each step independently (Baytest-data generation
mechanism, WCET bound calculation step).

Scalability of the analysis process Execution-time measurements and test-data gen-
eration (that consume together around 98% of the total aisatyne) can be ex-
ecuted highly parallel if multiple target machines respety host computers are
available.

In our implementation, the interface data passed betweethtee phases (i.e., ex-
tracted path information, the test data, and the obtainedwon times) are stored in
XML files.

4 Parameterizable Program Partitioning for MBTA

In the following sections, the main concepts of the measerdgrbased timing analysis
approach [7] are described in detail. The proposed methadhigbrid approach that
combines elements of static analysis with the dynamic di@tof software.

After preparing the previously described CFG, the panitig algorithm is invoked
to split the CFG into smaller entities, so-callpabgram segment®efinition 3). This
segmentation is necessary, because when instead tryingetend-to-end measure-
ments the number of paths i (the set of paths of the function subject to analysis) is
in general intractable. Our segmentation is similar to tiescribed by Ernst et al. [4].
However, we do not differ between segments of single or ipleltpaths, instead we
use a path bound to limit segment size. In a second step, the pathin the pro-
gram segments are explicitly enumerated in a data structileddtree(coming from
decision-tree).



Definition 3. Program SegmentatiorPSG)
A program segmer(tPS) is a tuple PS = (s, t, IT) wheres is the start node and is
the respective end nod#. refers to the set of associated pathse 7. Further, each
path of a segment has its origin snand its end ir:
V=i, .on,) €I : ny =5 A np=t

The intermediate nodes of a path of a segment may not be exjtabtart or end node:

V= (N1, M2, ooy N1, Ny JEIT V2<i<n—1: n; #s A n; £t
The set of all program segmen®$ of a program is denoted aBSG.

Each program segment spawns a finite set of pathsFor each of these paths
we are interested in the set of feasible paths and the réspégput data (test data)
that force the execution of the code onto this path. Thissebnstructed by using a
hierarchy of test-data generation methods. When decomgagprogram into program
segments, two important issues arise:

First, each program segment has to be instrumented fornmigathe execution
times of its feasible paths. Each instrumentation intredlgome overhead. Therefore,
these instrumentations are not desired and their numbetdhe minimized.

Second, the computational effort of generating input dategases with larger pro-
gram segments sizes, especially when using model checking.

If no constraints are given, there are many different pnoggagmentations possible.
For instance, one extreme segmentation would be that for @G edge one program
segmentis generated, i.25G = {PS; | PS; = (no, np, {(n0,np)}) A (N6, np)EE}.
The other end of the spectrum would be to put all nodes intqpoogram segment, i.e.,
PSG = {PS} with PS = (s, ¢, IT) andII having a complete enumeration of all paths
within a function (and its called functions).

A “good” program segmentatioRSG is a program segmentation that balanites
number of program segmendsd theaverage number of paths per program segment
These two “goals” are not independent. When the number @fraro segments is de-
creased, typicalfythe sum of paths increases and vice versa. A segmentatialtimgs
in fewer program segments causes (i) less instrumentaffiort and related overheads
at runtime and (ii) higher computational resource needmdwanalysis because more
paths have to be evaluated. In contrast, a segmentationmote program segments
results in (i) higher instrumentation effort and (ii) fasfmth evaluation. This is be-
cause the larger a segment is, the more paths are inside asgdpr the less different
segment boundaries have to be instrumented.

In practice, a reasonable combination of the number of gaghsegment and the
number of program segments has to be selected. The majaationi turned out to
be the computational resources required to generate thg dgta for the paths (see
Section 5).

4.1 Path-Bounded Partitioning Algorithm

The partitioning algorithm automatically partitions a CH@®o program segments. As
there is a functional relationship between the number ofEnm segments and the
overall number of sub-paths to be measured, we choose adtioe &l derive the other
one. One possibility is to provide a target value for the mmaxin number of paths for
eachPS; (denoted apath boundPB), i.e., ideally|I1,;| ~ PB.

! The term “typically” is used because there are some exaeptiv the boundaries. Examples
for this are presented in Section 4.2.



The detailed description of the partitioning algorithm igam in [6]. Basically, the
partitioning algorithm investigates the number of pathtsvieen dominated nodes and
in case it is higher tha?B a recursive decomposition is performed. Due to the short
runtime of the partitioning algorithm (even for large codenples), it is possible to
experiment with various values fdPB and calculate the resulting number of paths
within reasonable time<( 1s).

4.2 Example of Path-Bounded Program Partitioning

To demonstrate the operation of the MBTA framework, the Cecexample given in
Figure 2(a) is used. The corresponding CFG is given in Fig(iog

1 int x; 27 }

2 28

3 int main.nice_partitioning ( 29 } else {

4 int y, int i, int a, int b) 30 x++; // BB 17
5 31 }

6 it (x == 1) { 32 x++; // BB 8

7 x++; /| BB 2 33 }

8 } else { 34 /1 BB 6

9 Xx——; I/ BB 4 35 if (b==2){

10 } 36 /1 BB 18

11 /1 BB 3 37 it (a==1){
12 if (b==1){ 38 x++; /| BB 20
13 /1 BB 5 39 } else {

14 it (a==1){ 40 x—; I/ BB 22
15 /1 BB 7 41 }

16 it (x == 3) { 42 X++; /] BB 21
17 x++; // BB 9 43 T

18 } else { 44 /1 BB 19

19 // BB 11 45 if (y==1){

20 it (x == 2) { 46 x++; /| BB 23
21 x++; [/ BB 12 47 } else {

22 } else { 48 x——: I/ BB 25
23 /I BB 14 49 }

24 if (x == 4){ 50 }

25 x++; // BB 15

26 }

(a) Sample Code
Fig. 2. Example code and the corresponding CFG

Assuming a path boun&B = 5, the partitioning algorithm constructs a segmenta-
tion with 6 program segments, i.25G = {PSq, PS1, PS2, PS5, PS4, PS5} with
PSo = (0, 3 {(0,2,3), (0,4,3)}),

Py = (3,5, {(3,5)}),

PS, = (3,6, {(5,7,9,8,6), (5,7,11,12,8,6), (5,7,11,14,8,6),
(5.7, 11, 14, 15,8,6), (5, 17,8,6)}),

PSs = (3,6, {(3,6)}),

PS, = (6,19,{(6,18,20,21,19), (6,18,22,21,19), (6,19)}),

PS5 =(19,1,{(19, 23, 1), (19,257 1}).
The partitioning results fo’B being 5, 10, 20, and 100, respectively are sum-
marized in Figure 3(a). Figure 3(b) shows the dependencdyehumber of segments



(|PSG]) and the number of sub-paths (|1Z,|) for each of these segmentations. This
example illustrates that in general fewer program segneanise a higher overall num-
ber of paths to be considered.

80

701e PB=100
604,
E 50 A !
Sa04,
Path Bound | |PSG| | #Paths (¥ |m|) 30| o s
1 30 30 = 20 4 " PB-10 .- 7T
5 6 14 10 - - - "
10 3 14 0 HES : :
20 2 18 0 10 20 30
100 1 72 Program segments ( |PSG| )
(a) Partitioning Results (b) Dependency betweeSG| and_ |11;|

Fig. 3. Dependency between number of segmefits'(7|) and number of sub-path§{|77;])

5 Automated Test-Data Generation

For each path that has been previously determined in thegmogegmentation step, we
are interested in whether it is a feasible path. Feasiblespaty contribute to the timing
behavior of the application and thus have to be subject towgiamn-time measurements.

5.1 Problem Statement

As described previously the set of path3|/Z;| has to be executed to perform the
execution-time measurements. Therefore, it is necessagduire for each path; €
1I; a suitable set of input-variable assignments such thatebgective assignments
at the function start causes exactly the control flow thdb¥es =;. In contrast, for
infeasible pathsheir infeasibility has to be proven to know that they carcwttribute
to the timing behavior of the program.

5.2 Test-Data Generation Hierarchy

When applying the method it turned out that the test-dataigdion process is the
bottleneck of the analysis. Especially, model checkingeis/wesource intensive. To
improve performance we decided to use a combination ofréiffemethods for gener-
ating the input data. We start by using fast techniques aaduglly use more formal
and resource-consuming methods to cover the paths for whéctheaper methods did
not found appropriate input data. Figure 4 shows the hiayaod methods we apply.
On the basic level test-data reuse is applied. This meahsvtheeuse all existing test
data for that application from previous runs. On the secendl] pure random search
is performed, i.e., all input variables are bound to randemminers. Third, heuristics
like genetic algorithms can be used. Finally, all data tloatlad not be found using the
generation methods of level 1 to 3, are calculated by modatiihg. Especially, the
infeasibility of paths can be proven only by model checkiaglével 4). The actual



Level 4: Model checking
Level 3: Heuristics

Level 2: Random search

D\
Level 1: Test-datareuse A

Fig. 4. Test-data generation hierarchy

computational effort spent on each of the levels is appticadependent. If an applica-
tion has many infeasible paths, model checking is requimeshbw that each of these
paths is really infeasible.

The key advantages of this hierarchical test-data gewoerafpproach are (i) that
many test data are generated by fast strategies, only leftaases have to resort to
expensive model checking; (i) the correlation of test dattd the covered path is known
even when applying heuristics since we monitor the covemtspbefore doing the
measurements; (iii) and complementary, model checkingéslun the final phase of
test data generation. This allows generating input data ff@sired path whenever such
a path is feasible or otherwise to prove that the path is giliba

5.3 Test-Data Generation using Model Checking

The basic idea of performing test-data generation by mdaetking (level 4) is that
the CFG (and the instructions in the nodes) are transformiedai model that can be
analyzed by a model checker. For eaghe II; to be analyzed a new modelodel (r;)

is generated. This model is passed to a model chedkef: (model(m;)) that yields a
suitable variable binding in case a counter example canuoedfoy the model checker.
Otherwise, the functionheckreturns that the path is infeasible.

When generating a modelodel(r;), an assertion is added stating that the particular
pathz; cannot be executed within that model. Program code thatmmeésfluence the
reachability of that pathr; is cut away (slicing) to reduce the size of the model. Then
the model checker tries to prove this formally. Whenever gheof fails, the model
checker provides a counter example that represents theiapat data that enforce an
execution of the desired path. However, if the assertion holds, the path is infeasible
and therefore no input data do exist.

The current implementation does not support the analysisapfs. However, we
work on loop unrolling to support loops.

Symbolic Model Checking vs. Bounded Model CheckingWe implemented model
checking backends faymbolic model checkirmndbounded model checkirig]. The
model checker SAL [9] is used for symbolic model checkingg®dl the model checkers
SAL-BMC [9] and CBMC [10] are used for bounded model checkimgexperiments,
it turned out that bounded model checking supports (i) bigglications in terms of
lines of code and (ii) supports longer program segments (@eger paths). Therefore,
our MBTA uses the bounded model checker CBMC by default.

5.4 Example Application for Test-Data Generation

In this section we show the result of applying bounded motletking to find a spe-
cific path in the sample program of Figure 2. The paths for @ogsegmentatioRSG



described in Section 4.2 are representedltase data structure (Figure 5). This data
structure is a tree which root node has the name of the CFGdqdusubroutine). All
immediate successor nodes denote a program segment. lardrgtipeses the starting
basic-block node is denoted, e.@.5 starts at basic block. Then, the succeeding
nodes denote the intermediary basic blocks. The end nodeglpradditional informa-
tion corresponding to the path starting from the start nedkl@ading to this end node,
i.e., every end node represents one path within a programesgg This information
consists of the data-set number and the model number. Thesdahumber identifies
the input data to reach this path. When using model checkiggherate the test data,
the model number identifies the modebdel (7;) for path;. For instance, the model
number ofmode(rs) for pathms = (5,7,9,8,6) equals3.

main_nice_partitioning

D )
@L ©
. i O ® @ @ @
6
ds=

ds=5
me=5

Fig. 5. Representation aftreedata structure for test-data generation

In Figure 6 the code of the automatically generated modeffo= (5,7,9,8,6)
is depicted. In therai n function the program counterc _pc is initialized. Next, the
function subject to analysis is called with its respectigegmeters. Within the function,
first all instructions preceding thS are conserved, i.e., basic blocks BBO, BB2, BB4,
BB3. Starting with BB5, thePS entry node, cut off actions take place. These cut-off ac-
tions mean that the functional code of BB17 has been reméwsigéad of this removed



code additional exits have to be added. This avoids that éthsic blocks modify the
calculations and change the execution path.

Whenever code of basic blocks residing on the actual inyat&td path is executed,
the program countarc _pc of the model is increased. Thus, this increase is performed
for basic blocks BB5, BB7, BB9, BB8 and BB6.

Finally, after returning tarai n the assertiorassert (nt_pc != 5) ensures
thatme_pc # 5, i.e., pathrs = (5,7, 9, 8,6) cannot be executed.

In a standard program execution, this assertion would lsedaihenever — depend-
ing on the currently assigned variable values — paths executed. However, when
passed to a C model checker, the model checker tries to flyrmave whether this
assertioralwaysholds. If not, the model checker provides a counter exampheain-
ing variable bindings that violate the assertion. In thisecave get the data binding
{z — 4,y — 0,i— 0,a «— 1,b « 1}. If the model checker affirms that the assertion
holds, then we know that the path is infeasible. In case theetnchecker runs out of
resources, the path has to be checked manually.

int mc_pc;

int x, local-y, local.i, local-a, localb } else {
mc.pc = —1; /= BB 17 =/ /% mc cut off =/
int main.nice_partitioning (int y, int i, int a, int b) return 0; /= mc cut off =/
if (x == 1) { mc_pc++; /% BB 8 =/ /+* mcopc increment x/
x++; /] BB 2 X++;
} else { }
x——; /1 BB 4 mc.pc++; /* BB 6 =/ /+* mcopc increment x/
} return 0; /% mc cut off x/
/1 BB 3
if (b==1){
mc_pc++; [+ BB 5 =/ /% mc.pc increment =/ int main ()
if (a==1){
mc_pc++; /% BB 7 =/ /= mc.pc increment x/ mc_pc = 0; /% mcpc reset =/
if (x == 3) { main_.nice_partitioning (localy , local.i, local.a, localLb);
mc_pc++; /x BB 9 =/ /= mc.pc increment =/
X++; assert(mepc = 5); /+ mc assertion =/
} else {
mc.pc = —1; /= BB 11 %/ /[« mc cut off =/
return O; /% mc cut off =/

Fig. 6. Automatically generated code farode(rs) with w3 = (5,7, 9, 8, 6)

5.5 Complexity Reduction

When evaluating the patig I7; | II; € PSG that have to be analyzed with model
checking, it is essential to apply a number of complexityuctitbns on the models.
For each pathr; the complexity reduction is performed in several steps:

1. All pathsafter a PS are cut off because they do not influence the control flow
leading to aPS or inside aPSs.

2. Pathgrecedingthe PS are kept without modifications. This has practical reasons.
Originally, it was intended to remove the preceding codeweieer, it turned out
that this is not necessary immediately because the modekehean solve the
problem within a reasonable amount of time. The advantagetib code remains
unchanged is that more infeasible paths — namely from theagfonction view —
can be determined. Thus, only feasible paths contributeediming information
of the program segment.

3. Due to thegoal of model checking (hamely to check whether there exists a spe
cific path), the model checker can perform optimizationstsmn, e.g., program
slicing [11] by removing unused variables (i.e., varialitest do not influence the
actual execution paths).



6 The Execution-Time Model of MBTA

The role of theexecution time modeé$ to provide the information to map execution
times to instruction sequences. The use of the executiom tmdel in MBTA is in
principal the same as in static WCET analysis [1]. HoweVarrhain difference is that
in MBTA the timing information is obtained by measurememistéad of deriving it
from the user manual and other sources as done in static W@&ysis.

The execution time measurements of MBTA in general requir@strument the
code with additional instructions to signal program locas and/or store measurement
results. Since the instrumentations change the analyzedtotnde, there are some
requirements on the code instrumentations:

1. The impact of the instrumentation code on the executior &ind code size should
be small.

2. If the instrumented code used for MBTA is not the same aditta application
code under operation, the code instrumentations showdd ati determine an es-
timate on the change of the WCET of suitable precision batvilkee instrumented
code and the final application code. Fulfilling this requiesthmay be challeng-
ing in practice, e.g, when requiring precise safe upper dsum complex target
hardware.

6.1 Enforcing Predictable Hardware States

Besides the above quality criteria of code instrumentatitimere is also a substantial
potential of using code instrumentations: on complex haréwvhere the instruction
timing depends on the execution history it is challengindetermine a precise WCET
bound. Code instrumentations can be used to enforce aroa-bmown state at the

beginning of a program segment, thus avoiding the need fugidering the execution

history when determining the execution time within a progisegment. For example,
code instrumentations could be used to explicitly loadltthe cache, to synchronize
the pipeline, etc.

6.2 Execution-Time Composition

After performing the execution-time measurements we krfav €ach pathr € II;
is assigned its measured execution tiffre). Now, the next step is to compose these
measured execution times into a WCET estimate. In genbrek different approaches
are possible, which are explained in [1]. Usinge-based methodhe WCET is calcu-
lated based on the syntactic constructpdth-basednethods, a longest path search is
performed. Thémplicit path enumeration techniquéPET) models the program flow
by (linear) flow constraints. After applying this calcutatistep, we get a final WCET
estimate that is the overall result of the MBTA.

In order to illustrate this flexibility of choosing the calation method, a path-based
calculation method (longest path search) and IPET (usitegér linear programming
- ILP) have been implemented in our MBTA framework. It hasrbshown that it is
possible to incorporate flow facts into the ILP model withmdtricting generality [6].



7 Experiments

We have implemented the described MBTA as a prototype. Hdst systemof the
framework has been installed on two systems, on Linux aredaadsvlicrosoft Windows
XP with Cygwin. The quantitative results described in th@st®n have been obtained
using a PC system with an Intel Pentium 4 CPU at 2.8 Ghz andRB&M running
on a Debian 4.0 Linux system.

As target systemwe used a Motorola HCS12 evaluation board (MC9S12DP256).
The board is clocked at 16Mhz, has 256kB flash memory, 4kB EEN?Rand 12kB
RAM. It is equipped with two serial communication interfad&Cl), three serial port
interfaces (SPI), two controller area network (CAN) moduleight 16bit timers, 16
A/D converters.

As ameasurement deviceur frameworks can either use one of the counters of the
HCS12 board or an external timer. The experiments repoeegltiave been performed
using a custom-built external counter device that is cldae200MHz. This device is
connected via USB to the host system and by two I/O pins todifteet hardware [6].

Application Name Source LOC #BB | #Execution Paths
TestNicePartitioning Teaching example 46 30 72
ActuatorMotorControl Industry 1150 171 1.90E+11
ADCConv Industry 321 31 144
ActuatorSysCirl Industry 274 54 97

Fig. 7. Summary of the used case studies

In order to study relevant program code, we investigatedtiue structure of ap-
plications delivered by industrial partners (Magna Stegtmizeugtechnik, AVL List). It
was decided to support code structures representing aafl&sghly important appli-
cations (safety-critical embedded real-time system)ufeéd’ summarizes thigench-
mark programs used in the experiments OC = lines of code#BB = number of basic
blocks,#Execut i onPat hs = number ofexecution pathsof the active application.
The first benchmark has been written by hand as a test programder to evaluate
the MBTA framework. The second one has been developed usat@abISimulink in
order to walk through all stages of a modern software deveéoy process. The last
three benchmarks representing industrial applicatioo® four industrial project part-
ners have been the key drivers for the development of the MiBdework.

7.1 Experiment with Model Checking for Automated Test-DataGeneration

The goal of this experiment is to compare the performancéfferdnt model checkers
for automatically generating test data. Figure 8 shows tiadyais time of the different
model checkers that have been introduced in Section 5.8s@leote that these figures
do not state anything about the general quality of a modeti@reas even in case of
test-data generation, the model-checker performance lggbf sensitivity. Thus, the
following interpretation is only valid for the concrete eastudy (model).

The main result gained from our experiment is that the CBMGlehahecker is
well-suited for these types of problems. It boosts test dakeulation by factors 10-20
over using symbolic model checking. Some applications otln@ analyzed using SAL
at all.



Time Analysis [s]

#Paths MC —&5ic SAL SAL BMC
TestNicePartitioning 63 11.2 109.6 259.3
ActuatorMotorControl 280 1202.2 N.A N.A.
ADCConv 136 65.2 7202.5 2325.5
ActuatorSysCtrl 96 32.7 507.4 491.3

" Model size is too big, memory error of the model checker (core dump)

Fig. 8. Comparison of required model-checking time to generatedts
7.2 Experiments with Automated Complexity Reduction
In this experiment we repeated the complexity reductiorhefdidactic sample code

summarized in Figure 3 with the industrial case stédy uat or Mot or Cont r ol .
The results are given in Figure 9 using a logarithmic scalétfe X-axis.

1600

& PB=1000
Path bound | |PSG| | #Paths (3 |m)) 1400 1 ;

1 171 171 = 1200 §

2 88 117 E 1000

4 38 84 2 g0 4 2

6 21 83 2 600 | .

10 14 92 c -

15 13 106 * 4001 e .

20 11 130 200 4 = .-

50 8 242 0 We-e-

100 7 336 1 10 100 1000
1000 5 1455 Program segments ( |PSG|)

(a) Partitioning results (b) Dependency betwed®SG| and> |11;|

Fig. 9. Program segmentation results fact uat or Mot or Cont r ol

Enumerating all.9 = 10'! different execution paths (see Figure 7) of the case study
Act uat or Mot or Cont r ol is practically intractable. Thus, partitioning into pragr
segments is necessary. With a path boirigl = 1 each basic block of the program re-
sides in a separate segment and with an unlimited path bdundtole program is
placed in one segment. The partitioning results in Figured®sthat there is a certain
path bound for which the resulting number of sub-path&1;| is minimal. When fur-
ther increasing the path bound the number of program segmséltdecreases (which
is profitable as it increases the precision of the measureni@mtause the segments
get larger). However, at the same time the number of subspsttiongly increases,
which increases the overall computational effort neededdst-data generation and
execution-time measurements. Thus, the right path boubd éthosen depends on how
much computational resources are available and how mudsfe is required.

7.3 Experiments with MBTA

Applying the MBTA on the case studies presented in Figurengudifferent values for
thepath boundeads to the results in Figure 1@r4ths Randomgives the number of paths
that have been already found by using random generatiorsbtitga and #paths MC
gives the remaining number of paths that had to be generaiad model checking.
“coverage (#Path8) represents the number éasible pathsNote that if for a path bound
PB=1 it implies that #raths Random + “#Paths MC 7 “Coverage (#Path8)it follows that the
program containsinreachable codeColumn ‘wceT Bound shows the WCET estimate
obtained with the MBTA framework.

“Time (Analysis) [s] Shows the time spent within thenalysis phase time ETwm) s’ sShows
the time spent within the execution-timeeasurement phasehich includes also the



compile and load time.dverall Time [s]' iS the sum of “ime (analysis) [s] and “Time (ET™)
[s]”. “ Time Analysis / Path MC [$] gives the average time required for using model checking
(CBMC) to generate a single test vector for a sub-path. Tinisber is quite significant,
because the time required for test-data generation usirdghuaiecking contributes
most of the runtime of thanalysis phaséexcept for very low path bounds). It has a
rather small variation over different sub-paths of the samoelel. “Time (ETM) / Covered Path
Is]” gives the average runtime needed to measure a single shb“gaths / Program Segmént
shows the average numberfeasible pathger program segment.

—T= .
o|s|8
. RN
2 £ °
g 7 o glElE
=S-aN F zls|Z|s|3]|¢t
El&]2 gle|le 2|2 |g]|S]|¢
Bln|2|5|el|l3|3|5|5|E|2|3]|&
s|ZC|E|e2|=| 8|8 s |F|F s | = [ 2
o o ® o < w = c -
S22 |2 2|52 |a| 8B |3|2|2
£ 3|8 |5|F|z|6|&|8|e|e|le|z
o 3 3 3 3 (3] = = E (e} E = 3
ActuatorMotorControl 1| 171 171] 165 6| 165 N.A. 468_1|2__8 1757 {00 7.8 1.0
10 92 14! 63 29 8| 3445 841| 11 957|29.00| 1.7 | 6.6
100 336 7 57| 279 9| 3323 7732 6. 7794|27.71| 0.7 | 48.0
1000| 1455 5 82| 1373| 130| 329841353 49)41402|30.12| 0.4 [291.0
ADCConv 1 31 31 31 0 31 72 24 192 215' N.A. .2 1.0
10 17 3 8 9 9 70 31 g| 53| 3.44 4 | 5.7
100 74 2 8 66 14/ 72, 220 7 237| 3.33 .2 | 37.0
1000| 144 1 12| 132 12 72 483 1 494| 3.66 | 0.9 [144.0
ActuatorSysCitrl 1 54/ 54 4 0 4 73 2_6| 318 344| N.A.| 5.9 1.0
10 36 14 6 0 6 73 10 5 95[N.A.[ 24 | 26
100 97! 1 79 5| 131 191 0f 201[2.42| 0.4 | 97.0
TestNicePartitioning 1 30 30 6 24 30| 151 34| 175 209| 1.42| 5.8 1.0
5 14 6 4 10 14| 151 15 39 54| 1.50| 2.8 2.3
10 14/ 3 3 11 14| 151 16! 21 37[1.45[ 1.5 4.7
20 18! 2 2, 16! 15| 150 22 16 38[ 1.38 [ 1.1 9.0
100 72 1 1 71 26| 129 106 12 118 1.49 | 0.5 | 72.0

Fig. 10. Summarized experiments of case studies

The experimental results illustrate the tradeoff betweeipion and required anal-
ysis time. For the case studest Ni cePartiti oni ng the gained bound contains
some pessimism due to the lack of flow facts that charactpattedependencies across
program segment boundaries. However, it has been showit ihabssible to include
additional flow information in the analysis in order to tightthe bound by increas-
ing the program-segment size. et uat or SysCt r | the situation is similar. With
increasing program-segment size (i.e., by choosing a higaia bound) the existing
pessimism can be stepwise eliminated. Such variations texigi forADCConv . Here
all obtained results are almost identic&tt uat or Mot or Cont r ol indicates similar
results. Whenever the path bound is increased, the WCETdhasuightened a little bit
yielding a WCET bound of 3298 cycles (for a program segmeéntdiaving path bound
1000). However, the cost for this increase in precision iaraalysis time of about 11.5
hours. The missing WCET bound (N.A.) for path bound PB=1 issea by a limitation
in the current tool implementation and is not a conceptipnablem.

8 Conclusion

In this paper we presented the design and implementatiaftsest MBTA, a fully
automated WCET analysis process that does not require aryintervention. The
input program is partitioned into segments, allowing therus select a path bound for
the size of the segments. Depending on this parameter, gigsatime ranges from



a few seconds up to multiple hours. The bigger the choserrpmgegment size, the
more implicit flow information and hardware effects are inmrated into the timing
model. Also, in this case the number of required instruntenta is low.

As a separate model (to be solved by the model checker) isfasedch required
path, this stage of the test-data generating process casthegarallelized. The MBTA
is easily retargetable to new target hardware due to itsatiperon a restricted set of
ANSI-C code.

The MBTA allows to derive safe WCET estimates even on compkaxiware. To
achieve this, additional instrumentations are necessapforce predictable hardware
states. The experimentation with such instrumentatiomistha analysis of program
loops is considered future work.

References

1. Kirner, R., Puschner, P.: Classification of WCET analyschniques. In: Proc. 8th IEEE
International Symposium on Object-oriented Real-timéritisted Computing, Seattle, WA
(2005) 190-199

2. Petters, S.M.: Bounding the execution of real-time tasksnodern processors. In: Proc. 7th
IEEE International Conference on Real-Time Computing &ystand Applications, Cheju
Island, South Korea (2000) 12-14

3. Bernat, G., Colin, A., Petters, S.M.: WCET analysis ofyadoilistic hard real-time systems.
In: Proc. 23rd Real-Time Systems Symposium, Austin, Te&\ (2002) 279-288

4. Ernst, R., Ye, W.: Embedded program timing analysis basguhth clustering and architec-
ture classification. In: Proc. International ConferenceCamputer-Aided Design (ICCAD
'97), San Jose, USA (1997)

5. Puschner, P., Nossal, R.: Testing the results of statistvaase execution-time analysis. In:
Proceedings of the 19th IEEE Real-Time Systems Sympositr8 $R.998), IEEEP (1998)
134-143

6. Wenzel, I.. Measurement-Based Timing Analysis of Supes Processors. PhD thesis,
Technische Universitat Wien, Institut fir Technischéotmatik, Treitlstr. 3/3/182-1, 1040
Vienna, Austria (2006)

7. Wenzel, 1., Kirner, R., Rieder, B., Puschner, P.: Meawner-based worst-case execution
time analysis. In: Third IEEE Workshop on Software Techgas for Future Embedded
and Ubiquitous Systems (SEUS). (2005) 7-10

8. Biere, A, Cimatti, A., Clarke, E., Zhu, Y.: Symbolic mdddecking without BDDs. Lecture
Notes in Computer Sciend&79(1999) 193-207

9. Moura, L.D., Owre, S., Ruess, H., Rushby, J., ShankarSbrea, M., Tiwari, A.: SAL 2.
CAV 2004 (2004)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checkingN&I-C programs. In: Tools and
Algorithms for the Construction and Analysis of Systems CBS 2004). Volume LNCS
2988., Springer (2004) 168-176

11. Tip, F.: A survey of program slicing techniques. JoursaProgramming Language®
(1995) 121-189



