
Measurement-Based Timing Analysis⋆

Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and PeterPuschner

Institut für Technische Informatik,
Technische Universität Wien, Vienna, Austria

Abstract. In this paper we present a measurement-based worst-case execution
time (WCET) analysis method. Exhaustive end-to-end execution-time measure-
ments are computationally intractable in most cases. Therefore, we propose to
measure execution times of subparts of the application codeand then compose
these times into a safe WCET bound.
This raises a number of challenges to be solved. First, thereis the question of how
to define and subsequently calculate adequate subparts. Second, a huge amount
of test data is required enforcing the execution of selectedpaths to perform the
desired runtime measurements.
The presented method provides solutions to both problems. In a number of ex-
periments we show the usefulness of the theoretical concepts and the practical
feasibility by using current state-of-the-art industrialcase studies from project
partners.

1 Introduction

In the last years the number of electronic control systems has increased rapidly. In order
to stay competitive, more and more functionality is integrated into a growing number
of powerful and complex computer hardware. Due to these advances in control systems
engineering, new challenges for analyzing the timing behavior of real-time computer
systems arise.

Resulting from the temporal constraints for the correct operation of such a real-time
system, predictability in the temporal domain is a stringent imperative to be satisfied.
Therefore, it is necessary to determine the timing behaviorof the tasks running on a real-
time computer system. Worst-case execution time (WCET) analysis is the research field
investigating methods to assess the worst-case timing behavior of real-time tasks [1].

A central part in WCET analysis is to model the timing behavior of the target plat-
form. However, manual hardware modelling is time-consuming and error prone, espe-
cially for new types of highly complex processor hardware. In order to avoid this effort
and to address the portability problem in an elegant manner,a hybrid WCET analysis
approach has been developed. Execution-time measurementson the instrumented appli-
cation executable substitute the hardware timing model andare combined with elements
from static static timing analysis.

There are also other approaches of measurement-based timing analysis. For exam-
ple, Petters et al. [2] modifies the program code to enforce the execution of selected
paths. The drawback of this approach is that the measured program and the final pro-
gram cannot be the same. Bernat et al. [3] and Ernst et al. [4] calculate a WCET estimate

⋆ This work has been supported by the FIT-IT research project “Model-based Development of
Distributed Embedded Control Systems (MoDECS)”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/5223224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from the measured execution times of decomposed program entities. While the last two
approaches like our technique also partition the program for the measurements, they do
not address the challenging problem of systematic generation of input data for the mea-
surements. Heuristic methods for input-data generation have been developed [5] which
alone are not adequate to ensure a concrete coverage for the timing measurements.

2 Basic Concepts

In this section, basic concepts for modeling a system by measurement-based timing
analysis are introduced. These include modeling the program representation, the se-
mantics, and the physical hardware.

2.1 Static Program Representation

A control flow graph(CFG) is used to model the control flow of a program. A CFG
G = 〈N, E, s, t〉 consists of a set of nodesN representingbasic blocks, a set of edges
E : N ×N representing the control flow, a unique entry nodes, and a unique end node
t. A basic blockcontains a sequence of instructions that is entered at the beginning and
the only exit is at the end, i.e., only the last instruction may be a control-flow changing
instruction. The current support for function calls is doneby function inlining.

2.2 Execution Path Representation

We introducepathsin order to describe execution scenarios (Def. 1).

Definition 1. Path / Execution Path / Sub-Path
Given a CFGG = 〈N, E, s, t〉, a pathπ from nodea ∈ N to nodeb ∈ N is a sequence
of nodesπ = (n0, n1, ..., nn) (representing basic blocks) such thatn0 = a, nn = b,
and∀ 0 ≤ i < n : 〈ni, ni+1〉 ∈ E . The length of such a pathπ is n + 1.
An execution pathis defined as a path starting froms and ending int. Π denotes the
set of allexecution pathsof the CFGG, i.e., all paths that can be taken through the
program represented by the CFG.
A sub-pathis a subsequence of anexecution path.

If programs are analyzed the set of feasible paths, i.e., theset of paths that can be
actually executed is of special interest (because exclusively the execution times of these
paths can influence the timing behavior).

Our approach, based on model-checking, allows to check the feasibility of a path
(see Def. 2). To ensure the termination of the analysis, the model checker is stopped if
it cannot perform the analysis of a path within a certain amount of time. However, in
this case the feasibility of the respective paths has to be checked manually.

Definition 2. Feasibility of paths
Given that the set of execution paths of a programP is modeled by its CFGG, we call a
pathπ ∈ G feasible, iff there exist input data for programP enforcing that the control-
flow followsπ. Conversely, paths that are not feasible are calledinfeasible. DefiningΠ
as the paths of the CFG andΠf as the set of feasible paths, it holds thatΠf ⊆ Π .

3 The Principle of Measurement-Based Timing Analysis

Themeasurement-based timing analysis(MBTA) method is a hybrid WCET analysis
technique, i.e., it combines static program analysis with adynamic part, the execution-
time measurements. As shown in Figure 1, the following stepsare performed [6]:

Analyzer
tool

Execution time
measurement

framework

Calculation
tool

C-Source

Analysis phase

Measurement phase

Calculation phase

WCET

bound

+

Fig. 1. The three phases of measurement-based timing analysis

1. Analysis Phase:First the source code is parsed and static analyzes extract path
information. Then, the program is partitioned into segments, which are defined in Sec-
tion 4. The segment size is customizable to keep the number ofdifferent paths for
the later measurement phase tractable. To assess the execution time that a task spends
within each of the identified program segments, adequate test data are needed to guide
the program’s execution into all the paths of a segment. These test data are generated au-
tomatically. Besides applying random test-data vectors and heuristics, bounded model
checking for test-data generation is introduced.
As described in Section 4, when using model checking, we generate for each program
segment and instrumented instance of the source-code.
In contrast to methods that work on object-code level, the C-code analysis ensures a
high level of portability because ANSI C is a well established programming language
in control systems engineering. Additionally, C is also used as output format of code
generation tools like Real-Time Workshop (Mathworks Inc.)or TargetLink (dSpace
GmbH).

2. Measurement Phase:The generated test data force program execution onto the
required paths within the program segments. The measured execution times are cap-
tured by code instrumentations that are automatically generated and placed at program
segment boundaries. The instrumented programs are executed and timed on the target
platform.

3. Calculation Phase:The obtained execution times and path information are com-
bined to calculate a final WCET bound. This calculation uses techniques from static
WCET analysis. It utilizes the path information acquired inthe static analysisphase.
(see 1.)
In case of complex hardware where the instruction timing depends on the execution his-
tory, MBTA can still provide safe WCET bounds when using explicit state enforcement

at the beginning of each segment to eliminate state variations. For example, the pipeline
could be flushed or the cache content could be invalidated or pre-loaded.

The contributions of this measurement-based worst-case execution time analysis
(MBTA) method are:

Avoidance of explicit hardware modelling. In contrast to pure static WCET analysis
methods [1], this approach does not require to build a sophisticated execution-time
model for each instruction type. In fact, the actual timing behavior of instructions
within their context is obtained from execution-time measurements on the concrete
hardware.

Automated test-data generationusing model checking. This allows us tocompletely
generate all required and feasible test data. In the first experiments we used sym-
bolic model checking. Later, bounded model checking turnedout to be superior
wrt. model size and computation times.

Parametrizable complexity reduction. The control-flow graph partitioning algorithm
allows a parameterizable complexity reduction of the analysis process (i.e., the
number of required execution-time measurements and the size of the test data set
can be chosen according to the available computing resources). On the reverse side,
the accuracy of the analysis decreases by reducing the number of tests. This allows
for an adaptation to user demands and available resources.

Modular tool architecture. The tool structure is completely modular. It is possible to
improve the components for each step independently (e.g., the test-data generation
mechanism, WCET bound calculation step).

Scalability of the analysis process.Execution-time measurements and test-data gen-
eration (that consume together around 98% of the total analysis time) can be ex-
ecuted highly parallel if multiple target machines respectively host computers are
available.

In our implementation, the interface data passed between the three phases (i.e., ex-
tracted path information, the test data, and the obtained execution times) are stored in
XML files.

4 Parameterizable Program Partitioning for MBTA

In the following sections, the main concepts of the measurement-based timing analysis
approach [7] are described in detail. The proposed method isa hybrid approach that
combines elements of static analysis with the dynamic execution of software.

After preparing the previously described CFG, the partitioning algorithm is invoked
to split the CFG into smaller entities, so-calledprogram segments(Definition 3). This
segmentation is necessary, because when instead trying to use end-to-end measure-
ments the number of paths inΠ (the set of paths of the function subject to analysis) is
in general intractable. Our segmentation is similar to thatdescribed by Ernst et al. [4].
However, we do not differ between segments of single or multiple paths, instead we
use a path bound to limit segment size. In a second step, the paths within the pro-
gram segments are explicitly enumerated in a data structurecalleddtree(coming from
decision-tree).

Definition 3. Program Segmentation (PSG)
A program segment(PS) is a tuplePS = 〈s, t, Π〉 wheres is the start node andt is
the respective end node.Π refers to the set of associated pathsπi ∈ Π . Further, each
path of a segment has its origin ins and its end int:

∀π = (n1, ..., nn) ∈ Π : n1 = s ∧ nn = t
The intermediate nodes of a path of a segment may not be equal to its start or end node:

∀π = (n1, n2, ..., nn−1, nn)∈Π ∀2≤i≤n−1 : ni 6= s ∧ ni 6= t
The set of all program segmentsPS of a program is denoted asPSG.

Each program segment spawns a finite set of pathsΠj . For each of these paths
we are interested in the set of feasible paths and the respective input data (test data)
that force the execution of the code onto this path. This set is constructed by using a
hierarchy of test-data generation methods. When decomposing a program into program
segments, two important issues arise:

First, each program segment has to be instrumented for obtaining the execution
times of its feasible paths. Each instrumentation introduces some overhead. Therefore,
these instrumentations are not desired and their number should be minimized.

Second, the computational effort of generating input data increases with larger pro-
gram segments sizes, especially when using model checking.

If no constraints are given, there are many different program segmentations possible.
For instance, one extreme segmentation would be that for each CFG edge one program
segment is generated, i.e.,PSG = {PS i | PS i = 〈no, np, {(no, np)}〉 ∧ (no, np)∈E}.
The other end of the spectrum would be to put all nodes into oneprogram segment, i.e.,
PSG = {PS} with PS = 〈s, t, Π〉 andΠ having a complete enumeration of all paths
within a function (and its called functions).

A “good” program segmentationPSG is a program segmentation that balancesthe
number of program segmentsand theaverage number of paths per program segment.
These two “goals” are not independent. When the number of program segments is de-
creased, typically1 the sum of paths increases and vice versa. A segmentation resulting
in fewer program segments causes (i) less instrumentation effort and related overheads
at runtime and (ii) higher computational resource needs during analysis because more
paths have to be evaluated. In contrast, a segmentation intomore program segments
results in (i) higher instrumentation effort and (ii) faster path evaluation. This is be-
cause the larger a segment is, the more paths are inside a segment, but the less different
segment boundaries have to be instrumented.

In practice, a reasonable combination of the number of pathsper segment and the
number of program segments has to be selected. The major limitation turned out to
be the computational resources required to generate the input data for the paths (see
Section 5).

4.1 Path-Bounded Partitioning Algorithm

The partitioning algorithm automatically partitions a CFGinto program segments. As
there is a functional relationship between the number of program segments and the
overall number of sub-paths to be measured, we choose one factor and derive the other
one. One possibility is to provide a target value for the maximum number of paths for
eachPS j (denoted aspath boundPB), i.e., ideally|Πj | ≈ PB .

1 The term “typically” is used because there are some exceptions at the boundaries. Examples
for this are presented in Section 4.2.

The detailed description of the partitioning algorithm is given in [6]. Basically, the
partitioning algorithm investigates the number of paths between dominated nodes and
in case it is higher thanPB a recursive decomposition is performed. Due to the short
runtime of the partitioning algorithm (even for large code samples), it is possible to
experiment with various values forPB and calculate the resulting number of paths
within reasonable time (< 1s).

4.2 Example of Path-Bounded Program Partitioning

To demonstrate the operation of the MBTA framework, the C code example given in
Figure 2(a) is used. The corresponding CFG is given in Figure2(b).

1 i n t x ;
2
3 i n t m a i n n i c e p a r t i t i o n i n g (
4 i n t y , i n t i , i n t a , i n t b)
5 {
6 i f (x == 1) {
7 x++; / / BB 2
8 } e l s e {
9 x−−; / / BB 4

10 }
11 / / BB 3
12 i f (b == 1) {
13 / / BB 5
14 i f (a == 1) {
15 / / BB 7
16 i f (x == 3) {
17 x ++; / / BB 9
18 } e l s e {
19 / / BB 11
20 i f (x == 2) {
21 x ++; / / BB 12
22 } e l s e {
23 / / BB 14
24 i f (x == 4) {
25 x ++; / / BB 15
26 }

27 }
28 }
29 } e l s e {
30 x ++; / / BB 17
31 }
32 x ++; / / BB 8
33 }
34 / / BB 6
35 i f (b == 2) {
36 / / BB 18
37 i f (a == 1) {
38 x ++; / / BB 20
39 } e l s e {
40 x−−; / / BB 22
41 }
42 x ++; / / BB 21
43 }
44 / / BB 19
45 i f (y == 1) {
46 x ++; / / BB 23
47 } e l s e {
48 x−−; / / BB 25
49 }
50 }

(a) Sample Code

0

19

25

2

9

21

4

11

1

8

3

12

5

14

6

15

7

20

17

22

18

23

(b) CFG

Fig. 2. Example code and the corresponding CFG

Assuming a path boundPB = 5, the partitioning algorithm constructs a segmenta-
tion with 6 program segments, i.e.,PSG = {PS0,PS 1,PS 2,PS 3,PS 4,PS 5} with

PS 0 = (0, 3, {(0, 2, 3), (0, 4, 3)}),
PS 1 = (3, 5, {(3, 5)}),
PS 2 = (3, 6, {(5, 7, 9, 8, 6), (5, 7, 11, 12, 8, 6), (5, 7, 11, 14, 8, 6),

(5, 7, 11, 14, 15, 8, 6), (5, 17, 8, 6)}),
PS 3 = (3, 6, {(3, 6)}),
PS 4 = (6, 19,{(6, 18, 20, 21, 19), (6, 18, 22, 21, 19), (6, 19)}),
PS 5 = (19, 1,{(19, 23, 1), (19, 25, 1)}).
The partitioning results forPB being 5, 10, 20, and 100, respectively are sum-

marized in Figure 3(a). Figure 3(b) shows the dependency of the number of segments

(|PSG|) and the number of sub-paths (
∑
|Πj |) for each of these segmentations. This

example illustrates that in general fewer program segmentscause a higher overall num-
ber of paths to be considered.

Path Bound |PSG| #Paths (| j|)

1 30 30

5 6 14

10 3 14

20 2 18

100 1 72

(a) Partitioning Results

0

10

20

30

40

50

60

70

80

0 10 20 30

Program segments (|PSG|)

#
P

a
th

s
 (

 |

j|
)

PB=100

PB=20
PB=10

PB=5

PB=1

(b) Dependency between|PSG | and
P

|Πj |

Fig. 3.Dependency between number of segments (|PSG |) and number of sub-paths (
P

|Πj |)

5 Automated Test-Data Generation

For each path that has been previously determined in the program segmentation step, we
are interested in whether it is a feasible path. Feasible paths may contribute to the timing
behavior of the application and thus have to be subject to execution-time measurements.

5.1 Problem Statement

As described previously the set of paths
∑
|Πj | has to be executed to perform the

execution-time measurements. Therefore, it is necessary to acquire for each pathπi ∈
Πj a suitable set of input-variable assignments such that the respective assignments
at the function start causes exactly the control flow that follows πi. In contrast, for
infeasible pathstheir infeasibility has to be proven to know that they cannotcontribute
to the timing behavior of the program.

5.2 Test-Data Generation Hierarchy

When applying the method it turned out that the test-data generation process is the
bottleneck of the analysis. Especially, model checking is very resource intensive. To
improve performance we decided to use a combination of different methods for gener-
ating the input data. We start by using fast techniques and gradually use more formal
and resource-consuming methods to cover the paths for whichthe cheaper methods did
not found appropriate input data. Figure 4 shows the hierarchy of methods we apply.
On the basic level test-data reuse is applied. This means that we reuse all existing test
data for that application from previous runs. On the second level, pure random search
is performed, i.e., all input variables are bound to random numbers. Third, heuristics
like genetic algorithms can be used. Finally, all data that could not be found using the
generation methods of level 1 to 3, are calculated by model checking. Especially, the
infeasibility of paths can be proven only by model checking (at level 4). The actual

��������
��������
��������
��������

��������
��������
��������
��������

����
����
����
����

����
����
����
����������

������
������

������
������
������

Level 1: Test-data reuse

Level 4: Model checking

Level 3: Heuristics

Level 2: Random search

Fig. 4. Test-data generation hierarchy

computational effort spent on each of the levels is application dependent. If an applica-
tion has many infeasible paths, model checking is required to show that each of these
paths is really infeasible.

The key advantages of this hierarchical test-data generation approach are (i) that
many test data are generated by fast strategies, only left over cases have to resort to
expensive model checking; (ii) the correlation of test dataand the covered path is known
even when applying heuristics since we monitor the covered paths before doing the
measurements; (iii) and complementary, model checking is used in the final phase of
test data generation. This allows generating input data fora desired path whenever such
a path is feasible or otherwise to prove that the path is infeasible.

5.3 Test-Data Generation using Model Checking

The basic idea of performing test-data generation by model checking (level 4) is that
the CFG (and the instructions in the nodes) are transformed into a model that can be
analyzed by a model checker. For eachπi ∈ Πj to be analyzed a new modelmodel(πi)
is generated. This model is passed to a model checkercheck (model (πi)) that yields a
suitable variable binding in case a counter example can be found by the model checker.
Otherwise, the functioncheckreturns that the path is infeasible.

When generating a modelmodel(πi), an assertion is added stating that the particular
pathπi cannot be executed within that model. Program code that doesnot influence the
reachability of that pathπi is cut away (slicing) to reduce the size of the model. Then
the model checker tries to prove this formally. Whenever theproof fails, the model
checker provides a counter example that represents the exact input data that enforce an
execution of the desired pathπi. However, if the assertion holds, the path is infeasible
and therefore no input data do exist.

The current implementation does not support the analysis ofloops. However, we
work on loop unrolling to support loops.

Symbolic Model Checking vs. Bounded Model CheckingWe implemented model
checking backends forsymbolic model checkingandbounded model checking[8]. The
model checker SAL [9] is used for symbolic model checking [9]and the model checkers
SAL-BMC [9] and CBMC [10] are used for bounded model checking. In experiments,
it turned out that bounded model checking supports (i) bigger applications in terms of
lines of code and (ii) supports longer program segments (i.e., longer paths). Therefore,
our MBTA uses the bounded model checker CBMC by default.

5.4 Example Application for Test-Data Generation

In this section we show the result of applying bounded model checking to find a spe-
cific path in the sample program of Figure 2. The paths for program segmentationPSG

described in Section 4.2 are represented asdtreedata structure (Figure 5). This data
structure is a tree which root node has the name of the CFG (name of subroutine). All
immediate successor nodes denote a program segment. In the parentheses the starting
basic-block node is denoted, e.g.,PS 0 starts at basic block0. Then, the succeeding
nodes denote the intermediary basic blocks. The end nodes provide additional informa-
tion corresponding to the path starting from the start node and leading to this end node,
i.e., every end node represents one path within a program segment. This information
consists of the data-set number and the model number. The data-set number identifies
the input data to reach this path. When using model checking to generate the test data,
the model number identifies the modelmodel(πi) for pathπi. For instance, the model
number ofmodel(π3) for pathπ3 = (5, 7, 9, 8, 6) equals3.

main_nice_partitioning

1
ds=0

PS0(0)

2

3
ds=1
mc=1

4

3
ds=0

PS1(3)

5
ds=2
mc=2

PS2(5)

7

9

8

6
ds=3
mc=3

11

12

8

6
ds=4
mc=4

14

8

6
ds=6
mc=6

15

8

6
ds=5
mc=5

17

8

6
ds=7
mc=7

PS3(3)

6
ds=0

PS4(6)

18

20

21

19
ds=8
mc=8

22

21

19
ds=9
mc=9

19
ds=0

PS5(19)

23

1
ds=10
mc=10

25

Fig. 5.Representation ofdtreedata structure for test-data generation

In Figure 6 the code of the automatically generated model forπ3 = (5, 7, 9, 8, 6)
is depicted. In themain function the program countermc pc is initialized. Next, the
function subject to analysis is called with its respective parameters. Within the function,
first all instructions preceding thePS are conserved, i.e., basic blocks BB0, BB2, BB4,
BB3. Starting with BB5, thePS entry node, cut off actions take place. These cut-off ac-
tions mean that the functional code of BB17 has been removed.Instead of this removed

code additional exits have to be added. This avoids that other basic blocks modify the
calculations and change the execution path.

Whenever code of basic blocks residing on the actual investigated path is executed,
the program countermc pc of the model is increased. Thus, this increase is performed
for basic blocks BB5, BB7, BB9, BB8 and BB6.

Finally, after returning tomain the assertionassert(mc pc != 5) ensures
thatmc pc 6= 5, i.e., pathπ3 = (5, 7, 9, 8, 6) cannot be executed.

In a standard program execution, this assertion would be raised whenever – depend-
ing on the currently assigned variable values – pathπ3 is executed. However, when
passed to a C model checker, the model checker tries to formally prove whether this
assertionalwaysholds. If not, the model checker provides a counter example contain-
ing variable bindings that violate the assertion. In this case, we get the data binding
{x ← 4, y ← 0, i ← 0, a ← 1, b ← 1}. If the model checker affirms that the assertion
holds, then we know that the path is infeasible. In case the model checker runs out of
resources, the path has to be checked manually.

i n t mc pc ;
i n t x , l o ca l y , l o c a l i , l o c a l a , l o c a l b

i n t m a i n n i c e p a r t i t i o n i n g (i n t y , i n t i , i n t a , i n t b)
{

i f (x == 1) {
x ++; / / BB 2

} e l s e {
x−−; / / BB 4

}
/ / BB 3
i f (b == 1) {

mc pc ++; /∗ BB 5 ∗/ /∗ mc pc i n c r em en t ∗/
i f (a == 1) {

mc pc ++; /∗ BB 7 ∗/ /∗ mc pc i n c r em en t ∗/
i f (x == 3) {

mc pc ++; /∗ BB 9 ∗/ /∗ mc pc i n c r em en t ∗/
x ++;

} e l s e {
mc pc = −1; /∗ BB 11 ∗/ /∗ mc cu t o f f ∗/
re turn 0 ; /∗ mc cu t o f f ∗/

}
} e l s e {

mc pc = −1; /∗ BB 17 ∗/ /∗ mc cu t o f f ∗/
re turn 0 ; /∗ mc cu t o f f ∗/

}
mc pc ++; /∗ BB 8 ∗/ /∗ mc pc i n c r em en t ∗/
x ++;

}
mc pc ++; /∗ BB 6 ∗/ /∗ mc pc i n c r em en t ∗/
re turn 0 ; /∗ mc cu t o f f ∗/

}

i n t main ()
{

mc pc = 0 ; /∗ mc pc r e s e t ∗/
m a i n n i c e p a r t i t i o n i n g (l o ca l y , l o c a l i , l o c a l a , l o c a l b) ;

a s s e r t (mcpc != 5) ; /∗ mc a s s e r t i o n ∗/
}

Fig. 6. Automatically generated code formodel(π3) with π3 = (5, 7, 9, 8, 6)

5.5 Complexity Reduction

When evaluating the paths
⋃

Πj | Πj ∈ PSG that have to be analyzed with model
checking, it is essential to apply a number of complexity reductions on the models.

For each pathπi the complexity reduction is performed in several steps:

1. All pathsafter a PS are cut off because they do not influence the control flow
leading to aPS or inside aPS .

2. PathsprecedingthePS are kept without modifications. This has practical reasons.
Originally, it was intended to remove the preceding code. However, it turned out
that this is not necessary immediately because the model checker can solve the
problem within a reasonable amount of time. The advantage why this code remains
unchanged is that more infeasible paths – namely from the global function view –
can be determined. Thus, only feasible paths contribute to the timing information
of the program segment.

3. Due to thegoal of model checking (namely to check whether there exists a spe-
cific path), the model checker can perform optimizations on its own, e.g., program
slicing [11] by removing unused variables (i.e., variablesthat do not influence the
actual execution paths).

6 The Execution-Time Model of MBTA

The role of theexecution time modelis to provide the information to map execution
times to instruction sequences. The use of the execution time model in MBTA is in
principal the same as in static WCET analysis [1]. However, the main difference is that
in MBTA the timing information is obtained by measurements instead of deriving it
from the user manual and other sources as done in static WCET analysis.

The execution time measurements of MBTA in general require to instrument the
code with additional instructions to signal program locations and/or store measurement
results. Since the instrumentations change the analyzed object code, there are some
requirements on the code instrumentations:

1. The impact of the instrumentation code on the execution time and code size should
be small.

2. If the instrumented code used for MBTA is not the same as thefinal application
code under operation, the code instrumentations should allow to determine an es-
timate on the change of the WCET of suitable precision between the instrumented
code and the final application code. Fulfilling this requirement may be challeng-
ing in practice, e.g, when requiring precise safe upper bounds on complex target
hardware.

6.1 Enforcing Predictable Hardware States

Besides the above quality criteria of code instrumentations, there is also a substantial
potential of using code instrumentations: on complex hardware where the instruction
timing depends on the execution history it is challenging todetermine a precise WCET
bound. Code instrumentations can be used to enforce an a-priori known state at the
beginning of a program segment, thus avoiding the need for considering the execution
history when determining the execution time within a program segment. For example,
code instrumentations could be used to explicitly load/lock the cache, to synchronize
the pipeline, etc.

6.2 Execution-Time Composition

After performing the execution-time measurements we know that each pathπ ∈ Πj

is assigned its measured execution timet(π). Now, the next step is to compose these
measured execution times into a WCET estimate. In general, three different approaches
are possible, which are explained in [1]. Usingtree-based methods, the WCET is calcu-
lated based on the syntactic constructs. Inpath-basedmethods, a longest path search is
performed. TheImplicit path enumeration technique(IPET) models the program flow
by (linear) flow constraints. After applying this calculation step, we get a final WCET
estimate that is the overall result of the MBTA.

In order to illustrate this flexibility of choosing the calculation method, a path-based
calculation method (longest path search) and IPET (using integer linear programming
- ILP) have been implemented in our MBTA framework. It has been shown that it is
possible to incorporate flow facts into the ILP model withoutrestricting generality [6].

7 Experiments

We have implemented the described MBTA as a prototype. Thehost systemof the
framework has been installed on two systems, on Linux and also on Microsoft Windows
XP with Cygwin. The quantitative results described in this section have been obtained
using a PC system with an Intel Pentium 4 CPU at 2.8 Ghz and 2.5GB RAM running
on a Debian 4.0 Linux system.

As target systemwe used a Motorola HCS12 evaluation board (MC9S12DP256).
The board is clocked at 16Mhz, has 256kB flash memory, 4kB EEPROM, and 12kB
RAM. It is equipped with two serial communication interfaces (SCI), three serial port
interfaces (SPI), two controller area network (CAN) modules, eight 16bit timers, 16
A/D converters.

As ameasurement deviceour frameworks can either use one of the counters of the
HCS12 board or an external timer. The experiments reported here have been performed
using a custom-built external counter device that is clocked at 200MHz. This device is
connected via USB to the host system and by two I/O pins to the target hardware [6].

Application Name Source LOC #BB #Execution Paths

TestNicePartitioning Teaching example 46 30 72

ActuatorMotorControl Industry 1150 171 1.90E+11

ADCConv Industry 321 31 144

ActuatorSysCtrl Industry 274 54 97

Fig. 7. Summary of the used case studies

In order to study relevant program code, we investigated thecode structure of ap-
plications delivered by industrial partners (Magna Steyr Fahrzeugtechnik, AVL List). It
was decided to support code structures representing a classof highly important appli-
cations (safety-critical embedded real-time system). Figure 7 summarizes thebench-
mark programs used in the experiments (LOC = lines of code,#BB = number of basic
blocks,#ExecutionPaths = number ofexecution paths) of the active application.
The first benchmark has been written by hand as a test program in order to evaluate
the MBTA framework. The second one has been developed using Matlab/Simulink in
order to walk through all stages of a modern software development process. The last
three benchmarks representing industrial applications from our industrial project part-
ners have been the key drivers for the development of the MBTAframework.

7.1 Experiment with Model Checking for Automated Test-DataGeneration

The goal of this experiment is to compare the performance of different model checkers
for automatically generating test data. Figure 8 shows the analysis time of the different
model checkers that have been introduced in Section 5.3. Please note that these figures
do not state anything about the general quality of a model checker, as even in case of
test-data generation, the model-checker performance is ofhigh sensitivity. Thus, the
following interpretation is only valid for the concrete case study (model).

The main result gained from our experiment is that the CBMC model checker is
well-suited for these types of problems. It boosts test datacalculation by factors 10-20
over using symbolic model checking. Some applications cannot be analyzed using SAL
at all.

CBMC SAL SAL BMC

TestNicePartitioning 63 11.2 109.6 259.3

ActuatorMotorControl 280 1202.2 N.A.
1

N.A.
1

ADCConv 136 65.2 7202.5 2325.5

ActuatorSysCtrl 96 32.7 507.4 491.3

1
Model size is too big, memory error of the model checker (core dump)

Time Analysis [s]
#Paths MC

Fig. 8.Comparison of required model-checking time to generate test data

7.2 Experiments with Automated Complexity Reduction

In this experiment we repeated the complexity reduction of the didactic sample code
summarized in Figure 3 with the industrial case studyActuatorMotorControl.
The results are given in Figure 9 using a logarithmic scale for the X-axis.

Path bound |PSG| #Paths (| j|)

1 171 171

2 88 117

4 38 84

6 21 83

10 14 92

15 13 106

20 11 130

50 8 242

100 7 336

1000 5 1455

(a) Partitioning results

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000

Program segments (|PSG|)

#
P

a
th

s
 (

 |

j|
)

PB=1000

PB=100

PB=10 PB=1

(b) Dependency between|PSG | and
P

|Πj |

Fig. 9. Program segmentation results forActuatorMotorControl

Enumerating all1.9 ∗ 1011 different execution paths (see Figure 7) of the case study
ActuatorMotorControl is practically intractable. Thus, partitioning into program
segments is necessary. With a path boundPB = 1 each basic block of the program re-
sides in a separate segment and with an unlimited path bound the whole program is
placed in one segment. The partitioning results in Figure 9 show that there is a certain
path bound for which the resulting number of sub-paths

∑
|Πj | is minimal. When fur-

ther increasing the path bound the number of program segments still decreases (which
is profitable as it increases the precision of the measurements because the segments
get larger). However, at the same time the number of sub-paths strongly increases,
which increases the overall computational effort needed for test-data generation and
execution-time measurements. Thus, the right path bound tobe chosen depends on how
much computational resources are available and how much precision is required.

7.3 Experiments with MBTA

Applying the MBTA on the case studies presented in Figure 7 using different values for
thepath boundleads to the results in Figure 10. “#Paths Random” gives the number of paths
that have been already found by using random generation of test data and “#Paths MC”
gives the remaining number of paths that had to be generated using model checking.
“Coverage (#Paths)” represents the number offeasible paths. Note that if for a path bound
PB=1 it implies that “#Paths Random” + “#Paths MC” 6= “Coverage (#Paths)” it follows that the
program containsunreachable code. Column “WCET Bound” shows the WCET estimate
obtained with the MBTA framework.

“Time (Analysis) [s]” shows the time spent within theanalysis phase. “Time (ETM) [s]” shows
the time spent within the execution-timemeasurement phase, which includes also the

compile and load time. “Overall Time [s]” is the sum of “Time (Analysis) [s]” and “Time (ETM)

[s]”. “ Time Analysis / Path MC [s]” gives the average time required for using model checking
(CBMC) to generate a single test vector for a sub-path. This number is quite significant,
because the time required for test-data generation using model checking contributes
most of the runtime of theanalysis phase(except for very low path bounds). It has a
rather small variation over different sub-paths of the samemodel. “Time (ETM) / Covered Path

[s]” gives the average runtime needed to measure a single sub-path. “#Paths / Program Segment”
shows the average number offeasible pathsper program segment.

P
a
th

 B
o

u
n

d

#
P

a
th

s
 (

 |

j|
)

#
P

ro
g

ra
m

 S
e
g

m
e
n

ts

#
P

a
th

s
 R

a
n

d
o

m

#
P

a
th

s
 M

C

C
o

v
e
ra

g
e
 (

#
P

a
th

s
)

W
C

E
T

 B
o

u
n

d

T
im

e
 (

A
n

a
ly

s
is

)
[s

]

T
im

e
 (

E
T

M
)

[s
]

O
v
e
ra

ll
 T

im
e
 [

s
]

T
im

e
 A

n
a
ly

s
is

 /
 P

a
th

 M
C

 [
s
]

T
im

e
 E

T
M

 /
 C

o
v
e
re

d
 P

a
th

 [
s
]

#
P

a
th

s
 /
 P

ro
g

ra
m

 S
e
g

m
e
n

t

ActuatorMotorControl 1 171 171 165 6 165 N.A. 468 1289 1757 78.00 7.8 1.0

10 92 14 63 29 68 3445 841 116 957 29.00 1.7 6.6

100 336 7 57 279 89 3323 7732 62 7794 27.71 0.7 48.0

1000 1455 5 82 1373 130 3298 41353 49 41402 30.12 0.4 291.0

ADCConv 1 31 31 31 0 31 872 24 192 216 N.A. 6.2 1.0

10 17 3 8 9 9 870 31 22 53 3.44 2.4 5.7

100 74 2 8 66 14 872 220 17 237 3.33 1.2 37.0

1000 144 1 12 132 12 872 483 11 494 3.66 0.9 144.0

ActuatorSysCtrl 1 54 54 54 0 54 173 26 318 344 N.A. 5.9 1.0

10 36 14 36 0 36 173 10 85 95 N.A. 2.4 2.6

100 97 1 18 79 25 131 191 10 201 2.42 0.4 97.0

TestNicePartitioning 1 30 30 6 24 30 151 34 175 209 1.42 5.8 1.0

5 14 6 4 10 14 151 15 39 54 1.50 2.8 2.3

10 14 3 3 11 14 151 16 21 37 1.45 1.5 4.7

20 18 2 2 16 15 150 22 16 38 1.38 1.1 9.0

100 72 1 1 71 26 129 106 12 118 1.49 0.5 72.0

Fig. 10.Summarized experiments of case studies

The experimental results illustrate the tradeoff between precision and required anal-
ysis time. For the case studyTestNicePartitioning the gained bound contains
some pessimism due to the lack of flow facts that characterizepath dependencies across
program segment boundaries. However, it has been shown thatit is possible to include
additional flow information in the analysis in order to tighten the bound by increas-
ing the program-segment size. ForActuatorSysCtrl the situation is similar. With
increasing program-segment size (i.e., by choosing a higher path bound) the existing
pessimism can be stepwise eliminated. Such variations do not exist forADCConv. Here
all obtained results are almost identical.ActuatorMotorControl indicates similar
results. Whenever the path bound is increased, the WCET bound is tightened a little bit
yielding a WCET bound of 3298 cycles (for a program segmentation having path bound
1000). However, the cost for this increase in precision is ananalysis time of about 11.5
hours. The missing WCET bound (N.A.) for path bound PB=1 is caused by a limitation
in the current tool implementation and is not a conceptionalproblem.

8 Conclusion

In this paper we presented the design and implementation results of MBTA, a fully
automated WCET analysis process that does not require any user intervention. The
input program is partitioned into segments, allowing the user to select a path bound for
the size of the segments. Depending on this parameter, the analysis time ranges from

a few seconds up to multiple hours. The bigger the chosen program-segment size, the
more implicit flow information and hardware effects are incorporated into the timing
model. Also, in this case the number of required instrumentations is low.

As a separate model (to be solved by the model checker) is usedfor each required
path, this stage of the test-data generating process can be easily parallelized. The MBTA
is easily retargetable to new target hardware due to its operation on a restricted set of
ANSI-C code.

The MBTA allows to derive safe WCET estimates even on complexhardware. To
achieve this, additional instrumentations are necessary to enforce predictable hardware
states. The experimentation with such instrumentations and the analysis of program
loops is considered future work.

References

1. Kirner, R., Puschner, P.: Classification of WCET analysistechniques. In: Proc. 8th IEEE
International Symposium on Object-oriented Real-time distributed Computing, Seattle, WA
(2005) 190–199

2. Petters, S.M.: Bounding the execution of real-time taskson modern processors. In: Proc. 7th
IEEE International Conference on Real-Time Computing Systems and Applications, Cheju
Island, South Korea (2000) 12–14

3. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-time systems.
In: Proc. 23rd Real-Time Systems Symposium, Austin, Texas,USA (2002) 279–288

4. Ernst, R., Ye, W.: Embedded program timing analysis basedon path clustering and architec-
ture classification. In: Proc. International Conference onComputer-Aided Design (ICCAD
’97), San Jose, USA (1997)

5. Puschner, P., Nossal, R.: Testing the results of static worst-case execution-time analysis. In:
Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS 1998), IEEEP (1998)
134–143

6. Wenzel, I.: Measurement-Based Timing Analysis of Superscalar Processors. PhD thesis,
Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-1, 1040
Vienna, Austria (2006)

7. Wenzel, I., Kirner, R., Rieder, B., Puschner, P.: Measurement-based worst-case execution
time analysis. In: Third IEEE Workshop on Software Technologies for Future Embedded
and Ubiquitous Systems (SEUS). (2005) 7–10

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. Lecture
Notes in Computer Science1579(1999) 193–207

9. Moura, L.D., Owre, S., Ruess, H., Rushby, J., Shankar, N.,Sorea, M., Tiwari, A.: SAL 2.
CAV 2004 (2004)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2004). Volume LNCS
2988., Springer (2004) 168–176

11. Tip, F.: A survey of program slicing techniques. Journalof Programming Languages3
(1995) 121–189

