
 

 

 
 
 
 
 

 
 
 
 
 

AN INVESTIGATION INTO COORDINATE MEASURING MACHINE TASK SPECIFIC 
MEASUREMENT UNCERTAINTY AND AUTOMATED CONFORMANCE ASSESSMENT OF 

AIRFOIL LEADING EDGE PROFILES 
 
 

By 

 
HUGO MANUAEL PINTO LOBATO 

 
 
 

A thesis submitted to the 
School of Metallurgy and Materials, College of Engineering and Physical Sciences, 

The University of Birmingham 
 

For the degree of 
Engineering Doctorate in Engineered Materials for High Performance 

Applications in Aerospace and Related Technologies 
 

                                                                      Structural Materials Research Centre 
       School of Metallurgy and Materials 

      The University of Birmingham 
                    Birmingham 
                UK 
                       August 2011 

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third parties. 
The intellectual property rights of the author or third parties in respect of this work 
are as defined by The Copyright Designs and Patents Act 1988 or as modified by 
any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission of 
the copyright holder.  
 
 
 



 

 

Abstract 
 

 

The growing demand for ever more greener aero engines has led to ever more challenging designs and 

higher quality products. An investigation into Coordinate Measuring Machine measurement uncertainty 

using physical measurements and virtual simulations revealed that there were several factors that can affect 

the measurement uncertainty of a specific task. Measurement uncertainty can be affected by temperature, 

form error and measurement strategy as well as Coordinate Measuring Machine specification. Furthermore 

the sensitivity of circular features size and position varied, when applying different substitute geometry 

algorithms was demonstrated. The Least Squares Circle algorithm was found to be more stable when 

compared with the Maximum Inscribed Circle and the Minimum Circumscribed Circle. In all experiments 

it was found that the standard deviation when applying Least Squares Circle was of smaller magnitude but 

similar trends when compared with Maximum Inscribed Circle and the Minimum Circumscribed Circle. A 

Virtual Coordinate Measuring Machinewas evaluated by simulating physical measurement scenarios of 

different artefacts and different features. The results revealed good correlation between physical 

measurements uncertainty results and the virtual simulations.  

A novel methodology for the automated assessment of leading edge airfoil profiles was developed by 

extracting the curvature of airfoil leading edge, and the method lead to a patent where undesirable features 

such as flats or rapid changes in curvature could be identified and sentenced. A software package named 

Blade Inspect was developed in conjunction with Aachen (Fraunhoufer) University for the automated 

assessment and integrated with a shop floor execution system in a pre-production facility. The software 

used a curvature tolerancing method to sentence the leading edge profiles which aimed at removing the 

subjectivity associated with the manual vision inspection method. Initial trials in the pre-production facility 

showed that the software could sentence 200 profiles in 5 minutes successfully. This resulted in a 

significant improvement over the current manual visual inspection method which required 3 hours to assess 

the same number of leading edge profiles.   
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Motivation 
 

Over the last decade the aerospace manufacturing industry has seen the introduction of 

lean manufacturing and concepts such as “six sigma” in an industry where tolerances for 

parts with critical conforming features can be as low as 0.005mm. Industry drivers aimed 

at reducing greenhouse emissions require products with ever tighter tolerances. Step 

changes in the way such tolerances are checked have been necessary to ensure the final 

product is 100% conformant and provides the customer 100% protection.  

Step changes within the aerospace manufacturing environment include the introduction 

of digital dimensional measurement systems. Systems such Coordinate Measuring 

Machines (CMM) offered flexibility to measure a range of parts due to its multiple set 

ups coupled with high accuracy and high repeatability. Like most inspection systems its 

capability is questioned at the later stages of introduction of a new product rather than at 

early stages of product design. The introduction of Product Lifecycle Management 

(PLM) has provided the opportunity to integrate inspection system capability data with 

early stages of design development via Computer Aided Inspection Planning (CAIP) 

tools. Expertise in aerospace industries including Rolls-Royce plc will be required to 

understand to what extent CAIP tools can generate/collect data from dimensional 

measurement inspection systems such as CMMs including expanded uncertainty 

statements. Furthermore a low number of CMMs in industry today output expanded 

uncertainty statements as part of the feature/part conformance process.  
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Aims and objectives 
 

 

 The first aim of this research was to review available approaches for determining 

CMM task specific measurement uncertainty and evaluate key factors that 

could affect it using statistical analysis tools, physical measurements and a 

newly developed VCMM. To develop detailed knowledge of CMM systems , 

VCMMs and standards used to define their performance.  

 

 The second aim of this work focused on the automation of a manual visual 

assessment task of leading edge profiles which feature on compressor blades of 

gas turbines engines. Removing the subjectivity associated with the use of 

current standards for leading edge assessment in an automated manner was 

required.  

 

 

 

The two aims were split into the following six objectives: 

 

1) To derive measurement uncertainty budgets for CMM using available standards. 

2) To explore and integrate statistical analysis tools such as experimental design and 

Monte Carlo to aid the analysis of known fitting algorithms for circular features. 

3) To investigate the impact of thermal effects during CMM measurements.  

4)  To perform comparative tests between physical CMM measurements of artefacts 

and real parts with a commercially available VCMM named Pundit/CMM. 
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5) To remove the subjectivity associated with the assessment of compressor blades 

leading edges via mathematical definition of a leading edge. 

6) To automate the assessment of leading edge profiles in a production environment. 
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Outline of this thesis 
 

Chapter 1 of this work reviews the state of the art literature in task specific 

measurement uncertainty of CMMs. Coordinate Metrology, Geometric Dimensioning and 

Tolerancing (GD&T) and Geometrical Product Specification (GPS) frameworks are 

reviewed in context of coordinate measurement systems. Previous work exploring the 

evaluation of CMM measurement uncertainty is reviewed; Physical measurement 

examples and estimations via virtual simulations are reviewed. An in depth review of 

Virtual CMMs describes the main concepts available today and key differences between 

such systems. The impact of measurement uncertainty is further reviewed in the context 

of conformance decisions.    

Chapter 2 evaluates the application and comparison of two methods of estimating task 

specific measurement uncertainty using data from length bar measurements for 

coordinate measuring machines of different specifications. The two methods applied 

were the ISO-15530-3
1
 and the Guide to the expression of uncertainty in measurement 

(GUM
2
). Standard uncertainties for both methods were derived and their impact on the 

expanded uncertainty calculation explained via uncertainty budgets. Although both 

methods could be used to aid point to point feature measurement, most geometrical 

features require a collection of points, therefore a different approach was required. A 

sensitivity study with integration of Design of Experiments (DOE) was proposed for 

circular features where it became difficult to apply the uncertainty budgets approach due 

                                                 
1
 ISO/TS 15530-3:2004 Geometrical Product Specifications (GPS) – Coordinate measuring machines 

(CMM): Technique for determining the uncertainty of measurement -- Part 3: Use of calibrated workpieces 
or standards, Geneva, 2004. 

2
 ISO/IEC Guide 98:1995 Guide to the expression of uncertainty in measurement (GUM), Geneva, 1995. 
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to the factors being investigated. Firstly the impact of CMM specification and form error 

are evaluated when using different algorithms (Least Squares Circle, Maximum Inscribed 

Circle and Minimum Circumscribed Circle) to extract feature characteristics such as size, 

position and form. A Monte Carlo analysis was also integrated with a full factorial DOE 

to explore further how each of the algorithms used to extract the feature characteristics 

behave. The application of DOE was further explored by using a laboratory coordinate 

measuring machines to study the impact of the environment when measuring prismatic 

features on a calibrated artefact. 

 

Chapter 3 describes the evaluation and application of a commercial (Pundit/CMM
3
) 

Virtual Coordinate Measuring Machine for the prediction of task specific measurement 

uncertainty. The first part of the chapter focused on comparison of length bars 

measurements obtained in chapter 2 with the recreated simulations in Pundit/CMM. 

Results obtained from chapters 2 and 3 indicated that there was a need to design and 

commission a multi feature artefact that could aid the investigation of task specific 

measurement uncertainty and also test the capabilities of Pundit/CMM. A multi feature 

artefact containing features with predefined form error was designed and commissioned 

at the Centre of Excellence in Customised Assembly (CECA, Nottingham). Finally a case 

study for the measurement of locating holes on a production part is presented. 

Estimations of measurement uncertainty are then compared for the different experiments 

to highlight possible discrepancies between the estimated magnitude values of expanded 

uncertainty among the different methods. 

                                                 
3
 Volcano, CA, USA: Metrosage LLC. <http://www.metrosage.com//punditcmm.html> 

 

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=externObjLink&_locator=url&_issn=01416359&_origin=article&_zone=art_page&_plusSign=%2B&_targetURL=http%253A%252F%252Fwww.metrosage.com%252F%252Fpunditcmm.html
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Chapter 4 presents a novel way of assessing a free form feature in an automated 

manner. The free form feature studied was the leading edge of compressor blades. Such 

features are measured using coordinate measuring machines hence the final shape defined 

by the point coordinate data could contain some of the uncertainties previously 

mentioned in chapters 2 and 3. Methods for curve fitting and data smoothing are explored 

together with different quantities for expressing the quality of the leading edge profile. It 

was shown that the curvature change along the leading edge profile can be used to 

identify non desirable features such as flat regions or extremely sharp features. 

Sensitivity of the extracted curvature plots was investigated and two methods of 

sentencing the leading edge shape were developed. The first method focused on applying 

tolerance profiles to the curvature plot based on the nominal leading edge shape and a 

production standard (LESA 1) used during manual visual inspection of the profiles. The 

second method focused on parameterisation of the curvature plot by extracting some key 

features such maximum values of the peaks and valleys at fixed distances along the 

curvature plot. A pre production version of the software was developed in conjunction 

with Aachen University (Fraunhoufer) and integrated in a production facility. Initial tests 

suggested that the software was capable of assessing 200 leading edge profiles in 

approximately 5 minutes. The manual visual inspection for the same number of leading 

edge profiles could last up to 3 hours. Furthermore the automated assessment results 

achieved showed very good conformance with quality requirements. A patent from this 

work was submitted including further applications in the analysis of free form features 

such as radius.   
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Nomenclature 
 

 

 

( )r 
= Radius of a feature with symmetrical lobbing in polar coordinates 

0r
= Nominal radius 


= Magnitude of the feature radius roundness 


= Number of lobes 

x = Cartesian workspace coordinate 

 

y = Cartesian workspace coordinate 

 

X = Cartesian coordinate with added random noise 

 

Y = Cartesian coordinate with added random noise 

 

,  = Random noise generated form a normally distribution function  

refT
= Reference temperature 

T̂ = Measurand with  

refT = Coefficient of thermal expansion 

 

semr ˆ =Root square mean error 

 

 = Instantaneous curvature  

 

SMAK = Instantaneous curvature with moving average 

 

m = Point to arc length convertor 

 

Cavg = Specified distance along the arc length 

 

XN = Normalised X axis 

 

i = Thickness/Arc length position 
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max = Maximum Thickness/Arc length position 

 

up = Skewed value pressure side  

 

us = Skewed value suction side 

 

xup = Shit in X axis pressure side 

 

xus = Shift in X axis suction side 

 

up = Curvature ratio pressure side 

 

us = Curvature ratio suction side 

 

yup = Shift in Y axis pressure side 

 

yus = Shift in Y axis suction side 

 

lp = Skewed value pressure side 

 

ls =Skewed value suction side 

 

xlp = Shit in X axis pressure side 

 

xls = Shift in X axis suction side 

 

lp = Curvature ratio pressure side 

 

ls = Curvature ratio suction side 

 

ylp = Shift in Y axis pressure side 

 

yls = Shift in Y axis suction side 
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λPij = Curvature Peaks 

 

λVij = Curvature Valleys 

 

ijArea  = Area between curvature peaks and valleys 
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Abbreviations 
 

 

ANSI   American National Standards Institute 

ASME  American Society of Mechanical Engineers 

 

CAIP   Computer-Aided Inspection Planning  
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GD&T  Geometrical Dimensioning & Tolerancing 

GPS   Geometrical product Specification 

GUM   Guide to the expression of Uncertainty in Measurement 

 

ISO   International Organization for Standardization 
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LSC   Least Square Circle 

 

MCC  Minimum Circumscribed Circle 

MIC  Maximum Inscribed Circle 
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NIST   National Institute for Standards and Technology 
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PLM  Product Lifecycle Management 
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Chapter 1  

Literature and State of the Art Review 

 

 

Traditionally designers have defined functional and operational requirements of parts 

based on ideal geometries with little understanding of how their requirements affected 

activities downstream of the Product Lifecycle Management (PLM) chain. This approach 

was due to both a lack of knowledge about the real part geometry and the fact that most 

software used to predict performance characteristics, did not accept non-ideal geometries.  

 

 

Figure 1. Product Lifecycle Management [1] 

 

A key activity at any part of the PLM chain is integrated product design and process 

specification [1]. The intent of an integrated product design is to link digital tools at 

different stages of the design process with data from the physical world. This task is 

achieved via design verification and validation in the digital environment that exists 

within PLM. Design verification requires capability data driven by the capability of 
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manufacturing processes used to manufacture a particular product. This activity also 

requires information from a measurement process, which is used to describe inherent 

imperfections of manufacturing processes which can cause degradation of functional 

characteristics of the product, and therefore, of its quality [2]. Both the availability of 

capability data and integrated product design have driven manufacturers to standardise 

their designs. 

Several authors have identified methodologies that could aid the standardisation of 

feature based designs [3] and manufacture [4]. Feature based design has made a direct 

and positive impact on part verification as it helped to codify and standardise both the 

manufacturing processes and the inspection methods used for types of features, thus 

improving design verification. Although digital design and manufacturing tools are 

becoming ever more sophisticated, digital measurement planning and modelling tools are 

still under development. It is important to stress that CAIP tools have been available for 

some time but of particular importance is the methods by which a user make a decision 

on the detailed inspection of a feature i.e micro planning as opposed to macro planning 

[5]. In general CAIP tools can be summarised in the following steps: (1) Computer Aided 

Design (CAD) interface and feature recognition, (2) determination of the inspection 

sequence of the features of a part, (3) determination of the number of measuring points 

and their locations, (4) determination of the measuring paths, and (5) simulation and 

verification [6. 7, 8, 9]. Unlike digital manufacturing planning tools which can have built 

in data such as manufacturing process capability for a specific feature, CAIP tools tend to 

rely on operators/inspectors experience as far digital measurement planning and 

modelling is concerned. The purpose of digital environment modelling and simulation is 
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to ensure standardisation and optimisation of designs and ultimately a better quality 

product. The tolerancing stage is the most critical stages within the digital design 

environment. Currently a designer can access manufacturing process capability data 

which allows a decision to be made with regards to tolerancing limits. Unfortunately 

manufacturing process capability data does not yet include the capability of the 

measurement method being used to measure a specific feature. This is a key 

consideration specifically with features which require coordinate measuring systems that 

could be subject to complex estimations of measurement uncertainties. International 

standards state that every feature should have tolerancing limits with an accompanying 

measurement uncertainty statement. 

The definition of standards aiming at completely and coherently describe the geometrical 

characteristics of products includes GD&T (American Scociety of Mechanical Engineers 

(ASME) standards) and GPS (International Standards organisation (ISO) standards). 

Geometric dimensioning and tolerancing is the language in which such constraints are 

explicitly defined. There are several standards that describe the symbols and define the 

rules used for GD&T. Both the ASME Y14.5M-1994 (Dimensioning and Tolerancing –

Mathematical Definition of Dimensioning and Tolerancing Principles) [10] and the 

ISO/TR 14638: 1995, Geometric Product Specifications, define guidelines for 2D 

technical drawings [11].  

GPS standards are group of standards which provide definitions and specifications 

according to the GPS matrix [12].  
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Table 1. Historical development of GD&T and GPS [12] 

 

These standards were developed with rules related to product definition rather than 

consideration given to the type of measurement system such coordinate measurement 

systems such as coordinate measuring machines. ASME Standard Y14.5M defines four 

primary form tolerances: 

 Straightness 

 Flatness 

 Circularity 

 Cylindricity 

 

that are important characteristics for manufacturing and assembly. However, the current 

standard does not provide clear guidelines for CMM inspection and verification of these 

form tolerances. CMM users intuitively decide which sampling method to use, how many 

sample points to collect and which particular form-fitting criterion to use. The CMM 

users’ intuitions are derived from their experience of manufacturing those part features 

and their geometric relationships based on GD&T control frames.  
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When using a hard gauge such as a sine table, any form on the surface of the part will be 

taken into account by the table because all the high points of the surface of the part will 

be in contact with the table surface. 

 

Figure 2. Contact points along the surface of a part 

 

A Coordinate Measuring System (CMS) may only collect a number of points (also 

known as point cloud data) that will represent that same surface. Both methods aim at 

providing the same information according to the geometric specification but in the case 

of the hard gauge the instrument (sine table) performs the task of contacting the high 

points while in the case of a CMS the operator may make the decision on the number of 

points used to capture the surface. This difference could be described has the major 

challenge when designs that were and still are created based on standards that were 

developed with first principles measurements in mind. Even when the standard can be 

replicated by a CMS, its interpretation conversion into a CMS world can lead to decisions 

in measurement strategies which will ultimately affect the measurement results. 

The example (Figure-3) extracted from the ISO 1101 [12] illustrates how both hard 

gauging and CMS systems can interpret the GD&T of a drawing during dimensional 

inspection. 
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Figure 3. GD&T example for a positional tolerance [12] 

 

 

 
Figure 4. Example of hard gauging inspection routine 

 

 
Figure 5. Example of CMM inspection routine 

 

Both inspection systems (Figure-4, Figure-5) and methodologies satisfy the design 

definition in Figure-1 but both systems may impact the conformance of the part 
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differently. As an example the hard gauging method will ensure that the high points of 

the datum surfaces of the part will be in contact with a ground table or equivalent artifact. 

Most CMM users could opt for a simple datum set up using a plane, line and point. 

Furthermore it would be up to the CMM operator to choose the number of probing points 

to define the line and the plane. On the other hand the clock gauge used to check the 

position in X and Y coordinates would rely on another gauge such as a height gauge to 

set its starting position. Both approaches could therefore be valid inspection strategies but 

with completely different measurement results. 

Although both systems are valid, for many years the components manufactured for the 

Aerospace industry have traditionally been verified on conventional measurement 

devices such as micrometers and height gauges to assess the conformance of 

manufactured parts to the engineering drawing. Such measurement devices, when used 

by skilled operators/inspectors, can assure confidence on the measurement results if 

standards and best practice are being followed. As the Aerospace market grew, it was no 

longer feasible in some instances to have skilled operators performing measurements of 

all parts due to constraints of lead time. With advances in machine automation, the 

aerospace industry started moving towards automated inspection methods in order to cut 

costs, improve lead times and in some cases increase their confidence on a measurement 

result. 

These systems find the dimensions of a part via point locations on the object’s desired 

surface. Coordinate data is then processed to determine the part’s dimensions and the 

types and locations of variations in the surface. Once the coordinate data points are 

collected from the surface of the part by the CMS hardware, the information is processed 
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by software, which usually performs a geometric fit to the gathered data. This fitting 

software, which is usually integrated as part of the CMS, uses the coordinate data to, for 

instance, determine a part’s location, orientation, concentricity, or deviation of the part 

from the corresponding perfect geometry. The software can apply appropriate processing 

of the data to determine if a part is within tolerances defined in the specifications [13-15]. 

Since a part is measured through only a sampling of points, its true surface can never be 

known exactly; instead, an approximation of the surface is known based on a finite 

sampling of coordinate points. 

 The software will often be required to compute “substitute geometry” based on the 

imperfect data. Imperfect data can be due to metrological characteristics of the 

measurement system including its environment and manufacturing defects also known as 

form error or due to uncertainty [16] of the measurement system itself while collecting 

the data. Over the past 20 years CMM’s have improved in terms of flexibility, accuracy, 

and speed which led to a large expansion of its use within the aerospace industry. 

Whether the CMM is used in-process or at final verification stages there are few work 

pieces which cannot be inspected by this system. Such benefits coupled with evermore 

demanding aero engine designs have made the CMM one of the most powerful 

metrological instruments for the aerospace industry. Table-2 shows a comparison 

between conventional hard gauging metrology versus coordinate measurement.  
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Table 2. Conventional Metrology vs Coordinate Metrology [17] 

Conventional Metrology Coordinate Metrology 

Manual, time-consuming alignment of test 

piece 

Single-purpose and multi-point measuring 

instruments making it hard to adapt to 

changing measuring tasks 

Comparison of measurements with material 

measures, i.e, gauge blocks or kinematic 

standards 

Separate determination of size, form, 

location and orientation with different 

machines 

Alignment of test piece not necessary 

Simple adaption to the measuring tasks by 

software 

Comparison of measurements with 

mathematical or numerical models 

Determination of size, form, location and 

orientation in one setup using one reference 

system 

 

 

 

 

1.1 Coordinate metrology and GPS framework 

 

As previously mentioned, a key part of the PLM chain is design specification. A key 

issue during design specification is the lack of agreement between manufacturing 

engineers, quality engineers and design engineers which leads to ambiguity. Such 
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ambiguity can lead to rework and concessions therefore it is critical that every definition 

within a manufacturing drawing is understood by all parties. 

The designer must make drawings free from ambiguity and possible to inspect at all 

stages of manufacture. Some of the reasons to why such events happen is due to possible 

misinterpretation of standards. In the case of the GPS, its basic philosophy can be 

difficult to interpret due to the number of standards involved. A key requirement for 

interpreting the GPS is the analysis of the GPS Matrix, which will be further explained. 

The GPS approach tends to detail every geometric characteristic separately, but with no 

emphasys on the underlying correlation between “specification” and the 

“verification”[18]. According to ISO 14660-1 [15], a geometrical feature is a point, line 

or surface. Such geometrical features exist in three “worlds”: 

 

• The world of specification, where the designer has in mind several 

representations of the future workpiece; 

• The world of the workpiece, the physical world; 

• The world of inspection, where a representation of a given workpiece is 

used through sampling of the workpiece by measuring instruments. 

 

The order in which the above stages are addressed is shown in the ISO 17450-1 [13]. The 

geometrical specification is a design stage where a range of permissible deviations of a 

set of characteristics of a workpiece related with its functional need.  All the verification 

procedure must start from the defined tolerances and for generic tolerances the steps and 

feature operators involved are[14]: 
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1. A particular subset of the real surface is identified for each surface to be 

verified. This feature operation is called partition. 

2. A subset of the real feature is approximated using a physical extraction 

process yielding to a finite set of point this feature operation is called 

extraction. 

3. The feature filtration operation is then performed, sometimes it is 

embedded within the physical extraction process or applied subsequently, 

reducing the information of the set of points to describe only the 

frequencies of merit for the verification of the particular surface-tolerance 

combination. 

4. The filtered point set is used to estimate the closest fitting substitute 

geometry through a process of association. 

5. When two or more surfaces are influenced by one tolerance, the collection 

operation is used to consider all applicable surfaces at the same time. 

6. When tolerance specifications depend on features coming from two or 

more surfaces, the construction operation is used to define these other 

ideal features. The tolerances specified for any particular feature define 

maximum or minimum values of characteristic.  
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Figure 6. Duality principle in specification, production and verification phases 

[ 14]. 

 

 

Figure 6. Features operations defined in the GPS project; (a) partition, (b) 

extraction, (c) filtration, (d) association, (e) collection, (f) construction [14] 

 

1.2 Measurement Uncertainty definition 

 

Every measurement process will have some extent of uncertainty. When reporting a 

measurement result, it is required in accordance with ISO14253-1[19] to report the 

uncertainty associated with the measurement. No perfect measurement exits. Instead, the 

result of measurement is only an approximation of the value of the quantity being 

reported [19]. Therefore, the measurement result is not complete without the 

accompaniment of a quantitative statement of its uncertainty.  
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The GUM [20] definition for uncertainty is a result of the evaluation aimed at 

characterizing the range within which the true value of a measurand is estimated to lie, 

generally with a given confidence. The concept of uncertainty is still relative new in the 

history of measurement while measurement error has long been part of the measurement 

science. Perhaps more concerning is the fact that the majority of CMM measurements 

produced by industry do not contain an uncertainty statement or the uncertainty statement 

is mostly derived from the machine specification. The Figure-7 illustrates two key 

quantities which form part of measurement uncertainty, precision and accuracy.  

 

 

Figure 7. Precision vs Accuracy 

 

Measurement uncertainty is made up of two components, a systematic error component 

and a random error component. In this context both precision and accuracy of the 

measurement instrument will therefore influence the measurement uncertainty. 

Measurements with low precision and accuracy are therefore likely to produce higher 

uncertainties when compared with high precision and high accuracy. Similarly a 

measurement system with high repeatability could be systematically wrong. This case 

presents a better scenario when compared with a system that is systematically right and 
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randomly wrong because random errors by their nature are difficult if not impossible to 

compensate unlike the systematic ones. Accuracy by definition [20] is the closeness of 

agreement between the result of a measurement and a true value of a measurand. 

Precision is the degree to which further measurements or calculations show the same or 

similar results. In this sense precision is normally determined by the standard deviation of 

repeated measurements and can be the measurement uncertainty of a system if the system 

is accurate. In most cases precision will be used for the calculation of the random error 

component of measurement uncertainty as previously defined. The term measurement 

uncertainty is often used without attention to the context. Standard uncertainties represent 

where possible the Type A uncertainties (random components) and Type B uncertainties 

(systematic components). Type A uncertainty is derived from independent statistical 

observations  of  under repeatable conditions with  being the input estimate and 

 the standard uncertainty to be associated with . 

 

 

 

 

In most cases Type B evaluation of standard uncertainty is based on scientific judgement 

using all relevant information of the measurement system. This may include the 

manufacturer’s specification, historical data, calibration data and general knowledge of 
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the measurement system. Three [20] probability distributions (Table-3) are used to 

transform the limits of the relevant information b into a standard uncertainty. 

 

Table 3. Type b probability distributions [20] 

 

a) Gauss distribution 

 

b) Rectangular 

distribuition 

 

c) U distribution 

 

 

Once all standard uncertainties are identified for the particular measurand, a combined 

uncertainty can be derived using the following: 

 

The Expanded measurement uncertainty can derived as follows: 

 

 
 

Where k is the coverage factor derived from the t distribution table [20] by deriving the 

degrees of freedom of the combined uncertainty in cases where Type B standard 

uncertainties were derived using a rectangular distribution according to the GUM.  



1-16 

 

 

1.3 Uncertainty in coordinate measurement 

 

 

 

According to the International Vocabulary in Metrology (VIM), a key property of a 

measurement result is traceability. “The property of the result of a measurement or the 

value of a standard whereby it can be related to stated references, usually national or 

international standards, through an unbroken chain of comparisons all having stated 

uncertainties[19].” 

In the case of coordinate measuring machines the traceability chain can be described in 

the Figure-8. 

 

Figure 8. Traceability chain for a CMM  
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A key part of the CMM traceability chain shown above is the CMM calibration also 

known as performance verification tests. Over the years several national and international 

standards have been developed to aid CMM verification tests [21-45]. Such tests are 

strongly dependant on the artefact calibrator as shown in Figure-8 above. Furthermore the 

tests only reflect in the majority of cases the machine performance when dealing with a 

point to point measurement along predefined positions within the machine volume. Other 

tests using artefacts or non-contact metrology can be used to extract the full error map of 

the machine. In the case of artefacts these are calibrated in accordance with the rules set 

by the ISO/IEC 17025:2005 [46]. Due to the number of variables [47-53] present in a 

CMM system the evaluation of task specific measurement uncertainty can be a very 

complex task. However there are different approaches which can aid the estimation of 

measurement uncertainty: 

 

Sensitivity analysis – Sensitvity analysis also known as uncertainty budgeting, consists 

of listing each uncertainty source, its magnitude, effect on the measurement result, 

correlation with other uncertainty sources, and combining appropriately. 

 

Expert Judgement – Used when there is lack of a mathematical model or measurement 

data. 

 

Substitution – Applied via repeated measurements of a calibrated master part. The 

output results of the repeated measurement yield a range of errors and uncertainty. 
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Simulation – Modeling and simulating the measurement process. All known errors are 

modeled via a statistical process and the outputs converted to an uncertainty statement. 

 

Measurement History – A large numbers of measurements over time can place an 

upper bound on measurement uncertainty. In this case only variability contributes to the 

uncertainty estimation and no bias. 

 

Governing all the approaches previously mentioned is the GUM (except Expert 

judgement, Measurement history). The substitution method provides a practical approach 

to uncertainty estimation in coordinate metrology as described by the ISO 15530-3[55], 

which is part of a collection of standards under development by ISO TC213comitee 

WG10 [54-57]. The simulation approach provides a more comprehensive approach to the 

estimation of measurement uncertainty because all or most contributors to the estimation 

can be described individually or described under expert assumptions. Such approach 

allows the user to determine how significant each of the individual factors contributes 

towards the expanded uncertainty. It is important to recognise that measurement 

uncertainty is task specific and as such there will be factors which remain constant in 

terms of their influence during the measurement process and factors that may vary from 

task to task.  The Design of experiments approach to uncertainty estimation is focused on 

understanding how the selected input factors of the CMM system affect the output 

response [58-63]. Furthermore the design of experiments approach also allows the 

experimenter to study the interactions between such factors depending on the type of 

DOE method selected for the study. 
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Table 4. CMM performance standards 

 

 

This aspect is in agreement with the PUMA as defined by the ISO 14253-1 which is part 

of a collection of standards related to uncertainty and conformance decisions [19, 64, 65]. 

CMM users are aware of the existence of measurement uncertainty but the uncertainty 

model is either studied as a separate factor from the model or included in a segregated 

fashion which shows no correlation with pertinent factors identified. Recent research on 

CMM inspection techniques using DOE methods have been aimed at developing CMM 
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inspection guidelines. These may combine factors such as form-fitting criterion; sampling 

method; sample size; type of form error due to various manufacturing processes; and 

CMM measurement uncertainty. 

Form error and sampling strategy are directly related because the information available 

for one parameter should drive the other. In this sense if a feature contains a form 

tolerance, the sampling strategy should reflect such tolerance. Form error itself by 

definition should be the representation of the true surface of a feature and as such in most 

cases is a function of the process used to manufacture such feature. On the other hand 

even for a feature with perfect form, form error can still occur but in this case it is 

induced by the measurement system in specific by a CMM. The Figure-9 shows various 

factors that can effect CMM measurements. 

 

 

Figure 9. Factors that may impact CMM uncertainty [51]  

 

It important to specify at this point that although measurement uncertainty estimation 

for coordinate measuring machines can be very complex, feature metrology may 

become even more complex if ambiguity or standards adoption is not taken into 
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account when performing measurement uncertainty experiments [61-66]. Danish et 

all [67] used a standard data set of 22 points with a non ideal form circular feature. 

The author then performed a Monte Carlo analysis on the data set by perturbing the 

data set with different measurement uncertainty magnitudes which could potentially 

represent different CMM’s. Four different criteria where then used to perform the 

substitute geometry task. The Figure-10 highlights the different criteria used: 

 

 

Figure 10. Different criteria for circular substitute features: (a) least 

square circle; (b) minimum zone circle; (c) maximum inscribed 

circle; (d) minimum circumscribing circle. [67] 

 

The results below clearly show that depending on the criteria chosen for the 

substitute geometry, both the mean and uncertainty values will vary. In most cases 

least squares estimation provided the less sensitive results with increment in CMM 

measurement uncertainty, but depending on the feature functionality the result could 

be miss leading. According to ISO 14 660-2 rules when an actual axis/size is required 
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for a particular measurement task the Least Squares algorithm is preferred due to its 

stability. The Gaussian regression circle has the advantage of needing the least 

number of traced points and always being unique. The Chebyshev substitute circle 

has the advantage of being standardized in ISO 1101 for the assessment of roundness 

but the disadvantage of needing a much larger number of traced points and not always 

being unique. The contacting substitute circle (maximum inscribed or minimum 

circumscribed) has the advantage of being in conformance with ISO 5459 [68] for the 

definition of datums, but has the disadvantage of not always being unique.  Further 

details on filters when applying substitute geometries are covered by the ISO TS 

16610 [69, 70] series. 

 

 

Figure 11. Effect of CMM uncertainty on circular features properties [67]  
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This effect can be due to the residual errors within the volume of the machine and 

lobbing effects in the case of kinematic probes [71,72].  Feng et all [58] research 

applied factorial design approach to the estimation of measurement uncertainty using 

CMM’s. The factors chosen for the study are shown in the Table-5 . 

 

Table 5. Example of CMM factors used for an experimental design [58] 

  

 

The confirmation experiment showed that uncertainty was minimized when the speed 

was highest, stylus length was shortest, probe ratio was largest, and the number of pitch 

points was largest. The results presented in this study only addressed variability (standard 

deviation). The Figure-12 showed the entire centre coordinates for the artefact used 

during all factorial design experiments.  



1-24 

 

 

Figure 12. Centre coordinates of all DOE runs [58] 

 

Sun et all [73] explored the development of a comprehensive framework for 

application of experimental design in determining CMM measurement uncertainty. 

Figure-13  shows the split between the key factors used in the DOE.  

 

 

Figure 13. Example of a DOE framework for CMM measurement [73] 
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Experimental designs have been used in many applications to aid the understating of the 

behaviour of a particular process or variable. Several studies [74-78] have investigated in 

detail one of the key stages (Sampling strategy) in the verification model shown in 

Figure-13 where the measurement strategy proved to be of very important consideration 

when studying measurement uncertainty and its impact in conformance decisions.  

Although there can be several approaches to design of experiments [58-62] the list below 

provides a comprehensive introduction on how to set up [79-84] an experimental design: 

 

(a) Define the objectives of the experiment.At this stage it is very important to understand 

the specification of the process which the experiment tries to address and in particular a 

good overview of the input and output factors. 

(b) Identify all sources of variation, including: 

(i) treatment factors and their levels,as with most variables not every value attributed to it 

may have an effect on the outcome of a particular event therefore it is critical that the 

factors and treatment levels are selected in accordance to the objectives of the 

experiment. 

(ii) experimental units,it is not always possible to attribute a numerical value to the 

treatment levels  

(iii) blocking factors, noise factors, and covariates. 

(c) Choose a rule for assigning the experimental units to the treatments. 

(d) Specify the measurements to be made, the experimental procedure, and the 

anticipated difficulties. 

(e) Run a pilot experiment. 
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(f) Specify the model. 

(g) Outline the analysis. 

(h) Calculate the number of observations that need to be taken. 

 

Experimental designs are rules that help determine the assignment of the experimental 

units to the treatments. Although experiments differ from each other greatly in most 

respects, there are some standard designs that are used frequently.  

 

Completely Randomized Designs 

 

A completely randomized design is the name given to a design in which the experimenter 

assigns the experimental units to the treatments completely at random, subject only to the 

number of observations to be taken on each treatment. Completely randomized designs 

are used for experiments that involve no blocking factors.  

The statistical properties of the design are completely determined by specification of r1, 

r2, . . . , rv, where ri denotes the number of observations on the ith treatment, i _ 1, . . . , 

v. 

Such models are of the form: 

 

   Response = constant + effect of treatment + error . 
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Factorial experiments often have a large number of treatments. This number can even 

exceed the number of available experimental units, so that only a subset of the treatment 

combinations can be observed.  

 

Block Designs 

 

A block design is a design in which the experimenter partitions the experimental units 

into blocks, determines the allocation of treatments to blocks, and assigns the 

experimental units within each block to the treatments completely at random.  

In the analysis of a block design, the blocks are treated as the levels of a single blocking 

factor even though they may be defined by a combination of levels of more than one 

nuisance factor.  

Such models are of the form: 

 

 Response = constant + effect of block + effect of treatment + error . 

 

The simplest block design is the complete block design, in which each treatment is 

observed the same number of times in each block. Complete block designs are easy to 

analyze. A complete block design whose blocks contain a single observation on each 

treatment is called a randomized complete block design or, simply, a randomized block 

design. 

When the block size is smaller than the number of treatments, so that it is not possible to 

observe every treatment in every block, a block design is called an incomplete block 
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design. The precision in which treatment effects can be compared and the methods of 

analysis that are applicable will depend on the choice of the design:  

 

(i) Crossed Blocking  

(ii) Nested Blocking 

 

Split-Plot Designs 

 

A split-plot design is a design with at least one blocking factor where the experimental 

units within each block are assigned to the treatment factor levels as usual, and in 

addition, the blocks are assigned at random to the levels of a further treatment factor. 

This type of design is used when the levels of one (or more) treatment factors are easy to 

change, while the alteration of levels of other treatment factors are costly, or time-

consuming.  

Split-plot designs also occur in medical and psychological experiments. For example, 

suppose that several subjects are assigned at random to the levels of a drug. In each time-

slot each subject is asked to perform one of a number of tasks, and some response 

variable is measured. The subjects can be regarded as blocks, and the time-slots for each 

subject can be regarded as experimental units within the blocks. The blocks and the 

experimental units are each assigned to the levels of the treatment factors—the subject to 

drugs and the time-slots to tasks. In a split-plot design, the effect of a treatment factor 

whose levels are assigned to the experimental units is generally estimated more precisely 

than a treatment factor whose levels are assigned to the blocks.  
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A model [63] is an equation that shows the dependence of the response variable upon 

the levels of the treatment factors. (Models involving block effects or covariates are 

considered in later chapters.) Let Yit be a random variable that represents the response 

obtained on the tth observation of the ith treatment. Let the parameter μi denote the “true 

response” of the ith treatment, that is, the response that would always be obtained from 

the ith treatment if it could be observed under identical experimental conditions and 

measured without error. Of course, this ideal situation can never happen—there is always 

some variability in the experimental procedure even if only caused by inaccuracies in 

reading measuring instruments. Sources of variation that are deemed to be minor and 

ignored during the planning of the experiment also contribute to variation in the response 

variable. These sources of nuisance variation are usually represented by a single variable 

_it , called an error variable, which is a random variable with zero mean. The model is 

then:  

Yit _ μi + _it, t _ 1, . . . , ri, i _ 1, . . . , v, 

 

where v is the number of treatments and ri is the number of observations to be taken on 

the ith treatment. An alternative way of writing this model is to replace the parameter μi 

by μ + τi , so that the model becomes: 

 

Yit _ μ + τi + _it, t _ 1, . . . , ri, i _ 1, . . . , v. 

 

In this model, μ+τi denotes the true mean response for the ith treatment, and 

examination of differences between the parameters μi in the first model is equivalent to 
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examination of differences between the parameters τi in the second model. It will be seen 

in Section 3.4 that unique estimates of the parameters in the second formulation of the 

model cannot be obtained. Nevertheless, many experimenters prefer this model. The 

parameter μ is a constant, and the parameter τi represents the positive or negative 

deviation of the response from this constant when the ith treatment is observed. This 

deviation is called the “effect” on the response of the ith treatment. The above models are 

linear models, that is, the response variable is written as a linear function of the 

parameters. Any model that is not, or cannot, be transformed into a linear model cannot 

be treated by the methods in this book. Linear models often provide reasonably good 

approximations to more complicated models, and they are used extensively in practice. 

The specific forms of the distributions of the random variables in a model need to be 

identified before any statistical analyses can be done. The error variables represent all the 

minor sources of variation taken together, including all the measurement errors. In many 

experiments, it is reasonable to assume that the error variables are independent and that 

they have a normal distribution with zero mean and unknown variance σ2, which must be 

estimated. Proceeding with the analysis when the constant variance, normality, or 

independence assumptions are violated can result in a totally incorrect analysis. A 

complete statement of the model for any experiment should include the list of error 

assumptions. Thus, for a completely randomized design with v specifically selected 

treatments (fixed effects), the model is: 

 

Yit _ μ + τi + _it ,  

_it ∼ N(0, σ2) , 
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_it _s are mutually independent, 

t _ 1, . . . , ri, i _ 1, . . . , v, 

 

where “∼ N(0, σ2)” denotes “has a normal distribution with mean 0 and variance σ2.” 

This is sometimes called a one-way analysis of variance model, since the model includes 

only one major source of variation, namely the treatment effect, and because the standard 

analysis of data using this model involves a comparison of measures of variation. Notice 

that it is unnecessary to specify the distribution of Yit in the model, as it is possible to 

deduce this from the stated information. Since Yit is modeled as the sum of a treatment 

mean μ + τi and a normally distributed random variable _it , it follows that: 

 

Yit ∼ N(μ + τi, σ2). 

 

Also, since the _it ’s are mutually independent, the Yit ’s must also be mutually 

independent. Therefore, if the model is a true representation of the behaviour of the 

response variable, then the data values yit for the ith treatment form a random sample 

from a N(μ + τi, σ2) distribution. To aid the analysis of experimental designs tools [84, 

85] have been developed over the years. 
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1.4 CMM based uncertainty assessment 

 

 

The ISO 15530 series aims at providing terminology, techniques, and guidelines for 

estimating the uncertainty of CMM measurements. The complexity associated with the 

topic of CMM measurement uncertainty is reflected by the progress achieved in the last 

decade by the ISO TC 213 working group. The techniques presented in the ISO 15530 

series are compliant with the GUM.   

The ISO 15530 series consist of 5 parts as follows: 

 

• Part 1: Overview and metrological characteristics.   

• Part 2: Use of multiple strategies in calibration of artefacts.   

• Part 3: Use of calibrated work pieces or standards.   

• Part 4: Use of computer simulation.   

• Part 5: Use of expert judgement, sensitivity analysis and error budgeting  

 

 Part 1 provides and overview and metrological characteristics via the introduction of 

techniques for determining the uncertainty of measurement for a CMM. A list of factors 

that can potentially affect the measurements produced by a CMM are provided although 

the document is still in draft version.  

 

Part 2 (the document is still in a draft version) introduces a technique where multiple 

measurement strategies of the same work piece are used for determining the uncertainty 

associated with the CMM task. The multiple measurement strategy combines multiple 
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different orientations as well as different point distributions replicated in each orientation 

The calibration value, and related calibration uncertainty are determined by proper 

calculation based on the database generated by all of the measuring results obtained.  

 

Part 3 introduces the use of calibrated work pieces for a simple uncertainty evaluation 

of measurements performed by a CMM. The technique applies to specific measuring 

tasks and to CMM results obtained from both uncorrected and corrected measurements. 

The standard includes a methodology for non-substitution, where measurements are 

results in which the CMM indication is not corrected by systematic errors. It also 

includes a methodology where substitution measurement is used to determine task 

specific measurement uncertainty. In the case of substitute methodology the CMM 

indication is corrected by systematic errors, where both the work piece and a proper 

material standard of size are measured. Guidelines are provided in terms of number of 

measurements to be taken and which contributors from the measurement process can be 

used to estimate the task specific measurement ucertainty:  

 

• the calibration uncertainty stated in the artefact certificate;   

• the standard uncertainty assessed by the above procedure;   

• the standard uncertainty resulting from the variations of form errors,  

roughness, CTE, and other relevant parameters in different corresponding workpieces.  
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Part 4 provides guidelines on estimating task-specific measurement uncertainty using 

virtual simulations tools. The main sections within the ISO 15530-4 are broken down as 

follows: 

 

A - UES: Uncertainty Evaluating Software   

B - UES model.  

C - UES validation.  

 

The Uncertainty Evaluating Software is a software tool used to  provide uncertainty 

evaluation by simulating the overall CMM measuring process of a work piece. UES tools 

may reside in the CMM OEM software or they can be off-line tools. UES tools suppliers 

have to provide a list of key attributes of the UES which includes:  

 

• List of CMM metrological characteristics (see some examples below):  

 Geometric errors, Environmental characteristics, probing system, probing strategy 

 

• Documented techniques used for the uncertainty evaluation.   

 Algorithms 

  

The standard describes how the UES can be validated: 

 

1 - CMM testing on a calibrated artefact with uncertainty statements. This may consist 

of simple point to point measurements where the main influence factors could be the 
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CMM probe and error map if known or known scale errors. The output results should be 

smaller or equal to 1 in order to pass the test. 

 

2 - Computer-aided techniques where known uncertainty statements based on factors 

such as form error can be used to check the uncertainty estimated by the UES. It is 

expected that for known case scenarios the uncertainty output U from the UES should be 

higher when compared with absolute error E. 

 

3 – Comparison of UES uncertainty with a known reference uncertainty from a 

calibrated artefact. 

 

4 – Long term statistical investigation. Similarly to method 1 but over a long time 

period. 

 

Part 5 provides guidelines on the use of expert judgement, sensitivity analysis and error 

budgeting. In the case of expert judgement it is expected that its use will require the 

CMM operator/Inspector to be qualified to a particular academic standard. This standard 

is still under development. 

 

1.4 Virtual Coordinate measuring machines uncertainty estimation 

 

Section 2.2 described both approaches to measurement uncertainty estimation and 

potential factors that affect the measurement uncertainty quantity within coordinate 

measuring machines task. Although measurement uncertainty estimation can be derived 
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from first principles using the GUM approach and or experimental methods, for more 

complex measurands it may be difficult if not impossible to derive such budgets. 

Furthermore in the majority of cases in the aerospace industry parts being measured may 

contain several hundred dimensions all of which may require CMM inspection and an 

uncertainty statement. Experimental methods as an approach to quantifying uncertainty 

may therefore become economically unviable for such cases due to both the cost in time 

used for the experiments and cost associated with a representative reference artefact 

which would have to be used in the experimental purpose. To overcome the challenges 

associated with task specifc measurement uncertainty in CMM’s simulation tools that 

aim at replicating the measurement task have been developed. Such tools may consist of 

an algorithm [62, 67, 86 ,87] which may replicate the measurement of a circular feature 

to full software packages with intuitive user interfaces [88]. The development VCMM 

tools coupled with advances in CAIP tools within the PLM environment will eventually 

lead to their integration due to the challenges presented in section 1.1 of this document. 

Virtual CMM’s such as the Virtual CMM [89] Simulation by constraints [88, 90], 

Virtual Instrument [91] and Expert CMM [92] were developed to aid the evaluation of 

task specific measurement uncertainty of complex measurands using Monte Carlo theory.  

All of the methods work on the basis of propagating the uncertainty from the different 

sources to the measurement results. Each method may operate in a slightly different 

approach, for example the Virtual CMM relies heavily on the error map information of 

the CMM and the uncertainty associated with the error map measurements while 

PUNDIT/CMM is able to generate a population of machine errors maps that will fall 

within a particular type of machine specification chosen by the user and its uncertainty 
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before making any real measurement. Underlying the use of virtual CMM’s [93,94] will 

be good practice in terms of environment of where the machine is kept and general good 

practice to ensure that the CMM system as a whole is very similar to the virtual 

simulations. 

 

The Virtual CMM (VCMM) 

The virtual coordinate measuring machine (VCMM) approach estimates task specific 

measurement uncertainty for a specific CMM.   The process starts by assigning virtual 

probing points to an ideal geometry representing a nominal design specification. At each 

probing point on a particular feature, the VCMM generates a perturbed point [95]. The 

perturbed point is generated by modelling variations coming from the different 

contributors to the measurement task. Each contributor is simulated using a probability 

density function (PDF) and each perturbed point is simulated by combining the 

information from all input contributors (PDF’s). 

As with any simulation software the inputs (uncertainty associated with each 

contributor) should be assessed completely but some of them cannot be easily or 

economically measured and must be estimated. Contributors such as form error, 

cleanliness, fixturing variability and operators are not included in the VCMM [96, 97] 

although cleanliness and fixturing variability can be very hard to model. The Virtual 

CMM requirements imply that its use may be restrained to CMM’s under laboratory 

conditions rather than shop floor CMM’s due to better control of key input contributors in 

laboratory conditions. Furthermore its application would be better suited for artefacts or 

parts with very low form error.  
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Figure 14. Virtual CMM simulator (VCMM) [89] 

 

The Figure-14 above shows the sequence of events related to both the physical CMM 

measurements and the Virtual CMM simulator. Steps (1) to (3) represent the collection of 

data points, the application of substitute geometry to the collected data points and the 

computation of the specified tolerances tolerances. The Virtual CMM simulator shows 

three typical input factors: 

 

1 Probe uncertainty 

2 CMM geometric errors information 

3 Environment 
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The input factors are used to perturb (5a) the original data points collected from the 

physical measurements via Monte Carlo simulation. This task allows several data sets 

to be created within the bounds set by the collective uncertainty due to the three input 

factors. A set of substitute geometries is then computed by the CMM software on the 

generated data. Statistical analysis (8) can then be used to report the uncertainty 

results. Although the Figure-15 above provides an example of what could be 

described as an online Virtual CMM solution, such tools have off-line capability. It is 

worth noting that the Virtual CMM is very dependent on accurate description of its 

geometric errors [98, 99]. The accuracy of such errors is directly related to the 

method used to extract such errors. These methods include reference artefacts [100-

102] and laser interferometry/tracking systems [103-105]. The International Join 

Research project [106] summarises a collection of projects from different working 

groups on VCMM’s including the PTB (Physicalish-Technishe Bundesanstalt) 

Germany, NMIJ (National Metrology Institute of Japan) Japan, NML: CSIRO 

(National Measurement Laboratory) Australia, UT (The University of Tokyo) Japan 

and TDU (Tokyo Denki University) Japan. guidelines [107,108] of how the Virtual 

CMM concept could be generalised together with a general methodology to take into 

account prior calibration information in uncertainty estimation was also proposed by 

the NPL (National Physics Laboratory). Other VCMM’s have been developed 

[109,110] to include enhanced user interfaces and 3D simulation of the specific 

measurement task. 
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The Expert CMM (ECMM) 

 

The Expert CMM project (ECMM) consisted of a collaboration between a national 

metrology institute and industry [90]. Early testing of the ECMM software was done via 

measurements on a hole plate that was measured in 100 positions. Its length and its 

uncertainty were computed with 89% success rate of the calibrated length being within 

the computed uncertainty with a coverage factor of 2. The result was also a reflection of 

the well-controlled metrological conditions of the CMM such as environment where the 

machine was located.   

 Some of the key characteristics of the ECMM were as follows:  

• being consistent with the ISO-GUM; 

• being task specific; 

• requiring minimum involvement of the user; 

• working on line for immediate checks, and off line for comparative evaluations of 

alternative procedures; 

• keeping groups of contributors (CMM, environment, piece) separate, so as to ease 

troubleshooting in the case of poor accuracy of measurement. The method proposed, as 

the other parametric methods, once evaluated the parametric errors of the specific CMM, 

is divided into two parts: 

• the first consists on the superimposition of adequate errors to the measured points; 

this errors came up from a Monte Carlo simulation of the error model’s parameters. 
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• the second is the propagation of error through the CMM measurement program 

(called part program) as the two step are included in the same procedure so a Monte 

Carlo simulation is used in this case also. 

 

A scheme of the proposed methodology is shown in Figure-15. 

 

Figure 15. Expert CMM flow chart [92] 

 

The simulator was based on a model εi = g(pi) where pi are the model parameters 

with a joint probability density function JPDFp. The simulator contains the mathematical 

error model of the specific CMM and it is pretty similar to the compensation model used 

to compensate the CMM by the manufacturer. The standard CMM software is embedded 

into additional ECMM software, the error simulator and a statistic evaluator. The error 

simulator takes an input population of parameters pi (vector of parameters )from a file 

generated at random according to a known JPDFp. The simulator takes also actual 

information about the measurement in progress: geometrical information x0 () from the 

part program, and auxiliary measurement values of influence quantities (typically 
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temperatures, on line ECMM only). The error simulator outputs the point coordinate 

perturbations εi, one for each instance pi; this is done separately for different contributor 

groups 1…n. The CMM software may have facilities for compensating errors; the 

(compensated) points are input to the part program, which reduces them to the final 

results yi. Finally the variance-covariance matrix Ψy is evaluated, separately.  

 

Simulation by constraints - Pundit/CMM 

 

The two previously described virtual CMMs methods require the assessment of the 

individual parametric errors of the CMM - information that is usually not immediately 

available and is not included in National or International Standards regarding CMM 

performance specifications. The simulation by constraints technique [111] which 

generalizes the virtual CMM simulation concept allows the calculation of task specific 

measurement uncertainty based on standardized performance data such as ANSI B89.4.1 

and ISO 10360 CMM performance specifications. This method treats performance tests 

specifications as mathematical constraints on the (infinite number) of possible virtual 

CMM states (each defined by specific parametric errors) that are allowed by the 

performance data [112]. These constraints, together with reasonable assumptions, such as 

the parametric errors are smoothly varying functions; greatly limit the number of 

permissible states that the CMM may occupy. A key feature within Pundit/CMM 

[113,114] is the possibility to use either the machine specification or its error map if 

known. This is a key advantage for this type of virtual CMMs because the ISO 10360 

tests don’t necessarily fully reflect a machine capability. For example, the ANSI B89.4.1 



1-43 

 

Standards volumetric performance test includes the measurement of ball bar lengths near 

the extremes of the CMM work zone. This is, in effect, a boundary condition on the 

allowed parametric error functions. In order to be self consistent, the constrained 

parametric errors, i.e. the permissible virtual CMM states, must faithfully reproduce the 

original performance specifications when a simulation of the performance test is 

computed. The expectation is that the standard specifications should provide sufficient 

constraints to allow the reasonable calculation of task specific uncertainty. 

 

 

Figure 16. Simulation by constraints flow diagram [114] 

 

A comparison between the VCMM method and Simulation by constraints [87] found 

that both methods approximated the experimental uncertainty values calculated from the 

physical measurements of two ring gauges. Furthermore the main difference between the 

two methods is highlighted by the author in the sense that the VCMM was likely to have 

a better description of the machine geometry when compared with the MPE values used 

to describe the machine geometry in the simulation by constraints method. 
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Hybrid methods 

 

An Early method presented by Hamburg-Piekar et all [115], where for a specific 

geometrical or dimensional tolerance an uncertainty assessment model is developed 

making use of known techniques such point wise averaging and reversal methods. The 

GUM approach was the basis used for he proposed method with Monte Carlo simulations 

checking the output uncertainties from the GUM approach. The methodology considered 

five major uncertainty contributors to six general groups of tolerances: 

 

 Repeatability 

 Machine  

 Probing 

 Work piece 

 Temperature  

 

Each tolerance model included up to the five major contributiotrs depending on the 

tolerance being examined. This particular method made use of a database where several 

test cases were recorded and could be accessed by the operators. A case study was 

presented by the author for het calibration uncertainty of a reference production part. In 

the case study the Hybrid method was compared with Pundit/CMM and the results 

obtained were somewhat mixed with Hybrid method overestimating in the case of 

parallelism and perpendicularity tolerances while Pundit/CMM overestimated the size 
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tolerances for diameters. Of particular importance was the range of uncertainties varied 

between 0.002mm and 0.02mm.   

A later patented method [116,117] developed by Politecnico di Torino exploits Monte 

Carlo technique to calculate the errors in the measured coordinates of each single 

measured point while using the CMM part programme to propagate the measurement 

uncertainty. This is a key difference when compared with VCMM’s where parametric 

errors are required; instead   the CMM is not modelled.  In the simulation the machine 

specification uncertainty is sued similarly to the simulations by constraint approach. The 

proposed method is an approximated one, providing a reasonable uncertainty evaluation 

that fits for industrial environment much more than calibration laboratories. The basis of 

this approach stands on the fact that every CMM measuring task can be divided in to two 

elementary steps: 

1. Measurement of the coordinates of a certain number of points on the surface of the 

work piece; 

2. Evaluation of the measurements in order to calculate one or more substitute features 

and eventually verify tolerances as stated in the part program. The first step is the one 

influenced by the effect of uncertainty contributors pertaining to: 

• Hardware; 

• Sampling strategy; 

• Work piece; 

• Extrinsic factors. 

The second is influenced by uncertainty factors as well but by those contributors 

related with the fitting algorithms. Its role in the measurement process is to translate the 
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information contained in the coordinate of point into intrinsic or relational parameters of 

substitute features in order to calculate the measurands as defined in the measurement 

program. An additional uncertainty source must be added: it is related with the accuracy 

of the machine: this term, neglected in the case of comparative measurements as stated in 

ISO 15530-2, should be here taken into consideration and it is requested as an input 

quantity by the algorithm. Another remark concerns the uncertainty due to the interaction 

between the form error of the measurand and the incomplete sampling of surface: this 

term is usually provided as an input quantity for simulative methods and it’s also hard to 

be taken into account if poor information on measurand is provided. The developed 

method does not require any input regarding this contributor: its particular algorithm for 

generating the perturbed data is able to account for it.  

 

 

 

1.5 Conformance decisions 

 

Conformance decisions are required to ensure a product meets its required specification 

but neither the production nor measurement processes are perfect, there will always be 

some dispersion in the observed product value either for repeated measurements of one 

item or for measurements of a series of items. 

Conformity assessment focuses on determining actual product errors: apparent 

dispersion due to limited measurement capability should normally be small. Questions of 

appropriate rules for decision-making in conformity assessment with due account of 
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measurement uncertainty raise questions which ultimately can be resolved by economic 

considerations. 

Tolerance verification requires a comparison between nominal value and a measured    

value.  The decisions on conformance to specifications are either “acceptance” or 

“rejection” at final inspection stage. A clear normative framework on conformance 

decisions has been defined by the ISO 14253. To support such decision rules in order to 

avoid misunderstanding and disagreement between customer and supplier the concept of 

measurement uncertainty was been introduced. The ISO 14253-1 implements and 

expands the concept of measurement uncertainty as defined by the GUM Guide to the 

expression of Uncertainty in Measurement. According to the decision rules shown in 

Figure-17 . Only measured values in the conformance zone can prove conformance, and 

only measured values in the non-conformance zone can prove non-conformance. 

 

 

Figure 17. Conformance decision zones [19] 

 

http://metrology.wordpress.com/statistical-methods-index/basic-theory-of-measurement-and-error/conformity-assessment-introduction/introducing-impact-and-cost-into-conformity-assessment-risks/
http://metrology.wordpress.com/statistical-methods-index/basic-theory-of-measurement-and-error/conformity-assessment-introduction/introducing-impact-and-cost-into-conformity-assessment-risks/
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 If measured values are within “zone-5” as shown in the Figure-19 above, than it is 

neither possible for the customer to reject the part, nor for the supplier to accept the part. 

Rules defined by the ISO 14253-3 were developed to aid situations where measured 

values are found to be within “Zone-5”. In order to manage measurement uncertainty 

statements rules have been developed by the ISO 14253-2 in the form of PUMA 

(Procedure for uncertainty management). PUMA is a procedure developed for calculating 

and managing uncertainty budgets. Each contributor of the uncertainty budget is clearly 

identified so that the impact of a particular contributor can be monitored and used to 

define potential improvements/costs [118] associated with improvements to the overall 

uncertainty budget and its impact in economic decisions surrounding conformance 

decisions. An approach [119] to identify the economic impact on uncertainty intervals 

can be seen in the Figure-18. 

 

 

Figure 18. Impact of uncertainty on process capability 

 

The Figure-18 shows that as the uncertainty interval increases and assuming that the 

rules of the ISO 14253 are being adhered to, the Cp value decreases. According to the 

chart above if the uncertainty interval was 20% of the tolerance limits the number of 
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defective parts would increase. This leads to investigations [120, 121] into the production 

process to try and improve some of the variation that causes the Cp value to decrease or 

an improvement in the measurement capability could be required. Economics of how to 

make a decision on the two approaches can in some cases be difficult to evaluate but with 

the aid of tools such as PUMA it should become clear to the user whether the focus of the 

measurement capability improvement should be the system itself or the environment it 

sits on as an example.   

 

 

 

1.6 Measurement uncertainty impact in airfoil Leading edge conformance 
assessment 

 

As mentioned in the previous sections of this document coordinate measurement is 

required to meet some of the most demanding tolerances in aerospace components. 

Compressor blades are a group of parts which require coordinate measurement due to its 

free form features but also due to stringent accuracy requirements specifically 

surrounding the airfoil shape. Both non-contact and contact measurement systems such as 

CMM’s are used to digitise the airfoil. In the case of CMM’s both touch trigger probes 

and scanning probes can be used to extract the airfoil geometry so that key features 

within the airfoil profile can be assessed for conformance. As pointed out by Goodhand 

[108], geometric variability in the form of leading-edge erosion in core compressor 

airfoils may account for an increase of 3% or more on thrust-specific fuel consumption. 
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Figure 19. Leading edge of a fan blade airfoil section 

 

As pointed out by Goodhand [108], geometric variability in the form of leading-edge 

erosion in core compressor airfoils may account for an increase of 3% or more on thrust-

specific fuel consumption. A typical approach to aid such potential performance benefits 

is by tightening manufacturing tolerances to reduce the amount of geometric uncertainty. 

Unfortunately such approach could become exceedingly costly or otherwise impractical 

to achieve. Furthermore, normal engine operation leads to changes in compressor and fan 

airfoil shapes through erosion, corrosion and other means.  In addition to geometric 

variability, perturbations in operating conditions may be simply unavoidable due to the 

variable environments in which gas turbine engines must operate. In addition to 
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geometric variability, perturbations in operating conditions may be simply unavoidable 

due to the variable environments in which gas turbine engines must operate. Leading-

edge shape studies focusing on variability of leading edges [122, 123] have  taken into 

account both manufacturing imperfections and wear. Concepts of such effects have been 

modelled via the bluntness mode described in Section 2.4. The degradation in 

performance is shown in the Figure-20 as an increase in loss coefficient and a decrease in 

turning.  It has been shown when the bluntness parameter increased to three, the loss 

coefficient had gone up by approximately 8% while the turning had decreased by about 

1.5%. The larger relative impact on the loss coefficient is to be expected since the loss 

generation for this low-Mach-number transonic case is primarily due to viscous effects, 

and the leading edge shape will directly impact the boundary layer transition and growth. 

The effect of leading-edge bluntness can be expected to be more pronounced for higher 

Mach number cases, as the loss due to leading-edge thickness has been shown to scale 

with M2inlet [124]. Other authors [125,126] have studied the effect of smoothing the 

leading edge apex with the remaining of the airfoil using curvature resulting in smoother 

boundary layer flows, affecting aerodynamic as well as heat transfer performance. It is 

worth noting although literature clearly indicates benefits specific to a leading edge shape 

and particular operating conditions, it does not necessarily takes into consideration the 

uncertainties associated with processing/manufacturing of such shapes and its 

dimensional measurements. Because of the importance of the leading edge shape, its 

inspection technique requires very high accuracy which tends to lead most manufacturers 

to the use of either CMM’s or non-contact systems such as GOM [127].   
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Figure 20. Impact of leading edge bluntness on aerodynamic performance [124] 

 

Assuming a coordinate measuring system such as a CMM was used to digitised a 

leading edge of an airfoil section of a blade, such data tends to be used for two key 

activities: 

 

1 – Conformance assessment of the airfoil shape  

2 – Verification of aerodynamic performance 

 

Conformance assessment of airfoils can be performed using standard software 

packages such as Mituotyo MAFIS [128] and Zeiss Blade Pro [129] .Such software 

packages have the capability to perform standard airfoil checks such as cord length, 

Leading/Trailing edge radius and profile tolerance of the overall shape. 

 



1-53 

 

 

Figure 21. Example of software package for airfoil analysis [128] 

 

Verification of aerodynamic performance could consist of feeding back the original 

coordinate data captured during the measurement process into a software package such as 

MISES [130]. In both cases (conformance assessment of airfoil; Simulation of collected 

data) the raw data output of the measurement system may consist of raw data points or 

interpolated data such a plane curve. Plane curves [131] are very important and can 

generally be described mathematically in the following manner: 

 

explicit form: ( )y f x  (as a function graph); 

implicit form: ( , ) 0f x y   

parametric form: ( ) [ ( ), ( )]r t x t y t  

 

For each of the above plane curves curvature can be derived in the following manner: 
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parametric form Curvature: Considering a parameterised curve r(t)=(x(t),y(t)), the 

curvature k(t) is given by: 

. .. .. .

. .
2 2 3/2

( )

( )

x y x y
k t

x y






 

  

explicit form Curvature: Considering a plane curve that could be provided as a graph of a 

function y=f(x), the curvature k(t) is given by: 

 

''

'
2 3/2

( )
( )

(1 ( ) )

f x
k t

f x





 

 

This formula for the curvature can easily be derived from the previous one if we 

represent the curve in the following parametric form: 

 

, ( )x t y f t   

 

Implicit form Curvature: Considering a plane curve provided by an equation F(x,y)=0: 

 

2 2

2 2 3/2

2

( )

xx y x y xy yy x

x y

F F F F F F F
K kn n

F F

 
  


 

,

2 2 1/2

[ ]
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x y

x y

F F
n

F F
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Interpolation is used to estimate the value of a function between known data points 

without knowing the actual function. Interpolation methods can be divided into two main 

categories [132, 133]: 

 

1 - Global interpolation. These methods rely on a constructing single equation that fits all 

the data points. This equation is usually a high degree polynomial equation. Although 

these methods result in smooth curves, they are usually not well suited for engineering 

applications, as they are prone to severe oscillation and overshoot at intermediate points. 

 

2 - Piecewise interpolation. These methods rely on constructing a polynomial of low 

degree between each pair of known data points. If a first degree polynomial is used, it is 

called linear interpolation. For second and third degree polynomials, it is called quadratic 

and cubic splines respectively. The higher the degree of the spline, the smoother the 

curve. Splines of degree m, will have continuous derivatives up to degree m-1 at the data 

points. 

 

3 - Linear interpolation result in straight line between each pair of points and all 

derivatives are discontinuous at the data points. As it never overshoots or oscillates, it is 

frequently used in chemical engineering despite the fact that the curves are not smooth. 

To obtain a smoother curve, cubic splines are frequently recommended. They are 

generally well behaved and continuous up to the second order derivative at the data 

points. Considering a collection of known points (x0, y0), (x1, y1), ... (xi-1, yi-1), (xi, yi), 
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(xi+1, yi+1), ... (xn, yn). To interpolate between these data points using traditional cubic 

splines, a third degree polynomial is constructed between each point. The equation to the 

left of point (xi, yi) is indicated as fi with a y value of fi(xi) at point xi. Similarly, the 

equation to the right of point (xi, yi) is indicated as fi+1 with a y value of fi+1(xi) at point 

xi. Traditionally the cubic spline function, fi, is constructed based on the following 

criteria: 

 

• Curves are third order polynomials, 

2 3( )i i i i if x a b x c x d x     

• Curves pass through all the known points, 

1( ) ( )i i i i if x f x y   

• The slope, or first order derivative, is the same for both functions on either side of a 

point, 

' '

1( ) ( )i i i if x f x  

• The second order derivative is the same for both functions on either side of a point, 

'' ''

1( ) ( )i i i if x f x  

This results in a matrix of n-1 equations and n+1 unknowns. The two remaining 

equations are based on the border conditions for the starting point, f1(x0), and end point, 

fn(xn). Historically one of the following border conditions have been used [134,135]: 

 

• Natural splines. The second order derivatives of the splines at the end points are zero. 

'' ''

1 0( ) ( ) 0n nf x f x   
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• Parabolic run out splines. The second order derivative of the splines at the end points is 

the same as at the adjacent points. The result is that the curve becomes a parabolic curve 

at the end points. 

'' ''

1 0 1 1

'' ''

1

( ) ( )

( ) ( )n n n n

f x f x

f x f x 




 

• Cubic run out splines. The curve degrades to a single cubic curve over the last two 

intervals by setting the second order derivative of the splines at the end points to: 

'' '' ''

1 0 1 1 2 2

'' '' ''

1 1 2

( ) 2 ( ) ( )

( ) 2 ( ) ( )n n n n n n

f x f x f x

f x f x f x  

 

 
 

• Clamped spline. The first order derivatives of the splines at the end points are set to 

known values. 

' '

1 0 0

' '

( ) ( )

( ) ( )n n n

f x f x

f x f x




 

 

In traditional cubic splines equations 2 to 5 are combined and the n+1 by n+1 tridiagonal 

matrix is solved to yield the cubic spline equations for each segment [136]. As both the 

first and second order derivative for connecting functions are the same at every point, the 

result is a very smooth curve. The above literature review revealed that the application of 

plane curves to extraction of curvature profiles of Leading edges has been applied in the 

context of computational fluid dynamics, specifically design intent versus performance 

behaviour of particular Leading edge profiles under particular working conditions. 
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Chapter 2  

 

ANOVA estimations of uncertainty in CMM measurements 

 

 

2.1 Comparison of two uncertainty methods during artefacts 

measurements 

 

2.1.1 The GUM approach 

 

Three CMMs were chosen for comparison of uncertainty budgets when performing a 

point to point measurement using calibrated lengths bars. Using the output data of the 

artefact measurements and applying the GUM approach, the expanded uncertainty was 

determined in the following way: 

 

1 – Calculation of the type A uncertainties  

2 – Calculation of the type B uncertainties 

3 – All type A and Type B uncertainties were combined in quadrature to derived the 

combined standard uncertainty 

4 – Calculation of effective degrees of freedom to derive the appropriate K value from a t 

distribution table 

 

Table-6  shows all the measurements runs taken by the CMM-1. 
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Table 6. Length bar measurement results 

Nominal 

(mm) 30.000 110.000 410.000 609.999 809.999 

Run 1 

 29.999 110.000 410.000 610.000 810.000 

Run 2 30.000 110.000 410.001 610.001 810.001 

Run 3 30.000 110.000 410.001 610.001 810.000 

Run 4 30.000 110.000 410.000 610.000 810.000 

Run 5 29.999 110.000 410.000 610.000 810.001 

Run 6 30.000 110.000 410.000 610.000 810.000 

 

Determining Type A uncertainties: 

The equation 1  was used to derive the type A uncertainty 1Au  where the subscript A 

indicated the uncertainty type. 

1 1

1

1 1
( )

1

n n

i i i

i i

A

x x x
n n

u
n

 






 
  (2.1) 

 

By applying equation 1 to the measurements runs for the 30.0005 mm length bar 1Au  was 

found to be 0.00006 mm. 

 

Determining Type B uncertainties: 
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Machine specification: 

The Maximum permissible error statement +/-(0.6+1.5L/1000) um was interpreted as the 

envelope in which any measurement result should lie in. For such assumption a 

rectangular distribution was used to convert the MPE statement into a type B uncertainty 

in the following manner: 

1

0.6 (1.5 30.0005 /1000)

3
Bu

 
 =0.372 um (2.2) 

 

Temperature effects: 

 The difference between the coefficients of thermal expansion between the CMM and the 

part to be measured was found to be: 

 

11.5 0.15 11.35 /
CMM Part

CTE ppm C


    (2.3) 

Temperature uncertainty for the room where the measurements took place was +/- 0.2 C. 

 

2

(11.35 30.0005 0.2)

3
Bu

 
 =0.0393 um (2.4) 

Three other standard uncertainties were derived from temperature effects. Two standard 

uncertainty terms due to the uncertainty in the coefficients of thermal expansion of the 

CMM and the part were derived assuming a 10% uncertainty for the CTE values. 

3

(1.15 30.0005 0.2)

3
Bu

 
 =0.00398 um (2.5) 
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4

(0.015 30.0005 0.2)

3
Bu

 
 =0.00006 um (2.6) 

 

A third standard uncertainty at the time of measurement: 

5

(11.35 30.0005 0.07)

3
Bu

 
 =0.0137 um (2.7) 

Because no temperature records were available at the time of measurement the same 

value for temperature uncertainty was used for both 2Bu  and 3Bu . In most cases it would 

be expected that the temperature uncertainty at the time of measurement would be of 

smaller magnitude when compared with the room’s temperature uncertainty. Such 

assumption was valid because the time period for actual measurements was likely to be 

less than the time period used to determine the room temperature uncertainty. The final 

standard uncertainty to be used for the combined uncertainty calculation was the 

calibration uncertainty of the artefact as described in Table-8 (section 2.1.2 of this 

document).  

6Bu =0.000085 um (2.8) 

 

The combined uncertainty was derived by combining all type A and type B uncertainties 

in quadrature: 

2 2 2 2 2 2 2

1 1 2 3 4 5 6AB A B B B B B Bu u u u u u u u       =0.384 um (2.9) 

The effective degrees of freedom Veff: 

4

4

( )
1

AB

A

u
Veff

u

n





=>30 (2.10) 
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Therefore from the t distribution table 95K =2. By multiplying the 95K  value by the 

combined standard uncertainty ABu  the expanded uncertainty was found to be: 

 

95 2 0.384 0.7685U     um (2.11) 

 

Table-7 summarises the GUM uncertainty budget contributors. 

 

Table 7.Uncertainty contributors (GUM) 

 

 

The major contributor in the above GUM budget was found to be the Machine 

specification followed by the artefact calibration uncertainty contributor. 
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2.1.2 ISO 15530-3 

 

According to the ISO 15530-3 the expanded uncertainty 95U  can be calculated from the 

following standard uncertainties: 

 

95 6p B w sU k u u u e     (2.12) 

The uncertainties of the measurement task were described in Table-8  as follows: 

 

Table 8. Uncertainty components according to ISO 15530-3  

Uncertainty component Uncertainty type according to 

GUM 

Variable 

Geometrical errors of CMM 
Temperature of CMM 
Drift of CMM 
Temperature of workpiece 
Systematic errors of probing system 
Repeatability of the CMM 
Scale resolution of the CMM 
Temperature gradients of the CMM 
Random errors of the probing system 
Probe changing uncertainty 
Errors induced by the procedure (clamping, 
handling, etc.) 
Errors induced by dirt 
Errors induced by the measuring strategy 

 

A  

pu  

Calibration of the calibrated workpiece B 
6Bu  

Variations among workpieces and calibrated 
workpiece in 

roughness 

form 

expansion coefficient 

elasticity 

A&B 
wu  
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The uncertainty budget derived was based on the same length bar measurements 

(30.0005m) as shown in the previous section of this document. The standard uncertainty 

wu  was derived in the following way: 

 

(20.6 20) 30.0005 1.15wu     =0.000021 um (2.13) 

Where 20.6 C was the average temperature during the measurements of the length bar 

and 1.15 ppm/C the uncertainty on the CTE of the part.  

The standard uncertainty pu : 

 

1 1

1 1
( )

1

n n

p i i i

i i

u x x x
n n 

 

  =0.00013784 um (2.14) 

 

The artefact calibration uncertainty: 

 

6Bu =0.000085 um (2.15) 

The systematic error:  

se =0.00045 um (2.16) 

The expanded uncertainty 95U : 

 

95U =0.777 um (2.17) 

Other uncertainties such as rounding, probe ball diameter, lack of parallelism of faces, 

dust could also be considered within the uncertainty budget although their contribution in 
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this particular example was relatively small. Appendix 2.1 contains all the data for the 

three CMM’s.  

The Figures-22, 23 a);b)  show the comparison between the ISO 15530-3 and the GUM 

budgets for three CMMs using length bar measurements data. All three machines were 

housed in controlled environments. CMM-1 and CMM-2 were used as reference 

machines for calibration purposes while CMM-3 was a production machine.  CMM-1 

specification (0.6+1.5L/1000 um), repeatability and systematic error were also shown on 

the chart: 

 

 

Figure 22. Comparison of length bar measurements using CMM-1 

 

From the Figure-22 above both the ISO 15530-3 and the GUM budget results follow the 

same trend and magnitudes above the machine specification and mean error values. The 

Figure-23 shows the same methodology applied to two other coordinate measuring 

machines. The results shown for CMM-2 indicate that there were some differences 

between the two uncertainty budgets. While the GUM budget trend was found to be 
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above the machine specification, the ISO 15530-3 budget was found to be below the 

machine specification. 

 

 

 

a) Machine specification:0.8+L/400 (um) 

 

b) Machine specification:1.2+3.3L/1000 (um) 

Figure 23. a) Comparison of length bar measurements using CMM-2; b) Comparison of 

length bar measurements CMM-3 

 

CMM-3 statistics were found to very similar to CMM-1 statistics in the sense that both 

uncertainty budgets followed similar trends and magnitudes above the machine 

specification. For both CMM-1 and CMM-3 the measurement mean error values were 

found to be above the repeatability values. CMM-2 showed repeatability values above the 

measurement mean error. The results highlighted some key differences between the two 

approaches investigated for deriving CMM uncertainty budgets. While the GUM 

approach focused on using specification information to derive standard uncertainties the 

ISO 15530 approach relied heavily on the output measurement data. This implied that the 

ISO uncertainty budget would always be more sensitive to the uncertainties associated 

with the measurement task. While the major contributor to the uncertainty budget in the 
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GUM approach was consistently the machine specification (UB1), the ISO budget 

revealed that the contributors relative importance varied with the calibration uncertainty 

becoming the major contributor for the 500mm length measurement (Table-9). 
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Table 9. Uncertainty contributors (GUM, ISO 15530-3) 
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2.1.3 Impact of measurement uncertainty in conformance assessment 

 

In the previous section two methods for deriving uncertainty budgets during CMM 

linear point to point measurements were derived and compared. The ISO 14253-1 defines 

the rules for conformance and non-conformance specification by recommending that 

rules be applied for the most important specifications controlling the function of the work 

piece or the measuring equipment. At a design stage the terms “in specification” and “out 

of specification” refer to areas separated by the upper and lower tolerance (double sided) 

or either LSL or USL for a one sided specification. When dealing with the manufacturing 

or measurement stages of the process the LSL and USL are added to by the measurement 

uncertainty. The conformance or non-conformance ranges are reduced due by the 

uncertainty. Such rules are to be applied when no other rules are in existence between 

supplier and customer. ISO 14253 allows for other rules to be agreed between customer 

and supplier. Such rules should be fully documented. During the verification stage the 

uncertainty range separates the conformance zone from the non- conformance zone.  

Assuming that CMM-1 (section 2.1) was to be used to measure parts with linear 

dimensions of nominal size 30mm and a tolerance of +/- 0.003mm, the application of 

conformance decisions could be applied since the uncertainty values required for the 

verification stage were previously evaluated in section 2.1 of this document. 

A part was measured as 30.0025mm. The expanded uncertainty derived for CMM-1 for 

a nominal length of 30.0005mm was found to be 0.77um according to both the GUM  and 

ISO 15530-3 standards. Such result implied that the actual measurement lied between 
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30.0018mm and 30.0032mm. Two other parts were measured with values of 30.005mm 

and 30.001mm respectively. 

 

 

Figure 24. Measured parts conformance assessment types. 

 

By applying the conformance decision rules in accordance with the ISO 14253-1 the 

following results were obtained: 

 For measured part 1 the result of the measurement was found to be neither conformance 

nor non-conformance with a specification can be proven. In the case of part 2 the result 

of the measurement was found to be above the USL and so non-conformance was proven. 

Part 3 result of measurement was found to be above the LSL and below the USL and so 

conformance was proven. From the results shown in Figure-24 it was clear that only the 

3
rd

 part measured conformed to verification specification in the case of using CMM-1. 

All the above results indicated that a CMM specification was the major key contributor to 

the measurement uncertainty and that for the machines investigated. Under the 

circumstances above it could be acceptable using the machine specification standard 
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uncertainty as the only quantity towards the expanded uncertainty budget but in cases 

where a CMM temperature could vary in the +/-2 C range this would no longer be 

acceptable as shown by the change:  

2

(11.35 30.0005 2)

3
Bu

 
 =0.393 um (2.18) 

The UB2 contribution would be as high as the CMM specification of 0.372 um. 

 

 Two options could be explored to improve the impact of measurement uncertainty on 

conformance decisions: 

 

1- Assuming that such prior knowledge existed in terms of expanded uncertainty, the 

information provided in the chart above could be used as a measurement 

capability feedback to the design authority because in principle further work 

could be carried out by designers to study the impact of altering the design 

specifications (USL,LSL). As such, potentially all 3 measured parts could become 

conformant with specification. 

  

2- A second option assuming that design specification could not be changed would 

be the use of the PUMA method. The ISO 14253-4 provides guidelines for 

management of uncertainty statements via the Procedure for uncertainty of 

measurement management (PUMA). 
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2.2 Sensitivity screening study of circular features with symmetrical 

lobbing 

2.2.1 Monte Carlo simulation definitions 

 

The impact of CMM point coordinate uncertainty has been investigated by previous 

authors [58,59] when determining the size and location of prismatic features such as 

circles and planes. Their work demonstrated how the impact of point uncertainty applied 

to a feature with predefined fixed form error affected the output response when applying 

different substitute geometry algorithms. This approach is based on only a single variable 

perturbing each measurement point represented by a normal distribution with specific 

standard deviation values.    

Factors such as form error and sampling strategy could be directly related because the 

information available for one parameter could influence the other. In this sense if a 

feature contains a form tolerance, the sampling strategy should reflect such tolerance. 

Form error itself by definition should be the representation of the true surface of a feature 

and as such in most cases is a function of the process used to manufacture such feature. 

On the other hand even for a feature with perfect form, form error can still occur but in 

this case it is induced by the measurement system in specific by a CMM. This effect can 

be due to the residual errors within the volume of the machine and lobbing effects in the 

case of kinematic probes. Random effects associated with coordinate measuring 

machines can be assumed (CMM in a measurement room under controlled environment) 

to be normally distributed with a standard deviation (repeatability) of 1 micron [50,51].  
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In a production environment the form of a feature is process specific therefore a good 

sampling strategy [51, 67] for a feature with three lobes may not be ideal for a feature 

with four lobes. Furthermore the lobes may have different magnitudes and CMMs of 

different specifications may be used to measure such features. In order to explore the 

impact of such factors on CMM measurement uncertainty it was decided to firstly 

distinguish the different types of lobbing effects by grouping them into two categories: 

 

1 - Symmetrical lobing  

2 - Non symmetrical lobing 

 

Symmetrical lobbing can be expressed in polar coordinates using: 

 (2.19) 

Where 2   is the roundness of the circle also known as form and ωθ the number of lobes 

(periodic function). In the Cartesian workspace equation (2.19) can be expressed using:  

    

 (2.20) 

Some random noise can be added to equations (2.20) using: 
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2, (0, )

X x

Y y

where N





  

 

 



  (2.21) 

Random noise in this study represented the CMM uncertainty by converting the machine 

MPE value to a standard uncertainty (Table-10). This conversion followed the guidelines 

set by ISO 14253-2 (section 8.4.5) where: 

 

, MPE b   
  (2.22) 

Where b represented a rectangular distribution. 

 

Table 10. CMM’s standard uncertainties 

 

Machine MPE (µm)  b 

(Distribution) 

Standard uncertainty 

(Feature(µm)) 

 

CMM A 2.5+3L/1000 0.6 1.529 

CMM B 5+3L/1000 0.6 2.973 

CMM C 7.5+3L/1000 0.6 4.416 

 

 

During each run of the Monte Carlo simulation the phase angle of the probing points was 

also randomised. This assumption was made due to the fact that in a production 
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environment it was likely that the phase angle of a particular form error could change 

with time. Of particular importance was to understand the behaviour of a circular feature 

given two types of systematic lobbing, fixed number of probing points and three 

measurement uncertainty values which represented three different CMM specifications.  

The quantities investigated were as follows:  

a) Mean error 
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 (2.23) 

 

b) Standard deviation 
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c) % of form captured 
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2.2.2 3 Lobe feature screening experiment results 
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The Table-11 summarises the implementation of the above methodology for two circular 

features with centre coordinates X,Y (50,50(mm)). 

 

Table 11. Factors selected for the Monte Carlo simulation of features with systematic form 

error. 

 

Lobe Type Radius Lobe 

Magnitude 

(mm) 

CMM U 

(mm) 

N. probing 

points 

X,Y centre 

coordinates (mm) 

3 0.021 0.00152 17 50,50 

3 0.021 0.00297 17 50,50 

3 0.021 0.00441 17 50,50 

5 0.021 0.00152 17 50,50 

5 0.021 0.00297 17 50,50 

5 0.021 0.00441 17 50,50 

  

  

 

Figure 25. Circular feature with 3,5 lobes form error vs circular feature with no form error 
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a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

Figure 26. Simulation results for the three lobed features 

 

From the Figure-26 above it was clear that the stdev values of r0, x0 and y0 increased 

with increment in the CMM standard uncertainty values almost linearly for all criteria. 
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The stdev values for r0, x0 and y0 were found to be smaller for LSC when compared with 

MIC and MCC criteria. This result showed that with increment in CMM standard 

uncertainty all stdev parameters also increased. Of particular interest was the difference 

between y0_stdev value for LSC between 0.00159mm and 0.00416mm which was found 

to be approximately 0.001mm. The same comparison when done for MCC or MIC was 

found to be 0.002mm. The stdev results presented can be converted to an expanded 

uncertainty interval at 95% confidence. This could be achieved by determining the 

interval of the distribution between 2.5% and 97.5% or the equivalent 2sigma. 

The mean error results obtained show slightly different behaviour in comparison to the 

Stdev results. For the LSC criteria the x0 and y0 values did not vary with increments in 

the CMM standard uncertainty values. The r0 value was found to be stable for the LSC 

criteria with a slightly increase for the MCC and decrease for MIC with increments in 

CMM standard uncertainty. 

Figure-27 shows the calculated area resultant from 1000 Monte Carlo runs for the centre 

coordinates of the 3 lobed circular feature for the different criteria. Area values reflected 

the maximum envelope size defined by the maximum X centre coordinate and maximum 

Y centre coordinate.  
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Figure 27. Simulation results for centre coordinates areas of the three lobed feature 

 

The positional area values appeared to increase almost linearly  for all the criteria. The 

difference between the LSC values and the MIC/MCC also increased with increments in 

the CMM standard uncertainty values. Of particular interest was the difference bewteen 

the areas for CMMB bewteen LSC and MIC/MCC and the area for CMM C bewteen 

LSC and MCC/MIC, where the area difference doubled bewteen the two CMMs.  The 

Figure-28  shows all the centre coordinates for the MIC criteria using the CMM B 

standard uncertainty value.  
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Figure 28. Impact on centre coordinates when applying MIC to a three lobed feature 

 

The maximum X,Y centre coordinate deviation from nominal was found to be 0.007mm. 

From the figure above it was found that the majority of the centre coordinate values for 

the Y coordinate remained between 50.004 and 49.996mm while the values of the X 

coordinate reamined bewteen 50.003 and 49.997. This results showed the potential 

uncertainty associated with position of circular features in the mesurement space. This 

result only represented the variation in position of a particular circular feature due to the 

uncertanties associated with the measurement strategy for the feature. It is forseen that a 

Datum feature to which this fetaure could be referenced to undergoing a similar 

measurement strategy, could increase the above variation in position ucnertainty because 

both Datum and feature would now vary in a simillar manner as observed in the Figure-

28.   
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2.2.3 5 Lobe feature screening experiment results 

 

Below are the results for the 5 lobed circular features under the same input conditions as 

the 3 lobed features in the previous section. 

 

 

a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

Figure 29. Simulation results for the three lobed feature 
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From the Figure-29 it was found that the stdev values of r0, x0 and y0 increased with 

increment in the CMM standard uncertainty values almost linearly for all fitting criteria. 

The stdev values for r0, x0 and y0 were found to be smaller for LSC when compared with 

MIC and MCC criteria, a similar result to the one obtained for the 3 lobed feature. The 

maximum stdev value for r0 was found to be 0.022mm for the MIC/MCC criteria and 

0.001mm for the LSC criteria. The maximum value for the stdev for the centre 

coordinates for MIC/MCC was found to be 0.0037mm and for LSC 0.0015mm. 

 A different set of results were found for the mean error values of r0, x0 and y0. Unlike 

the results obtained for the 3 lobed feature, the x0 and y0 values varied randomly with 

increments in the CMM standard uncertainty values. The r0 values were found to be 

stable for the LSC criteria and slightly increase for the MCC and decrease for MIC with 

increments in CMM standard uncertainty. 

The Figure-30  shows the area values determined from the Monte Carlo runs for all 

criteria for the three CMM standard uncertainty values. The area values for LSC criteria 

were found to be smaller when compared with MIC/MCC. The difference between the 

LSC values and the MIC/MCC values increased with increments in the CMM standard 

uncertainty values. When compared with the area values obtained for the three lobed 

feature, the 5 lobed feature results were found to be almost 100% higher in magnitude but 

of very similar trend to the trend displayed in Figure-27. 
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Figure 30. Simulation results for centre coordinates areas of the five lobed feature 

 

Figure-31  shows all the centre coordinates for the MIC criteria for CMMB. 

 

Figure 31. Impact on centre coordinates when applying MIC to a five lobed feature 

 

When comparing the area figures obtained in Figure-31 for the five lobed feature with 

Figure-28 (3 lobed feature) it can be seen that its area values were of higher magnitude. 

This result was also visible when comparing the maximum X,Y centre coordinates where 

the five lobed feature maximum X coordinate deviation was found to be 0.011mm when 

compared with the 3 lobed feature value of 0.007mm.   
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The results obtained clearly highlighted the impact of a particular number of factors on 

the standard uncertainty of a feature size and position for three different criteria. Of 

particular importance is that all values showed above (Stdev) reflected one standard 

uncertainty (1 sigma). Furthermore the lobes used to simulate feature form error were 

assumed to be systematic. 

 Although 1000 Monte Carlo runs were used in this screening study to simulate 

measurements of a particular feature, in a production environment a set of three repeated 

measurements could be represented by the Figure-32. This assumption tries to illustrate 

how the cost associated with such experiments can output results with high uncertainties. 

 

 

Figure 32. Example of three measurement runs of a three lobed feature 

 

The three runs represented three features manufactured during a process in which the 

phase angle changed between each feature but the form and magniuted remained 

constant. Hence during the inspection process the output size for the feature in Run 1 

could be different from the outputs from Runs 2 and 3. The same principle would be 

applied to the centre coordintaes of the three runs. Due to the fact that only 3 runs took 
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place it would be likely that any output statistical infomration could be of higher 

magnitude than the results so far presented in the screening study.  

2.2.4 Descriptive statistics 

 

Figure-33 shows the histograms and corresponding normality test plots using the 

Anderson Darling technique for the different uncertainties used in section 2.2.1 for the 

three lobed feature. The histograms in Figure-33 shows the distribution for the r0 

parameter when using LSC. According to the probability plot shown in Figure-33(b) the 

Andeson Darling test revealed a P value of 0.125, therefore we can reject the hypothesis 

that the data did not came from a normal distribution, at a significance level of 0.05. The 

skewness value obtained for the Figure-33(c) above was found to be -0.00.For a normal 

distribution the value is zero, and any symmetric data should have a skewness near zero. 

Negative values for the skewness indicate data with the left tail heavier than the right tail 

and positive values for the skewness indicate data with the right tail heavier than the left 

tail.  Kurtosis analysis revealed a value of 0.02. A value of 0 typically indicates normally 

peaked data while negative values indicate a distribution flatter than normal while 

positive values indicate a distribution sharper than normal. Table-12 summarises the 

descriptive statistics of r0 for all measurement uncertainty values. 
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c) MIC 
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f) MCC 

Figure 33. Normality test plots for r0 when applying LSC, MIC and MCC. 
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Table 12. Descriptive statistics table for radius (mm) 
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f) MCC 

Figure 34. Normality test plots for X0 when applying LSC, MIC and MCC 
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Table 13. Descriptive statistics for centre coordinate X0 (mm) 
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2.3  Sensitivity study via Monte Carlo simulation integration with full 
factorial experimental design 

2.3.1 Monte Carlo simulation integration with experimental design 

 

The main objective of this experiment was to understand the sensitivity of form, size and 

position of circular features using LSC, MCC and MIC. To investigate how the three 

algorithms react to the same input factors and respective levels. 

 

 

Figure 35. Example of dowel hole size and position tolerances  

 

The output responses chosen for the experimental design study were the mean values and 

the standard deviation. Both quantities represented both a random (Type A) component 

of uncertainty and a systematic component (Type B) of uncertainty. 

 

Feature Design Of Experiments definition 
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The following factors were selected for the feature experimental design: 

 

a) Lobe type ( ) 

b) Lobe magnitude (  ) 

c) CMM Uncertainty ( ) 

d) Number of probing points ( ) 

 

 

 

 

Table 14. Full factorial design factors and levels 

 

Factors Label Levels 

Lobe type  
i  2,1i ,3 2 3 5 

Lobe magnitude(mm) 
j  2,1j ,3 0.006 0.013 0.021 

CMM Uncertaitny (mm) 
k  2,1k ,3 0.0014 0.0028 0.0043 

Number of probing points 
l  2,1l ,3 4 9 17 

 

 

A 3k factorial design was selected for this experiment. For the four factors selected using 

the three level factorial design resulted in 81 experimental runs. Each run was replicated 

three times resulting in a total of 243 experimental runs. For each of the 243 experimental 
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runs 1000 Monte Carlo runs were generated. For the three level full factorial design a 

three way model can be used: 

 

),0(~ 2



N

where

y

ijklmt

ijklmtijklmijklmt 

 (2.26) 

 

 is the overall mean effect and  the treatment combinations. All treatment 

combinations were modelled as: 

 

       

klmikijmlkjiijklm ).......()()(    (2.27) 

 

where kji  ,, are the effects (positive or negative) on the response of factors A, B, C at 

levels i, j , k, respectively, ( ij ), ( ik ), and ( jk ) are the additional effects of the 

pairs of factors together at the specified levels, and klm)(  is the last additional effect 

of the last three factors together at levels, k,l,m. In this experiment only up to third order 

interactions were investigated therefore the three effect treatment combination described 

above. 

By replacing the variable ijklm  in (2.27) the four way model became: 
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( ) ( ) .......( )ijklmt i j k l ij ik jkl ijklty                
 (2.28) 

Where the symbol .... represented all the other two level and three level interactions. The 

flow diagram (Figure-36) shows the integration of the simulation method with the 

experimental design model. This model could be developed further to contain other 

factors such as temperature. 

 

 

Figure 36. Integration of experimental design with Monte Carlo simulation 

  

 

2.3.2 Feature Size experimental design results 

 

The results below show the outputs for the feature size mean error quantity for the three 

substitute geometry algorithms (LSC, MIC & MCC). 
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Feature size mean error  
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Figure 37. Residual plots for LSC radius mean values  

 

The Figure-37 above shows the residual plots for the LSC results. From the plot 

containing the fitted values it was clear that the experimental design values were 

randomly scattered which indicated that there were no systematic effects introduced by 

the DOE. Figure-38 shows the main effects plot for the LSC mean values output 

response. It was clear that the number of probing points and lobe magnitude had a greater 

impact on the magnitude of the mean values obtained when compared with the lobe type 

and CMM uncertainty. The magnitude of the mean error values indicated that the mean 

size of the circular features when extracted using LSC, was not sensitive to factors 

chosen for the experimental design. The results shown in Figure-39 indicated that when 

applying the MIC algorithm, lobe type, lobe magnitude and number of probing points 

have an effect on the mean radius values. The mean values range was found to be 

0.010mm according to the main effects plot. As the lobe magnitude increased the MIC 
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mean values decreased. The same result was obtained for the number of probing points 

variable. The results obtained for the main effect plots using MCC were similar to the 

results obtained for MIC. The range of the mean radius for MCC was found to be 

0.010mm. As the lobe magnitude increased the mean radius decreased. This result was 

found to be the symmetrically opposite to the MIC result. For all the main effects plot 

variables for MCC the results were found to be symmetrically opposite.  
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Figure 38. Main effects plots for LSC radius mean values 
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Figure 39. Main effects plots for MIC radius mean values 
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Figure 40. Main effects plots for MCC radius mean values 

 

The results obtained for the means of the centre coordinates indicated that the means of 

the centres coordinates for LSC, MIC and MCC were not affected by the any of the four 

factors selected for the experimental design (Appendix 2.3).  
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Feature size stdev 

Table-15 shows the P-values for the full factorial design model used in this study. The 

calculated F-statistic (F) is the value which would be used to compare with tables 

containing original data using degrees of freedom. The calculated p-value (P) determines 

the significance of the test. If the value lies below 0.05 the test is significant at the 5% 

level and there is evidence that the population means are not the same. If the value is less 

than 0.1 but greater than 0.05 then there is weak evidence in favour of the alternative 

hypothesis. Finally, if the p-value is greater than 0.1 there is no evidence to reject the null 

hypothesis that the population means are the same. The factors found to be statistically 

significant when using LSC were the CMM uncertainty and the number of probing of 

points. The interaction between the CMM uncertainty and the number of probing points 

was also found to be statistically significant. The main effects plot for the stdev shows 

that the range of the standard deviation values when using LSC was between 0.0015mm 

and 0.0005mm. As the CMM uncertainty increased so did the stdev values. An opposite 

result was found for the number of probing points factor, as the number of probing points 

increased the stdev values decreased. 
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Table 15. LSC experimental design P-values for Stdev results  

 

Source                                    F      P 

Lobe Type                              0.53  0.589 

Lobe Magnitude                         2.84  0.061 

CMM U                              35485.21  0.000 

N. probing points                  18806.25  0.000 

Lobe Type*Lobe Magnitude               0.15  0.962 

Lobe Type*CMM U                        1.18  0.322 

Lobe Type*N. probing points            0.55  0.701 

Lobe Magnitude*CMM U                   1.88  0.116 

Lobe Magnitude*N. probing points       1.00  0.406 

CMM U*N. probing points             1508.80  0.000 

Lobe Type*Lobe Magnitude*CMM U         0.83  0.576 

Lobe Type*Lobe Magnitude*              0.54  0.822 

  N. probing points 

Lobe Type*CMM U*N. probing points      0.72  0.673 

Lobe Magnitude*CMM U*                  1.46  0.177 

  N. probing points 

Error 

Total 

 

 

S = 0.0000247330   R-Sq = 99.85%   R-Sq(adj) = 99.79% 
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Figure 41. Main effects plots for LSC radius stdev values 

 

The Figure-42 shows the interaction between the CMM uncertainty and the number of 

probing points. The plot indicated that the change from 9 probing points to 4 probing 

points increased the magnitude of stdev when compared with the change from 17 probing 

points to 9. A similar result was obtained for the CMM uncertainty values where there 

was a step change observed for the 0.00433mm when compared with other CMM 

uncertainty values. 
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Figure 42. Interaction plot for LSC radius stdev values 

 

The P-values in the Table-16  indicate that when using MIC as the fitting algorithm all 

the factors used in the experimental design study were statistically significant. All the 

interactions were found to statistically significant with the exception of the two level 

interactions between lobe magnitude and CMM uncertainty. The R-sq value obtained 

indicated a good fit of the statistical model used. 

Table 16. MIC experimental design P-values for Stdev results 

 

Source                                   F      P 

Lobe Type                          4548.97  0.000 

Lobe Magnitude                     2319.12  0.000 

CMM U                              7395.34  0.000 

N. probing points                  5721.36  0.000 

Lobe Type*Lobe Magnitude            652.42  0.000 

Lobe Type*CMM U                      26.72  0.000 

Lobe Type*N. probing points        6234.00  0.000 

Lobe Magnitude*CMM U                  1.15  0.335 

Lobe Magnitude*N. probing points    479.83  0.000 

CMM U*N. probing points               8.81  0.000 

Lobe Type*Lobe Magnitude*CMM U        2.38  0.019 
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Lobe Type*Lobe Magnitude*          1173.41  0.000 

  N. probing points 

Lobe Type*CMM U*N. probing points    94.56  0.000 

Lobe Magnitude*CMM U*                 5.98  0.000 

  N. probing points 

Error 

Total 

 

S = 0.0000699205   R-Sq = 99.78%   R-Sq(adj) = 99.70% 

 

 

 

The main effects plot  in Figure-43 shows a range for the stdev values between 

0.0027mm and 0.0015mm. This range was found to be almost double of the range 

obtained when using the LSC algorithm clearly indicating that MIC as an algorithm was 

more sensitive to the factors chosen for this study. Unlike the main effects plot obtained 

for LSC, where lobe type and lobe magnitude where not significant factors, the MIC 

main effect plots revealed that such factors are of significance. 

 



2-45 

 

M
e

a
n

 o
f 

M
IC

_
ra

d
_

s
td

e
v

532

0.0027

0.0024

0.0021

0.0018

0.0015

0.0210.0130.006

0.004330.002880.00144

0.0027

0.0024

0.0021

0.0018

0.0015

1794

Lobe Type Lobe Magnitude

CMM U N. probing points

Main Effects Plot (data means) for MIC_rad_stdev

 

Figure 43. Main effects plots for MIC radius stdev values 

 

The Figure-44  shows the interactions plot for the MIC model. The interaction between 

lobe type and number of probing points indicated that when the number of probing points 

was 4 there was a significant change in the relationship between the two factors which 

was reflected in a higher Stdev value. Furthermore when the number of probing points 

level was 9 and the number of probing points level 3, a step change in the Stdev value 

was found and reflected in the second heights magnitude value for the Stdev. Another 

significant interaction was observed in the interaction plots between lobe magnitude and 

lobe type and lobe magnitude and number of probing points. In the case of both 

interactions when the factors were at their highest level a step change could be observed 

in the interaction plot lines. 
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Figure 44. Interaction plot for MIC radius stdev 

 

The P-values in the Table-17 indicated that when using MCC as the fitting algorithm all 

the factors used in the experimental design study were statistically significant. All the 

interactions were found to statistically significant with the exception of the two level 

interaction between lobe magnitude and CMM uncertainty. The R-sq value obtained 

indicated a good fit of the statistical model used. 
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Table 17. MCC experimental design P-values for Stdev results 

 

Source                                   F      P 

Lobe Type                          5796.70  0.000 

Lobe Magnitude                     2951.73  0.000 

CMM U                              9084.64  0.000 

N. probing points                  7251.58  0.000 

Lobe Type*Lobe Magnitude            831.76  0.000 

Lobe Type*CMM U                      35.05  0.000 

Lobe Type*N. probing points        7884.74  0.000 

Lobe Magnitude*CMM U                  0.46  0.766 

Lobe Magnitude*N. probing points    646.60  0.000 

CMM U*N. probing points              11.11  0.000 

Lobe Type*Lobe Magnitude*CMM U        3.67  0.001 

Lobe Type*Lobe Magnitude*          1496.70  0.000 

  N. probing points 

Lobe Type*CMM U*N. probing points   109.21  0.000 

Lobe Magnitude*CMM U*                 6.74  0.000 

  N. probing points 

Error 

Total 

 

 

S = 0.0000630575   R-Sq = 99.82%   R-Sq(adj) = 99.76% 

 

 

The main effects plot results obtained using the MCC algorithm was very similar to the 

one obtained using MIC. A maximum value of 0.0027mm and a minimum value of 

0.0015mm define the range of the stdev values obtained. 
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Figure 45. Main effects plot for MCC of radius stdev 

 

As the CMM uncertainty magnitude increased so did the magnitude of the Stdev for the 

MCC substitute geometry. As the number of probing points increased the Stdev values 

decreased. The lobe type factor showed a similar trend to the number of probing points 

response. Appendix 2.3 contains the interaction plots for the factors and respective levels 

shown in Figure-45. 

 

2.3.3 Feature centre coordinates experimental design results 

Feature centre coordinates Stdev  

 

The Figure-46  shows the main effects plot for the variation within the centre coordinates 

of the circular features when using LSC. Both X,Y coordinates show similar trends in the 

main effects plots. Both the Lobe Magnitude and CMM uncertainty factors do not appear 

to have a significant impact in the variation of the centre coordinates. The lobe type plot 
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indicated that the variation increased with the number of lobes. A two lobe feature was 

found to have half the variation at 0.002mm of the three and five lobe features. The use 

of 4 probing points recorded the highest variation from all the factors within the main 

effects plot with a magnitude of 0.0075mm. 
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b)  

Figure 46.  a) Main effects plot for LSC X coordinate stdev; b) Main effects plot for LSC Y 

coordinate stdev 

 

The MIC results shown in the Figure-47  indicated that the magnitude of the variation of 

the centre coordinates was higher when compared to the LSC main effects plot. In terms 

of which factors affected the variation results the most, the number of probing points 

recorded a variation of approximately 0.0125mm when using 4 probing points. It is worth 

noting that unlike the LSC results where the main effects plot were very similar for both 

the X,Y coordinates, the MIC main effects plots appear to be different both in terms of 

magnitudes and the trends that each factors displayed. The X coordinate main effects plot 

showed higher magnitudes of the standard deviation for all factors (with the exception of 

the CMM uncertainty) when compared to the Y coordinate plot.  
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b) 

Figure 47. a) Main effects plot for MIC X coordinate stdev; b) Main effects plot for MIC Y 

coordinate stdev 

 

The main effects plot for MCC indicates that the lobe magnitude and the number of 

probing points are key factors that affect the magnitude of the standard deviation for the 

centre coordinates. The maximum value for the standard deviation recorded was 

0.007mm when the lobe magnitude of was set at 0.021mm. A similar trend was found 

between the lobe type for the X,Y coordinates when using MIC and MCC. In both cases 

the X coordinate trend was different from the Y coordinate for the lobe type factor. 
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b) 

Figure 48.  a) Main effects plot for MCC X coordinate stdev; b) Main effects plot for MCC 

Y coordinate stdev 

 

From the main effects plot above it was observed that there were two extreme cases for 

the stdev values obtained. The plots  show all the centre coordinates obtained for the two 

experimental design runs that represented the two extreme cases of stdev for the three 

algorithms selected. The Figure-49 shows the all the centre coordinates obtained for the 

experimental design run with factors set as follows: Lobe type – 5; Lobe magnitude – 

0.021; CMM uncertainty – 0.00433; Number of probing points – 4. The plots obtained 

for all three algorithms indicated that the majority of the centre coordinates obtained were 

at an interval from the nominal value (50,50 (mm)) varying from 0.005mm to 0.0015mm 

in both X,Y directions. In all three cases an X coordinate value close to 50.03mm was 

obtained. This magnitude represents a difference of 0.030mm when compared with the 

nominal X coordinate value. A similar result was obtained for the Y coordinate with a 

maximum difference of 0.04mm was registered when applying MIC. 
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a) 

 

b) 

 

c) 

Figure 49. X,Y coordinates (Lobe type – 5; Lobe magnitude – 0.021; CMM uncertainty – 

0.00433; Number of probing points – 4) 
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a) 

 

b) 

 

c) 

Figure 50. X,Y coordinates (Lobe type – 2; Lobe magnitude – 0.006; CMM uncertainty – 

0.00144; Number of probing points – 17) 
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The Figure-50 shows the all the centre coordinates obtained for the experimental design 

run with factors set as follows: Lobe type – 2; Lobe magnitude – 0.006; CMM 

uncertainty – 0.00144; Number of probing points – 17. Unlike the results obtained in 

Figure-49 there was no interval found between the nominal centre coordinates and the 

cluster of points shown in the charts. For LSC and MCC the maximum difference for the 

Y coordinate and nominal Y value was 0.0015mm. MIC recorded a maximum Y 

coordinate of 50.003mm. In all three cases the maximum difference found between the X 

coordinate and nominal value was 0.0014mm.  

The two extreme cases shown above indicated potential case scenarios where any 

assumptions made about the factors and its respective levels could have an impact on the 

measurement uncertainty associated with the centre coordinates of a circular feature.   

Appendix 2.3 contains the main effects plots for mean values of the centre coordinates of 

the three algorithms.  

 

Lobe magnitude captured (Form error) 

From the results presented in this section it was clear that lobe magnitude was an 

important factor. The Figure-51  shows the main effects plot for the percentage of form 

error captured. From the four factor used in this study the number of probing points 

appeared to have the highest magnitude of effect on the main effect plot. For the three 

remaining factors the main effects plot indicated that in most cases the percentages of 

form error captured interval was between 60 and 80%. 
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Figure 51. Main effects plot for % of form error captured 

 

2.4 Assessing the environmental impact 

2.4.1 Experimental design set-up 

 

A commercially available CMM was used for the experimental study. The machine was a 

moving bridge with a specification MPE=(3.5+L/250)m (L being a length in mm) 

according to ISO 10360-2.  The experimental set-up is shown in the Figure-52. The 

machine was located in a temperature controlled room where the temperature could be set 

at a pre-specified reference value within an uncertainty of +/- 1 ˚C at 95 % significance 

level.  Therefore, by setting different levels of room temperature it was possible to 

simulate measurement tasks performed in workshop environments where the temperature 

could vary considerably throughout a working day during normal operating conditions.  
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Figure 52. CMM set up for experimental design 

 

In this investigation, two levels of room temperature were selected, 21 and 24 °C, 

respectively, and no temperature compensation settings were enabled on the CMM 

throughout the whole experimental activity.  The stability of the machine temperature at 

each of the two levels of air temperature considered was monitored using K type 

thermocouples applied in a number of points of the machine structure. 

 

Two different features were selected for this study: a ring gauge (R) and a sphere (S) to 

represent two and three dimensional features, respectively.  In both cases, the measurand 

was defined as the diameter of the part at each of the two examined levels of air 

temperature.   

The values of both the measurands were valid at a reference temperature refT
that was 

also stated in the artefact calibration certificate.  For the measurand in this study, as is 
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typical with any length, 
C 20 refT

.  Thermal expansion for the sphere (external feature) 

and thermal contraction for the ring gauge (internal feature) was expected to affect the 

values provided by the certificate when the operating temperature of the CRM was higher 

than refT
.  Consequently, new estimates T̂ ’s for the values of the measurands valid when 

the temperature of the measurand T  were produced using the following equation, under 

the assumption of linear thermal expansion of the CRM: 

 

   ˆˆˆ  refTT TT
ref  (2.29) 

 

In equation 2.29 refT was the coefficient of linear thermal expansion when the CRM was 

at the temperature refT
. The temperature T  of the CRM when the air temperature was set 

at 21 and 24 °C respectively, was monitored attaching K type thermocouples to the CRM 

at a number of points. Some of the information available on the calibration certificate of 

the CRM used have been summarised in Table-18. 

 

Table 18. Properties of selected features   

 

 

Ultimately, an estimate semr ˆ  of a series of measurement results taken in the i-th 

experimental condition was obtained using T̂  from equation 2.29.   

FEATURE CALIBRATED VALUE 

(mm) 

UNCERTAINTY 

 (mm) 

COEFFICIENT OF 

THERMAL EXPANSION 

(pp/mC) 

Ring Gauge 49.9994 0.4 11.5 

Sphere 29.9992 0.4 5.5 
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(2.30) 

The series of measurements was taken in repeatability conditions.  The results ix
 and 1ix

 

have not been obtained one after the other in a temporal sequence, but were assigned to 

the run order by randomly selecting them from all the measurements in all the 

investigated experimental conditions at a pre-specified temperature.  Differently stated, 

the measurements results were replicates and not repetitions of the measurement process. 

 

The set-up parameters chosen as discretionary factors were the probe extension, the 

stylus length [138]and the number of probing points.  For the probe extension, three 

different set-ups of the analysed CMM were considered: without any probe extension, 

with probe extensions of length 100 mm and 200 mm.  Three styli of the same type and 

geometrical characteristics (e.g. material, tip size), but with lengths 20, 60 and 110 mm, 

respectively, were chosen.  Regarding the planning of the measurements, the potential 

effects on the uncertainty of measurement due to two different numbers of probing points 

(seven and eleven) were examined. 

A kinematic probe with a standard force module [113] was used throughout this 

experiment.  The factors examined in this study with their levels are displayed in Table-

19. 
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Table 19. Experimental design factors  

 

 

A fully randomized experimental design with three factors at two levels each and two 

factors at three levels each identified 72 different experimental conditions, henceforth 

also referred to as treatments or cells of the design.  Three replicates of the design were 

considered, i.e. 3,2,1r . This resulted in an overall experimental effort of 216 

measurement tasks, i.e. 648 measurement tests. All the measurement tasks at one level of 

temperature were carried out first, and then all the others were performed at the 

remaining level of temperature investigated. Therefore, if some nuisance factor occurred 

while performing the measurement task at a certain temperature, it would lead the 

experimenter to attribute incorrectly such effects on the response variable ( semr ˆ ) to the 

temperature. 

The two types of the features, ring and sphere, were not randomly assigned to the run 

order. In fact, the sequence of measurement tasks was constructed as a sequence of pairs, 

each consisting of one measurement of the ring and one of the sphere in identical 

experimental conditions. This experimental strategy was adopted with the intent of 

counteracting the potential presence of nuisance factors that increase the variability of the 

response variable, thus making it more difficult to identify any significant effect on the 

FACTORS LABELS LEVELS  

Room temperature ( C ) 
 jtemp     72,,1j  20 24  

Feature 
 jfea      72,,1j  Ring (R)  Sphere (S)  

Probe extension (mm) 
 jpe      72,,1j  0 100 200 

Styli length (mm) 
 jsl      72,,1j  20 60 110 

No. of probing points 
 jnp      72,,1j  7 11 
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response variable due to the type of the feature measured. Once, the room temperature 

was set and the constraint on the run order for the type of features was introduced, all the 

others combinations of factors were randomly assigned to the sequence of the 

measurement tasks. 

When changing the probe extension or the stylus length a calibration procedure was run.  

Consequently, the random assignment of the experimental conditions to the order of the 

measurement tasks may result some times in a calibration procedure being run, but in 

some other time in no calibration procedure being run.  The last circumstance happened 

when the probe extension or the stylus length were not changed between two consecutive 

conditions.  This was considered acceptable because this experiment was meant to be 

representative of the actual operational conditions in which the measuring system was 

used. In such circumstances, the random sequence of calibration and non-calibration was 

most likely to happen depending on the variety of measuring tasks performed.  

 

2.4.2 Output responses 

 

It was moreover argued that performing calibration procedures during the experiment 

may increase the overall measured uncertainty of the system in comparison with ideal 

laboratory conditions. A suitable statistical model to describe the experimental results 

was as follows: 

 

            jjjjjjjj erfeatempnpslpefeatempsemr  :ˆ 
 (2.31) 
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In equation (2.31), the symbol   represented the mean of the response variable jsemr ˆ
 

over all the experiment and 72,,1j  was the index associated with each of the 

experimental conditions.  The meaning of the other symbols are summarised in Table-19, 

whereas the colon was used to identify an interaction effect on the response variable due 

to the factors it divided.  The parenthesised subscripts mapped the rows in the data to the 

levels of the factor used in that row. For example, temp(j) corresponded to the temperature 

used for that j. For brevity, the ellipsis stands for all the remaining possible second order 

interactions.  Interactions of higher order, i.e. involving more than two factors, were not 

considered because it was difficult to foresee how the experimental conditions considered 

could possibly cause them.  Moreover, from a practitioner’s point of view, it was also 

difficult to see how the awareness of the significance of a third, fourth or fifth order 

interaction could enrich the knowledge of the measuring system investigated.  The 

terms jer
’s were random variables that, without losing generality, were assumed to be 

independent and identically distributed with mean zero and constant variance 
2

er
. If they 

were also normal statistical inferences regarding the parameters of the model was 

facilitated. In the previous section it was observed that the realisations of jsemr ˆ
 were 

distributed asymmetrically.  Such circumstance made it very unlikely that the errors of 

the model to follow a symmetrical distribution such as the normal.  For this reason, it 

would make the inferential process easier if the response variable were transformed in 

such a way to assume a more symmetrical distribution.  A transformation that appears to 

suits this purpose was the logarithm transformation shown in the equation : 
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                jjjjjjjjj erfeatempnpslpefeatempsemr  :ˆlog 
 (2.32) 

 

Equation (2.32) represented a multiplicative model in the domain of the untransformed 

response variable.  It can therefore be rewritten as in its equivalent form: 

 

                  jjjjjjjjjj erpetempfeatempnpslpefeatemp

j eeeeeeeeesemr  
::

ˆ 

 (2.33) 

 

This model was fitted to the experimental data using the ordinary least squares method 

(OLS) as implemented in R [85].  A large number of two-way interactions were found 

not to be statistically significant resulting in the following final model: 

 

           

            jjjjjjj

jjjjjj

ernpfeaslpefeatemp

npslpefeatempsemr





:::                     

ˆlog 

 (2.34) 

 

The coefficient of determination (
2R ), was equal to 40.9 %.  This means that about 60% 

of variability of the response variable was not accounted for by this model and must be 

due to other unknown sources. The ANOVA table that shows the significance of each of 

the factors included in equation (2.34) is shown in Table-20.   
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Table 20. Experimental design ANOVA results 

 

 

Degree

s of 

freedom 

Sum of 

squares 

Means 

of squares 

F 

value 
Pr(> F) 

Temperature  temp  1 5.78 5.78 30.43 71041.8   

Probe extension  pe  2 4.06 2.03 10.67 41013.1   

Stylus length  sl  2 2.28 1.14 5.99 31031.4   

Type of feature  fea  1 0.879 0.879 4.63 21056.3   

Number of probing points  np  1 0.783 0.783 4.12 21070.4   

   featemp :  1 3.57 3.57 18.8 51083.5   

   slpe :  4 4.52 1.13 5.95 41039.4   

   feanp :  1 1.18 1.18 6.22 21055.1   

Residuals 58 11.0 0.190   

 

 

 

 

a)  

 

b)  

Figure 53. a) Stdev vs Temperature results; b) Bias vs Temperature results 
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Figure-54, 55 and 56 show the interaction plots corresponding to the three significant 

interaction effects in the final model. These show the mean semr ˆ for each combination of 

the interacting factors and are useful in interpreting the combined effect of these factors. 

Figure-56 shows that in the selection of the stylus length to obtain improved uncertainty 

performance, the probe extension must be also considered.  For different probe 

extensions, different styli may be preferable from the point of view of limiting the 

uncertainty.  Stylus length and probe extension should therefore be chosen together.  In 

Figure-55, this is demonstrated observing that with the same probe extension of length 

200 mm, uncertainty of measurement could be greatly improved if the stylus length was 

carefully chosen ( stylus length 60 mm). Appendix 2.4 contains the full published 

technical paper. 

 

 

 
Figure 54. Interaction effect of the temperature and the type of feature measured (ring and 

sphere) 
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Figure 55. Interaction effect of the stylus length and the probe extension 

 

 
Figure 56. Interaction effect of the type of feature and the number of probing points 
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2.5 Summary 

 

In this chapter two uncertainty estimation methods were compared using calibration 

data from CMM length measurements. Although both methods showed similar results for 

CMM-1 and CMM-3, CMM-2 showed a difference between the methods. In the case of 

ISO 15530-3 approach, the expanded measurement uncertainty results were found to be 

particular sensitive to the standard deviation calculations when compared with the GUM 

approach where the same quantity is used to derive the Type A standard uncertainty. 

Although such approaches can easily be applied to length measurements, they may not 

necessarily describe how the sensitivity of other geometrical features varies with changes 

to certain input factors. 

The sensitivity of CMM point coordinate uncertainty on a circular feature while 

applying different substitute geometry criteria (least squares circle, minimum zone circle, 

maximum inscribed circle and minimum circumscribing circle) was investigated. The 

sensitivity results can provide some guidance in selection of a CMM for a specified 

tolerance. For the generated features with three and five lobes the LSC algorithm stdev 

was always found to be of smaller magnitude when compared with MIC and MCC. The 

Area position results revealed that the three lobed feature was less sensitive to the input 

factors when compared with the five lobed feature. 

It was shown that the random uncertainties associated with the CMM measurements 

will generally increase the magnitude of form error derived from the measurement points, 

with the increase roughly proportional to the measurement uncertainty. The uncertainty 

associated with the estimate of the circularity has two contributing components, one due 

to finite sampling, and the other due to CMM uncertainty. 
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It was also shown that the different criteria chosen for the study react differently to the 

inputs chosen for the DOE. While the systematic error main effects plots show expected 

trends for the determined radius, the standard deviation main effect plots indicated that 

when using LSC lobe magnitude and lobe type factors effect was constant at the different 

levels chosen for the DOE. When using MIC and MCC the same factors did not behave 

in a constant manner when using different levels for the two factors. Main effects plots 

for the X,Y centre coordinates for the different criteria also showed how the standard 

deviation behaviour changed with the different levels of the input factors. Of particular 

importance were the differences between two extreme cases of the DOE runs where the 

centre coordinates variation changed from 0.003mm for the run using a two lobed feature 

to 0.03mm when using the five lobed feature. Furthermore the five lobed feature results 

showed that in none of the 1000 runs the nominal coordinates were ever replicated.
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Chapter 3  

 

Virtual estimations of task specific measurement uncertainty 

 

3.1 Estimating uncertainty of length measurements with Virtual CMM 

 

In this section the results presented in section 2.1.1 were used to create simulation 

models in Pundit/CMM. The Figure-57 shows the gauge model created in Pundit/CMM 

with all the settings using the information provided in section 2.1.1. 

 

 

Figure 57. Pundit/CMM simulation set up for length bar measurement. 

 

Firstly a comparison between Pundit/CMM and the physical measurement results from 

section 3.1.1 was used to test the UES in accordance to section C.2 of the ISO 15530-4. 
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Although it is recommended that for the measurement of the recommended artefacts to 

vary the measurement strategy (position and orientation of the test object, distribution of 

measurement points) in order to check the influence on the measurement uncertainty 

stated, this was not possible due to the fact that the data already existed. For all CMMs 

the MPE0 was used with all length bar measurement set up within the simulations along 

the X-axis of the individual CMMs which reflected the physical data measurements. The 

tables of results below indicate that for all of the length measurements performed by the 

different CMMs the UES conformed to the test [57]: 

 

2 2/ 1Ym Ycal Ucal Usim    (3.1) 

 where: 

Ym was the measurement result (for all measurements the maximum error from all the 

measurements was used) 

Ycal was the calibrated value  

Ucal was the expanded uncertainty of calibrated artefact  

Usim was the task specific expanded uncertainty of the simulated measurement 

 

 CMM-3 results showed that for the length measurement of 20mm the UES test was 

very close to 1. Appendix 3.1 contains all the input data used for creating the simulations 

in Pundit/CMM. Section C.3 of the ISO 15530-4 provides guidance on how to use 

computer aided verification to check the UES by comparing the absolute error of 

measurement with the uncertainty reported from the UES. 
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Table 21. CMM-3 UES length test 

 

Ycal (mm) Ym (mm) Ucal (mm)  

Usim 

(mm) ≤ 1  

20.001 20.0015 2.36E-06 0.0005 0.999989 

99.9949 99.9955 5.98E-05 0.000966 0.619931 

220.018 220.0194 0.00029 0.00178 0.776281 

300.0091 300.0107 0.000539 0.00229 0.680076 

420.0021 420.004 0.001058 0.00299 0.599081 

 

 

Table 22. CMM-2 UES length test 

 

Ycal (mm) Ym (mm) Ucal (mm)  

Usim 

(mm) ≤ 1  

20.0008 20.0004 2.76E-06 0.00046 0.86955 

100.0232 100.0227 6.98E-05 0.000582 0.852988 

220.0322 220.0315 0.000338 0.000925 0.710676 

300.0564 300.0573 0.00063 0.0012 0.66413 

420.0494 420.0501 0.001234 0.00158 0.349138 

500.0463 500.0455 0.001749 0.00182 0.316908 

 

 

Table 23. CMM-1 UES length test 

 

Ycal (mm) Ym (mm) Ucal (mm)  

Usim 

(mm) ≤ 1  

30.000500 30.000200 0.000171 0.000395 0.696984 

110.000600 110.000100 0.000307 0.000545 0.799336 

410.000200 410.001200 0.000817 0.001240 0.673421 

609.999900 610.000200 0.001157 0.001740 0.143571 

809.999500 810.001100 0.001497 0.002260 0.590225 
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Section C.4 provides guidelines on experiments where a known reference expanded 

uncertainty statement could be compared with a simulated experiment.  

Figure-58 shows the uncertainty estimations obtained by Pundit/CMM, GUM and ISO 

15330-3 (section 2.1 of this document). For all the results obtained Pundit/CMM 

uncertainty results were above the mean error results and the repeatability results with 

exception of CMM-1 30mm length where the reported UES uncertainty was found to be 

of very close to the mean error value. Although the comparison is provided was focused 

on mean error rather than absolute error, such comparison is still valid because it is an 

indication that the UES overestimation was consistent for more than one instance. The 

results obtained in section 2.1 for the uncertainty budgets were used for testing the 

comparison methodology described in section C.4 of the ISO 15530-4. It was found that 

for all CMMs the UES reported uncertainty was smaller when compared with the derived 

GUM uncertainty.  For CMM-1 the magnitude of the expanded measurement uncertainty 

results from Pundit was found to be smaller when compared with the ISO-15530-3 results 

and GUM results. Nevertheless the trends of the results obtained (Figure-58) via Pundit 

were found to be very similar to the uncertainty budgets estimated from physical 

measurements. Pundit results for CMM-2 indicated that the simulation results were very 

similar to the ISO 15530-3 both in terms of magnitudes and trend when compared with 

the GUM results. The results for CMM-3 indicated that Pundit underestimated the 

magnitude of the expanded measurement ucnertainty fo the first two length bars when 

compared with the two other uncertainty budgets. 

 



3-5 

 

a) 

b) 

c) 

 

Figure 58. a) Comparison of Pundit/CMM simulation with CMM-1 uncertainty budgets; b) 

Comparison of Pundit/CMM simulation with CMM-2 uncertainty budgets; c) Comparison 

of Pundit/CMM simulation with CMM-3 uncertainty budgets 
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Appendix 3 of this document contains further tests of Pundit/CMM where individual 

variables of the UES were tested based on known output responses. 

3.2 Manufacture and inter comparison measurements of a multi feature 
artefact.  

 

Some of the most common features found within critical parts of a gas turbine engine are: 

 

a) Radi 

b) Holes 

c) Scallops 

d) Free for features 

 

Such features were used to drive the design of a multi feature artefact. Most artefacts 

used for calibration/investigation of coordinate measuring machines capability comprise 

of a single type of feature or in some cases as shown in the figure 59 a small group of 

single features such as spheres, length bars, ring gauges. Due to traceability requirements 

such features will in most cases have very low form error both in terms of magnitude and 

uncertainty. A key requirement of the multi feature artefact was to be able to address the 

form error. For the purpose of this work two types of form error were applied to the 

“holes” features: 

 

a) Systematic 

b) Random  

 



3-7 

 

The Figures-59 a) and b) show how the two types of form error were applied to both 

artefacts 

 

 

a) 

 

b) 

Figure 59. a) Features specification for artefact A; b) Features specification for artefact B 
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Both Artefact A and Artefact B were designed to be symetrical with the main difference 

bewteen the artefacs being the magnitude of the form in the features. Another key feature 

which differentiates the two artefacts were the central spigot CS. This feature was a set 

up as a datum feature in both artefacts with the CS in artefact A having a systematic form 

error while the CS in artefact B had no form error. Fourier series was used ot generated 

the features containing random form error as shown in the equations 3.2 and 3.3 for a 

feature with 5 and 3 lobes respectively. The formula to produce Fourier series with 5 

harmonics was as follows: 

),(),( 0 bsrbr     (3.2)  

]cos)(sin)([),( 2

5

1

1  jjbjjbbs
j




  (3.3) 

b1 = [0.014, 0.004, -0.001, 0.010, 0.012], 

b2 = [0.006, 0.013, 0.006, -0.006, -0.008]; 
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b) 

Figure 60. a) Circular artefact with 5 harmonics; b) Fourier plot of the 5 harmonics 
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The point coordinates for the features were designed using a CAD package named 

Solidworks at CECA (Nottingham University). The material chosen for manufacturing 

the artefact was stainless steel. Both Artefacts were manufactured using a KernEvo CNC 

[139] with a claimed positioning accuracy in 3 axes mode of +/- 2µm. 

 

 

Figure 61. KernEvo CNC 5 axis machining center and Zeiss F25 CMM 

  

Due to the nature of the features in the artefact and the overall objective of this project, a 

Zeiss F25 CMM [140] was used to measure the machined artefacts and provide the 

calibration/reference data. The measuring volume of the CMM was the governing factor 

for the size of the artefacts manufactured. Appendix 1 contains all the CMM 

measurements for artefacts A and B. The measurements were taken using 177 probing 

points. Figure-62 shows the output measurement of feature 3A.  
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Figure 62. Fully assembled Multi feature artefact 

 

3.3 Experimental design 

 

For the experimental design of this project three different machines both in terms of 

specification and operational environment were selected. All machines selected were of 

the moving bridge type and all the probing strategy adopted was carried out in touch 

trigger mode. Table-24 summarises the main characteristic of each machine. 

 

Table 24. CMM’s specifications 

 

 Machine M Machine W Machine C 

Environment Class A (+/- 0.5 °C) Class B (+/- 1 °C) Shop Floor (+/- 2 °C) 

Specification 

(MPE um) 

0.6+1.5L/1000 2.5+4L/1000  3+4L/1000  

 

The experimental design of this project was to a certain extent governed by the CMM 

availability at each of the partners selected. The Table- 25 shows the probing strategy for 

Artefacts A and B. Each machine had to perform 3 repeat measurements of one artefact at 
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three different days. In a particular day the artefact would be rotated by 90° about the 

Datum-CS axis and applied probing strategy I-Basic. All features extracted from the 

machine measurements used LSC as the fitting algorithm. 

 

 

Table 25. Artefact A&B probing strategy 

 

Hardware   Probing Strategy  I-Basic III- 3xBasic 

Probe calibration 5 or 9 points Top plane   5 15 

      

Probe stily  2mm ball   Side line 1  3 11 

Probe Length                    20mm     

    Side line 2  3 3 

    Circle (Datum-CS)   4 13 

    Cone   2X4 3X11 

    Sphere   1X4+1 25 

    Scallop   5 17 

    Rad 1   4 4 

    Rad 2   4 4 

    Z Depth  2 mm  2 mm 
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3.3 Physical measurements results 

 

The results below are presented by each machine individually with a summary of all 

machines at the end of this section. The Table-27 shows the calibration plots for features 

1B, 2B, 3B, 4B, 5B and 6B. The results obtained with the Zeiss F25 were used as the 

reference nominal values. No uncertainty values were provided with the reference 

nominal which under normal circumstances would affect experimental results due to the 

fact that the calibration uncertainty is required to build an uncertainty budget as shown in 

section 2.1 of this workbook. An assumption was made that the uncertainty resultant 

from the Zeiss CMM would be relatively small when compared with the magnitudes of 

the features being explored in this experiment. 
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Table 26. Artefact B features plots from Zeiss F25 CMM measurements. 

 

 

1B 

 

2B 

 

3B 

 

4B 

 

5B 

 

6B 
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3.3.1 Machine M Physical measurement results - Size 

 

 

a) 

 

b) 

Figure 63.  Day 1 I-Basic; a) Mean error of three repeats b) One standard deviation of three 

repeats 

Figure-63 shows the results for the mean error and one standard deviation of the 

measurement results taken by machine M. The magnitude of the mean error for most 

features was found to be below 0.002mm with feature 2B showing a mean error value of 

0.04mm. Feature 2B consisted of a circular feature with a systematic 4 lobe effect with a 

magnitude of 0.04mm. Table-26 shows the calibration plot for feature 2B. From the 

measured plot it is clear that the lobes are in phase with the X,Y datum lines. The basic 

measurement strategy for features 1B to 6B was 4 probing points equally distributed. It is 

clear that the probing points were also in phase with feature lobe during the measurement 

process which is a good indication that the datuming strategy was consistent with the one 

used during the calibration of the artefact. The standard deviation results obtained for all 

features were below 0.0005mm with the features 3B and 5B showing slightly higher 

Stdev values when compared to the remaining features. 
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a) 

 

b) 

Figure 64. Three days I-Basic with 90 X,Y rotation about Datum-CS ; a) Mean error of 

three repeats b) One standard deviation of three repeats 

 

Figure-64 shows the results for both mean error and standard deviation of the 

measurement results with a 90 rotation about the Z axis in the X,Y plane. Unlike the 

results show in Figure-63, Figure-64 shows the measurement results over a 3 day period. 

Although it was not shown, the magnitude of the mean error for Figure-64 a) was found 

to be consistent with one found for the mean error in Figure-64 of 0.039mm. Although 

there was a rotation of about the Z axis, due to phase of the lobe of this feature it was 

clear that the 4 probing points where once again in phase with the feature lobe. For the 3 

days all features with exception of feature 2B show mean error values below 0.002mm 

with higher magnitudes found for day 1 of the experiment when compared with the 2 

following days. Figure-64 b) shows that the magnitude of the standard deviation values 

for all three days for all the features was below 0.0008mm. Figure-65 shows the 

measurment results for all features using  13 probing instead of the 4 probing points. The 

mean error plot indicates that for all features during all days of the experiment the 

magnitude of the mean error was found to be below 0.001mm. Such results clearly 

indicates that the use of a higher number of probing points not only improved the 
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magnitude of the mean error for the experimental runs but it also deals with lobed 

features suhc as feature 2B in a more accurate manner. 

 

 

a) 

 

b) 

Figure 65. Three days 3X-Basic; a) Mean error of three repeats b) One standard deviation 

of three repeats 

 

The standard deviation plot for the 3 days of experimental trials indicates that the 

magnitude of the Stdev was found to below 0.0012mm. Some of the values obtained were 

found to slightly higher when using a higher density of probing points when compared 

with Figure-64 where a low density of points was used.  

 

3.3.2 Machine C Physical measurement results - Size 

 

The results presented for machine C were obtained using artefact A unlike machine M. 

Figure-66 contains the results for the mean error and the standard deviation. The 

magnitude of the mean error for all features measured (1A to 6A) were found to be below 

0.005mm with feature 1A recording a mean error value of 0.010mm for both days. 

Feature 2A was found to have the highest mean error magnitude of 0.025mm.  
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a) 

 

b) 

Figure 66. I-Basic; a) Mean error of three repeats b) One standard deviation of three 

repeats 

 

These results were found to have some similarities with the results obtained for Machine 

M feature 2B.  The Table- 27 shows the calibration plots for both features 1A and 2A. 

 

Table 27. Zeiss F25 CMM measurement plots for features 1A and 2A. 

 

1A 

 

2A 
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From the reference plots in Table-20, it was clear that the magnitude of the mean error 

results was found to higher for these two features due to fact that the probing strategy was 

in phase with the features lobe. In the case of feature 1A the magnitude of the mean error 

measured when compared with form error applied was found to be approximately 1/3. 

This was due to the fact that only one of the four probing points used would ever touch 

the peak of the 3 lobe effect. The magnitude of the standard deviation obtained for all 

features was found to be below 0.0008mm.   

 

 

a) 

 

b) 

Figure 67.  I-Basic with 90 X,Y rotation about Datum-CS ; a) Mean error of three repeats 

b) One standard deviation of three repeats 

 

Figure-67 shows the results obtained for features 1A to 2A using the same probing 

strategy as the one applied to results shown in Figure-66 but with a rotation about the Z 

axis of 90. The mean error results obtained were very similar to the ones presented in 

Figure-66 with features 1A and 2A recording large mean error values while the 

remaining features recorded mean error values below 0.005mm. The standard deviation 

results were found to be of slightly higher magnitude when compared to the ones 

obtained without the X,Y rotation and mainly during day 2.  
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a) 

 

b) 

Figure 68. 3X-Basic; a) Mean error of three repeats b) One standard deviation of three 

repeats 

 

Figure-68 shows the mean error and standard deviation results obtained using the high 

density probing strategy. The mean error results show that for all features there was a 

decrease in the magnitude of the mean error. For most features the magnitude of the mean 

error was found to be below 0.001mm with features 1A and 2A recording values of 

0.0025mm and 0.0032mm respectively. The magnitude of the standard deviation results 

obtained for all features was found to be below 0.001mm. Such result was found to be 

slightly higher when compared with results obtained in Figure-66 where less probing 

points were used during the measurements.  

3.3.3 Machine W Physical measurement results - Size 

Figure-69 shows the measurement results obtained for features 1B to 6B. The magnitude 

of the mean error results was found to be below 0.002mm for all features with the 

exception of feature 2B where the mean error magnitude was found to be 0.04mm. The 

trend and magnitudes of the measurement results were found to be very consistent with 

the ones obtained by machine M. A similar result was found for the magnitudes of the 
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standard deviation for all the features measured when compared to Figure-70. Figure-71 

indicates all standard deviation results for all features remained below 0.0005mm. 

 

 

a) 

 

b) 

Figure 69. I-Basic; a) Mean error of three repeats b) One standard deviation of three 

repeats 

 

 

 

 

a) 

 

b) 

Figure 70. I-Basic with 90 X,Y rotation about Datum-CS ; a) Mean error of three repeats b) 

One standard deviation of three repeats 
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The results shown in Figure-70 indicate that magnitude of the mean error was found to be 

very similar to the one shown in Figure-69. Such result clearly shows that the X,Y 

rotation applied to the measurement strategy did not have a strong effect on the mean 

error results obtained. All standard deviation results shown in Figure-70 were found to be 

below a value of 0.0008mm. 

 

 

a) 

 

b) 

Figure 71. 3X-Basic; a) Mean error of three repeats b) One standard deviation of three 

repeats 

 

Figure-71 shows the mean error and standard deviation results obtained during the three 

days using the high number of probing points strategy. When compared with the results 

shown for the mean error plot in Figure-70, it was clear that by using a higher number of 

probing points reduces in general the magnitude of the mean error. All mean error values 

shown in Figure-71 a) were found to be below a value of 0.001mm including feature 2B 

which previously featured a mean error of 0.04mm. Standard deviation values were found 

to be below 0.0012mm with the higher values found during day 2 measurements. 
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3.3.4 Features Position results (M, C, W) 

The positional error (P) for the features of artefact B was derived by summing the X and 

Y coordinates mean errors in quadrature. 

 

Machine M 

 

From the Figure-72 a),b) above the maximum positional error found was 0.025mm for 

feature 3B. This result was consistent when using the 1XBasic and 1XBasic XY rotation 

probing strategy for all days. Feature 3B consisted of a systematic 5 lobe effect with 

0.025mm amplitude. Feature 4B was found to have a positional error of 0.013mm. This 

feature consisted of 3 harmonic lobbing effects with 0.022mm amplitude. The magnitude 

of the positional error for features 2B,5B and 6B was found to be 0.005mm. Both features 

5B and 6B had no form error while feature 2B had a systematic 4lobed effect with 

amplitude of 0.020mm. Feature 1B had a 3 lobe systematic effect with amplitude of 

0.010mm. Its positional error was found to be 0.0085mm. These results seem to indicate 

that both the phase and amplitude of the form error applied to a feature will have an 

impact on its positional accuracy.  Figure-72 b) shows that for the different days of the 

experimental trials the results showed consistency which indicated that the factors 

affecting this experimental trial were of systematic nature. Figure-72 c) showed a 

reduction in the magnitude of the mean error for all features with a maximum value of 

0.007mm recorded for feature 5B. 
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a) 1XBasic 

 

b) 1XBasic XY rotation 

 

c) 3XBasic 

Figure 72.  a) Mean error of three repeats 1XBasic; b) Mean error of three repeats 1XBasic 

XY; c) Mean error of three repeats 3XBasic 
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Machine W 

 

a) 1XBasic 

 

b) 1XBasic XY rotation 

 

c) 3XBasic 

Figure 73.  a) Mean error of three repeats 1XBasic; b) Mean error of three repeats 1XBasic 

XY; c) Mean error of three repeats 3XBasic 
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From the Figure-73 a),b)  the maximum positional error found was 0.025mm for feature 

3B. This result was consistent when using the 1XBasic and 1XBasic XY rotation probing 

strategy for all days. The results obtained were very similar to the ones obtained by 

Machine W (Figure 72). 

Figure-73 c) showed a reduction in the magnitude of the mean error for all features with a 

maximum value of 0.007mm recorded for feature 5B. This result was obtained due to 

increase in the number of probing points. 

 

Machine C 

 

Machine C results (Figure-74 a),b)) showed higher magnitudes of the mean error when 

using 1XBASIC strategy. The maximum value of the mean error found was for features 

5A and 6A which. Both features did not have any artificial for error inferred. Similarly 

feature 2A was also found to have a high mean error value of 0.025mm. The 3XBASIC 

results showed an overall reduction in the mean error values for all features. Features 1A 

and 3A recorded the highest mean error values of 0.001mm.   

The standard deviation results for the position results can be found in Appendix 3.3.4. 
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a) 1XBasic 

 

b) 1XBasic XY rotation 

 

c) 3XBasic 

Figure 74.a) Mean error of three repeats 1XBasic; b) Mean error of three repeats 1XBasic 

XY; c) Mean error of three repeats 3XBasic 
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3.4 VCMM multi feature artefact simulation  

 

The Figure-75 shows an example of a hole positional tolerance for feature 3B set up in 

Pundit/CMM with the corresponding datum strategy.  

 

 

 

Figure 75. Datum set up for Artefact B in Pundit/CMM 

 

The Figure-76 shows an example of the probing strategy (1XBasic) and the definition of 

form error for feature 3B. The sections below describe compare the original physical 

measurement results for size and position of the 6 circular features for artefacts A and B. 

Uncertainty values of the physical measurement results were calculated in accordance 

with Pundit’s uncertainty calculation (ISO 15530-3).   
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Figure 76. Probing strategy and form error definition in Pundit/CMM 

 

 

3.4.1 VCMM vs Physical measurement results – Size 

 

Machine M 

Figure-77 shows the results indicate that there was good correlation for the results 

obtained via Pundit/CMM and the physical measurements of machine M. Figure-77 a) 
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feature 2B showed an uncertainty of 0.04mm during the physical measurement trails 

while the magnitude obtained via Pundit’s simulation was 0.058mm. Although the value 

obtained from the simulation was of higher magnitude when compared with the physical 

measurements, the trend of results obtained was very similar with feature 2B recording an 

extremely high uncertainty value. 

 

 

 

a)  

 

b)  

Figure 77. Pundit Simulation comparison for Machine M feature sizes a) 1XBasic; b) 

3XBasic 

 

The results obtained by Pundit/CMM also demonstrated that the UES reported 

uncertainty for all features in 1XBasic was higher when compared with the mean error 

results.  When simulating the 3XBasic experiment the UES uncertainty values were also 

found to be higher than the mean error values obtained in the physical measurements 

section 3.3 (Figure-66,67,68) with the exception of features 4B and 5B where the UES 

reported uncertainty was very similar to the mean error values.  
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Machine W 

From the results in the Figure-78 a)  figure 2B recorded an uncertainty value of 0.040mm 

for the physical measurements and 0.057mm using Pundit/CMM. For the remaining 

features Pundit’s results were very similar to the physical measurement results.  

The results from Pundit/CMM shown in Figure-78 b) indicate that the simulation values 

for most of the features were overestimated when compared with Days 1 and 3 of the 

physical measurements. The uncertainty values obtained during day 2 of the physical 

measurements were found to be of approximately 100% higher magnitude when 

compared with the two other days.    

 

 

a)  

 

b)  

Figure 78. Pundit Simulation comparison for Machine W feature sizes a) 1XBasic; b) 

3XBasic 

 

The uncertainty values reported for the 1XBASIC and 3XBASIC experiments were 

found to be above the mean error values reported in section 3.3 (Figure-69,70,71). 
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Machine C 

The chart 79 summarises the uncertainty values obtained for the 6 features in Artefact A. 

The results indicated that there was good correlation for the results obtained via 

Pundit/CMM and the physical measurements of machine C. Figure-79 a) feature 2A 

showed an uncertainty of 0.028mm during the physical measurement trails while the 

magnitude obtained via Pundit’s simulation was 0.042mm. Although the value obtained 

from the simulation was of higher magnitude when compared with the physical 

measurements, the trend of results obtained was very similar with feature 2A recording 

an extremely high uncertainty value. When compared with the physical measurement 

results presented in section 3.3 (Figure-66,67,68), the 1XBASIC UES reported 

uncertainty was found to higher than the mean error values. For the 3XBASIC features 

the UES reported for features 1A and 2A was found to be smaller when compared with 

the mean error values. While the mean error values were found to be 0.0025mm and 

0.003mm, the reported UES uncertainty values were 0.0022mm for both features. 

 

 

 

a) 

 

b) 

Figure 79. Pundit Simulation comparison for Machine C feature sizes a) 1XBasic; b) 

3XBasic 
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3.4.2 VCMM vs physical measurement results – Position 

 

Machine – W 

 

The chart 80 summarises the positional uncertainty values obtained for the 6 features in 

Artefact B. Uncertainty values were calculated in accordance with Pundit’s uncertainty 

calculation. From the chart 80 the results indicate that there was good correlation for the 

results obtained via Pundit/CMM and the physical measurements of machine W. Figure-

80 a)1XBasic feature 1B showed an uncertainty of 0.008mm during the physical 

measurement trials while the magnitude obtained via Pundit’s simulation was 0.025mm. 

Feature 3B showed a similar trend where the uncertainty values of the physical 

measurements were found to be approximately 0.024mm and the simulation values 

0.057mm. For the remaining features the uncertainty values obtained via Pundit CMM 

were very similar to the ones obtained via the physical measurements for the different 

days. 

Figure-80 b)3XBasic showed that Pundit CMM results not only followed the trend of the 

results for the different features but the magnitudes also correlated extremely well. 
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a)  

 

 

b)  

Figure 80. Pundit Simulation comparison for Machine W features position a) 1XBasic; b) 

3XBasic 

 

When compared to the 3XBASIC mean error physical measurement results, the UES 

uncertainty values for all the features were found to be smaller. Most of the features mean 

error position results were found to be above 0.006mm while the reported UES values 

were 0.004mm for most features.  

 

3.4.3 Impact of form error definition within Pundit/CMM 

 

In order to investigate the overestimation of features 1B and 3B in Pundit/CMM, the 

systematic form error was loaded via the “dense data” within Pundit’s manufacturing tab 

menu. This option was previously used to load the data generated for features 4B and 4A 

of the multifeature artefact due to the nature of the lobes generated using Fourier series as 

opposed to totally random lobes. 
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Figure 81. Pundit/CMM dense data option 

 

The results below show the impact of using the dense data option for the application of 

form errors. Figure-82 a),b) show the simulation results for the positional and size 

measurements respectively using the 1XBasic Probing strategy. 

 

 

a)  

 

b)  

Figure 82. Impact of dense data option using 1XBasic a) Feature position; b) Feature size 

  

The results above indicated that for features 1B and 3B the magnitude of the positional 

uncertainty values obtained when using “dense data” option  decreased to approximately 

0.005mm. For feature 2B the magnitude of the positional uncertainty was found to be the 

same when using Pundit/CMM in both “User query” mode and “dense data” mode.  
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A similar result was found for the uncertainty associated with the size of feature 2B 

where its magnitude was found to be 0.004mm as opposed to 0.057mm. For feature 3B 

the uncertainty value increased to 0.005mm using the “dense data” mode.   

Figure-83 a),b) show the simulation results for the positional and size measurements 

respectively using the 3XBasic Probing strategy. 

 

 

a)  

 

b)  

Figure 83. Impact of dense data option using 3XBasic a) Feature position; b) Feature size 

 

The results above indicated that the magnitude of the uncertainty values for both size and 

positional uncertainty did not change significantly using both simulation options within 

pundit/CMM. 

 

Machine – M 

The simulation results from Figure-84 a) indicated that Pundit/CMM overestimated the 

uncertainty associated with features 1B and 3B. In both cases the overestimation was 

found to be approximately 100% when compared with the physical measurement results. 

For the remaining features, the simulation results indicated an underestimation when 

compared with the physical measurement results. 
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a)  

 

b)  

Figure 84. Pundit Simulation comparison for Machine M features position a) 1XBasic; b) 

3XBasic 

 

The results obtained using the 3XBasic probing strategy indicated that for all features 

Pundit/CMM underestimated the positional uncertainty when compared with the physical 

measurements of the artefact. For most of the features the underestimation was 

approximately 50%.  

When compared with the mean error results found shown in section 3.3 for the 1XBASIC 

simulation the UES only overestimated the uncertainty for features 1B and 3B. For the 

remaining features the UES underestimated the measurement uncertainty when compared 

with the mean error results. Nevertheless the trends found for features 1B and 3B 

replicate d the trends found during the physical measurement trials. 

  

Machine – C 

 

The simulation results from Figure-85 a) indicated that Pundit/CMM overestimated the 

positional uncertainty associated with all features when compared with the physical 

measurement results. The overestimation obtained via Pundit/CMM was approximately 
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100%. For the 3XBaisc simulation, Pundit/CMM estimations were found to be very 

similar to the ones obtained for all the artefact features.  

 

 

a)  

 

b)  

Figure 85. Pundit Simulation comparison for Machine C features position a) 1XBasic; b) 

3XBasic 

 

Unlike artefact B, artefact A contained a Datum features CSA with form error.  

 

 

3.5 A Case study for application of Pundit CMM during dowell hole 

measurement of shafts 

 

The drawing definition for the dowel holes measurement can be seen in Figure-86. 

Datum A and B were used to define a datum line across the centre of the shaft to which 

the centre of each dowell hole is referenced to. Datum C indicates the holes should be 

measured has cylinders and not circles. 
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Figure 86. Definition for measurement of dowell holes 

 

The measurement system used for this task is an Eley CMM with a specification of 

5+6.7L/1000 (um) according to the ISO-10360-2. Within this particular CMM 

measurement system there were factors that influence the measurement result. The 

breakdown of these factors can be seen in Figure-87.   

 

 

 

Figure 87. Critical to quality characteristics (CTQC) diagram for the specific CMM 
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The underlying methodology used in this study was based on the ISO-15530-3 approach 

where a reference artefact that represents the measurand under investigation was used to 

determine the task specific measurement uncertainty.  Below are the steps used to 

determine the expanded measurement uncertainty for the physical measurement of the 

Master artefact: 

 

 

a) Calibration of the artefact/part using the same measurement strategy i.e datum’s, 

planes. 

b) Measure the Master shaft 10 times on the Eley CMM under the same conditions 

c) Compute both standard deviation and mean error based on the calibration results 

d) Used the quantities in c) to determine expanded measurement uncertainty 

 

 

Figure 88. Experimental workflow using the ISO 15530-3 approach 

 

The quantities used to determine the expanded measurement uncertainty can be seen in 

Figure-88 where: 
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calU was the standard uncertainty evaluated from the expanded uncertainty given on the 

calibration certificate of the calibrated ring gauge: 

 

 (3.4) 

 

And k is the coverage factor with a value of 2 for a coverage probability of 95%. The 

standard uncertainty due to measurement process pu is equal to stdv as defined by 

equation-xx. wu  is the standard uncertainty from the manufacturing process: 

 (3.5) 

 

Where u is the standard uncertainty of the expansion coefficient of the master artefact, T 

is the average temperature during the experimental measurement and L the dimension 

under investigation.  For this study the value attributed to u  was 10% of the thermal 

expansion coefficient value.  

 

Environment – According to the data logger present in the CMM room the temperature 

uncertainty for the facility was 20 +/- 2 C.  

 

Probe Extension – No probe extensions were used during this study. 
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Styli – The styli used was 20 mm long with a 2mm ball tip. 

 

Measurement plan – The measurement plan used for the master shaft followed the 

production practice. Probe 6 points in each of the datum’s A and B to establish the centre 

of a circle. From the centre of the circle a datum line is established and the centre of each 

hole is then referenced in terms of position to the datum line. The artefact selected for the 

study was a Master Shaft which had the same features being assessed in this study. All 

the measurements were carried out using production parts datum’s and alignments so that 

the results represent the production part as much as possible. Figure-89 illustrates the 

master shaft used in Pundit/CMM.  

 

 

Figure 89. 3D visualisation of master shaft in Pundit/CMM 
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3.5.1 Physical measurement results of the master shaft 

 

The Figure-90 contains the data for 10 repeated measurements of the size and position of 

the dowel holes seen in Figure-89. The calibration values were used as nominal values 

for the calculations below. From the chart below it was clear that the CMM repeatability 

was between 0.0005 and 0.0015mm for both size and position. The same value applied 

for the mean error in terms of the hole size. For the mean error in terms of hole 

positioning the values varied between 0.0005 and 0.01 mm. Since the machine 

specification fell within the 6 microns range and that most holes never reached such 

value, the 0.01 mm results could only be considered outliers. These were later identified 

as squareness error on the machine by an Eley technician. This error was only found 

when the Z axis was fully extended. For the purpose of uncertainty evaluation the value 

of 0.0045 mm was taken as being the mean error for both X and Y position. The sine 

wave effect seen on the screen may be due to factors such as fixturing concentricity 

during manufacture of the master shaft.  
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Figure 90. 10 repeated measurements of 12 holes on the master shaft  

 

 

For the Expanded uncertainty calculation the following assumptions/values were used: 

 

2 0.002cal
cal cal

U
u where K and U

k
    

 

 (3.6) 

The calculated expanded measurement Uncertainty values for both X and Y was 0.006 

mm. Given that it was a positioning tolerance (in terms of radii but referenced to a 

diameter) the following applied: 

 

2 22 0.0169U X Y mm     
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3.5.2 Pundit/CMM simulation results 

 

All the assumptions/values used in section 3.5.1 were used when setting up the Pundit 

simulation.  The datum set-up can be seen in Figure-91 . The only variable which was set 

using previous experience/knowledge was the probe set-up. Form errors were also not 

considered in this task given they could have had a severe impact on the measurement 

uncertainty values and there was no data available.. 

 

  
Figure 91. Pundit/CMM simulation shaft simulation set up 

 

 

Figure-91 shows the probing strategy used, 6 points on both the datum’s and holes. Two 

values were extracted from Pundit: 

 

1 – X or Y position uncertainty for a hole 

2 – Total positional uncertainty for a hole 
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Figure 92. X,Y position uncertainty 

 

 

Figure-92 shows the result for the total position uncertainty. The calculated expanded 

measurement uncertainty value for the total position in section 5.1 was 0.0169 mm. The 

value obtained via the simulation was 0.0134 mm. This results showed an 

underestimation in terms of comparing Pundit’s measurement uncertainty with the ISO 

15530-3 but when comparing Pundit’s uncertainty estimation with the mean error added 

in quadrature for X,Y coordinates and ignoring the squareness errors showed in Figure-

90, the mean error was found to be 0.011mm. Similarly to the length bar measurements, 
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Pundit overestimated the measurement uncertainty when compared with the mean error 

but slightly underestimated when compared with the ISO 15530-3 estimate.  

 

  

3.6 Impact of measurement uncertainty in conformance decision 
associated with circular features  

 

In section 2.1.3 of this document it was demonstrated how uncertainty played a major 

role in conformance decisions. Furthermore it was shown that under certain 

circumstances it was possible to use the CMM specification standard uncertainty as the 

only contributor for determining expanded measurement uncertainty. The results obtained 

for the circular features presented (sections 2.3 and 3.3) clearly indicated that using the 

CMM specification for features other than length bar measurements as expanded 

measurement uncertainty would imply a high underestimation of the expanded 

measurement uncertainty. As an example the CMM-1 featured in section 2.1.1 of this 

work was Machine M used in section 3.3. By comparing the uncertainty values obtained 

for the 30mm length bar with the circular feature 2B it was clear that the expanded 

measurement uncertainty would be highly underestimated 0.7um vs 58um in the case of 

1XBASIC measurements. In the case of the 3XBASIC measurements of the same feature 

the underestimation would have been 0.7um vs 1.1um which equated to just over 50%. 

Such comparison was valid due to the control of factors such as temperature associated 

with CMM-1 (Machine M).   
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3.7 Summary 

 

 In this Chapter a VCMM or UES as defined by the ISO 15530-4 was tested by using 

physical measurements of calibrated artefacts in the case of the length bar measurements. 

For the three CMM’s length measurements Pundit/CMM complied with the test provided 

in section C.2 of the ISO 15530-4. When compared with the mean error values obtained 

for all CMM’s Pundit/CMM overestimated the uncertainty which complies with section 

C.3.  

A multi feature artefact was designed and manufactured to test how UES would perform 

when trying to simulate physical measurements of three different CMM’s on an artefact 

with predefined form error. When comparing the Pundit’s uncertainty results for the size 

of all features investigated with the mean error of the physical measurements the UES 

overestimated the measurement uncertainty in the majority of cases. Of particular 

importance was the similarity in trends shown by the UES and the physical 

measurements. A similar result was found when comparing the uncertainty statements 

derived from the physical measurements and the ones obtained from Pundit/CMM. In 

order to compare both uncertainties, the uncertainty derived for the physical 

measurements was calculated in the same manner as the uncertainty calculated in 

Pundit/CMM. 
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For the positional measurement results it was found that for Machine M and W 

Pundit/CMM underestimated the measurement uncertainty with a few exceptions 

(features 1B and 3B show an overestimation by the UES). However the trends of the 

reported uncertainty for most feature was found to be very similar.
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Chapter 4  

 

 

Automated conformance assessment of airfoil edges 

 

 

4.1 Assessing the significance of Leading edge shape  

 

To investigate the significance of the leading edge shape of airfoil profiles, a 2D 

section along the stacking axis of a conventional compressor blade was selected. 

 

 

Figure 93. Compressor blade airfoil sections 



4-2 

 

 

Figure 94. LESA standard for leading edge shape assessment 

 

Figure-94 shows the leading edge standard assessment (LESA) diagram used by the 

inspectors during final sentencing of the airfoil. The assessment was carried out using 

output plots for the different airfoil sections from CMM measurements by superimposing 

the dashed tolerance line shown above. 

 

4.2 Mathematical modelling of Leading edge shape 

 

The mathematical modelling of the leading edge shape consisted of converting the 

point cloud data received from a measurement system into a mathematical quantity. Two 

initial requirements for the mathematical quantity were: 
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- Ability to deal with output data from different measurement systems 

- Compatibility with current standards (LESA, Figure-94)  

 

Initial work carried out by Rolls-Royce plc demonstrated that curvature could be used 

to detect certain features along a leading edge profile. The instantaneous curvature of a 

leading edge profile was therefore defined using 
ds

d
  , where α was the angle of 

inclination and s the arc length. 

 

 

Figure 95. Leading edge curvature definition 

 

Figure-95 illustrates the curvature of a leading edge planar curve. 

2222 )()()()( yx

dtd

dtdydtdx

dtd

dtds

dtd

ds
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 (4.3) 

Joining (23) and (24) → 
3

2 2 2( )

x y x y

x y


     


 
 (4.4) 

 

The mathematical models were developed in Matlab 2007.b using some numerical 

methods available within the Matlab library and literature [141]. 

4.2.1 Data manipulation 

 

In this section unless otherwise stated the results presented were derived for airfoils under 

the conventional clockwise rotation direction as shown in Figure-96. 

Due to the nature of the measurement system the data supplied was not always of he 

same amount, equally distributed and contained some “noise” from the measurement 

system due to factors such as the ones described in chapters 2 and 3 of this document. 

The Figure-96 a) shows the typical point cloud data output from the CMM. 
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b) 

Figure 96. a) Leading edge point cloud data; b) Instantaneous curvature for input data 

points 

 

Figure-96 b) shows the instantaneous curvature of the leading edge profile in Figure-96 

a). The instantaneous curvature plot indicated that in order to extract information about 

the leading edge shape some level of smoothing was required. Two levels of smoothing 

were therefore developed: 

 

Level 1 – Point cloud data smoothing 

Level 2 – Curvature smoothing 

 

The point cloud data smoothing parameter was developed by using a combination of 

linear and cubic spline interpolation with choice of control points as a function of arc 

length S. Firstly the input data was resampled using a linear interpolant using every input 

data point as a control point. Figure-97 shows the impact of using cubic spline 

interpolation and linear interpolation. The linearly interpolated data showed very good 
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maintenance of the original leading edge shape while the cubic spline interpolant caused 

some changes in direction between control points. 
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Figure 97. Linear interpolation vs Cubic spline interpolation 

 

This step was required in order to maintain a high level of information about the original 

leading edge shape while providing an equally distributed point cloud of data points. The 

second step consisted of using the linear interpolated data to select the control points used 

for the interpolation function. Figure-98 shows the difference between cubic spline 

interpolation (not-a-knot end condition) and uniform B-spline interpolation. Due to 

accuracy requirements on control point approximation, Cubic spline was selected as the 

interpolating function. The choice of Control Points Distance (CPD) was generated as a 

function of the arc length. Table-28 shows how the curvature profile of the leading edge 

shape changed as a function of the CPD. 
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Figure 98. Cubic spline interpolation vs B-Spline interpolation 
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Table 28. Impact of control point choice on curvature smoothing 
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e) 0.160 mm control point 
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By increasing the distance for choice of control points even further, the curvature 

profile shown in Figure-99 was achieved. It was found that features such as peak/valleys 

curvatures and flat regions could be detected.  
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Figure 99. Instantaneous curvature profile using CPD of 0.2mm 

 

By increasing the CPD it was found that the original LE shape was modified as shown in 

Figure-100 a). In ordered to determine the goodness of the spline fit, the distance between 

a point and a line was determined. The equation of a line through two points: 

 

P1 (x1,y1) and P2 (x2,y2) is  P = P1 + u (P2 - P1) 
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The point P3 (x3,y3) is closest to the line at the tangent to the line which passes 

through P3, that is, the dot product of the tangent and line is 0, thus 

 

(P3 - P) dot (P2 - P1) = 0 

 

Substituting the equation of the line gives 

 

[P3 - P1 - u(P2 - P1)] dot (P2 - P1) = 0 

 

Solving this gives the value of u 

 

2

( 3 1)( 2 1) ( 3 1)( 2 1)

|| 2 1||

x x x x y y y y
u

p p

    



 (4.5) 

 

Substituting this into the equation of the line gives the point of intersection (x,y) of 

the tangent as: 

x = x1 + u (x2 - x1)   (4.6) 

y = y1 + u (y2 - y1)  (4.7) 
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The distance therefore between the point P3 and the line is the distance between 

(x,y) above and P3. 
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b) 

Figure 100. a) B-spline fit error with CPD of 0.2mm; b) Histogram of error of fit 

 

The histogram shown in Figure-100 b) indicated a maximum error of fit of 0.096 mm 

with a very small frequency below 5. Most of the errors due to the cubic spline fit were 

found to be below 0.005 mm with higher frequencies of occurrence starting at 

approximately at the 0.001mm error of fit. To minimise the error of the spline fit the CPD 

was set at 0.02mm. The Figure-101 histogram shows an error of fit below 0.0016mm. 
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Figure 101. B-spline fit error with CPD of 0.02mm 

 

A smoothing parameter was therefore developed for the curvature values based on a 

simple moving average where n represented the curvature values with a CPD of 0.02mm.  

 

1 ....

1
SMA

n n n m
K

m

   



 (4.8) 

 

Although the moving average was based on selection of number of curvature values n, a 

conversion to arc length S was developed using: 

 

( / (max))

Cavg
m

S n
  (4.9) 

 

where Cavg was the specified distance along the arc length. 
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The effect of the simple moving average filter on a curvature plot is shown in Figure 102. 

By applying the smoothing parameter to the instantaneous curvature plot (Figure-102 a)), 

key features such as the ones described in Figure-99 became visible without lost accuracy 

in the cubic spline fit. 
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a) Curvature plot with no Cavg. 
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b) Smoothed curvature plot with 

Cavg=0.4mm. 

Figure 102. Comparison of a) instantaneous curvature, and b) smoothed curvature a single 

pass simple moving average filter. 

 

Although some key features could be identified from Figure-102, the curvature plot was 

smoothed further by reapplying the simple moving average filter using a Cavg=0.2. This 

implied that the raw curvature plot was being filtered twice which allowed better 

visibility of key features required for the leading edge analysis. 
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Figure 103. Smoothed curvature using a two pass simple moving average filter 

 

To understand the impact of the Cavg parameter on the instantaneous curvature, a 

synthetic leading edge was generated using an ellipse in canonical position where: 

 

( ) cos( )

( ) sin( )

x a

y b

 

 




 (4.10) 

The ellipse shown in Figure-104 was generated with a=1,b=4 and CPD=0.02mm.  
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Figure 104. Generated ellipse with a=1,b=4. 
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Figure-105 a) showed a peak curvature of 4 while Figure-105 b) showed a peak curvature 

of 3.25 using a Cavg=0.4 on a single pass moving average filter. The use of the curvature 

smoothing parameter caused a reduction on the peak curvature value of 0.75.  
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b) 

Figure 105. a) Instantaneous curvature b) Averaged curvature. 

 

4.2.2 Types of curvature 

 

In the previous section curvature was plotted as a function of the arc length but in order 

to extract key attributes of the leading edge profile, different approaches for manipulating 

the curvature quantity were investigated and summarised below as follows: 

Type 1 - Conversion of curvature (1/mm) to a non-dimensional quantity 

via: 

a) Total thickness value between start and end points of the LE shape 

analysis (NTT) 

b) ½ thickness value  between start and end points of the LE shape 

analysis (NHT) 

c) Total arc length (NTAL) 
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Type 2 - Conversion of X axis to: 

a) Arc length 

b) Thickness position 

c) Normalising 2a) or 2b) from 0 to 1 

 

 

Type 1 

 

The conversion of curvature to a non-dimensional quantity was investigated using the 

synthetic shape (ellipse) generated in Figure-104. Figure-106 shows the three different 

types of instantaneous curvature non-dimensionalisation with a=1,2 and b=4,8. At first 

glance the plots indicated that non-dimensionalisation was only a scaling effect.  

 
Figure 106. Instantaneous curvature vs non-dimensionalisation options. 
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Figure 107. Instantaneous curvature non-dimensionalisation options for two synthetic 

shapes. 

 

From Figure-107  it was clear that by non-dimensionalising the two synthetic shapes 

by ½ the measured thickness (NHT), the non-dimensional curvature values remained 

unchanged when compared with the real curvature values shown in Figure-106 

(1/mm).  Both NTAL and NTT methods showed changes in the magnitude of the 

curvature plots when compared with original curvature values. Although such effect 

could be neglected due the fact that the main objective of non-dimensionalisation was 

to allow the possibility of plotting different leading edge shapes in a common plot, the 

aerodynamicists would not be able to extract an equivalent radius from the peak 

curvature. Although the smoothing parameters would eventually influence the 

extraction of a radius quantity based on the peak leading edge curvature the impact 

would much smaller when compared with the use of NTAL and NTT options. 
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Type 2 

As previously mentioned, the leading edge profile “bias” was a quantity of particular 

interest to aerodynamic engineers due to its impact on aerofoil performance (section 1.6). 

In the context of this work “bias” was defined as the difference between the location of 

the sharpest point at the tip of the ideal leading edge profile and the manufactured profile 

sharpest point.  Using the Equation-4.11, a bias was artificially added to x( ) from 

Equation-4.10 to generate the leading edge bias shown in Figure-108. 

x ( )=x( )+ COS( x( ))S       (4.11) 
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Figure 108. Examples of leading edge bias. 
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b) 

Figure 109. a) Instantaneous curvature vs Thickness; b)Instantaneous curvature vs Arc 

Length 

 

Figure-109 shows the instantaneous curvature plots for the leading edge shapes in Figure 

108. When comparing the plots of Figure-109 a) and b) it was clear that plotting 

curvature against measured thickness position emphasises any bias effect. Furthermore, 

any feature near the leading edge “tip” would be emphasised when compared with the 

curvature plots plotted against arc length. 

 

The curvature plots results generated from ellipses presented only reflected ideal case 

scenarios for cases of constant thickness or arc length. In a manufacturing environment 

both the thickness/arc length of a series of leading edges can vary and ultimately 

influence the output of the curvature plots so far explored. In order to eliminate 

manufacturing variations caused to both of these quantities, the X axis on either curvature 

plots were normalised between 0 and 1 in the following way: 
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max

iXN





  (4.12) 

Where i represents an arc length or thickness position value and max
represents a 

maximum value of arc length or thickness position. Figure-110 a) shows the normalised 

curvature plot from Figure-109 a). Having the curvature plots normalised between 0 and 

1 would also aid the development of the analysis of the features found by having a 

common limit within the X axis of the chart. 
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b) 

Figure 110. a) Instantaneous curvature vs Normalised Thickness position; b)  Curvature 

NHT vs Normalised Thickness position 

 

Figure 110 b) shows the NHT curvature from Figure-110 a) plotted against the 

normalised thickness. The use of both the NHT curvature and the normalisation of the X 

axis quantity allowed for manufacturing variations to be taken into account given that the 

ratio between the synthetically generated shapes was 2 for both a and b in eq(3). 
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To test the use of such parameters, leading edge shapes from three different blades of the 

same component family were chosen to compare the curvature (NHT) when plotted 

against normalised thickness position and arc length. The leading edges belonged to the 

same section of a blade along the staking axis of the three different blades.  
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Figure 111. Section AA Leading edge plots for three different blades 

 

Figure-111 above shows three leading edge shapes from the same section of three 

different blades. All three shapes appear to have similar geometries. Figure-112 shows 

the curvature (NHT) plots for the three leading edges. Both curvature plots highlight 

slight differences between the three leading edge shapes. Blade 2 showed higher peak 
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curvature when compared with Blades 1 and 3. The results obtained used the following 

smoothing parameters: 

CPD = 0.1mm 

Cavg = 0.4mm 
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b) 

Figure 112. a)Curvature NHT vs Normalised Thickness position; b)Curvature NHT vs 

Normalised Arc Length 

 

The curvature plots against the normalised thickness position clearly emphasised features 

present in the three blades when compared to the arc length curvature plots. This results 

was due to plotting curvature against a higher quantity in the case of the total arc length 

versus the leading edge thickness. Of particular concern it was noticed that features 

shown in Figure-112 b) between 0.9 and 1 (X axis) were very “compressed” and 

potentially overlapping in Figure-112 a). This observation led to further investigations in 

potential curvature shifts and or overlaps when using the normalised thickness position 

for the X axis of the curvature plots. Because curvature was plotted normal to the 
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thickness line, any minor changes to its angle caused a shift in the X axis of the curvature 

plot as shown in Figure 113. Curvature plots shift as a function of the thickness line angle 
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Figure 113. Curvature plots shift as a function of the thickness line angle 

 

 

The shift observed along the X axis of the curvature plot was 0.04 mm for a thickness 

angle change of 1.5⁰ and 0.08 mm for a thickness angle change of 3⁰. The magnitude of 

the changes is directly related to thickness magnitude of the leading edge shape and 

therefore it was forseen that for thinner leading edge shapes such changes would not be 

acceptable. Figure-114 highlighted another potential issue of plotting curvature against 

normalised thickness position for leading edge shapes which may have curvature 

overlaps. A LESA shape was selected for the test. Due to the potential curvature plot 

shifts highlighted in Figure-113 and curvature of non ideal shapes Figure-114, it was 

decided to develop a sentencing strategy using both thickness and arc length quantities. 
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Figure 114. Curvature of a non-ideal shape (LESA) 

 

 

 

 

4.3 Automated sentencing of the Leading edge shape 

 

In the previous section Leading edges of airfoil profiles were successfully modelled 

mathematically by extracting their inherent curvature. The flowchart below shows the 

key stages of the automated sentencing development. Aachen University developed a 

software package in C++ according to the specifications written by Rolls-Royce plc 

(Appendix 4).  
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Figure 115. Flow chart for the automated leading edge assessment 

       

 

A set of pre-production blades of the same airfoil section were classified by two 

aerodynamicists (Aero1, Aero2) and a senior production inspector in order to obtain 

acceptance/rejection reference. The classification of the airfoils was achieved by scoring 

each airfoil between 1 and 5. Airfoils that scored between 1 and 3 were classified as 

accepted while airfoils that scored 4 or 5 were classified as rejected. Figure-116 

summarises the airfoil classification for 27 airfoils sections of different blades for one 

section common between each blade. 
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Figure 116. Airfoil classification for 14 blades. 

 

 

4.3.1 Method 1 – Curvature Tolerancing 

 

The curvature tolerancing method consisted of applying a set of upper and lower 

tolerance limits to the nominal curvature of an airfoil section as shown in the Figure-117. 

By controlling the curvature via a prescribed tolerance profile based on the nominal 

leading edge shape it was possible to check if the overall curvature profile fitted within 

the upper and lower tolerance bands, but also to check for any local changes in curvature. 

Visually it also provided the user with a quick visible way to verify the output results. 
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Figure 117. Upper and Lower tolerance bands derived from nominal curvature. 

 

A set of parameters were developed to aid the tolerance bands definition. The curvature 

plot was split into two sides, a pressure side (0.5 to 1(X-axis)) and suction side (0 to 

0.49(X-axis)). Using the ( x , y ) coordinates of the nominal curvature the ( ucx , uc
y ) 

coordinates of the upper tolerance band were defined as follows: 

 

( ( )up up xupx x     , ( )up up yupy y    ) for x <=0.5 (4.13) 

( ( )us us xusx x     , ( )us us yusy y    ) for x >0.5  (4.14) 

where (cos( ( 2) 1))
2

x


     

 

and the lower tolerance band coordinates ( lcx , lc
y ) were defined as follows: 
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( ( )lp lp xlpx x     , ( )lp lp ylpy y    ) for x <=0.5 (4.15) 

( ( )ls ls xlsx x     , ( )ls ls ylsy y    ) for x >0.5  (4.16) 

 

 Having defined the tolerance bands, the sentencing method consisted of checking if the 

manufactured airfoil curvature plot fitted inside the area defined by the upper and lower 

tolerance bands as shown in the Figure-118. This was achieved by applying the same 

methodology described earlier in section 4.2.1 where the error of fit was estimated by 

determining the distance between the fitted shape and actual shape. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

3

4

5

Normalised Thickness position (mm)

C
u
rv

a
tu

re
 (

N
H

T
)

 

 
Section AA - Upper Tolerance

Section AA - Lower Tolerance

Section AA - Nominal

RGL15904

 

Figure 118. Curvature tolerancing sentencing method 

 

The curvature tolerating method was applied to both curvature plots using thickness as 

position (CVNTP) as X-axis and curvature plots using arc length as X-axis (CVNAL).  
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 Curvature Tolerancing using CVNTP 

 

The Table-23 contains the initial values used for the upper and lower tolerance bands 

definition. Initial values were developed with design engineering iteratively because of 

potential changes to the manufacturing process for the leading edges.  

 

Table 29. Upper and Lower band variables definition 1
st
 pass. 

Upper Tolerance 

up  us  
xup  xus  

up  us  
yup  yus  

0 0 0 0 1.3 1.3 1 1 

Lower Tolerance 

lp  ls  
xlp  xls  

lp  ls  
ylp  yls  

0 0 0 0 1.3 1.3 -1 -1 

 

 

The scored blades from Figure-116 (rgl5904 to15958) were used to set the tolerance 

bands although the focus was in ensuring the rejected blades failed the assessment. The 

Figure-119 shows the curvature plots for the six rejected blades.  At the first iteration 

only two of the six blades failed the assessment. 
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Figure 119. Curvature tolerancing sentencing method applied to the 6 blades. 

 

Table-31 shows the 2
nd

 iteration for the 6 rejected blades. This was achieved by changing 

the variables required until all the 6 blades were rejected. 

 

Table 30. Upper and Lower band variables definition 2
nd

 pass. 

Upper Tolerance 

up  us  
xup  xus  

up  us  
yup  yus  

0 0 0 0 1.2 1.2 0.7 0.7 

Lower Tolerance 

lp  ls  
xlp  xls  

lp  ls  
ylp  yls  

0 0 0 0 0.9 0.9 -0.7 -0.7 
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Figure 120. Curvature tolerancing sentencing method applied to 6 blades with updated 

tolerance bands 2
nd

 pass. 

 

The curvature plots in Figure-120 indicated that the updated tolerance bands failed the 

6 selected blades. Results for accepted blades are shown at the end of this section for 

CVNAL. 
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Figure 121. Curvature tolerancing method applied to LESA shapes. 
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To ensure the method could replace the current manual visual assessment technique, the 

LESA1 rejected shapes were also assessed using the parameters developed during the 2
nd

 

iteration of the tolerance bands. Figure-121 clearly indicated that the LESA1 shapes 

failed the assessment. 

 

Curvature Tolerancing using CVNAL 

 

Using the values defined for the variables in Table-31 the upper and lower tolerance 

bands were defined using the CVNAL plots. The Figure-122 indicated that most of the 

blades failed the assessment with the exception of two blades (RGL15959, RGL15958) 

as shown in Figure-123. This showed that although both CVNTP and CVNAL methods 

shared similar data, a read across from the variables defined during the 2
nd

 iteration was 

not possible. 
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Figure 122. Curvature tolerancing sentencing method applied to 6 blades 
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Figure 123. Curvature tolerancing sentencing failing to capture 2 blades. 

 

The Table-32 contains the updated values for the upper and lower tolerance bands. 

Figure-124 shows the updated tolerance bands failing the 2 remainng blades.  

 

Table 31. Upper and Lower band variables definition final iteration. 

Upper Tolerance 

up  us  
xup  xus  

up  us  
yup  yus  

0 0 0 0 1.1 1.1 0.6 0.6 

Lower Tolerance 

lp  ls  
xlp  xls  

lp  ls  
ylp  yls  

0 0 0 0 0.9 0.9 -0.6 -0.6 
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Figure 124. Updated tolerance bands final iteration. 

 

The tolerancing method was also applied to the LESA1 standard as shown in Figure-

125. The Figure-125a) above showed the final iteration of the tolerancing method for 

section AA. Figure-125b) shows the final iteration of the tolerancing method applied to 

the accepted shapes from Figure-116. Two of blades were found to be shifted to the left 

of the maximum curvature values along the X axis. This was later found to be due to an 

error related to the angle of extraction of the leading edge as previously highlighted in 

section 4.2.2 of this document. The blade RGL 15973 was also found to fail the 

assessment due to a high curvature peak value. Overall the majority of the shapes passed 

the Tolerancing assessment. 
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a) 

 

b) 

Figure 125. a)Curvature tolerancing method applied to LESA shapes final iteration; b) 

Curvature tolerancing method applied to accepted shapes. 
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While development of the this method was done at RR Derby/Bristol, Aachen 

University (Fraunhofer) developed in conjunction with RR  a software package named 

Blade Inspect using the Curvature Tolerancing method. The development of the software 

package allowed for further testing of the tolerancing method and provided the user both 

graphical outputs in HTML and Excell formats. Such outputs were required due to the 

fact that the integrated project team (IPT) was not all located in RR Derby and allowed 

further flexibility for analysing the output data.  

 

The above methodology was developed based on one airfoil section AA of a 

preproduction blade set. In order to fully test the proposed methodology a set of 

production blades from a different compressor stage was used. Each blade contained 7 

sections “DC” to “DJ” hence 7 sets of upper and lower tolerance bands were generated. 

The Table-32 shows the values used for generating the tolerance bands. 

 

Table 32. Upper and Lower band variables definition. 

Upper Tolerance 

up  us  xup  xus  up  us  yup  yus  

0 0 0 0 1.177 1.177 1 1 

Lower Tolerance 

lp  ls  xlp  xls  lp  ls  ylp  yls  

0 0 0 0 1.06 1.06 -1 -1 
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Figure 126. Blade set curvature nominal curvature 

 

The Figure-126 above shows the 7 curvature profiles for the nominal airfoil leading 

edges. Figures-127 and Figure-128 shows the result for the blade set for sections “DC” 

and “DE” respectively. 

 

Figure 127. Section “DC” curvature assessment 
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The results for Section “DC” indicated that all blades passed the assessment with all 

peak curvature values located between the Nominal curvature profile and the Lower 

tolerance band. 

 

 

Figure 128. Section “DE” curvature assessment 

 

The results from Figure-128 indicated that 6 blades (35%) failed the assessment. In all 

cases the airfoil sections failed at the Lower tolerance band minimum peak curvature. 

The Figure-129 a) shows one of the failed blade sections and its respective geometry. 

Although geometrically the airfoil section appears to be very symmetrical and smooth, 

when compared to the nominal shape, it was clear that the airfoil section was not as 

“sharp”.  
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a) 

 

b) 

Figure 129. a) Curvature plot of a failed blade; b) Leading edge profile of nominal and 

measured blade 

 

Appendix 5.3.1 contains the summary results for the blade set sections. During further 

examination with the aerodynamicists it was noticed that in most cases independently of 

the blade section, failing occurred due to “double peaks” as shown above. Although the 

tolerance bands provided a methodology for capturing such features, it was found that in 

some cases the tolerance bands may fail to capture “double peaks” as shown in the 

Figure-130.  

 

  

Figure 130. Tolerancing methodology failure to capture a double peak feature 
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From the Figure-130 it was noticed that the airfoil section had the “double peak” feature 

offset from the expected peak curvature location. Due to such offset, the “double peak” 

feature was not captured by either the upper tolerance band or the lower tolerance band. 

This event triggered further testing to investigate a potential scope of features that may 

not have been captured by the tolerancing methodology. As an example the curvature plot 

(Figure-131) was extracted from a blade at its early stages of manufacturing to highlight 

potential features that could be present in a finished blade. 

 

  

Figure 131. Failure to capture second double peak feature 

 

Although the tolerance band failed the above shape, it was clear that features such as high 

curvature peaks/valleys could exist along the airfoil profile and not be captured by the 

tolerancing method.  To capture such features a second method for assessing the leading 

edge shape was developed (section 4.3.3).  
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4.3.2 Industrial impact 

 

A comprehensive software specification was developed with Aachen University at the 

Rolls-Royce pre-production facility where the blades were manufactured, to ensure that 

the software inputs and outputs could be controlled at different levels from the already 

existing manufacturing execution software within the facility. A configuration file was 

used to set all the software parameters and paths to located data such as the upper and 

lower tolerance bands but also to ensure the output data was located in the correct folder 

structure. The software was developed with two modes of operation, a user mode which 

allowed the user to process a single section of a blade and a batch mode which could 

process several blades. 

The component selected for implementation of the software was a bladed disk also 

known as blisk. The Figure-132 shows a) the excel tool developed to visualise the Blade 

Inspect outputs and b) high level view of the two modes of operation within the software.  

 

 

a) 
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b) 

Figure 132. a) Excel tool for displaying Blade Inspect outputs; b) Blade Inspect integration 

with CMM inspection 

 

Further tools were developed in Microsoft Excel to aid the development/updating of 

new tolerance bands. Although the work presented in this document was originally aimed 

at final inspection of airfoil leading edge shape, it was decided that the curvature plot 

could also be used as a process control tool throughout the different operations within the 

blade manufacturing process. The operation numbers chosen for software deployment 

were 690 (post-machining) and 870 (post-linishing(polishing)). The Figure-133 shows 

the software integration within the blisk measurement facility in Rolls-Royce plc.  
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Figure 133. Detailed integration overview between Blade Inspect and inspection process 

operation sequence 
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As the naming convention indicates it was expected that leading edges of OP690 would 

have sharper features when compared with OP870. From a production perspective all 

OP690 (post machining operation) shapes should fail the assessment. The Figure-134 

shows the results for a set of 180 blades with 17 sections using the curvature tolerancing 

method in both CVNTP and CVNAL mode. In both cases (CVNTP, CVNAL) for OP690 

the fail rate was 89%. This result indicated that some leading edges may have a good 

shape after OP690. For OP870 the pass rate achieved was 91%.  

 

 

Figure 134. Blade Inspect output for a blisk assessment using both CNTP and CNAL. 
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4.3.3 Method 2 – Parameterisation of curvature plot features  

 

The parameterisation method consisted of identifying key distances between key features 

present in the curvature plots. Before key features could be identified the following 

smoothing settings were applied: 

 

CPD = 0.2mm 

Cavg = 0.4mm 

 

Such settings were necessary because the parameterisation method consisted of searching 

for a set of values which represented a peak or a valley as shown in Figure-135. If the 

curvature plots were to have less smoothing the searching criteria for a peak or a valley 

could have multiple answers which would make the sentencing process more complex. 
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a) Leading edge shape from a production compressor blade 
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b) Curvature parameterisation variables Zones 

Figure 135. Parameterisation of curvature plot zones 
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The nominal airfoil section chosen for testing was section AA as shown in the Figure-

136.   

 

Figure 136. Nominal airfoil section AA. 

 

 

Parameterisation using CVNTP 

 

Three zones were selected in relation to the three key areas of interest within the leading 

edge geometry, the pressure side (Zone 1), the leading edge tip (Zone 2) and the suction 

side (Zone 3). The three zones of interest were defined from the curvature plots as 

follows: 

CVNTP  

 Zone 1 – 0 to 0.3 

 Zone 2 – 0.3 to 0.7 

 Zone 3 – 0.7 to 1 
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Figure-137 shows the curvature plots for the 6 blades with the highest scores from 

Figure-121 (section 4.3.1). These plots were used to create the first iteration of the 

parameterisation variables shown in Figure-138.  
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a)  
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RGL15978 - Section AA

 

b) 
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RGL15959 - Section AA

 

c) 
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RGL15993 - Section AA

 

d) 
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RGL15958 - Section AA

 

e) 
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RGL15969 - Section AA

 

f) 

Figure 137. Curvature plots for the rejected airfoils section AA from classification 

summary. 
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Figure 138. Parameterisation variables for all zones. 

 

 

 

 

Zones parameterisation 

Two variables were defined for extracting peaks and valleys information from the 

curvature plot as follows: 

 λPij where P defined a “peak” with subscript i referring to a “zone” and subscript j  

an “incremental counter”. 

 λVij where P defined a “valley” with subscript i referring to a “zone” and subscript 

j  an “incremental counter”. 

For zone2 extra variables were derived by extracting the (xp,yp) coordinates of λPij and 

(xv,yv) of λVij as follows: 
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1 1 1 1(( ) ( ) ( )) / 2ij ij ij ij ij ij ij ij ij ij ij ij ijArea abs xp yp xp yp xv yp xp yv xp yv xv yp              

(4.17) 

A set of rules was developed using the results obtained for the 6 blades shown in Figure-

137 to generate an output associated with λPij, λVij.  

 

Table 33. Zone 1 variables and rules 

Variable Rule Output if true Output if false 

λP11 (Yp4) >1 1 0 

λP12 () N/A N/A N/A 

λV11 (Yv4) <-0.3 1 0 

 

Table 34. Zone 2 variables and rules 

Variable Rule Output if true Output if false 

λP21 (Yp3) >1.5 0 1 

λP22 (Yp1) N/A N/A N/A 

Area21 >0.04 0 1 

Area22 >0.04   

λV21 <1.5 1 0 

 

Table 35. Zone 3 variables and rules 

Variable Rule Output if true Output if false 

λP31 (Yp5) >1 1 0 

λP32 () N/A N/A N/A 

λV31 (Yv5) <-0.3 1 0 
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Each variable output from the three zones was used as an input to a sentencing vector S 

using the following expression: 

 11 11 21 31 31[ P ] [ V ] [ P ] [ ] [ P ] [ V ]ijS Area            (4.18) 

The Table-30 summarises the output of the sentencing vector S. The conditions for the 

vector S output were set in the following way: 

 

If S = 0, the airfoil passed the assessment; If S > 0, the airfoil failed the assessment 

 

Table 36. Sentencing results for the 6 rejected leading edges 

Blade RGL15904 RGL15993 RGL15978 RGL15959 RGL15969 RGL15958 

λP11 0 1 0 1 0 0 

λV11  0 0 1 0 1 0 

λP21  0 0 0 0 0 0 

λV21 0 0 0 0 0 0 

Area21 1 0 1 0 0 0 

Area22 N/A 1 N/A N/A N/A N/A 

λP31 0 0 0 0 0 0 

λV31  1 0 1 0 1 1 

S 2 2 3 1 2 1 

Automated 

Sentencing 

Fail Fail Fail Fail Fail Fail 

Figure 

123scoring 

Fail Fail Fail Fail Fail Fail 
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The sentencing vector was successfully able to sentence the 6 airfoils used from Figure-

137 in accordance to the results showed in Figure-121. This result represented the first 

iteration of the sentencing vector using a small population of blades to define a set of 

rules. Like the toleracing method it was foreseen that an iterative process with design 

engineering and manufacture was required before agreeing on set variables.  

If such method was to be used in a production environment, it would have to be 

compatible with the current standards (LESA1) used for Leading edge shape assessment. 

Figure-139 shows the extracted LESA1 shapes and their corresponding curvature plots. 

The Table-38 summarises the output of the sentencing vector S for the standard LESA1. 
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e) LESA1.5 

 

 

Figure 139. LESA1 Leading edge shapes and corresponding curvature plots using CVNTP 
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Table 37. LESA1 sentencing results using curvature parameterisation method 

LESA1 LESA1.1 

 

LESA1.2 LESA1.3 LESA1.4 LESA1.5 

λP11 1 1 1 1 1 

λV11  0 0 0 1 0 

λP21  0 0 0 1 1 

λV21 1 1 1 1 1 

Area21 0 1 0 0 0 

Area22 N/A N/A N/A N/A N/A 

λP31 1 1 1 1 1 

λV31  0 0 0 1 1 

S 3 4 3 6 5 

Automated 

Sentencing 

Fail Fail Fail Fail Fail 

LESA1 

Standard 

Fail Fail Fail Fail Fail 

 

 

All LESA1 shapes failed the assessment. From the Table- above it was only shown the 

results for 1 Area although multiple areas were identified by the Matlab algorithm. 

Because 1Area was sufficient to fail the above leading edges no further development for 

n Areas took place. 
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Parameterisation using CVNAL 

 

Similarly to CVNTP the parameterisation algorithm was developed for arc length 

quantity due to the reasons discussed earlier in this work. Zone 1 and 3 variables 

remained the same as the ones obtained for CVNTP. Zone 2 variables were changed as 

shown (Table-39). 

 

CVNAL 

 Zone 1 – 0 to 0.4 

 Zone 2 – 0.4 to 0.6 

 Zone 3 – 0.6 to 1 

 

Table 38. Zone 2 variables and rules using CVNAL 

Variable Rule Output if true Output if false 

λP21 (Yp3) >1.5 0 1 

λP22 (Yp1) N/A N/A N/A 

Area21 >0.02 0 1 

Area22 >0.02   

λV21 <1.5 1 0 

 

 

The Table-39 summarises the output of the sentencing vector S. The conditions for the 

vector S output were set in the following way: 
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If S = 0, the airfoil passed the assessment 

If S > 0, the airfoil failed the assessment 

 

 

Table 39. Sentencing results for the 6 “Fail” blades and remaining RGL159 series “Pass”. 

Blade RGL 

15904 

RGL 

15993 

RGL 

15978 

RGL 

15959 

RGL 

15969 

RGL 

15958 

RGL 

1595’’ 

RGL 

1596’’ 

RGL 

1597’’ 

λP11 0 1 0 1 0 0 0 0 0 

λV11  0 0 1 0 1 0 0 0 0 

λP21  0 0 0 0 0 0 0 0 0 

λV21 0 0 0 0 0 0 0 0 0 

Area21 1 0 1 0 0 0 0 0 0 

Area22 N/A 1 N/A N/A N/A N/A N/A N/A N/A 

λP31 0 0 0 0 0 0 0 0 0 

λV31  1 0 1 0 1 1 0 0 0 

S 2 2 3 1 2 1 0 0 0 

Automated 

Sentencing 

Fail Fail Fail Fail Fail Fail Pass Pass Pass 

Figure 123 

scoring 

Fail Fail Fail Fail Fail Fail Pass Pass Pass 

 

Table-39 shows the assessment results for the 6 rejected blades used through this work to 

set Tolerancing methods. Results showed that all 6 blades failed the assessment. The 

table also shows the remaining blade series from Figure-116 and all remaining blades 
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passed the assessment in accordance to the previous scores. The Figure-140 shows the 

results for the LESA1 standard using CVNAL. When compared with the curvature plots 

from Figure-139 d),e) with Figure-140 d),e the CVNAL plots don’t show any curvature 

overlap.   

0 0.5 1 1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

4

X (mm)

Y
 (

m
m

)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

Normalised Arc Length (mm)

C
u
rv

a
tu

re
 (

N
H

T
)

 

a) LESA1.1 

0 0.5 1 1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

4

X (mm)

Y
 (

m
m

)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

Normalised Arc Length (mm)

C
u
rv

a
tu

re
 (

N
H

T
)

 

b) LESA1.2 

0 0.5 1 1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

4

X (mm)

Y
 (

m
m

)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

1

1.5

2

2.5

Normalised Arc Length (mm)

C
u
rv

a
tu

re
 (

N
H

T
)

 

c) LESA1.3 

0 0.5 1 1.5 2 2.5 3 3.5
1

1.5

2

2.5

3

3.5

X (mm)

Y
 (

m
m

)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3

-2

-1

0

1

2

3

4

5

Normalised Arc Length (mm)

C
u
rv

a
tu

re
 (

N
H

T
)

 

d) LESA1.4 

0 0.5 1 1.5 2 2.5 3 3.5

1.5

2

2.5

3

3.5

X (mm)

Y
 (

m
m

)

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1

0

1

2

3

4

Normalised Arc Length (mm)

C
u
rv

a
tu

re
 (

N
H

T
)
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Figure 140. LESA1 Leading edge shapes and corresponding curvature plots using CVNAL 



4-58 

 

 

 

 

Table 40. LESA1 results using CVNAL 

LESA1 LESA1.1 

 

LESA1.2 LESA1.3 LESA1.4 LESA1.5 

λP11 1 1 1 1 1 

λV11  0 0 0 1 1 

λP21  0 0 0 1 1 

λV21 1 0 0 1 1 

Area21 1 1 1 0 0 

Area22 N/A N/A N/A N/A N/A 

λP31 0 1 1 1 1 

λV31  0 0 0 1 0 

S 3 3 2 5 4 

Automated 

Sentencing 

Fail Fail Fail Fail Fail 

LESA1 

Standard 

Fail Fail Fail Fail Fail 

 

From the Table-40 above it was clear that the automated sentencing using the predefined 

parameters failed all the LESA1 shapes. When compared to the CVNTP, the CVNAL test 

performed in the same manner by failing all the rejected LESA1 shapes.
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Chapter 5  

 

5.1 Conclusions 

 

This thesis had two aims. The first was focused on the evaluation of task specific 

measurement uncertainty when using coordinate measuring machines. This was explored 

via the application of statistical analysis tools such as experimental designs and Monte 

Carlo simulation on how factors present on everyday coordinate measuring machine 

measurements affected measurement uncertainty. A first evaluation was the physical 

measurement of a known artefact under different thermal conditions. Further 

investigation of factors related to measurement strategy was explored via the integration 

of a Monte Carlo simulator with a full factorial experimental design to aid the analysis on 

the sensitivity of fitting algorithms for circular features. Finally the potential applications 

for a newly developed virtual CMM (VCMM) named pundit/CMM was explored via 

comparative tests when using length bars and parts with known form errors. Although the 

focus of this work was for CMMs equipped with touch trigger probes, its results can be 

read across to CMMs equipped with other types of probing systems. The experimental 

work and literature review indicated that measurement strategy was a significant factor 

that influenced measurement uncertainty. Strategy in this case not only covered typical 

factors such as probing point distribution and form error and its impact when selecting 

algorithms to extract circular features. 

 

The main conclusions of the Engineering Doctorate thesis are summarized in the 

following 6 sections below.  
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1 Two methods for deriving uncertainty budgets for coordinate measuring machines 

were extracted for point to point measurements of length bars. Both methods 

showed good correlation, although the ISO 15530-3 method was found to be more 

sensitive to changes in the CMM repeatability when compared with GUM 

approach. This was due to the fact that the GUM approach relies heavily on the 

CMM specification data while the ISO 15530-3 relies on the output data of the 

measurement results in order to build to uncertainty budget. Using the CMM 

specification in as an uncertainty statement for part measurements in 

circumstances where environmental controls may be poor could lead to 

underestimation of the measurement uncertainty and ultimately influence a 

conformance assessment. 

2 The sensitivity of circular features experiment revealed that there was a strong 

interaction between form error and probing strategy. The full factorial 

experimental design revealed that by applying LSC algorithm to extract circular 

features under different experimental conditions the uncertainty associated with 

both size and position of the features was of smaller magnitudes when compared 

to MIC and MCC algorithms. Nevertheless standard deviation (1 sigma) values of 

0.0015mm were obtained when applying LSC when compared with MIC/MCC 

values of 0.0022mm. Mean error results were very sensitive to the standard to 

which such features should be extracted. The centre coordinates sensitivity study 

revealed a range of centre coordinates standard deviation values of up to 

0.012mm when applying the MIC algorithm according to the main effects plot 

obtained. Although the main effects plot presents an averaged result for the study 
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of a particular quantity, error values of centre coordinates for particular runs of 

the experimental design were found to reach a magnitude of 0.04mm. The method 

chosen when using of statistical tools could affect the outputs of uncertainty 

studies. The magnitudes of the standard deviation values when applying LSC 

were found to be smaller when compared with MIC and MCC algorithms. As 

previously mentioned, clarity of the design intent is required when defining the 

feature function, because this will potentially impact the definition of the 

algorithm being used to extract the centre coordinates of the feature. A similar 

result could have been obtained for a circular datum feature in which case the 

results obtained for the uncertainty estimations would have been of higher 

magnitude hence a key recommendation is that stricter controls should be applied 

to datum features 

3 The temperature effects during CMM measurements revealed that the major 

contributor to the measurement uncertainty was the mean error also known as the 

systematic error. Although care was taken to ensure that all factors selected for 

the experimental study were well controlled, the study confidence level was only 

40%.  Temperature did not influence the repeatability of the measurement results 

and caution is required when applying temperature variations to an uncertainty 

model. 

4 A Virtual CMM named Pundit/CMM showed good correlation between simulated 

experiments and physical measurements of artefacts. Uncertainty budgets 

developed in the 2
nd

 chapter for length bar measurements were used as a basis for 

a comparative study. Pundit/CMM was found to be very user friendly with an 
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intuitive user interface developed around the main factors that affect CMM 

measurement uncertainty. For the simulations of length bar measurements 

Pundit/CMM results were found to follow the same trend as the uncertainty 

budgets. Furthermore the magnitude of uncertainty values was found to always be 

above the mean error and close to the machine specification quantity. All these 

results were found to be positive indicators for Pundit/CMM capability to 

estimate CMM task specific measurement uncertainty. Similar results were 

obtained for the simulations associated with the multi-feature artefact experiment. 

For the circular features size uncertainty comparison, Pundit/CMM showed very 

similar trends and magnitudes to the results obtained during the physical 

measurement trials for machines M and W. Feature 2B (Artefact B) showed the 

highest uncertainty magnitude when compared with all the remaining features. 

When the probing strategy was modified from 1XBASIC to 3XBASIC there was 

an overall small improvement of the magnitudes of measurement uncertainty for 

all features including feature 2B. Machine A results showed that Pundit/CMM 

simulations results followed the trend of uncertainty results for most features with 

the exception of feature 1A. For all physical measurements and simulations 

results the uncertainty of measurement associated with the circular features size 

was as found to be between 0.0005mm and 0.003mm with the exception of 

features 1A, 2A and 2B during 1XBASIC measurements.  

 For the feature position results Pundit/CMM showed good correlation with the 

 physical measurements for the 1XBASIC measurements. The 3XBASIC 

 measurements showed that Pundit/CMM underestimated the positional 
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 uncertainty values for machines M and W but for machine C the correlation was 

 found to be very good. 

 It was also found that the options available within Pundit/CMM for defining form 

 error associated with the features in this study were sensitive to the probing 

 strategy used. The results for both modes of inputting form error showed that 

 there was a clear difference between the two modes when simulating the 

 1XBASIC physical measurements. Finally both the physical measurements and 

 the simulation results clearly showed a strong correlation between probing 

 strategy and form error which reflected some of the results in chapter 2 of this 

 work. The simulation of an artefact used for aero engine shaft measurements 

 revealed very good correlation between Pundit/CMM results and the measured 

 artefact. Chapters 2 and 3 clearly showed that the estimation of measurement 

 uncertainty for coordinate measuring machines is still a very complex task and 

 that the CMM specification does not always reflect the uncertainty values found 

 for some of the experiments. Pundit/CMM was found to be a very useful tool 

 where the user could explore the impact of key factors such as form error and 

 probing strategies without having to carry out experiments such as the ones 

 showed in this study. 

5 The mathematical definition of the leading edge of compressor airfoil profiles was 

successfully developed via the use of curvature. By filtering the instantaneous 

curvature of the leading edge profiles undesirable features such as flat regions 

along the leading edge profile could be detected. It was shown by non 

dimensionalising curvature plots leading edges of different sections within a blade 
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profile could be compared in the same plot. It was also shown that the method 

successfully assessed the LESA shapes. Because the leading edge was described 

mathematically the subjectivity associated with the manual visual assessment of 

the leading edge profiles was removed from the process.   

6 A software named blade inspect was successfully developed in conjunction with 

Aachen university using the curvature tolerancing method. It was found that the 

tolerancing method was required for each section of a compressor blade. 

Integration and demonstrated of the software package in a pre- production facility 

demonstrated that the curvature tolerancing method could successfully sentence 

the leading edge profiles. Furthermore, the sentencing method was quicker when 

compared to a trained inspector. 200 Leading edge shapes were assessed in just 

under 5 minutes, an operation that could take a trained inspector 3 hours. Because 

the software was successfully integrated with the shop floor execution system in 

the pre-production facility its applicability was expanded to other operations in 

the manufacturing process of the leading edge profile so that early potential 

defects could be detected early in the manufacturing process. During early trials 

of the curvature Tolerancing method it was found that there could be cases where 

the method could fail to identify rapid changes in curvature that would still fit 

within the tolerance bands defined. A second method was developed in Matlab 

2007.b where rapid changes in curvature could be captured and assessed. Early 

trials of the method proved successful but were not implemented on time in Blade 

Inspect due to the end of the Engineering Doctorate programme. 

 



5-7 

 

5.2 Future work 

 

The future work outcome from chapters 2 and 3 of this thesis will be focused on 

integration of tools such as Pundit/CMM with design tools available within the PLM 

environment. This integration will allow designers to understand the impact of CMM 

measurement uncertainty during tolerancing stages of a product. During this research it 

was identified that although Pundit/CMM provides a trained user with many possibilities 

for simulating how different factors affect measurement uncertainty, it still required a 

considerable amount of time for a trained user to simulate different measurement 

scenarios. Metrosage were commissioned to develop and add on module to Pundit/CMM 

which allowed the user to predefine several measurement scenarios via tools such 

Minitab. This feature was never fully tested but simple tests revealed that there was 

strong potential to explore this option further.  

The second method developed for the assessment of leading edge profiles will be 

added to Blade Inspect to ensure both methods can combine to allow for improved 

capability when sentencing leading edge profiles. Exploration of the methodology 

developed for assessing the leading edge profiles could see applications in geometric 

tolerancing fields where free form features can be difficult if not impossible to sentence. 

Such features could include radii and scallops which are common features in aero engine 

parts. Free form features generally prove challenging in the aerospace industry because 

the methodology used to extract the feature geometry may be ambiguous and or subjected 

to very high uncertainties. The proposed algorithm could potentially support/replace the 

methods/standards associated with free form features geometric definitions and remove 

the subjectivity associated with conformance decisions of such features.  
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