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ABSTRACT 
 

 

The Brown Plant Hopper (BPH) Nilaparvata lugens (Stal) is the most important phloem 

feeding insect which can cause a serious problem for world rice production especially in 

Asia. Development of novel control strategies can be facilitated firstly by a comparison of 

BPH feeding behaviour on varieties exhibiting natural genetic variation, and then elucidation 

of the underlying mechanisms of resistance using molecular information. First, BPH feeding 

behaviour on 12 rice varieties with varying resistance was investigated using the Electrical 

Penetration Graph (EPG) and honeydew clock approaches.  Seven feeding behaviours 

(waveforms) were identified and could be classified into two phases, feeding and non-

feeding. Cluster analysis separated 12 varieties into 3 main groups, resistant, moderately 

resistant and susceptible.  Gene expression microarray analysis on all the varieties was then 

undertaken to identify candidate genes which may contribute to resistance. Insects were not 

introduced to the rice plant because the research interest was in constitutive rather than 

inducible genes. The results revealed the difference between resistant and susceptible 

varieties, and agreed with the EPG and honeydew clock experiment results. Correlation 

between expression and EPG results, gene ontology (GO) analysis and genetic mapping of 

known BPH resistance gene markers were conducted to strengthen the candidate genes.  Out 

of 239 genes, a hexose transporter was found in all three analyses and therefore, it was 

classified as the strongest constitutive candidate gene. The position of this gene is close to 

QBph10 marker (RM484) on chromosome 10.  This gene is involved in the uptake of glucose 

or fructose and is found expressed in sink organs, indicating that high expression is 

associated with the increment in nutrient contents.  Consequently, it would also increase BPH 

feeding ability on that plant. There were also several other strong candidate genes identified.  
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The amino acid transporter 3 (AAP3) is associated with phagostimulation to BPH feeding. 

Protein kinase, nucleotide-binding leucine-rich-repeat (NB-LRR) protein, carboxyl 

methyltransferase (MeJA), fatty acid alpha-oxidase (Alpha-DOX2) and 12-oxo-phytodienoic 

acid reductases (OPRs) are all known to be involved in defence signal mechanisms and are 

mostly related to jasmonic acid biosysnthesis.  Cytochrome p450s, glutathione S-transferase, 

peroxidases, beta-glucosidase, metallothionein-like protein (OsMT), zinc  finger, alpha/beta  

hydrolase are all found involved in support roles for the lignification of cell walls and 

response for repairing or recovering from wounding. 
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CHAPTER 1 
 
 
 

GENERAL INTRODUCTION AND RESEARCH 

AIMS 

 

1.1  Introduction   

Rice (Oryza sativa L.) is an ancient crop and is classified as one of the most 

economically important cereal foods. It is the staple food for many people around the 

world especially in Asia where half of the world‘s population live.  As an energy source, 

rice mainly provides carbohydrates and some proteins, vitamins and fibres for human 

consumption.   In 2007, the Food and Agriculture Organization (FAO) estimated the 

production areas approximately reached 156 x 106 hectares with 660 x 106 tons yield 

(Tester and Langridge, 2010). This crop also plays an important socio-economic role 

providing the rural population with many job opportunities. According to the FAO of the 

UN in 2010, China, India, Indonesia, Bangladesh, Vietnam and Thailand were among the 

top list of world rice production countries (Alexandratos et al., 2006), but only a few 

from those countries participated in the export market. This can create problems such as 

those encountered recently. The demand for rice has increased sharply in the international 

market followed closely by the price. This phenomenon has resulted in global social 

problems because most people especially in developing countries cannot afford to buy 

rice. With the world‘s population increasing each year, immediate action needs to be 
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undertaken to make sure the production of rice can meet future demand, which is 

projected to increase to  771.1 M tonnes in 2030 (Nguyen and Ferrero, 2006). 

The problem with regard to rice production is associated with several factors 

including biotic and abiotic. Pests and diseases cause multi-million pound economic 

losses. Oerke (2005) has claimed that potential rice yield loss due to pests is between 

65% to 80% production. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one 

of the major phloem feeding insects which causes serious damage to the plant. They 

injure the plants through direct sucking of the plant sap, and they also transmit viruses, 

causing plant wilting or hopper burn when it becomes serious (Catindig et al., 2009). 

 The use of insecticide to control this problem is already creating other problems 

especially for the environment. In some cases, without proper planning and with over-

spraying of insecticide, this could increase the risk of a potential outbreak of pest because 

of the in advertent destruction of natural enemies of the pest and creating resistance in the 

pest (Oerke, 2005). Furthermore, costs of production are also increased. For example, in 

2004, the total average for world insecticide sales reached USD10 billion (Oerke, 2005). 

Introducing varieties with insect resistant characters through a plant breeding approach is 

an alternative useful technique, however it takes a long time to achieve and the results are 

also not necessarily consistent.  It is believed new molecular approaches can help 

breeders to solve basic problems in identifying candidate genes which are related to 

resistance characters. Thus, by manipulating those genes, it is hoped that insects may 

respond differently as already proven in insect-plant interaction studies on the model 

plant, Arabidopsis. Aphid feeding behaviour is significantly influenced by manipulation 

of amino acid transporters (AAPs) genes in Arabidopsis (Hunt et al., 2006). To date, up 
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to 22 major genes and several quantitative trait loci (QTL) have already been associated 

with BPH resistance in cultivars and wild rice species (Santhanalakshmi et al., 2010).  

Although many resistance genes have been identified, studies of their interactions, 

in terms of their plant-insect interactions in rice through molecular approaches are still at 

early stages especially in relation to phloem feeding insects. Understanding the defence 

mechanism through genetic information is a big challenge because it involves a very 

complex process. However, the recent advanced approach involving microarrays is 

enabling a faster understanding of the processes. Microarrays help analyse the expression 

of thousands of genes in a single experiment (Thompson and Goggin, 2006). The support 

of genome wide information and its combination with phenotypic information such as 

symptom development could provide a precise knowledge for genes‘ involvement in 

plant defence mechanisms (Reymond, 2001). In addition, the present genomic analysis 

tools and genomic information also provide opportunities for researchers to home in on 

specific genes based on their interests.  

 Therefore, the general target in this project is to exploit this technology by 

identifying candidate genes which contribute to the development of plant resistance 

characteristics. Then, these results can be supported with resistance level evaluation 

experiments to increase the understanding of defence mechanisms. It is belived that this 

information will help plant breeders to plan their strategies to manipulate specific genes 

to overcome insect problems in the future. This approach could provide an excellent 

model for others to utilize and for other crops.   
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1.2 Aim, scope and contents of this study  

This study generally aims to develop suitable strategies using molecular information for 

controlling the phloem feeding insect brown plant hopper (BPH) in rice. As a model 

genomic plant, the knowledge discovered from this study could be useful for the 

management of pests not only in rice but also in others crops especially cereal crops. This 

study however has covered only constitutive resistance characters because BPH was not 

introduced to plants at any growing stage.   The approach is focussed on identifying 

candidate genes which are responsible for resistance in the plant.  Several specific 

objectives were: 

 

1. To evaluate the feeding and growth ability of bird cherry-oat aphid (Rhopalosiphum 

padi) as an initial model phloem feeding insect on rice.  

2. To evaluate and measure BPH feeding behaviour on 12 rice varieties using the EPG 

technique and honeydew drop as a resistance level indication. This information will also 

be used as supporting information for microarray experiments. 

3. To identify and characterize constitutive genes that are involved in resistance to BPH 

over 12 varieties through microarray analysis. 
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CHAPTER 2 

 
 LITERATURE REVIEW 

 
 
 

2.1 Rice: Food security and problems in cultivation 

Rice (Oryza sativa, L.) is the leading food crop for humans, providing dietary energy and 

protein for half of the world‘s population especially in the Asian region (Shabbir, 2009). 

Total rice production, however, is expected to face serious challenges and is likely to be 

more unstable in the near future (Timmer, 2010).  A world food crisis happened in 2007-

2008, and this caused the price of food in international markets to increase drastically 

(Timmer, 2010). In addition, it has been predicted that the world population in 2020 will 

increase 29.7% to 7,593 billion people (Mullin, 1999), which could cause a huge demand 

for this crop. Therefore, it will be necessary for annual rice production to double to keep 

up with worldwide demand 

The production of rice is mainly in Asian regions in which most countries are 

classified as poor. It is difficult to transfer new technologies to these areas, and this has 

become a major constraint on rice production. Most production countries such as 

Philippines, Indonesia, Vietnam, China, Bangladesh and Malaysia produce barely enough 

rice for their own populations. These countries also face severe climatic problems such as 

soil fertility, hurricanes, drought and flood incidence, and unpredictable weather, pests 
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and diseases. It is evident that rice cultivation areas will face more problems, and 

inconsistency of rice production is a likely threat in future. Reduced production of rice 

could also result from the use of less superior rice varieties or poor management.  

One of the major hurdles faced by world rice production is pests and diseases 

problems such as rice blast, bacterial leaf blight, tungro, brown planthopper, yellow rice 

stem borer and leaf folder (Randhawa et al., 2006). It has been estimated that the yield 

losses due to rice diseases and pests‘ outbreaks increase up to 25% annually (Khush, 

2005). This has caused many farmers to use pesticides heavily to overcome the problem, 

the usage of which has led to another serious environmental difficulty. This study, 

however, focusses specifically on those insect pests which are responsible for a major 

loss of rice production in tropical and subtropical Asia.  

2.2 Rice pests and economic importance 

Insect pests have the ability to attack almost all parts of a rice plant at any growth stages. 

There are about 800 insect species which can damage rice whether in the rice field or 

during the storage period (Dale, 1994), but only a few can be acknowledged as potential 

major threats. Rice pests also can be divided into several groups according to the way 

they feed. For example, grain insects such as the stink bugs (Oebalus pugnax) remove 

milk from the developing grain (Patoja et al., 2000), defoliator insects mainly 

Lepidoptera  species such as cutworm (Spidoptera litura) feed on the leaves at the larvae 

stage, and  stem borers like Scirpophaga incertulas (yellow stem borer) feed within the 

stem (Pathak and Khan, 1994). However, one of the most important groups is the phloem 

feeding insects which use phloem sap as their main food source. Aphids and brown 

planthopper are the two most common insects in this group.  
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2.2.1. Aphids 

Aphids are one of the most threatening insects to agricultural crops around the world. It 

has been estimated that the annual economic loss due to aphid attacks on food and feed 

grain has reached $5 billion yearly (Matis et al., 2007). They use anatomically adapted 

mouthparts, called stylets, for probing and exploring plant tissue as they search for sieve 

elements with nutritious sap (Dixon, 1985).   Their normal feeding behaviour does not 

only reduce plant production but also has the potential to transmit several viruses that are 

responsible for major rice disease (Mathew, 1991) such as yellow disease or rice yellows 

(Yano et al., 1983). They have a short life cycle and the ability to produce their offspring 

through both asexual and sexual reproduction (Matis et al., 2007).  Therefore, an 

outbreak phenomenon could easily happen in a short time when the conditions suit them.      

So far, the biological and economic impacts of aphids attacking rice crops have 

been rarely studied and have been overlooked for many years. The last review was 

conducted by Yano et al. in 1983. They listed 37 main aphid species found in rice fields, 

and most of them did not use rice as their primary host.  Yano et al. (1983) also 

categorized the aphids into two groups based on their feeding sites. The first group 

known as the rice root aphid lived in and was found to infest the root area. Tetraneura 

nigriabdominalis is one of the important rice root aphid species which has been reported 

to attack upland rice in Thailand severely especially in the area where a continuous 

planting system has been applied (VanKeer, 2003). The other important aphid species 

which is classified in the same group is Rhopalosiphum rufiabdominalis (Sasaki) 

(Doncaster, 1953). It is distributed worldwide and found to attack several species of 
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Graminae, Cyperaceae and dicots, especially potato and tomato (Patch, 1938; Blackman 

and Eastop, 1984; Tsai and Liu, 1998; Kindler et al., 2004).  

Other aphid species which feed on other parts of the plant such as stems, leaves, 

flower spikelets or fruits are classified in the second group. Total species numbers based 

on their variations are also bigger than in the first group (Yano et al., 1983).  However, 

there have been very few reports of these types of aphids causing a major problem to the 

rice industry. The rusty plum aphid, Hysteroneura setariae which belongs to this group is 

commonly found feeding on leaves and unripened rice grain (Jahn et al., 2005).  They 

live in diverse places all over the world and infect rice at every stage of rice development 

(Gary et al., 2005). Outbreaks caused by this aphid have been reported in non-irrigated 

lowland rice, for example in Sierra Loene, Nigeria and India (Dale., 1994; Gary et al., 

2005). They are usually associated with the drought season (Akinlosotu, 1977; Gary et 

al., 2005).  Rhopalosiphum padi (bird cherry oat aphid) also belongs to the second group. 

This aphid is a common pest to cereal crops including wheat, barley and oat. Rice plants, 

however, are only their secondary host, which they infest when their primary hosts are 

not around. To date, there is no report linking this aphid with any major problem in the 

rice industry apart from as a vector for the virus disease ‗gialume‘ (yellow disease or rice 

yellows) of rice in Italy (Yano et al., 1983).  

 

2.2.2. Brown planthopper 

Planthoppers are also categorized as phloem-feeding insects. They constitute 65 species, 

with three subfamilies, Asiracinae (4 species), Stenocracinae (4 species) and Delphacinae 

(57 species) (Dupo and Barrion, 2009). Brown planthopper (BPH), Nilaparvata lugens 
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(Stal) belongs to the most economically important subfamily, Delphacinae, family 

Delphaciedae and Order Hemiptera (Dupo and Barrion, 2009). This small brownish 

insect is also classified as one of the most important rice pests in Asia, which causes 

heavy losses of yields due to the destruction of rice crops (Park et al., 2007). The insect is 

also often found to cause more yield loss than that caused by Lepidoptera pests such as 

stem borers or leaffolders (Dale, 1994; Gurr et al., 2011). The damage caused by BPH is 

generally similar to that of the aphids, as it feeds on the phloem sap directly and thereby 

transmits several types of virus such as rice grassy stunt virus (RGSV), rice ragged stunt 

virus (RRSV), rice striped virus (RSV), rice black streaked dwarf virus (RBSDV) and 

south rice black streaked dwarf virus (SRBSDV) (Velusamy and Herichs, 1986; Khush 

and Brar, 1991; Jena et al., 2005; Gurr et al., 2011).  

Similar to aphids, BPH also pierce plant parts and suck the phloem fluid with 

narrow mouthparts called stylets in order to extract nutrient from the host while injecting 

toxic into the plants (Sogawa, 1982). In the aphid feeding system, only the stylets go 

through into the cell as the salivary sheath stops at the sieve element cell wall (Spiller, 

1990). Unlike aphids, BPH differs in the maxillary stylet, which is normally accompanied 

by sheath saliva when it enters the sieve element. Clear evidence of this has been shown 

in the BPH feeding behaviour study using Electronic Penetration Graph (EPG) by 

Kimmins (1989) and by Seo et al. (2009). Sieve element feeding waveform patterns in 

aphids (Tjalingii, 1988) are different compared to the BPH pattern. These feeding mode 

results show that the symptoms of tissue damage are more severe when compared to 

aphids. Upon infestation, the rice plants‘ leaf blades start to change colour from yellow to 

brown before wilting. This phenomenon is known as ―hopper burn‖ (Sogawa, 1982; 
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Zheng et al., 2007).  Due to that, the development and physiological activities of the plant 

are disturbed, and this result in dramatic yield reductions.  

BPH has been reported to be widely distributed throughout Australia, Bangladesh, 

Cambodia, China, East Timor, Fiji, India, Indonesia, Japan, Korea, Laos, Malaysia, 

Myanmar, New Guinea, Pakistan, Palau, Philippines, Taiwan, Thailand, Vietnam and 

Yap Island (Dupo and Barrion, 2009).  Macropterous (BPH with wings) adults have the 

ability to migrate over long distances (Sogawa, 1982). Catindig et al. ( 2009) claim that 

they can fly continuously for at least 30 and up to 48 hs and travel more than 1,000 km 

over the ocean when the conditions are favourable.  They have been found to migrate 

annually from southern Asia to northern regions in China, Korea and Japan (Tunner et 

al., 1999).   

2.3 Phloem sap as food source for phloem feeding insects 

Phloem sap plays significant roles in the transportation system of nutrients in plant 

nutrition and development, allocating nutrients, water, energy and signals from source to 

sink organs (Fisher, 2000; Dinant et al., 2010). The nutrients‘ resources which are 

produced in the leaves or from the active roots (photoassimilates, amino acids and 

signaling molecules) are delivered to heterotrophic plant tissues by osmosis pressure 

within the plant (Chen et al., 2001).  The phloem sap consists of a wide range of organic 

and inorganic substances (Ziegler, 1975), with high concentrations of sugar in the form of 

free amino acids (Douglas, 2006). The composition of phloem sap, however, varies 

depending on several factors including plant age, temperature and water availability 

(Douglas, 1993; Geiger and Servaites, 1994; Kehr et al., 1998; Ponder et al., 2000; 

Corbesier et al., 2001; Karley et al., 2002).  
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Phloem sap has rich nutrient food sources and is an excellent diet for animals. In 

addition, it is also generally free of toxins and feeding deterrents which help make it 

attractive to many animals (Douglas, 2006). Insects under the order of Hemiptera are the 

main animals which have fully utilized phloem sap as their sole food source.  This type of 

insect is called a phloem feeding insect such as aphids, planthoppers, leaf hoppers, 

whiteflies, mealybugs and psyllids.   All phloem feeding insects, however, need a special 

feeding mechanism to overcome the barrier created by the phloem itself.    

 

2.4 Plant defence mechanisms  

Plants are exposed to a high variation of attackers from herbivorous insects or pathogens. 

That means plants have to produce special mechanisms in order to protect themselves 

from those attacks and minimize any damage. The effect on the insects or pathogens can 

be either direct or indirect. When direct, the insects will be killed by the defence 

mechanism and their population will decrease. When indirect, the plant will produce a 

special hormone to attract other parasitoids or predators to protect it from the attacker.  

The plants also have the ability to activate their defence mechanism whether constantly 

or just after being attacked by the insect. A plant defence system which always appears or 

is expressed in any condition or plant stage is referred to as a constitutive character. An 

inducible mechanism is the only response when the plant is being attacked.  

2.4.1 Inducible Plant defences 

The term inducible plant defences refers to the activation of certain genes-related defence 

molecules for plant protection from biotic or abiotic stress factors. This process works 
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fully when the plant has been affected by both stresses. For example, the signals for the 

defence mechanism are only activated if herbivores make contact with the plant, and 

most of the times required some injured. This induced mechanism is involved with a 

broad range of proteins and other molecules whose synthesis is spatially and temporally 

controlled (Karban and Baldwin, 1997; Walling, 2000) by certain genes which are 

programmed, such as in Salicylic Acid (SA) and Jasmonic acid (JA) activities (Reymond, 

et al., 2004). A classic example was shown by Walling (2000) and Zarate et al. (2007). 

They found that genes related to SA and JA defence mechanism were differentially 

expressed in Arabidopsis or tomato plant when attacked by silverleaf whitefly (Bemisia 

tabaci) (Reymond et al., 2004).  

The phenomenon on induced resistance started in 1933 (Chester, 1933; Deverall, 

1997) and was later separated into direct and indirect defence categories in the early 

1970s and 1980s respectively (Dicke and Poecke, 2002).  The main key plant signalling 

compounds involved in this inducible defence response are salicylic acid (SA), jasmonic 

acid (JA) and ethylene (ET) (Reymond and Farmer, 1998; Pieterse and Van Loon, 1999; 

Feys and Parker, 2000; Thomma et al., 2001; Kessler and Baldwin, 2002; Van Osten, 

2007). Salicylic acid in plant defence is not only reported to be effective against 

biotrophic pathogens attack (Van Osten, 2007), but it also works as a long distance 

messenger molecule within the plant (Neher, 2008). It plays a role in the resistance to 

pathogens by inducing the production of pathogenesis-related proteins.  

  Salicylic acid belongs to a diverse group of plant phenolic compounds that usually 

refer to secondary metabolites which have essential roles in the regulation of plant 

growth, development and interaction with other organisms (Harborne, 1980; Raskin, 
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1992). Phenolic compounds also play some role in the biosynthesis of lignin, an 

important structural component of plant cell walls (Raskin, 1992) and have been 

associated with the chemical defences of plants against microbes, insects and herbivores 

(Metraux and Raskin, 1992). Raskin (1992) has suggested that salicylic acid plays a role 

as a signalling component in plant microbes, required for systemic acquired resistance 

(SAR) to many viruses, bacteria and fungi, as well as for certain forms of rice-specific 

disease resistance (Rairdan and Delaney, 2002; Durrant and Dong, 2004). In insect 

attack, SA was reported to be involved in the activation of proteinase inhibitor, which 

may provide some protection against insect predation (Raskin, 1992). 

JA and ET defences are also important for resistance against necrotrophic 

pathogens and herbivorous insects (Thomma et al., 2001; Dicke and Van Poecke, 2002; 

Glazebrook, 2005; Van Osten, 2007).  Many studies have supported the important roles 

of JA in plant defence. JA is involved in the activation of genes encoding protease 

inhibitors that help protect plants from insect damage (Johnson and Ryan, 1990; 

Creelman and Mullet, 1997). JA also activates the expression of genes encoding 

antifungal proteins (Becker and Apel, 1992; Xu et al., 1994; Penninckx et al., 1996; 

Chaudhry et al., 1994), modulates expression of cell wall proteins (Creelman et al., 1992) 

and induces genes involved in phytoalexin biosynthesis (Choi et al., 1994; Creelman et 

al., 1992) and phenolics (Doares et al., 1995). Furthermore, JA is also the source of other 

volatile aldehydes and alcohols that function in plant defence and wound healing 

(Creelman and Mullet, 1997). 
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2.4.2 Constitutive plant defences 

Constitutive plant defences are mostly present in the whole life cycle of a plant.  

Therefore, they do not need either biotic or abiotic stress to be present to activate the 

process as in inducible types. In insect cases, the constitutive mechanism acts before the 

attack on the plant occurs and usually works as a first layer defence system. Plant 

morphological (physical) characters such as cuticles, thorns, trichomes and cell walls are 

used by the plant as a physical barrier (Peiying et al., 2008). These morphological 

characters protect or minimize insects‘ ability to contact the plant. For example, Bahlman 

et al. (2003) claim that the  high density of trichomes in resistance wheat variety, Tugela-

DN1 plants is able to prevent  Diuraphis noxia Mordv (Russian aphid wheat) from 

finding a suitable site for feeding. A stem with a wax surface in resistant rice varieties 

IR22 and IR62 was found to reduce BPH settling and probing ability (Woodhead and 

Padgham, 1988). Other studies have suggested that silicon content increases epidermal 

toughness and strengthens cell walls, which may protect plant tissue from insect pests 

(Djamin and Pathak, 1967; Nakano et al., 1961; Sasamoto, 1961; Ukwungwu, 1990; 

Hogendorp, 2008). Wild rice variety, O. Brachyantha contains high silica levels which 

makes plants unattractive to the rice leafhopper (Ramachandran and Khan, 1991). 

Some plants can create a chemical barrier by being able to synthesise 

continuously certain toxic compounds (alkaloids, terpenoids, phenolics), repellents, anti-

nutritients and anti-digestive compounds (Liu, 2005), which could be harmful to the 

insect itself (Mithofer et al., 2005, Peiying et al., 2008). These chemical defence 

properties are commonly subject to plant secondary metabolites such as proteinase 

inhibitors (PIs), which are found present constitutively in high concentrations in plant 
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storage organs and possibly function as protective agents against insects (Greg et al., 

2008) or cause them to be less attractive to herbivores (Osbourn, 1996; Tierens et al., 

2001). In phloem sap, plants produce two major nutritional problems for the insect, which 

can be described as the ‗nitrogen barrier‘ and the ‗sugar barrier‘ (Douglas, 2006). The 

insect has to overcome the problem before it can use the phloem sap. Nitrogen barriers 

are related to the low level and quality of nitrogen in the phloem sap.The insect will have 

little ability to synthesise some of the amino acids which can make up the protein  

because it is metabolically impoverished (Douglas, 2006). 

 Unlike inducible genes, these constitutive mechanisms have no ability to change 

easily in a short period of time although they have been exposed to certain stress such as 

that from herbivore attack (Karban and Myers, 1989). Constitutive genes only involve a 

normal function in a plant‘s life cycle. However, in certain cases, they are needed to 

support an inducible mechanism which could dramatically increase the effectiveness of 

plant defence.   A classic example is Bph14, which is claimed by Du et al. (2009) to be a 

constitutive resistance gene and is found expressed in leaf sheaths, leaf blades and roots. 

This gene encodes a coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-

LRR) protein that activates a salicylic acid signal pathway, and which can cause reduced 

feeding activity and growth rate in BPH (Du et al., 2009). 

This thesis will focus only on constitutive defences, which from the plant‘s 

perspective have a more stable consistency compared with inducible characters. The 

effects are also wider and not specific to certain insects, diseases or other types of stress.  
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2.5 Electrical penetration graph (EPG) as feeding indicator 

Monitoring insect feeding behaviour is an important activity and commonly used 

to define or indicate plant resistance levels. The plant is considered resistant if the insect 

is not able to feed normally. This is likely to affect the insect‘s growth and finally reduce 

insect populations. Monitoring feeding behaviour can be done visually using a 

microscope, with or without video recording (Kindt, 2004). However the results are of 

limited value because the information is mainly quantitative especially for phloem 

feeding insects. Unlike chewing insect, the feeding mechanism for phloem feeding 

insects takes place inside the plant because they use piercing mouthparts to penetrate the 

phloem through the plant cell wall and mesophyll to feed.  Therefore, visual observation 

cannot give any information about the events within the tissues of the plant.  The ability 

of insects to reach the phloem sap and commence feeding is different and depends on 

many factors. In resistant plants, the insect commonly takes several hours to access the 

phloem region after initial stylet insertion (Prado and Tjallingii, 1994; Tjallingii and 

Hogen Esch, 1993; Prado and Tjallingii, 1997). 

A major breakthrough in this area of research came when a method of 

electronically monitoring insect feeding behaviour namely electrical penetration graph 

(EPG) technology was introduced by McLean and Kinsey (1964). This EPG technique 

was later improved by Tjallingii (1988) and has subsequently gone through many 

modifications.  The basic principle however, is mostly still the same and is composed of a 

simple electric circuit into which the insect and the plant are incorporated.  There is an 

output wire from the monitor into the soil of a potted plant through which a low-voltage 

(109 Ω) in AC or DC signal is passed. A very thin gold wire about 18 µm is attached to 
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the dorsum of the insect using silver conductive glue. The insect is then connected to the 

input of the monitor and placed on the test plant. When theinsect penetrates the plant with 

its stylets (probing), it will complete the circuit (Tjallingii and Gabrys, 1999) and this 

generates the electric waveform which can be captured, recorded and visualized by the 

system. There are many different signals produced which are called waveforms and they 

are characterized through the amplitude, frequency and other features (Tjallingii, 2006). 

This entire waveform pattern therefore represents the insect stylet movements which have 

a relationship with feeding behaviour. At present, these data can be analyzed using 

software such as STYLET 2.2.  The detailed process is explained in the EPG 

methodology in chapter 4 and chapter 5. 

  

2.5.1 EPG waveform description 

The EPG system was first tested and heavily used to study aphids. Then, it has 

been applied to other piercing insects such as in whiteflies (Janssen et al., 1989; Lei et al., 

1998), thrips (Hunter et al., 1993; Harrewijn et al., 1996), mealy bugs (Calatayud et al., 

1994), leaf-planthoppers (Backus and Hunter, 1989; Kimmins, 1989; Lett et al., 2001) 

and also in brown planthopper (Kimmin, Seo et al., 2009; Ghaffar et al 2011).  The 

waveform pattern for each insect can differ because their feeding mechanisms are not the 

same. Therefore, EPG waveform characterization is the first important step to be carried 

out before any study begins. For aphids, EPG waveform characterization has already 

been well established (Tjallingii, 1995) and commonly used as reference for other types 

of phloem feeding insect including in BPH.  
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Generally, EPG waveform pattern have been divided into 7 typical types (Ghaffar 

et al., 2011). The first type namely non-penetration or non-probing phase shows a clear 

distinction from the other waveforms. A straight line indicates that there is no probing 

activities happenning. The second waveform represents the start of stylet insertion into 

the plant until thesieve element is reached. This process commonly takes several hours 

because the insect stylet has to go through epidermis, mesophyll and other tissues before 

reaching the sieve element. The movement of this stylet is like a sensor system because 

the insect has to find and to test a suitable area or type of food for the feeding activity to 

take place.  For aphids, Tjalingii (1995) classified the waveforms as A, B and C. In BPH,  

Seo et al., (2009) and Ghaffar et al., (2011) classified as N1, N2 and N3. In this study all 

these inconsistent waveforms have been grouped as ‗pathway‘. During this time, three 

other stylet activities have also appeared regularly such as xylem ingestion (G) as an 

indicator for insect drinking, derailed stylet mechanics (F) meaning the insect faces 

difficulty in penetration (Prado and Tjallingii 1994). In BPH, this waveform was named 

as N5, N6 and N7 (Seo et al., 2009; Ghaffar et al., 2009). 

The last two last waveforms, E1 and E2 are the most interesting waveforms which 

are strongly associated with phloem resistance characteristics. E1 waveform represents 

sieve element salivation and E2 waveform represents phloem ingestion which is equal to 

N4-a and N4-b in BPH (Ghaffar et al., 2011). The waveforms for both aphid and BPH 

however show a clear distinct pattern as shown in figure 23 (chapter 6). The difference 

could be due to their feeding mechanism. In aphids, only the stylet tip enters the sieve 

element region but for BPH, the whole stylet bundle goes inside sieve element area 

(Spiller, 1990, Ghaffar 2011). Sieve element salivation waveform usually appears only 
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for a short time, however it is an important critical stage for the insect to decide whether 

to continue to feeding or not. If they proceed to phloem ingestion and remain longer, then 

the plant will be described as susceptible. A carbohydrate-rich excretion or a sweet waste 

product, called honeydew which is produced by phloem feeding insects is frequently 

associated with the phloem ingestion period. The insect must expel this product if they 

are taking in a large amount of sugar in order to balance osmotic pressure inside their 

body (Wilkinson et al., 1997). This honeydew information is commonly used as 

supporting data for EPG study. 

 
 

2.6 Breeding for insect resistance in rice  

2.6.1 Genetic diversity of rice 

 Rice is a member of the grass family (Gramineae) and belongs to the genus Oryza under 

tribe Oryzeae. There are only 23 species in the genus Oryza (Vaughan et al., 2003), 

which can be found in the humid tropics and subtropics of Africa, Asia, Central and 

South America and Australia (Chang, 1976). The most cultivated rice is Oryza sativa L, 

which is grown in 100 countries from the equator to latitude 400 south and 500 north and 

to an elevation as high as 3,000 metres above sea level in tropical regions (Juliano, 1993). 

The other cultivated species is Oryza glaberrima Stued, which is found in Africa. It has 

been claimed, however, that this species will slowly be replaced by the superior variety 

O. sativa in the future (Chang, 1976; Linares, 2002).  

Rice cultivated species are mostly diploid (2n=2x=24) with genome AA (Samuel, 

2001). However, the wild species under Oryza genus, 20 of which have been reported by 
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Zhang (2007), contain both diploid (2n=2x=24) and tetraploid (2n=4x=48) forms which 

are represented by AA, BB, CC, BBCC, CCDD, EE, FF, GG or HHJJ genome (Vaughan 

et al., 2003). The wild species under Oryza genus are considered a useful source for a 

gene pool provider in rice improvement programmes especially for resistance to biotic or 

abiotic stresses, and male sterility for hybrid development (QuiChang et al., 1975; Sitch 

et al., 1989; Kush 1997; Ratnayaka, 1999; Samuels, 2001). For example, Oryza rufipogon 

has a special trait for tolerance to acid sulfate soils and flooding-source, Oryza 

meridionalis for drought tolerance, Oryza punctata for multiple pest resistance, Oryza 

grandiglumis for high biomass production and Oryza officinalis, Oryza eichingeri, Oryza 

minuta and Oryza australiensis for BPH resistance (Sundaramoorthi et al., 2009; Jena, 

2010).  

2.6.2 Biodiversity as a source of resistance genes  

Presently, the uses of plant breeding for development of plants with insect resistant 

characteristics are in demand. They are generally seen as an effective way of being 

environmentally responsible and an economically and socially acceptable method of pest 

control which plays an integral role in sustainable agricultural systems (Wiseman, 1999). 

Tolmay (2001) claims that the most important benefit in creating a plant with insect 

resistant characters is the fact that the pest control occurs independently of the managerial 

ability, skill and resource level of the producer.  

The uses of natural resources through breeding programmes for the development 

of rice resistant to insects are a better option compared with chemical treatments which 

could cause other serious problems. Jena (2011) claims that more than twenty-one major 

BPH resistance genes have already been identified in cultivated rice cultivar (indica sp) 
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and wild species (Table 1). Among them are Bph1, bph2, Bph3, bph4,  Bph6, Bph9, 

Bph10, bph11, Bph12, Bph13, Bph14, Bph15, Bph18, Bph20  and Bph21, which are 

found in chromosomes 2, 3, 4, 6, 11 and 12 respectively  (Hirabayashi et al., 1999; Ishii 

et al., 1994; Jena et al., 2003; Renganayaki et al., 2002; Sharma et al., 2003; Ren et al., 

2004; Yang et al., 2004; Jena et al., 2006). However, not all these genes can be used to 

overcome the BPH problem in rice (Jairin et al., 2007).  One of the reasons is due to the 

appearance of a BPH biotype which showed a different significant response on different 

resistant genes (Tanaka and Matsumura, 2000). However, the real issue here is the 

limited current knowledge about genes that are related to resistance mechanisms (Jairin et 

al., 2007). The old approaches required substantial time in order to solve the problem but 

with the introduction of new gene expression analysis and technology, the problem can 

be resolved in a shorter period of time.   

Table 1 shows some varieties including wild types which contain all those 

BPHresistance genes with wide ranges scaling for resistance level in each variety.  

However, there are many factors that contribute to these variations. One of them is the 

use of measurement methods to identify this resistance level such as symptom, total 

insect or nymph and honeydew production.    
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Table 1 List of varieties including wild types and their resistance scale, which contain BPH 
resistance genes tested on BPH biotype 2 or 3; scale 0 indicates highly resistance (HR); 1 
resistance (R); 3 moderate resistance (MR); 5 moderate susceptibility (MS); 7 susceptibility (S); 9 
high susceptibility (HS).  
 

Varieties Gene Resistance rating in 
three replicates 

References 

TN1 (check variety) - 9      9     9 Pham  and Bui (1999) 
Mudgo /IR64 Bph1 5      5     5 

 
Pham  and Bui (1999) 
Cohen et al. (1997) 

ASD 7 bph2 9      7     7 Pham  and Bui (1999) 
PTB33 bph2, Bph3           -      -     - Pham  and Bui  (1999) 
Rathu Heenathi Bph3 3     3     3 Pham  and Bui (1999) 

Khush et al. (1985) 
Babawee bph4 7     5     5 Pham  and Bui (1999) 
ARC 10550 Bph5 9     9    9 Pham  and Bui (1999) 

Khush et al. (1985) 
Swarnalata  Bph6 3     5    3 Pham  and Bui (1999), Kabir 

and Khush (1988) 
ARC 15831 (b) bph 7 -      -     - Pham and Bui  (1999) 
T12 bph7 5      7    7 Pham  and Bui (1999) 
Sinsapa bph8 5     5    3 Pham and Bui 1999) 
Pokkali Bph9 9     9    9 Pham and Bui (1999) 
O. officinalis Bph6,bph11, 

Bph13, 
Bph14, 
Bph15 

-      -     - Jena et al. (2006) 
Hirabayashi et al. (1999) 
Renganyaki et al. (2002) 
Yang et al. (2004 

O. latifolia Bph12 -      -     - Yang et al. (2004) 
O. australiensis Bph10, 

Bph18 
-      -     - Ishii et al. (1994) 

Jena et al. 2006 
O. minuta Bph20, 

Bph 21 
-      -     - Rahman et al. (2009) 

  

2.6.3 Molecular breeding 

There are very few major differences between conventional and molecular breeding 

techniques. Their main focus is to identify specific characteristics of a plant and utilize 

them to develop and improve a cultivar for suitable consumer needs through crossing or 

gene transfer (transgenic). The common steps usually start with the creation of a gene 

pool from the germplasm population, then identified superior interest characters of the 

plant (parent) are assembled, and finally an improved cultivar is developed (progeny) 

from selected individuals (Moose and Mumm, 2008). The primary goals of plant 
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breeding have typically targeted resistance character, high yields, good nutritional 

qualities and other important traits for commercial value.  

Conventional breeding selects superior plants through phenotypic characters. On 

the other hand, molecular breeding is based on genotypes‘ characteristics. Unlike in 

phenotypic characters, gene information is not  influenced by environmental factors such 

as experiment conditions, place or who did it (Vicente et al., 2005). Therefore, the 

selection results obtained are more accurate and consistent. In addition, because the plant 

characteristics are not influenced by environmental factors, the experiment can be done at 

any plant stage. Consequently, time and research costs are significantly reduced.   

The basic common approach in molecular breeding is the use of DNA marker 

technology, a powerful tool for tagging gene regions which are not available in traditional 

plant breeding (Prioul et al., 1997).  There are several marker techniques commonly used 

these days. These include restriction fragment length polymorphism (RFLP), random 

amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), 

simple sequence repeats (SSRs) or microsatellites and single nucleotide polymorphism 

(SNPs). The markers could have links with specific traits of the plant, and they allow 

plant breeders to identify their character of interest and make their selection. This 

exercise is called marker assisted selection (MAS), and it can also help to monitor the 

transfer of desirable genes from one plant to another such as from parents to their 

progeny.     

In addition, the DNA markers allow genetic information to be described. The 

advent of molecular markers and statistical techniques has enabled genetic information to 

be described in detail. For example, a quantitative trait loci (QTL) technique is able to 
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measure the location of genes on the chromosome which affected plant traits on a 

quantitative scale (Tanksley, 1993). Several QTL for traits of economic importance in 

rice have already successfully been mapped with molecular markers such as root traits 

(Redona and Mackill, 1996; Yadav et al., 1997; Zheng et al., 2000), submergence 

tolerance (Nandi et al., 1997), yield components (Xiao et al., 1998), blast resistance 

(Wang et al., 1994) and BPH resistance (Kumari et al., 2010). 

2.7 Transcriptomics analysis  

A transcriptome is the complete set of transcripts representing all messenger RNA 

molecules in the cell (Wang et al., 2008). Transcriptomics generally involves a 

systematic and comprehensive study of all the RNA transcripts of a cell, tissue or 

organism under defined conditions (Thompson and Goggin, 2006). The evaluation is 

based on mRNA expression patterns which are highly influenced by the environmental 

conditions surrounding the genes (Lockhart and Winzeler, 2000), including location, 

development stage and temperature of the cell. In this study, microarray gene expression 

analysis, which is now a common method for the measurement of gene experession 

patterns, was used. This technology was first developed by Mark Schena in 1995 (Chu et 

al., 2007). Serial analysis of gene expression (SAGE), representation different analysis 

(RDA) and massively parallel sequence signature (MPSS) are the other methods or 

technologies that can also be used in transcriptomics analysis. 

2.7.1   Principle and technique of microarray 

The basic principle behind microarray is the inherent ability of a single stranded nucleic 

acid (DNA/RNA) to bind to its complementary sequences. The simple process of 
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microarray involves harvesting RNA from tissues of interest and labelling it as target.  

Next, this RNA sample is converted into a single stranded type and bound to a prepared 

single stranded DNA on an array surface (platform) commonly known as probes. The 

levels of expression are measured at this stage according to the quantity of targets and 

probes that are successfully binding (hybridizing). Previously, RNA levels were 

measured using Northern blot or Reversed Transcription Polymerase Chain Reaction 

(RT-PCR) (Mitchell, 2008). However, this technology allowed only a few genes to be 

analysed at one time. In contrast, microarray technology enables the expression of 

thousands of genes simultaneously in one single run to be detected and analysed, which 

makes it a powerful approach and increasingly important in many genomic studies.  

There are different types of probes used on the microarray platform. The most 

common are cDNA arrays and oligonucleotide arrays (Gibson, 2002; Mitchell, 2008). 

The first probes on a cDNA microarray are polymerase chain reaction (PCR) products 

(500 to 5,000 bp; Nambiar et al., 2005) generated from clones of cDNA libraries 

(Suhaimi, 2009). However, this technique is labour-intensive and could produce a few 

errors as its construction involves many steps such as the generation of cDNA libraries, 

culturing thousands of clones, amplifying these clones and spotting them on a suitable 

surface (Suhaimi, 2009).  In contrast, the second type probes of oligonucleotides arrays 

are synthetic molecules with a shorter target sequence (25 to 60 bp; Nambiar et al., 2005). 

The construction of this oligonucleotide microarray is based on the availability of 

sequence information in genome databases. This technique is commonly preferred for 

commercial production as it provides better capacity, accuracy and reproducibility than 
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cDNA arrays (Chu et al., 2007; Suhaimi, 2009). Agilent and Affymetrix are the main 

companies actively involved in producing this oligonucleotide gene chip. 

Microarray analysis can be performed by one-colour (intensity-based) or two-

colour (ratio-based) platforms depending on the specific applications and needs of the 

researcher. In the two-colour procedure, the two samples are labelled with different 

fluorescent dyes such as phycoerythrin, cyanine-3 (Cy3) or cyanine-5 (Cy5), and are 

hybridized together on a single microarray. This approach only allows comparison on the 

same array being made and is commonly used for a very narrow specific of interest such 

as comparing two treatments. Unlike the two-colour technique, only one fluorescent dye 

(Cy3 or Cy5 dyes) is involved in the one-colour procedure for labelling the hybridization 

of a single sample to each microarray. This hybridization of a single sample per 

microarray facilitates comparisons across microarrays and between groups of samples 

(Patterson et al., 2006). Therefore, experimental design becomes simple and flexible 

(Patterson et al., 2006) especially when it involves a large number of samples as in this 

study. The selection approaches between one or two colours are not critical in influencing 

the end results because it has been shown they are approximately equivalent and provide 

similar levels of biological insight (Patterson et al., 2006; Paul and Amundson, 2008).  

Over the past few years, this technology has been frequently updated in many 

aspects, from the microarray equipment, the chemicals, measurement (statistical analysis 

software) to bioinformatics analysis. For example, the numbers of probes printed on the 

array (oligunucletide) produced by the Agilent Technology company have now increased 

from 22K to 44k and recently 60K array slides.  Therefore, these high density arrays 

allow more samples to be analysed. In addition, the rapid progress in updating genomic 
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information such as gene annotation and function is also able to support the efficiency of 

microarray application. 

2.7.2 The application of microarray 

DNA is the carrier of genetic information (gene) which can be used to describe or 

characterize the functions in organisms. RNA acts as a messenger (mRNA), passing the 

actual information in the DNA chromosome from the nucleus into the cytoplasm of the 

cell (transcription and translation steps), the place where protein is synthesised (Morange, 

2009). This process can be directly associated with gene function and measured through 

gene expression level.  A higher gene expression will indicate that this gene is active (up 

regulated) and highly significant providing evidence of gene function. In contrast, if the 

level of expression is low (down regulated), it will indicate that the gene is passive or 

non-active under the conditions tested. For example, the high expression of genes 

encoding B-glucosidase in seedlings and young plants has been associated with increased 

resistance to herbivore and pathogen attack (Forslund et al., 2004; Morant et al., 2008). 

The actual biological processes, however, are much more complex. Most 

biological mechanisms depend on several genes rather than one single gene function. 

Many genes have contributed their part in activating other genes in certain biological 

functions such as genes associated with defence signalling pathway. The increase in 

expression level of jasmonic acid (JA) and salicylic acid (SA) due to aphid attack has 

also induced a number of other SA- and JA-associated genes such as  lipooxygenase 

(LOX) and genes associated with the production of ROS, particularly hydrogen peroxide 

(H2O2)   (Zhu-Salzman et al., 2004; Heidel and Baldwin, 2004). Therefore, to understand 
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the whole biological mechanism becomes harder without a special tool like microarray 

technique 

The ability of microarrays to analyze thousands of genes in parallel has made it a 

vital tool in transcriptomics studies. Presently, microarrays are being used to examine a 

wide range of biological issues for plants, animals and humans (Allemeersch, 2006). The 

most common application is in analyzing gene expression profiles (Aharoni and Vorst, 

2001). This approach uses similarity or dissimilarity in expression patterns to classify 

gene functions which could be associated with certain mechanisms (Aharoni and Vorst, 

2001).  In plants, the gene expression patterns can be compared from a variation of 

samples such as those between different tissues in the same organism (root and leaves), 

the same tissue on different organisms (root sample from variety A and variety B), or the 

same tissue but under different conditions (healthy and exposed to biotic or abiotic 

stresses). For example, Seki et al. (2002) used Arabidopsis cDNA microarrays to profile 

gene expression under 3 different conditions, drought, cold (low temperature) and high-

salinity stress conditions over time. They found 53, 277 and 194 genes from 7000 cDNAs 

are induced respectively after cold, drought and high-salinity treatments compared to 

control conditions (Ski et al., 2002).  These data suggest that drought factors affect more 

genes than cold or high salinity conditions (Ski et al., 2002). These expression data could 

also be used to identify candidate genes which respond to drought stimuli. As a 

consequence, they also explain the gene function which may contribute to several 

pathways and gene networks in the drought mechanism.  The same concept can also be 

applied to studying plant response to other conditions such as chemical treatments 

(fertilizer, hormone or pesticide) and diseases.  
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2.7.3 Microarray analysis in plant breeding  

The evaluation of plant performance for the selection of desirable traits is a basic step in 

plant breeding. Previously, most of this process was done based only on morphological 

characters such as high yield, good cosmetics, shape or resistance to stress.  However, in 

any transcriptomics analysis, a plant will also be evaluated according to its gene 

expression profile and level, thus allowing agronomically important traits to specific 

genes to be linked. Transcriptomics analysis not only reveals the differential expressions 

between plant varieties but can also give insights into what is happening at the cellular 

level such as at different developmental stages, tissues locations or non-stressful 

conditions.  

The genes usually respond to certain conditions or treatment through up- or down-

regulation patterns. In disease and insect studies, the related resistance genes usually 

show high expression patterns in resistant varieties.  In contrast, susceptible varieties 

behave in a different way with low expression levels of the related resistance genes. The 

evidence of this phenomenon has been shown in microarray analysis performed using 

healthy and unhealthy plant samples. For example, Baldwin et al. (1999) in their 

microarray study identified 117 significant genes which responded to pathogen attack.  

Another similar example was that conducted by Reymond et al. (2000) who found 150 

defence-related genes in Arabidopsis that showed different regulation patterns when the 

plant received a mechanical injury from insect attack. Moreover, microarray can also 

differentiate between sources of attack. Several studies have suggested that phloem 

feeding insects have less impact on plant gene expression than chewing insects (Fidansef 

et al., 1999; Heidel and Baldwin, 2004; Kaloshian and Walling, 2005; Thomson and 
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Goggin, 2006). Another study conducted by De Vos et al. (2005) also identified that 

different regulation patterns occurred in Arabidopsis studies between green peach aphid 

(Myzus persicae), cabbage white butterfly larvae (Pieris rapae) and the bacterial 

pathogen, Pseudomonas syringae.  

The most significant advances of microarray are not about identifying related 

genes, but about determining cellular phenotype and understanding the gene function, 

which are much more important (Lockhart and Winzeler, 2000). With the assistance of 

bioinformatic technology, this knowledge can be extended to understanding the actual 

mechanism involved in plant biological systems. This knowledge will help breeders to 

plan their strategies to achieve their specific goals. In this study, understanding the 

defence mechanism in plants against insects, specifically phloem feeding insects was 

focussed on.  

Plant defence mechanism is a very complex process involving many genes, 

therefore a transcriptomics approach is the best option and could be  fundamental in 

future studies for understanding genetic behaviour.. Although the application in this area 

is still at an early stage, there have already been successful results. For example, genes 

which are associated with photosynthesis activity were found to be down regulated in 

tobacco plants in response to insect attack (Ferry et al., 2004).  The same result was also 

found by Hui et al. (2003). Their study demonstrated that growth-associated transcripts 

are down regulated but defence-related transcripts show up as regulated. These results 

provided evidence that genes related with salicylic acid, ethylene, cytokinin and jasmonic 

acid pathways were regulated simultaneously during herbivore attack (Ferry et al., 2004). 
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There are many reports that associate salicylic acid, jasmonic acid and ethylene, 

three important signalling compounds, with plant defence mechanisms (Glazebrook, 

2001; Kunkel, 2002; Thomson and Goggin, 2006). It is suggested that these signalling 

pathways interact within each other (Heidel and Baldwin, 2004). In tomato, for example, 

SA was able to repress JA-mediated genes such as protein inhibitors (PIs) (Doares et al., 

1995) and polyphenol oxidase, affecting resistance against herbivores (Thaler et al., 

2002; Heidel and Baldwin, 2004). However, this interaction varies depending on 

hormonal concentration and the relative timing of induction (Devadas et al., 2002; Thaler 

et al., 2002). In addition, these interactions can also overlap or have synergistic effects 

(Schenk et al., 2000; van Wees et al., 2000; Salzman et al., 2005; Thomson and Goggin, 

2006). 

  The application of microarray experiments in rice breeding for insect resistant 

traits is still at an early stage. So far, only a few studies on brown planthopper attack have 

been reported, including those of Zhang et al. (2004), Yang et al. (2005) and Yuan et al. 

(2005). Therefore, there are still many mechanisms that can be explored (Thomson and 

Goggin, 2006).  
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CHAPTER 3 
 
 

FEEDING BEHAVIOUR AND GROWTH 

PERFORMANCE OF BIRD CHERRY-OAT APHIDS 

(Rhopalosiphum padi L) ON RICE 

3.1 Introduction   

The bird cherry–oat aphid, Rhopalosiphum padi (L.), is commonly known as an 

economically important phloem-feeding insect on many different cereal crops in Europe 

(Carter et al., 1980; Loxdale and Brookes, 1988). This aphid can cause damage to hosts 

through direct feeding and transmitting several virus diseases such as barley yellow dwarf 

virus (BYDV) (Leather et al., 1989). As in other aphids, it uses anatomically adapted 

mouthparts, called stylets, for probing and exploring plant tissue, as it searches for sieve 

elements with nutritious sap (Pollard, 1973; Dixon, 1985). 

The bird cherry–oat aphid is mostly categorized as heteroecious and holocyclic, a 

process involving alternations of parthenogenic and sexual generations (Grönberg, 2006). 

Its main primary host is bird cherry (Prunus padus L.), the wild growing fruit tree native 

to Europe (Vornan and Gebhardt, 1999).   Gramineae, especially grasses, maize, barley, 

oats and wheat are their secondary hosts (Grönberg, 2006). In winter, the bird cherry-oat 

aphid lays eggs on bird cherry (Loxdale and Brookes, 1988). Then, it migrates to a 

secondary host in early summer when most cereals and grasses are at the seedling stage.  

Therefore, at this time, the bird cherry-oat aphid is provided with an excellent food 
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source to generate huge populations and form outbreaks. To complete the cycle, the bird 

cherry-oat aphid will return back to the primary host to lay its eggs in the winter season 

(Grönberg, 2006).   The bird cherry-oat aphid is also able to generate populations through 

anholocyclic forms which remain entirely on the secondary hosts throughout the year 

(Simon et al., 1996). This reproductive method with the absence of males can only persist 

where environmental conditions are favourable (Capinera, 2004). 

 So far, there have been only very limited reports that aphids including bird 

cherry-oat aphids cause a major problem in rice. The last review conducted was over 28 

years ago by Yano et al. (1983). Bird cherry oat-aphid was found infesting rice in Italy 

and was responsible for transmitting the virus disease ‗gialume‘ (yellow disease or rice 

yellows) (Yano et al., 1983). Their potential threat to rice plants has never been tested. 

In this study, the general aims were not only to identify bird cherry-oat aphid 

performance on several rice varieties but also to move to another level in genomic 

analysis. Rice is well known as a model plant for cereal crops, while aphids (bird cherry-

oat) could play a role as a model for phloem-feeding insects. This combination could be 

good for creating a model experiment for genomic analysis in future.   Morphological and 

molecular data would enable genomic tools to be manipulated for a better understanding 

of the mechanism of plant-insect interactions. Therefore, it was anticipated that this 

approach could provide basic knowledge for subsequent further research into the more 

important rice-insects‘ interaction (with the brown planthopper).  

3.2 Objectives  

Two experiments were designed. The first was to evaluate the response of aphid growth 

performance to five rice accessions which were chosen randomly from samples provided 
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by the International Rice Research Institute (IRRI) and the Malaysia Agriculture 

Research and Development Institute (MARDI). The second objective was to identify the 

effect of rice age on aphid feeding ability using the EPG (Electrical Penetration Graph) 

system. The use of EPG technology allows for the monitoring of many aspects of aphid 

feeding behaviour in detail based on stylet activities (Tjallingii, 1978). Only a Malaysian 

commercial variety, MR219 was used in this experiment 

3.3 Materials and methods 

3.3.1 Plant materials  

The rice varieties used in this study were provided by the IRRI (International Rice 

Research Institute) and MARDI (the Malaysia Agriculture Research and Development 

Institute). In this experiment, only 5 varieties were chosen, namely MR219, IR64, IR123, 

IR694 and Azucena. All the seeds were germinated in petri dishes on filter paper and then 

transferred to 5 cm diameter pots containing multipurpose compost (HUMAX). The 

plants were then maintained in a plant growth room at 24 ± 3 0C with 60 ± 10% humidity 

and L16:D8 photoperiod 

3.3.2 Insect culture 

Bird cherry-oat aphid (Rhopalosiphum padi) originated clones were received from 

Rothamsted Research, UK, and then were  maintained in wheat crops (Triticum aestivum 

L) in the insect room, School of Biosciences, University of Birmingham. These 

continuous culture aphids were then transferred to an early seedling MR219 rice clone 

and kept in net cages in insect growth facilities with similar conditions as in the growth 
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room. The rice plant was changed every month in order to maintain the pure colony. Only 

mature aphids and active aphids were chosen for the EPG experiment 

Reproductive rate and aphid growth performance Figure 1 shows a small rounded 

cage (2.0 cm diameter) which was attached to the lower stem of three-week old rice 

plants. Bird cherry-oat aphids have been reported to prefer the lower part of the cereal 

seedling (Gianoli, 1999;  Lether and Dixon 1981; Wiktelius, 1987). One week later, a 

young mature aphid was then transferred into a small rounded tube which had already 

been attached to the plant using a fine camel brush. Then, monitoring was conducted 

daily until nymphs were produced. Only one nymph was left in the cage, and the others 

were discarded, including the original old aphid. Counting was started at this point until 

the death of the test aphid or a maximum of 24 days. Two parameters were assessed: the 

total days of nymph survival, and the number of offspring produced. Nymphs that lived 

less than 2 days were excluded from the analysis. This experiment was conducted for 24 

days, and at least 5 samples were collected for each rice variety. A similar process was 

also undertaken using the second treatment for 8-week old rice.  
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Figure 1 A small rounded clip cage 

3.3.3 EPG technique 

Aphid feeding behaviour was recorded and classified using a DC electrical penetration 

graph (EPG) system (Figure 2) as described by Tjallingii (1978, 1988). Adult apterous 

aphids were selected from the insect culture, according to their size and active behaviour.  

They were carefully connected to a 3 cm length of 18.5 µm diameter gold wire (EPG 

system, Wageningen Agricultural University, Wageningen, the Netherlands) with 

conductive silver glue on their dorsum part and were then left to starve for about an hour.  

After that, they were wired into a Giga 8- DC EPG amplifier with 10
9 

Ω input resistance 

and an adjustable plant voltage (Wageningen Agricultural University, Wageningen, the 

Netherlands) and connected to a rice plant (Figure 3). At the same time, the other 

electrode, a copper wire about 2 mm in diameter and 10 cm long (serving as the plant 

electrode) was inserted into the growing medium of the plant and also connected to the 
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amplifier. The experiment was conducted in the insect house at 24 ± 3 0C temperature 

and 60 ± 10% humidity. Illumination was provided continuously for 6 h by a fluorescent 

mounted lamp above the cage. Recordings of 8 plants and 8 aphids were made on 8 

channels simultaneously. All the signals were recorded on a computer hard disk using 

STYLET 2.2 software (Wageningen Agricultural University, Wageningen, the 

Netherlands). In this experiment, probing behaviour was recorded for only 6 h and run 

separately between young (4-week old) and mature (8-week old) rice plants. 

 

 

 

 

 

 

 

 

 

 

 

 

                Figure 2 GIGA 8-DC Electronic Penetration graph (EPG) circuit system 
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            Figure 3 Aphid connections to a small gold wire on rice leaf 

3.3.4 EPG parameters and data analysis 

EPG signal analysis and data acquisition were done using the same STYLET 2.2 

software. Because this experiment was the first trial to evaluate aphid feeding behaviour 

on rice using the EPG method, this preliminary study focussed only on 5 important EPG 

patterns. Those five waveform patterns are non penetration (NP), pathway (C), salivation 

of sieve element (E1), ingestion of phloem sap (E2) and ingestion of xylem sap (G), 

classified according to Tjallingii (1990). Any other waveform without any clear pattern 

such as derailed stylet mechanics (SD) and potential drop (PD) were classified as 

waveform pathway types. All data were interpreted by the percentage period of time for 

each EPG waveform type and their frequency as listed below. 
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1. Mean duration of non penetration waveform pattern (NP) 

2. Period of pathway waveform pattern (C). 

3. Period of salivation of sieve element waveform pattern (E1).  

4. Period of ingestion of phloem sap waveform pattern (E2). 

5. Period of derailed stylet mechanics waveform pattern (F) 

6. Period of ingestion of xylem sap waveform pattern (G) 

7. Total maximum duration of E1 waveform 

8. E1 waveform frequency 

9. Time to E1 waveform start 

10. Total maximum duration of E2 waveform 

11. E2 waveform frequency 

12. Time to E2 waveform start 

3.3.5 Statistical analyses 

Summarising statistics including means and standard error were presented using 

Microsoft Excel. SAS version 9.1 package (SAS Institute, 2008) was used for a more 

advanced statistical analysis such as Analysis of Variance (ANOVA) and the Mann 

Whitney Kruskal Wallis test. 

3.4 Results 

3.4.1 Fecundity and survival rate 

There were no significant differences after 24 days for both survival rate (Kruskal Wallis 

Pr > Chi-Square = 0.479) and total fecundity (Kruskal Wallis Pr > Chi-Square = 0.807) 
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amongst the five rice genotypes (Table 2). The new born bird cherry-oat aphids could 

only survive an average 13.4 days. During that time, they were able to produce only a 

few offspring (average 3.4 nymphs).  Figure 4 and figure 5 illustrate clear patterns for 

both parameters from the day the aphids were born until 24 days later.  The percentage 

survival rate of the aphids drastically declined between the 8- and 10-day experiments by 

about 60%, especially for varieties IR694, IR123 and Azucena. There were a number of 

aphid offspring being produced, however, with high variation and an inconsistent pattern 

for all rice. Aphids started producing their offspring as early as 8 days after they were 

born in variety MR219, IR694 and Azucena.  Most of them produced maximum numbers 

after 12 to 18 days in all varieties in the study. 

Table 2 Means and standard error of total days first instars can survive and total nymphs 
they produce during 24-day experiment 

 
 Accession no Days of survival 

 
Total nymph produce 
 

MR219 14.0 ±1.9 6.2 ± 3.7 
IR694 13.6 ± 4.1 2.4 ± 1.5 
IR123 11.7 ± 2.4 0.7 ± 0.4 
IR64 15.0 ± 2.2 2.7 ± 1.4 
Azucena 12.3 ± 2.9 3.7 ± 2.5 
Average 13.4± 1.1 3.4 ± 1.2 
Chi-square 3.496 1.611 
Pr > Chi-Square 0.479 0.807 
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Figure 4 Comparison of total numbers of nymphs (first instar aphid) surviving in days 
between five rice accessions. 
 

 

 

 

 

 

 

 

 

 
Figure 5 Comparison of total number offspring (nymphs) produced over time by first 
instar aphids between five rice accessions. 
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3.4.2 EPG results 

 
All samples with minimum two hours probing activities captured by EPG system were 

chosen for statistical analysis. Table 3 shows all 12 parameters of aphid feeding 

behaviour using EPG waveform patterns measured over 6 h. Generally, bird cherry-oat 

aphids spent most of their time on non penetration type (35.8%) and pathway (39.9%) 

respectively. Significant differences between young and mature rice plants were only 

identified related to E2 (ingestion of phloem sap), total percentage period E2 of phloem 

sap (Pr > Chi-Square: 0.0143), total maximum duration of E2 waveform (Pr > Chi-

Square: 0.0160), E2 waveform frequency (Pr > Chi-Square: 0.0470) and time to first E2 

waveform (Pr > Chi-Square: 0.0283). These results provided evidence that plant age has 

a role in influencing aphid behaviour.  Bird cherry-oat aphids spent 19.9% of total 

feeding period for E2 waveform feeding type in young plants, much greater than in 

mature plants, with only 1.5%. They can stay feeding (E2) longer in young plants with a 

maximum duration of 1418 s compared to mature plants with only 212 s. Other 

supporting data such as the total frequency of E2 and the fastest time to E2 were also 

greater in young plants.  

Figure 6 illustrates the EPG waveform of bird cherry-oat aphid feeding in one 

hour. Generally, non penetration (NP), pathway (C) and xylem EPG waveform patterns 

appeared only at early aphid feeding stages in young plants (a). In contrast, those three 

EPG waveforms showed inconsistence patterns in mature plants (b), and these can be 

seen during all 6 h EPG experiment. In addition, it clearly shows that phloem ingestion 

(E2) has a shorter time and rarely appears in mature rice plants.      
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Table 3 Feeding behaviour (mean ± SE of EPG parameters) of bird cherry-oat aphid 
(Rhopalisphum padi) during a 6-h period on 4-week and 8-week old rice plants. (Time in 
seconds) 

Parameters Means Young Mature Chi- 
Square 

Pr > 
Chi- 

Square 
Non penetration: NP  (%) 35.8 

± 5.7 
27.9 
± 6.8 

41.8 
± 8.5 

0.9899 0.3198 

Pathway: P (%) 39.9 
± 4.8 

39.5 
± 6.5 

40.3 
± 7.0 

0.1818 0.6698 

Salvation in sieve elements: 
E1 (%) 

4.9 
± 1.5 

5.7 
± 2.0 

4.3 
± 2.2 

1.5568 0.2121 

Ingestion of Phloem sap: E2 
(%) 

9.4* 
± 4.2 

19.9 
± 8.8 

1.5 
± 0.9 

5.9949 0.0143 

Ingestion of xylem sap: G 
(%) 

9.9 
± 3.6 

7.0 
± 4.4 

12.1 
± 5.4 

0.0052 0.9423 

Total maximum duration of 
E1 waveform (s) 

450.3 
±106.2 

589.1 
± 175.0 

346.1 
±  130.0 

1.1393 0.2858 

No of E1 waveform 
frequency 

6.8 
± 155 

7.2 
± 1.5 

6.5 
± 2.0 

0.3719 0.5420 

Time E1 waveform start (s) 6414.6 
± 1650.2 

4167.1 
± 2202.8 

8100.3 
± 2327.8 

1.8280 0.1764 

Total maximum duration of 
E2 waveform (s) 

729.1* 
± 266.0 

1418.0 
± 529.6 

212.4 
± 123.3 

5.8036 0.0160 

No of E2 waveform 
frequency 

3.6* 
± 1.0 

6.1 
± 1.8 

1.7 
± 0.6 

3.9450 0.0470 

Time E2 waveform start (s) 11930.8* 
± 1831.9 

7444.8 
± 2519.3 

15295.4 
± 2194 

4.8075 0.0283 

*P< 0.05 significant different (Kruskal Wallis test) 
  
 

A further detail of aphid feeding behaviour throughout the 6 h is shown in figure 

7. There was much variation identified during the 6 h feeding period. Once again, only 

E2 EPG waveform character clearly showed the difference between young and mature 

plants. Bird cherry-oat aphids can feed better on young plants rather than mature, but 

their ability decreases towards the end of EPG monitoring time.  
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a. Young rice plant 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Mature rice plant 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Electrical Penetration Graph (EPG) of aphids feeding on different ages of rice 
plant in one hour. Comparison of EPG waveform patterns between young (a) and mature 
(b) rice plants during one hour. Aphids find it easy to penetrate sieve elements in young 
plants compared to mature plants 
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Figure 7 Average total time for five EPG waveform patterns, Non penetration (NP), 
Pathway (C), Salivation of sieve element (E1), ingestion of phloem sap (E2), derailed 
stylet mechanics (F) and xylem (G) with a comparison of young and mature rice plants 
over 6 h 
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3.5 Discussion  

The EPG technique used in this study has provided valuable information on stylet 

activities via electrical waveform (E2), reflecting the main indicator to describe insect 

feeding behaviour.   In this trial, there was no significant difference in any waveforms 

except for E2 (phloem ingestion). This waveform type is the most important character 

that can act as an indicator for host preference of sucking insects. The result suggested 

that bird cherry-oat aphids feed better on young plants than old plants.  The percentage of 

E2 waveform declined sharply from 19.9% in 4-week old rice plants (young) to 1.5% 

when the rice plant was more mature (8 weeks old). This result is supported by 

Traicevski and Ward (2002) who claimed that the frequency and duration of probing 

during aphid feeding behaviour were affected by the age of the plant.  This is similar to 

the findings made by Karley et al. (2002) in relation to Myzus persicae and Macrosiphum 

euphorbiae.  They found that both aphids performed better on young rather than mature 

potato plants.  

The percentage of E2 duration found in this experiment from bird cherry-oat 

aphid on rice was far lower than on other cereal crops. For example, Givovich and 

Niemeyer (1991) found that aphids spend at E2 waveform about 49 % of their feeding 

time (349 min from 12 h EPG experiment) on 6 different wheat varieties.  Another 

experiment conducted by Slesak et al. (2001) also found that bird cherry-oat aphids were 

able to feed for 60% of feeding time (4.8 h from 8 h EPG experiment) on E2 waveform 

on control a wheat variety. Those values are more than twice those reported here on 4-

week old plants.  
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Data from fecundity and survival rate also support the fact that rice is not suitable 

for bird cherry-oat aphids even to generate their populations. This was the case in all 6 

rice varieties where no significant differences could be identified in all parameters. On 

average, only 3.4 nymphs were produced (from the parthenogetic process) in 24-day 

experiments. This value is far lower than that of Leather and Dixon (1981) in their study 

on several cereal and grass species. They found an average of 24.92 nymphs were 

produced in oats cv Aster, 23.71 nymphs on cv Trafalgar, 26.38 nymphs on wheat cv 

Maris Huntsman, 28.54 nymphs on barley cv Maris Otter, 27.83 nymphs on rye grass and 

26.3 nymphs on timothy grass.  For longevity, bird cherry–oat aphids can only survive 

for an average of 13 days from the day they were born (first instar) in 6 rice genotypes.  

This value is very different to that in the study of Taheri and Rastegari (2010). They 

found that bird cherry–oat aphid could survive an average 21.4 days on 6 wheat varieties.   

It was even higher in the study of De Celis et al. (1997) with a lifespan of 25.13 days on 

the Brazilian wheat BR-35 strain. These results clearly suggest that all 6 rice varieties 

tested in this study are not suitable for bird cherry-oat aphid to survive even as a 

secondary host plant. This is the main reason why it is only very occasionally found 

attacking rice. 

 There is no specific explanation why bird cherry-oat aphids do not like to feed on 

rice plants. According to Lanning and Eleuterius (1992), rice contains the highest 

percentage of silica, with 3.2% compared with other cereal crops such as oats (1.4%), 

barley (0.74%), millet (0.05%), rye (0.01%), sorghum (0.03%) and wheat (0.01%). This 

high silica content in rice could be one of the factors influencing bird cherry-oat aphid 

behaviour.  This is supported by Yoshida (1975) who found that silica content in the leaf 
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epidermis acts as a physical barrier to insect penetration. The insect would face even 

more problems when the rice plant is older because the silica content is also increases 

(Lewin and Reimann, 1969).  The E2 waveform value declined sharply to 1.5% when the 

rice plant was more mature (8 weeks). Bird cherry-oat aphid stylets also took a longer 

time to reach the phloem region, which shows that they were not able to ingest phloem 

sap anymore. 

In contrast with silica, nitrogen content was found to act differently. Its level was 

reported higher during early development stages, with a decline with age (Mattson, 

1980). Interestingly, a plant with a low level of N content was found to be associated with 

a decrease in aphid feeding performance (Hughes and Bazzaz, 2001). This finding was 

also supported by Leather et al. (1989). They found that the survival, rate of development 

and fecundity of bird cherry–oat aphids are affected by the crop developmental stage. The 

characteristics of plant morphology such as hairiness (Ahman et al., 2000), surface layer 

thickness (Xiang et al., 2008) and waxiness (Tsumuki et al., 1989) could also influence 

bird cherry-oat aphid behaviour acting as physical barriers. However, there are no reports 

in relation to rice. 

Although the data in this experiment did not provide much information to 

understand the whole phenomena of bird cherry-oat aphid feeding behaviour, it was 

enough to conclude that they do not prefer rice as a host plant. This is the reason why 

they were found to appear only occasionally infesting rice plants. They usually use rice 

plants only as an alternate or temporary host between the four weather seasons (Yano et 

al., 1983). The major significance of this study was therefore only to provide experience 

of the technology of assessing feeding behaviour and interactions between plants and 
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insects, leading up to the much more valuable assessment of the feeding behaviour of the 

brown planthopper on rice. 
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CHAPTER 4 

CHARACTERIZATION AND COMPARISON OF 

FEEDING BEHAVIOUR ON RESISTANCE AND 

SUSCEPTIBILITY TO BROWN PLANTHOPPER (N. 

lugens Stål) IN RICE GERMPLASM 

4.1  Introduction   

The brown planthopper (BPH) or Nilaparvata lugens (Stål) is one of the most serious rice 

pests  in Asia and has caused heavy losses of yields due to its destruction of rice crops 

(Jena et al., 2006). The yield loss was caused by direct feeding on plant sap or indirectly 

through transmission of rice viruses such as ragged stunt virus (RSV) and grassy stunt 

virus (GSV) into the plant (Velusamy and Herichs, 1986; Khush and Brar, 1991) during 

this feeding time. Normally, the brown planthopper reduces crop yields between 10 to 30 

percent (Win et al., 2009).  However, in large infestations, it can completely destroy the 

crops. The plants become yellow and dry, an effect called ―hopper burn‖, usually an 

associated outbreak phenomenom. These outbreaks have been reported throughout 

tropical Asia (Gallagher et al., 1994; Settle et al., 1996), especially when the conditions, 

including high temperature, relative humidity and rainfall (Kasimoto and Dyck, 1975), 

along with high levels of nitrogenous fertilizers (Cohen et al., 1997) are favourable for 

insects to grow.  China and Vietnam, two of the largest rice producing countries, suffered 
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large production losses due to BPH attacks in 2005 and 2008 (Bentur and Viraktamath, 

2008; Jena and Kim, 2010).     

The applications of chemical insecticides are common practice used to control 

BPH attack.  However, this approach alone could cause other serious problems especially 

related to the natural ecosystem, human health and increased total operation costs in the 

long term (Huang et al., 2000; Rola, 1993). The extensive use of chemical pesticides is 

frequently associated with BPH outbreaks because it can destroy the natural predators of 

BPH such as Anagrus nilaparvatae (Wang et al., 2008) and can create insecticide 

resistance (Matsumura and Sanada-Morimura, 2010). Furthermore, insecticide control 

becomes inefficient due to the ability of BHP to migrate from one place to another.  The 

use of natural resources through breeding programmes for the development of rice insect 

resistance is a better option and more efficient compared with chemical treatment. To 

date, about 22 major genes and several QTLs associated with BPH resistance have 

already been identified in rice cultivars and wild species (Yang et al., 2004; Jena et al., 

2006; Santhanalakshmi et al., 2010). Among them are Bph1, bph2, Bph3, bph4,  Bph6, 

Bph9, Bph10, bph11, Bph12, Bph13, Bph14 and Bph15 found on chromosomes 2, 3, 4, 6,  

and 11 respectively  (Hirabayashi et al., 1999; Ishii et al., 1994; Jena et al., 2003; 

Renganayaki et al., 2002; Sharma et al., 2003; Ren et al., 2004; Yang et al., 2004., Jena et 

al., 2006). Some of these resistance loci have already been successfully used as parents 

for breeding programs, and include rice varieties Mudgo (Bph1), ASD7 (bph2), Rathu 

Heenathi (Bph3) and Babawee (bph4) (Athwal et al., 1971; Lakshminarayana and Khush, 

1977). 
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Although many resistance loci have already been discovered, not all can be used 

to protect the rice plant from BPH attack (Jairin et al., 2007).  For example, the Bph1 

resistance gene from the Mudgo variety became susceptible to BPH after 5 years due to 

the development of the BPH biotype 2 (Jena and Kim, 2010), and similarly with the bph2 

gene in the ASD7 variety. This gene was found to confer susceptibility to the new BPH 

biotype 3 after 14 years (Jena and Kim, 2010). The process of this resistance-breaking 

ability continues to happen on other new BPH resistance genes and has been reported in 

many parts of Asian countries (Seo et al., 2009). It clearly shows that BPH has the ability 

to overcome the many adaptations plants have evolved as protection. This result also 

indicates that more research into identified resistance genes is required. The complex 

resistance mechanism involving sap-feeding pests and their host plants has only recently 

begun to be understood, and it is clear that the pathway from host location to sustained 

ingestion of phloem sap can be interrupted at several points, potentially allowing many 

different types of resistance. A detailed comparison of the similarities and differences in 

the feeding behaviour of BPH on different rice genotypes varying in resistance will allow 

underlying mechanisms to be identified, thus providing new targets for control. 

The BPH, like other phloem feeding insects, has a special mouthpart consisting of 

a stylet bundle which serves as a piercing and sucking organ (Sogawa, 1982; 

Lakshminarayana and Khush, 1977).  BPH feeds on the plant by inserting the stylet 

bundle with an accompanying salivary sheath into the plant (Spiller, 1990), locating the 

phloem tissue and then regulating the ingestion of the pressurised plant sap (Sogawa, 

1982; Seo et al., 2009). This mode of feeding is different from the situation in aphids 

where the salivary sheath stops at the sieve element cell (Spiller, 1990). This intracellular 
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penetration type by BPH causes the disruption and degeneration of the organelles of plant 

cells resulting in cell death (Spiller, 1990). Therefore, it causes more damage to the plant 

host. Hattori (2001) suggested that the BPH feeding process could be divided into two 

main phases. The first phase involves the movement of the stylet tip across the plant 

tissue, while the second phase involves the feeding process (Hattori, 2001) where the 

stylets enter vascular bundles and ingest the phloem sap. BPH feeding processes are 

complex but as in aphids, the use of the electrical penetration graph (EPG) technique 

(Tjallingii, 1978) provides an opportunity for detailed cataloguing of stylet activities 

during feeding (Tjallingii, 2006). 

Several studies have been conducted to investigate BPH feeding behaviour using 

this technique (Velusamy and Heinrichs, 1986; Seo et al., 2009; Hattori, 2001; Kimmins, 

1989; Lösel and Goodman, 1993; Hao, 2008). Most of these studies have correlated EPG 

waveforms with particular BPH stylet activities, and each study has made its own 

characterization. The method, which is AC (alternating current)-based, was first used by 

McLeans and Kingsley (1964), and it was subsequently improved by Tjallingii (1978) 

using DC (direct current). More recent studies have provided increasing levels of signal 

detail (e.g. Kimmins, 1989; Seo et al., 2009). The present study exploits the EPG 

capability by using the DC-EPG technique to compare BPH feeding patterns and so host 

plant resistance across a range of rice genotypes. In common with other recent studies, 

the waveforms have been characterised following the descriptions provided by Seo et al. 

(2009).  This research finding has already been successfully published in the recent issue 

of PLoS journal as shown in appendix J, Ghaffar et al. (2011).  
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4.2 Research limitations and objectives  

This research evaluated 12 rice varieties with different resistance backgrounds and 

mainly focussed on BPH feeding behaviour, one of the most important characters as an 

indicator for resistance level. The EPG system was used to monitor BPH feeding 

behaviour and honeydew clock was used as supporting information. In this experiment, 

all EPG waveform characterization was based on rice stems, the place that most BPH 

were found to stay feeding for long periods. The main objective of this study was to 

characterize and to compare BPH feeding behaviour by utilizing the EPG system as a tool 

for detailed resistance screening.  This information was then used as evidence in the 

molecular explanation in transcriptomics analysis.  

 

4.3 Materials and methods  

4.3.1 The plants 

A list of the rice varieties used in the study and their origins is presented in table 4. All 

the seeds were provided by the IRRI (International Rice Research Institute) and MARDI 

(the Malaysia Agriculture Research and Development Institute). F1 is a cross between 

Rathu Heenathi and TN1 was created in 2008 by MARDI. The seeds were germinated in 

a Petri dish on a filter paper and then transferred to two-inch diameter pots containing 

soil as a medium. The plants were then maintained in a plant growth room at temperature 

24 ± 3 0C with 60 ± 10% humidity and L16:D8 photoperiod.  Only the plants aged 

between 40-50 days (Hattori and Sogawa, 2002) were used in all the experiments. 
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Table 4 List of rice varieties and their origin used in this study 
 

No Variety Accession 
numbers 

Origin Resistance 
 level 

Reaction to biotype 
    1      2        3        4 

References 

1 TN1 11000  
(MARDI) 

Taiwan Susceptible     S      S        S       S Khush and 
Brar (1991) 

2 Azucena 351438 
 (IRRI) 

Philippines Susceptible     S      S        S       S Cohen et al. 
(1997) 

3 Nipponbare 318852 
(IRRI) 

Japan Susceptible     S      S        S       - Ikeda and 
Kaneda 
(1981) 

4 IR694 777182 
 (IRRI) 

Philippines Unknown     -        -        -        - - 

5 MR232 12047 
(MARDI) 

Malaysia Moderate     -       M       -        - Alias et al. 
(2001) 

6 MR219 11633 
 (MARDI) 

Malaysia Moderate     -       M       -        - Alias et al. 
(2001) 

7 IR758 1876352 
(IRRI) 

Philippines Unknown     -        -        -        - - 

8 Fujisaka 00444  
(MARDI) 

Japan Unknown -   -        -         - - 

9 IR64 50533 
(IRRI) 

Philippines Resistance     S       M      S       S Cohen et al. 
(1997) 

10 Rathu Heenathi 07637 
(MARDI) 

Sri Lanka Resistance     R      R       R       R Khush and 
Brar (1991) 
Alias et al. 

(2001) 
11 Babawee 06246  

(MARDI) 
Sri Lanka Resistance     R      R       R       R Khush and 

Brar (1991); 
Alias et al. 

(2001) 
12 F1 

 (Rathu x TN1) 
New 
(MARDI) 

Malaysia Unknown     -        -         -        - - 

 
 

4.3.2 Insect culture 

Brown planthoppers (BPH) biotype 2 were originally collected from the MARDI 

research station at Pulau Pinang, Malaysia. These BPH were then transferred to a mature 

TN1 rice clone and kept in net cages in an insect room with similar conditions to those 

described in in chapter three. The rice plant was changed every month in order to 

maintain the pure colony. Only brycypterous adult females were selected for all the 

experiments. 
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4.3.3 Honeydew clock 

Honeydew drops were measured following the modification made by Wilkinson and 

Douglas (1995) and Daniel et al. (2009). This was done by collecting honeydew drops 

from each individual BPH on treated filter paper with 0.1% bromophenol blue (Sigma-

Aldrich Company Ltd., UK) and 0.01 M HCl (Sigma-Aldrich Company Ltd). This yellow 

treated filter paper turns blue when in contact with honeydew drops.  Treated filter paper 

was attached to the circular plate and a modified clock which could rotate 3600 over 12 h.  

The rice plant was arranged horizontally and covered with a modified cage to ensure the 

correct BPH position (Figure 8).  The frequency and volume of honeydew drop 

production were measured after 12 h. In this experiment, data were collected only if the 

BPH stayed in the cage more than 3 h after the experiment was started. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 A honeydew clock experiment using bromophenol-blue treated filter paper on a 
modified clock  
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4.3.4 EPG technique 

BPH feeding behaviour was recorded and classified by using a GIGA-8 DC electrical 

penetration graph (EPG) amplifier with a 109 Ω input resistance and input bias current 

less than pA (Wageningen Agricultural University). Only adult brachypterous females 

(Hattori, 2001; Lösel and Goodman, 1993; Hattori and Sogawa, 2002) were selected from 

the insect cage according to their size and active behaviour. They were connected with a 

small gold wire (20 µm diameter) and attached with conductive silver paint at their 

dorsum part and left to starve for one hour.  They were then wired onto the EPG 

equipment and carefully placed onto the stem of a rice plant (Figure 9). The experiment 

was conducted in an insect house at 24 ± 3 0C with 60 ± 10% humidity but continuous 

photoperiod. Recordings of 4 plants and 4 BPHs were made on 4 channels 

simultaneously. In this experiment, probing behaviour was recorded for 12 h 

continuously. Finally, all recorded signals were analysed using Probe 3.4 software 

version 2007 provided by Wageningen Agricultural University. 
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Figure 9 GIGA 8-DC Electrical Penetration graph (EPG) circuit system for BPH on rice 
stem plants.  

4.3.5 Statistical analyses 

EPG waveform characterizations, namely NP (non-penetration), pathway, N4-a (sieve 

element salivation), N4-b (phloem ingestion), N5 (xylem ingestion), N6 (derailed stylet 

mechanics) and N7 (cell penetration) were identified as decribed by Losel and Goodman 

(1993), Kimmins (1989) and Seo et al. (2009). Each feeding behaviour component was 

expressed as a percentage of the total time and its frequency, either for the whole 12 h 

experimental period or the final 5 h period (8-12 h). All summarising statistics were 

produced using Excel.  SAS version 9.1 (SAS Institute, 2008) was used for more detailed 

statistical analysis, such as PROC ANOVA for the analysis of variance (ANOVA) and 

comparison of treatment means (Duncan). However, this analysis was used only for the 

parameters of honeydew drops and fastest time N4a and fastest time N4b EPG types 
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within the 12 h experiment.  The PROC NPAR1WAY procedure (SAS) for the Kruskal-

Wallis test was used for the parameters of percentage duration and frequency of each 

waveform type. This nonparametric statistical analysis is often used for a suspected non-

normal population (Elliott and Hynan, 2011). Mean comparisons of each parameter were 

conducted using Duncan‘s multiple range test (P<0.05). For correlation analysis, PROC 

CORR (SAS) was conducted on the 12-h experiment to identify the relationships between 

parameters in this study.  Finally, PROC CLUSTER and PROC TREE were used to 

evaluate the relationships between all 12 varieties. The Euclidean distance coefficient and 

Ward‘s method (1963) were selected for the cluster analysis. 

 

4.4 Results 

4.4.1 Rate of honeydew production 

The total number of honeydew drops and their average per hour among rice varieties are 

shown in table 5. All data show highly significant differences between varieties. Variety 

IR694 produced the highest total number and average per hour of honeydew drops with 

104.3 and 8.9 droplets respectively. However, there was no significant difference 

identified between the rice varieties, Azucena and TN1. On the other hand, Rathu BPH 

did not produce a single honeydew drop within the 12 h. Other varieties which produced 

very low amounts of honeydew drops and statistically can be grouped along with Rathu 

were IR64, Babawee and F1. Rice variety TN1 was identified as having the fastest time 

honeydew started to be produced by BPH: only 4 h after introduction onto the plant. 

Azucena, IR694 and Nipponbare, however were not significantly different. Similarly, 
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BPH did not produce any honeydew drops on Rathu. BPH took more than 8 h to produce 

honeydew drops on varieties IR64, Babawee, F1 and MR219. 

 

Table 5  Honeydew production over 12 h by  N. lugens on 12 rice varieties using the 
honeydew clock method 
  N Total honeydew 

droplets in 12 h ± 
SE  

Average honeydew 
droplets per h 

 ± SE 

Fastest time 
honeydew produce 

(h) 

Azucena 8 79.2 abc  (± 15) 7.8 ab (± 1.3) 4.3g  (±0.7) 
Nipponbare 12 57.4 cd  (± 10.6) 5.0 c (± 0.9) 5.7efg  (±0.9) 
TN1 13 90.7 ab  (± 11.1) 7.8 ab  (± 0.9) 4.0g  (± 0.6) 
IR694 11 104.3 a  (± 15.6) 8.9 a  (± 1.3) 4.5fg  (± 0.9) 
Fujisaka 10 66.8 bcd  (± 20.8) 5.6 bc  (± 1.7) 6.8def  (± 1.0) 
IR758 11 43.1 de  (± 15.9) 3.7 cd  (± 1.3) 7.9cde  (± 1.1) 
MR232 10 16.1 ef  (±  7.9) 1.3 de  (± 0.7) 9.7abc  (± 1.0) 
MR219 14 40.5 de  (±  8.5) 3.5 cd  (± 0.7) 7.9cde  (± 0.6) 
IR64 9 3.7 f  (±  2.5) 0.3 e  (±  0.2) 11.0ab  (± 0.7) 
Rathu 9 0.0 f  (± 0.0) 0.0 e (± 0.0) - a   
Babawee 16 2.6 f (±  1.3) 0.2 e  (±0.1) 8.9bdc  (± 0.9) 
F1 16 1.5 f  (±  0.65) 0.13   e (±  0.05) 10.3abc  (± 0.8) 
Average  42.2 ** (± 10.8) 3.5 ** (± 1.0) 7.7** (±0.8) 
Means± SE within columns followed by the same letters are not significantly different (P > 0.05, Duncan test) 
** = Significant at 1% probability level; * = Significant at 5% probability level; ns = Non-significant 
‘-‘ = no honeydew observed in 12 h 
 
 

4.4.2 Characterization of EPG waveform feeding pattern for BPH on   

          rice 

Figure 10 shows typical DC-EPG waveform patterns produced by BPH on rice. All 

characterization was followed according to Lösel and Goodman (1993), Kimmins (1989) 

and Seo et al. (2009).  Non-penetration (NP) waveform was correlated with the absence 

of feeding activity. The waveform shape is almost a straight line and nearly zeros voltage.  

In the second type of waveform, namely pathway, BPH started to insert stylets into cell 

wall tissue and then attempted to penetrate the plant sieve element. At this time, the EPG 

waveforms produced were quite irregular in form and shape with increased and 

inconsistent amplitude. Three main EPG patterns, namely N1, N2 and N3 were identified 
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similar to those identified by Seo et al. (2009) (Figure 10A). N1 waveforms were difficult 

to identify, appearing only for a few seconds. Generally, N2 waveforms appeared 

immediately after the NP waveform and consisted of waveform shapes of variable 

frequency and amplitude. N2 was usually followed by N3, in which the shape was 

consistent, but with a higher amplitude. Unlike Seo et al. (2009), in the present study   the 

waveforms N1-N3 were combined into one type, the pathway waveform. This helped to 

reduce the experimental workload in the context of developing a relatively high 

throughput system for screening germplasm for resistance.  

During pathway periods, other waveforms such as N5 (xylem), N6 (derailed stylet 

mechanics – see below) and N 7 (potential drop) interfered occasionally.  The N5 

waveform showed a consistent shape (Figure 10C) close to that found by Seo et al. 

(2009). Interestingly, this shape is also similar to the aphid EPG xylem characterization 

(Tjallingii, 1978). The other two waveforms, N6 and N7, however, could not be 

correlated with those seen in other EPG studies. The N6 waveform pattern is similar to 

N5 but of higher frequency without the consistency of shape (Figure 10D).   This N6 

waveform was categorized as ‗derailed stylet mechanics‘ on the grounds that the pattern 

was similar to that noted by Tjallingii (1988) for aphid feeding. Tjallingii (1978) has also 

associated derailed stylet mechanics with a mechanical ‗error‘ impeding the stylets 

forming a properly functioning bundle.  In this study, the N6 waveform generally 

represented penetration difficulties within the plant tissue (Tjallingii, 1990). The N7 

waveform was classified as potential drops; the waveforms suddenly drop from active 

pathway activities (Figure 10D).  N7 waveforms are similar to those noted by Tjallingii 

(1988), described for aphids believed to correlate with cell penetration. N4-a and N4-b 
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patterns were clearly (Figure 10C) distinguishable from other waveforms and have been 

confidently attributed to the sieve element feeding phase (Seo et al., 2009; Kimmins, 

1989). N4-a usually appeared in the short gap before N4-b phase started. N4-b waveform 

meanwhile stayed for a long period, and the strong correlation between honeydew 

excretion and the N4-b phase (Table 6) provides further evidence of phloem ingestion 

activity. 
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Figure 10 Classification of EPG waveform feeding pattern for BPH in rice.  A: 

Overall typical waveform in two hours.  B: Non-penetration (NP), pathway (N1, N2 

{irregular mixed} and N3 {transition phase before N4-b start} characterization in 30 s. 

C: Sieve element salivation (N4-a), phloem (N4-b) and xylem ingestion phase (N5) 

characterization in 10 s. D: Unclear waveform types; derailed stylet mechanics (N6) 

and potential drop (N7) characterization in 5 and 60 s 
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4.4.3 Correlation of N. lugens feeding and honeydew production  

A complete feeding activity based on percentage EPG waveform duration and honeydew 

drops in the 12-h experiment is shown in figure 11. Generally, pathway activity (the sum 

of N1, N2 and N3 phases) decreased over the first 6 h of feeding with a concomitant 

increase in phloem sap ingestion (N4-b). In contrast, the increase in N4-b activity was 

paralleled by an increase in honeydew production. In some varieties (notably TN1 and 

Azucena), there was an initial peak in N4-a activity (salivation), which declined during 

the later stages of feeding. The other EPG waveforms did not show any clear pattern 

except for NP. Rice varieties Rathu, Babawee and F1 showed increases in NP percentage 

duration in the last three hours of the 12 h feeding period. 

Linear correlations between EPG waveforms and honeydew drop variables were 

calculated (Table 6). Strong positive correlations were found between salivation (N4-a), 

phloem sap ingestion (N4-b) and honeydew drop production.  Positive correlations were 

also found between non-penetration, pathways (N1-N3) and cell penetration (N7) 

activities. In contrast, pathway behaviour showed a high negative correlation with N4-b 

waveform (r = -0.947, P=<0.01), the average rate of honeydew drop production (r = -

0.875, P=<0.01) and the total number of honeydew drops (r = -0.857, P= <0.001). 
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Figure 11 Comparison of EPG waveform and honeydew drop production. The 

graphs are based on percentage duration for each waveform type, NP (non-penetration), 

pathway, N4-a (sieve element salivation), N4-b (phloem ingestion), N5 (xylem 

ingestion), N6 (derailed stylet mechanics) and N7 (potential drop) and honeydew drops 

for 12 rice varieties. Data were recorded from the first time when BPH made a 

connection with the plant and then stopped after 12 h 
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Table 6 Correlation coefficients and significance levels of qualitative EPG and 
honeydew drop characters among 12 rice accessions 
  Pathway    N4-a    N4-b     N5     N6     N7 Average 

Honeydew 
drops in 

12 h 

Total 
Honeydew 
drops in 

12 h 

Non 
Penetration 

0.768** 
0.003 

−0.700** 
0.011 

−0.907** 
<.001 

  0.607** 
  0.036 

0.007 ns 

  0.984 
0.427 ns 

 0.166 
−0.735** 

0.006 
−0.719** 

0.008 
Pathway   −0.693** 

0.012 
−0.947** 

<.001 
 0.450 ns 

0.142 
0.107 ns 

  0.740 
0.662** 

 0.019 
−0.875** 

<.001 
−0.857** 

<.001 
N4-a       0.663** 

0.019 
-0.474 ns 

0.119 
-0.307 ns 

  0.332 
−0.654** 
 0.021 

0.835** 
<.001 

   0.833** 
<.001 

N4-b       -0.625** 
0.029 

-0.037 ns 

  0.903 
−0.629** 
 0.028 

0.837** 
<.001 

  0.815** 
<.001 

N5        -0.149 ns 

  0.645  
 0.726** 
 0.008 

−0.545* 
    0.067 

−0.519* 
0.084 

N6            0.131 ns 

 0.684 
-0.096 ns 

    0.767 
-0.09 ns 

0.781 
N7             −0.774** 

0.003 
−0.771** 

0.003 
Average 
Honeydew 
drops 

                0.996** 
    <.001 

** = Significant at 1% probability level; * = Significant at 5% probability level; ns = Non-significant 
 
 

4.4.4 Phloem location 

The presence of the salivation waveform (N4-a) indicates the first time the stylets 

encounter the sieve element. There was no significant difference identified in the time to 

the first N4-a waveform for BPH across all the rice varieties (Table 7). BPH on Azucena 

took the shortest time to reach the sieve element of 3.4 h and reached the phloem in a 

similar time when feeding on Nipponbare, IR694 and TN1.  N4-b waveform represents 

phloem acceptance and successful phloem ingestion. There were significant differences 

in the time to the first N4-b waveform on the different rice varieties. Based on the 

frequency of the N4-b waveform, BPH was unable to successfully ingest sieve element 

sap on Rathu Heenathi and Babawee. The qualitative differences between N4-a and N4-b 

timings indicate that BPH has a similar ability to locate the sieve element across all 

varieties, but there is variation in its ability to successfully sustain phloem sap ingestion. 
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Table 7  Fastest time (h) to N4-a and N4-b waveform patterns within 12-h experiment  
 Variety n N4-a N4-b 

Azucena 7 1.0 ± 0.2 3.4 d (±0.8) 
Nipponbare 8 1.2  ± 0.2 3.8 d  (± 0.7) 
TN1 9 1.8 ±  0.7 4.4 d (± 0.8) 
IR694 10 3.4 ±  1.1 5.4 cd (± 1.4) 
Fujisaka 11 2.8 ± 1.1 8.1 bc(± 1.6) 
IR758 10 3.4 ± 1.1 8.3 bc (± 1.6) 
MR232 10 5.2 ± 1.7 8.9 ab (± 1.2) 
MR219 10 5.6 ± 1.2 10.1 ab (± 1.0) 
IR64 12 5.1 ± 1.3 10.4 ab (± 1.1) 
Rathu 8 6.1 ± 1.7 - a 
Babawee 10 4.5 ± 1.0 - a 
F1 15 4.2 ± 1.0 11.8 a (± 0.2) 
Average   3.7 ns ± 0.5 8.2** (±0.9) 
Means ± SE within columns followed by the same letters are not significantly different (P > 0.05, Duncan test) 
** = Significant at 1% probability level;  ns = Non-significant 
‘-‘ = no N4-b waveform pattern observed in 12 h 
 

4.4.5 Comparison of duration and frequency of EPG waveforms  

The average percentage duration of seven EPG waveforms from BPH on the twelve rice 

varieties during the final 5 h of the 12-h feeding period was calculated (Table 8). A 

Kruskal-Wallis nonparametric analysis indicated that all EPG activities varied 

significantly between the rice varieties except for salivation (N4-a). BPH feeding patterns 

on Rathu Heenathi and Babawee were markedly different when compared to other 

varieties. For example, on these two varieties BPH spent around 90% of the time not 

penetrating (non-penetration - NP) or in pathway. However, no N4-b behaviour was 

observed. In contrast, BPH feeding on Azucena showed the highest duration (92.5%) of 

phloem ingestion (N4-b) over this period.   Table 9 shows the average frequency of all 

EPG waveforms in each h over the last 5 h of the experiment. A Kruskal-Wallis 

nonparametric analysis once again identified that all the EPG characters were highly 

significantly different amongst the varieties except for N4-a. The table also reveals that 
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phloem ingestion (N4-b) and derailed stylet mechanics (N6) are highest in TN1, IR694 

and Nipponbare. 

 
Table 8 Comparison of different EPG waveform feeding patterns of BPH on different 
rice varieties for 5 h (8-12h) (percentage duration and standard error)   
  N NP Pathway N4-a N4-b N5 N6 N7 

Azucena 7 1.2e 
(± 1.0) 

5.7c 
(± 4.1) 

0.5 
(± 0.5) 

92.5a 
(± 5.1) 

0.0c 
(± 0.0) 

0.0c 
(± 0.0) 

0.1ef 
(± 0.1) 

Nipponbare 8 6.4de 
(± 5.5) 

17.2bc 
(± 8.0) 

7.4 
(±4.1) 

67.9a 
(± 14.2) 

0.9bc 
(±0.6) 

0.0c 
(± 0.0) 

0.2def 
(± 0.1) 

TN1 9 1.1e 
(± 0.9) 

13.2bc 
(± 8.4) 

11.9 
(± 5.5) 

73.8a 
(± 8.1) 

0.0c 
(±0.0) 

0.0c 
(± 0.0) 

0.0f 
(±0.0) 

IR694 10 11.7cde 
(± 8.3) 

17.2bc 
(± 6.5) 

8.5 
(± 5.7) 

58.6ab 
(± 11.7) 

3.8ab 
(± 1.8) 

0.0bc 
(± 0.0) 

0.2def 
(± 0.1) 

Fujisaka 11 13.7bcd 
(± 4.5) 

32.0abc 
(± 8.4) 

17.2 
(± 7.9) 

32.8bcd 
(± 14.2) 

3.1abc 
(± 1.2) 

0.3bc 
(± 0.2) 

0.9abcd 
(± 0.3) 

IR758 10 20.3bcd 
(±10.5) 

31.8abc 
(± 11.0) 

11.2 
(±7.4) 

32.5bc 
(± 14.8) 

2.8ab 
(± 1.3) 

0.7bc 
(± 0.6) 

0.8bcde 
(±0.4) 

MR232 10 18.3cd 
(± 9.9) 

40.5ab 
(± 11.5) 

2.9 
(± 1.9) 

34.5bc 
(± 14.2) 

1.5abc 
(± 0.7) 

0.4bc 
(±0.4) 

1.9abcd 
(± 0.8) 

MR219 10 23.2abc 
(± 7.2) 

39.9ab 
(± 9.0) 

1.9 
(± 1.2) 

26.1cde 
(± 13.4) 

4.4ab 
(± 1.4) 

3.1a 
(± 1.0) 

1.4ab 
(± 0.4) 

IR64 12 22.1abc 
(± 9.1) 

54.9a 
(± 9.3) 

5.3 
(± 1.8) 

11.4 cde 
(± 7.6) 

4.1ab 
(± 1.1) 

0.6b 
(± 0.3) 

1.6a 
(± 0.3) 

Rathu 8 29.5ab 
(± 10.6) 

57.2a 
(± 9.3) 

6.3 
(± 5.3) 

0.0e 
(± 0.0) 

4.5a 
(± 1.3) 

0.0c 
(± 0.0) 

2.5ab 
(±1.5) 

Babawee 10 45.2a 
(± 12.1) 

45.5ab 
(± 10.9) 

2.1 
(±0.9) 

0.0e 
(±0.0) 

5.6ab 
(± 2.5) 

0.1bc 
(±0.1) 

1.5ab 
(± 0.3) 

F1 15 34.2ab 
(± 8.6) 

56.6a 
(± 7.6) 

4.2 
(± 1.7) 

0.2de 
(± 0.2) 

3.9ab 
(± 0.8) 

0.1bc 
(± 0.1) 

0.9abc 
(± 0.2) 

Average  19.9** 
(± 3.8) 

34.3** 
(± 5.2) 

6.6ns 
(± 1.4) 

35.9** 
(± 9.0) 

2.9** 
(± 0.5) 

0.4** 
(± 0.3) 

1.0** 
(± 0.2) 

Chi-square  42.22 30.56 9.47 57.14 37.76 28.47 38.05 
Pr>Chi-square 
(Kruskal- 
Wallis P value) 

 
<.0001 0.0013 0.5787 <.0001 <.0001 0.0027 <.0001 

Means ± SE within columns followed by the same letters are not significantly different (P > 0.05, Kruskal- 
Wallis  and Duncan test) 
** = Significant at 1% probability level;  ns = Non-significant 
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Table 9 Comparison of percentage of time for different EPG waveform feeding patterns 
of N. lugens on different rice varieties for 5 h (8-12 h). (Average percentage frequency 
and standard error)   
  
 

NP Pathway N4-a N4-b N5 N6 N7 

Azucena 
5.4 cd   
(±3.63) 

15.3 d  
(±7.23) 

2.597 
(±2.59) 

72.1 a 
(±13.36) 

0.0 b 
 0 0c 4.56 d 

(±2.96) 

Babawee 
30.3  a 

 (±10.04) 
38.7 abc  
(±4.99) 

5.215 
(±1.27) 0.0 f 3.13 a  

(±1.14) 
0.12 c 
(±0.12) 

22.49 ab  
(±4.14) 

F1 
28.0 a 
(±7.91) 

42.0 ab 
(±4.53) 

4.35 
(±1.20) 

0.05 ef 
(±0.05) 

3.43 a 
(±0.75) 

0.11 c 
(±0.11) 

21.99 ab 
 (±3.26) 

Fujisaka 
12.6 abcd 

(±3.76) 
33.8 abc 
(±6.62) 

4.85 
(±1.65) 

28.22 cde 
 (±13.93) 

3.78 a 
(±1.42) 

0.60 bc 
 (±0.52) 

16.15 abc  
(±4.44) 

IR64 
16.5 abc 
(±7.66) 

44.0 ab 
(±4.15) 

3.71 
(±1.54) 

2.16 def 
(±1.51) 

5.18 a 
 (±1.94) 

1.67 ab 
(±0.84) 

26.83 a 
(±3.22) 

IR694 
16.3 abc 
(±5.13) 

32.9 bdc 
(±5.76) 

6.04 
(±2.90) 

32.20 bc 
(±12.08) 

5.93 a 
 (±2.47) 

0.0 c 
0 

6.67 cd 
(±3.03) 

IR758 
19.9 abcd 
(±10.34) 

24.1 bdc 
(±8.03) 

8.28 
(±6.55) 

33.33 cd 
(±14.91) 

2.21 ab  
(±1.00) 

0.59 bc 
 (±0.52) 

11.57 bcd  
(±4.85) 

MR219 
14.6 ab 
(±2.77) 

41.3 abc 
(±3.21) 

3.55 
(±1.79) 

12.19 def 
(±7.79) 

5.31 a 
(±1.57) 

2.83 a 
(±0.89) 

20.22 abc  
(±3.42) 

MR232 
16.3 abcd 

(±7.99) 
38.2 abc 
(±9.15) 

2.55 
(±1.53) 

22.73 cd 
(±13.02) 

2.01 ab 
 (±0.89) 

0.42 bc 
(±0.34) 

17.77 abc 
(±5.09) 

Nipponbare 
7.4 bcd 
(±3.43) 

24.9 cd 
(±7.88) 

7.41 
(±2.84) 

51.34 ab 
(±15.43) 

1.75 ab 
(±0.88) 0.0 c 7.15 cd  

(±3.35) 

Rathu 
20.2 a 
(±4.51) 

48.8 a 
(±3.06) 

2.84 
(±0.95) 

0.0 f 
 

4.56 a 
 (±1.39) 0.0 c 23.62 ab  

(±4.62) 

TN1 
2.7 d 

(±2.10) 
26.9 cd 
(±6.04) 

11.77 
(±4.24) 

58.58 ab 
(±8.72) 0.0 b 0.0 c 0.0 d 

 

Average 
16.78** 
(±2.05) 

35.18** 
(±1.85) 

5.21ns 
(±0.79) 

23.20** 
(±3.37) 

3.26** 
 (±0.41) 

 0.56** 
 (±0.14) 

15.78** 
(±1.29) 

Chi-square 28.01 28.74 9.20 60.42 25.70 37.52 38.83 
Pr>Chi-square 
(Kruskal- Wallis 
 P value) 

0.0032 0.0025 0.6034 <.0001 0.0072 <.0001 <.0001 

Means ± SE within columns followed by the same letters are not significantly different (P > 0.05,  Kruskal- 
Wallis and Duncan test) 
** = Significant at 1% probability level; ns = Non-significant 
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4.4.6 Cluster analysis 

A cluster analysis using Ward‘s method based on Euclidean Distance was performed 

using 56 activity parameters derived from EPG waveform duration and frequency for the 

last 5 h of the 12 h feeding period.  Fundamentally, this multivariate method involves 

making pairwise comparisons of all objects (varieties), and then classifying them 

according to an average linkage method (Ward‘s) and illustrating the object relationships 

in a dendrogram (Henry et al., 2005).  Therefore, the real objective of this analysis is to 

summarize overall data for classification of resistant and susceptible varieties. Total and 

average honeydew data for the same last 5 h of feeding were also included in the analysis 

(Table 10).  The resulting dendrogram (Figure 12) divided the 12 rice varieties into three 

main groups at a 0.15 semi-partial R square value. Group 1 included Azucena, TN1, 

Nipponbare and IR694. This group showed the greatest distance from the other two 

groups, namely group 2 - Fujisaka, IR758, MR219 and MR232, while  Rathu Heenathi, 

IR64, Babawee and F1 formed a third group.   

In univariate analysis (Table 10), 38 out of 56 feeding activity parameters showed 

highly significant differences between varieties. These characters mostly related to non-

penetration, pathway, N4-b and honeydew drop, and the resistance versus susceptibility 

could clearly be distinguished for all 12 varieties. Further analysis of the common 

characteristics of the three groups identified by cluster analysis demonstrated that 

resistance was associated with high percentage duration of NP, pathway, N5, N6 and N7 

EPG waveform characters (Figure 13). In contrast, the susceptible group was associated 

with the longest duration of N4-b (phloem ingestion). However, N4-a (sieve element 

salivation) pattern waveform did not statistically differentiate between those groups. The 



Chapter 4 
 

71 
 

overview of EPG waveform shapes for the first 6 h shown in figure 14 provided a better 

picture for an easy comparison between resistant and susceptible rice varieties.   

 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Dendrogram derived using Ward’s clustering on 56 characters (SAS, 

2008). Twelve rice varieties have been divided into three different groups, namely 

susceptible group 1(Azucena, TN1, Nipponbare and IR694), moderately resistant group 

2 (Fujisaka, IR758, MR232 and MR219) and strongly resistant group 3 (Rathu, IR64, 

Babawee and F1) 
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Table 10. List of 56 characters used for cluster analysis and their significance levels from 
univariate test statistics using CANDISC procedure (SAS software)  
 

No Characters Significance 
level (pr>F) 

1 NP (average in 5 h) 0.0016 
2 Pathway (average in 5 h) <.0001 
3 N4-a (average in 5 h) 0.5787 
4 N4-b (average in 5 h) <.0001 
5 N5 (average in 5 h) 0.0184 
6 N6 (average in 5 h) 0.1505 
7 N7 (average in 5 h) 0.0045 
8 Average honeydew droplets in each h <.0001 
9 Total honeydew droplets (average in 5 h) <.0001 
10 Percentage frequency NP 1 (average in 5 h) 0.0080 
11 Percentage  frequency Pathway (average in 5 h) 0.0103 
12 Percentage  frequency N4-a (average in 5 h) 0.3261 
13 Percentage  frequency N4-b (average in 5 h) 0.0003 
14 Percentage  frequency  N5 (average in 5 h) 0.3225 
15 Percentage  frequency  N6 (average in 5 h) 0.2106 
16 Percentage  frequency N7 (average in 5 h) <.0001 
17 NP  (average in 8th h) 0.0006 
18 NP (average in 9th h) 0.0010 
19 NP (average in 10th  h) 0.0179 
20 NP (average in 11th h) 0.0073 
21 NP (average in 12th h) 0.0162 
22 Pathway (average in 8th h) <.0001 
23 Pathway (average in 9th h) 0.0017 
24 Pathway (average in 10th  h) 0.0017 
25 Pathway (average in 11th h) 0.0002 
26 Pathway (average in 12th h) 0.0201 
27 N4-a (average in 8th h) 0.4602 
28 N4-a (average in 9th h) 0.5107 
29 N4-a (average in 10th  h) 0.9851 
30 N4-a (average in 11th h) 0.3991 
31 N4-a (average in 12th h) 0.2513 
32 N4-b (average in 8th h) <.0001 
33 N4-b (average in 9th h) <.0001 
34 N4-b (average in 10th  h) <.0001 
35 N4-b (average in 11th h) <.0001 
36 N4-b (average in 12th h) 0.0002 
37 N5 (average in 8th h) 0.3108 
38 N5 (average in 9th h) 0.1659 
39 N5 (average in 10th  h) 0.2672 
40 N5 (average in 11th h) 0.0139 
41 N5 (average in 12th h) 0.5633 
42 N6  (average in 8th h) 0.4917 
43 N6 (average in 9th h) 0.4497 
44 N6 (average in 10th  h) 0.0187 
45 N6 (average in 11th h) 0.1411 
46 N6 (average in 12th h) 0.3181 
47 N7 (average in 8th h) 0.0053 
48 N7 (average in 9th h) 0.0004 
49 N7 (average in 10th  h) 0.0409 
50 N7 (average in 11th h) 0.0106 
51 N7 (average in 12th h) 0.2014 
52 Honeydew drop (average in 8th h) 0.0003 
53 Honeydew drop (average in 9th h) 0.0008 
54 Honeydew drop (average in 10th  h) <.0001 
55 Honeydew drop (average in 11th h) <.0001 
56 Honeydew drop (average in 12th h) <.0001 
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Figure 13 Average percentage duration of 7 types of EPG waveform.  The 

histogram is based on 8 to 12 h (5 h) recording and follows the susceptible, moderate 

and resistant groups produced by the cluster analysis 
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Figure 14 Overview of EPG waveforms found in 12 rice varieties over 6 h. Type 3 

and type 4 waveforms are more likely to occur in susceptible rice varieties than 

moderate and resistant varieties. Susceptible varieties are also less interrupted by other 

types of EPG waveforms 
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4.5 Discussion 

The electrical penetration graph (EPG) technique is a proven effective tool which allows 

monitoring of stylet activity and tip position of pierce-sucking insects during plant 

penetration in their feeding (Sarria et al., 2009).  This study has succesfully characterized 

BPH feeding behaviour using a EPG DC-based electrical penetration graph (EPG), and 

utilised this to screen 12 rice varieties of differing resistance, facilitating the efficient and 

detailed classification of rice germplasm for insect resistance. 

Seven typical waveforms for BPH were identified, more or less consistent with 

those previously described for BPH using DC-based EPG (Kimmins, 1989; Lösel and 

Goodman, 1993; Seo et al., 2009). The most recent histological study of Seo et al. (2009) 

related to EPG and BPH stylet penetration has provided valuable and detailed 

information regarding waveform classification. Therefore, their descriptions were chosen 

as the main guide for EPG characterization. Generally, the sequence of BPH feeding 

process always starts with non-penetration (NP), and NP is the easiest waveform to 

describe. A straight line waveform indicates that no feeding activities are happening, or 

that the stylet has still not inserted itself into the plant. The second waveform, however, 

was complicated because it produced a variation of frequency, amplitude, voltage level 

and shape of waveform.  Kimmins (1989) classified this waveform into two phases, P2 

and P3, while Seo et al. (2009) separated it into three types, N1 (penetration initiation), 

N2 (salivation and stylet movement) and N3 (extracellular activities). This irregular 

waveform pattern happens within epidermal and mesophyll cell membranes (Lösel and 

Goodman, 1993) in the pathway to the phloem, which is one reason used to justify 

classifying these waveforms as one type, pathway. This gave more confidence in the EPG 
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classification, focussing only on the objective priority and was experimentally more time-

efficient. The N4-a and N4-b were relatively simple to identify because their waveform 

patterns were consistent with those previously described by Seo et al. (2009). N4-a 

always occurred just before N4-b appeared.  Seo et al. (2009) determined that at this 

stage the BPH stylet tip was already located in the phloem region but no sap was actually 

ingested and went on to claim that N4-a is related to intracellular activity in the phloem 

region on the basis of the  different signal amplitude and frequency (Figure 10A) 

compared to pathway.  This phase is close in character  to the E1 waveform type (sieve 

element salivation phase) in aphid studies  (Tjallingii, 1985), which was also described 

on the basis of stylet position, level of voltage, waveform shape and absence of 

honeydew drops (Seo et al., 2009).  By contrast, the duration of N4-b showed a critical 

difference to the N4-a waveform, being generally sustained over long periods.  

Associated with N4-b, honeydew drops were produced, providing strong evidence that 

BPH were ingesting phloem sap at this time. 

 The other three waveforms, N5, N6 and N7 appeared irregularly from time to 

time during the pathway period. N5 waveform is similar to P5 as described by Kimmins 

(1989) and type II waveform as described by Lösel and Goodman (1993). These authors 

suggest that this waveform is associated with xylem ingestion (cited in Seo et al., 2009). 

A waveform, N6, not described by other authors has been noted: this waveform pattern 

appears similar to N5 but with a much higher repetition and frequency and an 

inconsistent shape. Accordingly, N6 has been classified as ‗derailed stylet mechanics‘ on 

the basis of its similarity to the waveform described for aphids (Tjallingii, 1978), and it 

have been associated it with penetration difficulty.   Kimmins (1989) suggests that the 
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BPH stylet does not puncture cell membranes during the pathway phase leading to the 

absence of the characteristic cell penetrations of pathway phase in aphid studies. 

However, in the present study apparent cell penetrations (N7) could be clearly identified 

(Figure 10D). The discrepancy between the two studies may be attributed to the low input 

impedence of the EPG amplifier in the previous study (Lösel and Goodman, 1993).   

BPH feeding can be divided into two main categories based on the EPG 

waveforms (Hattori, 2001). The first represents non-ingestion activities, beginning when 

the BPH first touches the plant, followed by the movement of the stylet tip into the plant 

through the cell wall, epidermal and mesophyll cell membranes until the stylet reaches 

the phloem region. EPG waveforms NP, Pathway, N5, N6 and N7 are included in the first 

category.  In the second category, EPG N4-a and N4-b waveforms are included as 

ingestion activities. Correlation analysis based on the full 12-h feeding period presented 

in table 6 indicates a strong relation between these two categories. There was a high 

positive correlation between N4-a, N4-b and honeydew production, but a high negative 

correlation with NP, pathway, N5, N6 and N7 EPG waveforms. Therefore, a higher 

proportion of time in the first waveform category is consistent with higher plant 

resistance to BPH, while more time spent in category two is associated with 

susceptibility.   

In most rice varieties, the total duration of pathway phase decreased after 3 to 4 h 

and then remained constant over the remaining 8 h. The average times in all 12 rice 

varieties for BPH to reach N4-b waveform, and then to start to produce honeydew were 

8.2 h and 7.7 h respectively. 
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 To focus on varietal differences in category 2 activities, comparisons between the 

rice varieties were made in the last 5 h of feeding (8-12 h).  Using this subset of data, the 

evaluation of plant resistance in the twelve rice varieties was different to previous reports 

where data were included from hour zero as in Seo et al. (2009), Hattori (2001) and 

Kimmins (1989).    

BPH clearly responds differently to different rice varieties, spending more than 

80% of its time exhibiting the non-ingestion waveform types such as non-penetration or 

pathway in the varieties (Rathu Heenathi, Babawee and IR64) previously identified as 

resistant by Brar et al. (2009).  A similar result of plant resistance characterization based 

on EPG was also found by previous researchers using other varieties such as IR56 

(Velusamy and Heinrichs, 1986), ASD7 (Khan and Saxena, 1988) and IR 62 (Kimmins, 

1989). However, in susceptible varieties such as TN1 (commonly used as a control 

variety in many BPH experiments), BPH ingested phloem sap for a long period without 

interruption. Consequently, a longer duration for N4-b waveform could easily be found. 

Interestingly, N4-a salivation activity for the last 5 h period was not significantly 

different between the resistant and susceptible rice varieties, indicating that BPH could 

reach the sieve element region in both resistant and susceptible, but could only ingest the 

phloem sap in susceptible genotypes. These results support the suggestion of Hattori 

(2001) that resistance to BPH is determined by phloem-related characters. Phloem-based 

resistance may have its basis in phloem chemistry (Sogawa, 1982; Chen, 2009), where 

salicic, oxalic (Chen, 2009: Yoshihara et al., 1979a; Yoshihara et al., 1979b; Yoshihara et 

al., 1980) and phenolic acids (Chen, 2009; Fisk, 1980), sterols (Shigematsu et al., 1982) 

and apigenin-C-glycosides (Stevenson et al., 1996; Grayer et al., 1994) have been 
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implicated in resistance to BPH. The low level of essential amino acids in the phloem 

could influence BPH feeding (Sogawa, 1982) perhaps representing phago-stimulatory 

cues. The interaction of plants and herbivorous insects is complex (Thompson and 

Goggin, 2006) and still not well understood, and further advances in understanding may 

require molecular approaches (Thompson and Goggin, 2006).  

A clear picture of plant resistance based on EPG waveform and honeydew drop 

data has been presented using cluster analysis. The twelve rice varieties could be 

classified into three groups. Group 1 was classified as the susceptible group because the 

average percentage duration of N4-b EPG waveform (category 2) was found to be the 

highest. In contrast, EPG waveform NP, pathway, N5 and N6 of group 1 showed the 

lowest values. These results clearly indicate that BPH could easily feed on the phloem 

sap in this group. As expected, the common control rice variety TN1 was classified in 

this group 1.  The other three varieties in the susceptible group are Azucena, Nipponbare 

and IR694. Groups 2 and 3 have a much closer relationship, but with group 3 being more 

resistant than group 2. Consistent with this, the varieties in this group have previously 

been found to contain the resistance genes Bph1 in IR64 (Cohen et al., 1997), bph4 in 

Babawee, and Bph3 in Rathu Heenathi (Nemoto et al., 1989; Khush et al., 1985) and the 

F1 (from the cross between Rathu Heenathi and TN1). BPH spent more time in the non-

feeding phase whether in NP, pathway or occasionally in N5 waveform (xylem), possibly 

to overcome dehydration (Daniels et al., 2009). This result was found to be slightly 

different to that of Cohen et al. (1997). Although IR64 was classified as resistant, its 

values for N1+N2+N5 and N6 were the lowest in that group.  In addition, the experiment 

was conducted under full environment control (temperature and relative humidity), which 
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greatly influenced BPH behaviour (Park, 1983). Furthermore, the classification of Cohen 

et al. (1997) covered a greater number of parameters including fecundity, nymph 

survival, feeding rate and an antixenosis test. The parameters were more specific to BPH 

feeding ability with the limitation of the 12-h period. 

The moderately resistant group 2 contained another four varieties, namely 

MR232, MR219, Fujisaka and IR758. There is very limited information available on their 

genetic backgrounds, but they are all products of a long history of breeding, with 

ancestors a likely source of some resistance genes contributing to their moderate 

resistance, and at least one of the parents of MR219 and MR232 is known to have 

possessed insect resistance (Habibudin 2009, pers. comm., 21 Nov; Alias et al., 2001). 

This study has provided new information on the mechanism of plant resistance to 

BPH on 12 rice varieties. The results confirmed and extended previous research using the 

EPG method to quantify BPH feeding behaviour on rice, and allowed the twelve rice 

varieties to be unequivocally divided into three groups: susceptible, moderately resistant 

and highly resistant. This study has further demonstrated that BPH has the ability to 

locate the sieve elements of the different varieties, but there is variation in its ability to 

begin phloem sap ingestion, thus providing a potential explanation for resistance in these 

varieties. Future work should focus on the underlying mechanisms at the molecular level. 

The relatively rapid and inexpensive method of screening germplasm used here can be 

utilized to identify in genetic resources‘ collections natural sources of genetic variation 

conferring resistance to BPH in rice, and almost certainly for other pest/crop 

combinations as well. A firm platform for further genomic and transcriptomics studies to 

reveal candidate genes for resistance has also now been established.
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CHAPTER 5 

 

MICROARRAY ANALYSIS OF RESISTANCE AND 

SUSCEPTIBILITY TO BROWN PLANTHOPPER (N. 

lugens) IN RICE GERMPLASM 

 
 

 
 

5.1 Introduction 
 
Rice (Oryza sativa) is the world‘s most important staple cereal crop, responsible for 

providing the main source of food for over half the world‘s population.  The way in 

which rice is produced, however, has remained static over the past few years causing a 

shortage of supply to meet the increasing demand led by population growth. One of the 

most important constraints in achieving higher rice production is losses caused by pests, 

of which the brown planthopper (BPH) is the most dangerous phloem feeding insect, 

producing a major problem for the rice industries.  

The use of molecular methods to overcome many aspects of agriculture problems 

has become increasingly important and commonly used in the present day. Plant breeding 

is one area which has highly benefited from this technology. Molecular techniques can 

help answer many questions in plant and insect interactions, very complex mechanisms 
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which are difficult to explain through conventional approaches. For example, although 

more than 22 genes loci related to BPH resistance in rice have already been identified 

(Santhanalakshmi. et al., 2010), not all can be used to protect the rice plant from BPH 

attack (Jairin et al., 2007).  It has been reported in several cases that Bph1 and bph2  

genes have their resistance broken down by BPH biotypes 2 and 3 (Gallun and Khush, 

1980; Pathak and Saxena, 1980; Panda and Khush, 1995; Xu et al., 2002). This 

breakdown process clearly shows that resistance characters are controlled by single genes 

of major effect rather than polygenic control, which is more durable and viable for insect 

pest management (Sogawa et al., 2003).  

Breeding programmes for quantitative traits with these polygenic insect resistance 

characters have again still remained poorly understood because they are very difficult to 

characterize genetically (Xu et al., 2002). These problems can be overcome through 

molecular marker technologies based on mapping and tagging techniques for quantitative 

trait locus (QTL) analysis (Sogawa et al., 2003). For example, Alam and Cohen (1998) 

have identified a total of seven QTLs associated with BPH resistance, located on 

chromosomes 6 and 12 using double haploid populations of an indica variety, IR64 and a 

japonica variety, Azucena cross. Phenotypic variance for individual QTLs accounted for 

between 5.1% and 16.6 %, and most of them were derived from resistant variety IR64. In 

another study involving a cross between Rathu Heenati and KDML105,  the resistant 

Bph3 locus was found to be  localized on chromosome 6 approximately in a 190 kb 

interval flanked by the SSR markers RM19291 and RM8072 (Jairin et al., 2007). Other 

genes from different populations of crosses between Rathu heenati and IR50, which were 

also associated with BPH resistance characters, were identified on chromosome 3 by 
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different SSR markers, namely RM186 and RM168 (Gomathi,  2002; Kumari et al., 

2010). From the genetic linkage map and QTL analysis in another study involving two F2 

populations from crosses between Babawee and TN1, and Babawee and KDML105, the 

bph4 locus was found mapped at the same chromosome region as Bph3 between two 

flanking markers, RM589 and RM586 (Jairin et al., 2010).  

In this study, a different approach using microarrays was chosen allowing for the 

investigation of thousands genes at one time.  This approach is basically based on the 

level of gene expression, in this case, a gene which influences the resistance level in 

certain rice varieties from BPH attack. Zhang et al. (2004) in their experiment using 

Northern blot and cDNA array analysis discovered 14 genes from resistant variety B5 

and 44 genes from susceptible MH63. They also found that those genes were mostly 

grouped under the categories of signalling pathways, oxidative stress/apoptosis, wound-

response, drought-inducible and pathogen-related proteins. These classification 

categories based on gene annotation and function clearly facilitated the understanding of 

the actual mechanism of plant resistance, especially when phenotype information was 

also included.  

In the experiments, resistance was not induced in the plants by exposing them to 

BPH. Constitutive resistance genes which have often been overlooked in terms of their 

importance to breeding programmes were focussed on. Constitutive genes sometimes can 

be described as housekeeping genes which are needed for the normal function of the cell 

and probably could dramatically affect the global dynamics of gene expression (Hallinan 

et al., 2006)  although in certain cases they are relatively small in number (Lercher et al., 

2002;  Hallinan et al., 2006). For instance, a constitutive expression of kinase was found 
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to trigger a number of cell functions which increased the rate of mitosis and protected the 

cell from programmed cell death (Marley and Gordon, 2005; Hallinan et al., 2006). 

Unlike inducible genes, these constitutive genes have no ability to change easily in a 

short period when they have been exposed to certain stress such as from herbivore attack 

(Karban and Myers, 1998). Generally, this constitutive mechanism occurs before the 

attack starts, and they act as a first layer of defence. Sometimes, inducible genes cannot 

function on its own without the assistance of other constitutive characters. This claim is 

supported by Agrawal et al. (1999). They found that plant genotypes lacking constitutive 

expression of cucurbitacins were highly susceptible to mite attack in cucumber crop. In 

another study by Domingo et al. (2009), the constitutive expression of OsGH3.1 was 

found to enhance resistance to fungal pathogen in rice when the auxin content was down 

regulated. Another example is Bph14, which is claimed by Du et al. (2009) to be a 

constitutive resistance gene expressed in leaf sheaths, leaf blades, and roots. This gene 

encodes a coiled-coil, nucleotide-binding, and leucine-rich repeat (CC-NB-LRR) protein, 

which activates a salicylic acid signal pathway and causes reduced feeding activity and 

growth rate of the BPH (Du et al., 2009). At the present time, this is the only Bph 

resistance gene which has successfully been cloned and originally came from the wild 

rice species, Oryza officinalis.  

 

5.2 Overall research objectives   

This present study is the first to use the biggest number of rice varieties with different 

known BPH resistance backgrounds. The aim was to identify candidate genes which are 

commonly found and constitutively expressed under normal conditions using the Agilent 
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44K oligonucleotide array. Rice genes can be grouped, annotated and characterized 

according to expression patterns. Furthermore, the potential of candidate resistance genes 

in rice is discussed and the applicability of novel genes to crop improvement programmes 

is proposed. 

   

5.3 Materials and methods  

5.3.1 Minimum Information about a Microarray Experiment (MIAME) 

Minimum Information about a Microarray Experiment (MIAME) is a standardized 

procedure for performing microarray experiments. This important step was initiated by 

the Microarray Gene Expression Database group (MGED; http://www.mged.org), which 

requires the minimum information needed to be provided along with the results. The aim 

of the guidelines is to make sure that data presented can be described for better 

understanding and ease of accessibility. That means the main purpose of these guidelines 

is to generate and establish a public database for others to use for reference. Among the 

important contents in MIAME documents are sample and array design description, 

control elements, experimental design, hybridization procedures and measurements 

(Brazma et al., 2001). A simple outline structure of these is given in Appendix A. 

 

5.3.2 Plant material and experimental design 

The same twelve rice varieties as in chapter 4 were used again in this microarray analysis. 

However, the plants were divided into three groups, namely susceptible, moderately 

resistant and resistant. Each group contained four varieties based on the results of cluster 

analysis in previous experiments. This is the main reason why only two replicates were 

http://www.mged.org/
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used in this experiment design. The seed germination process also followed that in 

chapter 4. The seeds were germinated on filter paper in Petri dishes and transferred to 5 

cm diameter pots with soil after 1 week‘s germination.  The plants were then grown 

under a net structure (60 x 60 x 60 cm) at a temperature of 23-26% and 16L: 8D 

photoperiod.  Each net structure represented a replicate. The plants were maintained until 

7 weeks old in the absence of BPH.  

 

5.3.3. Tissue sampling   

Tissue samples were collected from plants at 42 days.  Only stems 2-3 cm above the main 

root or soil with size around 0.5 cm thick were used. In order to homogenize the sample, 

five stems from five rice plants represented one treatment and one replicate.  All five 

stem tissues were mixed immediately in 2 ml microcentrifuge tubes with  liquid nitrogen 

and then kept at -70 0C.   

 

5.3.4 RNA extraction  

RNA extractions in this experiment were conducted using a QIAGEN RNeasy Mini plant 

kit and followed the manufacturer‘s instructions. 100mg stem tissue samples were placed 

in liquid nitrogen and immediately ground thoroughly with a mortar and pestle. The 

tissue powder was decanted into liquid nitrogen cooled RNase free 2ml microcentrifuge 

tubes, and the liquid nitrogen allowed to evaporate during tissue thawing.  450 μl Buffer 

RLT were added to the sample tube and immediately vortexed vigorously. The lysate was 

transferred into a QIA shredder spin column (lilac) placed in a 2 ml collection tube and 

centrifuged for 2 m at full speed. The supernatant was then transferred carefully to fresh 
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2ml tubes. 0.5 volume of ethanol (96–100%) was added and mixed by pipetting in order 

to clear the lysate.  The sample (usually 650 μl) was then transferred to an RNeasy spin 

column (pink) placed in a 2 ml collection tube and centrifuged at 8000 x g (10000 rpm) 

for 15 s.  The flow-through was discarded and 700 μl Buffer RW1 were added to the 

RNeasy spin column before centrifuging at the same speed and period, 10,000 rpm for 15 

s to wash the spin column membrane. The flow-through was discarded again, and the 

membrane was further washed with 500ul of RPE buffer and was then centrifuged at 

10000rpm for 15 s. After discarding the flow-through, the same process was repeated, but 

this time the centrifuge step was for 2 min. After discarding the flow-through, the 

RNeasy spin column was placed in a new 1.5 ml collection tube. Finally, 30ul of RNase 

free water was added to the column and centrifuged for 1 min at full speed. RNA was 

then immediately stored in a freezer at -70 0C for further use.   

 

5.3.5 RNA quantification and integrity checking 

RNA integrity needed to be quantified before it could be used for microarray analysis. In 

this experiment, concentrations were determined through two different methods as below. 

 

5.3.5.1 RNA quantification 

The total RNA extracted from rice stem samples was quantified by a NanoDrop 

spectrophotometer (ND-1000 VIS) version 3.2.1. The sample loading area (the receptacle 

laser cell) needed to be cleaned with RNase free water before measurement. For each 

RNA sample, first a blank was run in order to reduce error. A single drop of 1 μl was 

taken from the sample and was loaded onto the receptacle laser cell. Then, it was scanned 
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by software and the information of the RNA concentration (hg/μl) was provided through 

the absorbance ratio 260/280 and 260/230. Only a sample with ratios around 2.0 was 

selected for further analysis. Protein, phenol or alcohol contaminations were related with 

the 260/280. The 260/230 ratio indicated the presence of genomic DNA.  

 

5.3.5.2 Quality assessment  

RNA template quality needed to be assessed before microarray analysis proceeded. It is 

an important step to make sure that RNA is not degraded during the extraction process 

which could cause multiple errors in the results.  In this experiment, the RNA integrity 

was detected by the Agilent 2100 bioanalyser using an RNA 6000 Nanochip kit, and all 

procedures followed the manufacturer‘s guidelines.  The compartments of the gel chip 

(bioanalyser electrodes) were cleaned by filling them with sterile water (300 μl) and 

vortexing the chip for 10 s. Nine μl of the pre-stained gel (bioanalyzer) were then injected 

into the G well (black circle) using a specific syringe. The process was continued with 

another injection in the two G wells of 9 μl each as well as the prepared ladder in its 

designated well. The marker was then loaded into the same well followed by the RNA 

sample. Each chip contained 12 sample wells to measure. Finally, the loaded chip was 

vortexed for 1 min before analysis by the bioanalyzer software for 30 min. The results 

were read through electrograms based on two distinct peaks representing 18s and 28s 

ribosomal RNA along with RIN (RNA integrity number). According to Agilent, RIN 

values above 7.0 are ideal for microarray analysis.  
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5.3.6 Microarray analysis 

5.3.6.1 Design of microarray experiments using one colour method 

One colour rice 4x 44K microarray RAP-DB (Agilent Technologies; part number: 

G2519F and dsign ID: 15241) microarrays were used in this analysis. These represent 

43,803 rice genes with one 60-mer oligonucleotide probe representing each sequence. 

The content sources came from the National Institute of Agrobiological Sciences, 

RefSeq, GenBank 2007, RAP-DB (Agilent Technologies). The experiment design is a 

very important step in producing accurate results with minimum error.  Six microarray 

slides were ordered and each of them contained 4 arrays as shown in figure 15 containing 

all three resistance groups (12 varieties) with 2 replicates. Replicates for each variety 

were on separate slides and positioned randomly.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure  15  Experiment design for one colour microarray analysis. Layout of 12 rice 
varieties based on their resistance group with two replicates  
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5.3.6.2 Sample preparation and hybridization 

All standard procedures and guidelines described in this section refer to the Agilent 

Manual part No. G4140-90040, edition version 5.7, March 2008 on their formal website 

source (http://www.agilent.com). Figure 16 below shows the flowchart of microarray 

analysis which can be divided into 4 main steps, namely sample preparation, 

hybridization, microarray wash and scanning.  

There are another four sub-steps in the sample preparation which are the 

preparation of One-Colour Spike-Mix, labeling reaction, purifying the labeled/amplified 

RNA and finally quantifying the cRNA (complementary RNA) generated using Agilent‘s 

Quick Amp labelling kit-One colour (5190-0442) from the total RNA.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 Microarray workflow for sample preparation and array processing 
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5.3.6.2.1 Preparation labeling reaction 

A total of 300 ng RNA were added to the labeling reaction mix containing T7 promoter 

primer (1.2 ul), spike mix (3.0ul), and RNase free water, making a final volume of 11.5ul. 

Both primer and template RNA were then denatured in an incubator for 10 min at a 

temperature of 650 C before being placed on ice for another 5 min. The cDNA Master 

Mix (8.5ul) containing 5x buffer (4ul), DTT (2ul), dNTP‘s (1ul), mmLV-RT (1ul), 

RNase out (0.5 ul) was added to the reaction mix prepared for all samples, and they were 

mixed by flicking and spinning down. These samples were again incubated for 2 h at 400 

C and were then placed on ice for 5 min to stop the reaction.  The transcription master 

mix  (60 ul) containing RNase free water (15.3ul), 4x buffers (20.0ul), DTT (6.0ul), 

NTP‘s (8.0ul), preheated 50% PEG (6.4ul), RNase out (0.5ul), inorganic pyrophosphatase 

(0.6ul), T7 RNA polymerase (0.8ul), and Cy3 dye(2.4ul) was added to each sample. The 

samples were again mixed by flicking and spinning down before incubating at 400 C for 

another 2 h. The process was continued by labeling the cRNA synthesised samples with 

Cy3 dye. They were then cleaned following an RNeasy clean up procedure. NanoDrop 

software was used to quantify the yield of cRNA and Cy3 incorporation in each sample.  

  

5.3.6.2.2 Hybridizations   

The blocking reagent was prepared by adding the indicated amount of RNase free water. 

Then, it was mixed by gently vortexing and spinning down. In a further step, the 

hybridization sample was prepared using a mixture of cRNA (1.65ug), 10 x blocks 

(11.0ul) and fragmentation buffer (2.2ul).  RNase free water was added to make up the 

final volume of 55 ul. The samples were incubated at 600 C for exactly 30 min to 
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fragment RNA. Next, 55 ul of 2x GE hybridization buffer were added to stop the 

fragmentation reaction and were mixed gently by pipetting to avoid introducing bubbles  

A quick spin was conducted before placing the sample on ice. A clean gasket slide was 

placed in assembly with the Agilent label facing up and aligned with the rectangular 

section of the chamber base. 100ul of the sample per array were loaded onto the slide by 

pipetting gently to avoid bubbles. After that, an array ―active side‖ down was slowly 

placed onto the SureHyb gasket slide. The ―Agilent‖-labeled barcode was facing down 

and the numeric barcode was facing up (Agilent labeled side = Active side). The chamber 

covers were placed onto the sandwiched slides, and the clamp assembly was slid onto 

both pieces. The assembled chamber was incubated for 17 h at 650 C in an Agilent 

rotisserie. The wash buffer 2 and staining vessels were prepared and kept at 370 C 

overnight for further use.   

 

5.3.6.2.3 Microarray wash 
 

Two staining troughs with wash buffer 1 at room temperature were prepared for two 

purposes, the first to disassemble the slide and the other one on the stirrer to wash the 

slide. All the slides in the assembled chamber were disassembled under wash buffer 1 

and were placed in a rack in the stirring wash buffer 1. All the slides were stirred for 1 

min in wash buffer 1, after which they were opened. Wash buffer 2 was then poured into 

the pre-warmed staining trough and stirred. Another slide wash process was performed in 

wash buffer 2 for just 1 min. The slides were then removed and were washed again for 10 

s in 100% acetonitrile, which was followed by another wash for 30 s in a stabilising and 

drying solution. The slides were slowly removed from the stabilising and drying solution 



Chapter 5 
 

 93 

to allow the reagent to dry off without leaving ―water marks‖ on them and placed in a 

slide box. 

 

5.3.6.3 Scanning and feature extraction 

The slides were assembled into an appropriate slide holder with the numeric barcode 

visible and were placed into the scanner carousel. The scan setting was verified for one 

colour scan and set for automatic file name.  In the following step, click Scan Slot m-n 

on the scan control main window (where the letter m represents the Start slot where the 

first slide is located and the letter n represents the End slot where the last slide is located) 

was clicked when the scanner was ready. In this analysis, Gene Pix scanner setting 4000B 

was supported by Agilent gene expression microarray. Data were acquired by using 

Agilent feature extraction software version 9.5.3, and the resulting text files were loaded 

into the Agilent GeneSpring GX software (version 10.0) for further analysis. 

.  

5.3.7 Statistical analysis                

Data from the scanner software were further analyzed using GeneSpring GX10.0 

(Agilent). The rice probes were annotated manually through the NCBI website.  A 

quantile method was used for normalization across all arrays. The data were then filtered 

according to GeneSpring GX 10.0 (Agilent Technologies, Palo Alto, CA, USA) starting 

with filtering by expression, by flags, by data and finally by error (% CV). One-way 

ANOVA at p<0.05 was used for statistical analysis and then was followed by Volcano 

plot analysis with Benjamini and Hochberg multiple testing correction. Significant 

candidate genes were selected based on fold expression differences with a minimum 
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value of 2.0 and a significance value of at least 0.05.  Further evaluation was then 

conducted only on genes showing significant differences in expression between resistant 

and susceptible groups, and moderately resistant and susceptible. In order to evaluate the 

pattern of relationship between gene expression in the plant and BPH behaviour, linear 

correlation analyses were performed between the microarray expression value and the 

morphological data from chapter 4. Five characters were chosen, pathway, phloem 

ingestion, xylem ingestion, total honeydew production and time to first phloem ingestion.  

Gene expression values used for this correlation analysis are based on the quantile 

method produced by Genespring software. 

  

5.3.8 Gene Ontology (GO) analysis and classification 

All significant candidate genes from the list of comparisons between the groups in the 

volcano analysis were used for this GO analysis.  Those genes were then annotated and 

defined according to the GO terms directly under the three main categories: molecular 

function, cellular component and biological process. In this analysis, the oligonucleotide 

probes from the array were matched with the GO database and categorized into 

subclasses. At this point, the matched candidate genes were counted in each GO subclass 

created from comparison with the GO database. This GO analysis was performed using 

the EasyGO web-based tool <http://bioinformatics.cau.edu.cn/easygo/N  
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5.3.9 Candidate gene mapping with known QTL markers 

The genome browser database GRAMENE (www.gramene.org) provides valuable 

information through a user-friendly web interface that allowed for comparative 

assessments using a genetic map (Kim et al., 2009). By selecting markers linked to 

published BPH resistance QTL, associated information on the candidate genes could be 

obtained based on the closest distance between loci on the same chromosome. All 239 

and 219 significant gene lists were passed through this process and provided an 

alternative tool to strengthen the candidate gene list. 

. 

5.4. Results 

5.4.1 Quality control/filtering 

A total of 21556 probes from 43805 probes passed through the normalization process 

using the Quantile approach.  This result was based only on twenty two samples rather 

than twenty four samples. The two samples namely MR232 replicate 1 and sample IR694 

replicate 2 were discarded from the statistical analysis because of likely RNA 

contamination or degradedation during preparation. Box plots of RMA-normalized 

intensity values from each sample and principal component analysis (PCA) are shown in 

figure 17. Susceptible varieties are clearly separated from resistant and moderately 

resistant varieties into the PCA component 1(x-axis), PCA component 4 (y-axis) and 

PCA component 2 (z-axis). Only 415 probes finally passed through the filter after the 

four-steps filtering process, i.e. by expression, by flags, by data set and by 50% CV 

values.  
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Figure 17 Box plot normalization data and principal component analysis on 22 samples. 
Principal component analysis (PCA) for susceptible (brown), moderate (red) and 
resistance (blue) 
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5.4.2 Determination of significant genes 

Statistical analysis using the volcano plot further reduced the number of probes based on 

a three-combination comparison between the three rice groups at P<0.05 and fold 

difference 2.0 and above. According to Schenk et al. (2000), Voiblet et al. (2001) and 

Zhang et al. (2004), these values can be treated as significant in terms of transcript 

concentration. Based on the Venn diagram as shown in figure 18, a total of 239 probes 

were significantly different in expression between the resistant and susceptible groups, 

while 219 probes differed in expression between moderately resistant and susceptible. 

Interestingly, 196 genes were the same in both comparisons, resistant with susceptible 

and moderately resistant with susceptible. There were no genes that differed significantly 

between resistant and moderately resistant. This information supported further evidence 

on how close the relationship between resistant and moderately resistant is. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 18 Venn diagram shows the two groups in relation to the number of significant 
genes. Red represents resistant versus susceptible and blue represents moderately 
resistant versus susceptible 
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A detailed classification based on the volcano plot analysis between these three groups is 

presented in table 11. In this study, no rice varieties were exposed to BPH at any stage. 

Therefore, gene regulation patterns were not of interest because the focus was on 

identifying constitutive resistance genes. The results showed that the majority of genes 

for both resistant versus susceptible or moderately resistant versus susceptible 

comparisons   ranged between 2.0 to 4.0 fold difference value containing 156 and 146 

genes respectively. Genes of an unknown function, however, were still large in number, 

94 (39%) and 83 (38%) for both comparisons (Appendices B and C).  .  

 
Table 11  Number of genes with significant expression differences between groups 
 
Group analysis Fold difference Number of 

significant genes 

Total 

genes 

Resistance Vs Susceptible  

(239 probes) 

>2 .00- 4.00 156 

239 
>4.00 – 6.00 35 

>6.00 – 8.00 17 

>8.00 31 

Moderate resistance Vs Susceptible 

 (219 probes) 

>2 .00- 4.00 146 

219 
>4.00 – 6.00 30 

>6.00 – 8.00 13 

>8.00 29 

Resistance Vs Moderate resistance  

 (0 probe) 

>2 .00- 4.00 0 

0 
>4.00 – 6.00 0 

>6.00 – 8.00 0 

>8.00 0 
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Further statistical analysis on different groupings were also conducted to monitor 

the validity of the results in terms of whether they could have been achieved purely by 

chance. All rice varieties were randomly assigned to three groups. The results are shown 

in table 12. In total, only eight genes showed significant expression differences.  

 
 
Table 12 Number of genes showing significant expression differences between groups 
following random assignment 
 
Group analysis Fold 

difference 

Number of 

significant genes 

Total 

genes 

Group A Vs Group B  

[(TN1 x Rathu) Vs (Azucena x Babawee)] 

>2 .00- 4.00 0 

0 
>4.00 – 6.00 0 

>6.00 – 8.00 0 

>8.00 0 

Group A Vs Group C 

 [(TNxRathu) Vs (Nipponbare x F1)] 

>2 .00- 4.00 3 

5 
>4.00 – 6.00 0 

>6.00 – 8.00 1 

>8.00 1 

Group B Vs Group C  

 [(Azucena x Babawee) Vs (Nipponbare x 

F1)] 

>2 .00- 4.00 1 

3 
>4.00 – 6.00 0 

>6.00 – 8.00 0 

>8.00 3 

 

 

5.4.3 Strong candidate genes associated with BPH resistance 

All the significant genes differentially expressed between resistant and susceptible 

varieties or moderately resistant and susceptible varieties (239 and 219 respectively) are 

important. However, the total number is still large and difficult to explain in detail.  

Therefore, further study focussed on only 239 candidate genes from the resistant and 
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susceptible groups. The results from three methods were chosen to strengthen the 

candidacy of the genes, which are described below. Having decided this, it still needs to 

be reiterated that more than 80 % of the resistant and moderately resistant were identical 

according to their expression pattern compared to the susceptible. 

 

5.4.3.1 Correlation of gene expression with morphological BPH feeding behaviour 

The full results of the correlation analysis between gene expression values of the 12 rice 

genotypes and the five selected morphological BPH feeding behaviour parameters from 

chapter 4 are given in appendix E.  The results show that the resistant varieties produced   

a positive correlation on EPG waveform for pathway (N1+N2+N3), xylem ingestion (N5) 

and the time to first BPH stylet reaching the phloem sap. Negative correlations were 

identified for phloem ingestion, EPG waveform (N4b) and total honeydew production.  

Overall, the total number of genes associated with resistance, however, was less than for 

susceptibility. Only 89 genes from 239 genes were found to have a negative correlation 

with phloem ingestion.  A gene from Arabidopsis thaliana At3g17850 mRNA for 

putative protein kinase (Os03g0711800) showed a very high correlation with almost all 

morphological BPH behaviour characters. This gene had the highest negative correlation 

with phloem ingestion (r=-0.8480) and time to first phloem ingestion (r=-0.8687).  Figure 

19 clearly shows the exact resistance pattern of this gene. The high expression level of 

gene coding for protein kinase had significantly associated with the reduced of BPH 

phloem ingestion duration (Figure 19A). Consequently, the time to BPH stylet reaching 

the phloem sap region also increased (Figure 19B).  However, from 15 genes annotated 

as protein kinases, only 4 negatively responded with phloem ingestion.   
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Figure 19 Relationship between phloem feeding over a 5h period (A) and time to first 
phloem ingestion (B) with normalized expression of gene Os03g0711800 annotated as 
Arabidopsis thaliana At3g17850 mRNA for putative protein kinase. Expression is 
significantly decreased for phloem ingestion and increased for time to first phloem 
ingestion in resistant varieties. Each point is a single expression value for an individual 
variety from microarray data for the preset study plotted against the percentage average 
time of phloem ingestion from the same variety (data from Ghaffar et al., 2011). Each of 
12 varieties is represented twice. Line shows the linear correlation with R values of -
0.8480 and 0.8667 
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For susceptible varieties, a positive correlation is shown between phloem ingestion and 

total honeydew production, with gene expression level, while a negative correlation was 

found with pathway and time to first phloem ingestion. Gene Os08g0434100 from Oryza 

sativa (japonica cultivar-group) mRNA for ribonuclease is a good example of a candidate 

gene associated with the susceptible character. This gene produced the highest positive 

correlation value for phloem ingestion (r= 0.87) and total honeydew drop (0.8737). 

Figure 20 clearly demonstrates that a high level of gene expression extends the 

percentage duration of phloem ingestion (Figure 20A) and therefore, the total honeydew 

production is also increased (Figure 20B).    

It is also important to highlight the fold difference value in the microarray 

experiment because it represents the quality of the sample.  In this analysis, Arabidopsis 

thaliana clone 1204 mRNA (Os02g0243300) showed the highest fold difference value 

(25.26). There were several genes with known annotation that produced a good 

combination of high correlation and high fold difference value associated with resistance 

genotype characteristics. Among them were Arabidopsis thaliana putative glutamate 

receptor protein GLR3.4b (GLR3.4) mRNA, GLR3.4-2 allele (Os07g0522600), the 

Daucus carota transposable element TdcA1-ORF2 mRNA (Os08g0208300) and Oryza 

sativa nucleotide-binding leucine-rich-repeat protein 1 mRNA (Os12g0199100).      
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Figure 20 Relationship between  phloem feeding (A) and total honeydew drops (B) over 
a 5h period with normalized expression of gene Oso8g0434100 annotated as Oryza sativa 
(japonica cultivar-group) mRNA for  ribonuclease. Expression is significantly increased 
in susceptible varieties. Each point is a single expression value for an individual variety 
from microarray data for the preset study plotted against the percentage average time of 
phloem ingestion and total honeydew drop from the same variety (data from Ghaffar et 
al., 2011). Each of 12 varieties is represented twice. Line shows the linear correlation 
with R values of 0.8748 and 0.8737 respectively 
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5.4.3.2 Gene ontology (GO) enrichment analysis 

 Functional annotation using the Gene Ontology controlled vocabulary is standard 

practice for many microarray experiment results.  It is used to identify possible molecular 

biological processes that govern the response of differentially expressed genes such as 

BPH resistance. In this study, a gene Ontology (GO) enrichment analysis process was 

performed using the EasyGO web-based tool <http://bioinformatics.cau.edu.cn/easygo/N 

(Zhou and Su, 2007) with an FDR adjusted p-value of ≤0.05 as the cut-off. Results can be 

categorized into three main classes, namely cellular biological process, cellular 

component and molecular function (Ashburner et al., 2000). The distributions of the 

identified gene sets over the different GO functional categories are shown in table 13. 

The evaluation is based on a comparison of the percentage of differentially expressed 

genes belonging to each functional category with the degree of representation of the 

respective functional category in the genome (De Vos et al., 2005).  

The distribution of GO analysis showed that the biological process featured the 

highest number of  GO term annotations and classifications with 30 categories (Appendix 

F). Thirteen categories represent GO term annotations in cellular component (Appendix 

G) with only three categories featuring GO term annotations in molecular function 

(Appendix H).  A relatively large number of genes (63) of the GO term category 

‗response to stimulus‘ (GO: 0050896) were found.  Interestingly, the ‗response to biotic 

stimulus‘ (GO: 0009607) category rated very highly with 28 genes in total (Figure 21).  

Other GO terms also in this group were ‗response to external stimulus‘ (GO: 0009605, 14 

genes), ‗response to endogenous stimulus‘ (GO: 0009719, 35 genes)  and ‗response to 

stress ‗ (GO:0006950, 23 genes).   
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For the second GO term sub-class under the cellular component category, cell part 

(GO: 0005618) and cell were equal (GO: 0044464) in number with 79 genes each. A 

large proportion was also found in ‗intracellular‘ (GO: 0005622, 57 genes), ‗intracellular 

part‘ (GO: 0044424, 57 genes) and ‗cytoplasm‘ (GO: 0005737, 53 genes). For molecular 

function, ‗catalytic activity‘ (GO: 0003824) comprised the highest number with 80 genes, 

while ‗transferase activity‘ (GO: 0016740) had 41 genes and ‗transporter activity‘ (GO: 

0005215) another 17. 
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Table 13 List of GO terms under biological process, molecular function and cellular 
component categories for the 239 significant genes (results from comparison between 
resistant and susceptible) using EasyGO web tool analysis 
 
GO term Ontology 

Type 
GO 
description 

Number 
in input 

list 

Number 
in 

BG/Ref 

p-value FDR 

GO:0050896 Biological 
Process 

Response to 
stimulus 

63 6072 1.20E-
07 

3.00E-
05 

GO:0009607 Biological 
Process 

Response to 
biotic stimulus 

28 2011 1.20E-
06 

0.00015 

GO:0065007 Biological 
Process 

Biological 
regulation 

35 3245 1.80E-
05 

0.0014 

GO:0009605 Biological 
Process 

Response to 
external 
stimulus 

14 797 4.00E-
05 

0.0024 

GO:0009991 Biological 
Process 

Response to 
extracellular 
stimulus 

6 146 7.40E-
05 

0.0036 

GO:0032502 Biological 
Process 

Developmental 
process 

22 1840 0.00012 0.0049 

GO:0019748 Biological 
Process 

Secondary 
metabolic 
process 

15 1021 0.00016 0.0054 

GO:0007165 Biological 
Process 

Signal 
transduction 

29 3051 0.00057 0.0076 

GO:0007275 Biological 
Process 

Multicellular 
organismal 
development 

18 1460 0.00032 0.0076 

GO:0009719 Biological 
Process 

Response to 
endogenous 
stimulus 

35 3895 0.00049 0.0076 

GO:0050789 Biological 
Process 

Regulation of 
biological 
process 

30 3067 0.0003 0.0076 

GO:0032501 Biological 
Process 

Multicellular 
organismal 
process 

18 1464 0.00033 0.0076 

GO:0006810 Biological 
Process 

Transport 17 1386 0.00048 0.0076 

GO:0050794 Biological 
Process 

Regulation of 
cellular 
process 

29 3051 0.00057 0.0076 
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Continue table 

GO term Ontology Description Number 
in input 

list 

Number 
in 

BG/Ref 

p-value FDR 

GO:0023046 Biological 
Process 

Signaling 
process 

29 3051 0.00057 0.0076 

GO:0051234 Biological 
Process 

Establishment 
of localization 

17 1386 0.00048 0.0076 

GO:0051179 Biological 
Process 

Localization 17 1386 0.00048 0.0076 

GO:0023060 Biological 
Process 

Signal 
transmission 

29 3051 0.00057 0.0076 

GO:0023052 Biological 
Process 

Signaling 29 3090 0.00069 0.0087 

GO:0009791 Biological 
Process 

post-
embryonic 
development 

11 781 0.0015 0.018 

GO:0040007 Biological 
Process 

Growth 9 584 0.0021 0.024 

GO:0006950 Biological 
Process 

Response to 
stress 

23 2464 0.0023 0.025 

GO:0000003 Biological 
Process 

Reproduction 12 961 0.0025 0.025 

GO:0006629 Biological 
Process 

Lipid 
metabolic 
process 

12 957 0.0024 0.025 

GO:0030154 Biological 
Process 

Cell 
differentiation 

10 739 0.0031 0.028 

GO:0048869 Biological 
Process 

Cellular 
developmental 
process 

10 739 0.0031 0.028 

GO:0065008 Biological 
Process 

Regulation of 
biological 
quality 

5 206 0.0031 0.028 

GO:0006519 Biological 
Process 

Cellular 
amino acid 
and derivative 
metabolic 
process 

13 1149 0.0039 0.032 

GO:0044281 Biological 
Process 

Small 
molecule 
metabolic 
process 

13 1149 0.0039 0.032 

GO:0009987 Biological 
Process 

Cellular 
process 

62 9072 0.0054 0.044 
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Continue table 

GO term Ontology Description Number 
in input 

list 

Number 
in 

BG/Ref 

p-value FDR 

GO:0003824 Molecular 
Function 

Catalytic 
activity 

80 10047 4.60E-05 0.0027 

GO:0005215 Molecular 
Function 

Transporter 
activity 

18 1437 0.00027 0.0078 

GO:0016740 Molecular 
function 

Transferase 
activity 

41 4799 0.0005 0.0097 

GO:0030312 Cellular 
component 

External 
encapsulating 
structure 

27 2595 0.00023 0.0071 

GO:0005618 Cellular 
component 

Cell wall 27 2595 0.00023 0.0071 

GO:0044464 Cellular 
component 

Cell part 79 10811 0.0005 0.0083 

GO:0005623 Cellular 
component 

Cell 79 10833 0.00053 0.0083 

GO:0005737 Cellular 
component 

Cytoplasm 53 7085 0.0017 0.019 

GO:0005739 Cellular 
component 

Mitochondrion 35 4228 0.0018 0.019 

GO:0016020 Cellular 
component 

Membrane 37 4657 0.0027 0.023 

GO:0044444 Cellular 
component 

Cytoplasmic 
part 

43 5646 0.0029 0.023 

GO:0044424 Cellular 
component 

Intracellular 
part 

57 8195 0.0051 0.036 

GO:0043231 Cellular 
component 

Intracellular 
membrane-
bounded 
organelle 

51 7469 0.0097 0.047 

GO:0005622 Cellular 
component 

Intracellular 57 8397 0.0078 0.047 

GO:0043227 Cellular 
component 

Membrane-
bounded 
organelle 

51 7469 0.0097 0.047 

GO:0005576 Cellular 
component 

Extracellular 
region 

5 272 0.0096 0.047 
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Figure 21 GO term sub-class under response to stimulus category. Response to biotic 
stimulus (GO: 0009607) has highest significant level (FDR)   
 
 
 
5.4.3.2 .1 Genes for response to biotic stimulus genes  
 
For further evaluation, this study focussed on only GO term sub-class response to biotic 

stimulus.  The aim was to detail and narrow down the number of genes until significant 

specific genes of interest were found. The list of twenty-eight genes belonging to this GO 

term and their EasyGO descriptions are shown in table 14.  In this evaluation, fold 

difference value and the five correlated feeding characters, namely pathway, phloem 

ingestion, xylem ingestion, total honeydew production and time BPH starts phloem 

ingestion from the previous analysis were also included to support these findings and 

strengthen the candidacy of the gene list. The combination of all that information allowed 
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for the identification of 28 genes under GO term response to biotic stimulus and their 

subsequent allocation into 5 groups.    

The first group contains five genes classified according to their resistance 

characters. A positive correlation was found with pathway, xylem ingestion and time 

BPH starts ingestion of the phloem. In contrast, negative correlations were found on 

characters phloem ingestion and honeydew production. Gene Os07g0522600 annotated 

as a glutamate receptor 3.4 precursor produced the highest correlation for pathway 

(r=0.69), phloem ingestion, total honeydew drop (r=0.69), time BPH starts ingesting the 

phloem (r=0.72) and phloem ingestion (r=-0.68). Gene Os08g0539700 Oryza sativa 

PibH8 mRNA and gene Os12g0199100 Oryza sativa nucleotide-binding leucine-rich-

repeat protein also showed a high correlation for the same character glutame receptor 

gene. Although gene Os12g0118400 (Arabidopsis thaliana At3g10840 mRNA) for 

putative alpha/beta hydrolase showed a moderate correlation value, the highest fold 

difference value of 17.40 indicated that it was a highly interesting gene.   

 The second group is associated with transporter activities. This group comprises 7 

genes and most of them showed high positive correlation values with BPH phloem 

ingestion and total honeydew drops.  The most outstanding gene was a zinc transporter 1 

precursor, putative (Os04g0613000). This gene not only demonstrated a high fold 

difference value of 10.07 but also a correlation value above r=0.7. The other two genes of 

interest  were Os02g0102200  (Arabidopsis thaliana putative amino acid carrier 

At1g77380) and Os08g0127100 (Arabidopsis thaliana At5g40780/K1B16_3 mRNA). 

Fold difference and correlation values were higher compared to others within the group.  
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Tranferase activities characterise the third group. Four out of six genes were found to be 

associated with peroxidase enzymes with almost all of them possessing high correlation 

values especially for gene Os08g0113000  (Arabidopsis thaliana class III peroxidase 

ATP32  mRNA). The correlation value with pathway, phloem ingestion, total honeydew 

drop and time BPH starts feeding on the phloem were all above 0.8.  Gene 

Os03g0389700 (Morinda citrifolia mRNA for 3-deoxy-D-arabino-heptulosonate) in this 

group also showed a significantly high correlation with phloem ingestion (r=0.77) and 

time BPH starts ingesting the phloem (r=0.80). 

The fourth group also contains 6 genes which show similar high correlation 

values with the same characters as in group 3. All genes are referred to as showing 

receptor protein kinase activity. Gene Os02g0228300 (Malus domestica leucine-rich 

receptor-like protein kinase (LRPKm1) mRNA) and gene Os12g0182300 (Arabidopsis 

thaliana putative receptor protein kinase) are both highly interesting. Correlation values 

for phloem ingestion and time BPH starts feeding on the phloem were among the highest 

of 28 genes belonging to GO term response to biotic stimulus.   

The final group 5 comprises only 4 genes which show other molecular functions 

such as hydrolase, catalytic or unknown molecular function activities. All genes in this 

group had fold difference values above 4.0 and showed correlation values around r=0.60.  
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Table 14 Genes in the GO ‗response to biotic stimulus‘ category with fold difference values and their linear coefficient correlation 

with key BPH feeding pathway components 

_________________________________________________________________________________________________________________________________ 

UniGene symbol     Fold      Pathway    Phloem  Xylem       Average         Starting            Description  (main substrate)                                                      

                                 Change                     ingestion      ingestion     honeydew      time BPH                                                                     

                                                                                                          drops              ingest the 

                                                                                                           (1h)                phloem  

_______________ __________________________________________________________________________________________________________________ 

Group 1 (Negative correlation with phloem ingestion) 

Os12g0118400    17.40       0.56         -0.57            0.57      0.61              0.61       Arabidopsis thaliana At3g10840 mRNA for  putative   

                                                                                                                                                     alpha/beta hydrolase, complete cds, clone: 

Os06g0323100    5.35       0.43         -0.37            0.35     -0.40              0.36       Arabidopsis thaliana clone 37493 mRNA, complete sequence.  

Os07g0522600    4.10       0.69         -0.68            0.56     -0.69              0.72       Arabidopsis thaliana putative glutamate receptor protein GLR3.4b  

                                                                                                                                                      (GLR3.4) mRNA, GLR3.4-2 allele. 

Os12g0199100        6.87         0.62           -0.62           0.65           -0.63               0.64              Oryza sativa nucleotide-binding leucine-rich-repeat protein 1 mRNA  

Os08g0539700        2.33         0.60           -0.66           0.64           - 0.64              0.69                Oryza sativa PibH8 mRNA 

 

Group 2 (transporter activities) 

Os04g0613000       10.07       -0.75            0.80           -0.73            0.71            -0.81               Arabidopsis thaliana putative zinc transporter (ZIP1) mRNA 

Os02g0102200    4.75         -0.70           0.77           -0.73      0.67            -0.78       Arabidopsis thaliana putative amino acid carrier  (At1g77380)  

                                                                                                                                                      mRNA.  

Os10g0539900    2.90         -0.66           0.71           -0.54      0.68             -0.73       Hordeum vulgare mRNA for hexose transporter (stp1 gene).  

Os04g0454200    2.64         -0.54           0.65           -0.71      0.56             -0.67       Oryza sativa OsMST1 mRNA for monosaccharide transporter 1 

_________________________________________________________________________________________________________________________________ 
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Table continue 

_________________________________________________________________________________________________________________________________ 

UniGene symbol     Fold      Pathway    Phloem  Xylem       Average         Starting            Description (main substrate)                                                      

                                 Change                     ingestion      ingestion     honeydew      time BPH                                                                     

                                                                                                          drops              ingest the 

                                                                                                           (1h)                phloem  

_______________ __________________________________________________________________________________________________________________ 

 

Os01g0872600     2.01       -0.35         0.45            -0.44      0.40             -0.49                 Arabidopsis thaliana At1g72120/F28P5_2  mRNA,   

                                                                                                                                          (Peptide transporter PTR2-B, putative) 
Os02g0580900     2.08       -0.55         0.63            -0.66      0.63             -0.65                 Arabidopsis thaliana At3g21670/MIL23_23 mRNA,.  

Os08g0127100     4.94       -0.77         0.83            -0.82      0.77             -0.85          Arabidopsis thaliana At5g40780/K1B16_3 mRNA,   (LHT) 

 

Group 3 (Transferase activities) 

Os12g0112000     7.02       -0.59          0.66           -0.64      0.64            -0.66          Nicotiana tabacum mRNA for peroxidase,  

Os08g0113000     4.58       -0.80          0.83           -0.69      0.83            -0.84          Arabidopsis thaliana class III peroxidase ATP32  mRNA,  

Os07g0677200     3.12       -0.69          0.71           -0.59      0.77             -0.71                  Oryza sativa peroxidase (POX22.3) mRNA,.  

Os09g0471100     2.44       -0.64          0.70           -0.69      0.68             -0.74          Gossypium hirsutum gaiacol peroxidase (pod5) mRNA  

Os03g0389700     3.95       -0.69            0.77          -0.68      0.74              -0.80                  Morinda citrifolia mRNA for 3-deoxy-D-arabino-heptulosonate  

                                                                                                                                                         7-phosphate synthase, DS1 

 Os02g0719600     4.22     -0.50          0.63           -0.63      0.57             -0.63          Atropa belladonna AbSAMT1 mRNA for S-adenosyl-L- 

                                                                                                                                                         methionine:salicylic acid carboxyl methyltransferase  

                                                                                                                                                         

_________________________________________________________________________________________________________________________________ 
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Table continue 

_________________________________________________________________________________________________________________________________ 

UniGene symbol     Fold    Pathway    Phloem  Xylem       Average         Starting            Description  (main substrate)                                                      

                                 Change                    ingestion       ingestion     honeydew      time BPH                                                                     

                                                                                                          drops              ingest the 

                                                                                                           (1h)                phloem  

_______________ __________________________________________________________________________________________________________________ 

Group 4 (Kinase activities) 

Os02g0228300    3.57      -0.75           0.84            -0.79      0.78               -0.85                 Malus domestica leucine-rich receptor-like protein kinase  

                                                                                                                                                         (LRPKm1) mRNA.  

Os06g0557700    2.68      -0.75        0.79            -0.75      0.71             -0.85          Malus domestica leucine-rich receptor-like protein kinase  

                                                                                                                                                         (LRPKm1) mRNA.  

 Os12g0182300        2.14       -0.76           0.82             0.78               0.77              -0.86                  Arabidopsis thaliana putative receptor protein kinase 

 Os01g0878300        4.49       -0.75           0.80            -0.64              0.78               -0.82                Arabidopsis thaliana putative receptor protein kinase (At1g28440)  

  Os06g0557100    2.28      -0.60        0.67            -0.73      0.60             -0.73                 A.thaliana receptor-like protein kinase mRNA 

Os03g0440900    2.17      -0.57        0.68            -0.69      0.59             -0.71                 Arabidopsis thaliana Unknown protein (At5g21090) mRNA, 

Group 5 (Other activities) 

Os04g0513400    5.88      -0.67        0.72            -0.65      0.67             -0.72         Pinus contorta beta-glucosidase mRNA.  

Os12g0448900    4.94      -0.65        0.73            -0.71      0.68             -0.76          Oryza sativa fatty acid alpha-oxidase mRNA.  

Os01g0369900    4.20      -0.61           0.63             -0.55      0.67              -0.66          Oryza sativa RRJ4 mRNA for 12- oxophytodienoic acid  

                                                                                                                                                          reductase,    

Os04g0474800    4.20        -0.58         0.59             -0.37      0.63               -0.64                 Prunus serotina amygdalin hydrolase isoform AH I precursor  

                                                                                                                                                         (AH1) mRNA,. 

. 

_________________________________________________________________________________________________________________________________ 
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5.4.4 Mapping candidate genes with known BPH markers to rice QTL 

The list of 82 BPH markers for QTL used in this evaluation is shown in appendix I. The 

genome web browser under http://www.gramene.org/ was used for the screening process.  

Out of the 239 candidates, only 7 genes were found located within a BPH resistance 

marker locus region: RM1103 (Park et al., 2008), RM261, RM185, RM17/12 (Kumari et 

al., 2010), RM19291, RG1 (Jairin et al., 2007) and RM484 (Sun et al., 2005). The list of 

BPH resistance genes involved were Bph1 (chromosome 12), Bph3 (chromosome 6), 

Bph10(t) (chromosome 12), Bph12(t) (chromosome 4), Bph15 (chromosome 8) and 

QBph10 (chromosome 12), respectively.  Interestingly, four genes in the list of table 15 

refer to the known BPH resistant varieties, Rathu Heenathi and IR64.  

Gene Os12g0631200 (Arabidopsis thaliana clone 108517 mRNA, zinc finger, 

putative, expressed) was found to be the closest to a BPH marker at only 37kbp distance. 

Figure 22 shows how the mapping process and locus distance measurement were 

conducted.  This gene also produced a high expression correlation with BPH phloem 

ingestion (r=0.79). The other two genes, Os12g0571100 (Oryza sativa metallothionein-

like protein mRNA) and Os10g0539900 (Hordeum vulgare mRNA for hexose 

transporter) were also found close to BPH resistance markers at 57kbp and 85kbp 

respectively. These genes also had a high positive correlation with BPH phloem ingestion 

(r=0.76 and 0.71 respectively). Interestingly, this hexose transporter (STP1) gene was 

strengthened in terms of its candidacy because it was the only gene which appeared 

twice: once in this analysis and also in the GO term response to biotic stress. This gene is 

associated with Qbph10 located on chromosome 10, and there is strong evidence that it 

plays a special role in attracting BPH to feed on the plant.  

http://www.gramene.org/
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With the exception of gene Os06g0120200 (unknown expressed protein), the 

other three genes were found to have negative correlations with the BPH phloem 

ingestion character. Gene Os04g0196300 (unknown expressed protein) and 

Os04g0379300 (Arabidopsis thaliana clone U18492 unknown protein (At2g31740) 

mRNA) are both associated with wild rice species, Oryza latifolia. Those genes are 

linked to Bph12(t) on chromosome 4 and are 100kbp distant from their reference marker.   

The last candidate gene, Os08g0440100 (1, 6-bisphosphate aldolase precursor) is 

associated with Rathu Heenathi and showed a high fold difference value (5.67). This 

gene location, however, was the furthest from the reference BPH marker at 242 kbp.  In 

addition, this gene had the lowest correlation with the phloem ingestion character (r=-

0.45). 
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Table 15 Closest map positioned to BPH genes using reference markers (taken from Gramene website) 
Gene Donor Marker Candidate gene map 

position 

(TIGR and Unigen 

symbols) 

Location of BPH  

references marker 

And distance 

(bp) 

Gene description Fold 

difference 

Phloem 

ingestion 

(Correlation) 

Bph1 IR64 RM1103 

 Park DS et al. (2008) 

 

LOC_Os12g38300 

Os12g0571100 

23,481,607 -23,482,258 

 

23,539,431-23,539,654 

(57kbp) 

Oryza sativa metallothionein-like 

protein mRNA, complete cds 

 

4.99 0.76 

Bph12(t) B14 

[Oryza 

latifolia] 

RM261 

Kumari et al. (2010) 

 

LOC_Os04g11980  

Os04g0196300 

6,563,327-6,564,094 

 

6,574,386-6,574,528 

(103kbp) 

Unknown expressed protein 

 

 

15.84 -0.55 

Bph12(t) B14 

[Oryza 

latifolia] 

RM185 

Kumari et al. (2010) 

 

LOC_Os04g31000 

 Os04g0379300 

18,348,456-18,358,985 

 

18,579,750-18,579,967 

(221kbp) 

Arabidopsis thaliana clone U18492 

unknown protein (At2g31740) 

mRNA, complete) 

2.92 -0.65 

Bph3 Rathu 

heenathi 

RM19291 

Jairin et al. (2007) 

LOC_Os06g02960 

Os06g0120200 

1,089,059-1,091,626 

 

1,215,874-1,216,040 

(124kbp) 

Unknown expressed protein 

 

 

9.28 0.6 

Bph15 PTB33/  

Rathu 

heenathi 

RG1 

Jairin et al. (2007) 

 

LOC_Os08g34150 

Os08g0440100 

21,404,694-21,406,066 

 

21,645,653-21,646,067 

(240kbp) 

Avena sativa fructose 1,6-

bisphosphate aldolase precursor, 

mRNA, complete cds; nuclear gene 

for chloroplast product.  

5.67 -0.45 

Bph10(t) Oryza 

rufipogon 

RM17/RM12 

Kumari et al. (2010) 

 

LOC_Os12g43560 

Os12g0631200 

26,991,676-26,996,384 

 

26,954,647-26,954,957 

(37kbp) 

Arabidopsis thaliana clone 108517 

mRNA, complete sequence. 

 (zinc finger, putative, expressed) 

2.54 0.79 

QBph10 Rathu 

heenathi 

RM484 

Sun et al. (2005) 

 

LOC_Os10g39440 

Os10g0539900 

20,976,750-20,981,273 

 

21,066,719-21,067,037 

(85kbp) 

Hordeum vulgare mRNA for hexose 

transporter (stp1 gene).  

 

2.90 0.71 
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Figure 22 Example of the position and distance of a candidate gene in relation to known mapped QTL markers for BPH resistance 
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5.5 Discussion   

One unique feature of this experiment was that the plant material was not subjected to 

BPH infection as is common in other gene expression studies. The genes that were aimed 

at being identified were expressed constitutively and not induced post-infection. These 

types of gene can be more durable and sustained over a long period because they have no 

ability to change easily in a short period when herbivores circumvent them (Karban and 

Myers, 1998). Selections for constitutive characters are also easy to achieve because they 

are not too complex or complicated. Inducible characters need very sensitive and specific 

conditions to activate their expression levels, such as plant damage levels or total insect 

numbers (Underwood et al., 2000). Sometime, inducible resistance characters refer only 

to a specific pathogen and herbivorous insect (Åhman, 2009). Therefore, it is difficult to 

achieve the target with the breeding selection of this character.  Unlike in constitutive 

character, the selection can be made at an early stage even without insect infection as has 

been shown in this study.  

In this transcriptomics study, more than 80 percent of genes (196 genes) were 

found expressed similarly between resistant and moderately resistant varieties in 

comparison to susceptible.  This same pattern was also found in a previous morphological 

study where the BPH feeding behaviour was characterized using electrical penetration 

graph (EPG) and honeydew drops experiments.  This could be further evidence to support 

the claim that moderate and resistant varieties could have a close genetic relationship due 

to a long history of breeding (Ghaffar et al., 2011). There is very limited supporting 

information available on the genetic backgrounds of the rice varieties except for 

moderately resistant varieties MR219 and MR232. It has been reported that at least one 
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of their parents is known to have possessed insect resistance (Alias et al., 2001). 

Moreover, this result also provided strong evidence that the relationship between 

molecular and morphological data is significant. It will create opportunities to investigate 

further in detail the interaction between BPH and plants.  

 

5.5.1 Novel approach to strengthening the candidacy of BPH resistance    

         genes 

 Although microarray experiments enable the analysis of the expression patterns of 

thousands of genes at one time, further activities are still needed to interpret the results. 

The 239 candidate genes for resistance still represent a big number and are difficult to 

explain and use in a conventional way. However, the various genomic analyses available 

through the web and particularly the support of the morphological data have increased the 

efficiency in the interpretation of the microarray data and added a further unique feature 

to this study.  

Three different strategies were utilized to summarize and identify the strongest 

candidate genes related to BPH resistance. The first approach used a simple linear 

correlation analysis; data were compared between gene expression in the present study 

and the BPH feeding behaviour characters in chapter 4 (Ghaffar et al., 2011). Parameters 

related to BPH phloem ingestion duration and time to first BPH ingestion of the phloem 

were considered to be the most important in determining resistance level phenotypically. 

Therefore, the genes with a high positive correlation to phloem feeding duration were 

classified as being associated to susceptibility. In contrast, a high positive correlation for 

time to first phloem ingestion was categorized as a reflection of plant resistance. 
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Interestingly, the results show that the numbers of genes expressed in susceptible 

varieties (150 genes) are almost twice those for resistance (89). This could indicate that 

susceptible varieties contain more active genes than resistant.      

Gene ontology analysis is a common practice used for summarizing microarray 

results. GO provides an extra advantage by standardizing or controlling the vocabulary 

(Meng et al., 2009) which can help to describe and understand better which genes 

contribute to  the defence function. The results have confirmed this statement because it 

explains the distribution of the constitutive resistance candidate genes. The majority were 

found classified under GO class ‗response to stimulus‘ (GO: 0050896) with 63 genes, and 

GO sub-class ‗response to biotic stimulus‘ (GO: 0009607) (28 genes) (Table 13.and 

figure 22). This is important evidence which shows that these microarray data are reliable 

and successfully differentiate between susceptibility and resistance genes to BPH in this 

rice germplasm.  

Mapping candidate genes identified from microarray experiments with known 

QTL BPH gene by way of mapped markers is highly significant in this study. This has 

allowed identification of a possible linkage of the 239 candidate genes with the known 

QTL BPH gene markers on the rice chromosomes and to estimate the candidates‘ 

distance from these known QTL BPH gene. To date, at least 22 major Bph resistance 

genes  (QTL) have been indentified in cultivars and wild rice species (Santhanalakshmi et 

al., 2010), which has given further opportunity to compare known QTL BPH gene 

markers with the candidate genes.  As a result, 7 out of 239 candidate genes have been 

discovered to fall close to the locus of BPH gene markers.   
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In this analysis, Gene Os12g0631200 (Arabidopsis thaliana clone 108517 

mRNA) has the shortest distance to the Bph10 marker at only 37 kbp. The other two 

genes, Os12g0571100 (Oryza sativa metallothionein-like protein mRNA) and 

Os10g0539900 (Hordeum vulgare mRNA for hexose transporter (stp1 gene)) are also 

located close to their reference BPH gene markers at 57kbp and 85kbp respectively. Also 

of interest is the source of the resistance. Four genes belong to Rathu Heenathi (Bph3, 

Qbph10, Bph15) and IR64 (Bph1), two of the varieties used in this analysis. This 

indicates that resistance genes from both are likely to represent or contribute significantly 

to the differentiation between resistance and susceptibility. In addition, one of the 

varieties in the resistant group, F1 is a cross between TN1 and Rathu Heenathi itself. It 

clearly shows that Rathu Heenathi is a good parent due to the heritable resistance 

character in its progeny. This variety has already been used extensively in rice breeding 

programs in Asia since 1980 (Khush et al., 1985; Jairin et al., 2007).  

 

5.5.2 Strong candidate genes for BPH resistance  

It should be borne in mind that the initial analysis indicated that all 239 genes in this 

experiment were potential candidates for resistance. They have significant differential 

expressions which can be used to differentiate between resistant and susceptible rice to 

BPH attack.  The three approaches taken and which have been discussed before allow for 

more focussed hypotheses of gene function to be made.  As a result, the gene encoding 

hexose transporter (Os10g0539900) could be classified as the strongest gene associated 

with constitutive resistance character to BPH attack.  This gene has appeared twice, 

through gene ontology analysis under the GO subclass ‗response to biotic stimulus‘ and 
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mapping candidate genes with known QTL BPH gene marker, QBph10, which relates to 

the Rathu Heenathi resistant variety. However, this gene also has a strong high positive 

correlation with the BPH feeding behaviour for phloem ingestion and total honeydew 

production.  Therefore, it confers susceptibility rather than resistance when the 

expression level is higher.  

Plant hexose transporters are plasma membrane carriers and function as proton 

(HC)/hexose symporters (Bush, 1993; Gear et al., 2000) and belong to a large 

superfamily of transmembrane facilitators (MFS, major facilitator superfamily) (Marger 

and Saier, 1993; Bϋttner and Sauer, 2000).  In the Arabidopsis genome, hexose 

transporters are classified as a member of the sugar transporter proteins (STPs) family, 

which includes over 50 transporters (Schofield et al., 2009).  This hexose transporter 

refers to a gene associated with  Hordeum vulgare mRNA (STP1), which is commonly 

found expressed in sink organs such as roots and green fruits (Gear et al., 2000; Weschke 

et al., 2003).  Hexose transporters have been reported to be involved in the uptake of 

glucose or fructose (Sauer et al., 1994; Kühn et al., 2003; Baxter et al., 2005; Fridman et 

al., 2004, Frankel et al., 2007).  They play an important role supplying sugars to cells for 

plant growth and development.  This process provides strong evidence that a hexose 

transporter gene with high expression could help make plants more susceptible to BPH 

attack. The plant becomes more attractive because it has more nutrients available to the 

herbivore, and an increased expression of hexose transporter genes has been observed to 

be induced following aphid feeding (Frankel et al., 2007).  

There are several studies suggesting that Arabidopsis STP genes also have some 

role in plant defence and plant cell death based on their expression profile (Nørholm et 
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al., 2006).  STP4 was found to be induced when the plant had been infected by a 

pathogen (Fotopoulos et al., 2003; Truernit et al., 1996; Nørholm et al., 2006),   STP3 

was induced by wounding (Bϋttner et al., 2000; Nørholm et al., 2006), and STP1 mRNA 

levels increased upon treatment with defence-related products such as salicylic acid and 

methyl jasmonate (Schenk et al., 2000; Moran and Thompson, 2001; Nørholm et al., 

2006). 

There are seven other genes grouped under transporter activity in the same GO 

sub-class ‗response to biotic stimulus‘.  As for hexose transporters, most of the genes 

have a similar main function in nutrient or ion distribution. All of them are found to 

respond positively with BPH phloem ingestion. Like a hexose transporter, a 

monosaccharide transporter 1 (Os04g0454200) has similar functions in sink tissues such 

as delivering and distributing nutrients to any part of the plant (Sauer and Stadler, 1993). 

It is also claimed that this gene plays a significant role in programmed cell death 

(Nørholm et al., 2006) in response to pathogen infection or after wounding (Truernit et 

al., 1996).   

Gene Os02g0102200, annotated as an amino acid permease (AAP3) is also 

expressed in sink tissues, mainly root tissue, suggesting a potential role in the uptake and 

distribution of amino acids into the cells surrounding the phloem (Okumoto et al., 2004). 

Amino acids are important components of the diet of sap feeding insects (Ortiz-Lopez et 

al., 2000) and can also act as phagostimulants (Srivastava and Auclair, 1975)  A number 

of these AAPs have been implicated in the regulation of sieve element amino acid levels 

(AAP6 (Hunt et al., 2010)) and aphid performance (AAP1 (Kemp, 2011, unpublished 

data). If gene Os02g0102200 is involved in loading amino acids into the phloem, then 
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higher activities could facilitate phloem location by BPH by way of following 

intercellular amino acid gradients. High positive correlation values for phloem ingestion 

and time to first phloem ingestion support this hypothesis. It is little known that this gene 

is involved directly with plant defence. However, Ramputh and Brown (1996) reported 

that it is associated with GABA (γ-aminobutyric acid), the gene that causes phytophagous 

larvae of the oblique-banded leaf rollers (OBLR) (Chohstoneura rosaceana), retarded 

development and reduced survival rates. 

There are another two interesting candidate genes found in this gene mapping 

approach. Gene Os12g0631200 coding for zinc finger is the closest gene with reference 

Bph10 marker at only 37kbp locus distance.  Zinc finger represents the sequence motifs 

which are classified according to the arrangement of the zinc-binding amino acids and 

plays a critical role in interactions with other molecules (Takatsuji, 1998). Therefore, it is 

important for many biological processes in plants. This could be the reason why the 

expression level is high in susceptible varieties in this study. Eulgem et al. (1999) claim 

the gene is involved in controlling induction of cell death and hypersensitive response 

(HR) and is mostly associated with disease reactions 

The distance between gene encoding Metallothionein-like protein (OsMT) and 

Bph1 marker is also close at 57kbp locus distance and has a similarly high positive 

correlation with phloem ingestion as zinc finger.  This OsMTs gene contains only eleven 

genes in the rice genome sequence (Zhou et al., 2006). A recent study however showed 

that  Metallothionein is involved in many biological processes including plant defence, 

for example in maintaining homeostasis of essential metals, metal detoxification (Cobbett 

and Goldsbrough, 2002; Hall, 2002; Delhaize et al., 2004), scavenging reactive oxidant 



Chapter 5 
 

 126 

species (ROS) (Akashi et al., 2004; Wong et al., 2004) and protecting against 

intracellular oxidative damage (Zhou et al., 2006). There was very limited information 

associating this gene with insects unless for pathogen and abiotic stress.  

It is important to highlight a gene associated with peroxidase. It has been reported 

that the rice peroxidase family is composed of138 genes (Passardi et al., 2004) and plays 

many roles in plant development including defence systems (Chittoor et al 1997). This 

gene has been implicated in the defence against herbivores through the JA pathway. 

Elevated peroxidase has been hypothesized to increase the level of cross linking in the 

cell wall making it more difficult to digest (Ralph, 2004). Peroxidases are implicated in 

the detoxification of reactive oxygen species (ROS) that can occur in response to 

herbivore attack (Hoang, 2010).  In the present study, 4 significant genes were annotated 

as peroxidase (Os12g011200, Os08g01130000, Os07g0677200, Os09g0471100) and 

grouped as ‗transferase activities‘. However, in all cases BPH feeding, as measured by a 

faster time to phloem location and a greater amount of phloem ingestion, was associated 

with higher peroxidase expression levels. Increased levels of peroxidase were induced 

following BPH feeding on rice (Rani and Jyothsna, 2010). Higher constitutive levels of 

peroxidase may reflect lower levels of ROS that can form a defence against herbivores.   

Gene Os02g0719600 (Atropa belladonna AbSAMT1 mRNA for S-adenosyl-L-

methionine (salicylic acid carboxyl methyltransferase) is also in the same group of 

‗transferase activities‘ and has similar expression patterns as the peroxidase gene. Higher 

expression is associated with greater phloem ingestion duration suggesting its constitutive 

expression facilitates BPH feeding. Acid carboxyl methyltransferase is a key enzyme for 

jasmonate-regulated plant responses, which involve airborne signals that mediate 
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interplant communication for defence responses (Farmer and Ryan, 1990; Seo et al., 

2001). It is also important for the synthesis of methyl salicylate (MeSA) which plays a 

role in plant defence and response to abiotic challenge (Kwon et al., 2009). However, in 

contrast to the current data it has been reported to have a higher expression following 

pathogen attach (Xu et al., 2006; Kwon et al., 2009). Interestingly, Ren et al., (2004) 

reported this gene was directly associated with bph2 gene in rice plants.  

Wei et al. (2009) reported that Gene Os12g0448900 coding for Oryza sativa fatty 

acid alpha-oxidase (Alpha-DOX2) is also involved in JA biosysnthesis which is 

important for defence signal pathway, and that it is a dioxygenase that synthesizes 13-

hydroperoxylinolenic acid from linolenic acid in JA biosynthesis.  They found that alpha-

DOX2 expression significantly increased in both susceptible and resistant rice plants 

attacked by BPH.  In this study, high expression was found in susceptible rather than 

resistance varities. This result clearly indicates that high expression alpha-DOX2 is 

associated with susceptible varieties even without BPH attack.  Koeduka et al. (2005) 

claimed that this gene is also involved in the defence sytem against pathogen infection 

and heavy metal stress. 

Another group of genes which highly influence BPH feeding behaviour are genes 

with protein kinase annotation. In this analysis, putative protein kinases represent the 

majority. They are one of the largest gene families in plants. In Arabidopsis, protein 

kinase represents 4% of all genes (Chevalier and Walker, 2005). There are around 1,400 

protein kinases in the rice genome, and they have a diverse range of functions, including 

defence signaling (Ding et al., 2009)  Of the 239 significantly differentially expressed 

genes, 15 were annotated as protein kinases.  This indicates that this type of gene may 
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play a significant role in the plant defence system against BPH.  Most of them are highly 

correlated with BPH feeding behaviour. Genes Os02g0228300, Os12g0182300, 

Os01g0878300 and Os06g0557700 have correlation values over 0.75.  Interestingly, not 

all these genes show the same expression patterns because 4 of them are negatively 

correlated.  Gene Os03g0711800 (Arabidopsis thaliana At3g17850 mRNA for putative 

protein kinase) produces the highest negative correlation with phloem ingestion data. 

Protein kinases can be classified according to their primary sequence and type of protein 

phosphorylation activity.  Protein kinases are also enzymes with specific properties which 

have an important role in cellular communication (signalling) and gene duplication 

(Chevalier and Walker, 2005). Protein kinases have been shown to regulate aphid 

resistance signaling pathways in tomatoes, and increased expression of a protein kinase 

has been correlated with resistance to BPH in rice (Wei et al., 2009)   

A number of genes whose annotation suggest they are related to defence showed 

high expression in more susceptible varieties. These included cytochrome p450s 

(Os06g0639800) and glutathione S-transferase (Os09g0467200), which are often induced 

following herbivore attack and therefore associated with plant defence. However, higher 

constitutive levels may generate lower levels and/or a faster turnover of secondary 

metabolites that could interfere with BPH feeding. As in any protein kinase case, these 

are large gene families with diverse functions as evidenced by the observation that one 

glutathione S-transferase (Os09g0467200) showed higher expression in susceptible 

varieties while another gene (Os10g0527800) showed reduced expression. B-glucosidase 

(Os4g0513400) also had higher expression in susceptible varieties. This enzyme can be 

involved in the production of toxic aglucose that forms a defence against chewing 
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herbivores (Poulton and Li., 1994) through a bitter taste and by releasing toxic hydrogen 

cyanide when tissue has been disrupted (Zagrobelny et al., 2004). However, the more 

specific phloem feeding mechanism of BPH may allow it to avoid this.  

The phloem has its own defence mechanisms, including sieve plate blockage by 

callose deposition. A high level of expression of glucosyltransferase may facilitate BPH 

feeding by generating a high rate of callose turnover, which may have been selected 

during domestication as efficient phloem translocation was chosen over herbivore 

resistance.    

The rice blast resistance gene, Os08g0539700 (Oryza sativa PibH8) is also found 

among the 239 genes and falls into the GO subclass ‗response to biotic stimulus‘.   This 

gene is a member of the nucleotide binding site (NBS) and leucine-rich repeat (LRR) 

class of plant disease resistance (R) genes and belongs to a small gene family (Wang et 

al., 2001).  This gene was found to produce high constitutive expression in the resistant 

rice varieties and associated with shorter BPH phloem ingestion and a longer time for 

BPH reach phloem. In pathogenesis, this gene was reported as up-regulated by the 

environment when conditions favour the infection (Wang et al., 2001).  Resistance 

factors like jasmonic acid, salicylic acid, ethylene and probenazole are also claimed to 

influence the expression level of this gene (Wang et al., 2001).  

As PibH8 gene is a member of the nucleotide binding site (NBS) and leucine-rich 

repeat (LRR), it could therefore share several features with gene Os12g0199100 (Oryza 

sativa nucleotide-binding leucine-rich-repeat (NB-LRR) protein 1).  The NB-LRR class 

resistance genes (R) involved act as receptors in signal transduction pathways that are 

triggered as a resistance response against pathogens (Hammond-Kosack and Jones, 1997; 
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Thirumalaiandi et al., 2008). The NBS region is important for ATP binding for the 

overall functionality of the R-gene product (Walker et al., 1982; Saraste et al., 1990; 

Thirumalaiandi et al., 2008). Ori et al. (1997) have reported the involvement of this 

classified R gene in resistance processes characterized by a hypersensitive response (HR). 

This class of gene is already proven as being involved in resistance against bacteria, 

fungi, viruses, nematodes and aphids (Timmerman et al., 2000; Thirumalaiandi et al., 

2008).  In rice, there is evidence that this gene provides a high level of resistance against 

the green rice leafhopper (GRH), Nephotettix cincticeps (Fujita et al., 2009).  

The gene with the best combination of the correlation values which refer to BPH 

resistance mechanism in GO subclass ‗response to biotic stimulus‘ is Gene 

Os07g0522600 coding for a putative glutamate receptor protein GLR3.4. It produced the 

highest correlation for pathway (r=0.69), phloem ingestion (r=-0.68), total honeydew 

drop (r=0.69) and the time BPH starts ingesting the phloem (r=0.72). Davenport (2002) 

suggests that GLRs function as constitutively active non-selective cation channels, a 

suggestion supported by when they were observed in plasma membranes (Demidchik et 

al., 2007). There are several roles played by the gene which  include regulation of 

hypocotyl elongation (Lam et al., 1998; Dubos et al., 2003), sensing of mineral nutrient 

status (Kim et al., 2001), regulating carbon/nitrogen balance (Kang and Turano, 2003), 

resisting aluminium toxicity (Sivaguru et al., 2003) and cold (Meyerhoff et al., 2005), 

root meristem function (Li et al., 2006; Walch-Liu et al., 2006), as well as jasmonate-

mediated defence mechanisms (Kang et al., 2006, Stephens et al., 2008). The explanation 

of the defence mechanism, however, is very limited.  
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The final gene which needs to be highlighted in this study is gene Os12g0118400 

(putative alpha/beta hydrolase). Although this gene also has a negative response to BPH 

feeding behaviour, it has the highest fold difference values (17.40) in the GO sub-class 

‗response to biotic stimulus‘. This gene is common to several hydrolytic enzymes of 

widely differing phylogenetic origin and catalytic function (Ollis et al., 1992) and has 

been reported to be involved in cell wall development, detoxification processes (Urs et 

al., 1998) and programmed cell death (Mishra et al., 2010). 

In summary, this study has proved the usefulness of transcriptomics approaches 

for identifying candidate BPH resistance genes even where there is no BPH interference 

in the plant. This provides an advantage for an early selection process in a plant breeding 

program. Moreover, it is also able to explain the molecular mechanism of a plant defence 

system. The results clearly clarify the important role of constitutive genes for early 

protection against BPH attack. Although this discussion has managed to cover only a few 

of the significantly differentially expressed  genes from the list of 239, the results 

presented here are able to facilitate the prioritization of   strong candidate genes for 

further detailed investigation such as in functional genomic study. Another important step 

is to test the hypothesis proposed in this study. It is strongly suggested that the three 

genes coding for hexose transporter (Os10g0539900), metallothionein-like protein 

(Os12g0571100) and zinc finger (Os12g0631200) are used for cloning testing similar to 

what has been done on Bph14 by Du et al. (2009).  These three selected genes have been 

classified as the strongest potential candidate genes in this study based on their close 

association with known BPH gene markers and BPH feeding ability.   
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CHAPTER 6 

 

SUMMARY AND LIMITATIONS 

6.0 Summary  

Rice is being attacked by many herbivores including phloem feeding insects, which have 

already caused rice production major problems. Brown planthopper (BPH) is one of the most 

significant phloem feeding insects which can destroy rice plants in a short time.  Considering 

the fact that rice is a staple food for many millions of people, controlling BPH is extremely 

important to overcome these problems.  The use of host plant resistance is common practice 

in any commercial agriculture crop for environmental safety and saving costs over a long 

period.  However, to identify suitable resistance genes is a major challenge in this approach. 

In addition, the mechanism of plant defence is also a complex process to understand. Recent 

advances in genomics and bioinformatics studies, however, have helped to solve those issues.  

In this study, three main experiments were conducted to achieve the objectives. The 

first two experiments are associated with aphid and BPH feeding behaviour. A 

transcriptomics approach was used in the third experiment to identify candidate resistance 

genes through gene expression level.  A combination of morphological and molecular data 

has produced significantly useful information to support the findings. 

 

6.1 Bird cherry-oat aphid (Rhopalisphum padi) feeding and growth  

     performance on rice 

EPG is one common method used in much research for the detailed monitoring of feeding 

behaviour studies focussing on phloem feeding insect types.  So far, this is the first study to 
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investigate the feeding behaviour of aphids using a DC-EPG-based approach on rice.  Interest 

has previouly focussed more on other cereal crops such as wheat. In this study, bird cherry-

oat aphid (Rhopalisphum padi) was chosen because it is the closest local aphid which has 

previously been associated with rice. The results from this preliminary study, however, have 

revealed that bird cherry-oat aphid do not prefer rice as a primary host. This EPG study 

confirmed that the total duration aphids are able to ingest phloem sap (E2) even on a young 

plant is only 19 % of the total duration of 6 h. It is far lower than on several varieties of wheat 

with more than 49 % of E2 duration (Givovich and Niemer., 1991; Slesak et al., 2001). This 

duration reduces sharply to only 1.5 % on mature plants. Therefore, this process affects their 

survival rate. It was found that they can survive only 13 days on average, which is still lower 

compared with the 21.4 days (Taheri and Restegari, 2010) and 25.13 days (De Celis et al., 

1997) on wheat plants. During that time, only 3.4 nymphs were produced.  The performance 

on other rice varieties did not have any effect because it was not significant when tested.  

This phenomenon caused difficulty generating aphid culture on rice for further study. 

 

6.2 Variation of resistance level rice varieties based on BPH feeding  

       performance 

BPH is a small brownish insect classified as one of the most serious pests of rice. Asian 

countries are the places most affected, where outbreaks are frequently found and the heaviest 

losses of yield have been reported (Park et al., 2007). Consequently, this insect was 

significantly more interesting than aphids. Another EPG test with the support of a honeydew 

clock experiment was conducted to study its feeding behaviour across several rice varieties 

from the collection.  The results show that the DC-EPG-based characterizations found are  

more or less consistent with those previously described (Kimmins, 1989; Lösel and 
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Goodman, 1993; Seo et al., 2009), especially for character N4a (sieve element ingestion) and 

N4b (phloem ingestion) waveforms. Interestingly, two other new waveforms which have 

never been highlighted before in rice studies are also included in these characterizations. The 

first waveform, N6 was classified as ‗derailed stylet mechanic‘ and was associated with stylet 

penetration difficulty, while the second waveform, N7 was correlated with cell penetration 

activities close to a potential drop in aphids.  

Like aphids, BPH is in the same phloem feeding group that secretes soluble saliva 

(watery) and salivary sheath (gel) during sap sucking (Cooper et al., 2010; Konishi et al., 

2009).  Watery saliva contains numerous digestion and oxidation enzymes that seem to play 

roles in establishing and maintaining feeding sites by assisting stylet penetration, suppressing 

plant defences and/or inducing changes in plant physiology that benefit their feeding and 

nutrition (Miles, 1999; Will et al., 2007). The difference between aphids and BPH is reported 

as being the way they use the salivary sheath to enter the sieve element region. Spiller (1990) 

claims that in aphids, only the stylets go through into the cell and the salivary sheath stops at 

the sieve element cell wall. In BPH, the maxillary stylets are accompanied by sheath saliva 

which enters the sieve element during sap sucking. This sheath saliva can easily be seen in 

phloem sap even after the BPH ceases feeding (Sogawa, 1982). This mechanism could result 

in blockage of the vascular bundle and interference with the translocation of nutrients 

especially if it involves greater amounts of sheath saliva inside the phloem sap (Wang et al., 

2004).  Therefore, this mode of feeding can cause more destruction to the plant tissue than 

with aphids. It could also explain why the waveforms of BPH and aphids are different as 

shown in figure 23. 
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Figure 23 Comparison of waveform patterns between aphid and BPH. E1; Sieve element 
salvation for aphid, N4-a; Seive element for BPH, E2; Phloem ingestion for aphid, N4-b; 
Phloem ingestion for BPH. 
 

So far, this is also the first experiment which has successfully screened resistance to 

BPH using the EPG method on the largest accession number with 12 rice varieties. The 

results confirm that the EPG system is applicable to mass screen study. Based on these EPG 

parameters, the twelve varieties have been separated into three groups using the Ward cluster 

analysis. The highly resistant group has a very low percentage of N4b duration of less than 3 

percent. This group includes Rathu heenathi, Babawee, IR64 and F1 variety. They are 

consistent with previous studies which also confirmed that this group contains certain 

resistant genes. Bph1 gene was found in IR64 (Cohen et al., 1997), bph4 in Babawee, and 

Bph3 in Rathu Heenathi (Nemoto et al., 1989; Khush  et al., 1985) and the F1 (from the cross 

between Rathu Heenathi and TN1). In contrast, the susceptible group has the highest N4b 

duration with over 73 percent overall, and it is represented by TN1, Azucena, Nipponbare 
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and IR694. The other group containing variety MR219, MR232, Fujisaka and IR75 was 

classified as moderate and was close to resistance character. A long history of breeding could 

have contributed to this character, where the resistance genes have an ancestor donor such as 

in MR219 and MR232 (Alias et al., 2001).  

This study has demonstrated that BPH has the ability to locate its stylet in sieve 

elements even in resistance varieties. The difference begins at phloem sap ingestion because 

it retreats to proceed, thus providing a clue that the chemical content in phloem sap may play 

some role in the defence mechanism.  Silicic, oxalic (Chen, 2009; Yoshihara et al., 1979a; 

Yoshihara et al., 1979b; Yoshihara et al., 1980) and phenolic acids (Chen., 2009; Fisk., 

1980), sterols (Shigematsu et al., 1982) and apigenin-C-glycosides (Stevenson et al., 1996; 

Grayer et al., 1994) are among the chemicals inside the phloem, which have been reported to 

contribute to the resistance character to BPH. In addition, the total amount of essential amino 

acids could also influence BPH feeding performance (Sogawa, 1982), perhaps representing 

phago-stimulatory cues. The real process in detail, however, is very complex and needs 

further explanation. 

 

6.3 Gene expression study 

Microarray is one of the most common methods these days which could help answer many 

questions in relation to biological systems. The ability to detect and analyse the expression of 

thousands of genes simultaneously in one single analysis has made microarray a unique 

approach.  In addition, with the assistance of genomic information, its application has become 

more widespread and benefitted many areas of study. As a plant breeder, the main objective 

is not only to identify resistance candidate genes to BPH in rice plants, but at the same time 

to also try to understand the real mechanism behind the scenes. 
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 The uniqueness of this experiment was that the samples were not subjected to BPH 

infection as commonly practised previously. This study focussed only on constitutive genes 

which are more durable, with a wide coverage and stable in the long term. Constitutive 

character did not change easily (Karban and Baldwin, 1997) and needed specific conditions 

or induction to activate as in inducible genes (Ahman, 2009). The microarray analysis results 

showed that 239 genes from 41,000 genes (Rice Agilent gene chips) have a significantly 

different expression level between the resistance and susceptible groups. Another 219 genes 

were found to have a significantly different expression level between the moderate resistance 

and susceptible groups. There was no significance found when the resistance and moderate 

resistance groups were compared. Interestingly, these results are almost the same as those 

produced by the EPG experiment which provided full evidence of the reliability of the 

morphological and molecular data. These data also support the previous claim that moderate 

and resistance varieties could have a close genetic relationship due to the long history of the 

breeding process as in MR219 and MR232 (Alias et al., 2001).  

Despite the great potential of this microarray experiment, it is important to keep in 

mind that further analysis is needed to support the efficiency which would provide useful for 

the establishment of the hypotheses. In addition, 239 genes are still a large number and need 

to be summarized followed the interest of this study.  Therefore, the following three different 

approaches were conducted in this study. 

Simple linear correlation analysis was used to connect information between 

morphological and molecular data. This first approach allowed for the identification of the 

relationship between gene expressions and BPH feeding behaviour. The results finally 

separated 239 candidate genes into two big groups. The genes with a high positive correlation 

expression with N4-b (phloem ingestion) were classified as susceptible varieties. In contrast, 

high negative correlations with N4-b were grouped as resistance. Ontology (GO) analysis 



Chapter 6 
 

 138 

through the web-based tool EasyGO was used in the second approach. This method helped to 

describe and understand better which genes contribute to the defence function.  Interestingly, 

the ‗response to biotic stimulus‘ (GO: 0009607) category, which is related to the main 

objective of this study was found to have the highest significant level (FDR value=0.00015) 

with 28 genes.  Generally, gene coding for protein kinase, nutrient transporter and peroxidase 

were clearly the main products and appeared several times in the annotation description list. 

All these genes are highly positive correlated with N4-b duration. 

The final approach was more specific because it referred directly to the known bph 

genes based on their reference markers. All 239 candidate genes were screened using 

GRAMENE web to identify their locus position within the known reference BPH gene 

markers. As a result, only 7 genes were found matched within the known bph markers 

regions identified by Sanju et al. (2010) (RM261, RM185, RM17/RM12), Jairin et al. (2007) 

(RM19291, RG1), Sun et al. (2005) (RM484) and Park et al. (2008) (RM1103). Out of the 

seven, three genes belong to Rathu Heenathi (Bph3, Qbph10, Bph15), which indicates that 

genes from Rathu Heenathi are likely to contribute significantly to the differentiation between 

the resistance and susceptible groups. It is clear evidence that Rathu Heenathi is a good 

parent due to the heritable resistance character in its progeny, F1. This variety has been used 

extensively in rice breeding programmes in Asia since 1980 (Khush et al., 1985; Jairin et al., 

2007). Gene Os10g0539900 encoding hexose transporter is the only gene which has been 

found in all 3 approaches. This could indicate that this gene is the strongest constitutive 

candidate gene associated with BPH resistance character. 
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6.4 Different constitutive gene expression as a strategy to prevent BPH  

      attack 

The successful defence against herbivores depends greatly on the ability of plants to protect 

themselves at an early stage (Maffei et al., 2007) and usually refers to constitutive characters 

as they appear in the absence of the attacker (Bodenhausen, 2007). Their strategy is to create 

a border around the target area, the place where the herbivore starts to attack.  The success of 

this mechanism is highly correlated with the insect feeding mode. BPH is classified as a 

phloem feeding insect which is highly specialized in its mode of feeding and presents a 

unique stress on plant fitness (Douglas, 2006). It is able to stay feeding for a very long period 

when the feeding site is well established (Thompson, 2006). In this discussion, several 

candidate constitutive defence genes were divided into several categories based on their 

functions and roles. 

 

6.4.1 Genes involved in attraction factors  

Results from the correlation analysis show that many of the candidate genes have a positive 

relationship with susceptible characters. This clearly reveals that those genes with high 

expression may create a special constitutive character in susceptible varieties which may 

attract the attention of BPH feeding activities.  One of the main factors is plants with higher 

nutritional contents because BPH like other herbivores requires this nutrient for its growth.  

Nutrient transporters are among those important genes which have been reported to have an 

influence on nutrient contents and their concentration in plants (Kreuzwieser and Gessler, 

2010).  There were seven candidate genes under GO sub-class ‗response to biotic stimulus‘ 

which were found annotated with a transporter function. Among them was gene encoding 

hexose transporter (STP1), which is commonly found expressed in sink organs such as roots 
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and green fruits (Gear et al., 2000; Weschke et al., 2003).  This gene is involved in the uptake 

of glucose or fructose (Sauer and Stadler., 1993; Kühn et al., 2003; Baxter et al., 2005; 

Fridman et al., 2004; Frankel et al., 2007). The other two genes, monosaccharide transporter 

1 and amino acid permease (AAP3) also have a similar function in sink tissues in delivering 

or distributing nutrients and acid amino to many parts of the plant (Okumoto et al., 2004; 

Sauer and Stasler, 1993). This process provides strong evidence that the transporter genes 

such as hexose, monosaccharide transporter 1 and amino acid permease (AAP3) with higher 

expression could contain a higher nutrient and sugar content. Several reports have also 

claimed that acid amino is able to act as phagostimulants (Leckstein and Llewellyn, 1974) 

and play roles in host selection by eliciting insect feeding and oviposition (Bernays and 

Chapman, 1994; Chiozza et al., 2010).  These processes clearly facilitate BPH feeding on 

susceptible rice varieties that have high nutrient transporter expression genes. A high positive 

correlation value for phloem ingestion and time to first phloem ingestion supports this 

hypothesis.    

 

6.4.2 Non attraction factors (toxification and detoxification) 

The reverse effect on BPH feeding behaviour appeared when it retreated to locate its stylet 

from the phloem region especially in resistance varieties as shown in the EPG experiment. 

This could have been caused by toxic compounds which have been suggested play a 

significant role in plant defence against herbivores especially related to their ingestion 

process (Majorczyk, 2009). In this study based on the present gene annotation, there were no 

genes that were found to act directly on this constitutive defence mechanism. Generally, the 

genes found to be associated with this toxic character responded positively to the BPH 

feeding performance such as cytochrome p450s and glutathione S-transferase. Therefore, the 

results suggest that those genes with high expression act as detoxification rather than 
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toxification, which can help BPH feed better. This hypothesis could be true because the insect 

has been reported able to manipulate glutathione S-transferase and neutralize the toxic effects 

caused by eletrophilic substrates (Grant and Matsumura, 1989; Mittapalli et al., 2007) 

Gene cytochrome p450s and glutathione S-transferase are also often claimed to 

influence the secondary metabolite process which could generate a defence mechanism. 

Therefore, a higher constitutive level may generate a lower level and/or a faster turnover of 

secondary metabolite that could interfere with BPH feeding. These genes also have large 

gene families with diverse functions as evidenced by the observation that one of the genes 

showed the opposite response to BPH feeding behaviour. 

There are several other genes reported involved in this toxification process. Among 

them are gene encoding for B-glucosidae (Poulton and Li, 1994), amygdalin hydrolase 

isoform (Zagrobelny et al., 2004) and peroxidases (Felton et al., 1989, 1992; Dowd, 1994; 

Dowd and Norton, 1995). It has been claimed that many of these genes produce toxicity 

compounds that cause the plant to taste bitter and less nutritious to the insect (Felton et al., 

1989, 1992; Dowd, 1994; Dowd and Norton, 1995; Zagrobelny et al., 2004). The levels of 

gene expression, however, show a reverse pattern. The higher expression level was associated 

with the plant being more susceptible to BPH attack.  The insect may once again exploit 

specific chemicals such as cytochrome p450s and glutathione S-transferase to neutralize 

toxicity and allow it to feed, but further studies are needed to test this hypothesis.    

 

6.4.3 Genes involved in defence signals  

Salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) are major components for 

hormones involved in defence signalling networks and often refer to inducible defence 

characters (Glazebrook, 2001; Kessler and Baldwin, 2002; Pieterse and Dicke, 2007; 

Reymond and Farmer, 1998; Thomma et al., 2001; Van Oosten et al., 2008). These hormones 
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are able to activate several defence mechanisms such as in producing plant secondary 

metabolites, for example plant volatilise, or in repairing wounded areas as a response to 

pathogen or herbivorous attacks. There are several genes in the candidate list found to 

support or associated with this defence process.  Gene coding for acid carboxyl 

methyltransferase (MeJA), fatty acid alpha-oxidase (Alpha-DOX2) and 12-oxo-phytodienoic 

acid reductases (OPRs) are major compounds in the JA biosysnthesis process (Tao et al., 

2003).   

Acid carboxyl methyltransferase has been claimed to be able to induce an increase in 

the number of direct chemical defences of plants (such as nicotine and proteinase inhibitors) 

resulting in a significant improvement in plant resistance to herbivore damage (Tao et al., 

2003). Consequently, acid carboxyl methyltransferase activity is also found to increase 

rapidly following an herbivorous attack, and these signal molecules activate the plant 

defence-related genes to produce various chemical defences (Tao et al., 2003; Xu et al., 2006; 

Kwon et al., 2009).  Alpha-DOX2 has also been reported to behave in the same way in 

increasing the expression after BPH attack in both susceptible and resistant rice plants (Wei 

et al., 2009). Interestingly, both genes were found associated with the bph2 gene at 

chromosome 12 (Ren et al., 2004).  

 Another group of genes which has been reported involved in defence signals is that 

with protein kinase annotation (Ding et al., 2009). These genes are claimed to play  a central 

role in signalling during pathogen recognition (Romeis, 2001) and subsequently activate 

downstream proteins through phosphorylation which eventually lead to a defence response, 

most often in the form of a hypersensitive response (HR) (Eck, 2007). Protein kinases are one 

of the largest gene families in plants. In rice, protein kinases represent around 1,400 proteins 

in the rice genome and have a diverse range of functions including some in defence signals 

(Ding et al., 2009). Putative protein kinases also represent the majority of genes annotated in 
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the candidate list, and several of them have high correlation values above r=0.8 with phloem 

ingestion parameter. This indicates that this type of gene may play a significant role in plant 

defence systems against insects such as BPH.  Wei et al. (2009) have confirmed that 

expression of protein kinases increases especially in the susceptible lines after BPH 

treatment, which is similar to what this study found in certain kinases genes even without the 

appearance of BPH itself. Protein kinases have been shown to regulate aphid resistance 

signalling pathways in tomatoes and an increased expression of a protein kinase correlated 

with resistance to BPH in rice (Wei et al., 2009) 

 Protein kinases have also been reported to interact directly with a pathogen‘s 

avirulence resistance genes (R genes), and encoding for nucleotide-binding leucine-rich-

repeat (NB-LRR) protein (Eck, 2007).  There are approximately over 400 NB-LRR encoding 

genes in the Oryza sativa genome (Meyer et., 2003; Monosi et al., 2004; McHale et al., 

2006), mostly associated with phatogen infection (McHale et al., 2006). These genes play the 

role of receptors in signal transduction pathways that are a triggered resistance response in a 

series of plant defence responses, such as activation of an oxidative burst, calcium and ion 

fluxes, mitogen-associated protein kinase cascade, induction of pathogenesis-related genes 

and the hypersensitive response (Belkhadir et al., 2004; Hammond and Parker, 2003; 

Nimchuk et al., 2003; Pedley and Martin, 2005; McHale et al., 2006; Thirumalaiandi et al., 

2008).  Several studies have already proved that NB-LRR genes are involved in initiating a 

signal transduction for plant defence against bacteria, fungi, viruses, nematodes and aphids 

(Timmerman et al., 2000; Thirumalaiandi et al., 2008).  This study found that high expression 

of NB-LRR in resistant varieties has been associated with a reduction in the total time that 

BPH ingest the phloem. Therefore, the results reveal that this gene may have a direct effect 

on BPH feeding ability.  
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The classic example gene associated with NB-LRR is Bph14, the only successful gene 

being cloned at the present time (Du et al., 2009). Bph14, however, encodes a more specific 

gene annotation with a coiled-coil, nucleotide-binding and leucine-rich repeat (CC-NB-LRR) 

protein. Although the 44k Agilent genechip contains CC-NB-LRR gene annotation, it did not 

appear in the candidate list because it is a unique gene, specific to Bph14, which the gene 

derives from the wild rice variety, O. Officinalis (Li et al., 2011). NB-LRR gene in this study 

is probably a general constitutive resistance gene from the three resistance varieties, IR64 

(Bph1), Rathu heenathi (Bph3) and Babawe (bph4).   

 

6.4.4 Genes involved in cell walls  

The reinforcement of cell walls is important in plant defence mechanism because they are the 

first place where the infection from pathogens or herbivores begins. Plants use complex 

compounds such as cellulose and lignin to produce physical structures such as thick cell walls 

(Boudet, 1998), wax, thorns, or sticky resin (Bodenhausen, 2007) to prevent and create a 

physical barrier against infection.  Gene encoding for peroxidases is found involved in 

several important roles in the process of cell wall lignification such as cell wall enhancement 

and the deposition of cell wall appositions, both of which can involve the polymerization of 

lignin or suberin (Hammerschmidt and Kuc, 1982; Espelie et al., 1986) and the cross-linking 

of wall glycoproteins or polysaccharides (Bradley et al., 1992; Fry, 1986; Iiyama et al., 

1994), while gene encoding for the beta-glucosidase enzyme plays a support role in the 

lignification process (Whetton and Sederoff, 1995).   

Generally, plants also have other defence mechanisms to support the efficiency of 

lignifications of cell walls based on the wounding response for repairing or recovering lesions 

(Herrmann, 1995). There are several genes in the candidate list which were found involved in 

this mechanism. For example, gene encoding for fatty acid alpha-oxidase mRNA acts in  the 
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following:  repairing stress-induced damage in membranes and regulating the fluidity of 

membranes and permeability to toxic ions (Holmberg and Bulow, 1998; Way et al., 2005); 

gene encoding metallothionein-like protein (OsMT) protecting against intracellular oxidative 

damage (Zhou et al., 2006); gene encoding zinc  finger involving controlling the induction of 

cell death (Eulgem et al., 1999), and putative alpha/beta  hydrolase  involved in programme 

cell death (Mishra et al., 2010). All these, however, had a high expression in susceptible 

varieties except for alpha/beta hydrolase. To date, there has been very limited information 

associating alpha/beta with defence mechanisms.   

 

6.6 Limitations and future work  

The results presented in this experiment are basically based on the present rice genome 

annotation data base. More than 38% from all on the candidate gene list are still without a 

known description function, meaning that nobody has assigned a function to those genes in 

the genome database yet. However, as knowledge of this genomic study is being rapidly 

updated based on present trends especially into rice as a model plant for cereal crops, so it 

will help to develop and discover many opportunities in the future. For the time being, all 

these unknown functions of genes remain potential areas to be explored later.   

In this study, all 12 varieties have been chosen because of known resistant/susceptible 

characteristics, but some of them without any such prior knowledge. After the EPG 

experiment was conducted, these 12 varieties have been separated into three categories. 

Coincidentally, the two varieties in the susceptible group, namely Azucaena and Nipponbare 

are in Japonica subspecies. In contrast, all 4 varieties in the resistant group are in Indica 

subspecies.  Therefore, the effect of different gene blocks existing between those subspecies 

could also be associated with the 239 candidate genes from the microarray analysis. Since the 

more important factor in this study‘s objectives is BPH resistance, the influence from 



Chapter 6 
 

 146 

subspecies group of Japonica can be dismissed. In addition, this is the reason why the three 

approaches, correlation, gene ontology and QTL mapping information were introduced in 

order to help validate the resistance candidate genes. 

The current plan in the near future is to validate these microarray results using an RT-

PCR experiment on the selected candidate genes. This validation process could not be done 

during this study due to the difficulty faced in identifying a suitable housekeeping gene as a 

control treatment which could represent all the 12 rice varieties in the experiment. Four 

housekeeping genes suggested by Jain et al. (2006), namely Actin 11 (AK100267), 

Eukaryotic elongation factor 1-alpha (AK061464), Ubiquitin 5 (AK061988) and 18S 

ribosomal RNA (AK059783) were tested; however, none of them were succesful.  There are 

many factors which could have influenced the results especially those involved in technical 

areas such as RNA quality, RNA volume or concentration, primer selection, the modification 

of the PCR machine, including time, temperature and the number of cycles. These problems 

become harder when they involve a large variety of plants as in this study and could take a 

long period of time to solve.  

In this thesis, a large number of genes that are significantly involved in differentiating 

between resistances and are susceptible to brown plant hopper based on expression value has 

been discoverd. This information could both benefit and provide many opportunities for the 

exploration of gene functions in future research. The transcriptomics results, however, can 

only make it easier to create these hypotheses. Therefore, the hypotheses proposed in this 

study should be tested to confirm the contribution of those candidate genes in constitutive 

defence mechanisms against BPH.  It is strongly suggested that the three genes‘coding for 

hexose transporter (Os10g0539900), metallothionein-like protein (Os12g0571100) and zinc 

finger (Os12g0631200), which were found through the fine mapping method with known 

BPH markers, should be the first to enter the cloning process for a functional genomic test.  
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These three selected genes have been classified as the strongest candidate genes based on 

their close association with known BPH gene markers and BPH feeding ability.  To date, 

only Bph14 has successfully been cloned (Du et al., 2009), which has been the inspiration to 

add another collection of BPH resistance genes for cloning for breeding purposes in the 

future.  

 Another area of research which could receive special consideration in future work is 

the study of the variation of nutritional value of the phloem sap in the twelve rice varieties. 

This information could be important to support the results of gene expression studies and 

could suggest that high nutrient content in the phloem sap could play a major role as a 

resistance indicator or attractor.  The end result could give a better understanding of the 

relationship between gene expression values, BPH feeding behavior and phloem sap quality. 

The information of this chemical analysis could thefore support both present and future 

experiments.  Phloem sap collection can be achieved through the stylectomy technique, the 

method that is commonly used in this area of study. 

 

   

 



References 
 

 148 

LIST OF REFERENCES 
 
 
Agrawal, A.A., Gorski, P.M. and Tallamy D.W. (1999) Polymorphism in plant defence  

against herbivory: constitutive and induced resistance in Cucumis sativus. Journal of 
Chemical Ecology 25:2285–2304 

 
Aharoni, A. and Vorst, O. (2001) DNA microarrays for functional plant genomics. Plant  

Molecular Biology 48: 99–118 
 
Ahman, I., Tuvesson, S. and Johansson, M. (2000) Does Indole alkaloid Gramine confer  

resistance in barley to aphid Rhopalosiphum padi? Journal of Chemical Ecology, vol. 
26, no. 1 

 
Ahman, I. (2009) Breeding for inducible resistance against insects – applied plant breeding  

aspects. IOBC-WPRS bulletin 44:121-130 
 
Akashi, K., Nishimura, N., Ishida, Y. and Yokota, A. (2004) Potent hydroxyl radical- 

scavenging activity of drought-induced type-2 metallothionein in wild watermelon. 
Biochem. Biophys. Res. Com. 323:72-78 

 
Akinlosotu, T.A. (1977) Outbreak of the rusty plum aphid, Hysteroneura setariae Th.  

(Homoptera, Aphididae), on rice (Oryza sativa L.) in Ibadan, Nigeria. Ghana.  J. 
Agric.Sci. 10: 149-150 

 
Alam, S.N. and Cohen, M.B. (1998) Detection and analysis of QTLs for resistance to the  

brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor 
Appl Genet. 97:1370–1379 

 
Alexandratos, N., Bruinsma, J. and Boedeker, G. (2006) World Agriculture: Towards  

2030/2050. Interim Report. Prospects for Food, Nutrition, Agriculture and Major 
Commodity Groups. Global Perspective Studies Unit, Food and Agriculture 
Organization of the United Nations 

 
Alias, I. Mohamad, H., Othman, O., Saad, A. and Habibuddin, H. (2001) Pembentukan  

dan prestasi varieti padi baru MR219. Malaysia Agriculture Research and 
Development Institute pp.283-293 

 
Allemeersch, J. (2006) Statistical analysis of microarray data: applications in platform  

comparison, compendium data, and array CGH. Ph.D.Thesis. Electrical engineering,  
Katholieke Universitiet, Leuven, Belgium 

 
Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., et al. (2000) Gene  

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat 
Genet. 25: 25–29 

 
 



References 
 

 149 

Athwal, D.S., Pathak, M.D., Bacalangco, E. and Pura, C. (1971) Genetics of resistance to  
brown planthoppers and green leaf hoppers in Oryza sativa L. Crop Sci. 11: 747-750 

 
Backus, E.A., Hunter, W.B., (1989) Comparison of feeding behavior of the potato  

leafhopper Empoasca fabae (Homoptera: Cicadellidae) on alfalfa and broad bean 
leaves. Environmental Entomology 18, 473-503 

 
Bahlman, L., Govender, P. and Botha A.M (2003) Leaf epicuticular wax ultrastucture and  

trichomes presences on Russian wheat aphid (Diuraphis noxia) resistant and 
susceptible leaves, African Entomology 11:59-64 

 
Baldwin, D., Crane, V. and Rice, D. (1999) A comparison of gel-based, nylon filter and  

microarray techniques to detect differential RNA expression in plants. Curr. Opin. 
Plant Biol. 2:96–103 

 
Baxter, C.J., Carrari, F., Bauke, A., Overy, S., Hill, S.A., Quick, P.W., Fernie, A.R. and  

Sweetlove, L.J. (2005) Fruit carbohydrate metabolism in an introgression line of 
tomato with increased fruit soluble solids. Plant Cell Physiol.  46:425–437 

 
Becker, W. and Apel, K. (1992) Isolation and characterization of a cDNA clone encoding a  

novel jasmonate-induced protein of barley (Hordeum vulgare L.). Plant Mol. Biol. 
19:1065–67 

 
Belkhadir, Y., Subramaniam, R. and Dangl, J.L. (2004) Plant disease resistance protein  

signaling: NBS-LRR proteins and their partners. CurrOpin Plant Biol. 7:391-399 
 
Bentur, J.S. and Viraktamath, B.C. (2008) Rice planthoppers strike back. Current Science  

vol 95, no. 4:441-443 
 
Bernays, E.A. and Chapman R.F. (1994) Host-plant selection by phytophagous insects,  

Chapman & Hall, New York 
 
Blackman, R. L. and Eastop, V.F. (1984) Aphids on the world‘s crops: An identification 

guide. John Wiley and Sons, Chichester, UK  
 
Bodenhausen, N. (2007) Arabidopsis thaliana response to insect feeding: new components  

controlling defence gene expression and plant resistance. Ph.D Thesis. Université de 
Lausanne, Switzerland 

 
Boudet, A.M. (2000) Lignins and lignification: Selected issues. Plant Physiol. Biochem. 38  

(1/2): 81−96 
 
Bradley, D.J., Kjellbom, P. and Lamb, C.J. (1992) Elicitor and wound-induced oxidative  

cross-linking of  a  proline-rich  plant  cell  wall  protein: a novel, rapid defence 
response. Cell 70: 21-30 

 
Brar, D.S., Virk, P.S., Jena, K.K. and Khush, G.S. (2009) Breeding for resistance to  

planthoppers in rice. Planthopper: new threats to the sustainability of intensive rice 
production systems in Asia. IRRI: 401–27 



References 
 

 150 

 
Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., et al. (2001).  

Minimum information about a microarray experiment (MIAME)—toward standards  
for microarray data. Nature Genetics 29:365 – 371 

 
Bush, D.R. (1993) Proton-coupled sugar and amino acid transporters in plants. Annu. Rev. 

Plant Physiol. Plant Mol. Biol. 44: 513–542 
 
Bϋttner, M. and Sauer, N. (2000) Review: Monosaccharide transporters in plants: structure, 

function and physiology. Biochimica et Biophysica Acta 1465: 263-274 
 
Bϋttner, M., Truernit, E., Baier, K., Scholz-Starke, J., Sontheim, M., Lauterbach, C., 

Huss, V.A.R. and Sauer, N. (2000) AtSTP3, a green leaf-specific, low affinity 
monosaccharide-H+ symporter of Arabidopsis thaliana. Plant, Cell Environ. 23:175–
184 

 
Calatayud, P.A., Rahbe, Y., Tjallingii, W.F., Tertuliano, M., Ru, B.l., Le Ru, B., (1994) 

Electrically recorded feeding behaviour of cassava mealybug on host and non-host 
plants. Entomologia Experimentalis et Applicata 72, 219-232 

 
Capinera, J. L. (2004) Encyclopedia of Entomology. New York: Kluwer Academic     
 
Carter, N., McLean, I.F.G., Watt, A.D. and Dixon, A.F.G. (1980) Cereal aphids:  a case 

study and review. In: Advances in Applied Biology, (ed). TH Coaker, pp. 271–348. 
New York: Academic 

 
Catindig, J.L.A., Arida, G.S., Baehaki, S.E., Bentur, J.S., Cuong, L.Q., Norowi, M., 

Rattanakarn, W., Sriratanasak, W., Xia, J. and Lu, Z. (2009) Situation of 
planthoppers in Asia. In Planthoppers: New Threats to the Sustainability of Intensive 
Rice Production Systems in Asia, pp. 191–220. Eds K.L. Heong and B. Hardy. Los 
Banos, Philippines: International Rice Research Institute 

 
Chang, T.T. (1976) The origin, evolution, cultivation, dissemination and diversification of 

Asian and African rices. Euphytica 25(1): 425-441 
 
Chaudhry, B., Mueller-Uri, F., Cameron- Mills, V., Gough, S., Simpson, D., et al. (1994) 

The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-
inactivating Protein. Plant J. 6:815–24 

 
Chen, H. Y. (2009)  Variation in planthopper-rice interactions: possible interactions among 

three species? In Planthoppers: New Threats to the Sustainability of Intensive Rice 
Production Systems in Asia, pp. 315-326. Eds K.L. Heong and B. Hardy. Los Banos, 
Philippines: International Rice Research Institute 

 
Chen, S.X., Petersen, B.L., Olsen, C.E., Schulz, A. and Halkier, B.A. (2001) Long-

distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol. 
vol.127:194–201 

 



References 
 

 151 

Chester, K. (1933) The problem of acquired physiological immunity in plants. Quarterly 
Rev. Biol. 8:275-324 

 
Chevalier, D. and Walker, J.C. (2005) Functional genomics of protein kinases in plants. 

Briefings in Functional Genomic and Proteomics vol.3 no 4:362–371 
 
Chiozza, M., O’Neal, M. and MacIntosh, G. (2010) Constitutive and induced differential 

accumulation of amino acid in leaves of susceptible and resistant soybean plants in 
response to the soybean aphid (Hemiptera: Aphididae). Environmental Entomology 
39, 3:856-864 

 
Choi, D., Bostock, R.M., Avdiushko, S. and Hildebrand, D.F. (1994) Lipid-derived signals 

that discriminate wound- and pathogen-responsive isoprenoid pathways in plants: 
methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-
3-methylglutaryl-coenzyme A reductase genes antimicrobial isoprenoids in Solanum 
tuberosum L‘. Proc. Natl. Acad. Sci. USA. 91:2329–33 

 
Chu, T.T., Fink, M.Y., Mong, J.A., John, G., Auger, A.P., Ge, Y. and Sealfon S.C.  

(2007) Effective use of microarrays in neuroendocrine research. J Neuroendocrinol 
vol.19 no.3:145-161 

 
Cobbett, C. and Goldsbrough, P. (2002) Phytochelatins and metallothioneins: roles in 

heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53:159-182 
 
Cohen, M.B., Alam, S.N., Medina, E.B. and Bernal, C.C. (1997) Brown planthopper, 

Nilaparvata lugens, resistance in rice cultivar IR64: mechanism and role in successful 
N-lugens management in Central Luzon, Philippines‘. Entomologia Experimentalis Et 
Applicata 85: 221-229 

 
Corbesier, L., Havelange, A., Lejeune, P., Bernier, G. and Perilleux, C. (2001) N content 

of phloem and xylem exudates during the transition to flowering in Sinapis alba and 
Arabidopsis thaliana. Plant, Cell and Environment 24: 367–375 

 
Cooper, W., Dillwith, J.W. and Puterka G.J (2010) Physiological Ecology: Salivary 

Proteins of Russian Wheat Aphid (Hemiptera: Aphididae). Environ. Entomol. 39(1): 
223-231 

 
Creelman, R.A., Tierney, M. L. and Mullet, J.E. (1992) Jasmonic acid/methyl jasmonate 

accumulate in wounded soybean hypocotyls and modulate wound gene expression. 
Proc. Natl. Acad. Sci. USA. vol.89:4938–41 

 
Creelman, R.A. and Mullet, J. E. (1997) Biosynthesis and action of jasmonate in plants. 

Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–81 
 
Dale, D. (1994) Insect pests of the rice plant—their biology and ecology. Ref. 52:364–85 
 
 
 



References 
 

 152 

Daniels, M., Bale, J.S., Newbury, H.J., Lind, R.J. and Pritchard, J. (2009) A sublethal 
dose of thiamethoxam causes a reduction in xylem feeding by the bird cherry-oat 
aphid (Rhopalosiphum padi), which is associated with dehydration and reduced 
performance. Journal of Insect Physiology  55:758-765 

 
Davenport, R. (2002) Glutamate receptors in plants, Ann. Bot. 90:549-557 
 
De Celis, V.R., Gassen, D., Valente, V.L. and De Oliveira, A.K. (1997) Longevity, 

fecundity and embryogenesis in Brazilian aphids. Pesquisa agropecuaria brasileira 
32(2):137-146 

 
Delhaize, E., Ryan, P. R., Hebb, D. M., Yamamoto, Y., Sasaki, T. and Matsumoto, H. 

(2004) Engineering high-level aluminium tolerance in barley with the ALMT1 gene. 
Proc. Natl. Acad. Sci. 101:15249-15254 

 
Demidchik, V. and Maathuis, F.J.M. (2007) Physiological roles of nonselective cation 

channels in plants: from salt stress to signalling and development, New Phytol. 
175:387-404 

Devadas, S.K., Enyedi, A. and Raina, R. (2002) The Arabidopsis hrl1 mutation reveals 
novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell 
death and defence against pathogens. The Plant Journal 30:467–80 

 
Deverall, B.J. (1997) Disease control through natural plant defences. International Turfgrass 

Society Research Journal vol. 8 
 
De Vos, M., Van Oosten, V.R., Van Poecke, R.M.P., Van Pelt, J.A., Pozo M.J., et al. 

(2005) Signal signature and transcriptome changes of Arabidopsis during pathogen 
and insect attack. Mol. Plant-Microbe Interact. 18:923–37 

 
Dicke, M. and Van Poecke, R.M.P. (2002) Signaling in plant-insect interactions: Signal 

transduction in direct and indirect plant defence In: Plant Signal Transduction: 
Frontiers in Molecular Biology pp.289-316 

 
Dinant, S., Bonnemain, J., Girousse, C. And Kehr, J. (2010) Phloem sap intricacy and 

interplay with aphid feeding. Comptes Rendus Biologies Volume: 333, Issue: 6-7, 
pp.504-515 

 
Ding, X., Richter, T., Chen, M., Fujii, M., Seo, Y.S. et al. (2009) A Rice Kinase-Protein 

Interaction Map. Plant Physiology vol. 149:1478–1492 
 
Dixon, A.F.G (1985) Aphid Ecology. Blackie, Glasgow 
 
Djamin, A. and Pathak, M.D (1967) Role of silica in resistance to asiatic rice borer, Chilo 

suppressalis Walker in rice varieties. J. Econ. Entomol. 60:347-351 
 
Doares, S.H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C.A. (1995) Salicylic acid 

inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and 
jasmonic acid. Plant Physiol. 108:1741–46 

 



References 
 

 153 

Domingo, C., Andres, F., Tharreau, D., Iglesias, D.J. and Talon, M. (2009) Constitutive 
expression of OsGH3.1 reduces auxin content and enhances defence response and 
resistance to a fungal pathogen in rice. Mol Plant Microbe Interact. 22(2):201–10 

 
Doncaster, J. P. (1956) The rice root aphid. Bull. Entomol. Res. 47: 741–747 
 
Douglas, A.E. (1993) The nutritional quality of phloem sap utilized by natural aphid 

populations. Ecological Entomology 18:31–38 
 
Douglas A.E. (2006) Phloem-sap feeding by animals: problems and solutions. Journal of 

Experimental Botany vol.57, no. 4:747–754 
 
Dowd, P.F. (1994) Enhanced maize (Zea mays L.) pericarp browning: Associations with 

insect resistance and involvement of oxidizing enzymes. J. Chem. Ecol. 20:2497-2523 
 
Dowd, P.F. and Norton, R.A. (1995) Browning-associated mechanisms of resistance to 

insects in corn callus tissue. J. Chem. Ecol. 21:583-600 
 
Dubos, C., Huggins, D., Grant, G.H., Knight, M.R. and Campbell, M.M. (2003) A role 

for glycine in the gating of plant NMDA-like receptors, Plant J. 35, pp.800-810 
 
Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., Han, B. 

and He, G. (2009) Identification and characterization of Bph14, a gene conferring 
resistance to brown planthopper in rice. PNAS   vol. 106 no. 52: 22163–22168 

 
Dupo, A.L.B. and Barrion, A.T. (2009) Taxonomy and general biology of delphacid 

planthoppers in rice agroecosystems. In Planthoppers: New Threats to the 
Sustainability of Intensive Rice Production Systems in Asia, pp. 3–155. Eds K.L. 
Heong and B. Hardy, Los Banos, Philippines: International Rice Research Institute 

 
Durrant, W.E. and Dong, X. (2004) Systemic acquired resistance. Annual Review of 

Phytopathology 42:185–209 
 
Eck, L.V. (2007) Aphid-induced transcriptional regulation in near-isogenic wheat. Faculty of 

Natural and Agricultural Science, Department Genetic University Pretoria, Pretoria 
 
Elliott, A.C. and Hynan, L.S.A. (2011) A SAS® macro implementation of a multiple 

comparison post hoc test for a Kruskal–Wallis analysis. Computer methods and 
programs in biomedicine 102: 75–80 

 
Espelie, K.E., Franceschi, V.R. and Kolattukudy, P.E. (1986) Immunocyto-chemical 

localization and time course of  appearance of  an anionic peroxidase associated with 
suberization in  wound-healing potato tuber tissue. Plant Physio. l81:487-492 

 
Eulgem, T., Rushton, P.J., Schmelzer, E., Hahlbrock, K. and Somssich, I.E. (1999) Early 

nuclear events in plant defence signalling:rapid gene activation by WRKY 
transcription factors. The EMBO Journal vol.18 no.17:4689–4699 

 



References 
 

 154 

Farmer, E.E. and Ryan, C.A. (1990) Interplant communication – airborne methyl 
jasmonate induces synthesis of proteinase inhibitors in plant leaves, Proceedings of 
the National Academy of Sciences. USA 87: 7713–7716 

 
Felton, G.W., Donato, K., Delvfcchio, R.J. and Duffy, S.S. (1989) Activation of plant 

foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid 
herbivores.  J.Chem. Ecol. 15:2667-2694 

 
Felton, G.W., Donato, K.K., Broadway, R.M. and Dliffey, S.S. (1992) Impact of oxidized 

plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, 
Spodoptera exigua. J. Insect Physiol. 38:277-285 

 
Ferry, N., Edwards, M.G., Gatehouse, J.A. and Gatehouse, A.M.R. (2004) Plant–insect 

interactions: molecular approaches to insect resistance. Current Opinion in 
Biotechnology 15:155–161 

 
Feys, B.J. and Parker, J.E. (2000) Interplay of signalling pathways in plant disease 

resistance. Trends Genet.16:449-455 
 
Fisher, D.B. (2000) Long-distance transport. In: Buchanan B, Gruissem W, Jones R, eds. 

Biochemistry and molecular biology of plants. Rockville, USA: American Society of 
Plant Physiologists pp.730–784 

 
Fisk, J. (1980) Effects of hydrogen. Entomol. Exp. Appl. 27:211-222 
 
Forslund, K., Morant, M., Jørgensen, B., Olsen, C.E., Asamizu, E., Sato, S., Tabata, S. 

and Bak, S. (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D 
and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant 
Physiol. 135:71–84 

 
Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., 

Hall, J.L. and Williams, L.E. (2003) The monosaccharide transporter gene, AtSTP4, 
and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection 
with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132:821–829 

 
Frankel, N., Nunes-Nesi, A., Balbo, I., Mazuch, J., Centeno, D., Iusem, N.D., Fernie, 

A.R. and Carrari, F. (2007) ci21A/Asr1 expression influences glucose accumulation 
in potato tubers. Plant Mol Biol. 63:719–730 

 
Fridman, E., Carrari. F., Liu, Y.S., Fernie. A.R. and Zamir, D. (2004) Zooming in on a 

quantitative trait for tomato yield using interspecific introgressions. Science 
305:1786–1789 

 
Fry, S.C. (1986) Cross-linking of matrix polymers in the growing cell walls of angiosperms. 

Annu. Rev. Plant Physiol. 37:165–186 
 
 
 



References 
 

 155 

Fujita, D., Myint, K.K.M., Matsumura, M. and Yasui, H. (2009) The genetics of host-
plant resistance to rice planthopper and leafhopper. In: Heong KL, Hardy B, editors. 
Planthoppers: new threats to the sustainability of intensive rice production systems in 
Asia.  Los Baños (Philippines): International Rice Research Institute, pp.389-400 

 
Gallagher, K. D., Kenmore, P. E. and Sogawa. K. (1994) Judicial use of insecticides deter 

planthopper outbreaks and extend the life of resistant varieties in Southeast Asian  
rice. In: R. F. Denno and J.T. Perfect (eds). Planthoppers: Their Ecology and 
Management.Chapman and Hall, New York pp.599–614 

 
Gallun, R.L. and Khush, G.S. (1980) Genetic factors affecting expression and stability of 

resistance. In: Maxwell FG, Jennings PR (eds) Breeding plants resistant to insects., 
John Wiley and Sons, New York  pp.63–85 

 
Gary, C. J., Azan, L.P. and Jocelyn, B.P. (2005) Effect of Nitrogen Fertilizer on the 

Intrinsic Rate of Increase of Hysteroneura setariae (Thomas) (Homoptera: Aphididae) 
on Rice (Oryza sativa L.). Environ. Entomol. 34(4): 938-943 

 
Gear, M.L., McPhillips, M.L., Patrick, J.W. and McCurdy, D.W. (2000) Hexose 

transporters of tomato: molecular cloning. Expression analysis and functional 
characterization. Plant Mol Biol. 44:687–697 

Geiger, D.R., and Servaites, J.C. (1994) Diurnal regulation of photosynthetic carbon 
metabolism in C-3 plants. Annual Reviews of Plant Physiology 45:235–256 

 
Ghaffar, M.B. A.B., Pritchard, J. and Ford-Lloyd, B. (2011) Brown planthopper (N. 

lugens Stal) feeding behaviour on rice germplasm as an indicator of resistance. PLoS 
One Vol: 6 iss:7 pg:e22137 

 
Gianoli, E. (1999) Within-plant distribution of Rhopalosiphum padi on wheat seedlings is 

affected by induced responses. Entomologia Experimentalis et Applicata 93(2):227-
230  

 
Gibson G. (2002) Microarrays in ecology and evolution: a preview. Molecular Ecology 
11(1): 17-24 
 
Givovich, A. and Niemeyer,  H.M. (1991) Hydroxamic acids affecting barley yellow dwarf 

virus transmission by the aphid Rhopalosiphum padi. Entomologia Experimentalis et 
Applicata 59:79-85 

 
Glazebrook, J. (2001) Genes controlling expression of defence responses in Arabidopsis – 

2001 status. Current Opinion in Plant Biology 4:301–308 
 
Gomathi, S.K. (2002) Identification of genetic locus associated with resistance to brown 

planthopper (Nilaparvata lugens Sta°l) in rice (Oryza sativa L.). PhD thesis, Tamil 
Nadu Agricultural University, Coimbatore 

 
Grant, D.F. and Matsumura, F. (1989) Glutathione S-transferase 1and 2 in susceptible and 

resistant insecticide resistant Aedes aegypti. Pesticide Biochemistry and Physiology 
33:132-143 



References 
 

 156 

 
Grayer, R. J., Kimmins, F.M., Stevenson, P.C., Stevenson, J.B. and Wijayagunesekera, 

H.N.P. (1994) Phenolics in rice phloem sap as sucking deterrents to the brown 
planthopper (Nilaparvata lugens). Acta Hortic. 381:391-394 

 
Grönberg, N. (2006) Induction of pathogenesis-related genes, PR-17a and N-

methyltransferase, in barley infested by the aphid Rhopalosiphum padi, Master‘s 
thesis,  Södertörns högskola, University College, Stockholm, Sweden 

 
Gurr, G.M., Liu, J., Read, D.M.Y., Catindig, J.L.A., Cheng, J.A., Lan, L.P. and Heong, 

K.L. (2011) Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae) pests and 
prospects for enhancing biological control by ecological engineering. Ann Appl Biol. 
158:149–176 

 
Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. 

Bot. 53:1-11 
 
Hallinan, J., Bradley, D. and Wiles, J. (2006) Effects of constitutive gene expression on the 

dynamics of random Boolean networks., in: IEEE Congress on Evolutionary 
Computation pp. 2355–2361 

 
Hammerschmidt, R. and Kuc, J. (1982) Lignification as a mechanism for induced systemic 

resistance in cucumber. Physiol. Pl. Path. 20:61–71 
 
Hammond-Kosack, K.E. and Jones, J.D.G. (1997) Plant disease resistance genes. Annual 

Review of Plant Physiology and Plant Molecular Biology. vol. 48, 575-607 
 
Hammond-Kosack, K.E. and Parker, J.E. (2003) Deciphering plant-pathogen 

communication: fresh perspectives for molecular resistance breeding. Curr Opin 
Biotechnol.  14:177-193 

 
Harbome, J.B. (1980) Plant phenolics. In Secondary Plant Products, ed. E. A. Bell, B. V. 

Charlwood , Berlin: Springer-Verlag pp.329-402 
 
Harrewijn, P., Tjallingii, W.F., Mollema, C., (1996) Electrical recording of plant 

penetration by western flower thrips. Entomologia Experimentalis et Applicata 79, 
345-353 

 
Hao, P., Liu, C., Wang, Y., Chen, R., Tang, M., et al. (2008) Herbivore induced callose 

deposition on the sieve plates of rice: an important mechanism for host resistance. 
Plant Physiol. 146: 1810-1820 

 
Hattori, M. (2001) Probing behaviour of the brown planthopper, Nilaparvata lugens Stål 

(Homoptera: Delphacidae) on a non-host barnyard grass, and resistant and susceptible 
varieties of rice. Appl Entomol Zool 36: 83-89 

 
Hattori, M. and Sogawa, K. (2002) Oviposition behaviour of the rice brown planthopper, 

Nilaparvata lugens (Stal), and its electronic monitoring. Journal of Insect Behaviour 
15: 283-293 



References 
 

 157 

 
Heidel, A.J. and Baldwin, I.T. (2004) Microarray analysis of salicylic acid and jasmonic 

acid-signalling in responses of Nicotiana attenuate to attack by insects from multiple 
feeding guilds. Plant, Cell and Environment 27:1362–1373 

 
Henry, D.B., Tolan, P.H. and Gorman-smith, D. (2005) Cluster Analysis in Family 

Psychology Research. Journal of Family Psychology 19(1):121-132 
 
Herrmann K. M. (1995) The Shikimate Pathway: Early Steps in the Biosynthesis of 

Aromatic Compounds. The Plant Cell vol.7:907-919 
 
Hirabayashi, H., Kaji, R., Angeles, E.R., Ogawa, T., Brar, D.S. and Khush, G.S. (1999) 

RFLP analysis of a new gene for resistance to brown planthopper derived from O. 
officinalis on rice chromosome 4 (in Japanese). Breed Sci Suppl. 49:48 

 
Hoang, A. (2010) The Role of Peroxidase in the Defence Response of Buffalograss to 

Chinch Bugs. Thesis dissertation,  University of Nebraska,  Lincoln. 
 
Hogendrorp, B.K. (2008) Effects of silicon-based fertilizer applications on the development 

and reproduction of insect pests associated with greenhouse-grown crops. PhD Thesis. 
University of Illinois 

 
Holmberg, N, and Bulow, L. (1988) Improving stress tolerance in plants by gene transfer, 

Trends Plant Sci. 3:61–66 
 
Howe, G.A. and Schaller, A. (2008) Direct Defences in plants and their induction by 

wounding and insect herbivores. In: Induced plant resistance to herbivory: Springer, 
Science. pp 7- 30 

 
Huang, J., Qiao, F. and Zhang, L. (2000) Farm Pesticide, Rice Production  and Human 

Health. Health (San Francisco) 
 
Hughes, L. and Bazzaz, F.A. (2001) Effects of elevated CO2 on five plant-aphid 

interactions. Entomologia Experimentalis et Applicata 99(1):87-96 
 
Hui, D.Q., Iqbal, J., Lehmann, K., Gase, K., Saluz, H.P. and Baldwin, I.T. (2003) 

Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, 
Sphingidae) and its natural host Nicotiana attenuata: V. Microarray analysis and 
further characterization of large-scale changes in herbivore-induced mRNAs. Plant 
Physiol. 131:1877-1893 

 
Hunt, E. J., Pritchard, J., Bennett, M.J., Zhu, X., Barrett, D.A., Allen, T., Bale, J.S.  and 

Newbury, H.J. (2006) The Arabidopsis thaliana / Myzus persicae model system 
demonstrates that a single gene can influence the interaction between a plant and a 
sap-feeding insect. Mol. Ecol. 15:4203–4213 

 
 
 



References 
 

 158 

Hunt, E., Gattolin, S., Newbury, H.J., Bale, J.S., Tseng, H.M., Barrett, D.A. and 
Pritchard, J. (2010) A mutation in amino acid permease AAP6 reduces the amino 
acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected. 
J. Exp. Bot. 61:55–64 

 
Hunter, W.B., Ullman, D.E., Moore, A., (1993) Electronic monitoring: characterizing the 

feeding behavior of western flower thrips (Thysanoptera: Thripidae). In: Elsbury, 
M.M., Backus, E.A., Ullman, D.E. (Eds.), History, Development, and Application of 
AC Electronic Insect Feeding Monitors. Thomas Say Publications in Entomology. 
Entomological Society of America., Maryland, pp. 73-85 

 
Ikeda, R. and Kaneda C. (1981) Genetic analysis of resistance to brown planthopper, 

Nilaparvata lugens (Stal), in rice. Jpn. J. Breed. 31:279-285 
 
Ishii, T., Brar, D.S., Multani, D.S. and Khush, G.S. (1994) Molecular tagging on genes for 

brown planthopper resistance and earliness introgressed Oryza australiensis into 
cultivated rice, Oryza sativa. Genome 37:217-221 

 
Jahn, G.C., Almazan, L.P. and Pacia, J.B. (2005) Effect of nitrogen fertilizer on the 

intrinsic rate of increase of Hysteroneum setariae (Thomas) (Homoptera: Aphididae) 
on rice (Oryza sativa L.). Environ Entomol. 34:938–943 

 
Jairin, J., Teangdeerith, S., Leelagud, P., Phengrat, K., Vanavichit, A. and Toojinda, T. 

(2007) Detection of brown planthopper resistance genes from different rice mapping 
populations in the same genomic location. Sci. Asia 33: 347–352 

 
Jairin, J., Sansen, K., Wongboon, W. and Kothcharerk, J. (2010) Detection of a brown 

planthopper resistance gene bph4 at the same chromosomal position of Bph3 using 
two different genetic backgrounds of rice.  Breeding Science 60:71–75 

 
Janssen, J.A.M., Tjallingii, W.F., van Lenteren, J.C., (1989) Electrical recording and 

ultrastructure of stylet penetration by the greenhouse whitefly. Entomologia 
Experimentalis et Applicata 52, 69-81 

 
Jena, K.K., Pasalu, I.C., Rao, Y.K., Varalaxmi, Y., Krishnaiah, K., et al. (2003) 

Molecular tagging of a gene for resistance to brown planthopper in rice (Oryza sativa 
L.). Euphytica 129: 81-88 

 
Jena, K.K., Jeung, J.U., Lee, J.H., Cho, H.C. and Brar, D.S. (2006) High-resolution 

mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-
assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet. 
112:288–297 

 
Jena, K.K. (2010) The species of the genus Oryza and transfer of useful genes from wild 

species into cultivated rice, O. sativa. Breeding Science 60:518-523 
 
Jena, K.K. and Kim, S.M. (2010) Current Status of Brown Planthopper (BPH). Resistance 

and Genetics. Rice 3(2-3), 161-171 
 



References 
 

 159 

Johnson, R. and Ryan, C.A. (1990) Wound-inducible potato inhibitor II genes: 
enhancement of expression by sucrose. Plant Mol. Biol. 14:527–36 

 
Juliano, B.O. (1993) Rice in Human Nutrition.  FAO/IRRI. FAO Food and Nutrition Series 

No.26., FAO, Rome 
 
Kabir, M.A. and Khush, G.S. (1988) Genetic analysis of resistance to brown planthopper in 

rice, Oryza sativa L. Plant Breed. 100:54-58 
 
Kaloshian, I. and Walling, L.L. (2005) Hemipterans as plant pathogens. Annual Review of 

Phytopathology 43:491–421 
 
Kang, J. and Turano, F.J. (2003) The putative glutamate receptor 1.1 (AtGLR1.1) functions 

as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc Natl 
Acad Sci USA. 100: 6872–6877 

 
Kang, S., Kim, H.B., Lee, H., Choi, J.Y., Heu, S., Oh, C.J., Kwon, S.I. and An, C.S. 

(2006) Over-expression in Arabidopsis of a plasma membrane-targeting glutamate 
receptor from small radish increases glutamate-mediated Ca21 influx and delays 
fungal infection. Mol Cells 21:418–427 

 
Karban, R. and Myers, J.H. (1989) Induced plant response to herbivory. Annu. Rev. Ecol. 

Syst. 20:331-48  
 
Karban, R. and Baldwin, I.T. (1997) Induced Responses to Herbivory. University of 

Chicago Press, Chicago, IL 
 
Karley, A.J., Douglas, A.E. and Parker, W.E. (2002) Amino acid composition and 

nutritional quality of potato leaf phloem sap for aphids. Journal of Experimental 
Biology. 205: 3009–3018 

 
Kasimoto, R. and Dyck, V.A. (1976) Climate and rice insect. In: Proceedings of the 

Symposium on Climate and Rice. IRRI 565 pages 
 
Kehr, J., Hustiak, F., Walz, C., Willmitzer, L. and Fisahn, J. (1998) Transgenic plants 

changed in carbon allocation pattern display a shift in diurnal growth pattern. The 
Plant Journal 16:497–503 

 
Kemp, H.,  Newbury, J., Bale, J. and Pritchard, J. (2008) Investigating plant-aphid 

interactions in Arabidopsis; using functional genomics to investigate the role of the 
plant amino acid transporter AAP1. American Society of plant biology.  
http://abstracts.aspb.org/pb2008/public/P14/P14040.html (Oct 21, 2011) 

 
Kessler, A., and Baldwin, I.T. (2002) Plant responses to insect herbivory: The emerging 

molecular analysis. Annu. Rev.Plant Biol. 53: 299-328 
 
Khan, Z.R. and Saxena, R.C. (1988) Probing behaviour of three biotypes of Nilaparvata 

lugens (Homoptera: Delphacidae) on different resistant and susceptible rice varieties. 
Journal of Economic Entomology 81: 1338-1345 

http://abstracts.aspb.org/pb2008/public/P14/P14040.html


References 
 

 160 

 
Khush, G.S., Rezaul-Karim, A.N.M.R. and Angeles, E.R. (1985) Genetics of resistance of 

rice cultivar ARC10550 to Bangladesh brown planthopper biotype. J Genet. vol.64: 
121-125. 

 
Khush, G.S. and Brar, D.S. (1991) Genetics of resistance to insects in crop plants. 

Advances in Agronomy 45:223-274 
 
Khush, G.S. (2005) What it will take to feed 5.0 billion rice consumers by 2030. Plant Mol. 

Biol. 59:1–6 
 
Kim, C.K., Kim, J.H., Shin, Y.H., Park, S.H., Yun, D.W., Ahn, B.O., Kim, D.H., Park, 

B.S. and Hahn, J.H. (2009) A genome browser database for rice (Oryza sativa) and 
Chinese cabbage (Brassica rapa). Afr. J. Biotechnol. vol. 8 (20): 5253 –5259 

 
Kim, S.A., Kwak, J.M., Jae, S.K., Wang, M.H. and Nam, H.G. (2001) Over-expression of 

the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate 
receptors impairs calcium utilization and sensitivity to ionic stress in transgenic 
plants. Plant Cell Physiol. 42:74–84 

 
Kimmins, F.M. (1989) Electrical penetration graphs from Nilaparvata lugens on resistant 

and susceptible rice varieties. Entomol. Exp. Appl. 50:69–79 
 
Kindler, D., Hesler, L., Elliott, N., Shufran, K. and Springer, T. (2004) Cereal and Grass 

Hosts of the Rice Root Aphid, Rhopalosiphum rufiabdominalis (Sasaki), and a 
Description of an Efficient Greenhouse Rearing Technique. J. Agric. Urban Entomol. 
21(1): 51–59  

 
Kindt F (2004) Behavioural study on the feeding of Western flower thrips related to Tomato 

spotted wilt virus transmission and host plant susceptibility. Ph.D. Thesis .van 
Wageningen Universiteit 

 
Koeduka, T., Matsui, K., Hasegawa, M., Akakabe, Y. and Kajiwara, T. (2005) Rice fatty 

acid alpha-dioxygenase is induced by pathogen attack and heavy metal stress: 
activation through jasmonate signaling. J. Plant Physiol. 2005, 162:912–920 

 
Kreuzwieser, J. and  Gessler, A. (2010) Global climate change and tree nutrition: influence 

of water availability. Tree Physiol 30 (9): 1221-1234 
 
Kühn, C., Hajirezaei, M.R., Fernie, A.R., Roessner-Tunali, U., Czechowski, T., Hirner, 

B. and Frommer, W.B. (2003) The sucrose transporter StSUT1 localizes to sieve 
elements in potato tuber phloem and influences tuber physiology and development. 
Plant Physiol. 131:102–113 

 
Kumari,  S., Sheba, J.M., Marappan, M., Ponnuswamy, S., Seetharaman, S., Pothi, N., 

Subbarayalu, M., Muthurajan, R. and Natesan, S. (2010) Screening of IR50 3 
Rathu Heenati F7 RILs and Identification of SSR Markers Linked to Brown 
Planthopper (Nilaparvata lugens Sta°l) Resistance in Rice (Oryza sativa L.) Mol 
Biotechnol. 46:63–71 



References 
 

 161 

 
Kunkel, B.N. (2002) Cross talk between signaling pathways in pathogen defence. Current 

Opinion in Plant Biology 5, 325–331 
 
Kush, G.S. (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–

34 
 
Kwon, S., Hamada, K., Matsuyama, A., Yasuda, M., Nakashita, H. and Yamakawa, T. 

(2009) Biotic and abiotic stresses induce AbSAMT1, encoding S-adenosyl-L-
methionine: salicylic acid carboxyl methyltransferase, in Atropa belladonna. Plant 
Biotechnology 26: 207–215 

 
Lakshminarayana, A. and Khush, G.S. (1977) New genes for resistance to the brown 

planthoppers. Crop Science 17: 96-100 
 
Lam, H.M., Chiu, J., Hsieh, M.H., Meisel, L., Oliveira, I.C., Shin, M. and Coruzzi, G. 

(1998) Glutamate-receptor genes in plants, Nature 396:125-126 
 
Lanning, F. C. and Eleuterius, L. N. (1992) Silica and Ash in Seeds of Cultivated Grains 

and Native Plants. Annals of Botany 151-160 
 
Leather, S. R. and Dixon, A.F.G. (1981) The effect of cereal growth stage and feeding site 

on the reproductive activity of the bird-cherry aphid, Rhopalosiphum padi. Annals of 
Applied Biology, 97(2), 135-141 

 
Leather, S.R., Walters, K.F.A. and Dixon, A.F.G. (1989) Factors determining the pest 

status of the bird cherry-oat aphid , Rhopalosiphum padi ( L .) (Hemiptera: 
Aphididae), in Europe : a study and review. Growth (Lakeland):345-360 

 
Leckstein, P.M. and Llewellyn, M. (1974) Role of amino acids in diet intake and selection 

and utilization of dipeptides by Aphis fabae. J. Insect Physiol. 20: 877- 885 
 
Lei, H., Tjallingii, W.F., Van Lenteren, J.C., (1998) Probing and feeding characteristics of 

the greenhouse whitefly in association with host-plant acceptance and whitefly strains. 
Entomologia Experimentalis et Applicata 88, 73-80 

 
Lercher, M.J., Urrutia, A.O. and Hurst, L.D. (2002) Clustering of housekeeping genes 

provides a unified model of gene order in the human genome. Nature Genetics 
31(2):180–183 

 
Lett, J.M., Granier, M., Grondin, M., Turpin, P., Molinaro, F., Chiroleu, F., 

Peterschmitt, M., Reynaud, B., (2001) Electrical penetration graphs from Cicadulina 
mbila on maize, the fine structure of its stylet pathways and consequences for virus 
transmission efficiency Entomologia Experimentalis et Applicata 101, 93-109 

 
Lewin, J. and Reimann, B.E.F. (1969) Silicon and Plant Growth. Annual Review of Plant 

Physiology  20(1), 289-304  
 



References 
 

 162 

Li, J., Zhu, S., Song, X., Shen, Y., Chen, H., Yu, J., Yi, K., Liu, Y., Karplus, V.J., Wu, 
P., et al. (2006)    A rice glutamate receptor-like gene is critical for the division and 
survival of individual cells in the root apical meristem. Plant Cell 18: 340–349 

 
Li, J., Chen, Q., Wang, L., Liu, J., Shang, K. and Hua, H. (2011) Biological effects of rice 

harbouring Bph14 and Bph15 on brown planthopper, Nilaparvata lugens. Pest 
Management Science  Vol.67, Issue 5:528–534 

 
Linares, O.F. (2002) African rice (Oryza glaberrima): history and future potential. Proc. 

Natl Acad. Sci. USA 99, 16360–16365 
 
Liu, Y. (2005) Investigating insect molecular responses to two plant defence proteins and 

characterizing a novel insecticidal protein from Arabidopsis. Ph.D Thesis. Department 
of Entomology, Texas A&M University 

 
Iiyama, K., Lam, T.B.T. and Stone, B.A. (1994) Covalent cross-links in the cell wall. Plant 

Physiol. 104: 315–320 
 
Lockhart, D.J. and Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. 

Nature 405:827–836 
 
Lösel, P.M. and Goodman, L.J. (1993) Effects on the feeding behaviour of Nilaparvata 

lugens (Stål) of sub lethal concentrations of the foliarly applied nitromethylene 
heterocycle 2-nitromethylene-1, 3-thiazinan-3-yl-carbarnal dehyde. Physiol Entomol. 
18:67-74 

 
Loxdale, H.D. and Brookes, C.P. (1988) Electrophoretic study of enzymes from cereal 

aphid populations . V. Spatial and temporal genetic similarity of holocyclic  
populations of the bird-cherry oat aphid, Rhopalosiphum padi ( L ) (Hemiptera 
:Aphididae ), in Britain. East. 241-249 

 
Maffei, M.E., Mithofer, A. and Boland, W. (2007) Before gene expression: early events in 

plant–insect interaction. Trends. in Plant Science vol.12 no.7 
 
Majorczyk, A.M. (2009) Chemical Defence Mechanisms of Arabidopsis thaliana Against 

Insect Herbivory: The Role of Glucosinolate Hydrolysis Products. Thesis: Master of 
Science (MS), Bowling Green State University, Biological Sciences 

 
Marger, M.D. and Saier, M.H. Jr. (1993) A major superfamily of transmembrane 

facilitators that catalyse uniport, symport and antiport. Trends in Biochemical 
Sciences  vol. e 18, Issue 1, January, pp. 13-20 

 
Marley, S.B. and Gordon, M.Y. (2005) Chronic myeloid leukemia: Stem cell derived but 

progenitor cell driven. Clinical Science 109(1): 13 – 25 
 
Matis, J.H., Kiffe, T.R., Matis, T.I. and Stevenson, D.E. (2007) Stochastic modeling of 

aphid population growth with nonlinear, power-law dynamics. Mathematical 
Biosciences 208:469-494 

 



References 
 

 163 

Matsumura, M. and Sanada-morimura, S. (2010) Recent Status of Insecticide Resistance 
in Asian Rice Planthoppers. East Asia 44:225-230 

 
Matthews, R.E.F. (1991) Plant Virology. 3rd Edn., Academic Press, San Diego, pp: 835 
 
Mattson, W.J. (1980) Herbivory in Relation to Plant Nitrogen Content. Annual Review of 

Ecology and Systematics 11(1):119-161 
 
McHale, L., Tan, X.,  Koehl, P. and Michelmore, W.R. (2006) Review: Plant NBS-LRR 

proteins: adaptable guards. Genome Biology 2006:7:212 
 
McLean, D.L. and Kinsey, M.G. (1964) A technique for electronically recording aphid 

feeding and salivation. Nature 202, 1358–1359 
 
Meng, S., Brown, D.E., Ebbole, D.J., Torto-Alalibo, T., Oh, Y.Y., Deng, J., Mitchell, 

T.K. and Dean, R.A. (2009) Gene Ontology annotation of the rice blast fungus, 
Magnaporthe oryzae. BMC Microbiol. 9(Suppl 1):S8 

 
Métraux  J.P. and Raskin,  I.  (1993) Role  of  phenolics  in plant disease resistance. In I 

Chet, ed, Biotechnology in Plant Disease Control. Wiley-Liss, New York  pp.191-209 
 
Meyerhoff, O., Mu¨ller, K., Roelfsema, M.R.G., Latz, A., Lacombe, B., Hedrich, R., 

Dietrich, P. and Becker, D. (2005) AtGLR3.4, a glutamate receptor channel like 
gene is sensitive to touch and cold. Planta 222:418–427 

 
Meyers, B.C., Kozik, A., Griego, A., Kuang, H. and Michelmore, R.W. (2003) Genome-

wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809-834 
 
Miles, P. W. (1999) Aphid saliva. Biol. Rev. 74: 41-85 
 
Mishra, A., Pandey, D., Goel, A. and Kumar, A. (2010) Molecular Cloning and In silico 

Analysis of Functional Homologues of Hypersensitive Response Gene(s) Induced 
During Pathogenesis of Alternaria Blight in Two Genotypes of Brassica. J Proteomics 
Bioinform, vol. 3(8):244-248  

 
Mitchell, M.C. (2008) Conserving Brassica Crop Wild Relative Diversity: Exploiting data 

from Ecogeography and the Transcriptome. Ph.D. Thesis. School of Biosciences, The 
University of Birmingham 

 
Mithofer, A., Wanner, G. and Boland, W. (2005) Plant resistance towards insect 

herbivores: a dynamic interaction. Plant Physiol. 137: 1160–1168 
 
Mittapalli, O., Neal, J.J.  and Shukle, R. H. (2007) Tissue and life stage specificity of 

glutathione S-transferase expression in the Hessian fly, Mayetiola destructor: 
Implications for resistance to host allelochemicals. Journal of Insect Science  vol.7, 
no. 20:1536-2442 

 
Monosi, B., Wisser, R.J., Pennill, L. and Hulbert, S.H. (2004) Full-genome analysis of 

resistance gene homologues in rice. Theor Appl Genet. 109:1434-1447 



References 
 

 164 

 
Moose, S.P. and Mumm, R.H. (2008) Molecular Plant Breeding as the Foundation for 21st 

Century Crop Improvement. Plant Physiology 147:969-977  
 
Moran, P.J. and Thompson, G.A. (2001) Molecular responses to aphid feeding in 

Arabidopsis in relation to plant defence pathways. Plant Physiol. 125:1074–1085. 
 
Morange, M. (2009) The Central Dogma of Molecular Biology A Retrospective after Fifty 

Years. Resonance: 236-247 
 
Morant, A.V., Jørgensen, K., Jørgensen, C., Paquette, S.M., Sánchez-Pérez, R., Møller, 

B.L. and Bak, S. (2008) β-Glucosidases as detonators of plant chemical defence. 
Phytochemistry 69:1795–1813 

 
Mullins, I.M. (1999) Evolutionary Relationships in Oryza Inferred from the Gene that 

Encodes the 10 kDa Prolamin (Seed Storage Protein) Polypeptide. Master's of Science 
In Biology. Faculty of the Virginia Polytechnic Institute and State University 

 
Nakano, K., Abe, G., Taketa, N. and Hirano, C. (1961) Silicon as an insect-resistance 

component of host plant, found in relation between the rice stem-borer and the rice 
plant. Jap. J. Appl. Entomol. Zool. 5: 17-27 

 
Nambiar, S. and Hengge, U.R. (2005) Gene expression patterns in melanoma reveal two 

independent predictors. Workshop: Microarray technologies in clinical oncology; 
potential and perspectives. June 30, Roma 

 
Nandi, S., Subudhi, P.K., Senadhira, D., Manigbas, N.L., Sen-Mandi, S. and Huang, N. 

(1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and 
selective genotyping. Mol. Gen. Genet. 255:1–8. 

 
Nemoto, H., Ikeda, R. and Kaneda, C. (1989) New Gene for rice resistance to brown 

planthopper, Nilaparvata lugens stal, in rice. Japanese Journal of Breeding 39: 23-28 
 
Neher, O.T. (2008) Disease control and plant defence pathways induced by Bacillus 

mojavensis isolate 203-7 and Bacillus mycoides isolate BMJ. Montana State  
University, Bozeman, Montana 

 
Nguyen, N. and Ferrero, A. (2006) Meeting the challenges of global rice production. Paddy 

and Water Environment 4(1):1-9 
 
Nimchuk, Z., Eulgem, T., Holt, B.F. and Dangl, J.L. (2003) Recognition and response in 

the plant immune system. Annu Rev Genet. 37:579-609 
 
Nørholm, M.H.H., Hussam, H., Nour-Eldin, Brodersen, P., Mundy, J. and  Halkier, 

B.A. (2006) Expression of the Arabidopsis high-affinity hexose transporter STP13 
correlates with programmed cell death.  FEBS Letters 580 (2006) 2381–2387 

 
Oerke, E.C. (2005) Crop losses to pests. The Journal of Agricultural Science 144(01), 31 
 



References 
 

 165 

Okumoto, S., Schmidt, R., Tegeder, M., Fischer, W. N., Rentsch, D., Frommer, W.B. 
and  Koch, W. (2004) High Affinity Amino Acid Transporters Specifically 
Expressed in Xylem Parenchyma and Developing Seeds of Arabidopsis. The Journal 
of Biological System Chemistry vol. 277, no. 47, Issue of November 22, pp. 45338–
45346 

 
Ollis, D.L., Shea, E., Cygler, M., Dijkstra, B., Frolow, F., et al. (1992) The  hydrolase fold. 

Protein Engineering vol.5 no.3 pp.197-211 
 
Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., et al. (1997) The I2C family from the 

wilt disease resistance locus I2 belongs to the nucleotide binding leucine-rich repeat 
superfamily of plant resistance genes. Plant Cell 9:521–32 

 
Ortiz-Lopez, A., Chang, H.C. and Bush, D.R. (2000) Review Amino acid transporters in 

plants. Biochimica et Biophysica Acta 1465: 275-280 
 
Osbourn, A. (1996). Saponins and plant defence - a soap story. Trends Plant Sci. 1:4-9 
 
Panda, N. and Khush, G.S. (1995) Host plant resistance to insects. CAB International 
 
Pantoja, A., Garcia, C.A. and Duque, M.C. (2000) Population dynamics and effects of 

Oebalus ornatus (Hemiptera: Pentatomidae) on rice yield and quality in South 
western Colombia. J. Econ. Entomol. 93: 276-279 

 
Park, C.G.  (1983) Effect of Temperatures and Relative Humidities on the Development of 

Brown Planthopper, Nilaparvata lugen (Stål). Korean J Plant Protection (4):262-270 
 
Park, D.S., Lee, S.K., Lee, J.H., Song, M.Y., Song, S.Y., Kwak, D.Y., Yeo, U.S., Jeon, 

N.S., Park, S.K., Yi, G. et al. (2007) The identification of candidate rice genes that 
confer resistance to the brown planthopper  (Nilaparvata lugens) through 
representational difference analysis.  Theoretical and Applied Genetics 115:537–547 

 
Park, D.S., Song, M.Y., Park, S.K., Lee, S.K., Lee, J.H., Song, S.Y., Eun, M.Y., Hahn, 

T.R., Sohn, J.K., Yi, G., Nam, M.H. and Jeon, J.S. (2008) Molecular tagging of the 
Bph1 locus for resistance to brown planthopper (Nilaparvata lugens Sta˚ l) through 
representational difference analysis. Mol. Genet. Genom. 208:163–172 

 
Patch, E.M. (1938) Food-plant catalogue of the aphids of the world. Maine Agric. Exp. Stn. 

Bull. 393: 36–431 
 
Pathak, M.D. and Saxena, R.C. (1980) In: Smith H (ed) Breeding plants resistant to insects. 

Pergamon, Oxford. pp.61–81 
 
Pathak, M.D. and Khan, Z.R. (1994) Insect Pests of Rice, International Rice Research 

Institute, Manila, The Philippines 
 
 
 



References 
 

 166 

Patterson, T.A., Lobenhofer, E.K., Fulmer-Smentek, S.B., Collins, P.J., Chu, T.M., et 
al.,  (2006) Performance comparison of one-colour and two-colour platforms within 
the Microarray Quality Control (MAQC) project. Nature Biotechnology  vol.24 no 
9:1140-1150 

 
Paul, S. and Amundson, S.A. (2008) Development of gene expression signatures for 

practical radiation biodosimetry. Int J Radiat Onc Biol Phys. 71:1236 –1244 
 
Pedley, K.F. and Martin, G.B. (2005) Role of mitogen-activated protein kinases in plant 

immunity. Curr Opin Plant Biol. 8:541-547 
 
Penninckx, I.A.M.A., Eggermont, K., Terras, F.R.G., Thomma, B.P.H.J., De Samblanx, 

GW, et al. (1996) Pathogen-induced systemic activation of a plant defence gene in 
Arabidopsis follows a salicylic acid–independent pathway involving components of 
the ethyleneand jasmonic acid responses. PlantCell In press 

 
Pham,  T.M.  and  Bui, B.B.  (1999)  Evaluation  of  rice  varieties  for  resistance  to brown 

plant hopper in the Mekong delta.  Omon Rice Journal 7:5–11 
 
Pieterse, C.M.J. and Van Loon, L.C. (1999) Salicylic acid-independent plant defence 

pathways. Trends Plant Sci. 4: 52-58 
 
Pieterse, C.M.J. and Dicke, M. (2007) Plant interactions with microbes and insects: From 

molecular mechanisms to ecology. Trends Plant Sci. 12:564-569 
 
Pollard, D.G. (1973) Plant penetration by feeding aphids (Hemiptera, Aphidoidea) a review. 

Bull. Entomol. Res. 62:631–714 
 
Ponder, K.L., Pritchard, J., Harrington, R. and Bale, J.S. (2000) Difficulties in location 

and acceptance of phloem sap combined with reduced concentration of phloem amino 
acids explain lowered performance of the aphid Rhopalosiphum padi on nitrogen 
deficient barley (Hordeum vulgare) seedlings. Entomologia Experimentalis et 
Applicata 97:203–210 

 
Poulton, J.E. and Li, C.P. (1994) Tissue level compartmentation of (R)-amygdalin and 

amygdalin hydrolase prevents large scale cyanogenesis in undamaged prunus seeds. 
Plant Physiol. 104: 29–35 

 
Prioul, J.L., Quarrie, S., Causse, M. and Vienne, D. (1997) Dissecting complex 

physiological functions through the use of molecular quantitative genetics. J. Exp. 
Bot. (1997) 48 (6): 1151-1163 

 
Prado, E., and Tjallingii, W.F. (1994) Aphid activities during sieve element punctures. 

Entomologia Experimentalis et Applicata 72:157-165 
 
Prado, E., and Tjallingii, W.F, (1997) Effects of previous plant infestation on sieve element 

acceptance by two aphids. Entomologia Experimentalis et Applicata 82:189-200 
 



References 
 

 167 

Prado, E., and Tjallingii, W.F.  (1999) Effects of experimental stress factors on probing 
behaviour by aphids. Entomologia Experimentalis et Applicata 90(3):289-300. 

 
QuiChang, T.T., Qu, S.H., Pathak, M.D., Ling, K.C. and Kauffman, H.E. (1975) The 

search for disease and insect resistance in rice germplasm. In: Frankel OH, Hawkes 
JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, 
Cambridge, pp 183–200 

 
Rahman, M.L., Jiang, W., Chu, S.H., Qiao, Y., Ham, T.H., Woo, M.O., Lee, J., 

Khanam, M.S., Chin, J.H., Jeung, J.U., et al. (2009) High resolution mapping of 
two brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from 
Oryza minuta. Theor.Appl. Genet. 119: 1237–1246 

 
Rairdan, G.J. and Delaney, T.P. (2002) Role of salicylic acid and Nim1/npr1 in race-

specific resistance in Arabidopsis. Genetics 161:803–811 
 
Ralph, J., Bunzel, M., Marita, J.M., Hatfield, R.D., Lu, F., et al. (2004) Peroxidase-

dependent cross-linking reactions of p-hydroxycinnamates in plant cell walls. 
Phytochemistry Reviews 3:79–96 

 
Ramachandran, R. and Khan, Z.R. (1991) Mechanisms of resistance in wild rice Oryza 

brachyantha to rice leaffolder Cnaphalocrocis medinalis (Guene´ e) (Lepidoptera: 
Pyralidae).  J. Chem. Ecol. 17: 41- 65 

 
Ramputh, A.L. and Bown, A.W. (1996) Rapid and y-aniinobutyric acid synthesis and the 

inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant 
Physiol 111:1 349- 1352 

 
Randhawa, G.J., Bhalla, S., Chalam, V.C., Tyagi, V., Verma, D.D. and Hota, M. (2006) 

Document on Biology of Rice (Oryza sativa L.) in India. New Delhi: National Bureau 
of Plant Genetic Resources 

 
Rani, P.U. and Jyothsna, Y. (2010) Biochemical and enzymatic changes in rice plants as a 

mechanism of defence. Acta Physiol Plant 32:695–701 
 
Raskin, I. (1992) Roles of Salicylic Acid in Plants. Annu. Rev. Plant Physiol. Plant Mol. 

Biol. 43:439-463 
 
Ratnayaka, I. (1999) Agrobacterium-mediated gene transformation of rice: Comparison of 

callus and shoot apex derived plants. A Dissertation Submitted to Texas A&M 
University, Texas    

 
Redona, E.D. and Mackill, D.J. (1996) Mapping quantitative trait loci for seedling vigor in 

rice using RFLPs. Theoretical and Applied Genetics 92, 395–402 
 
Renganayaki, K., Fritz, A.K., Sadasivam, S., Pammi, S., Harrington, S.E., et al. (2002) 

Mapping and progress toward map-based cloning of brown planthopper biotype-4 
resistance gene introgressed from Oryza officinalis into cultivated rice, O. sativa. 
Crop Science 42:2112-2117 



References 
 

 168 

 
Ren, X., Wang, X. , Yuan, H., Weng, Q. , Zhu, L. and He, G. (2004) Mapping quantitative 

trait loci and expressed sequence tags related to brown planthopper resistance in rice. 
Plant Breeding 123:342-348 

 
Reymond, P. and Farmer, E.E. (1998) Jasmonate and salicylate as global signals for 

defence gene expression. Curr. Opin. Plant Biol. 1:404-411 
 
Reymond, P., Weber, H., Damond, M. and Farmer, E.E. (2000) Differential gene 

expression in response to mechanical wounding and insect feeding in Arabidopsis, 
Plant Cell 12:707–720 

 
Reymond, P. (2001) DNA microarrays and plant defence. Plant Physiology and 

Biochemistry 39(3-4):313-321 
 
Reymond, P., Bodenhausen, N., Van Poecke, R.M., Krishnamurthy, V., Dicke, M. and 

Farmer, E.E. (2004) A conserved transcript pattern in response to a specialist and a 
generalist herbivore. Plant Cell 16:3132–3147 

 
Rola, A.C. and Pingali, L.P. (1993) Pesticides, Rice Productivity, and Farmers' Health: An 

Economic Assessment. Los Baños, Philippines, and Washington D.C: International 
Rice Research Institute and World Resource Institute 

 
Romeis, T. (2001)  Protein kinases in the plant defence response. Current Opinion in Plant 

Biology.  4:407–414 
 
Salzman, R.A., Brady, J.A., Finlayson, S.A., et al. (2005) Transcriptional profiling of 

sorghum induced by methyl jasmonate, salicylic acid, and aminocyclopropane 
carboxylic acid reveals cooperative regulation and novel gene responses. Plant 
Physiology 138:352–368 

 
Samuels, M.N. (2001) Optimization of APEX-Mediate DNA transformation in rice. Ph.D 

Thesis. Louisiana State University and Agricultural and Mechanical College, US 
 
Santhanalakshmi, S., Saikumar, S., Shubhada, Roa., Saiharini, A., Khera, P., 

Shashidar, H.E and Kadirvel, P. (2010) Mapping genetic locus linked to brown 
planthopper resistance in rice Oryza sativa L. International Journal of Plant Breeding 
and Genetic 4 (1): 13-22 

 
Saraste, M., Sibbad, P.R. and Wittinghoer, A. (1990) The P-loop-a common motif in ATP- 

and GTP-binding proteins. Trends in Biochemical Sciences. vol. 15, no.11:430-434 
 
Sarria, E., Cid, M., Garzo, E. and Fereres, A. (2009) Excel Workbook for automatic 

parameter calculation of EPG data. Computers and Electronics in Agriculture 
67(1):35-42 

 
Sasamoto, K. (1961) Resistance of the rice plant applied with silicate and nitrogenous 

fertilizers to the rice stem borer, Chilo suppressalis Walker. Proc. of the Faculty of 
Liberal Arts Education 3, Yamanashi University, Japan 3: pp. 73 



References 
 

 169 

Sauer, N. and Stadler, R. (1993) A sink specific H1/monosaccharide cotransporter from 
Nicotiana tabacum: cloning and heterologous expression in baker‘s yeast. Plant J 
4:601–610 

 
Sauer, N., Baier, K., Gahrtz, M., Stadler, R., Stolz, J. and Truernit, E. (1994) Sugar 

transport across the plasma membranes of higher plants. Plant Mol. Biol. 26:1671–
1679. 

SAS Institute, (2008) SAS version 9.1 package 
 
Schena, M., Shalon, D., Davis, R..W. and Brown P.O. (1995) Quantitative monitoring of 

gene expression patterns with a complementary DNA microarray. Science 1995; 270: 
467–470 

 
Schenk, P.M., Kazan, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C. and 

Manners, J.M. (2000) Co-ordinated plant defence responses in Arabidopsis revealed 
by microarray analysis. Proceedings of the National Academy of Sciences, USA 
:11655–11660 

 
Schofield, R.A., Bi, Y.M., Kant, S. and Rothstein, S.J. (2009) Over-expression of STP13, a 

hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana 
seedlings. Plant Cell Environ. 32: 271–285 

 
Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., et al. (2002) Monitoring the 

expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity 
stresses using a full-length cDNA microarray. Plant J. 31:279–92 

 
Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S. and Choi, 

Y.D. (2001) Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-
regulated plant responses. Proc. Natl. Acad. Sci. USA 98: 4788–4793 

 
Seo, B.Y., Kwon, Y.H., Jung, J.K. and Kim, G.H. (2009) Electrical penetration graphic 

waveforms in relation to the actual positions of the stylet tips of Nilaparvata lugens 
in rice tissue. Journal of Asia-Pacific Entomology 12: 89-95 

 
Settle, W. H., Ariawan, H., Astuti, E.T., Cahyana, W., Hakim, A.L., Hindayana, D., et 

al. (1996) Managing tropical rice pests through conservation of generalist natural 
enemies and alternative prey. Ecology 77:1975–1988 

 
Sharma, N., Ketipearachchi, Y., Murata, K., Torii, A., Takumi, S., et al. (2003) 

RFLP/AFLP mapping of a brown planthopper (Nilaparvata lugens Stal) resistance 
gene Bph1 in rice. Euphytica 129: 109-117 

 
Shigematsu, Y., Murofushi, N., Ito, K., Kaneda, C., Kawabe, S. and Takahashi, N. 

(1982) Sterols and asparagine in the rice plant, endogenous factors related to 
resistance against the brown planthopper (Nilaparvata lugens). Agric. Biol. Chem. 
46:2877-2879 

 
 



References 
 

 170 

Simon, J.C., Carrel, E., Hebert, P.D.N., Dedryver, C.A., Bonhomme, J., and Gallic, J.F. 
(1996) Genetic diversity and mode of reproduction in French populations of the aphid 
Rhopalosiphum padi L. Heredity 76: 305-313 

 
Sitch, L.A., Dalmacio, R.D. and Romero, G.O. (1989) Crossability of wild Oryza species 

and their potential use for improvement of cultivated rice. Rice Genet Newslett 6:58–
60 

 
Sivaguru, M., Pike, S., Gassmann, W. and Baskin, T.I. (2003) Aluminum rapidly 

depolymerizes cortical microtubules and depolarizes plasma membrane: evidence that 
these responses are mediated by a glutamate receptor. Plant Cell Physiol. 44: 667–675 

 
Slesak, E., Slesak, M. and Gabrys, B. (2001) Effect of methyl jasmonate on hydromix acid 

content, protease activity, and bird cherry-oat aphid, Rhopalosiphum padi (L.) 
probing. Journal of Chemical Ecology vol. 27, no. 12 

 
Sogawa, K. (1982) The rice brown planthopper: feeding physiology and host plant 

interactions. Annu. Rev. Entomol. 27:49–73 
 
Sogawa, K., Juan, Z. and Zhong-hai Q. (2003) Applications of DNA-marker to analyze 

rice planthopper resistance genes. Chinese J Rice Sci. 17:37-46 
 
Spiller, N.J. (1990) An ultrastructural study of the stylet pathway of the brown 

planthopper, Nilaparvata lugens. Entomol Exp Appl. 54:191-193 
 
Srivastava, P.N. and Auclair, J.L. (1975) Rôle of single amino acids in phagostimulation, 

growth, and survival of Acyrthosiphon pisum. Journal of Insect Physiology vol. 21, 
Issue 11:1865-1871 

 
Stephens, N.R., Qi, Z. and  Spalding, E.P. (2008) Glutamate Receptor Subtypes Evidenced 

by Differences in Desensitization and Dependence on the GLR3.3 and GLR3.4 
Genes.  Plant Physiology  vol.146:529–538 

 
Stevenson, P.C., Kimmins, F.M., Grayer, R.J. and Raveendranath S. (1996) Schaftosides 

from rice phloem as feeding inhibitors and resistance factors to brown planthoppers, 
Nilaparvata lugens. Entomol. Exp. Appl. 80:246-249 

 
Suhaimi, A.H.M. (2009) Relationships between hypothalamic gene expression and the 

resumption of ovulation in postpartum beef cows. Ph.D. Thesis. The University of 
Queensland 

 
Sun, L., Su, C., Wang, C., Zhai, H. and Wan, J. (2005) Mapping of a major resistance 

gene to the brown planthopper in the rice cultivar Rathu Heenati. Breed Sci. 55:391–
396 

 
Sundaramoorthi, J., Babu, C. and Ram, S.G. (2009) Molecular diversity in the primary 

and secondary gene pools of genus Oryza. Plant Syst. Evol. 279:115-123 
 



References 
 

 171 

TaheRi, S., RazmJou, J. and RaSTegaRi, N. (2010) Fecundity and Development Rate of 
the Bird Cherry-oat Aphid , Rhopalosiphum padi (L) (Hom : Aphididae) on Six 
Wheat Cultivars.‘ Plant Protect. Sci. 46(2):72-78 

 
Takatsuji, H. (1998) Review: Zinc-finger transcription factors in plants. CMLS, Cell. Mol. 

Life Sci. 54:582–596 
 
Tanaka, K. and Matsumura, M. (2000) Development of virulence to resistant rice varieties 

in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae), 
immigrating into Japan. Appl. Entomol. Zool. 35:529-533 

 
Tao, X., Qiang, Z., Qiang, X., Wenqing, Z., Guren, Z. and Dexiang, G. (2002) Effects of 

herbivore-induced rice volatiles on the host selection behaviour of brown planthopper, 
Nilaparvata lugens. Chinese Science Bulletin vol. 47 no. 16 

 
Technologies, A. One-Colour Gene Expression Microarray Solution Dual-mode delivers the 

best of both worlds. Retrieved from www.agilent.com/chem/onecolour (Oct 19,2010) 
 
Tester, M. and Langridge, P. (2010) Breeding technologies to increase crop production in a 

changing world. Science (New York). 327(5967):818-22 
 
Thaler, J.S., Fidantsef, A.L. and Bostock, R.M. (2002) Antagonism between jasmonate- 

and salicylate-mediated induced plant resistance: effects of concentration and timing 
of elicitation on defence related proteins, herbivore, and pathogen performance in 
tomato.Journal of Chemical Ecology 28, 1131–1159 

 
Thirumalaiandi, R., Selvaraj, M.G., Rajasekaran, R. and Subbarayalu, M. (2008) 

Cloning and characterization of resistance gene analogs from underexploited plant 
species. Electr. J. Biotechnol. 11: 1-11 

 
Thomma, B.P.H.J., Penninckx, I.A.M.A., Cammue, B.P.A. and Broekaert, W.F. (2001) 

The complexity of disease signalling in Arabidopsis. Curr. Opin. Immunol. 13: 63-68 
 
Thompson, G.A. and Goggin F.L. (2006) Transcriptomics and functional genomics of plant 

defence induction by phloem-feeding insects. Journal of Experimental Botany, vol. 
57, no. 4:755–766 

 
Timmer, C.P. (2010) Rice and structural transformation. In : Sushil Pandey, Derek Byerlee, 

David Dawe, Achim Dobermann, Samarendu Mohanty, Scott Rozelle, and Bill Hardy, 
editors. (2010) Rice in the global economy: strategic research and policy issues for 
food security. Los Baños (Philippines): International Rice Research Institute. pp 37-
59 

 
Timmerman, V., Frew, G.M. and Weeden, N.F. (2000) Characterization and linkage 

mapping of R-gene analogous DNA sequences in pea (Pisum sativum L.). Theoretical 
and Applied Genetics  vol. 101, no.1-2:241-247 

 
 

http://www.agilent.com/chem/onecolor


References 
 

 172 

Tierens, K.F.M., Thomma, B.P.H.J., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., 
Mauch-Mani, B., Cammue, B.P.A. and Broekaert, W.F. (2001). Study of the role 
of antimicrobial glucosinolate-derived isothiocyanates in resistance of Arabidopsis to 
microbial pathogens. Plant Physiol. 125:1688-1699 

 
Tjallingii, W.F. (1978) Electronic recording of penetration behaviour by aphids. 

Entomologia Experimentalis et Applicata 24:721-730 
 
Tjallingii, W.F. (1985) Electrical nature of recorded signals during stylet penetration by 

aphids. Entomologia Experimentalis Et Applicata 38: 177-186 
 
Tjallingii, W.F. (1988) Electrical recording of stylet penetration activities. In Aphids:Their 

Biology, Natural Enemies and Control, vol. B., ed. AK Minks, P Harrewijn, 
Amsterdam: Elsevier pp.95–108 

 
Tjallingii, W. F. (1990) Stylet penetration parameters from aphids in relation to host-plant 

resistance. Symp. Biol. Hung. 39:411-419 
 
Tjallingii, W.F. (2006) Salivary secretions by aphids interacting with proteins of phloem 

wound responses. Journal of Experimental Botany 57: 739-745 
 
Tjallingii, W. F. and Gabrys, B. (1999) Anomalous stylet punctures of phloem sieve 

elements by aphids. Entomol. Exp. Appl. 91, 97-103 
 
Tjallingii WF, Hogen Esch T. (1993) Fine structure of aphid stylet routes in plant tissues in 

correlation with EPG signals. Physiological Entomology 18:317-328 
 
Tolmay, V.L. (2001) Resistance to biotic and abiotic stress in the Triticeae. Hereditas 135: 

239-242 
 
Traicevski, V. and  Ward, S. (2002) Probing behaviour of Aphis craccivora Koch on host 

plants of different nutritional quality. Ecological Entomology. 213-219 
 
Tanksley, S.D. (1993) Mapping polygenes. Annu Rev Genet 27:205-233 
 
Truernit, E., Schmid, J., Epple, P., Illig, J. and Sauer, N. (1996) The sink-specific and 

stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a 
monosaccharide transporter by wounding, elicitors, and pathogen challenge. The Plant 
Cell 8:2169–2182 

 
Tsai, J. H. and Liu, Y.H. (1998) Effect of temperature on development, survivorship, and 

reproduction of rice root aphid (Homoptera: Aphididae). Environ. Entomol 27: 662–
666 

 
Tsumuki, H., Kanehisa, K. and Kawada, K. (1989) Leaf surface wax as a possible 

resistance factor of barley to cereals aphids. Appl. Entomol. Zool. 24:295–301 
 
 



References 
 

 173 

Turner, R.W., Song, Y.H. and Uhm, K.B. (1999) Numerical simulations of rice 
planthopper (Nilaparvata lugens (Stål) and Sogatella furcifera Horvarth (Homoptera: 
Delphacidae) migration as a component in an internet surveillance system. Bull. 
Entomol. Res. 89(6):557-569 

 
Ukwungwu, M. N. 1990. Host plant resistance in rice to the African striped borer, Chilo 

zacconius Bles. (Lepidoptera: Pyralidae). Insect Sci. Appl. 11: 639-647 
 
Underwood, N., Morris, W., Gross, K. and Lockwood III, J.R. (2000) Induced resistance 

to Mexican bean beetles in soybean: variation among genotypes and lack of 
correlation with constitutive resistance. Oecologia 122:83–89 

 
Urs, W., Beatrice, M., Meinhard, H., Anita, J., Sepp, D.K., Helmut, S. and Robert, D. 

(1998) The defence-related rice gene Pir7b encodes an alpha/beta hydrolase fold 
protein exhibiting esterase activity towards naphthol AS-esters. Eur. J. Biochem. 254, 
32237 

 
Van Keer, K. (2003) On-farm agronomic diagnosis of traditional upland rice swidden 

cropping systems in Northern Thailand. Ph. D. Thesis, Katholieke Universiteit 
Leuven 

 
Van Oosten, V. (2007) Induced Pathogen and Insect Resistance in Arabidopsis: 

Transcriptomics and Specificity of Defence. PhD Thesis, Wageningen University, the 
Netherlands 

 
Van Oosten, .R.V., Bodenhausen, N., Reymond, P., Van Pelt, J.A., Loon, LCV, Dicke, 

M. and Pieterse, C.M.J. (2008) Differential effectiveness of microbially induced 
resistance  against herbivorous insects in Arabidopsis. Mol. Plant Microbe Interact 
21:919–930 

 
Van Wees, S.C.M., de Swart, E.A.M., van Pelt, J.A., van Loon L.C. and Pieterse, 

C.M.J., (2000) Enhancement of induced disease resistance by simultaneous activation 
of salicylate and jasmonate-dependent defence pathways in Arabidopsis thaliana. 
Proceedings of the National Academy of Sciences, USA. 97:8711–8716 

 
Vaughan, D.A. and Morishima, H. (2003) Biosystematics of genus Oryza. Chapter 1.2. In: 

CW Smith, C.W. and Dilday, R.H. eds. Rice. Origin, History, Technology, and 
Production. John Wiley and Sons Inc., Hoboken, New Jersey  pp.27-65 

 
Velusamy, R. and Heinrichs, E.A. (1986) Electronic monitoring of feeding behaviour of 

Nilaparvata lugens (Homoptera: Delphacidae) on resistant and susceptible rice 
cultivars. Environ. Entomol. 15:678–682 

 
Vicente, M.C., de Guzman, F.A., Engels, J. and Rao, V.R. (2005) Genetic characterization 

and its use in decision making for the conservation of crop germplasm. In: The  role 
of biotechnology, Proceedings. Turin, pp.121-128 

 



References 
 

 174 

Voiblet, C., Duplessis, S., Encelot, N., and Martin, F. (2001) Identification of symbiosis-
regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by 
differential hybridization of arrayed cDNAs. Plant J. 25:181–191 

 
Vornan, B. and Gebhardt, K. (1999) Application of cpDNA and  RAPD-Markers in  

characterization of clone collections of wild cherries and performance of 
micropropagated plus trees. In: Proceed. Int. Congress ―Applications of biotechnology 
to forest genetics‖, Vitoria-Gasteiz, Spain, Eds. Espinel S, Ritter E.; Biofor. pp.61-71 

 
Walch-Liu, P., Liu, L.H., Remans, T., Tester, M. and Forde, B.G. (2006) Evidence that 

L-glutamate can act as an exogenous signal to modulate root growth and branching in 
Arabidopsis thaliana. Plant Cell Physiol. 47:1045–1057 

 
Walker, J.E., Saraste, M., Runswick, M.J. and Gay, N.J. (1982) Distantly related genes in 

the alpha and beta subunits of ATP synthetase, myosin, kinases and other ATP-
requiring enzymes and a common nucleotide-binding fold. EMBO Journal  vol.1, 
no.8:945-951 

 
Walling, L.L. (2000) The myriad plant responses to herbivores. J Plant Growth Regul. 

19:195–216 
 
Wang, G.L., Mackill, D.J., Bonman, M., McCouch, S.R., Champoux, M.C. and Nelson, 

R.J. (1994) RFLP mapping of genes conferring complete and partial resistance to 
blast in a durably resistant rice cultivar. Genetics 136: 1421–1434 

 
Wang, Z.X., Yamanouchi, U., Katayose, Y., Sasaki, T. and Yano, M. (2001) Expression 

of the Pib rice-blast-resistance gene family is up-regulated by environmental 
conditions favouring infection and by chemical signals that trigger secondary plant 
defences. Plant Molecular Biology 47: 653–661 

 
Wang, X., Ren, X., Zhu, l. And He, G. (2004) OsBi1, a rice gene, encodes a novel protein 

with a CBS-like domain and its expression is induced in responses to herbivore 
feeding 

 
Wang, H.Y., Yang, Y., Su, J.Y., Shen, J.L., Gao, C.F., et al. (2008) Assessment of the 

impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera : 
Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens 
(Hemiptera : Delphacidae). Crop Protection 27: 514-522 

 
Ward, J.H. (1963) Hierarchical grouping to optimize an objective function. Journal of the 

American Statistical Association. 58:236–244 
 
Way, H., Chapman, S., McIntyre, L., Casu, R., Xue, G.P., Manners, J. and Shorter, R. 

(2005) Identification of differentially expressed genes in wheat undergoing gradual 
water deficit stress using a subtractive hybridisation approach. Plant Science 168:661–
670 

 



References 
 

 175 

Wei, Z., Hu, W., Lin, Q., Cheng, X., Tong, M., Zhu, L., Chen, R. and He, G. (2009) 
Understanding rice plant resistance to the Brown Planthopper (Nilaparvata lugens): A 
proteomic approach. Proteomics 9: 2798–2808 

 
Weschke, W., Panitz, R., Gubatz, S., Wang, Q., Radchuk, R., Weber, H. and Wobus, U. 

(2003) The role of invertases and hexose transporters in controlling sugar ratios in 
maternal and filial tissues of barley caryopses during early development. Plant J. 33: 
395–411 

 
Whetton, R. and Sederoff, R. (1995) Lignin biosynthesis. Plant Cell 7:1001–1013 
 
Wiktelius, S. (1987) Distribution of Rhopalosiphum padi (Homoptera: Aphididae) on spring 

barley plants. Annals of Applied Biology 110:1-7 
 
Wilkinson, T.L. and Douglas, A.E. (1995) Aphid feeding, as influenced by disruption of the 

symbiotic bacteria: an analysis of the pea aphid (Acyrthosiphon pisum). Journal of 
Insect Physiology 41: 635-640 

 
Wilkinson, T.L., Ashford, D.A., Pritchard, J. and Douglas A.E. (1997) Honeydew sugars 

and osmoregulation in the pea aphid Acyrthosiphon pisum. Journal of Experimental 
Biology 200, 2137–2143 

 
Will, T., Tjallingii W.F., Thonnessen, A. and van Bel, A.J.E. (2007) Molecular sabotage 

of plant defence by aphid saliva. Proc. Natl. Acad. Sci. U.S.A. 104: 10536-10541 
 
Win, S.S., Muhamad, R., Ahmad, Z.A.M. and Adam, N.A. (2009) Life Table and 

Population Parameter of Sogatella furcifera (Horvath) (Homoptera: Delphacidae) on 
Rice. Journal of Biological Sciences  9(8):904-908 

 
Wiseman, B.R. (1999) Successes in plant resistance to insects, In J. A. Wisemand and B. R. 

Webster (eds.), Proceedings, Thomas Say Publications in Entomology. Entomological 
Society of America, Lanham, MD pp.3-15 

 
Wong, H. L., Sakamoto, T., Kawasaki, T., Umemura, K. And Shimamoto, K. (2004) 

Down-regulation of metallothionein, a reactive oxygen scavenger, by the small 
GTPase OsRac1 in rice. Plant Physiol. 135:1447-1456 

 
Woodhead, S., and Padgham, D.E. (1988) The effect of plant surface characteristics on 

resistance of rice to the brown planthopper, Nilaparvata lugens. Entomol. Exp. Appl. 
47:15-22. 

 
Xiang-shun, H., Hui-yan, Z., Zu-qing, H., Dong-hong, L. and Yu-hong, Z. (2008) EPG 

Comparison of Sitobion avenae (Fab.) Feeding Behaviour on Three Wheat Varieties. 
Agricultural Sciences in China 7:180-186. 

 
Xiao, J., Li, J., Grandillo, S., Ahn, S.N., Yuan, L., Tanksley, S.D., and McCouch, S.R. 

(1998) Identification of trait-improving quantitative trait loci alleles from a wild rice 
relative, Oryza rufipogon. Genetics 150: 899–90 

 



References 
 

 176 

Xu, R., Song, F. and Zhen, Z. (2006) OsBISAMT1, a gene encoding S-adenosyl-L-
methionine:salicylic acid carboxyl methyltransferase, is differentially expressed in 
rice defence responses.  Molecular Biology Reports 33:223–231 

 
Xu, X.F., Mei, H.W., Luo, L.J., Cheng, X.N. and Li, Z.K. (2002) RFLP facilitated 

investigation of the quantitative resistance of rice to brown planthopper (Nilaparvata 
lugens). Theor Appl Genet. 104:248–253 

 
Xu, Y., Chang, P.F.L., Liu, D., Narasimhan, M.L., Raghothama, K.G., et al. (1994) Plant 

defence genes are synergistically induced by ethylene and methyl jasmonate. Plant 
Cell 6:1077–85 

 
Yadav, R., Courtois, B., Huang, N. and Mclaren, G. (1997) Mapping genes controlling 

root morphology and root distribution in a doubled-haploid population of rice. Theor 
Appl Genet 94:619–632 

 
Yang,  H.Y., You, A.Q., Yang, Z.F., Zhang, F., He, R.F., et al. (2004) High-resolution 

genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza 
sativa L.). Theoretical and Applied Genetics 110: 182-191 

 
Yang, Z., Zhang, F., He, Q., and He, G. (2005) Molecular dynamics of detoxification and 

toxin-tolerance genes in brown planthopper (Nilaparvata lugens Sta°l., Homoptera: 
Delphacidae) feeding on resistant rice plants. Archives of Insect Biochemistry and 
Physiology 59:59–66 

 
Yano, K., Miyake, T. and Eastop, V.F. (1983) The biology and economic importance of 

rice aphids (Hemiptera: Aphididae): A review. Bull. ent. Res. 73:539-566 
 
Yoshida, S. (1975) The physiology of silicon in rice. Food fertilizer tech. Centre technical 

bull. no.25 
 
Yoshihara, T., Sogawa, K., Pathak, M.D., Juliano, B. and Sakamura, S. (1979a) Soluble 

silicic acid as a sucking inhibitory substance on rice against the brown planthopper 
(Delphacidae, Homoptera).  Entomol. Exp. Appl. 26:314-322 

 
Yoshihara, T., Sogawa, K., Pathak, M.D. and Villareal, R. (1979b) Comparison of oxalic 

acid concentration in rice varieties susceptible to the brown planthopper. Int. Rice 
Res. Newsl. 4:10-11 

 
Yoshihara, T., Sogawa, K., Pathak, M.D., Juliano, B. and Sakamura, S. (1980) Oxalic 

acid as a sucking inhibitor of the brown planthopper in rice (Delphacidae, 
Homoptera).‘ Entomol. Exp. Appl. 27:149-155 

 
Yuan, H., Chen, X.,  Zhu, L. and He, G. (2005) Identification of genes responsive to brown 

planthopper Nilaparvata lugens Sta° l (Homoptera: Delphacidae) feeding in rice. 
Planta 221: 105–112 

 



References 
 

 177 

Zagrobelny, M., Bak, S., Rasmussen, A.V., Jørgensen, B., Naumann, C.M. and Møller, 
B.L. (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 
65:293–306 

 
Zarate, S.I., Kempema, L.A. and Walling, L.L. (2007) Silverleaf whitefly induces salicylic 

acid defences and suppresses effectual jasmonic acid defences. Plant Physiol. 
143:866-875 

 
Zhang, F., Zhu, L. and He, G. (2004) Differential gene expression in response to brown 

planthopper feeding in rice. Journal of Plant Physiology 161:53–62 
 
Zhang, Q. (2007) Strategies for developing Green Super Rice. PNAS. vol.104  no.42:16402–

16409   
 
Zheng, H.G., Babu, R.C., Pathan, M.S., Ali, M.L., Huang, N., Courtois, B. and Nguyen, 

H.T. (2000) Quantitative trait loci for root penetration ability and root thickness in 
rice: comparison of genetic backgrounds. Genome 43:53–61 

 
Zheng, Y.L., Xu, L., Wu, J.C., Liu, J.L. and DuanMu, H.L. (2007) Time of occurrence of 

hopperburn symptom on rice following root and leaf cutting and fertilizer application 
with brown planthopper, Nilaparvata lugens (Stål) infestation.Crop Protection 26: 66–
72 

 
Zhou, G., Xu, F., Li, J.,Yang, L. and Liu, J.Y. (2006) Molecular Analyses of the 

Metallothionein Gene Family in Rice (Oryza sativa L.). Journal of Biochemistry and 
Molecular Biology vol. 39, no. 5:595-606 

 
Zhou, X. and  Su, Z. (2007)  EasyGO: Gene Ontology-based annotation and functional 

enrichment analysis tool for agronomical species, BMC Genomics 8: 246 
 
Ziegler, H. (1975) Nature of transported substances. In: Zimmerman MH, Milburn JA, eds.  

Encyclopedia of plant physiology, New series, vol. 1. Berlin: Springer-Verlag, 59–
100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendices 
 

 178 

List of Appendices 
Appendix A-MIAME/Plant data 
 
MIAME/PLANT frame work                             Experiment information 
Array Design Description 
Manufacturer                                                      Agilent 
Chip type                                                            4x 44K rice one colour genechip 
 
Plant Experiment Design                                                                                                            
 
Pooling                                                                                                                                    
Number of plants in each pool        5                                                                                               
When pooled           7 weeks old                                                                                                                          
Genotype pooled         Individual                                                                                                                     
Planted on the same day                                      Yes                                                                    
 
Experimental design                                                                                                               
Number of blocks          2                                                                                                                  
Randomised between blocks                               Yes                                   
 
Plant sample used, extract preparation and labelling                                                                  
 
Biosource properties 
Germplasm Accession         12 
Starting material                                                   Seed                                     
Development stage                                               7 weeks old (vegetative stage)                                   
Organism part                                                       Plant stem                                    
 
Biomaterial manipulations 
Growth substrate                                                   Multipurpose compost (HUMAX)                                                                    
Growth environment                                             Control growth room     
Environmental conditions                                                                                                           
Light duration                                                       16L: 8D            
Light intensity                                                       250-280  µmmol.m-²s-¹                                                                    
Light source                                                          Fluorescent lamps                                                                   
Humidity                                                               60 ± 10% 
Watering conditions                                              Manually 
Temperature                                                          24 ± 3 0C 
Spacing/density of the plant                                  5 cm    
Pots                                                                        5 cm diameter        
Growth/Control agents                                          None  
Harvesting conditions                                           Growth room temperature     
Treatment type                                                      None 
Isolation techniques                                             Stem removed by scaple and flash frozen in   
                                                                              liquid nitrogen  
Extraction method                                                Qiagen plant mini kit (see chapter 5) 
Labelling                                                              As Agilent manufactures instruction (see   
                                                                             chapter 5) 
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Appendix C. List of 239 significant genes between susceptible and resistance 
 
Probe ID Fold 

 change 
Description 

A_71_P100387 2.50 Arabidopsis thaliana unknown protein (At1g16310) mRNA, 
complete cds.|PLN 

A_71_P100388 2.54 Arabidopsis thaliana unknown protein (At1g16310) mRNA, 
complete cds.|PLN 

A_71_P100413 2.72 Oryza sativa metallothionein-like type 2 (OsMT-2) mRNA, 
complete cds.|PLN 

A_71_P100622 2.04 Arabidopsis thaliana putative DNA-binding protein 
(At1g68810) mRNA, complete cds.|PLN 

A_71_P100654 2.05 Oryza sativa 1-deoxy-D-xylulose 5-phosphate 
reductoisomerase precursor, mRNA, complete cds; nuclear 
gene for plastid product.|PLN 

A_71_P100971 2.58 Unknown expressed protein 
A_71_P100986 4.74 Arabidopsis thaliana clone 10986 mRNA, complete 

sequence.|PLN 
A_71_P100990 2.13 Homo sapiens, clone MGC:35476 IMAGE:5195029, mRNA, 

complete cds.|PRI 
A_71_P101402 4.20 Oryza sativa RRJ4 mRNA for 12-oxophytodienoic acid 

reductase, complete cds.|PLN 
A_71_P101412 2.07 Arabidopsis thaliana unknown protein (At1g28380) mRNA, 

complete cds.|PLN 
A_71_P101498 4.27 L.esculentum mRNA for RNA-directed RNA polymerase.|PLN 
A_71_P101565 3.08 Arabidopsis thaliana unknown protein (At3g18270) mRNA, 

complete cds.|PLN 
A_71_P101582 2.05 Arabidopsis thaliana At3g51780/ORF3 mRNA, complete 

cds.|PLN 
A_71_P101654 4.49 Arabidopsis thaliana putative receptor protein kinase 

(At1g28440) mRNA, complete cds.|PLN 
A_71_P101830 2.63 Arabidopsis thaliana clone 23166 mRNA, complete 

sequence.|PLN 
A_71_P101986 2.02 Zea mays nuclear matrix protein 1 (NMP1) mRNA, complete 

cds.|PLN 
A_71_P101999 3.29 Arabidopsis thaliana At5g10830 mRNA, complete cds.|PLN 
A_71_P102127 3.48 Oryza sativa subtilase mRNA, complete cds.|PLN 
A_71_P102137 2.31 Unknown expressed protein 
A_71_P102230 2.18 Arabidopsis thaliana unknown protein (At1g68140) mRNA, 

complete cds.|PLN 
A_71_P102333 3.82 Oryza sativa clone C26554 UMP synthase (UMPS1) mRNA, 

complete cds.|PLN 
A_71_P102363 2.38 Pisum sativum mRNA for raffinose synthase (rfs gene).|PLN 
A_71_P102369 2.43 Arabidopsis thaliana putative kinase (At5g14270) mRNA, 

complete cds.|PLN 
A_71_P102373 3.12 Arabidopsis thaliana clone RAFL15-16-B02 (R20452) 

unknown protein (At4g32930) mRNA, complete cds.|PLN 
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A_71_P102388 8.77 Unknown expressed protein 
A_71_P102670 2.60 Caenorhabditis elegans R151.8A protein (R151.8A) mRNA, 

complete cds.|INV 
A_71_P103010 3.62 Unknown expressed protein 
A_71_P103011 6.14 Unknown expressed protein 
A_71_P103012 17.67 Unknown expressed protein 
A_71_P103133 2.93 Unknown expressed protein 
A_71_P103375 2.10 Arabidopsis thaliana clone 37307 mRNA, complete 

sequence.|PLN 
A_71_P103383 2.21 Arabidopsis thaliana At1g28600/F1K23_6 mRNA, complete 

cds.|PLN 
A_71_P103421 2.27 Arabidopsis thaliana fatty acid multifunctional protein 

(AtMFP2) (F17A9.1) mRNA, complete  
cds.|PLN 

A_71_P103437 2.24 Oryza sativa chloroplast carbonic anhydrase mRNA, complete 
cds.|PLN 

A_71_P103449 3.78 Unknown expressed protein 
A_71_P103494 3.60 Oryza sativa mRNA for asparaginyl endopeptidase, complete 

cds.|PLN 
A_71_P103761 7.97 Unknown expressed protein 
A_71_P103779 2.14 Arabidopsis thaliana At3g25290/MJL12_25 mRNA, complete 

cds.|PLN 
A_71_P103913 2.01 Arabidopsis thaliana At1g72120/F28P5_2 mRNA, complete 

cds.|PLN 
A_71_P104017 2.15 Panicum miliaceum mRNA for plastidic aspartate 

aminotransferase , complete cds.|PLN 
A_71_P104157 7.65 Zea mays plasma membrane integral protein ZmPIP1-5 

mRNA, complete cds.|PLN 
A_71_P104210 4.22 Atropa belladonna AbSAMT1 mRNA for S-adenosyl-L-

methionine:salicylic acid carboxyl  
methyltransferase, complete cds.|PLN 

A_71_P104266 2.31 Oryza sativa mRNA for Pib, complete cds.|PLN 
A_71_P104413 9.39 Quercus ilex mRNA for putative chloroplast terpene synthase 

(16 gene).|PLN 
A_71_P104669 6.49 Unknown expressed protein 
A_71_P105137 3.84 Unknown expressed protein 
A_71_P105148 2.69 Arabidopsis thaliana clone U10014 unknown protein 

(At5g27730) mRNA, complete cds.|PLN 
A_71_P105257 2.10 Arabidopsis thaliana clone 15975 mRNA, complete 

sequence.|PLN 
A_71_P105431 2.08 Hordeum vulgare clone HV_CEb0009E08f CONSTANS-like 

protein CO7 (CO7) mRNA, partial cds.|PLN 
A_71_P105469 2.27 Arabidopsis thaliana unknown protein (At1g79910) mRNA, 

complete cds.|PLN 
A_71_P105737 3.65 Arabidopsis thaliana clone U18226 unknown protein 

(At4g00330) mRNA, complete cds.|PLN 
A_71_P105812 2.18 Unknown expressed protein 
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A_71_P105912 25.26 Arabidopsis thaliana clone 1204 mRNA, complete 
sequence.|PLN 

A_71_P106481 3.57 Malus domestica leucine-rich receptor-like protein kinase 
(LRPKm1) mRNA, complete cds.|PLN 

A_71_P106638 2.08 Arabidopsis thaliana putative protein phosphatase-2C 
(At1g79630) mRNA, complete cds.|PLN 

A_71_P106784 2.40 Rattus norvegicus 270 kDa ankyrin G isoform mRNA, partial 
cds.|ROD 

A_71_P106798 2.53 Arabidopsis thaliana At1g69640/F24J1.22 mRNA, complete 
cds.|PLN 

A_71_P106872 2.62 Unknown expressed protein 
A_71_P106926 2.46 Arabidopsis thaliana clone 9503 mRNA, complete 

sequence.|PLN 
A_71_P107075 2.80 Unknown expressed protein 
A_71_P107161 4.75 Arabidopsis thaliana putative amino acid carrier (At1g77380) 

mRNA, complete cds.|PLN 
A_71_P107269 2.08 Arabidopsis thaliana At3g21670/MIL23_23 mRNA, complete 

cds.|PLN 
A_71_P107414 2.38 Arabidopsis thaliana At3g17850 mRNA for putative protein 

kinase, complete cds, clone:  
RAFL16-77-O03.|PLN 

A_71_P107518 2.19 Arabidopsis thaliana putative protein kinase (At1g67890) 
mRNA, complete cds.|PLN 

A_71_P107893 3.95 Morinda citrifolia mRNA for 3-deoxy-D-arabino-
heptulosonate 7-phosphate synthase, DS1.|PLN 

A_71_P108313 2.17 Arabidopsis thaliana Unknown protein (At5g21090) mRNA, 
complete cds.|PLN 

A_71_P108358 2.29 Arabidopsis thaliana flavanone 3-hydroxylase-like protein 
(At5g24530) mRNA, complete cds.|PLN 

A_71_P108538 2.11 Unknown expressed protein 
A_71_P108638 3.38 Arabidopsis thaliana mRNA for sulfate transporter, complete 

cds.|PLN 
A_71_P109098 3.00 Arabidopsis thaliana putative WRKY-type DNA binding 

protein (At2g46400) mRNA, complete 
 cds.|PLN 

A_71_P109258 2.14 Unknown expressed protein 
A_71_P109290 4.87 Unknown expressed protein 
A_71_P109333 2.89 Unknown expressed protein 
A_71_P109502 3.77 Unknown expressed protein 
A_71_P109692 17.89 Unknown expressed protein 
A_71_P110206 17.45 Unknown expressed protein 
A_71_P110348 2.64 Arabidopsis thaliana aminophospholipid flippase (ALA1) 

mRNA, complete cds.|PLN 
A_71_P110868 2.77 Callistephus chinensis flavone synthase II (CYP93B5) mRNA, 

complete cds.|PLN 
A_71_P110869 2.73 G.max mRNA for putative cytochrome P450, clone CP5.|PLN 
A_71_P110946 2.76 Arabidopsis thaliana clone 104017 mRNA, complete 
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sequence.|PLN 
A_71_P110950 2.85 Arabidopsis thaliana clone C105054 unknown protein 

(At1g22930) mRNA, complete cds.|PLN 
A_71_P111055 2.67 Arabidopsis thaliana clone 146543 mRNA, complete 

sequence.|PLN 
A_71_P111145 4.20 Prunus serotina amygdalin hydrolase isoform AH I precursor 

(AH1) mRNA, complete cds.|PLN 
A_71_P111730 5.36 Arabidopsis thaliana unknown protein (At5g42500) mRNA, 

complete cds.|PLN 
A_71_P111756 5.04 Unknown expressed protein 
A_71_P111907 5.88 Pinus contorta beta-glucosidase mRNA, complete cds.|PLN 
A_71_P111914 6.03 Unknown expressed protein 
A_71_P111916 2.77 Unknown expressed protein 
A_71_P112075 6.77 Unknown expressed protein 
A_71_P112265 15.84 Unknown expressed protein 
A_71_P112410 2.48 Oryza sativa putative aminotransferase mRNA, partial 

cds.|PLN 
A_71_P112485 3.09 Oryza sativa gibberellin C-20 oxidase mRNA, complete 

cds.|PLN 
A_71_P112717 5.52 Medicago truncatula anthocyanidin reductase (BAN) mRNA, 

complete cds.|PLN 
A_71_P112774 2.15 Allium cepa mRNA for invertase.|PLN 
A_71_P112787 2.14 Arabidopsis thaliana putative S-receptor kinase (At4g32300) 

mRNA, complete cds.|PLN 
A_71_P112828 2.94 Arabidopsis thaliana clone U10011 putative carbonyl 

reductase (At1g01800) mRNA, complete 
 cds.|PLN 

A_71_P112844 4.13 Corn mRNA for cysteine proteinase, clone CCP, complete 
cds.|PLN 

A_71_P112916 3.85 Arabidopsis thaliana UDP-glucose glucosyltransferase 
(At1g22360) mRNA, complete cds.|PLN 

A_71_P112930 3.73 Homo sapiens mRNA for KIAA1038 protein, partial cds.|PRI 
A_71_P112946 2.64 Oryza sativa OsMST1 mRNA for monosaccharide transporter 

1, complete cds.|PLN 
A_71_P113124 10.07 Arabidopsis thaliana putative zinc transporter (ZIP1) mRNA, 

complete cds.|PLN 
A_71_P113180 2.03 Mus musculus, Similar to hypothetical protein FLJ10743, clone 

MGC:38260 IMAGE:5324875, 
 mRNA, complete cds.|ROD 

A_71_P113184 2.92 Arabidopsis thaliana clone U18492 unknown protein 
(At2g31740) mRNA, complete cds.|PLN 

A_71_P113349 2.53 Arabidopsis thaliana putative protein (At5g35160) mRNA, 
complete cds.|PLN 

A_71_P113373 2.04 Arabidopsis thaliana clone 29744 mRNA, complete 
sequence.|PLN 

A_71_P113466 2.13 Musa acuminata putative 0-deacetylbaccatin III-10-O-acetyl 
transferase-like protein mRNA,  
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partial cds.|PLN 

A_71_P113476 2.63 Oryza sativa (japonica cultivar-group) mRNA for aspartic 
proteinase, complete cds.|PLN 

A_71_P113773 4.70 Unknown expressed protein 
A_71_P113814 3.07 Unknown expressed protein 
A_71_P113838 3.47 Unknown expressed protein 
A_71_P113941 2.19 Triticum aestivum Na+/H+ antiporter (NHX1) mRNA, 

complete cds.|PLN 
A_71_P114079 2.59 Oryza sativa (japonica cultivar-group) mRNA for qSH-1, 

complete cds.|PLN 
A_71_P114236 2.59 Arabidopsis thaliana clone RAFL15-05-K10 (R20381) 

putative lipase (At1g09390) mRNA, complete  
cds.|PLN 

A_71_P114315 2.35 Arabidopsis thaliana clone 8156 mRNA, complete 
sequence.|PLN 

A_71_P114413 2.46 Arabidopsis thaliana clone 25342 mRNA, complete 
sequence.|PLN 

A_71_P114501 2.37 Arabidopsis thaliana calreticulin, putative (At1g08450) 
mRNA, complete cds.|PLN 

A_71_P114621 2.67 Arabidopsis thaliana putative receptor protein kinase 
(At5g48380) mRNA, complete cds.|PLN 

A_71_P114864 2.22 Unknown expressed protein 
A_71_P114907 3.83 Arabidopsis thaliana unknown protein (At3g18660) mRNA, 

complete cds.|PLN 
A_71_P115683 3.42 Panax ginseng ACBP mRNA for Acyl-CoA-binding protein, 

complete cds.|PLN 
A_71_P115765 3.84 Unknown expressed protein 
A_71_P115769 9.28 Unknown expressed protein 
A_71_P115993 2.77 Unknown expressed protein 
A_71_P116025 3.81 Solanum tuberosum mRNA for cytochrome P450 (CYP71D4 

gene).|PLN 
A_71_P116071 7.82 Arabidopsis thaliana unknown protein (At3g14800) mRNA, 

complete cds.|PLN 
A_71_P116147 4.15 Maize mRNA for putative protein kinase.|PLN 
A_71_P116417 4.78 Unknown expressed protein 
A_71_P116535 2.23 Unknown expressed protein 
A_71_P116723 2.05 Arabidopsis thaliana unknown protein (At4g00880) mRNA, 

complete cds.|PLN 
A_71_P116733 2.94 Arabidopsis thaliana At1g21000/F9H16_1 mRNA, complete 

cds.|PLN 
A_71_P116856 2.28 A.thaliana receptor-like protein kinase mRNA, complete 

cds.|PLN 
A_71_P116858 2.68 Malus domestica leucine-rich receptor-like protein kinase 

(LRPKm1) mRNA, complete cds.|PLN 
A_71_P116926 5.35 Arabidopsis thaliana clone 37493 mRNA, complete 

sequence.|PLN 
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A_71_P116998 6.38 Unknown expressed protein 
A_71_P117119 2.37 Arabidopsis thaliana Unknown protein (At1g16670) mRNA, 

complete cds.|PLN 
A_71_P117233 2.99 H.vulgare mRNA for xyloglucan endotransglycosylase-like 

protein (XEA).|PLN 
A_71_P117254 3.98 Cicer arietinum mRNA for copper containing amine oxidase 

(DAO).|PLN 
A_71_P117272 3.09 Zea mays NADPH HC toxin reductase (hm1) mRNA, hm1-

W22 allele, complete cds.|PLN 
A_71_P117415 7.38 Unknown expressed protein 
A_71_P117418 2.23 Arabidopsis thaliana unknown protein (At2g39570/F12L6.23) 

mRNA, complete cds.|PLN 
A_71_P117839 3.12 Oryza sativa peroxidase (POX22.3) mRNA, complete 

cds.|PLN 
A_71_P117865 11.66 Arabidopsis thaliana At3g26770/MDJ14_21 mRNA, complete 

cds.|PLN 
A_71_P117871 4.10 Arabidopsis thaliana putative glutamate receptor protein 

GLR3.4b (GLR3.4) mRNA,  
GLR3.4-2 allele, complete cds; alternatively spliced.|PLN 

A_71_P118087 13.38 Unknown expressed protein 
A_71_P119575 2.61 Arabidopsis thaliana At2g39210/T16B24.15 mRNA, complete 

cds.|PLN 
A_71_P119587 2.09 Unknown expressed protein 
A_71_P119764 4.94 Arabidopsis thaliana At5g40780/K1B16_3 mRNA, complete 

cds.|PLN 
A_71_P119943 3.19 Oryza sativa (japonica cultivar-group) mRNA for 

monodehydroascorbate reductase, partial cds. 
|PLN 

A_71_P120004 4.33 Unknown expressed protein 
A_71_P120037 8.78 Daucus carota transposable element TdcA1-ORF2 mRNA, 

partial cds.|PLN 
A_71_P120062 2.92 Arabidopsis thaliana putative receptor serine/threonine kinase 

(At1g29750) mRNA, complete 
 cds.|PLN 

A_71_P120188 6.59 Arabidopsis thaliana unknown protein (At1g80110) mRNA, 
complete cds.|PLN 

A_71_P120304 4.58 Arabidopsis thaliana class III peroxidase ATP32 mRNA, 
complete cds.|PLN 

A_71_P120316 5.97 Arabidopsis thaliana unknown protein (At4g02210) mRNA, 
complete cds.|PLN 

A_71_P120393 2.33 Oryza sativa PibH8 mRNA, complete cds.|PLN 
A_71_P120550 4.20 Oryza sativa (japonica cultivar-group) mRNA for ribonuclease, 

complete cds, clone:C30227.|PLN 
A_71_P120580 3.74 Unknown expressed protein 
A_71_P120661 5.67 Avena sativa fructose 1,6-bisphosphate aldolase precursor, 

mRNA, complete cds; nuclear gene 
 for chloroplast product.|PLN 
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A_71_P120688 2.14 Unknown expressed protein 
A_71_P120753 2.59 Unknown expressed protein 
A_71_P120761 2.84 Arabidopsis thaliana unknown protein (At2g36430) mRNA, 

complete cds.|PLN 
A_71_P120848 6.49 Arabidopsis thaliana unknown protein (At3g04140) mRNA, 

complete cds.|PLN 
A_71_P120920 3.45 Unknown expressed protein 
A_71_P121143 2.49 Unknown expressed protein 
A_71_P121309 5.33 Unknown expressed protein 
A_71_P121750 2.54 Arabidopsis thaliana putative potassium transporter 

(At2g35060) mRNA, complete cds.|PLN 
A_71_P121767 2.38 Arabidopsis thaliana unknown protein (At5g39780) mRNA, 

complete cds.|PLN 
A_71_P121872 2.10 Arabidopsis thaliana clone C105073 unknown protein 

(At4g11570) mRNA, complete cds.|PLN 
A_71_P121933 2.44 Gossypium hirsutum gaiacol peroxidase (pod5) mRNA, 

complete cds.|PLN 
A_71_P122101 2.91 Solanum tuberosum mRNA for CDSP34 protein.|PLN 
A_71_P122103 8.10 Unknown expressed protein 
A_71_P122112 8.83 Euphorbia esula putative flavonol synthase-like protein 

mRNA, complete cds.|PLN 
A_71_P122176 2.81 Vicia faba mRNA for putative potassium transporter (hak1 

gene).|PLN 
A_71_P122206 4.88 Oryza sativa subsp. japonica putative glutathione S-transferase 

OsGSTU17 mRNA, complete  
cds.|PLN 

A_71_P122249 4.15 Arabidopsis thaliana clone 108568 mRNA, complete 
sequence.|PLN 

A_71_P122268 2.24 Olea europaea RUB1 conjugating enzyme (ORCE) mRNA, 
complete cds.|PLN 

A_71_P122520 2.75 Unknown expressed protein 
A_71_P122651 20.02 Unknown expressed protein 
A_71_P122780 6.94 Unknown expressed protein 
A_71_P122813 2.04 Citrus jambhiri blight-associated protein p12 precursor mRNA, 

complete cds.|PLN 
A_71_P122835 5.50 Nicotiana tabacum UDP-glucose:salicylic acid 

glucosyltransferase (SA-GTase) mRNA, complete 
 cds.|PLN 

A_71_P123076 3.79 Arabidopsis thaliana unknown protein (At3g22550) mRNA, 
complete cds.|PLN 

A_71_P123152 2.81 Arabidopsis thaliana AT5g28840/F7P1_20 mRNA, complete 
cds.|PLN 

A_71_P123200 4.42 Unknown expressed protein 
A_71_P123310 3.61 Arabidopsis thaliana cytochrome p450, putative (At1g64900) 

mRNA, complete cds.|PLN 
A_71_P123372 2.90 Hordeum vulgare mRNA for hexose transporter (stp1 

gene).|PLN 
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A_71_P123474 3.03 Nicotiana tabacum centrin (CEN1) mRNA, complete cds.|PLN 
A_71_P123501 8.54 Arabidopsis thaliana partial mRNA for hypothetical protein, 

clone 105C20.|PLN 
A_71_P123516 3.68 Unknown expressed protein 
A_71_P123575 2.53 Arabidopsis thaliana unknown protein (At4g14740) mRNA, 

complete cds.|PLN 
A_71_P123744 9.90 Rice mRNA for aspartic protease, complete cds.|PLN 
A_71_P123762 3.52 Solanum chacoense cytochrome P450 mRNA, complete 

cds.|PLN 
A_71_P123885 3.21 Oryza sativa subsp. japonica putative glutathione S-transferase 

OsGSTU12 mRNA, complete 
 cds.|PLN 

A_71_P124174 7.71 Unknown expressed protein 
A_71_P124178 2.16 Arabidopsis thaliana clone 30996 mRNA, complete 

sequence.|PLN 
A_71_P124211 6.18 Unknown expressed protein 
A_71_P124262 3.74 Unknown expressed protein 
A_71_P124595 3.49 Sorghum bicolor mRNA for protein serine/threonine kinase 

RLK1.|PLN 
A_71_P124627 2.94 Maize Adh2-N mRNA for alcohol dehydrogenase 2.|PLN 
A_71_P124724 4.60 Nicotiana tabacum mRNA for hsr203J, complete cds.|PLN 
A_71_P124792 3.01 Arabidopsis thaliana putative carboxypeptidase (At5g09640) 

mRNA, complete cds.|PLN 
A_71_P124915 3.28 Unknown expressed protein 
A_71_P125002 5.08 Unknown expressed protein 
A_71_P125033 2.78 Unknown expressed protein 
A_71_P125105 12.15 Unknown expressed protein 
A_71_P125138 2.54 Unknown expressed protein 
A_71_P125168 2.42 Oryza sativa receptor serine/threonine kinase mRNA, partial 

cds.|PLN 
A_71_P125211 6.49 Avena strigosa mRNA for beta-amyrin synthase (bAS1 

gene).|PLN 
A_71_P125246 2.12 Oryza sativa metallothionein-like protein mRNA, complete 

cds.|PLN 
A_71_P125335 14.30 Oryza sativa OSKgamma mRNA for shaggy-related protein 

kinase gamma, complete cds.|PLN 
A_71_P125516 4.24 Arabidopsis thaliana clone RAFL14-93-K05 (R20243) 

unknown protein (At5g23570) mRNA, 
 complete cds.|PLN 

A_71_P125519 6.87 Oryza sativa nucleotide-binding leucine-rich-repeat protein 1 
mRNA, complete cds.|PLN 

A_71_P125539 2.54 Arabidopsis thaliana clone 108517 mRNA, complete 
sequence.|PLN 

A_71_P125580 4.94 Oryza sativa fatty acid alpha-oxidase mRNA, complete 
cds.|PLN 

A_71_P125681 2.77 C.lacryma-jobi mRNA for alpha-coixin 17kDa.|PLN 
A_71_P125859 3.46 Solanum tuberosum StCBP mRNA for citrate binding protein, 
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complete cds.|PLN 
A_71_P126158 4.99 Oryza sativa metallothionein-like protein mRNA, complete 

cds.|PLN 
A_71_P126254 2.93 Unknown expressed protein 
A_71_P126304 8.35 Arabidopsis thaliana At1g76730 mRNA for unknown protein, 

complete cds, clone: 
 RAFL21-46-B03.|PLN 

A_71_P126426 2.49 Arabidopsis thaliana unknown protein (At4g36860) mRNA, 
complete cds.|PLN 

A_71_P126487 4.47 Unknown expressed protein 
A_71_P126491 9.15 Oryza sativa unknown mRNA.|PLN 
A_71_P126492 3.72 Unknown expressed protein 
A_71_P126605 2.14 Arabidopsis thaliana putative receptor protein kinase, 

ERECTA (At2g26330) mRNA, complete 
 cds.|PLN 

A_71_P126609 2.52 Arabidopsis thaliana putative protein (At5g04550) mRNA, 
complete cds.|PLN 

A_71_P126612 3.14 Oryza sativa putative phytosulfokine peptide precursor (PSK3) 
mRNA, complete cds.|PLN 

A_71_P126614 17.94 Unknown expressed protein 
A_71_P126761 11.55 Unknown expressed protein 
A_71_P126795 2.50 Unknown expressed protein 
A_71_P126799 10.82 Unknown expressed protein 
A_71_P126800 14.93 Arabidopsis thaliana At2g30530/T6B20.12 mRNA, complete 

cds.|PLN 
A_71_P126802 17.40 Arabidopsis thaliana At3g10840 mRNA for putative 

alpha/beta hydrolase, complete cds, 
 clone: RAFL17-30-F07.|PLN 

A_71_P126819 15.01 Arabidopsis thaliana putative phospholipid cytidylyltransferase 
(At2g38670) mRNA,  
complete cds.|PLN 

A_71_P126852 7.02 Nicotiana tabacum mRNA for peroxidase, complete cds, 
clone:tpoxC1.|PLN 

A_71_P126881 2.45 Arabidopsis thaliana unknown protein (At1g80110) mRNA, 
complete cds.|PLN 

A_71_P128402 9.45 Unknown expressed protein 
A_71_P128422 12.80 Unknown expressed protein 
A_71_P128629 20.83 Phaseolus vulgaris NBS-LRR resistance-like protein J78 (J78) 

mRNA, complete cds.|PLN 
A_71_P128640 8.27 Unknown expressed protein 
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 Appendix D List of 219 significant genes between susceptible and moderate resistance 
 
ID Fold 

 
Change 

Description 

A_71_P100387 2.10 Arabidopsis thaliana unknown protein (At1g16310) mRNA, 
complete cds.|PLN 

A_71_P100388 2.15 Arabidopsis thaliana unknown protein (At1g16310) mRNA, 
complete cds.|PLN 

A_71_P100413 3.57 Oryza sativa metallothionein-like type 2 (OsMT-2) mRNA, 
complete cds.|PLN 

A_71_P100971 2.74 Unknown expressed protein 
A_71_P100986 4.11 Arabidopsis thaliana clone 10986 mRNA, complete 

sequence.|PLN 
A_71_P101101 2.12 Arabidopsis thaliana AT5g54860/MBG8_12 mRNA, complete 

cds.|PLN 
A_71_P101402 2.73 Oryza sativa RRJ4 mRNA for 12-oxophytodienoic acid 

reductase, complete cds.|PLN 
A_71_P101412 2.23 Arabidopsis thaliana unknown protein (At1g28380) mRNA, 

complete cds.|PLN 
A_71_P101498 4.10 L.esculentum mRNA for RNA-directed RNA polymerase.|PLN 
A_71_P101565 3.14 Arabidopsis thaliana unknown protein (At3g18270) mRNA, 

complete cds.|PLN 
A_71_P101615 5.98 Unknown expressed protein 
A_71_P101654 3.49 Arabidopsis thaliana putative receptor protein kinase 

(At1g28440) mRNA, complete cds.|PLN 
A_71_P101830 2.22 Arabidopsis thaliana clone 23166 mRNA, complete 

sequence.|PLN 
A_71_P101999 3.34 Arabidopsis thaliana At5g10830 mRNA, complete cds.|PLN 
A_71_P102127 3.13 Oryza sativa subtilase mRNA, complete cds.|PLN 
A_71_P102333 3.60 Oryza sativa clone C26554 UMP synthase (UMPS1) mRNA, 

complete cds.|PLN 
A_71_P102363 2.80 Pisum sativum mRNA for raffinose synthase (rfs gene).|PLN 
A_71_P102369 2.64 Arabidopsis thaliana putative kinase (At5g14270) mRNA, 

complete cds.|PLN 
A_71_P102373 2.61 Arabidopsis thaliana clone RAFL15-16-B02 (R20452) 

unknown protein (At4g32930) mRNA, complete cds.|PLN 
A_71_P102388 8.41 Unknown expressed protein 
A_71_P102670 2.42 Caenorhabditis elegans R151.8A protein (R151.8A) mRNA, 

complete cds.|INV 
A_71_P102963 3.93 Unknown expressed protein 
A_71_P103010 3.81 Unknown expressed protein 
A_71_P103011 11.78 Unknown expressed protein 
A_71_P103012 67.07 Unknown expressed protein 
A_71_P103133 3.54 Unknown expressed protein 
A_71_P103162 2.30 Oryza sativa mRNA for RicMT, complete cds.|PLN 
A_71_P103383 2.70 Arabidopsis thaliana At1g28600/F1K23_6 mRNA, complete 
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cds.|PLN 
A_71_P103437 2.12 Oryza sativa chloroplast carbonic anhydrase mRNA, complete 

cds.|PLN 
A_71_P103449 3.03 Unknown expressed protein 
A_71_P103494 3.27 Oryza sativa mRNA for asparaginyl endopeptidase, complete 

cds.|PLN 
A_71_P103761 23.89 Unknown expressed protein 
A_71_P104017 2.29 Panicum miliaceum mRNA for plastidic aspartate 

aminotransferase , complete cds.|PLN 
A_71_P104157 6.15 Zea mays plasma membrane integral protein ZmPIP1-5 mRNA, 

complete cds.|PLN 
A_71_P104210 3.53 Atropa belladonna AbSAMT1 mRNA for S-adenosyl-L-

methionine:salicylic acid carboxyl methyltransferase, complete 
cds.|PLN 

A_71_P104413 5.25 Quercus ilex mRNA for putative chloroplast terpene synthase 
(16 gene).|PLN 

A_71_P104669 5.11 Unknown expressed protein 
A_71_P105137 2.70 Unknown expressed protein 
A_71_P105148 2.68 Arabidopsis thaliana clone U10014 unknown protein 

(At5g27730) mRNA, complete cds.|PLN 
A_71_P105257 2.26 Arabidopsis thaliana clone 15975 mRNA, complete 

sequence.|PLN 
A_71_P105469 2.02 Arabidopsis thaliana unknown protein (At1g79910) mRNA, 

complete cds.|PLN 
A_71_P105737 3.79 Arabidopsis thaliana clone U18226 unknown protein 

(At4g00330) mRNA, complete cds.|PLN 
A_71_P105905 2.28 Arabidopsis thaliana AT5g56750/MIK19_22 mRNA, complete 

cds.|PLN 
A_71_P105912 23.49 Arabidopsis thaliana clone 1204 mRNA, complete 

sequence.|PLN 
A_71_P106481 3.15 Malus domestica leucine-rich receptor-like protein kinase 

(LRPKm1) mRNA, complete cds.|PLN 
A_71_P106784 2.63 Rattus norvegicus 270 kDa ankyrin G isoform mRNA, partial 

cds.|ROD 
A_71_P106798 2.34 Arabidopsis thaliana At1g69640/F24J1.22 mRNA, complete 

cds.|PLN 
A_71_P106872 2.25 Unknown expressed protein 
A_71_P106926 2.28 Arabidopsis thaliana clone 9503 mRNA, complete 

sequence.|PLN 
A_71_P107075 3.24 Unknown expressed protein 
A_71_P107161 5.09 Arabidopsis thaliana putative amino acid carrier (At1g77380) 

mRNA, complete cds.|PLN 
A_71_P107518 2.82 Arabidopsis thaliana putative protein kinase (At1g67890) 

mRNA, complete cds.|PLN 
A_71_P107893 3.77 Morinda citrifolia mRNA for 3-deoxy-D-arabino-heptulosonate 

7-phosphate synthase, DS1.|PLN 
A_71_P107988 16.30 Unknown expressed protein 
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A_71_P108313 2.29 Arabidopsis thaliana Unknown protein (At5g21090) mRNA, 
complete cds.|PLN 

A_71_P108315 3.35 Oryza sativa subsp. indica polyprotein mRNA, complete 
cds.|PLN 

A_71_P108535 2.10 Solanum tuberosum BEL1-related homeotic protein 30 (Bel30) 
mRNA, complete cds.|PLN 

A_71_P108638 3.16 Arabidopsis thaliana mRNA for sulfate transporter, complete 
cds.|PLN 

A_71_P109098 2.14 Arabidopsis thaliana putative WRKY-type DNA binding 
protein (At2g46400) mRNA, complete cds.|PLN 

A_71_P109315 2.35 Arabidopsis thaliana unknown protein (At5g65840) mRNA, 
complete cds.|PLN 

A_71_P109333 2.98 Unknown expressed protein 
A_71_P109692 14.28 Unknown expressed protein 
A_71_P110206 14.22 Unknown expressed protein 
A_71_P110348 2.53 Arabidopsis thaliana aminophospholipid flippase (ALA1) 

mRNA, complete cds.|PLN 
A_71_P110449 2.07 Arabidopsis thaliana clone RAFL15-01-M05 (R20306) putative 

axi 1 protein (At2g03280) mRNA, complete cds.|PLN 
A_71_P110636 2.09 Phaseolus lunatus ClpB (clpB) mRNA, complete cds; nuclear 

gene for chloroplast product.|PLN 
A_71_P110868 2.50 Callistephus chinensis flavone synthase II (CYP93B5) mRNA, 

complete cds.|PLN 
A_71_P110869 2.23 G.max mRNA for putative cytochrome P450, clone CP5.|PLN 
A_71_P110946 2.57 Arabidopsis thaliana clone 104017 mRNA, complete 

sequence.|PLN 
A_71_P110950 2.28 Arabidopsis thaliana clone C105054 unknown protein 

(At1g22930) mRNA, complete cds.|PLN 
A_71_P111055 3.07 Arabidopsis thaliana clone 146543 mRNA, complete 

sequence.|PLN 
A_71_P111145 3.67 Prunus serotina amygdalin hydrolase isoform AH I precursor 

(AH1) mRNA, complete cds.|PLN 
A_71_P111148 2.16 Prunus serotina prunasin hydrolase isoform PHA precursor, 

mRNA, complete cds.|PLN 
A_71_P111730 4.03 Arabidopsis thaliana unknown protein (At5g42500) mRNA, 

complete cds.|PLN 
A_71_P111907 5.70 Pinus contorta beta-glucosidase mRNA, complete cds.|PLN 
A_71_P111914 7.08 Unknown expressed protein 
A_71_P111916 7.47 Unknown expressed protein 
A_71_P112075 11.39 Unknown expressed protein 
A_71_P112265 13.88 Unknown expressed protein 
A_71_P112485 3.63 Oryza sativa gibberellin C-20 oxidase mRNA, complete 

cds.|PLN 
A_71_P112717 5.34 Medicago truncatula anthocyanidin reductase (BAN) mRNA, 

complete cds.|PLN 
A_71_P112828 2.95 Arabidopsis thaliana clone U10011 putative carbonyl reductase 

(At1g01800) mRNA, complete cds.|PLN 



Appendices 
 

 192 

A_71_P112844 3.28 Corn mRNA for cysteine proteinase, clone CCP, complete 
cds.|PLN 

A_71_P112916 3.82 Arabidopsis thaliana UDP-glucose glucosyltransferase 
(At1g22360) mRNA, complete cds.|PLN 

A_71_P112930 3.47 Homo sapiens mRNA for KIAA1038 protein, partial cds.|PRI 
A_71_P112946 2.21 Oryza sativa OsMST1 mRNA for monosaccharide transporter 

1, complete cds.|PLN 
A_71_P113124 7.18 Arabidopsis thaliana putative zinc transporter (ZIP1) mRNA, 

complete cds.|PLN 
A_71_P113184 3.11 Arabidopsis thaliana clone U18492 unknown protein 

(At2g31740) mRNA, complete cds.|PLN 
A_71_P113349 2.53 Arabidopsis thaliana putative protein (At5g35160) mRNA, 

complete cds.|PLN 
A_71_P113373 2.36 Arabidopsis thaliana clone 29744 mRNA, complete 

sequence.|PLN 
A_71_P113476 2.86 Oryza sativa (japonica cultivar-group) mRNA for aspartic 

proteinase, complete cds.|PLN 
A_71_P113675 33.44 Unknown expressed protein 
A_71_P113773 4.84 Unknown expressed protein 
A_71_P113814 2.93 Unknown expressed protein 
A_71_P113838 2.68 Unknown expressed protein 
A_71_P113941 2.40 Triticum aestivum Na+/H+ antiporter (NHX1) mRNA, complete 

cds.|PLN 
A_71_P114079 2.57 Oryza sativa (japonica cultivar-group) mRNA for qSH-1, 

complete cds.|PLN 
A_71_P114236 2.51 Arabidopsis thaliana clone RAFL15-05-K10 (R20381) putative 

lipase (At1g09390) mRNA, complete cds.|PLN 
A_71_P114315 2.63 Arabidopsis thaliana clone 8156 mRNA, complete 

sequence.|PLN 
A_71_P114413 2.61 Arabidopsis thaliana clone 25342 mRNA, complete 

sequence.|PLN 
A_71_P114415 2.11 Oryza sativa OsETTIN1 mRNA for Arabidopsis ETTIN-like 

protein 1, complete cds.|PLN 
A_71_P114501 2.54 Arabidopsis thaliana calreticulin, putative (At1g08450) mRNA, 

complete cds.|PLN 
A_71_P114621 2.70 Arabidopsis thaliana putative receptor protein kinase 

(At5g48380) mRNA, complete cds.|PLN 
A_71_P114907 3.61 Arabidopsis thaliana unknown protein (At3g18660) mRNA, 

complete cds.|PLN 
A_71_P115683 3.36 Panax ginseng ACBP mRNA for Acyl-CoA-binding protein, 

complete cds.|PLN 
A_71_P115765 3.62 Unknown expressed protein 
A_71_P115993 4.33 Unknown expressed protein 
A_71_P116025 2.30 Solanum tuberosum mRNA for cytochrome P450 (CYP71D4 

gene).|PLN 
A_71_P116071 4.92 Arabidopsis thaliana unknown protein (At3g14800) mRNA, 

complete cds.|PLN 
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A_71_P116147 3.52 Maize mRNA for putative protein kinase.|PLN 
A_71_P116417 2.67 Unknown expressed protein 
A_71_P116723 2.21 Arabidopsis thaliana unknown protein (At4g00880) mRNA, 

complete cds.|PLN 
A_71_P116733 3.00 Arabidopsis thaliana At1g21000/F9H16_1 mRNA, complete 

cds.|PLN 
A_71_P116856 2.27 A.thaliana receptor-like protein kinase mRNA, complete 

cds.|PLN 
A_71_P116858 2.28 Malus domestica leucine-rich receptor-like protein kinase 

(LRPKm1) mRNA, complete cds.|PLN 
A_71_P116926 2.65 Arabidopsis thaliana clone 37493 mRNA, complete 

sequence.|PLN 
A_71_P116998 5.16 Unknown expressed protein 
A_71_P117119 2.49 Arabidopsis thaliana Unknown protein (At1g16670) mRNA, 

complete cds.|PLN 
A_71_P117233 3.40 H.vulgare mRNA for xyloglucan endotransglycosylase-like 

protein (XEA).|PLN 
A_71_P117254 3.19 Cicer arietinum mRNA for copper containing amine oxidase 

(DAO).|PLN 
A_71_P117272 3.75 Zea mays NADPH HC toxin reductase (hm1) mRNA, hm1-

W22 allele, complete cds.|PLN 
A_71_P117415 7.77 Unknown expressed protein 
A_71_P117746 2.12 Arabidopsis thaliana unknown protein (At3g22970) mRNA, 

complete cds.|PLN 
A_71_P117839 3.38 Oryza sativa peroxidase (POX22.3) mRNA, complete cds.|PLN 
A_71_P117865 5.82 Arabidopsis thaliana At3g26770/MDJ14_21 mRNA, complete 

cds.|PLN 
A_71_P118087 8.01 Unknown expressed protein 
A_71_P118372 2.16 Unknown expressed protein 
A_71_P119384 4.56 Unknown expressed protein 
A_71_P119552 2.11 Oryza sativa partial mRNA for putative potasium transporter 

(HAK16 gene).|PLN 
A_71_P119575 2.77 Arabidopsis thaliana At2g39210/T16B24.15 mRNA, complete 

cds.|PLN 
A_71_P119764 3.96 Arabidopsis thaliana At5g40780/K1B16_3 mRNA, complete 

cds.|PLN 
A_71_P119943 3.36 Oryza sativa (japonica cultivar-group) mRNA for 

monodehydroascorbate reductase, partial cds.|PLN 
A_71_P120004 3.75 Unknown expressed protein 
A_71_P120037 5.64 Daucus carota transposable element TdcA1-ORF2 mRNA, 

partial cds.|PLN 
A_71_P120062 2.95 Arabidopsis thaliana putative receptor serine/threonine kinase 

(At1g29750) mRNA, complete cds.|PLN 
A_71_P120188 5.51 Arabidopsis thaliana unknown protein (At1g80110) mRNA, 

complete cds.|PLN 
A_71_P120304 3.32 Arabidopsis thaliana class III peroxidase ATP32 mRNA, 

complete cds.|PLN 
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A_71_P120316 12.27 Arabidopsis thaliana unknown protein (At4g02210) mRNA, 
complete cds.|PLN 

A_71_P120393 2.27 Oryza sativa PibH8 mRNA, complete cds.|PLN 
A_71_P120550 2.99 Oryza sativa (japonica cultivar-group) mRNA for ribonuclease, 

complete cds, clone:C30227.|PLN 
A_71_P120580 3.83 Unknown expressed protein 
A_71_P120661 7.69 Avena sativa fructose 1,6-bisphosphate aldolase precursor, 

mRNA, complete cds; nuclear gene for chloroplast 
product.|PLN 

A_71_P120688 2.43 Unknown expressed protein 
A_71_P120761 2.50 Arabidopsis thaliana unknown protein (At2g36430) mRNA, 

complete cds.|PLN 
A_71_P120848 4.88 Arabidopsis thaliana unknown protein (At3g04140) mRNA, 

complete cds.|PLN 
A_71_P120920 4.16 Unknown expressed protein 
A_71_P121309 4.19 Unknown expressed protein 
A_71_P121750 2.43 Arabidopsis thaliana putative potassium transporter 

(At2g35060) mRNA, complete cds.|PLN 
A_71_P121767 2.06 Arabidopsis thaliana unknown protein (At5g39780) mRNA, 

complete cds.|PLN 
A_71_P121840 2.13 Arabidopsis thaliana serine/threonine protein kinase-like 

protein (T30N20_200) mRNA, complete cds.|PLN 
A_71_P121872 2.27 Arabidopsis thaliana clone C105073 unknown protein 

(At4g11570) mRNA, complete cds.|PLN 
A_71_P121933 2.15 Gossypium hirsutum gaiacol peroxidase (pod5) mRNA, 

complete cds.|PLN 
A_71_P122034 2.11 Arabidopsis thaliana At3g41950 mRNA sequence.|PLN 
A_71_P122101 3.40 Solanum tuberosum mRNA for CDSP34 protein.|PLN 
A_71_P122103 6.20 Unknown expressed protein 
A_71_P122112 7.50 Euphorbia esula putative flavonol synthase-like protein mRNA, 

complete cds.|PLN 
A_71_P122206 5.01 Oryza sativa subsp. japonica putative glutathione S-transferase 

OsGSTU17 mRNA, complete cds.|PLN 
A_71_P122249 3.90 Arabidopsis thaliana clone 108568 mRNA, complete 

sequence.|PLN 
A_71_P122268 2.47 Olea europaea RUB1 conjugating enzyme (ORCE) mRNA, 

complete cds.|PLN 
A_71_P122300 3.97 Unknown expressed protein 
A_71_P122520 3.58 Unknown expressed protein 
A_71_P122651 15.11 Unknown expressed protein 
A_71_P122780 7.84 Unknown expressed protein 
A_71_P122835 5.66 Nicotiana tabacum UDP-glucose:salicylic acid 

glucosyltransferase (SA-GTase) mRNA, complete cds.|PLN 
A_71_P123076 3.35 Arabidopsis thaliana unknown protein (At3g22550) mRNA, 

complete cds.|PLN 
A_71_P123152 2.17 Arabidopsis thaliana AT5g28840/F7P1_20 mRNA, complete 

cds.|PLN 
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A_71_P123200 2.40 Unknown expressed protein 
A_71_P123310 3.54 Arabidopsis thaliana cytochrome p450, putative (At1g64900) 

mRNA, complete cds.|PLN 
A_71_P123372 3.16 Hordeum vulgare mRNA for hexose transporter (stp1 

gene).|PLN 
A_71_P123474 3.84 Nicotiana tabacum centrin (CEN1) mRNA, complete cds.|PLN 
A_71_P123501 8.75 Arabidopsis thaliana partial mRNA for hypothetical protein, 

clone 105C20.|PLN 
A_71_P123516 2.97 Unknown expressed protein 
A_71_P123575 2.42 Arabidopsis thaliana unknown protein (At4g14740) mRNA, 

complete cds.|PLN 
A_71_P123744 17.58 Rice mRNA for aspartic protease, complete cds.|PLN 
A_71_P123762 2.54 Solanum chacoense cytochrome P450 mRNA, complete 

cds.|PLN 
A_71_P123885 3.98 Oryza sativa subsp. japonica putative glutathione S-transferase 

OsGSTU12 mRNA, complete cds.|PLN 
A_71_P124174 7.49 Unknown expressed protein 
A_71_P124178 2.75 Arabidopsis thaliana clone 30996 mRNA, complete 

sequence.|PLN 
A_71_P124211 4.10 Unknown expressed protein 
A_71_P124262 2.69 Unknown expressed protein 
A_71_P124428 13.88 Unknown expressed protein 
A_71_P124595 4.24 Sorghum bicolor mRNA for protein serine/threonine kinase 

RLK1.|PLN 
A_71_P124724 3.42 Nicotiana tabacum mRNA for hsr203J, complete cds.|PLN 
A_71_P124792 2.84 Arabidopsis thaliana putative carboxypeptidase (At5g09640) 

mRNA, complete cds.|PLN 
A_71_P124858 2.22 Populus trichocarpa mRNA for laccase, lac1 gene, partial.|PLN 
A_71_P124915 3.54 Unknown expressed protein 
A_71_P125002 2.63 Unknown expressed protein 
A_71_P125105 56.86 Unknown expressed protein 
A_71_P125168 2.16 Oryza sativa receptor serine/threonine kinase mRNA, partial 

cds.|PLN 
A_71_P125211 13.73 Avena strigosa mRNA for beta-amyrin synthase (bAS1 

gene).|PLN 
A_71_P125246 3.14 Oryza sativa metallothionein-like protein mRNA, complete 

cds.|PLN 
A_71_P125335 33.80 Oryza sativa OSKgamma mRNA for shaggy-related protein 

kinase gamma, complete cds.|PLN 
A_71_P125516 4.72 Arabidopsis thaliana clone RAFL14-93-K05 (R20243) 

unknown protein (At5g23570) mRNA, complete cds.|PLN 
A_71_P125519 4.33 Oryza sativa nucleotide-binding leucine-rich-repeat protein 1 

mRNA, complete cds.|PLN 
A_71_P125539 2.20 Arabidopsis thaliana clone 108517 mRNA, complete 

sequence.|PLN 
A_71_P125580 5.45 Oryza sativa fatty acid alpha-oxidase mRNA, complete 

cds.|PLN 
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A_71_P125859 2.39 Solanum tuberosum StCBP mRNA for citrate binding protein, 
complete cds.|PLN 

A_71_P126158 4.35 Oryza sativa metallothionein-like protein mRNA, complete 
cds.|PLN 

A_71_P126254 2.48 Unknown expressed protein 
A_71_P126304 7.82 Arabidopsis thaliana At1g76730 mRNA for unknown protein, 

complete cds, clone: RAFL21-46-B03.|PLN 
A_71_P126426 2.56 Arabidopsis thaliana unknown protein (At4g36860) mRNA, 

complete cds.|PLN 
A_71_P126487 4.07 Unknown expressed protein 
A_71_P126491 13.72 Oryza sativa unknown mRNA.|PLN 
A_71_P126492 7.19 Unknown expressed protein 
A_71_P126605 2.27 Arabidopsis thaliana putative receptor protein kinase, ERECTA 

(At2g26330) mRNA, complete cds.|PLN 
A_71_P126609 2.21 Arabidopsis thaliana putative protein (At5g04550) mRNA, 

complete cds.|PLN 
A_71_P126612 2.37 Oryza sativa putative phytosulfokine peptide precursor (PSK3) 

mRNA, complete cds.|PLN 
A_71_P126614 14.52 Unknown expressed protein 
A_71_P126761 10.91 Unknown expressed protein 
A_71_P126799 9.92 Unknown expressed protein 
A_71_P126800 12.39 Arabidopsis thaliana At2g30530/T6B20.12 mRNA, complete 

cds.|PLN 
A_71_P126802 18.00 Arabidopsis thaliana At3g10840 mRNA for putative alpha/beta 

hydrolase, complete cds, clone: RAFL17-30-F07.|PLN 
A_71_P126819 15.18 Arabidopsis thaliana putative phospholipid cytidylyltransferase 

(At2g38670) mRNA, complete cds.|PLN 
A_71_P126852 4.17 Nicotiana tabacum mRNA for peroxidase, complete cds, 

clone:tpoxC1.|PLN 
A_71_P126881 3.65 Arabidopsis thaliana unknown protein (At1g80110) mRNA, 

complete cds.|PLN 
A_71_P128402 8.57 Unknown expressed protein 
A_71_P128422 10.81 Unknown expressed protein 
A_71_P128629 16.49 Phaseolus vulgaris NBS-LRR resistance-like protein J78 (J78) 

mRNA, complete cds.|PLN 
A_71_P128640 7.60 Unknown expressed protein 
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Appendix E Correlation value between microarray expression value with several BPH morphological experiment data (Electrical Penetration 
graph (EPG) and honeydew drop 
 

Agilent ID UniGene symbol 
Fold 

difference 

Pathway 
N 

(1+2+3) 

Phloem 
ingestion 

(N4b) 

Xylem 
ingestion 

(N5) 

Total 
honeydew 

drop 
Time to 
first N4b Description 

AK099702 Os01g0106900 2.05 -0.59 0.66 -0.49 0.64 -0.65 

Oryza sativa 1-deoxy-D-xylulose 5-phosphate reductoisomerase 
precursor, mRNA, complete cds; nuclear gene for plastid 
product.|PLN 

AK061853 Os01g0130000 2.50 -0.46 0.48 -0.22 0.46 -0.45 
Arabidopsis thaliana unknown protein (At1g16310) mRNA, 
complete cds.|PLN 

AK060150 Os01g0130100 2.54 -0.77 0.81 -0.62 0.78 -0.81 
Arabidopsis thaliana unknown protein (At1g16310) mRNA, 
complete cds.|PLN 

AK058378 Os01g0138900 3.08 -0.68 0.75 -0.73 0.70 -0.76 
Arabidopsis thaliana unknown protein (At3g18270) mRNA, 
complete cds.|PLN 

AK069318 Os01g0149200 2.72 -0.57 0.63 -0.55 0.64 -0.66 
Oryza sativa metallothionein-like type 2 (OsMT-2) mRNA, 
complete cds.|PLN 

AK061224 Os01g0170000 2.38 -0.53 0.63 -0.62 0.61 -0.66 Pisum sativum mRNA for raffinose synthase (rfs gene).|PLN 

AK064209 Os01g0198000 4.27 0.43 -0.51 0.53 -0.49 0.56 L.esculentum mRNA for RNA-directed RNA polymerase.|PLN 

AK062484 Os01g0214500 4.74 -0.74 0.77 -0.66 0.77 -0.81 
Arabidopsis thaliana clone 10986 mRNA, complete 
sequence.|PLN 

AK104740 Os01g0214800 2.13 -0.55 0.63 -0.72 0.66 -0.68 
Homo sapiens, clone MGC:35476 IMAGE:5195029, mRNA, 
complete cds.|PRI 

AK068593 Os01g0218100 2.04 -0.76 0.76 -0.62 0.74 -0.77 
Arabidopsis thaliana putative DNA-binding protein (At1g68810) 
mRNA, complete cds.|PLN 

AK100444 Os01g0348600 2.27 -0.52 0.59 -0.53 0.56 -0.62 
Arabidopsis thaliana fatty acid multifunctional protein (AtMFP2) 
(F17A9.1) mRNA, complete cds.|PLN 

AK067903 Os01g0366100 3.78 0.58 -0.60 0.57 -0.60 0.64 
Unknown expressed protein 
 

AK100034 Os01g0369900 4.20 -0.61 0.63 -0.55 0.66 -0.66 
Oryza sativa RRJ4 mRNA for 12-oxophytodienoic acid reductase, 
complete cds.|PLN 

AK064570 Os01g0510500 2.58 0.40 -0.52 0.57 -0.51 0.57 Unknown expressed protein 

AK064005 Os01g0538000 7.97 0.52 -0.60 0.60 -0.58 0.61 Unknown expressed protein 
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AK106137 Os01g0539400 3.62 0.68 -0.70 0.66 -0.70 0.70 Unknown expressed protein 

AK070057 Os01g0540800 6.14 0.57 -0.63 0.65 -0.59 0.63 Unknown expressed protein 

AK059464 Os01g0541000 17.67 0.47 -0.52 0.55 -0.52 0.54 Unknown expressed protein 

AK067597 Os01g0559600 3.60 -0.69 0.78 -0.70 0.71 -0.79 
Oryza sativa mRNA for asparaginyl endopeptidase, complete 
cds.|PLN 

AK061216 Os01g0565600 3.12 0.59 -0.59 0.59 -0.59 0.62 
Arabidopsis thaliana clone RAFL15-16-B02 (R20452) unknown 
protein (At4g32930) mRNA, complete cds.|PLN 

AK066561 Os01g0612600 2.18 -0.45 0.50 -0.35 0.39 -0.47 
Arabidopsis thaliana unknown protein (At1g68140) mRNA, 
complete cds.|PLN 

AK067056 Os01g0639600 2.93 -0.58 0.60 -0.43 0.65 -0.64 Unknown expressed protein 

AK060890 Os01g0639900 2.24 -0.63 0.76 -0.77 0.70 -0.78 
Oryza sativa chloroplast carbonic anhydrase mRNA, complete 
cds.|PLN 

AK111374 Os01g0648700 2.43 -0.61 0.66 -0.64 0.68 -0.73 
Arabidopsis thaliana putative kinase (At5g14270) mRNA, 
complete cds.|PLN 

AK105142 Os01g0649200 2.10 -0.69 0.79 -0.87 0.75 -0.82 
Arabidopsis thaliana clone 37307 mRNA, complete 
sequence.|PLN 

AK102591 Os01g0650200 2.21 -0.63 0.69 -0.57 0.71 -0.71 
Arabidopsis thaliana At1g28600/F1K23_6 mRNA, complete 
cds.|PLN 

AK102535 Os01g0679200 3.82 0.48 -0.55 0.65 -0.54 0.59 
Oryza sativa clone C26554 UMP synthase (UMPS1) mRNA, 
complete cds.|PLN 

AK069379 Os01g0680900 2.14 -0.70 0.68 -0.66 0.72 -0.71 
Arabidopsis thaliana At3g25290/MJL12_25 mRNA, complete 
cds.|PLN 

AK061091 Os01g0708500 2.63 -0.74 0.77 -0.72 0.77 -0.81 
Arabidopsis thaliana clone 23166 mRNA, complete 
sequence.|PLN 

AK101454 Os01g0716500 3.29 -0.75 0.78 -0.69 0.78 -0.83 Arabidopsis thaliana At5g10830 mRNA, complete cds.|PLN 

AK063360 Os01g0726000 8.77 0.40 -0.47 0.48 -0.47 0.51 Unknown expressed protein 

AK105476 Os01g0757900 2.60 0.38 -0.46 0.46 -0.41 0.48 
Caenorhabditis elegans R151.8A protein (R151.8A) mRNA, 
complete cds.|INV 

AK100351 Os01g0795400 3.48 -0.66 0.72 -0.78 0.66 -0.75 Oryza sativa subtilase mRNA, complete cds.|PLN 

AK061108 Os01g0798200 2.31 0.78 -0.81 0.79 -0.81 0.84 Unknown expressed protein 

AK070208 Os01g0831200 2.05 -0.61 0.72 -0.72 0.66 -0.71 
Arabidopsis thaliana At3g51780/ORF3 mRNA, complete 
cds.|PLN 

AK070435 Os01g0869500 2.02 -0.60 0.65 -0.60 0.70 -0.71 Zea mays nuclear matrix protein 1 (NMP1) mRNA, complete 
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cds.|PLN 

AK060248 Os01g0872600 2.01 -0.35 0.45 -0.44 0.41 -0.49 
Arabidopsis thaliana At1g72120/F28P5_2 mRNA, complete 
cds.|PLN 

AK069324 Os01g0878300 4.49 -0.75 0.80 -0.64 0.79 -0.82 
Arabidopsis thaliana putative receptor protein kinase 
(At1g28440) mRNA, complete cds.|PLN 

AK064908 Os01g0958700 2.07 -0.52 0.60 -0.52 0.56 -0.63 
Arabidopsis thaliana unknown protein (At1g28380) mRNA, 
complete cds.|PLN 

AK060685 Os02g0102200 4.75 -0.70 0.77 -0.73 0.69 -0.78 
Arabidopsis thaliana putative amino acid carrier (At1g77380) 
mRNA, complete cds.|PLN 

AK110925 Os02g0121700 9.39 -0.69 0.70 -0.56 0.68 -0.77 
Quercus ilex mRNA for putative chloroplast terpene synthase (16 
gene).|PLN 

AK065610 Os02g0129700 2.18 -0.74 0.79 -0.77 0.70 -0.85 Unknown expressed protein 

AK102507 Os02g0159200 2.27 -0.57 0.60 -0.40 0.64 -0.62 
Arabidopsis thaliana unknown protein (At1g79910) mRNA, 
complete cds.|PLN 

AK068418 Os02g0173200 2.62 -0.68 0.75 -0.71 0.73 -0.78 Unknown expressed protein 

AK109630 Os02g0178100 2.08 -0.61 0.60 -0.42 0.59 -0.61 
Hordeum vulgare clone HV_CEb0009E08f CONSTANS-like protein 
CO7 (CO7) mRNA, partial cds.|PLN 

AK066602 Os02g0216300 2.80 -0.58 0.65 -0.62 0.64 -0.67 Unknown expressed protein 

AK072080 Os02g0224100 2.08 -0.52 0.60 -0.62 0.55 -0.66 
Arabidopsis thaliana putative protein phosphatase-2C 
(At1g79630) mRNA, complete cds.|PLN 

AK111620 Os02g0228300 3.57 -0.75 0.84 -0.79 0.80 -0.85 
Malus domestica leucine-rich receptor-like protein kinase 
(LRPKm1) mRNA, complete cds.|PLN 

AK105563 Os02g0243300 25.26 0.58 -0.59 0.59 -0.63 0.62 
Arabidopsis thaliana clone 1204 mRNA, complete 
sequence.|PLN 

AK107164 Os02g0297200 6.49 0.43 -0.49 0.59 -0.52 0.56 Unknown expressed protein 

AK101296 Os02g0457500 2.40 -0.69 0.74 -0.65 0.68 -0.79 
Rattus norvegicus 270 kDa ankyrin G isoform mRNA, partial 
cds.|ROD 

AK071231 Os02g0526000 2.69 -0.73 0.78 -0.71 0.79 -0.79 
Arabidopsis thaliana clone U10014 unknown protein 
(At5g27730) mRNA, complete cds.|PLN 

AK072036 Os02g0580900 2.08 -0.55 0.63 -0.66 0.63 -0.65 
Arabidopsis thaliana At3g21670/MIL23_23 mRNA, complete 
cds.|PLN 

AK059625 Os02g0582400 2.46 0.55 -0.62 0.71 -0.66 0.69 
Arabidopsis thaliana clone 9503 mRNA, complete 
sequence.|PLN 
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AK062638 Os02g0642300 2.10 -0.59 0.65 -0.51 0.65 -0.68 
Arabidopsis thaliana clone 15975 mRNA, complete 
sequence.|PLN 

AK070415 Os02g0719600 4.22 -0.50 0.63 -0.63 0.58 -0.63 

Atropa belladonna AbSAMT1 mRNA for S-adenosyl-L-
methionine:salicylic acid carboxyl methyltransferase, complete 
cds.|PLN 

AK103058 Os02g0745700 2.53 -0.63 0.68 -0.49 0.70 -0.72 
Arabidopsis thaliana At1g69640/F24J1.22 mRNA, complete 
cds.|PLN 

AK105059 Os02g0797500 2.15 -0.56 0.61 -0.49 0.61 -0.64 
Panicum miliaceum mRNA for plastidic aspartate 
aminotransferase , complete cds.|PLN 

AK073656 Os02g0818500 2.31 0.53 -0.59 0.58 -0.56 0.61 Oryza sativa mRNA for Pib, complete cds.|PLN 

AK112048 Os02g0821400 3.65 -0.73 0.78 -0.68 0.76 -0.83 
Arabidopsis thaliana clone U18226 unknown protein 
(At4g00330) mRNA, complete cds.|PLN 

AK102174 Os02g0823100 7.65 -0.80 0.81 -0.66 0.84 -0.83 
Zea mays plasma membrane integral protein ZmPIP1-5 mRNA, 
complete cds.|PLN 

AK108744 Os02g0828300 3.84 0.41 -0.51 0.62 -0.52 0.55 Unknown expressed protein 

AK068438 Os03g0122300 2.29 -0.59 0.61 -0.61 0.62 -0.65 
Arabidopsis thaliana flavanone 3-hydroxylase-like protein 
(At5g24530) mRNA, complete cds.|PLN 

AK066932 Os03g0161200 3.38 -0.72 0.77 -0.64 0.77 -0.79 
Arabidopsis thaliana mRNA for sulfate transporter, complete 
cds.|PLN 

AK073082 Os03g0164100 2.11 0.52 -0.53 0.49 -0.53 0.58 Unknown expressed protein 

AK067971 Os03g0181100 3.77 0.45 -0.46 0.33 -0.40 0.43 Unknown expressed protein 

AK066877 Os03g0189100 2.89 -0.67 0.74 -0.77 0.68 -0.78 Unknown expressed protein 

AK101653 Os03g0321700 3.00 -0.80 0.85 -0.82 0.83 -0.89 
Arabidopsis thaliana putative WRKY-type DNA binding protein 
(At2g46400) mRNA, complete cds.|PLN 

AK059185 Os03g0326100 2.64 -0.68 0.73 -0.65 0.68 -0.79 
Arabidopsis thaliana aminophospholipid flippase (ALA1) mRNA, 
complete cds.|PLN 

AK059247 Os03g0389700 3.95 -0.69 0.77 -0.68 0.75 -0.80 
Morinda citrifolia mRNA for 3-deoxy-D-arabino-heptulosonate 7-
phosphate synthase, DS1.|PLN 

AK099659 Os03g0401100 2.19 -0.46 0.54 -0.43 0.51 -0.59 
Arabidopsis thaliana putative protein kinase (At1g67890) mRNA, 
complete cds.|PLN 

AK063543 Os03g0422300 17.45 0.53 -0.55 0.58 -0.58 0.61 Unknown expressed protein 

AK061730 Os03g0440900 2.17 -0.57 0.68 -0.69 0.61 -0.71 
Arabidopsis thaliana Unknown protein (At5g21090) mRNA, 
complete cds.|PLN 
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AK109832 Os03g0596200 4.87 0.66 -0.67 0.60 -0.68 0.70 Unknown expressed protein 

AK070048 Os03g0695400 6.49 0.50 -0.56 0.58 -0.57 0.61 
Arabidopsis thaliana unknown protein (At3g04140) mRNA, 
complete cds.|PLN 

AK106515 Os03g0711800 2.38 0.90 -0.85 0.72 -0.85 0.87 
Arabidopsis thaliana At3g17850 mRNA for putative protein 
kinase, complete cds, clone: RAFL16-77-O03.|PLN 

AK063237 Os03g0785100 17.89 0.54 -0.56 0.58 -0.59 0.63 Unknown expressed protein 

AK062754 Os03g0854800 2.14 0.54 -0.59 0.66 -0.58 0.56 Unknown expressed protein 

AK100972 Os04g0101400 2.73 -0.68 0.76 -0.68 0.72 -0.76 G.max mRNA for putative cytochrome P450, clone CP5.|PLN 

AK103323 Os04g0170500 8.27 0.53 -0.54 0.56 -0.57 0.58 Unknown expressed protein 

AK069845 Os04g0173300 2.49 0.67 -0.65 0.58 -0.67 0.67 Unknown expressed protein 

AK073111 Os04g0196300 15.84 0.53 -0.55 0.57 -0.57 0.61 Unknown expressed protein 

AK072639 Os04g0302300 2.14 0.79 -0.77 0.66 -0.79 0.77 
Arabidopsis thaliana putative S-receptor kinase (At4g32300) 
mRNA, complete cds.|PLN 

AK071948 Os04g0311400 4.13 -0.67 0.77 -0.85 0.69 -0.79 
Corn mRNA for cysteine proteinase, clone CCP, complete 
cds.|PLN 

AK105783 Os04g0320700 3.85 -0.67 0.74 -0.64 0.69 -0.80 
Arabidopsis thaliana UDP-glucose glucosyltransferase 
(At1g22360) mRNA, complete cds.|PLN 

AK109611 Os04g0377600 2.03 -0.77 0.82 -0.69 0.80 -0.83 
Mus musculus, Similar to hypothetical protein FLJ10743, clone 
MGC:38260 IMAGE:5324875, mRNA, complete cds.|ROD 

AK065694 Os04g0379300 2.92 0.57 -0.65 0.58 -0.63 0.68 
Arabidopsis thaliana clone U18492 unknown protein 
(At2g31740) mRNA, complete cds.|PLN 

AK108662 Os04g0415000 2.76 -0.71 0.75 -0.60 0.72 -0.78 
Arabidopsis thaliana clone 104017 mRNA, complete 
sequence.|PLN 

AK063893 Os04g0431300 2.67 -0.67 0.72 -0.70 0.63 -0.77 
Arabidopsis thaliana clone 146543 mRNA, complete 
sequence.|PLN 

AK062183 Os04g0439100 2.85 -0.72 0.80 -0.68 0.78 -0.81 
Arabidopsis thaliana clone C105054 unknown protein 
(At1g22930) mRNA, complete cds.|PLN 

AK072059 Os04g0454200 2.64 -0.54 0.65 -0.71 0.58 -0.67 
Oryza sativa OsMST1 mRNA for monosaccharide transporter 1, 
complete cds.|PLN 

AK100820 Os04g0474800 4.20 -0.58 0.59 -0.37 0.63 -0.64 
Prunus serotina amygdalin hydrolase isoform AH I precursor 
(AH1) mRNA, complete cds.|PLN 

AK068772 Os04g0513400 5.88 -0.67 0.72 -0.65 0.69 -0.72 Pinus contorta beta-glucosidase mRNA, complete cds.|PLN 

AK107142 Os04g0522500 3.09 -0.69 0.76 -0.68 0.75 -0.80 Oryza sativa gibberellin C-20 oxidase mRNA, complete cds.|PLN 
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AK071069 Os04g0531900 2.94 -0.78 0.85 -0.83 0.76 -0.86 
Arabidopsis thaliana clone U10011 putative carbonyl reductase 
(At1g01800) mRNA, complete cds.|PLN 

AK065130 Os04g0535600 2.15 -0.10 0.18 -0.35 0.23 -0.15 Allium cepa mRNA for invertase.|PLN 

AK100658 Os04g0595300 3.73 -0.53 0.54 -0.48 0.59 -0.59 Homo sapiens mRNA for KIAA1038 protein, partial cds.|PRI 

AK066668 Os04g0607400 6.77 0.33 -0.41 0.46 -0.42 0.48 Unknown expressed protein 

AK069804 Os04g0613000 10.07 -0.75 0.80 -0.73 0.73 -0.81 
Arabidopsis thaliana putative zinc transporter (ZIP1) mRNA, 
complete cds.|PLN 

AK102306 Os04g0614600 2.48 -0.71 0.77 -0.70 0.71 -0.80 Oryza sativa putative aminotransferase mRNA, partial cds.|PLN 

AK066343 Os04g0616900 5.04 0.22 -0.32 0.53 -0.39 0.40 Unknown expressed protein 

AK063017 Os04g0621800 6.03 0.58 -0.53 0.48 -0.55 0.54 Unknown expressed protein 

AK105171 Os04g0623200 2.77 0.24 -0.34 0.35 -0.25 0.33 Unknown expressed protein 

AK072654 Os04g0630400 5.52 -0.75 0.81 -0.80 0.75 -0.80 
Medicago truncatula anthocyanidin reductase (BAN) mRNA, 
complete cds.|PLN 

AK107902 Os04g0666800 5.36 -0.72 0.77 -0.68 0.79 -0.76 
Arabidopsis thaliana unknown protein (At5g42500) mRNA, 
complete cds.|PLN 

AK062996 Os05g0103300 2.04 -0.54 0.65 -0.62 0.64 -0.68 
Arabidopsis thaliana clone 29744 mRNA, complete 
sequence.|PLN 

AK072967 Os05g0113000 2.23 -0.75 0.79 -0.66 0.78 -0.83 
Arabidopsis thaliana unknown protein (At2g39570/F12L6.23) 
mRNA, complete cds.|PLN 

AK069868 Os05g0136900 2.13 -0.63 0.69 -0.64 0.68 -0.69 
Musa acuminata putative 0-deacetylbaccatin III-10-O-acetyl 
transferase-like protein mRNA, partial cds.|PLN 

AK065206 Os05g0137400 2.63 -0.71 0.77 -0.64 0.76 -0.79 
Oryza sativa (japonica cultivar-group) mRNA for aspartic 
proteinase, complete cds.|PLN 

AK066037 Os05g0148000 9.45 0.53 -0.57 0.61 -0.59 0.62 Unknown expressed protein 

AK066168 Os05g0148600 2.19 -0.61 0.66 -0.52 0.64 -0.68 
Triticum aestivum Na+/H+ antiporter (NHX1) mRNA, complete 
cds.|PLN 

AK067837 Os05g0159200 2.59 -0.63 0.65 -0.45 0.69 -0.69 
Arabidopsis thaliana clone RAFL15-05-K10 (R20381) putative 
lipase (At1g09390) mRNA, complete cds.|PLN 

AK100711 Os05g0168500 2.53 -0.53 0.63 -0.53 0.64 -0.64 
Arabidopsis thaliana putative protein (At5g35160) mRNA, 
complete cds.|PLN 

AK064110 Os05g0369900 4.70 0.37 -0.31 0.27 -0.34 0.30 Unknown expressed protein 

AK111590 Os05g0414700 2.67 -0.64 0.71 -0.68 0.62 -0.76 
Arabidopsis thaliana putative receptor protein kinase 
(At5g48380) mRNA, complete cds.|PLN 
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AK064877 Os05g0426400 3.83 -0.69 0.77 -0.73 0.68 -0.82 
Arabidopsis thaliana unknown protein (At3g18660) mRNA, 
complete cds.|PLN 

AK069208 Os05g0439200 2.22 0.61 -0.64 0.67 -0.66 0.68 Unknown expressed protein 

AK100916 Os05g0455200 2.59 -0.62 0.70 -0.69 0.62 -0.74 
Oryza sativa (japonica cultivar-group) mRNA for qSH-1, complete 
cds.|PLN 

AK060834 Os05g0507300 2.37 -0.62 0.71 -0.70 0.66 -0.72 
Arabidopsis thaliana calreticulin, putative (At1g08450) mRNA, 
complete cds.|PLN 

AK062488 Os05g0542300 3.47 -0.82 0.85 -0.78 0.86 -0.87 Unknown expressed protein 

AK069230 Os05g0555700 3.07 -0.70 0.78 -0.71 0.75 -0.80 Unknown expressed protein 

AK100983 Os05g0563000 2.46 -0.61 0.71 -0.66 0.69 -0.75 
Arabidopsis thaliana clone 25342 mRNA, complete 
sequence.|PLN 

AK069724 Os05g0568100 2.35 -0.59 0.65 -0.64 0.65 -0.69 
Arabidopsis thaliana clone 8156 mRNA, complete 
sequence.|PLN 

AK058833 Os06g0115300 3.42 -0.62 0.74 -0.86 0.69 -0.77 
Panax ginseng ACBP mRNA for Acyl-CoA-binding protein, 
complete cds.|PLN 

AK066196 Os06g0120200 9.28 -0.63 0.60 -0.45 0.67 -0.64 Unknown expressed protein 

AK063905 Os06g0202300 6.38 -0.71 0.73 -0.63 0.71 -0.79 Unknown expressed protein 

AK100029 Os06g0323100 5.35 0.43 -0.37 0.35 -0.40 0.36 
Arabidopsis thaliana clone 37493 mRNA, complete 
sequence.|PLN 

AK067262 Os06g0338200 3.98 -0.70 0.74 -0.63 0.69 -0.78 
Cicer arietinum mRNA for copper containing amine oxidase 
(DAO).|PLN 

AK108507 Os06g0487300 7.38 0.40 -0.45 0.47 -0.46 0.47 Unknown expressed protein 

AK064475 Os06g0491800 7.82 0.59 -0.60 0.63 -0.65 0.62 
Arabidopsis thaliana unknown protein (At3g14800) mRNA, 
complete cds.|PLN 

AK064561 Os06g0499200 2.23 0.48 -0.56 0.63 -0.56 0.61 Unknown expressed protein 

AK111851 Os06g0557100 2.28 -0.60 0.67 -0.73 0.61 -0.73 
A.thaliana receptor-like protein kinase mRNA, complete 
cds.|PLN 

AK111567 Os06g0557700 2.68 -0.75 0.79 -0.75 0.72 -0.85 
Malus domestica leucine-rich receptor-like protein kinase 
(LRPKm1) mRNA, complete cds.|PLN 

AK111737 Os06g0602500 4.15 -0.69 0.73 -0.63 0.69 -0.79 Maize mRNA for putative protein kinase.|PLN 

AK065620 Os06g0624900 2.94 -0.75 0.82 -0.78 0.76 -0.85 
Arabidopsis thaliana At1g21000/F9H16_1 mRNA, complete 
cds.|PLN 

AK060486 Os06g0639800 3.81 -0.49 0.58 -0.68 0.57 -0.55 Solanum tuberosum mRNA for cytochrome P450 (CYP71D4 
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gene).|PLN 

AK063834 Os06g0651100 3.09 -0.67 0.71 -0.53 0.72 -0.71 
Zea mays NADPH HC toxin reductase (hm1) mRNA, hm1-W22 
allele, complete cds.|PLN 

AK058439 Os06g0653200 2.77 0.46 -0.47 0.44 -0.45 0.52 Unknown expressed protein 

AK103523 Os06g0676600 2.37 -0.72 0.76 -0.66 0.72 -0.82 
Arabidopsis thaliana Unknown protein (At1g16670) mRNA, 
complete cds.|PLN 

AK105513 Os06g0697000 2.99 -0.70 0.77 -0.68 0.72 -0.77 
H.vulgare mRNA for xyloglucan endotransglycosylase-like 
protein (XEA).|PLN 

AK062493 Os06g0705400 4.78 -0.70 0.72 -0.60 0.80 -0.69 Unknown expressed protein 

AK107043 Os06g0714300 2.05 -0.57 0.65 -0.64 0.58 -0.70 
Arabidopsis thaliana unknown protein (At4g00880) mRNA, 
complete cds.|PLN 

AK062594 Os07g0187900 2.61 -0.71 0.76 -0.75 0.70 -0.83 
Arabidopsis thaliana At2g39210/T16B24.15 mRNA, complete 
cds.|PLN 

AK064606 Os07g0273000 2.09 0.41 -0.53 0.63 -0.52 0.54 Unknown expressed protein 

AK106593 Os07g0521300 13.38 -0.82 0.84 -0.77 0.79 -0.90 Unknown expressed protein 

AK067405 Os07g0522600 4.10 0.69 -0.68 0.56 -0.69 0.72 

Arabidopsis thaliana putative glutamate receptor protein 
GLR3.4b (GLR3.4) mRNA, GLR3.4-2 allele, complete cds; 
alternatively spliced.|PLN 

AK105211 Os07g0664600 11.66 -0.83 0.87 -0.71 0.87 -0.87 
Arabidopsis thaliana At3g26770/MDJ14_21 mRNA, complete 
cds.|PLN 

AK073202 Os07g0677200 3.12 -0.69 0.71 -0.59 0.77 -0.71 Oryza sativa peroxidase (POX22.3) mRNA, complete cds.|PLN 

AK102372 Os08g0100600 3.45 0.58 -0.68 0.72 -0.63 0.68 Unknown expressed protein 

AK069503 Os08g0113000 4.58 -0.80 0.83 -0.69 0.84 -0.84 
Arabidopsis thaliana class III peroxidase ATP32 mRNA, complete 
cds.|PLN 

AK065217 Os08g0127100 4.94 -0.77 0.83 -0.82 0.79 -0.85 
Arabidopsis thaliana At5g40780/K1B16_3 mRNA, complete 
cds.|PLN 

AK109659 Os08g0150700 6.59 -0.78 0.83 -0.74 0.81 -0.84 
Arabidopsis thaliana unknown protein (At1g80110) mRNA, 
complete cds.|PLN 

AK065548 Os08g0203300 2.92 -0.54 0.57 -0.63 0.57 -0.57 
Arabidopsis thaliana putative receptor serine/threonine kinase 
(At1g29750) mRNA, complete cds.|PLN 

AK066265 Os08g0208300 8.78 0.68 -0.68 0.59 -0.67 0.70 
Daucus carota transposable element TdcA1-ORF2 mRNA, partial 
cds.|PLN 

AK072666 Os08g0244400 3.74 0.56 -0.61 0.52 -0.59 0.64 Unknown expressed protein 
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AK068999 Os08g0246700 2.59 0.66 -0.72 0.69 -0.65 0.73 Unknown expressed protein 

AK073806 Os08g0272800 5.33 0.61 -0.59 0.57 -0.62 0.62 Unknown expressed protein 

AK072190 Os08g0301600 4.33 0.40 -0.50 0.58 -0.51 0.55 Unknown expressed protein 

AK068483 Os08g0338000 5.97 0.22 -0.32 0.48 -0.38 0.40 
Arabidopsis thaliana unknown protein (At4g02210) mRNA, 
complete cds.|PLN 

AK101110 Os08g0356500 2.84 -0.71 0.77 -0.67 0.71 -0.83 
Arabidopsis thaliana unknown protein (At2g36430) mRNA, 
complete cds.|PLN 

AK058502 Os08g0434100 4.20 -0.80 0.87 -0.82 0.87 -0.88 
Oryza sativa (japonica cultivar-group) mRNA for ribonuclease, 
complete cds, clone:C30227.|PLN 

AK105927 Os08g0440100 5.67 0.37 -0.45 0.51 -0.46 0.51 
Avena sativa fructose 1,6-bisphosphate aldolase precursor, 
mRNA, complete cds; nuclear gene for chloroplast product.|PLN 

AK072930 Os08g0460700 2.14 0.52 -0.57 0.53 -0.57 0.61 Unknown expressed protein 

AK065693 Os08g0539700 2.33 0.60 -0.66 0.64 -0.64 0.70 Oryza sativa PibH8 mRNA, complete cds.|PLN 

AK102459 Os08g0557600 3.19 -0.64 0.71 -0.69 0.66 -0.77 
Oryza sativa (japonica cultivar-group) mRNA for 
monodehydroascorbate reductase, partial cds.|PLN 

AK059180 Os09g0116600 20.02 0.49 -0.51 0.54 -0.54 0.57 Unknown expressed protein 

AK069183 Os09g0129400 8.10 0.55 -0.54 0.54 -0.57 0.59 Unknown expressed protein 

AK104742 Os09g0133600 2.91 -0.55 0.59 -0.44 0.58 -0.64 Solanum tuberosum mRNA for CDSP34 protein.|PLN 

AK067408 Os09g0248900 8.83 0.51 -0.50 0.51 -0.53 0.57 
Euphorbia esula putative flavonol synthase-like protein mRNA, 
complete cds.|PLN 

AK100058 Os09g0271100 6.94 -0.72 0.81 -0.77 0.77 -0.83 Unknown expressed protein 

AK068208 Os09g0272000 2.75 -0.36 0.49 -0.58 0.43 -0.51 Unknown expressed protein 

AK107818 Os09g0290401 2.78 0.37 -0.32 0.25 -0.32 0.32 Unknown expressed protein 

AK073821 Os09g0321900 2.24 -0.47 0.56 -0.48 0.56 -0.56 
Olea europaea RUB1 conjugating enzyme (ORCE) mRNA, 
complete cds.|PLN 

AK099766 Os09g0376900 2.81 -0.49 0.55 -0.44 0.57 -0.55 
Vicia faba mRNA for putative potassium transporter (hak1 
gene).|PLN 

AK065194 Os09g0413600 2.38 -0.45 0.51 -0.41 0.51 -0.54 
Arabidopsis thaliana unknown protein (At5g39780) mRNA, 
complete cds.|PLN 

AK099489 Os09g0467200 4.88 -0.57 0.61 -0.59 0.54 -0.69 
Oryza sativa subsp. japonica putative glutathione S-transferase 
OsGSTU17 mRNA, complete cds.|PLN 

AK069281 Os09g0471100 2.44 -0.64 0.70 -0.69 0.68 -0.74 Gossypium hirsutum gaiacol peroxidase (pod5) mRNA, complete 
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cds.|PLN 

AK063132 Os09g0472900 2.04 -0.56 0.55 -0.51 0.59 -0.61 
Citrus jambhiri blight-associated protein p12 precursor mRNA, 
complete cds.|PLN 

AK064395 Os09g0518200 5.50 -0.77 0.81 -0.73 0.78 -0.82 
Nicotiana tabacum UDP-glucose:salicylic acid 
glucosyltransferase (SA-GTase) mRNA, complete cds.|PLN 

AK066238 Os09g0525400 4.15 -0.70 0.74 -0.56 0.76 -0.77 
Arabidopsis thaliana clone 108568 mRNA, complete 
sequence.|PLN 

AK065464 Os09g0563200 2.54 -0.68 0.71 -0.53 0.73 -0.75 
Arabidopsis thaliana putative potassium transporter 
(At2g35060) mRNA, complete cds.|PLN 

AK071860 Os09g0569100 2.10 -0.62 0.67 -0.51 0.67 -0.70 
Arabidopsis thaliana clone C105073 unknown protein 
(At4g11570) mRNA, complete cds.|PLN 

AK104790 Os10g0130500 6.18 0.49 -0.49 0.52 -0.53 0.50 Unknown expressed protein 

AK106884 Os10g0158700 7.71 0.50 -0.60 0.63 -0.61 0.66 Unknown expressed protein 

AK060781 Os10g0159800 2.16 -0.42 0.53 -0.52 0.53 -0.56 
Arabidopsis thaliana clone 30996 mRNA, complete 
sequence.|PLN 

AK065782 Os10g0389000 3.03 -0.70 0.77 -0.67 0.73 -0.79 Nicotiana tabacum centrin (CEN1) mRNA, complete cds.|PLN 

AK069676 Os10g0415400 3.74 -0.49 0.49 -0.52 0.48 -0.55 Unknown expressed protein 

AK069385 Os10g0417600 2.81 -0.59 0.63 -0.43 0.66 -0.63 
Arabidopsis thaliana AT5g28840/F7P1_20 mRNA, complete 
cds.|PLN 

AK066224 Os10g0420900 4.42 0.58 -0.60 0.63 -0.62 0.63 Unknown expressed protein 

AK109893 Os10g0422600 3.79 -0.70 0.75 -0.68 0.73 -0.80 
Arabidopsis thaliana unknown protein (At3g22550) mRNA, 
complete cds.|PLN 

AK065193 Os10g0428200 9.90 0.45 -0.57 0.68 -0.57 0.62 Rice mRNA for aspartic protease, complete cds.|PLN 

AK067591 Os10g0440000 3.52 -0.65 0.64 -0.40 0.70 -0.66 Solanum chacoense cytochrome P450 mRNA, complete cds.|PLN 

AK105678 Os10g0515200 3.61 -0.69 0.74 -0.70 0.70 -0.81 
Arabidopsis thaliana cytochrome p450, putative (At1g64900) 
mRNA, complete cds.|PLN 

AK072155 Os10g0522500 3.68 0.51 -0.50 0.50 -0.52 0.52 Unknown expressed protein 

AK068314 Os10g0522900 8.54 0.47 -0.48 0.48 -0.50 0.54 
Arabidopsis thaliana partial mRNA for hypothetical protein, 
clone 105C20.|PLN 

AK063773 Os10g0527800 3.21 0.33 -0.39 0.44 -0.41 0.44 
Oryza sativa subsp. japonica putative glutathione S-transferase 
OsGSTU12 mRNA, complete cds.|PLN 

AK102640 Os10g0539900 2.90 -0.66 0.71 -0.54 0.70 -0.73 Hordeum vulgare mRNA for hexose transporter (stp1 gene).|PLN 
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AK066334 Os10g0560000 2.53 -0.59 0.63 -0.41 0.67 -0.64 
Arabidopsis thaliana unknown protein (At4g14740) mRNA, 
complete cds.|PLN 

AK059449 Os11g0138900 4.60 -0.71 0.78 -0.75 0.71 -0.77 Nicotiana tabacum mRNA for hsr203J, complete cds.|PLN 

AK101288 Os11g0210600 2.94 -0.58 0.65 -0.68 0.61 -0.65 Maize Adh2-N mRNA for alcohol dehydrogenase 2.|PLN 

AK066271 Os11g0256300 12.80 0.49 -0.49 0.49 -0.52 0.53 Unknown expressed protein 

AK109559 Os11g0294800 2.42 0.62 -0.61 0.58 -0.63 0.64 
Oryza sativa receptor serine/threonine kinase mRNA, partial 
cds.|PLN 

AK061209 Os11g0297000 12.15 0.45 -0.53 0.55 -0.49 0.56 Unknown expressed protein 

AK099990 Os11g0308100 14.30 0.43 -0.52 0.63 -0.52 0.54 
Oryza sativa OSKgamma mRNA for shaggy-related protein kinase 
gamma, complete cds.|PLN 

AK069378 Os11g0432900 3.01 -0.75 0.81 -0.78 0.78 -0.85 
Arabidopsis thaliana putative carboxypeptidase (At5g09640) 
mRNA, complete cds.|PLN 

AK062908 Os11g0434800 3.28 0.39 -0.49 0.54 -0.49 0.52 Unknown expressed protein 

AK068470 Os11g0439300 3.84 0.51 -0.46 0.42 -0.49 0.51 Unknown expressed protein 

AK064092 Os11g0458100 2.54 0.76 -0.82 0.71 -0.75 0.83 Unknown expressed protein 

AK106291 Os11g0550900 5.08 -0.71 0.69 -0.55 0.71 -0.75 Unknown expressed protein 

AK067451 Os11g0562100 6.49 0.32 -0.37 0.43 -0.40 0.40 
Avena strigosa mRNA for beta-amyrin synthase (bAS1 
gene).|PLN 

AK111536 Os11g0607200 3.49 -0.66 0.75 -0.77 0.68 -0.78 
Sorghum bicolor mRNA for protein serine/threonine kinase 
RLK1.|PLN 

AK062653 Os11g0704500 2.12 -0.46 0.49 -0.52 0.49 -0.52 
Oryza sativa metallothionein-like protein mRNA, complete 
cds.|PLN 

AK069456 Os12g0112000 7.02 -0.59 0.66 -0.64 0.66 -0.66 
Nicotiana tabacum mRNA for peroxidase, complete cds, 
clone:tpoxC1.|PLN 

AK063661 Os12g0117800 10.82 0.59 -0.52 0.46 -0.56 0.54 Unknown expressed protein 

AK066991 Os12g0118200 14.93 0.62 -0.60 0.59 -0.64 0.63 
Arabidopsis thaliana At2g30530/T6B20.12 mRNA, complete 
cds.|PLN 

AK111804 Os12g0118400 17.40 0.56 -0.57 0.57 -0.61 0.61 
Arabidopsis thaliana At3g10840 mRNA for putative alpha/beta 
hydrolase, complete cds, clone: RAFL17-30-F07.|PLN 

AK068868 Os12g0121300 15.01 0.56 -0.59 0.60 -0.61 0.64 
Arabidopsis thaliana putative phospholipid cytidylyltransferase 
(At2g38670) mRNA, complete cds.|PLN 

AK068675 Os12g0129700 2.45 -0.56 0.60 -0.46 0.65 -0.57 
Arabidopsis thaliana unknown protein (At1g80110) mRNA, 
complete cds.|PLN 
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AK066886 Os12g0132000 11.55 0.49 -0.48 0.49 -0.53 0.50 Unknown expressed protein 

AK110747 Os12g0135000 2.50 0.62 -0.63 0.60 -0.65 0.63 Unknown expressed protein 

AK107470 Os12g0146500 2.52 -0.62 0.63 -0.64 0.67 -0.68 
Arabidopsis thaliana putative protein (At5g04550) mRNA, 
complete cds.|PLN 

AK059860 Os12g0147800 3.14 -0.73 0.76 -0.74 0.74 -0.82 
Oryza sativa putative phytosulfokine peptide precursor (PSK3) 
mRNA, complete cds.|PLN 

AK062437 Os12g0148500 17.94 0.56 -0.56 0.56 -0.62 0.59 Unknown expressed protein 

AK065623 Os12g0168000 8.35 0.55 -0.60 0.66 -0.63 0.62 
Arabidopsis thaliana At1g76730 mRNA for unknown protein, 
complete cds, clone: RAFL21-46-B03.|PLN 

AK059809 Os12g0170800 3.46 -0.50 0.50 -0.43 0.58 -0.49 
Solanum tuberosum StCBP mRNA for citrate binding protein, 
complete cds.|PLN 

AK067635 Os12g0182300 2.14 -0.76 0.82 -0.78 0.77 -0.86 
Arabidopsis thaliana putative receptor protein kinase, ERECTA 
(At2g26330) mRNA, complete cds.|PLN 

AK063668 Os12g0197200 2.93 0.60 -0.64 0.62 -0.65 0.66 Unknown expressed protein 

AK100699 Os12g0197700 4.24 0.54 -0.55 0.57 -0.60 0.60 
Arabidopsis thaliana clone RAFL14-93-K05 (R20243) unknown 
protein (At5g23570) mRNA, complete cds.|PLN 

AK065572 Os12g0199100 6.87 0.62 -0.62 0.65 -0.64 0.64 
Oryza sativa nucleotide-binding leucine-rich-repeat protein 1 
mRNA, complete cds.|PLN 

AK102672 Os12g0204600 20.83 0.55 -0.56 0.53 -0.57 0.61 
Phaseolus vulgaris NBS-LRR resistance-like protein J78 (J78) 
mRNA, complete cds.|PLN 

AK073343 Os12g0254400 9.15 0.54 -0.58 0.60 -0.57 0.61 Oryza sativa unknown mRNA.|PLN 

AK072652 Os12g0254601 3.72 0.42 -0.51 0.62 -0.51 0.57 Unknown expressed protein 

AK064516 Os12g0256600 4.47 0.57 -0.63 0.66 -0.62 0.66 Unknown expressed protein 

AK100592 Os12g0448900 4.94 -0.65 0.73 -0.71 0.69 -0.76 Oryza sativa fatty acid alpha-oxidase mRNA, complete cds.|PLN 

AK105219 Os12g0571100 4.99 -0.73 0.76 -0.59 0.77 -0.77 
Oryza sativa metallothionein-like protein mRNA, complete 
cds.|PLN 

AK065760 Os12g0596800 2.49 -0.74 0.79 -0.76 0.73 -0.85 
Arabidopsis thaliana unknown protein (At4g36860) mRNA, 
complete cds.|PLN 

AK101710 Os12g0631200 2.54 -0.71 0.79 -0.78 0.73 -0.84 
Arabidopsis thaliana clone 108517 mRNA, complete 
sequence.|PLN 

AK106275 Unknown 2.77 0.67 -0.72 0.61 -0.66 0.70 C.lacryma-jobi mRNA for alpha-coixin 17kDa.|PLN 

AK060115 Unknown 2.77 -0.67 0.74 -0.66 0.72 -0.74 
Callistephus chinensis flavone synthase II (CYP93B5) mRNA, 
complete cds.|PLN 
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Appendix I List of BPH marker used for mapping candidate genes 
 
Gene Chromosome  Donor Marker References 

Bph1 12 IR64 CDO344 Huang et al.(2009) 
Bph1 12 IR64 RG463 Huang et al.(2009) 
Bph1 12 IR64 RG901 Huang et al. (2009) 
Bph10 12L IR65482-4-136-2-2 RM519 Ishii et al. (1994) 
Bph3 6S Rathu heenathi RM589 Jairin et al. (2007) 
Bph3 6s PTB33/Rathu RM190 Jairin et al. (2007) 
Bph3 6s PTB33/Rathu RM204 Jairin et al. (2007) 
Bph3 6s PTB33/Rathu RM469 Jairin et al. (2007) 
Bph3 6s PTB33/Rathu RM3353 Jairin et al. (2007) 
Bph3 6s PTB33/Rathu RM8101 Jairin et al. (2007) 
Bph15 8 Rathu heenathi RG1 Jairin et al. (2007) 

Bph15 8 Rathu heenathi RG2 Jairin et al. (2007) 
Bph18 12L IR65482-7-216-1-2 RM3331 Jena et al. (2006) 
Bph18 12L IR65482-7-216-1-2 RM3726 Jena et al. (2006) 
Bph18 12L IR65482-7-216-1-2 RM6217 Jena et al. (2006) 
Bph18 12L IR65482-7-216-1-2 RM7376 Jena et al. (2006) 
Bph18 12L IR65482-7-216-1-2 7312.T4A Jena et al. (2006) 
bph4 6s Babawee C531 Nagato and Yoshimura (1998) 
bph4 6s Babawee C891 Nagato and Yoshimura (1998) 
Bph1 12 IR64 RM1103 Park et al. (2008) 

Bph1 5 IR64 RM163  Park  et al. (2008) 
Bph1 5 IR64 RM459  Park  et al. (2008) 
Bph1 12 IR64 RM28493 Park  et al. (2008) 
Bph1 12 IR64 RM6693 Park  et al. (2008) 
Bph1 12 IR64 RM5609 Park  et al. (2008) 
bph(21t) 12 IR71033-121-15 RM3726 Kumari et al. (2010) 
bph(21t) 12 IR71033-121-15 RM5479 Kumari et al. (2010) 
Bph1 12 Mudgo  RG901 Kumari et al. (2010) 
Bph1 12 Norin-PL3 em2802 N Kumari et al. (2010) 
Bph1 12 Norin-PL3  em5814 N   Kumari et al. (2010) 
Bph1 12 Gayabyeo  OPD-07 Kumari et al, (2010) 
Bph1 12 Mudgo RG413  Kumari et al. (2010) 
Bph10(t) 12 IR 31917-45-3-2 RM17 Kumari et al. (2010) 

Bph10(t) 12 IR 31917-45-3-2 RM260 Kumari et al. (2010) 
Bph10(t) 12 IR 31917-45-3-2 RM277 Kumari et al. (2010) 
Bph10(t) 12 O.australiensis RG457 Kumari et al. (2010) 
bph11(t) 3 IR54742-1-11-17 G1318 Kumari et al., 2010) 
Bph12(t) 4 B14 RM185 Kumari et al., 2010) 

Bph12(t) 4 B14 RM261 Kumari et al., 2010) 

Bph12(t) 4 B14 RM335 Kumari et al. (2010) 
Bph12(t) 4 B14 C820 Kumari et al. (2010) 
Bph12(t) 4 B14 C946 Kumari et al. (2010) 
Bph12(t) 4 B14 R288 Kumari et al. (2010) 
Bph13(t) 3 IR54745-21-12-17-6 RM22  Kumari et al. (2010) 
Bph13(t) 3 IR54745-21-12-17-6 RM218  Kumari et al. (2010) 
Bph13(t) 3 IR54745-21-12-17-6 RM231  Kumari et al. (2010) 
Bph14 3 B5 R1925 Kumari et al. (2010) 
Bph14 3 B5 R2443 Kumari et al. (2010) 
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 Continue appendix table 
 
Gene Chromosome  Donor Marker References 

Bph15 4 B5 S11182 Kumari et al. (2010) 
Bph18(t) 12 O.australiensis RM463  Kumari et al. (2010) 
Bph18(t) 12 O.australiensis RM6869 Kumari et al. (2010) 
Bph18(t) 12 O.australiensis R10289S Kumari et al. (2010) 
Bph18(t) 12 O.australiensis S15552 Kumari et al. (2010) 
Bph19(t) 3 AS201 RM3134 Kumari et al. (2010) 
Bph19(t) 3 AS201 RM6308 Kumari et al. (2010) 
bph2 12 Norin-PL4 G2140 Kumari et al. (2010) 
bph2 12 Norin-PL4 KAM4 Kumari et al. (2010) 
Bph20(t) 4 IR71033-121-15 RM5953 Kumari et al. (2010) 
Bph20(t) 4 IR71033-121-15 MS10 Kumari et al. (2010) 
Bph3 6 Rathu RM588 Kumari et al. (2010) 
Bph3 6 Rathu Heenathi RM8072 Kumari et al. (2010) 
Bph3 6 Rathu Heenathi RM19291 Kumari et al. (2010) 

bph4 6 Babawee RM217 Kumari et al. (2010) 
bph4 6 Babawee RM225 Kumari et al. (2010) 
Bph6 11 O.officinalis RM209 Kumari et al. (2010) 
Bph6 11 O.officinalis OPA16938 Kumari et al. (2010) 
Bph6 11 O.officinalis RG167 Kumari et al. (2010) 
Bph9 12 Kaharamana RM5341 Kumari et al. (2010) 
Bph3 3 PTB33 RM251 Santhanalakshmi et al. (2010) 
Bph3 3 PTB33 RM3766 Santhanalakshmi et al. (2010) 
Bph3 3 PTB33 RM14687 Santhanalakshmi et al. (2010) 
Bph1 12L Mudgo em5814(AFLP) Sharma et al. (2002) 
Bph1 12 Mudgo G148 (RFLP) Sun et al. (2005) 
Qbph10 12L Rathu Heenathi RM484 Sun et al. (2005) 

Qbph10 12L Rathu Heenathi RM496 Sun et al. (2005) 
Qbph3 3 Rathu Heenathi RM7 Sun et al. (2005) 
Qbph3 3 Rathu Heenathi RM313 Sun et al. (2005) 
Qbph3 4 Rathu Heenathi RM8213 Sun et al. (2005) 
bph2 2 ASD7 RM7102 Sun et al. (2005) 
Qbph4 4S Rathu Heenati RM401 Sun et al. (2005) 
Qbph4 4S Rathu Heenati RM518 Sun et al. (2005) 
Qbph4 4S Rathu Heenati RM5953 Sun et al. (2005) 

 
 
 
 
 
 
 
 
 
 
 
 
 


