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Abstract 

 

The ability to monitor the cure kinetics at the fibre-matrix interface and the effects induced by the 

presence of silane coupling agents was the main focus of this study.  E-glass reinforcing fibres were 

used as chemical sensors to eliminate the potential problems associated with implanting a foreign 

body into a composite structure in the form of an optical fibre.  This study demonstrated 

conclusively that E-glass reinforcing fibres can be used to monitor the cure of an epoxy/amine resin 

system in-situ; the data generated via evanescent wave spectroscopy (EWS) using the reinforcing E-

glass fibres showed excellent correlation with conventional transmission Fourier transform infrared 

spectroscopy over a range of temperatures.  EWS via E-glass fibres was used to study the effects of 

the following coupling agents on the cure behaviour: (i) 3-glycidyloxypropyltrimethoxysilane (GPS); 

and (ii) 3-aminopropyltriethoxysilane (APS).  The epoxy and amine functional groups in the resin 

system were affected by the presence of the silane coupling agents during cure.  Increased GPS 

concentration induced faster rates of epoxy conversion, but reduced the final degree of epoxy 

conversion.  The amine functional groups of the curing resin were converted at faster rates with APS 

treatment, but the final degree of amine conversion was reduced. 
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Chapter 1 

1. Introduction 

There are three major elements that characterise a composite; the matrix, the reinforcement and 

the interface.  The matrix can be a metal, ceramic or polymer, the reinforcement can be particulates, 

short-fibres or continuous fibres, and the interface is the region between the matrix and 

reinforcement.  The selection and combination of materials for the three phases produces a 

composite with specific properties that the selected materials on their own could not achieve.  This 

flexibility allows their final properties to be tailored to the requirements of the intended end-use 

application.  Each phase plays a significant role in determining how the composite structure will 

perform during service.   

In the present study the chief area of interest concerns the matrix phase, where thermosetting 

polymer systems are monitored throughout the cure process. The term “cure” is generally used 

when referring to cross-linking reactions.  A wealth of techniques are available to monitor cure and 

the use of optical fibres as sensors have received much interest since their commercial introduction 

in the early seventies (Udd, 1995).  The aim of this project is to further develop the technology 

where the conventional reinforcing fibres act as pseudo optical fibre sensors.  This will enable 

evanescent wave infrared spectroscopy to be carried out through the glass fibres with the resin 

acting as the cladding.  The primary aims of this study are to: (i) demonstrate that E-glass fibres can 

be used as sensors to for cure monitoring; and (ii) investigate the effect of surface-treatments on the 

cure behaviour.   

The subsequent sections of the thesis are structured as follows: Chapter 2 provides: (i) an 

explanation for the motivation for undertaking this research; (ii) relevant background information 

concerning epoxy resins and cure monitoring techniques; (iii) a review of the literature concerning 

evanescent wave spectroscopy and silane coupling agents.  Chapter 3 describes the cure monitoring 

experimental procedures used in this study.  Chapter 4 presents the results obtained accompanied 

with in-depth discussion, concentrating on how silane treated E-glass fibres affect the cure kinetics 

of an epoxy resin.  Chapter 5 assembles appropriate conclusions from the findings and briefly details 

any recommended further research. 
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Chapter 2 

2. Literature review 

2.1 Cure monitoring 

Cure monitoring is the tracking of the cross-linking process of a thermosetting resin.  It is achieved 

by the measurement of physical, optical, spectral, thermal etc. quantities and the changes that occur 

in relationship to the cure condition, either directly or indirectly (Skordos, 2003).  In addition to 

achieving improved matrix-dominated properties, economical and environmental advantages may 

also be obtained (Bang et al. 2001) as will be discussed subsequently.   

2.1.1 Cure kinetics 

The cure kinetics of the resin system is affected by many factors (Crosby et al. 1996) (Figure 2.1). 

 Figure 2.1:  Determinants of the cure kinetic of a resin system. 

 

 

 

 

 

 

 

The matrix-dominated properties are therefore influenced by the cure kinetics, determining 

properties such as interlaminar shear strength, resin failure strain, void content and crosslink density 

(Doyle et al. 1998).  In general, composite manufacturers use a pre-defined cure schedule for a 

particular resin system.  However, these processing conditions may not actually consider the 

chemical state of the resin. Depending on storage conditions (storage time, temperature, 

freeze/thaw cycles, collective time spent out of the required temperature) the chemical state of the 

resin will vary between each use (Lodeiro and Mulligan, 2005).  Yu et al. (2009) studied the ageing of 

epoxy prepegs at different humidity conditions using near-infrared (NIR) spectroscopy; the authors 

noticed that humid conditions increased epoxy cure conversion.  If a more ‘flexible approach’ can be 
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The cure schedule 
(processing conditions, 
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introduced by understanding the cure kinetics, composite properties can be more specific to their 

applications requirements by enhancing the cure schedule (Crosby et al. 1996). 

2.1.2 Residual stresses 

Cross-linking reactions are exothermic; this creates an issue with respect to thermal management of 

the composite perform.  The manufacture of a polymer composite involves the presence of two 

dissimilar materials (e.g. the matrix and reinforcing fibres) and so at the particular processing 

temperature the materials will expand differently. The heat within the composite preform needs to 

be monitored; traditionally, thermocouples are used.  Thermocouples only provide temperatures 

local to their location, i.e. the edges of the preform (Tuncol et al. 2007).  This is especially a problem 

for large, bulky and complicated performs.  Differential thermal expansion of the key components 

(i.e. the fibres and matrix) can result in the development of residual stresses when the composite is 

cooled down from the processing temperature.  The resin contraction of the matrix cross-linking can 

also contribute to the development of residual stresses (Hahn, 1984).  Warping of composites, 

commonly known as ‘spring-back’, is caused by residual stresses (Leng and Asundi, 2002). 

2.1.3 Legislation, product-value and costs 

There is a need to increase the efficiency of the manufacturing process of a composite, as it is the 

most critical and costly stage (Liu, 1993).  In addition to providing the most optimum product, the 

composites industry must now seriously consider the issues concerning environmental preservation 

and sustainable development.  These added pressures are applied by government directives, for 

example, the waste incineration directive (2000/76/EC) was set-up to protect the environment from 

air, water and oil pollution.  The consideration for the raw materials being used, the process of 

manufacture and the end-of-life policies are all aspects that will be assessed against environmental 

standards.  In composite manufacturing, much can be done to become environmentally cleaner and 

more energy efficient.   

Sensors systems can be used to recognise significant changes in the characteristic of the curing 

process to facilitate the decision making concerning the processing conditions.  For instance, power 

can be economised and CO2 emissions can be reduced, by identifying the point of vitrification, which 

signifies completion of cure (Karkanas, 1997); the curing of the material can consequently be 

stopped, thus reducing the cure duration.  This assurance of quality eliminates the otherwise 

possibility of producing an inadequate and vitrified thermoset material, which will be in a permanent 

state and so contribute to waste; as well as exhausting all the resources used during its production 

process (Mulligan, 2003). This is also relevant to safety critical applications; lengthy quality control 
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procedures can be facilitated and assist quicker launch dates into the market place, especially when 

introducing new resin systems and batch to batch variations (Mulligan, 2003).     

Concerning a more ‘flexible approach’, it is of significance to mention there are many fabrication 

techniques available (Figure 2.2).   

Figure 2.2:  Polymer composite fabrication techniques. 

 

 

 

 

 

 

 

With each technique, the curing environment will be different, such as temperature and thickness 

disparities regarding the composites geometry; factors the cure schedule may not account for.  This 

accentuates the need to implement a monitoring system that compensates for these differences to 

permit adjustments to the processing conditions in real-time (Roberts and Davidson, 1993).  If the 

fabricator has information identifying particular stages during cure, decisions regarding the 

processing conditions can be made with assurance of a more efficient fabrication process.  For 

example, if stages of low-viscosity and the moments before reaching gelation can be identified; in 

the case of filling a mould, the quality of fibre impregnation can be improved by applying pressure at 

the optimum times, which will help reduce porosity. 

So, there is a demand for monitoring the rate and state of cure of a composite; the parameters of 

interest are monitored by particular process monitoring techniques (see Section 1.3).  By satisfying 

each of the just mentioned issues economical gains are also available. 
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2.2 Curing of epoxy resins 

The cure of a liquid thermosetting pre-polymer is characteristically achieved by the application of 

heat, curing the initial viscous liquid state into a highly cross-linked solid.  Other activation methods 

of cross-linking include light (Koran & Kürschner, 2001), microwaves (Azzarri et al. 2003) and 

electron beam (Zhang et al. 2002).  During this transition (liquid to solid), chemical, physical and 

mechanical properties of the resin are modified. The curing is accomplished by a series of complex 

chemical reactions, creating linked monomer units from the protraction and cross-linking of the 

initial pre-polymer molecules producing networks of high molecular weight.  When the curing of the 

material proceeds (from its initial state), there will become a point at which the flow of the material 

ceases.  Here, the material has reached gelation caused by the increasing molecular weight 

(accompanied by an increase in viscosity), also referred to as the rubber phase (Troughton, 2008).  

As the curing continues, further reactions take place enhancing the number and density of 3-D 

structural cross-links leading the material to vitrify, (Chen et al.  1999). If curing extends beyond 

vitrification, the risk of degradation to the material becomes more probable.  The end of cure can be 

defined when no further reactions can occur and the product is a hard, solid material usually 

possessing a Tg higher than that of the cure temperature.  The degree of cure is of much interest and 

can be defined as the ‘percentage of un-reacted species conversion as compared to a fully cured 

material’, (Lodeiro and Mulligan, 2005).  Once the material accomplishes a fully cured state, no 

further reactions can take place, even if the curing time and temperature is increased.  On occasions 

the material is subjected to a second stage of curing, termed as ‘post-cure’; an elevated temperature 

is used to enable further cross-linking and increase the materials Tg.  This process helps prevent 

degradation of the material, reducing the effect of strong exothermic reactions that are 

characteristic during cross-linking when commencing first time cure at high temperatures, as 

opposed to a second stage of curing.   

2.2.1 Epoxy resin and amine hardner 

An extensive body of literature is available concerning the process of cross-linking kinetics for 

thermoset resins, especially for epoxy resins.  Reactive epoxy rings (also termed oxirane rings) partly 

comprise their pre-polymer state (Fig. 2.3), once the resin has cured to a high molecular weight 

cross-linked network, no more reactive epoxy rings may be present as they have been consumed in 

the cross-linking reactions. So, whether in a pre-polymer or cured state, the “epoxy resin” name is 

relevant for the two situations (Karkanas, 1997).  The three-membered-strained ring-containing 

oxygen is the functional group of epoxy resin that acts as the reactive site for cross-linking (Varma et 

al. 2001). 
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Figure 2.3:  The epoxy (oxirane) ring structure. 

 

The widespread attention that epoxy-based resin systems receive is partly because of their extensive 

use in aerospace applications.  In the 1940s, the reaction between bisphenol A and epichlorohydrin 

was the first marketed epoxy resin (Karkanas, 1997). Their nature permits a flexible approach to 

tailor desired properties, by adapting different backbone structures and molecular weights (Varma 

et al. 2001). 

To produce the cured material, curing agents are used (referred to as hardeners) which react with 

the epoxies active functional groups and are what provide the ‘linkages’ in the rigid crosslinked 

structure; consequently providing their desirable qualities.  These include: chemical resistance, 

flexibility, adhesiveness, castability and dimensional stability.  A number of hardeners are 

obtainable, usually comprised of sulphur, oxygen or nitrogen.  In the case of this study the latter is of 

interest; amines containing nitrogen are a commonly used curing agent. 

2.2.2 Epoxy-amine cure reactions 

It is the opening of the oxirane rings with active hydrogen atoms that produce cross-linking and 

polymerization.  This is achieved by using a hardener, which acts as a reagent to crosslink with the 

greatly reactive strained epoxide ring; a common type of hardener is an amine.  During the epoxy-

amine cure reaction, it is well documented and generally accepted that two main reactions occur 

(Barton, 1985; Smith, 1961): 

Primary epoxy-amine addition 

               (1) 

 

From the first reaction (Eqn. 1) the Nitrogen atom (N) on the primary amine couples with a carbon 

atom on the epoxy group.  As a result a carbon-oxygen bond is broken, thus producing two more 

functional groups: 

(i) secondary amine group; and 

(ii) hydroxyl (OH) group  

A further reaction is now seen with the secondary amine group (i) also reacting with the epoxy ring 

(Eqn.2) producing tertiary amine groups and an obvious increase in molecular weight. 

O 

CH R CH2 

H2C CH 

O 

R’ R NH2 R NH R’ CH2 CH 

OH 

+ 
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Secondary epoxy amine addition 

 

 

 

   

The hydroxyl formed (ii) also takes part in the reaction acting as a catalyst (Smith, 1961) (Eqn. 3) 

Hydroxyl-epoxy (also referred to as etherification) 

 

(3) 

 

This additional reaction of the epoxy molecules with the hydroxyl groups can arise when the amine 

is existent in less than stoichiometric concentrations (Karkanas, 1997).  By identifying the key 

functional groups involved in the cross-linking reactions, their consumption in the reactions can be 

tracked by using sensors to provide an absorption spectrum at different intervals during cure. 

  

R NH R’ CH2 CH 

OH 

R’ + H2C CH 

O 

R N 

CH2 CH 

OH 

R’ 

CH2 CH 
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2.3 Cure monitoring techniques 

A wide range of thermoset cure monitoring techniques are available and they function by detecting 

property changes in the material; these measurements are then used to indicate the cure state.  

Kazilas (2002) divided the techniques into three areas (Table 1).  

Table 1:  Cure monitoring techniques and examples (Kazilas, 2002).  

Cure Monitoring Technique Example 

Thermal monitoring Differential scanning calorimetry (DSC) is an 

established technique used for thermal 

monitoring, measuring properties such as the 

enthalpy of the reaction and the glass transition 

temperature (Tg), (Zvetkov et al. 2008).   

Optical methods 

 

Fourier transform infrared (FTIR) spectroscopy 

and Raman spectroscopy are both examples of 

optical methods used to monitor cure, that can 

provide data alternative to the DSC for analysis 

of cross-linking kinetics, (Merad et al. 2009).   

The response of the resin system to a small 

external excitation (i.e. acoustic, electric, 

magnetic or mechanical).   

 

Acoustic cure monitoring (Ultrasound); 

subjecting ultrasound to the curing material, its 

propagating velocity can be measured as a 

function of cure duration to indicate the state of 

cure (Harrold and Sanjana, 1986). 

 

Though there is an abundant resource of techniques that can monitor the cure of thermosetting 

resins, a wealth of considerations must be addressed to determine their effectiveness as potential 

industrial processes.  Fernando and Degamber (2006) underline some of these concerns by 

comparing thermal (DSC) and spectral (FTIR) data (Table 2). 
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Table 2:  Comparison between DSC and FTIR data (Fernando & Degamber, 2006). 

Thermal (DSC) data Spectral (FTIR) data 

The housings of the curing sample are of different materials, substrate-catalysed reactions are 

therefore possible. 

Measurements are taken from heat activated 

processes in the case of the DSC. 

Vibrational characteristics are considered in FTIR 

spectroscopy. 

The DSC uses conductive heating. The activation of cure with FTIR experiments is 

difficult to design without experiencing thermal 

gradients in the sample during cure, relying on 

conductive and radiative heating. 

The sample mass is less for DSC experiments and 

heat transfer is consequently affected.  

 

Atmospheric conditions can also be different between the two 

 

This has led to motivation of combining the two techniques (Johnson et al. 1992) in order to find a 

solution.  The following sections will concentrate on the techniques relevant to this study.      

2.3.1 Optical fibres and the self-sensing concept 

Depending upon the measurand of interest (strain, temperature, chemical concentration, etc.), an 

optical fibre based technique is available for that purpose.  In regards to this study, the techniques 

for cure monitoring with the aid of an optical fibre sensor are of interest and can be divided into 

qualitative or quantitative methods.  A qualitative approach relies on the correlation between a 

specific property of the resin as a result of the cure conditions, e.g. time and temperature; whereas, 

a quantitative method produces information of specific chemical activity that are involved in the 

reaction taking place.  There are numerous different types of practice that are available to monitor 

cure via optical fibre sensors (Table 3). 
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Table 3:   Established techniques used to monitor the curing process. 

Spectroscopy techniques Non-spectroscopy tecniques 

    

Ultraviolet (UV) (Merschman & Tilotta, 1998) Strain monitoring (O'Dwyer et al. 1998) 

Infrared (IR) (Mijovic & Andjeli, 1995) Temperature monitoring (Liu et al. 1997) 

Raman (Hong et al. 1993) Ultrasonics (Mitra & Booth, 1998) 

Chemiluminescence (Schweinsberg & George, 1986) Dielectric (Bidstrup et al. 1989) 

Fluorescence decay (Muhs et al.1990) Nuclear magnetic resonance (NMR) (Challis et al. 2003) 

 

As established previously, there is a demand for sensors that can obtain quantitative data in-situ and 

in real time.  A great body of literature exists regarding the practicality of using optical fibres as light 

guides via total internal reflection for process monitoring.  In the late fifties, a technique known as 

dielectric cure monitoring was introduced and has become firmly established as a prospective 

sensory system; however a significant concern with this technique is its susceptibility to 

electromagnetic interference (Kang et al. 2002).  Optical fibre sensors are immune to 

electromagnetic interference and hence eliminate costs concerning the shielding of electrical-based 

techniques (Chen et al. 2004) broadening their eligibility to be used in composite processing 

equipment (Powell et al. 1998).  They are also extremely sensitive to changes of the light 

propagating through the fibre, such as intensity, frequency, polarization and phase modulations.  

These attributes have facilitated their use in monitoring a wide range of material states during and 

after cure, such as temperature and strain (Montanini and D’acquisto, 2007), acoustic emission 

(Read et al. 2002) and vibration (Johnson et al. 1999) monitoring.  Among other merits of optical 

fibre sensors, is their small size and light weight allowing feasible integration into the composite 

matrix (Lee, 2003).  However, the incorporation of a foreign body into the host structure introduces 

a number of practical matters that must be approached with caution. 

Firstly, in the composite structure a diameter and thermo-mechanical mismatch (Melin et al. 1999) is 

present between the optical fibre sensor and the surrounding reinforcing fibres.  This affects inter-

fibre spacing (Benchekchou and Ferguson, 1998) creating resin rich areas which encourage stress 

concentrations, that act as crack initiation sites causing delamination under mechanical loads (Her et 

al. 2010).  Secondly, fibre reinforced polymer composites are used in safety critical applications 

(Okoli, 2001) and the deployment of a ‘foreign body’ may require recertification of the structure 

before it can be used, increasing cost.  If successful deployment of the optical fibre sensor into the 

composite structure is achieved, further questions will be raised regarding its long term effect on the 
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composites structure, as well as its dependability and resilience with time.  For example the sensor 

will need to withstand the operating temperature and/or pressures during composite processing.  

Silica optical fibres are regularly used as sensors and their brittle nature (Chang et al. 2009) require 

the need for an external protective system (Kin-Tak et al. 2001).  This causes further implications 

regarding the sensing regions exposure to the measurand and the possible effects the surface 

chemistry can have on the cross-linking kinetics of the matrix.  Lastly, there are concerns 

surrounding interconnection between the embedded sensor and interrogation apparatus.   

Embedding fibres creates a list of considerations: protecting the sensor with coatings, survivability in 

service conditions, effect on properties and the durability of the interface between the sensor, 

matrix and fibres.  A part solution to these problems is to use the reinforcing fibres as the sensors.  

Hayes et al. (1997) used the commercially available quartz fibres as a ‘self-sensing fibre’ to act as a 

light guide, concluding that the quartz fibres ‘proved more sensitive to impact damage than the 

conventional optical fibres used in the study’.  By comparing the mechanical properties of the quartz 

fibres to the E-glass fibres; they are similar in nature.  It has been found that in the case of E-glass 

fibre reinforced epoxy composites, cure monitoring can take place by utilising E-glass optical 

properties converting them into light guides; hence the name self-sensing composites (Kister et al. 

2001).  This is possible when using an epoxy resin with a refractive index lower than that of the E-

glass fibre.  The radiating energy can then attain total internal reflection converting the reinforcing 

fibre into a waveguide.  However, the disadvantage with this method is that Kister et al. (2003) only 

measured light absorption in the conventional intensity-based approach.  This poses a problem of 

obtaining invalid conclusions of the collected quantitative chemical information during the cure, as 

there is chance of drift from the light source and/or detector. 

2.3.2 Total internal reflection and evanescent waves 

The word “evanescent” originates from Latin, “evanescere” which translates to disappear; this is 

apposite as the intensity of the evanescent wave decays exponentially with distance from the 

interface at which it was created.  Evanescent wave spectroscopy can monitor the cross-linking 

process involved in the processing conditions of an epoxy resin system and relies on total internal 

reflection to take place through the sensor. 

The speed of light is a physical constant that is usually considered when travelling through a vacuum.  

However, when light travels through another medium, such as glass or plastic, its speed will change.  

The index of refraction, , is related to the speed of light for a given material; the ratio of the speed 

of light in vacuum ( ) to the speed of light in the medium ( ) is defined as the index of refraction 

(Serway et al. 2008). 
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           (4) 

As the speed of light changes from one media to another, so does its wavelength.  The index of 

refraction can also be expressed in terms of wavelength, where  is the wavelength in vacuum and 

 is the wavelength in the medium (Serway et al. 2008): 

           (5) 

It has been established that the speed of light changes and the wavelength changes, as light passes 

through different media, however the frequency of light stays constant.  Wavelength and frequency 

are related by the following equation (Bailey & Wright, 2003): 

           (6) 

where  is the speed of the wave,  is the frequency and  is the wavelength. 

As a light ray strikes the boundary between two media of differing refractive indices the light ray’s 

velocity is altered.  At this point it causes a bend in the lights direction; this is known as refraction, 

and so it creates an angle-of-refraction,  (Anderson et al. 2004).  By measuring the angles from 

the normal to the interface of light passing through   into , the angle of incidence it related to 

the angle of the transmitted light into  by Snell’s Law (Lekakou et al. 2006): 

          (7) 

Figure 2.4:  Refraction of light bewteen media of differing refractive indices. 

 

 

 

 

 

 

 

 

normal 



 Chapter 2  

22 
 

As light crosses the boundary into a medium with a higher refractive index, the light will be refracted 

and transmitted towards the normal.  Light can be refracted away from the normal if this is reversed, 

i.e. by passing light through a medium with a lower refractive index.  This is significant, because at a 

particular angle, the light travelling from  to , when  will bend (refract) at 90°, i.e. along 

the interface.  This angle is known as the critical angle, ; it is a specific value of , achieved when 

 (Pedrotti and Pedrotti, 2006).  So, when  and , the critical angle is 

governed by (Pedrotti and Pedrotti, 2006): 

   ( )       (8) 

When  is greater than the critical angle  total internal reflection is attained. 

Figure 2.5:    Total internal reflection is achieved when the angle of incidence is greater than the 

critical angle. 

 

 

 

 

 

 

 

 

The potential light ray paths can now be discussed (Fig. 2.6) for a core with a refractive index that 

is higher than the refractive index of the cladding, .  Air possessing a refractive index  is a third 

medium that can also be considered , its refractive index being lower than both  and .  The light 

ray is directed at the fibre/air interface at angle , consequently at the interface the ray is reflected, 

as well as being refracted towards the fibre surface, which continues to penetrate through the 

material .  The penetrating light ray then reaches and strikes the cladding/fibre boundary at an 

angle of , displayed at point 3. At the point at which  is greater than the critical angle  total 

internal reflection is attained shown at point 4.  In a scenario where angle  is smaller than the 

normal 
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critical angle  refraction takes place  penetrating into the cladding before eventually escaping 

with some internal reflection occurring also. 

Figure 2.6:  A diagram illustrating the potential light ray paths through an E-glass fibre and the 

surrounding resin that occur during total internal reflection (Anderson et al. 2004). 

 

  

 

 

 

 

 

 

 

As a result of interaction between the incident light and the reflected light a standing wave 

disturbance is present close to the interface.  A non-transmitting field is created as a result through 

minor infiltration of the incident light into the cladding (the evanescent wave), as described by Xu et 

al. (1996).   The amplitude of the evanescent wave decays exponentially and the distance from the 

surface to where the intensity falls to 1/e of that at the interface is known as the penetration depth.  

The penetration depth of the evanescent wave can be estimated by (Fernando & Degamber, 2006): 

          (9) 

where  is the refractive index of the E-glass fibre and   is the refractive index of the 

epoxy-amine resin system,  represents the lights wavelength and  represents the angle of 

incidence at the fibre/resin interface.  With reference to infrared spectroscopy, the infrared 

radiation of the evanescent field is absorbed by the analyte at specific frequencies according to the 

vibrating molecules of the analyte and their absorption frequencies (Garton, 1989).  Depending on 

the absorption band of the analyte, the incident light will be reflected at an attenuated frequency.  

By analysing the difference between the input wavenumber and output wavenumber an absorption 

Cladding (resin) 

Cladding (resin) 

Fibre axis 
1 

2 

3 

4 

5 

E-glass fibre 



 Chapter 2  

24 
 

spectrum can be generated.  If the principles associated with this technique are applied to the E-

glass fibre and the epoxy resin system it is possible to obtain spectra in the NIR region. 

2.3.3 Review of infrared evanescent wave spectroscopy 

IR spectroscopy relies on the ability of certain molecules to absorb infrared radiation.  Atoms within 

the molecules vibrate; the frequency of these vibrations is dictated by the strength and length of 

their bonds and by the atom’s mass.  The molecules bonds have a natural vibrating frequency; 

radiation in the infra-red region that is equivalent to this vibrating frequency is absorbed by these 

bonds, which results in the molecules vibrations.  The information obtained from the infra-red 

spectrum helps identify the composition of the chemical bond or functional group and its 

concentration, with reference to the position of the absorption peak and the intensity of the peak 

(Fernando, 2005).  Additionally, the shift in baseline of the spectra is associated with the change in 

refractive index (Degamber et al., 2003, Doyle et al., 1998).  Due to the bond’s distinctive vibrational 

frequency, it can be assigned to a specific wavelength range and therefore be identified easily (Table 

4).  Weyer (1985) and Stark, et al. (1986) provide helpful studies in NIR spectroscopy and its use for 

qualitative and quantitative analysis that can be used to identify certain peaks from obtained 

spectra.  Druy and Elandjian (1988) employed the chalcogenide glass fibre as an evanescent sensor 

used to gather cure data of a graphite/epoxy prepeg.  A stripped portion of the fibre exposed the 

region to the epoxy prepeg during the cure reaction to track the absorption band of the –NH 

bending mode at 3367cm-1.  Xu et al. (1996) shows that for an epoxy/amine resin system, the 

absorption peaks associated with the primary amine and epoxy functional groups can be clearly 

assigned in the near-infrared region.  The motivation to use NIR spectroscopy over MIR and FIR 

spectroscopy is the clearer separation between absorption bands with little overlap (Poisson et al. 

1996).  
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Table 4:  Characteristic Near-IR absorption peaks for an epoxy resin system (Mijovic et al. 1995). 

Wavenumber (cm-1) Peak assignment 

    

7000 -OH stretching vibrations 

    

6682 

-NH2 stretching vibrations 
6670 

6570 

6080 

    

5969 aromatic ring C-H stretch combination 

    

4536 epoxide combination 

 

An in-situ method of monitoring the formation of a polymer network in the mid-infrared range has 

been demonstrated successfully by Anne, et al. (2009).  Chalcogenide glass of a Se-Sb-Ge-Ga system 

was the choice of optical fibre because of its acceptance of radiation in the mid-infrared range and 

higher temperature tolerance, when compared to the commonly used TAS glass (Te2As3Se5).  Spectra 

received in the mid-infra red region are infamously difficult to identify specific vibrational bonds due 

to convoluted overlapping.  The authors utilise a technique known as principal component analysis 

(PCA).  The light guide was approximately 400 µm in diameter, but the sensing region was reduced 

to 100 µm in diameter to increase sensitivity (Le Coq et al. 2002).  This was achieved by drawing the 

fibre at an increased speed during forming and by a chemical treatment which ‘congruently’ 

dissolved the glass.  The tapered region was set up in a mould, the resin was injected into the mould 

(which was pre-heated at 180 °C) and came into contact with the sensor, a quasi isothermal cure 

was then carried out for 3 hours.  The results were interpreted in two ways, firstly in the range 970 – 

1130 cm-1 the evolution of integrated transmission spectra was plotted against cure duration.  This 

data illustrated three stages during the cure process:  

(i) 0 – 40 min: transmission was constant and so it can be inferred no reactions were taking 

place;  

(ii) 40 – 120 min: a decrease in transmission inferring that curing was in process and  

(iii) 120 – 180 min: transmission was constant indicating the end of cure.   
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Secondly, principal component analysis (PCA) was used producing a ‘map’ in the region between 970 

and 1130 cm-1.  PCA is a technique used when the absorption bands cannot be clearly assigned to 

the vibrational bonds due to dense overlapping.  PCA functions by considering the coefficients of 

linear combinations derived from ‘spectra factors’ of the raw spectra and arranging the factors in 

accordance to their weight.  Data points in spaces signified the initial spectra and illustrated similar 

results compared to the integrated transmittance, in that three distinct regions exist.  A large 

concentration of data points at the bottom right hand corner of the map indicates the period before 

curing begins, from 60 to 100 min a separation occurs with data points distributed along a parabola 

indicating that cure is in progress.  End of cure was inferred by the collection of data points in one 

area on the left hand side of the map at the end of the parabola.  The 2S2G fibre successfully 

monitored polymerisation process of an industrial resin, achieved at temperatures of 200 oC; the 

PCA analysis could be a future prospect for analysis on an industrial scale.  

Powell et al. (1998) employed the evanescent wave method and used a high refractive index 

(n=1.65) optical fibre with a 20 cm portion of the cladding removed at the mid-point of the 1.5 m 

length fibre.  After the sensor was prepared, it was placed within a glass tube before being placed in 

a thermostatically controlled water bath ensuring the de-clad region was immersed in the water 

bath.  Connected to the ends of the optical fibre were a Bentham Instruments scanning 

monochromator and an InGaAs photodiode detector.  From the spectra collected a rising baseline 

was identified as a main feature seen in the spectra; caused by the changing refractive index as a 

function of cure, identifying the increase in molecular weight.  The evanescent wave spectroscopy 

(EWS) technique proved to show good correlation in comparison to the transmission sensor and 

refractive index sensor, with faster cure rates at higher temperatures.  Powell et al. (1998) 

successfully demonstrated that from the spectra obtained characteristic absorption peaks could be 

identified and their involvement in the cure reactions could be monitored.  Papers by Doyle (1998) 

and Crosby (1996) also show similar results.   

A study by Chailleux et al. (2001) used F2 glass optical fibre with a high refractive index (n=1.62) to 

sense the cure of diglycidyl ether of bisphenol-A (DGEBA) resin using isophorone diamine (IPD) as 

the hardener.  A portion of the optical fibre cladding was removed to allow contact of the resin to 

the sensor.  To ensure good light guiding properties for evanescent wave transmission,  the following 

refractive index relation had to be obeyed: ncore > nmedium > ncladding.  In comparison with the degree of 

cure from a differential scanning calorimeter (DSC), the evanescent sensor showed good ability to 

monitor the degree of cure.  The possible damage to the optical fibre sensing region caused by the 

mechanical removal of the cladding and also the angle of incidence could have been affected from 
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the movement of the optical fibre at the light source, thus affecting the degree of evanescence and 

output signal (Fernando & Degamber, 2006); attributing a possible disadvantage with using optical 

fibre sensors.  Dunkers et al. (1997), collected spectra using evanescent wave Fourier transform near 

infrared spectroscopy.  Here they used an optical fibre ‘mini-bundle’, consisting of three, 150 μm 

high index (n=1.612) fibres.  By using this ‘mini-bundle’ it increased signal-to-noise (S/N) ratio by 

providing increased optical throughput.  A fibre used with a very small core radius increased its 

fragility and sensitivity to flow variation and hence reduced the signal-to-noise (S/N) ratio (Lew et al. 

1984).  This also introduced microbends in the fibre that might cause loss of light beams striking the 

core/cladding interface at an angle less than the critical angle.   

Evident from the literature, EWS allows the identification of specific absorption peaks, which can 

then be assigned to specific functional groups.  The concentration of the functional group of interest 

can be tracked during cure of the resin by reviewing the intensity of its assigned peak with time.  Any 

change in the refractive index of the resin can also be obtained from the shift in baseline of the 

spectra. 
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2.4 Glass fibres and silane coupling agents 

The production of glasses has existed for thousands of years.  Conventionally, glasses are inorganic 

and non-metallic.   The following definition is made possible due to two common traits that glasses 

possess; “an amorphous solid completely lacking in long range, periodic atomic structure, and 

exhibiting a region of glass transformation behaviour” (Shelby, 2005).  In the case of using two 

dissimilar materials, such as an epoxy resin (organic polymer) and glass fibre (mineral based fibre), 

an attachment between the two to create a water resistant bond is not possible; a third 

intermediate material is required (Plueddemann, 1991). 

At the beginning of the 1940s improvement in the performance of composite materials was made 

possible with the introduction of high strength and high modulus glass fibres.  Albeit, these new 

composites provided good strength properties, they were not however being utilised to their full 

potential; prolonged exposure to atmospheric moisture deteriorated their properties drastically.  

This predicament created the need for a new mechanism to be used to combat this apparent loss of 

adhesion between the glass and resin and in the mid-1950s silane coupling agents were successfully 

employed to enhance composite properties (Owen, 2002).  Glass fibre polymer matrix composites 

are still to do this day a popular material to use, moderately attributable to the advancement in 

coupling agents. 

The glass fibre surfaces nature is critical to how it interacts and adheres with the resin matrix.  It is of 

importance to understand that during fibre production the surface properties of the glass fibre can 

be modified (such as processing conditions and post-treatments), which in turn affect adhesion 

properties and so affecting the composite performance (Miller & Ishida, 1990).  During the 

fabrication of glass fibres, they are coated with a “size” at the time of drawing; among the 

ingredients are three important elements:  

(i) lubricant preventing damage;  

(ii) binder for strand integrity and  

(iii) a coupling agent for bonding to the matrix.   

The silane coupling agent comprises a small percentage of approximately 0.1 – 0.5% in the sizes 

composition (Britcher et al. 1999) 

The mechanism that provides the enhancement in the properties of composites as a result of the 

silane treatment, has attracted much interest.  The postulated processes and mechanisms that 

provide these effects have been debated for many years, with scientific research supporting for and 

against arguments on the numerous theories that exist.  The adhesion mechanism is extremely 
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complex, how the bonding occurs is reliant on the fibre’s and matrix’s atomic arrangement, 

molecular conformation and chemical constitution; as well as the morphological properties of the 

fibre and the diffusion coefficient of the elements in each component (Kim & Mai, 1998).  

2.4.1 Adhesion mechanisms of the silane coupling agent 

Organo-silane coupling agents are generally used to treat the surfaces of E-glass fibre in order to 

improve the bonding between the fibres and the matrix.  A silane coupling agent has the general 

molecular formula (Sever et al. 2008): 

R’ – Si – (OR)3            (10) 

The R’ group is a reactive functional group, such as epoxy that is selected to bond with the organic 

resin matrix.  The OR group is also a reactive functional group, hydrolysis of the alkoxy groups on the 

silane takes place in aqueous solution to form a solution of silane-triols RSi(OH)3 (Plueddemann, 

1991); as illustrated in equation 11.  By modifying the pH of the solution, hydrolysis of the alkoxy 

groups is encouraged.  Depending on the weight percentage (wt %) of the silane used and the type 

of functional alkyl group, the cure kinetics can be affected (Jones, 2007). 

Hydrolysis equation 

  

                                   (11) 

 

Plueddemanm (1991) suggests the OR group can also react directly with the hydroxide groups (Si-

OH) on the glass fibre surface to form oxane bonds (Si-O-Si) (equation 12).  It is the silanol groups 

(the triols) formed in aqueous solution (-OH) that can then react with the hydroxyl groups present 

on the glass fibre surface, via hydrogen bonding (Hull, 1981).  This occurs after the silane solution is 

applied to the glass fibre surface and then dried under certain conditions.  It is at this point that the 

silanol and Si-OH on the glass fibre surface undergoes a reversible condensation process, yielding a 

polysiloxane structure (Plueddemann, 1988) with the formation of oxane bonds between the silane 

and glass surface (Si-O-Si), (Plueddemann,1991).  The efficiency of the coupling agent is dictated by 

the nature of treatment and drying conditions (Wang et al. 2009).   
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In addition to the direct condensation reaction in Equation 12; another condensation reaction can 

also be considered between the silanol groups of the organo-silane and the silanol groups present 

on the glass.  During this reaction, the silanol groups can condense with the adjacent silane forming 

a polymer film on the surface (Equation 13).    

 

                                                                                                                                                                              (13) 

 

After these reactions, the R groups are free to crosslink with reactive functional groups of the 

uncured resin matrix (i.e. the amine and epoxy) and generate the characteristic covalent bond, 

‘coupling’ the glass to the cross-linked resin.  This provides a wealth of benefits, which include, 

enhanced adhesion, improved composite strength, improved strength retention and protection of 

the interfacial bond from water attack (Sever et al. 2008).   

The choice of silane coupling agent for this study is in accordance with the theory of this mechanism; 

3-aminoproyltrimethoxysilane (APS) and 3-glycidyloxypropyltrimethoxysilane (GPS) both have 

primary functional groups of amine and epoxy, respectively. 

3-aminoproyltrimethoxysilane (APS) 

 

                                                                                                                                                                              (14) 

 

3-glycidyloxypropyltrimethoxysilane (GPS) 

 

                                                                                                                                                                              (15) 

 

It would be naive to accredit the chemical bonding theory as the sole contributor to the unique 

bonding mechanism that appears with silane coupling agents.  Ishida and co-workers (1982), 

demonstrate that adhesion at the interface is far from simple, indicating that mechanical 
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interlocking is also present.  The authors reasoned that a vinyl silane (VTS) had limited use as a 

coupling agent in comparison to the amino silane, APS; because the VTS exhibits a highly cross-

linked layer, which causes the vinyl functional groups to be inaccessible.  APS on the other hand, 

exhibits the ability to accept the migration of resin into molecular pores creating a semi-

interpenetrating network.  This was deduced by a carrying out warm (50°C) and hot water (100°C) 

washing testing the extractability of the hydrolysed silane deposit.  Loosely adsorbed material 

(soluble oligomeric component) was removed during warm water washing and linear hydrolysable 

components were removed from the silane deposit with hot water washing, (Jones, 2007).  It is the 

loosely adsorbed component that is perceived to vacate the silane deposit and migrate to the resin 

matrix, permitting the matrix resin to take residence into the now empty molecular pores. 

The other theories proposed have not had as much acceptance as the chemical bonding theory, 

however one should not dismiss them.  They can also play a vital role in understanding why the 

coupling agent has such a profound effect on properties of composites.  The surface wettability 

theory, explains that an adhesive bond can impart sufficient strength by the means of physical 

adsorption alone, providing the adhesive fully wets the substrate.  The ability to achieve these 

conditions is extremely difficult and after considerations of external factors, such as water, the 

strength of the bond cannot be maintained just via physical adsorption.  It could be suggested that 

the chemical bonding theory has the chief role and once this mechanism has been satisfied, 

properties can further be improved by increasing the wetting of a resin onto the treated fibre 

surface.    

Another explanation considers the interdiffusion of atoms or molecules across the boundary formed 

between the resin matrix and coupling agent.  Plueddemann (1991), states that a thermodynamic 

equilibrium must exist between the two constituents for interdiffusion to take place.  Interdiffusion 

and the interpenetrating network (IPN) offers an explanation (excluding the chemical bonding 

theory) for the bonding of glass fibres and polymer resins via silane coupling agents, (Ishida & 

Koenig, 1978; Plueddemann, 1988; Plueddemann & Stark 1980)).  This notion is clearly represented 

in an illustration from Plueddemann (1988).    The formed interphase develops dissimilar physical, 

chemical and mechanical properties compared to the bulk properties of the fibre and matrix, (Al-

Moussawi et al. 1993).  Ishida & Koenig (1979) and Sung et al. (1981) provided interesting findings 

for γ-methylamino-propyltrimethoxysilane (γ-MPS) and γ-amino-propyl-triethoxysilane, respectively, 

supporting the case for interdiffusion.   

An additional theory is that of electrostatic attraction; if the fibre and matrix display a difference in 

electrostatic charge, this can assist the attractive forces of bonding, with the charge density dictating 
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the bond strength, (Kalantar & Drzal, 1990).   Though this contribution is minimal, but would take 

greater responsibility in the presence of a silane, (Plueddemann, 1991)).  As reported by 

Plueddemann (1988), acidic or natural reinforcements bond favourably in the presence of silanes, 

the degree of success however, is not so common for alkaline surfaces.  Mechanical and reaction 

bonding are among other explanations for how the silane coupling agent interacts with its substrate.   

2.4.2 Silane coupling agents and their effect on mechanical properties 

Bjorksten and Yaeger (1952) compiled data and found that specific silane treatments of polyester 

laminates improved wet-strength.  Ahagon and Gent (1975) examined failure strength for an 

elastomer adhered to a glass substrate, via interfacial chemical bonding.  The density of the chemical 

bonds was altered via the treatment of the glass substrate with combinations of vinyl- and 

ethylsilanes at differing percentages.  A synthetic rubber was applied to the silane treated glass 

substrate and cured in-situ by a free radical process.  By increasing the portion of the vinylsilane 

relative to the ethysilane, a proportional increase in adhesion was observed and thus credited to the 

formation of interfacial bonds to the vinyl groups present on the glass substrate.  The examinations 

were conducted at low rates of detachment and at high temperatures (considered to be near 

equilibrium conditions).  Comparatively the vinylsilane treatment was 35 times stronger than the 

ethylsilane; covalent and dispersion bond strengths are similar to this difference indicating the 

presence and functionality of interfacial chemical bonds, (Ahagon & Gent, 1975; Miller & Ishida, 

1990). 

Wang et al. (1999) report findings on the mechanical performance of the fibre/matrix interface of a 

polymer composite using surface treated reinforcing E-glass fibres.  In the case of determining 

flexural strength and modulus, a three-point bend test was used, conducted under wet and dry 

conditions.  For fracture toughness the mode of fracture used was Mode-I using a compact tension 

(CT) specimen.  The composites with γ-Aminopropyltriethoxysilane  (APS) and δ-

Aminobutyltriethoxysilane (ABS) treatment showed enhanced flexural strength and modulus.  

Additionally, the ABS and APS-treated composites demonstrated improved fracture toughness, with 

critical strain energy release rate (Gc) increasing from 10.5 kJ/m2, to 14.3 kJ/m2 and 17.1 kJ/m2 for 

the untreated composite, ABS treated and APS treated, respectively.  The critical stress intensity 

factor (Kc) followed a similar trend, increasing from 17.1MN/m3/2, to 19.9 MN/m3/2 and to 22.3 

MN/m3/2 for the untreated composite, ABS treated and APS treated, respectively.  Keusch et al. 

(1997) compiled data on mechanical performance for E-glass reinforced epoxy uni-directional 

composites; the reinforcing E-glass fibres were sized with different treatments, and showed similar 

results to Wang et al. (1999).  Of interest to the current project, only treatments 1 and 2 will be 

discussed. Treatment 1 was an amino-silane coupling agent and treatment 2 was unsized/as-
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received E-glass.  In all the cases of testing UD laminates with coupling agent treatment surpassed 

the properties of unsized UD laminates for properties: interfacial shear strength, interlaminar shear 

strength, transverse tensile strength and static longitudinal tensile strength.   

For silane treatment, an optimum concentration can be applied to the glass fibre to achieve 

optimum mechanical properties (Park and Jin, 2001).  The issues with pre-treating the fibres in an 

acidic solution to regenerate silanol groups (Gonzalez-Benito et al., 1999) were not considered; 

Sever et al. (2008) provided research that evaluated the effects of acid activation and silane 

treatment on the mechanical properties of a glass fibre/epoxy composite.  They evaluated 

mechanical property disparities between differently treated E-glass fabric, formed in a hand lay-up 

technique with an epoxy resin and hardener: (i) as-received; (ii) heat cleaned E-glass fabric then 

subjected to γ-GPS (γ-glycidoxypropyltrimethoxysilane) treatment; and lastly (iii) heat cleaned E-

glass fabric treated with an acid activation procedure using hydrochloric acid aqueous solution, 

finally being subjected to γ-GPS treatment.  The composites interlaminar shear strength (ILSS) and 

tensile and flexural properties were determined by ASTM D2344 short-beam analysis, ASTM 

standard D-3039 tensile test and ASTM D 790 three-point bending test, respectively.  The fracture 

surfaces were examined using a scanning electron microscope (SEM).  The composites that were 

acid activated prior to silane treatment drastically reduced its tensile strength in comparison with 

the other two conditions.  The tensile properties were further reduced with increasing hydrochloric 

acid concentration.  It has been identified acid activation increases the population of silanol groups 

with an aminosilane, and so provides a better quality ‘veneer’ of the fibre augmenting the degree of 

silanization (Gonzalez-Benito et al. 1999).  The result reported by Sever et al. (2008) illustrates the 

existence of a trade off between the corrosion of the reinforcing fibres receive from being in contact 

with the acid reducing their mechanical properties, and hence the properties of the overall 

composite, and the degree of silanization.  Small differences were observed between as-received 

and silane-treated fibres for tensile strength.  The notion that composites demonstrate similar 

behaviour under tensile load is exemplified with all three conditions showing similar properties in 

tensile modulus.  The heat-cleaned E-glass fabric with silane treatment provided the greatest 

fibre/matrix adhesion increasing its flexural strength, via chemical bonding.  As discussed previously, 

the fibres that received acid treatment produced a significantly weaker composite compared to the 

other conditions, but this time with regards to flexural strength.  ILSS provided similar results that 

were observed for flexural strength.  Heat-cleaned fibres with silane treatment provided enhanced 

properties compared to the as-received fibres.  Acid activated fibres diminished ILSS in comparison 

to the as-received condition; the cause of this being attributed to loss of fibre strength as a result of 

being deteriorated chemically.  SEM analysis illustrated a higher degree of adhesion for silane-
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treated heat-cleaned fibres compared to the as-received fibres, further supporting the results from 

the mechanical testing.  This is determined by large amounts of resin adhering to the fibres surface 

from fracture.  It was observed for the acid activated heat cleaned fibres, interfacial adhesion was 

also very good with larger and uniform amounts of resin bonding to the fibres surface after fracture.  

This good interfacial bonding is not relayed to the results obtained from the mechanical testing.  The 

conclusion was that the corrosion to the fibre as a result of acid treatment had a far greater effect 

on the properties of the composite, therefore consideration must be taken to find a correct balance 

of acid activation to increase silanization, but not to a concentration that damage to the fibre will 

outweigh the advantages obtained from the corrosive treatment. 

Wu et al. (1997) recognised the importance of understanding the interphase region and the 

adhesion mechanisms occurring, in order to tailor these processes to provide the desired composite 

properties.  The authors pointed out that the basis of interactions that occur is relevant to the glass 

surface composition, which can be modified significantly with respect to how the fibre is formed and 

the application method of the sizing.  E-glass fibres possess a high concentration of silanol groups on 

their surface (Thomason and Adzima, 2001) attributed to fibre forming in the presence of water 

(Feuston & Garofalini, 1990) and so E-glass fibres’ isoelectric point (IEP) is relatively low in the range 

between 3 and 4 (Mader et al. 1996).  The IEP is the pH of a surface that carries no electrical charge 

(Wu et al. 1997).  The IEP indicates the most favourable pH, if this is satisfied for the glass fibre and 

its silanol groups and of the silanol groups of the coupling agent, they will possess a minimum 

charge; this facilitates the advancement between one another for hydrogen bonding and siloxane 

formation (Plueddemann, 1991).  Mechanical properties of glass fibre reinforced polyester 

composites were examined with different silane-treatments.  Methacryloxy and amino were the 

silanes used, with one, two or three Si-0H groups present for each silane.  Two different glass 

compositions were used and produced into unidirectional composite rods, that were subsequently 

sized and in some cases immersed in boiling water for three days.  It was determined that the 

organic ‘tail’ of the coupling agent helps to dictate composite properties, characterised by angular-

dependent X-ray photoelectron spectroscopy (ADXPS).  Appropriate selection of the coupling agents 

tail group with the resin, was found to improve strength properties of the composite over 

chemisorption when dry-tested.  Though, when the composite was exposed to heat and water it was 

found that chemisorption played a primary role in maintaining the strength properties of the 

composite rather than tail group compatibility. 

2.4.3 Silane coupling agents and their effect on cure kinetics 

Palmese et al. (1999) published results concerning glass fibre sizings and their effect on the cure 

kinetics for a commercial vinyl-ester resin system.  Commercial S-2 glass fibres were used, and in 
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order to identify the composition of their sizings, the fibres were stripped using acetone and then 

analysed using Fourier transform infra-red (FTIR) spectroscopy.  The method of stripping the fibres 

from the sizing was not efficient.  The different sizings were referred to as, 463, 449, 365, and 933 

and from the spectra obtained, all showed the presence of “silane-derived silicon”, with 463 

seeming to have a higher absorption of these functional groups compared to the others.  Unbound 

epoxy also seemed to be present in 463, 449 and 365 when compared to spectra of EPON-828, with 

no signs of epoxy for 933.  Differential scanning calorimetry (DSC) was used for cure monitoring. 

Using an empirical rate expression, the reaction rate constants found for the filled systems were 

higher than the “neat” resin.  Secondly, thermogram data illustrated quicker cure rates for filled 

systems during an isothermal cure at 110 °C. 

The effectiveness of the coupling agent is in part contributed by specific aspects that can influence 

their adsorption onto the (glass) surface in question.  Provatas, et al. (1998) highlight these key 

aspects as: the solvent used, molecular weight and polydispersity of the polymer, the polymer 

concentration, time allowed for adsorption, number of reactive or surface interactive groups per 

polymer molecule, the reaction temperature, the pH in aqueous systems, the type of post-

treatment, and the substrate. 

Olmos et al. (2005) conducted a study comparing two techniques that analysed the curing of an 

epoxy matrix reinforced with silica microparticles, FT-NIR spectroscopy and fluorescence 

spectroscopy.  The authors used a tagging method that is made possible by tracking the fluorescence 

response of molecules that can be chemically bonded to the interface.  The molecules are known as 

fluorophores allowing their response to be tracked and thus provide information concerning the 

cross-linking process.  Fluorescence groups were added by tagging only the epoxy matrix and 

secondly tagging only the interface.  Surface treatments in the form of silane coupling agents were 

applied to the silica particles, these were; 3-aminopropylmethyldiethoxysilane (APDES) and 3-

aminopropyltriethoxysilane (APTES).  An UV excitable reactive fluorophore was used to tag either 

the polymer matrix or the interphases of the matrix and filler.  The tagging of both areas of interest 

is necessary, because independent analysis of the cure reactions is required for both regions (the 

bulk matrix and the interphases of the composite).  A 100% conversion process takes place between 

the reaction of the fluorophore (1-pyrenesulfonyl chloride) and primary amines (Olmos et al. 2005).  

As a result of this reaction it can be inferred, depending on the specific interest, that the part of the 

molecule accountable for its colour (chromophore) are all chemically bonded either to the bulk 

matrix or the surface of the particles. 
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The authors carried out FTIR spectroscopic analysis for a non-tagged sample (APTES-IR), this served 

to act as a control and so, by comparison, it was determined that the fluorophore in the bulk tagged 

sample (APTES-B-Py) did not affect the cross-linking reactions.  In the interface tagged sample 

(APTES-I-Py) however the fluorophore was perceived to affect activation energy in comparison with 

APTES-B-Py; by altering the hydrophilic character of the siloxane coating (APTES), the activation 

energy was increased. 

The spectra obtained from the fluorescence response allowed clear band assignments of the 

fluorophores.  The assigned band at 450-650nm, is regarded as the ‘emission from an excited charge 

transfer complex formed between the amino groups of the coating and the pyrene moieties in the 

ground estate’.  It is this band that experiences a more intense peak when at the interface in 

comparison to the bulk matrix.  This is because; at the interface the silane coating provides an 

increased concentration of amino groups that can consequently surround the fluorophore 

molecules.  The number of amino groups present in the APTES treatment was more so than for the 

APDES treatment.  And so, the previous claim is further supported, with the 450-650nm band 

making a greater involvement to the spectrum from APTES results compared to APDES results. It is 

inferred that the opened structure of APDES compared to APTES, is responsible for the increased 

effect on the extent of the cure reactions at the interface.  Mechanical testing by Hamada et al. 

(1994), determined that APDES treatment was more effective in increasing interfacial strength than 

APTES surface treatment in glass fibre reinforced epoxy composites. These findings indicate that 

because APTES treatment deposits a more concentrated area of amino groups at the interface it can 

permit augmented siloxane cross-linking reducing the composites interfacial strength.  Hamada et al. 

(1994), postulate that this cross-linked structure acts as a barrier restricting further reactions 

between the epoxy matrix and silane organofunctional groups, which are also in agreement with 

Iglesias et al. (2002).  It can therefore be assumed, the APDES treatment can participate in 

interpenetration with the matrix resin more readily. 

Results reported by Lenhart et al. (2000), Palmese and McCullough (1994) and others, motivated 

Gonzalez Benito (2003) to investigate further, the differences in cure kinetics from the glass-fibre 

surface to the bulk epoxy/amine matrix.  The angular distance of the points of the microscopic areas 

of interest was measured using a novel FTIR imaging technique; this being a single glass fibre 

impregnated with the polymer system between two salt plates (CaF2).  The epoxy peak at 915 cm-1, 

is traditionally a popular band to use for conversion in cure analysis, however due to signal-to-noise 

issues making analysis of the band inconclusive, the changes in the OH band was used as an 

alternative.  The cure of the polymer system (at room temperature) derived from the technique was 
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perceived to be similar to those obtained via more conventional techniques (Gonzalez-Benito et al. 

2001), and thus supporting the choice of the OH groups as the band of interest.  The IR absorption 

illustrated the existence of a structural gradient between the glass-fibre surface and bulk epoxy.  As 

expected for all locations, the OH absorbance increased, though this increase was more pronounced 

at the bulk (than at the fibre surface) of the resin system during cure.  The increased OH absorbance 

indicates faster cross-linking kinetics at the bulk matrix, hence contributing to the structural gradient 

that exists (Mikes et al. 2001).  Also noticeable, was that at the beginning of cure there was a higher 

concentration of hydroxyl groups present at the interface compared to the bulk; this was due to 

water molecules being absorbed by the silanol groups present at the glass fibre surface (Gonzalez-

Benito et al. 1999;1996).  The concentration of active amine is perceived to be more predominant at 

the glass-fibre interface, increasing the cross-linking rate with distance from the glass fibre.  Two 

probable causes for the increased fraction of amine groups were proposed: (i) favourable 

interactions between the amine groups and OH groups (of the fibre surface); and (ii) the smaller 

molecules of the amine hardener, can diffuse with more efficiency through the silane layer than the 

larger molecules of the epoxy. 

It has been established that the cross-linking of a resin system can be affected by the presence of a 

silane coupling agent.  Generally, the silane will be present at the interface between the 

reinforcement and the resin matrix (as a surface treatment to the reinforcement) and so cross-

linking is more likely to be affected at the reinforcement interface than towards the bulk resin 

matrix.  For example, if an APS treatment is used on glass fibre in an epoxy matrix, it would be 

expected that the increased concentration of amino groups would increase cross-linking.  
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2.5 Surface characterisation 

To understand the mechanisms that occur at the interface, characterisation techniques are required.  

The enormous scope of the type of bonding that can transpire, obviously points out that the 

‘interface’ is specific to the ‘fibre-matrix system’, (Kim & Mai, 1993); this statement demonstrates 

the complexity of characterisation and the need for it.  Surface characterisation is important for this 

research, as it is essential to determine the interactions according to the surface chemistry of as-

received and treated E-glass fibres, and the epoxy/amine resin.  Defining the sizing layer composition 

and distribution, the fibre sizing molecular interactions, gradients and microphases in the fibre 

surface composition, can help to assist with predicting and controlling the influence of coatings/sizes 

on processability and composite performance (Thomason and Dwight, 1999).   

2.5.1 Atomic force microscopy 

Atomic force microscopy (AFM) was first patented in 1986 after the invention by Binnig et al. (1986), 

revolutionising analysis at the nanoscale.  The principle behind this type of microscopy relies on a 

‘tip’ in a cantilever system to experience attractive and repulsive atomic forces via interaction with 

the surface of interest, thus replicating a 3-dimensional topographical image.  The cantilever 

traverses the samples surface detecting short-range chemical forces, van der Waals forces and 

electrostatic forces, consequently the motion of the cantilever is detected by reflecting a laser off 

the back of the cantilever to a photo detector (Yongho & Wonho, 2008). 

There are frequently used variations on the AFM with respect to the modes that can be used and the 

different ways of accurately detecting the cantilevers motion.  As previously mentioned Binnig et al. 

(1986) developed the first AFM that functioned in ‘contact’ mode (tip/sample interaction).  Martin et 

al. (1987) extended this approach introducing the ‘non-contact’ mode, where the distance between 

the tip and sample is of a very small magnitude (tens to hundreds of angstroms) and the cantilever 

oscillates close to its resonant frequency.  Typically, the tip is opposed by the van de Waals forces 

causing a change in its vibrating amplitude, this change is identified and measured as a force 

gradient which signifies variations in the tip to sample distance, that can finally be depicted as a 

topographical image.  Such that the forces between the tip and sample are low, it makes this 

technique extremely desirable for softer samples.  Zhong et al. (1993) provided the next major 

development in AFM, presenting the ‘tapping’ mode (also known as intermittent contact AFM), a 

very similar method to Martin et al. (1987) with one fundamental difference.  The difference is 

explained in the name ‘tapping’, as the oscillating tip is situated nearer to the sample allowing the 

tip to periodically touch (tap) the sample.  Tapping mode AFM has become an important and 
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established technique, by eliminating the restrictions associated with non-contact and contact mode 

AFM (Eaton, 2010).   

Griswold et al. (2005) adsorbed γ-aminopropyltrimethoxysilane (APS) at different weight 

percentages onto the surface of optical glass fibres before embedment into a polymer matrix.  The 

possible effects the silane had on the formed interface were interpreted using AFM and nano-

indentation.  Care was taken to clean the fibres thoroughly, as a clean substrate is of paramount 

importance to classify that the surface treatment is known.  APS was adsorbed onto glass fibres from 

0, 0.1, 1.0, 3.0 and 5.0 wt% aqueous solutions.  After treatment the fibres were immediately 

embedded into an epoxy adhesive (trade name Hysol 608) which was subsequently cured for 24 

hours.  To characterise the interphase region using AFM, the sample was firstly prepared by 

microtoming.  Microtoming is a common technique used to obtain thin slices of polymer for 

microscopic examination and was chosen because it was understood physical and chemical 

alterations of the surface were less likely for this technique when compared to conventional 

polishing techniques.   Microtoming allows for the production of a very flat surface, keeping height 

differences between the phases (matrix, interphase and fibres) to a minimum.  The AFM used to 

carry out imaging was a Nano Scope IIIa; tapping mode was selected, with light tapping being 

applied to locate an appropriate region for hard tapping to then be employed to obtain the true 

topographic nature of the interphase.  To acquire accurate images, a scan speed of less than 1 Hz 

was used, to prevent the tip from jolting as it scanned perpendicular to the fibre at the fibre-matrix 

interphase.  Once the interphase region of interest was located, its width can be established ready 

for nano-indentation with the chosen area possessing no debonding, pits, debris and voids.  

Indentations were applied at a force of 16 µN, with several indents performed on a sample with 

identical parameters.  Tapping mode was implemented again to capture the topographic image of 

the indents, enabling the authors to confirm their location.  The captured images allowed interphase 

thickness to be calculated, taking numerous measurements on separate fibres to establish “the 

statistical distribution of the interphase thickness”.  Increasing APS concentration provided very 

clear results of augmented interphase thickness.  To an extent, modulus of the imaged region can be 

inferred with the interphase regions in the authors’ captured images appearing darker in contrast to 

the matrix; when the tip experiences a softer surface (in this case the interphase) a shift in drive 

frequency transpires, as a consequence of the tip requiring increased energy to keep it a constant 

amplitude.  All interphase regions were determined softer than the bulk matrix; this was further 

supported via the nanoindentation results. 
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Gao and Mader (2002), studied unidirectional E-glass fibre reinforced epoxy composites imaging the 

topography of the samples via AFM in tapping mode, as well as an indentation technique to measure 

mechanical responses.  The authors provided contradictory results to those found by Griswold et al. 

(2005).  Phase imaging was also conducted in conjunction with the scanning in tapping mode, which 

distinguishes variances in material properties over a selected area.  The authors found that the 

modulus of the bulk matrix was of no significant difference to the interphase’s modulus, in the case 

of the unsized fibre/epoxy sample.  This suggests that the epoxy matrix cannot form a significant 

interphase with unsized glass fibres.  The E-glass fibres sized with APS/PU however, did show a 

property gradient between the bulk matrix and reinforcing fibre.  The authors define the interphase 

as a region with a modulus being 10% greater than the matrix modulus; on that condition they 

determined the interphase thickness to be 300 nm.  The amine curing agent was suggested to 

migrate and preferentially diffuse into the silane sizing; as a consequence an amine-rich region is 

formed next to the glass fibre.  The increased amine concentration influenced the chemical 

interactions holding it responsible for the property gradient.  The modulus of the interphase 

decreased with increasing distance from the fibre surface.  Correlation can be assigned to the fact 

that an increased concentration of amine at the fibre surface, will completely satisfy the number of 

epoxy groups and increase cross-link density; in addition the sizing layer will directly react with the 

epoxy providing strong interfacial adhesion. 

Liu et al. (2008) provide research with AFM in tapping mode, investigating the interaction of γ-

Aminopropylltriethoxysilane (APS) with E-glass fibre surfaces.  Surface topography was examined for 

differently treated E-glass fibres: (i) APS coated; (ii) warm water extracted and (iii) hot water 

extracted.  The extent of removal of the silane layer was increased incrementally; warm water was 

used to extract the physisorbed silane deposit, with hot water extracting the chemisorbed silane 

deposit.  Images were obtained in air using an etched silicon probe cantilever, oscillating at a 

nominal resonant frequency of 300 kHz.  A 1 µm by 1 µm image was captured at a particular location 

on the surface of the differently treated fibres; the images were not illustrated in 3-D format, but 

colour shading indicated the depth of troughs and peaks, the brightest points indicating depth of 5 

nm.  The application of a silane coating created a multifarious surface topography.  There is a 

disordered array of peaks and troughs, with a height variation of less than 6.4 nm, caused by 

remaining hydrolysed APS molecules (Liu et al. 2008).  The warm water extracted treatment reduced 

the height variation to less than 4.5 nm, providing a more consistent topographical structure.  Before 

water extraction the surface topography consisted of both physisorbed and chemisorbed silane 

deposit, this is observed in the more complex surface nature in the AFM image.  A more ordered 

structure (but still heterogeneous in nature) was visible after warm water extraction, with the 
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removal of the physisorbed residue revealing the chemisorbed layer.  After hot water extraction, it 

has been suggested that of the chemisorbed silane deposit, at the ends of the crosslinked network, 

the randomly coiled chains are extracted hydrolytically; hence the induced development of “pits” or 

“pores” observed in the AFM images.   

AFM has proven a useful tool to study surface topography at the nanoscale.  Different surface 

treatments to glass fibres can be characterised depending on the surface texture generated by that 

particular treatment (Gupta et al. 2000).  It is of agreement that increasing silane concentration to 

the glass fibre surface increases the interphase thickness, however the effect the silane has at the 

interface has been disputed.  For example, APS inhibits the curing of the epoxy contributing to a 

softer interphase (Griswold et al. 2005), whereas Gao and Mader (2002) believe the increase in 

concentration of APS, increases the number of available amines to cross-link with the epoxy 

molecules enhancing the modulus.  The next chapter describes the experimental procedures taken 

to help establish and reinforce existing findings, as well as potentially providing new ideas.  
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Chapter 3 

3. Experimental 

3.1 E-glass fibre bundles 

Continuous un-sized electrical grade glass fibre bundles were used as the light guiding material, 

supplied by PPG Industries (UK).  Approximately 2500 individual fibre filaments constituted the fibre 

bundle (Fig. 3.1), with each filament consisting of an approximate diameter of 15 ± 3 µm.  The 

refractive index of the E-glass preform was 1.56 and was measured at 589.6 nm and 20 °C.  To 

facilitate inter-connection between equipment, the ends of the bundle were potted into sub-

miniature A-type (SMA) connectors using a lower refractive index resin (EPO-TEK® 314 (Promatech 

Ltd)), which was subsequently cured at 120 °C for 3 hours.  The potential for light transmittance and 

absorption of the fabricated sensor was optimised by polishing the potted ends using an APC 8000 

polisher (SENKO Advanced Composites Ltd). 

Figure 3.1:  Photograph of an E-glass fibre bundle potted into a pair of sub miniature A-type (SMA) 

connectors.  

 

3.2 Epoxy/amine resins system 

3.2.1 LY 3505/XB 3403 

Araldite LY 3505 supplied by Huntsman Advanced Materials was one of two resin systems used for 

cure monitoring in this study, which is a Bisphenol A/F epoxy resin.  The hardener used for the 

experiments was the XB 3403 (polyoxypropylene diamine), also provided by Huntsman Advanced 

Materials.  The two substances, LY 3505 and XB 3403 were weighed at the stoichiometric ratio of 

1:0.35, respectively.  The two components were then mixed thoroughly and consequently degassed 

in a vacuum chamber at -20 in Hg for approximately 15 minutes.  During the transmission 

experiments the mixed resin and was cured at 40 °C, 50°C, 60°C and 70°C for 1200, 900, 400 and 500 
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minutes, respectively.  During the EWS experiments the mixed resin was cured  at 40 °C, 50°C, 60°C 

and 70°C for  64, 52, 60 and 50 minutes, respectively. 

3.2.2 EPO-TEK 310M® 

With reference to the EWS experiments, it was necessary to use a resin system whose refractive 

index was lower than that of E-glass.  The resin system used in the current study with E-glass was a 

two-component resin system, EPO-TEK 310M® (Promatech Ltd, UK); the resin and hardener were 

weighed out to give a stoichiometric ratio of 1:0.55 (epoxy:amine).  The components were mixed 

and degassed in the same way as described previously.  The refractive index of the resin system was 

1.50.  During the transmission experiments, the mixed resin was cured at 35°C, 45°C, 55°C and 65°C 

for 900, 500, 300 and 200 minutes, respectively.  During the EWS experiments, the mixed resin was 

cured at 35°C, 45°C, 55°C and 65°C for 900 minutes. 

3.3 Silane treatment 

The coupling agent used in this study was 3-glycidoxypropyltrimethoxysilane (GPS) (Sigma-Aldrich, 

UK) and was used as-received.  A 0.1 wt% GPS solution was prepared using a mixture of ethanol and 

distilled water (4:1) and the pH was adjusted to 4 using acetic acid.  The exposed portion of fibre 

bundle (Fig. 3.1) was immersed in this solution for one hour at room temperature.  After this period, 

the solution was drained and the fibre bundle was dried at room temperature for two hours.  

Subsequently, the silane-treated fibre bundle was dried in the oven at 100 °C for three hours.  0.5, 1 

and 3 wt% silane solutions were also prepared in a similar manner and applied to the E-glass fibre 

bundles. 

3.4 Cure monitoring: conventional transmission spectroscopy 

Spectra were collected during cross-linking from 1100 to 4000 cm-1 via a Bruker MATRIX™ -F duplex 

FT-NIR spectrometer (Bruker Optics Ltd, UK) at a resolution of 4 cm-1 and with 64 scans.  A CUV-TLC-

50F temperature-controlled cuvette holder (± 0.02 °C) (Ocean Optics Inc., Netherlands), 

accommodated a demountable optical glass cuvette with a path length of 1 mm (Starna, UK).  A 

syringe was used to dispense the mixed resin system into the glass cuvette.  With reference to Figure 

3.2a, two low-OH optical fibre probes were used to deliver and collect light from the spectrometer’s 

housed light source and InGaAs detector.   
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Figure 3.2:  The experimental set-up for: (a) conventional transmission spectroscopy and (b) 

evanescent wave spectroscopy. 

 

 

 

 

 

 

 

 

 

 

3.5 Cure monitoring: evanescent wave spectroscopy 

The Bruker Optics Ltd spectrometer (used with the conventional transmission FTIR spectroscopy) 

was used to acquire spectra during the cross-linking.  Spectra were obtained over 128 scans instead 

of 64 scans.  This was necessary because of the poorer transmission characteristics of the E-glass.  An 

external white light source, WLS100 (Bentham Instruments Ltd., UK) was used to illuminate the glass 

fibre bundle.  The fibre bundle with the SMA connectors (Figure 3.1), were impregnated thoroughly 

with the degassed resin system.  The fibre bundle was secured in a custom-made oven and 

maintained at the required isothermal temperature (± 0.2 °C).  Prior to any experiments being 

undertaken, the oven was calibrated by using a thermocouple; the thermocouple was then used to 

monitor temperature and provide temperature control during the curing of the resin system.  Fig. 

3.2b illustrates the experimental set-up. 
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3.6 Cure monitoring: Fourier transform infrared – Attenuated total 

reflection spectroscopy 

A Nicolet Magna-IR 850 Fourier transform infra-red attenuated total reflectance (FTIR-ATR) 

spectrometer equipped with a DTGS KBr detector was used to collect cure kinetic data of the resin 

system.  Spectra was collected in the mid infra-red range (700-4000 cm-1) at a resolution of 4 cm-1 

and with 100 scans.  Before commencing a cure reaction a background spectrum was taken and this 

was subtracted from the subsequent spectra collected over 350 minutes.  A thermocouple was used 

for temperature control. 

3.7 Surface characterisation 

3.7.1 Atomic force microscopy 

A Digital Instrument D 3100 scanning Probe Microscope was used to perform AFM of GPS treated E-

glass fibres operating in the tapping mode.  Tapping mode reduces the chances of scraping and thus 

practically eradicates any lateral force, secondly low forces are used which reduces damage to softer 

samples imaged in air and lastly, higher lateral resolution was expected (compared to contact 

mode).  Images were acquired at room temperature in air using a tapping mode silicon probe (MPP-

1110) cantilever with a tip radius of 8 nm.  The spring constant of the cantilever (k) was 40N/m and 

the nominal resonant frequency was 300 kHz.   
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Chapter 4 

4. Results and discussion 

4.1 Cure monitoring:  LY3505/XB3403 resin system 

4.1.1 Comparison: transmission and evanescent wave spectroscopy 

Figure 4.1 compares the transmission and evanescent wave absorbance spectra at the start of the 

cure reaction.  The spectra were obtained using the LY3505 and XB3403 epoxy resin system that was 

cured at 70°C.  The relevant peaks are highlighted in Figure 4.1.  Both techniques are in agreement 

with the peak assignments; the primary amine, CH and epoxy peaks are assigned to the absorbance 

peaks at 4900 cm-1, 4600 cm-1 and 4500 cm-1, respectively.  These findings were apparent for all 

temperatures.  A summary of the peaks of interest in Figure 4.1 are summarised in Table 4. 

Figure 4.1:  Absorption spectra of LY3505 and XB3403 via transmission and evanescent wave 

spectroscopy. 

 

Figures 4.2 and 4.3 illustrate the spectra obtained for the LY3505/XB3403 resin system at different 

times of cure, at 70 °C via transmission and evanescent wave spectroscopy, respectively.  In both 

cases, the primary amines peak area can be seem to decrease during cure, owing to its involvement 
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in the primary epoxy-amine addition reaction (Barton, 1985).  This is also evident for the epoxy peak 

and its decreasing area as a function of time (Mijovic and Andjeli, 1995).  The CH absorbance peak 

stays constant, as it does not participate in the cross-linking reactions.  During the amine-epoxy 

reaction, the CH band at 4600 cm-1 is not consumed and can therefore be exploited as an internal 

standard to normalise the epoxy absorbance band (Figure 4.7).  The subsequent conversion plots 

illustrated throughout this chapter were calculated using Equation (16).  Percentage consumption 

for the epoxy peak (or amine peak) as a function of time can be calculated as follows: 

0)/(
)/(

1
HCx

tHCx
x AA

AA

−

−−=α           (16) 

where  is the conversion of reacting group (amine or epoxy), Ax is the area of the absorption peak, 

AC-H represents the area of the reference C-H peak, t and 0 are the cure time t in minutes and the 

start of the cure, respectively. 

Figure 4.2:  Spectra obtained at 70 °C during cure of the LY3505/XB3403 resin system attained 

using transmission spectroscopy. 
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Figure 4.3:  Spectra obtained during the cure of the LY3505/XB3403 resin system via evanescent 

wave spectroscopy showing different times of cure at 70°C. 

 

To determine the effectiveness of the of E-glass fibre bundles as light-guides for monitoring the 

cross-linking reactions via evanescent wave spectroscopy, conversion plots of the absorption of the 

epoxy functional groups were compared with the conventional transmission spectroscopy 

technique; isothermal cure experiments at 40, 50, 60 and 70 oC are illustrated in Figures 4.4a, b, c 

and d respectively.  The evanescent wave spectroscopy experiments were repeated three times. 
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Figure 4.4:  Comparison of the conversion data for the depletion of the epoxy functional groups 

using transmission spectroscopy and evanescent wave spectroscopy in the LY3505 and XB3403 

epoxy resin system at 40, 50, 60 and 70 °C. 
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b) 50°C 

 

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

Ep
ox

y 
Co

nv
er

si
on

 (%
) 

Cure Time (mins)

Transmission

EWS

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900

Ep
ox

y 
Co

nv
er

si
on

 (%
)

Cure Time (mins)

Transmission

EWS



 Chapter 4  

50 
 

c) 60°C 

 

d) 70°C 
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Results obtained from the LY3505/XB3403 resin system (Figure 4.4) demonstrate clearly the 

potential of using reinforcing E-glass fibres as sensors to monitor cross-linking kinetics.  Agreeable 

trends are seen for all conversion plots, albeit they can only be compared at the initial stages of 

reaction.  The higher temperatures of 70 and 60 oC show better correlation than 50 and 40 oC, 

nevertheless an obvious trend is still present for all temperatures.  The observed differences may be 

attributed to the variations in the temperature profile in the two experimental set-ups.  It is also 

worth noting that at the initial stages of cure the epoxy groups are consumed at as a faster rate as 

the temperature of cure is increased.  With respect to the EWS results, error bars were calculated 

from the standard deviation of the mean conversion of three repeat experiments for all four 

temperatures.  

As mentioned above, the conversion plots only provide data of the initial 60 minutes of the 

reactions, clearly illustrated when compared to the transmission results.  By observing the spectra 

(Fig. 4.3), a shift in baseline of the spectra illustrates a changing refractive index of the resin; the 

cross-linking of the uncured resin as the cure proceeds increases the refractive index.  This 

transformation of the liquid resin reduces the signal transmittance of the E-glass fibre sensor as the 

refractive index of the resin approaches the refractive index of the E-glass fibre.  The following 

equation provides a value that represents a fibre’s ability to transmit light, known as the numerical 

aperture (NA): 

          (17) 

where   is the refractive index of the E-glass fibre (fibre core) and  is the refractive index of the 

resin (cladding).   is the half-angle of the acceptance cone known as the acceptance angle;  light 

accepted within a certain cone allows the propagation of light through the fibre.  The varying 

refractive index of the cladding will cause a variance to the value of , consequently affecting the 

critical angle within the fibre and affects the fibre’s transmission capabilities.  Thus, spectral 

collection ceases at 60 minutes as the refractive index of the resin reaches that of the E-glass fibre, 

preventing total internal reflection.  EWS can be used up to a certain point for commercially 

available resins.  Further research was undertaken using a resin system with a lower refractive index 

(EPO-TEK 310M®) to monitor the resin system throughout the whole cure cycle. 
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4.2 Cure monitoring: EPO-TEK® 310M resin system 

4.2.1 Comparison: transmission and evanescent wave spectroscopy 

 

Again, in order to confidently make appropriate conclusions concerning the cure kinetics using this 

EWS method, the spectra obtained in the near- infrared region of the EPO-TEK® 310M resin system 

must be compared to the conventional transmission spectroscopic technique to validate its use as a 

reliable cure monitoring technique (Figure 4.5).  On comparing the spectra, both of the spectral 

acquisition methods yield similar absorbance characteristics.  It must be noted that the quality of the 

EWS spectra is hindered to some extent, due to a lower signal throughput; nevertheless in the future 

this is negligible and can be rectified by employing a more powerful light source.  Characteristic 

absorbance peaks have been identified for the EPO-TEK 310M resin system; the peak at 6500 cm-1 

corresponds to the primary and secondary amine overtones.  As a result of the primary amines 

involvement with the epoxy group, a carbon-oxygen bond is broken, consequently producing a 

secondary amine which further reacts with the epoxy.  The advancement in the reactions lead to the 

depletion of the primary and secondary amine groups, which is illustrated agreeably by the gradual 

decrease of the absorbance peak at 6500 cm-1 during cure with respect to time (Figure 4.6).  The 

initial epoxy-primary amine reactions that take place can be attributable to the rapidly decreased 

primary amine absorbance peak at 4935 cm-1 (Figure 4.6).  The conversion percentage calculation of 

the active functional groups absorbance peaks involvement in the cross-linking reaction relies on 

normalising these peaks to a functional group that does not participate in the cross-linking reactions.  

Situated at 4600 cm-1 is the C-H stretching vibration of the aromatic ring; its peak area stays the 

same during the cross-linking reactions as a function of time (Figure 4.6 and 4.7), justifying its use as 

an internal standard. 
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Figure 4.5:  Absorbance spectra of EPO-TEK® 310M are shown to be identical for both transmission 

spectroscopy and evanescent wave spectroscopy. 

 

Figure 4.6:  Spectra of EPO-TEK® 310M attained using evanescent wave spectroscopy showing 

different times of cure at 65 °C. 
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Figure 4.7:  A comparison between the integrated areas of the CH and epoxy peak with respects to 

cure time, demonstrating their different involvement in the cure reactions of the EPO-TEK® 310M 

resin system. 

 

The epoxy and primary amine absorbance bands were chosen to allow comparison between 

transmission and evanescent wave spectroscopy data.  From the conversion plots, Figures 4.8 and 

4.9, there are two main regions evident: firstly, the initial stages of cure see a rapid reaction rate 

credited to the cross linking reactions taking place, the 2nd region concerns the later stages of cure 

where the curves plateau, this observation is thought to be controlled by the diffusion of reactants 

(Olmos et al. 2005). From the conversion plots, both epoxy and amine functional groups rate of 

consumption increases with increasing cross-linking temperature.  This can be attributed to the 

collision theory (Hill and Holman, 2000), at higher temperatures higher energy collisions are possible 

between the functional groups, providing they possess at least the activation energy for the 

reaction.   The increased temperature enhances the mixing of the amine-cured epoxy, thus 

enhancing the functional groups’ interaction with one another, increasing the rate of consumption 

(Hong and Wang, 1994).  A marginal increase in the percentage of epoxy groups consumed is also 

evident at increased cross-linking temperatures (Figure 4.8).  The epoxy functional groups were 

consumed in the cross-linking reactions at a slower rate than the amines consumption in the 

reactions (Figure 4.8 and 4.9).  Good repeatability of the experiments is illustrated by the error bars 

(Figure 4.8 and 4.9); the error bars were calculated using the standard deviation of the mean results 

from three repeated experiments (for both transmission and evanescent wave spectroscopy 

experiments).   
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Figure 4.8:  Comparison of the conversion data for the depletion of the epoxy functional groups 

using transmission spectroscopy and evanescent wave spectroscopy in the EPO-TEK 310M epoxy 

resin system at 35, 45, 55 and 65 °C. 
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c) 55°C 

 

 

d) 65°C 
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Figure 4.9:  Comparison of the conversion data for the depletion of the primary amine functional 

groups using transmission spectroscopy and evanescent wave spectroscopy in the EPO-TEK 310M 

epoxy resin system at 35, 45, 55 and 65 °C. 
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c) 55°C 

 

 

d) 65°C 
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In all cases of the above conversion plots (Figures 4.8 and 4.9) general agreement is seen between 

the two methods with respects to the cross-linking rate and the degrees of conversion, nevertheless 

slight differences are still noticeable.  The evanescent wave spectroscopy approach yields slightly 

lower final degrees of conversion for the epoxy group in comparison to the transmission technique 

(Figure 4.8); final degree of conversion of the amine group are more similar between the two 

techniques (Figure 4.9).  For example, at 65 °C final degree of conversion of the epoxy group was 

99.9% and 99.4% (within experimental error) for evanescent wave and transmission spectroscopy 

(Figure 4.8d), respectively.  At the same temperature the final degree of conversion of the amine 

group was 99.2% for the evanescent wave method and 99.1% for the transmission technique (Figure 

4.9d).  Though the trends of the curves are in accord, at higher temperatures inconsistencies are 

more pronounced concerning the two practices.  Figure 4.8d illustrates epoxy conversion for NIR 

transmission FTIR spectroscopy and evanescent wave spectroscopy at an isothermal of 65 °C; there 

is an obvious disagreement in the trend of the two datasets.   

This result highlights a potential issue concerned with the volatility of the resin system being used.  

In the case of the transmission experiment, evaporation is not much of a concern, because the resin 

is contained in a cell with a 1mm aperture at the top.  The fibre bundle used in the evanescent wave 

spectroscopy set-up, is suspended at either end in a cylindrical oven, thus increasing the surface area 

of the resin and therefore increasing its susceptibility to evaporation.   

Also, a temperature control difference of ± 0.02 °C and ± 0.2 °C is present for the conventional 

transmission technique and EWS technique, respectively.  The slight discrepancies could also be 

attributed to the effect E-glass has on the cross-linking kinetics of the resin, when compared to the 

bulk resin measured via the transmission technique.  The presence of the E-glass fibres can influence 

and change polymer chain movements and the surrounding residual stresses; this can induce 

preferential adsorption of the active epoxy and amine functional groups on the E-glass fibres 

(Petrovic and Stojakovic, 1988).  It has been suggested that the reinforcement can “increase” the 

resins viscosity consequently hindering resin flow and reducing the rate of epoxy-amine cure 

reactions (Hong and Lin, 1997).  Ishida and Koenig (1979) established that the cross-linking of an 

epoxy resin can be repressed in the presence of a silica surface.   

However, it has been established that the EWS technique can mimic the conventional technique of 

transmission spectroscopy.  The technique of using reinforcing E-glass fibres as light-guides to 

monitor highly localised regions has provided access to cross-linking kinetics at the fibre matrix 

interface.  This can enable process optimisation for the cure kinetics of the resin matrix, especially 
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regarding the presence of surface treatments on the reinforcing E-glass and their effect towards 

cross-linking.   

4.2.1.1 Effect of heat-treated E-glass fibres on cross-linking 

Prior to cure monitoring, SEM was used to characterise the as-received and heat-treated E-glass 

fibres (Figure 4.10, 4.11 & 4.12).  As expected, the fibres were generally clean, but localised debris 

was present at the fibre ends, which could be attributable to handling.  Heat-treated fibres at 600 °C, 

were cleaner and a reduced number of blisters were present, when compared to the as-received 

fibres and heat-treated fibres at 450 °C.  These surface contaminants of the as-received E-glass fibres 

could potentially affect the cure kinetics of the resin system used in this study and hence be 

responsible for the discrepancies observed between the EWS technique and transmission method. 

 

Figure 4.10:  SEM micrographs of different locations of Au coated as-received E-glass fibres. 

 

a)                b) 

               

 

 

 

 

 

 

Debris is visible at the ends of the as-

received fibres; this contamination is 

expected due to handling, as the 

occurance of this debirs is reduced in the 

other areas of the fibres.  

 

As-received E-glass fibre surface with a 

raised blistered topography. 
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c)                                                                                       d) 

                  

 

 

 

 

Figure 4.11:  SEM micrographs of different locations of Au coated E-glass fibres heat-treated at 

450°C for 4 hours. 

a)                                                                                  b) 

     

   

 

This image illustrates a closer look at the 

‘blisters’ present on the E-glass fibre, it is 

difficult to determine the nature of the 

blisters and the potential effects they 

could have on the cure kinetics. 

 

As-received E-glass fibres showing a 

generally clean surface. 

 

E-glass fibre surfaces heat-treated at 450 °C 

for 4 hours.  A cleaner fibre surface is visible.  

 

Heat-treated E-glass fibre surface still with 

the presence of the raised blisters. 
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c)                                                                                  d) 

     

 

 

 

Figure 4.12:  SEM micrographs of different locations of Au coated E-glass fibres heat-treated fibres 

at 600°C for 2 hours. 

 

a)                                                                               b)                                                                      

              

 

 

Heat-treated E-glass fibres near the centre 

show a clean surface. 

Heat-treated E-glass fibre ends are generally 

clean, but some debris is visible. 

 

E-glass fibres heat-treated at 600°C provide 

the “cleanest” fibre. 

 

Heat treated E-glass fibre surfaces with no 

blisters providing a “clean” fibre. 
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c)                                                                                  d) 

     

 

 

 

 

To resolve the concerns with the slight discrepancies seen between the two techniques and the fact 

that the E-glass fibres being used were as-received; the E-glass fibres were consequently heat-

treated for cure monitoring via EWS to eliminate any concerns that contaminants on the surface 

may be affecting the cure kinetics of the epoxy resin.  The E-glass fibres were heated at 600°C for 

two hours.  Two isothermal cure temperatures were chosen (65 °C and 35 °C) to compare as-

received E-glass fibres with heat treated E-glass fibres via evanescent wave spectroscopy (Figure 

4.13 & 4.14). 

 

 

 

 

 

The 600 °C heat treatment has greatly 

reduced the number of blisters that were 

present compared to the as-received and 

450°C heat-treated E-glass fibres. 

 

Heat treated E-glass fibres with clean 

surfaces. 
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Figure 4.13:  Comparison of the conversion data for the depletion of the epoxy functional groups 

of as-received and heat-treated E-glass fibres via evanescent wave spectroscopy in the EPO-TEK 

310M epoxy resin system at 35 and 65 °C. 

a) 35°C 

 

b) 65°C 
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Figure 4.14:  Comparison of the conversion data for the depletion of the primary amine functional 

groups of as-received and heat-treated E-glass fibres via evanescent wave spectroscopy in the 

EPO-TEK 310M epoxy resin system at 35 and 65 °C. 

a) 65°C 
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Both of the epoxy and primary amine conversion plots provide identical curves (Fig 4.13 and 4.14), 

these results help to demonstrate the validity of the subsequent experiments regarding the effects 

of silane treatments on the E-glass fibres have on the cure kinetics; because the likelihood that any 

changes to the rate and extent of consumption of the functional groups during cure can be 

attributed to the presence of the silane treatment.   
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4.2.2 Effect of GPS treatment of E-glass fibres on the cross-linking kinetics of 

EPO-TEK® 310M 

4.2.2.1 Comparison: As-received versus GPS treatment 

Figure 4.15 shows the presence of the relevant absorption peaks illustrated by the NIR spectra of 1% 

GPS treated E-glass fibres cured at 35°C; this indicates that the E-glass fibre bundle can detect the 

presence of the coupling agent and therefore be monitored to investigate its effect on the cure 

reactions. 

Figure 4.15:  Spectra of EPO-TEK® 310M attained using evanescent wave spectroscopy and GPS 

(1%) treated E-glass fibres showing different times of cure at 65 °C. 

 

 

 

 

 

 

 

 

 

 

At different time intervals during the cross-linking process it can be clearly seen (Figure 4.15) that 

the epoxy and primary amine groups are gradually being consumed by the primary and secondary 

epoxy-amine addition reactions made evident with the decreasing epoxy and amine peak areas.  

Once again the CH peak absorption is constant. 

The treatment of 1% GPS on the E-glass fibres has provided clear evidence that the silane inhibits 

epoxy consumption in the cross-linking reactions in comparison to the as-received E-glass fibres for 

all four temperatures (Figure 4.16). The application of a surface treatment will modify the surface 

chemistry and morphology of the E-glass fibre, therefore affecting its interaction with the epoxy-

amine resin system.   
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Figure 4.16:  Comparison of the conversion data for the depletion of the epoxy functional groups 

of as-received and GPS (1%) treated E-glass fibres via evanescent wave spectroscopy in the EPO-

TEK 310M resin system at 35, 45, 55 and 65 °C. 
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b) 45°C
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c) 55°C 

 

 

d) 65°C 
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During all temperatures the rate of epoxy conversion was similar until it reached approximately 60%, 

where the epoxy conversion rate starts to slow down for the GPS (1%) treated E-glass fibres.  At 35, 

45, 55 and 65 °C the final degree of epoxy conversion was reduced by 1, 2, 2 and  5%, respectively 

(Fig. 4.16a-d).   

Figure 4.17:  Comparison of the conversion data for the depletion of the primary amine functional 

groups of as-received and GPS (1%) treated E-glass fibres via evanescent wave spectroscopy in the 

EPO-TEK 310M resin system at 35, 45, 55 and 65 °C. 
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b) 45°C 

 

c) 55°C 
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d) 65°C 

 

The effect of GPS (1%) treatment on amine consumption during cure was minimal, illustrated by the 

agreeing trend of curve between the as-received and GPS (1%) treated E-glass fibres (Fig. 4.17a-d).  

GPS is an epoxy-terminated silane and so at the E-glass fibre surface the amine concentration is 

expected to not be affected if either GPS treated or as-received E-glass fibres are used.  However, 

there is an issue with respects to the GPS layer acting as a barrier between the E-glass surface and 

the cross-linking resin system.  An explanation exists in that the amine molecules are much smaller 

than the epoxy molecules and this facilitates their diffusion through the ‘silane barrier’ (Gonzalez-

Benito, 2003) and here they react with the available epoxy groups, producing similar amine 

consumption as with an as-received fibre.    

Epoxy consumption however has been effected by the presence of the GPS treatment.  The nature 

of epoxy cured with the presence of amine being an addition polymerisation, it can be postulated 

that the presence of GPS on the E-glass fibres surface can lead to preferential adsorption of a 

particular functional group of the resin onto the E-glass surface (Palmese et al. 1999).  In addition, 

the concentration of the reactive groups may have been weakened by dissolving of the GPS with the 

resin.  It could be suggested that the GPS layer may prevent the diffusion of the bulky epoxy 

functional group (compare to the primary amine) into the silane interphase, thus restricting its 
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ability to participate in the cross-linking reactions (Culler et al. 1986), hence the reduction in epoxy 

conversion.  
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4.2.2.2 Effect of GPS treatment at different concentrations of E-glass 

fibres on the cross-linking kinetics 

By increasing the concentration of GPS treatment to the E-glass fibres, the rate and degree of epoxy 

and amine conversion was consequently affected.  35 °C was chosen as the isothermal cure 

temperature as it had shown good repeatability from the previous results.  During the first 400 

minutes of cure the rate of epoxy consumption is seen to increase with increasing concentration of 

GPS treatment, but after this point the rate of epoxy conversion decreases with increasing GPS 

treatment, which led to a reduction of the final degree of epoxy conversion.  The effect of GPS 

concentration on amine consumption is not as profound as the differences seen with epoxy 

consumption.  The final degree of amine consumption was similar between all concentrations, but it 

was during the first 400 minutes where slight differences were observed.  As with the rate of epoxy 

consumption, accelerated amine consumption was also observed with increasing GPS concentration 

during this time period.  The accelerated rate of cure in the case of the silane treated fibres is in 

agreement with Palmese et al. (1999) and Yu and Sung (1997).   

The choice of background spectrum may have contributed to these differences.  In these 

experiments the background spectrum was taken of the as-received E-glass fibre bundle.  Thus, the 

application of the GPS treatment would increases the concentration of epoxy groups at the E-glass 

interface and the epoxy concentration would seem to further increase by increasing the relative 

concentration percentage of the GPS.  Consequently, evanescent wave spectroscopy supposes an 

increased rate of consumption of the epoxy and amine functional groups, only apparent during the 

first 400 minutes.  This finding is in agreement with Hong and Lin (1997); the authors measured the 

 (the time to reach maximal curing rate) of a brominated epoxy resin/dicyandiamide (DICY) system 

via DSC analysis.  It was concluded that GPS treated glass beads increased the curing rate of the resin 

system, particularly at the early stages of cure.  This observation was not only attributed to the GPS 

reacting with the DICY, but also its ability to experience anionic polymerisation induced by the 

ongoing hydrolysis reactions and the residence of hydroxide ions (Horr and Reynolds, 1997).  The 

reduced extent of functional group consumption with increasing relative GPS concentration 

treatment, could be credited to a more condense and thicker silane layer.  It has been suggested 

that after the GPS has polymerised, spiral structures are formed of –Si-O-Si-O- and beside the centre 

of this structure exists pendant hydroxy groups (Allen, 1992).  These hydroxy groups are not 

available for reaction and so the epoxy groups will not be utilised to their fullest extent, potentially 

explaining the reduced epoxy consumption observed in Figure 4.18a. 
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Figure 4.18:  Comparison of the conversion data for the depletion of the epoxy (a) and amine (b) 

functional groups of GPS (0.1%, 0.5%, 1% and 3%) treated E-glass fibres via evanescent wave 

spectroscopy in the EPO-TEK 310M resin system at 35°C. 

a) 35°C 

 

b) 35°C 
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4.2.3 Effect of APS treatment of E-glass fibres on the cross-linking kinetics of 

EPO-TEK® 310M 

4.2.3.1 Comparison: As-received Vs. APS treatment 

The chemical nature of the APS treatment induces a pronounced hindrance to the E-glass fibres 

transmittance in comparison to GPS treated and as-received E-glass fibres and consequently a higher 

signal-to-noise ratio is present.  Nevertheless, conversion plots were still producible to help 

distinguish any effects APS treatment may have on the cure kinetics of the amine-cured epoxy resin 

system.  Again, the spectra in Figure 4.19 establish that the APS can be detected by identifying the 

relevant absorption bands and their fluctuating areas, which are in accord with the cure reactions 

discussed previously. 

Figure 4.19:  Spectra of EPO-TEK® 310M attained using evanescent wave spectroscopy and APS 

(1%) treated E-glass fibres showing different times of cure at 65 °C. 
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Figure 4.20:  Comparison of the conversion data for the depletion of the epoxy functional groups 

of as-received and APS (1%) treated E-glass fibres via evanescent wave spectroscopy in the EPO-

TEK 310M resin system at 35, 45, 55 and 65 °C. 
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c) 55°C 

 

d) 65°C 
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It can be inferred from the epoxy conversion plots (Fig. 4.20a-d) that the presence of APS (1%) on 

the E-glass fibres did not greatly affect the rate or degree of epoxy consumption, especially when 

compared to the effect GPS had on epoxy consumption. 

Figure 4.21:  Comparison of the conversion data for the depletion of the primary amine functional 

groups of as-received and APS (1%) treated E-glass fibres via evanescent wave spectroscopy in the 

EPO-TEK 310M resin system at 35, 45, 55 and 65 °C. 
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b) 45°C 

 

 

c) 55°C 
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d) 65°C 

 

The effect of APS (1%) on amine consumption, is negligible, however it can be observed for all 

temperatures except at 35°C (Figure 4.21a), that the presence of the silane has induced a quicker 

amine consumption over the first 60 minutes.  In addition a slight reduction in the extent of amine 

consumption is evident for all temperatures (Figure 4.21a-d).  The APS is an amine-terminated 

coupling agent and so its deposition onto the E-glass surface is expected to increase the number of 

amino groups, as would be deduced by the EWS technique by using the as-received E-glass fibre as 

the background spectrum.  The increased concentration of amino groups is expected to increase 

siloxane cross-linking, which reduces interfacial strength (Hamada et al. 1994), hence the increased 

consumption of amino groups observed in Figure 4.21b-d.  Because of the increased rate of amine 

consumption as a result of APS providing an increased relative concentration of amino groups at the 

E-glass fibre surface, the reduction in amine consumption could be attributed to the cross-linked 

structure of the APS layer; it can obstruct any further reactions between the epoxy-amine resin 

system and organofunctional groups of the silane (Iglesias et al. 2002).  
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4.2.3.2 Effect of APS treatment at different concentrations of E-glass 

fibres on the cross-linking kinetics 

Changing the concentration percentage of APS treatment had an effect on the cure kinetics of the 

epoxy-amine resin system (Figure 4.22).  Only three concentrations (0.1, 0.5 and 1%) were chosen to 

compare isothermal cures at 35°C; APS (3%) treatment proved to downgrade the E-glass’ 

transmittance to the extent where the quality of spectra could not be used.  In the case of the epoxy 

conversion plots (Figure 4.22a) any differences were not of a magnitude to postulate any evaluative 

response.  The amine conversion plots (Figure 4.22b) on the other hand, illustrate an obvious effect 

on amine consumption by altering the concentration of APS treatment.  However, a logical sequence 

of results is not as evident with the APS treatment as it was with GPS treatment.  It can be observed 

that over the first 60 minutes the rate of amine consumption is faster with APS (0.5%) and APS (1%) 

treatments compared to APS (0.1%) and as the cure continues the final degree of amine 

consumption is reduced at higher relative concentrations (0.5 and 1%) (Figure 4.22b).  But when 

solely comparing APS (0.5%) treatment with APS (1%) these trends are reversed and so at these 

concentrations, further experiments need to be conducted to validate the results (Figure 4.22b).  

Nonetheless, discussion can be considered concerning the increased rate of amine consumption at 

the initial stages of cure and the reduced final degree of amine consumption as the relative 

concentration of APS was increased.  It has been postulated that the increased concentration of 

hydroxyl groups at the E-glass fibre surface (when compared to the bulk resin) will induce favourable 

reactions with the amine functional groups and in addition; the amine molecules are smaller than 

their epoxy counterparts and are thought to be able to diffuse more easily through the APS layer 

(Gonzalez-Benito, 2003).  These points coupled with the increasing amount of amine concentration 

with increasing concentration of APS treatment can explain the increase in amine consumption 

(Figure 4.22b).  This however does not explain why the final degree of amine consumption decreases 

with increasing APS concentration.  Epoxy-amine reactions can be affected by the APS thickness and 

degree of condensation of the APS interphase (Connell et al. 1998).  A higher concentration of APS 

will condense the silane layer, therefore diffusion of the small amine molecules will be impeded and 

so the extent of reaction is expected to decrease.  This was deduced by Connell and co-workers 

(1998); as the density of the APS was increased it ‘entrapped’ the primary amines of the silane 

excluding their participation in the reaction with available epoxy groups. 
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Figure 4.22:  Comparison of the conversion data for the depletion of the epoxy (a) and amine (b) 

functional groups of APS (0.1%, 0.5%, and 1%) treated E-glass fibres via evanescent wave 

spectroscopy in the EPO-TEK 310M resin system at 35°C. 

a)  

 

b)  
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The chemisorbed APS layer is to provide a mechanism for the formation of moleculary sized pores 

into which the resin molecules can diffuse to form a semi-IPN which promotes adhesion through 

molecular interlocking.  Thus APS can act as an adhesion promoter for a range of matrix polymers 

independent of chemical coupling (liu et al. 2008).  
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4.2.4 Comparison: Evanescent wave spectroscopy vs. Fourier transform 

infrared attenuated total reflectance spectroscopy  

A preliminary experiment was undertaken to obtain spectra of the EPO-TEK 310M resin in the mid 

infra-red region.  The motivation for this action was to further reinforce the validity of using the E-

glass fibres bundles as chemical sensors.  The epoxy peak at 915 cm-1 (Figure 4.23a) was chosen to 

track its involvement during cure, its area can be seen to decrease with cure time.  The aromatic 

peak at 1606 cm-1 (Figure 4.23b) was chosen as an internal standard, its area is seen to stay constant 

with cure time.  Using Eqn. 16 epoxy consumption was plotted against a cure time of 350 minutes at 

35 °C.  

 

Figure 4.23:  Mid infra-red FTIR-ATR spectra of EPO-TEK® 310M at different stages of cross-linking 

at 35 °C: a) Epoxy peak; b) CH peak 
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b)  

 

The quality of the epoxy conversion plot (Figure 4.24) obtained via FTIR-ATR spectroscopy is fairly 

poor, but nevertheless shows some correlation with the conventional transmission technique and 

EWS method.  Caution must be taken when using mid-infrared spectra as it has been reported that 

individual peaks are more difficult to distinguish than in the near infra-red due to overlapping.  Cure 

could only be monitored up until approximately 300 minutes due to the capabilities of the machine.  

Figure 4.24:  Comparison of the conversion data for the depletion of the epoxy functional groups 

using FTIR-ATR spectroscopy and evanescent wave spectroscopy in the EPO-TEK 310M epoxy resin 

system at an isothermal cure of 35 °C. 
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Chapter 5 

5. Conclusions 

Although the interphase region is minimal in terms of volume compared to the rest of the 

composite, it has a significant influence on the composites resilience and mechanical performance.  

Conventional reinforcing E-glass fibres can be used as sensors to monitor the cross-linking kinetics 

via evanescent wave spectroscopy in situ.  Absorbance peaks can be readily identified and integrated 

to track their consumption in the cross-linking reactions during cure.  This was established by good 

correlation between conversion plots of transmission spectroscopy and evanescent wave 

spectroscopy.  Slight discrepancies were observed at higher temperatures; the reasons for this have 

been discussed.  This enabled the study of the effect of silane treatment on the cross-linking kinetics 

of an amine-cured epoxy resin.  GPS and APS treatments affected the cure behaviour of the resin 

system.  Epoxy consumption was affected by GPS treatment more so than amine consumption.  As 

the concentration of GPS increased, faster rates of epoxy conversion were observed at the beginning 

of cure, but the final degree of epoxy conversion decreased.  APS (the amine-terminated silane) 

affected amine consumption with greater degree than epoxy consumption.  Amine was converted at 

faster rates with increasing amine concentration, but the final degree of amine consumption 

reduced. 

It is not conclusive what has caused these effects, but a number of factors have been postulated: (i) 

preferential adsorption of one resin component over the other onto the reinforcement surface, e.g. 

the amine curing agent can migrate into the sizing (Delong et al. 1990); (ii) reactant dilution effects 

resulting from sizing dissolution; (iii) accelerated cure rate – silane treated fibres may decrease 

activation energy; (iv) curing rate is higher with GPS treatment because of a higher concentration of 

epoxy groups (same can be said of APS, higher concentration of amine groups, faster cure rates); (v) 

amino groups increases rate of viscosity increase due to the higher concentration of epoxy groups 

and (vi) gradient in reactive amine-epoxy ratio from glass surface to resin, i.e. cross-link density 

increased nearer the glass surface, as APS is deposited in layers the chemically bonded layer at the 

glass provides a higher cross-link density.  

5.1 Recommendations for future work 

The present study established that reinforcing fibres can monitor the cross-linking process of a 

thermosetting resin.  In addition, detection of fibre surface treatments in the form of silane coupling 

agents has been reported, along with their effect on the cross-linking process.  To further enhance 
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the research continued surface characterisation of as-received, heat-treated and silane treated E-

glass should be undertaken.  Though extensive time was spent on investigating E-glass fibre surface 

using AFM, the machine was old and dated and consequently failed to produce images of a quality to 

be used in this thesis.  For instance, nano-indentation used in conjunction with AFM can help 

characterise the molecular structures and reactions of silane coupling agents at composite interfaces 

to further develop the choice made concerning compatibility (between the reinforcing fibre, silane 

coupling agent and matrix).  Characterisation of surface area by gas adsorption is another suggestion 

for further work.  Potentially providing a building block, but beyond the scope of this study the 

feasibility of manufacturing self-sensing bio-composites is an area of research that could provide a 

wealth of opportunity.  Since bone and teeth are naturally occurring polymer composites, questions 

can be raised if collagen fibres can be used as self-sensors? Already extensive research is 

progressing; biocompatible electrochemical sensors have been tested, capable of detecting small 

molecules such as glucose, cholesterol, lactate and urea (Cosnier, 2005).  Tactile sensors are being 

developed to aid the surgeons work; feedback on tissue compliance, texture, contact forces and 

torques is helping the development of minimally invasive surgery (MIS) (Zbyszewski et al. 2008).  

Though many considerations must be taken, the potential sensors have are paving an exciting future 

on the development of a wide range of issues.   
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Appendix 

Extensive AFM analysis was also conducted of differently treated E-glass fibre surfaces.  Only a 

couple of the images obtained were included in the study as the following were not of the required 

standard. 
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