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Abstract 

 

T cell immunity is important for the control of Kaposi’s sarcoma-associated 

herpesvirus (KSHV) disease, yet little is known about KSHV-specific immunity in 

healthy donors. Screening PBMCs from such donors by ELISpot analysis identified 

weak responses to the KSHV latent antigens; antigens expressed in the virus 

associated pathologies. We generated T cell clones to the latent proteins LANA and 

vFLIP and determined whether they recognised target cells. CD8+ clones poorly 

recognised targets expressing vFLIP or LANA, through mechanisms which reduce 

target protein synthesis: vFLIP used rare codons in the mRNA encoding this protein, 

while deleting the acidic repeat of LANA increased its recognition. We then 

examined whether LANA-specific CD4+ T cells recognised B cells expressing or fed 

LANA protein.  These were recognised, however most KSHV-infected cell lines, in 

the form of primary effusion lymphoma (PEL) lines, were not. PELs express vIRF3 

which inhibits promoter function of the HLA class II transactivator CIITA. 

Expressing CIITA from a different promoter restored CD4+ T cell recognition of 

PELs. This study suggests CD8 recognition of the latent antigens tested is inefficient 

due to the innate properties of the targets but that CD4 T cells can effectively 

recognise targets if the immune evasion mechanisms are bypassed.  
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Chapter 1 
 
 

Introduction 
 
 
 
1.1 Viral immunity 
 
 
1.1.1 Viral infection  

Viruses are small infectious agents that require the host cellular machinery for 

replication. Virus infection of a host cell is usually comprised of two stages: 

attachment and penetration. The virus will bind specific receptors on the surface of a 

host cell and enter by receptor-mediated endocytosis or membrane fusion, uncoating 

and replicating itself by the synthesis of viral nucleic acid and proteins. Viruses use 

different strategies to maintain themselves and infect new hosts, for example the flu 

virus will replicate rapidly to invade a new host before it can be cleared by the 

original host’s immune system. Other viruses have adapted to maintain long term 

colonisation of their hosts. Herpesviruses, for example, upon infection of a host cell 

can restrict their viral gene expression and enter a latent state, thereby evading 

recognition by the immune system, however occasionally they will reactivate into the 

virus productive cycle and lytic replication will ensue to produce new virions with the 

aim of infecting other cells and new hosts. By contrast, the human papilloma virus 

(HPV) constantly produces infectious virions to sustain itself in the host. However, 

HIV, a virus relatively recently introduced into the human population and yet to reach 

a stable virus-host relationship, contradicts these theories as it gradually destroys each 

of its hosts cell, producing more infectious virions to invade new hosts. The immune 

system has developed a number of defence strategies and mechanisms to combat and 

control these events, involving both the innate and adaptive immune response.  
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1.1.2 Innate immunity to viruses 

The innate immune system is the front line of defence once the physical barriers of 

the body have been breached. It is made up of both cellular and soluble components. 

These cellular components have evolved to recognise pathogen-associated molecular 

patterns (PAMPs) through the expression of pattern-recognition receptors (PRRs) on 

host cells, the major group of which are the toll-like receptors (TLRs). Activation of 

PRRs induces the release of cytokines inducing an inflammatory response. A viral 

infection can induce the production of type-I interferons such as interferon-α (IFN-α) 

or interferon-β (IFN-β) by any cell in the body. One of the ways this has been shown 

to occur is through the detection of viral RNA as it enters the cytosol by a cytosolic 

receptor known as retinoic acid inducible gene I (RIG-I) trigerring a type-I interferon 

(IFN)-mediated response (Hirata et al., 2007). While type-II interferons such as 

interferon-γ (IFN-γ) are only produced by another component of the innate immune 

response, natural killer cells (NK), as well as cells of the adaptive immune response 

such as T cells. Interferons limit viral replication within infected cells by inducing an 

antiviral state in cells and induce increased MHC Class I expression on the surface of 

non-infected neighbouring cells protecting them from attack by NK cells. The main 

function of NK cells is to kill virus-infected cells, these are recognised through altered 

levels of ligands expressed on the surface of the infected cell which stimulate 

activating and inhibitory receptors on the NK cell.   

 

1.1.3 Adaptive immunity to viruses 

The innate immune system provides an immediate response to invading pathogens, 

allowing time for the activation of the effectors of the adaptive immune system, 

namely T and B lymphocytes. Dendritic cells (DC’s) are potent activators of the T 
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cell response and similar to phagocytic cells, they take up antigens or pathogens via 

their PRRs such as the C-type lectin DC-SIGN or other TLRs (reviewed in 

(Geijtenbeek et al., 2002; Pulendran et al., 2001)). However unlike other phagocytes 

such as macrophages, DC’s migrate to the local lymph node, in which they express 

fragments of the pathogen on their surface MHC molecules, presenting them to T 

cells initiating the generation of a specific adaptive immune response. There are two 

types of adaptive immune response: humoral and cell-mediated immune response.  

 

1.1.3.1 Humoral immune response  

Humoral immunity is mediated by antibodies produced from plasma cells which are 

derived from B lymphocytes. Antibodies are Y shaped molecules which, in early B 

cell subsets, are present on the surface of B cells as surface bound receptors. The arms 

of these molecules have two identical antigen-binding sites, which are highly diverse 

from one B cell to another. This is the result of somatic gene segment recombination 

of the immunoglobulin genes, a process that occurs within the germinal centre of 

lymph nodes, selecting B cells with the highest affinity receptor to access opsonised 

antigen presented by follicular dendritic cells. To produce high affinity isotype 

switched antibodies usually requires the aid of the CD4+ helper T cells, which 

recognise specific peptide fragments presented by B cells (Parker, 1993). The T cells 

provide cytokines and costimulation through molecules such as CD40-CD40 ligand 

(CD40L) to drive B cell proliferation and differentiation, mounting a clonal response 

into either plasma or memory cells.  

 

Antibodies secreted in response to invading pathogens such as viruses bind to viral 

antigens acting as opsonins and also can activate the complement system for direct 
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lysis of the pathogen as well as opsonise the antigen for recognition by phagocytes 

(Schifferli et al., 1989). Antibodies also bind to toxins or viral antigens, blocking 

them from entering and infecting host cells, in a process known as neutralisation 

(Roost et al., 1995). Immunological memory for a particular antigen can be carried for 

many years as a result of long-lived memory B cells clones, which can reactivate 

upon encounter of the specific antigen. While producing antibodies is the sole effector 

function of B cells, T cells however have a number of effector functions.  

 

1.1.3.2 Cell-mediated immune responses 

Viruses replicate inside cells and although antibodies have recently been found to be 

capable of inhibiting virus replication within the cell, their contribution to intracellular 

control of virus is currently unappreciated (Mallery et al., 2010). However T cells 

have been found to have a well established role in the control of virally-infected cells. 

This takes place through a direct interaction between the cells bearing the specific 

antigen, which is presented in the form of a peptide fragment by major 

histocompatibility complex (MHC) proteins on the cell surface to the T cells. The T 

cells scan these complexes using their T cell receptor (TCR) present on their cell 

surface. This interaction and recognition by the respective T cells induces their 

effector function, helping to prevent viral replication and subsequent spread of the 

virus in the infected host. 

 

T cell development  

The earliest progenitors of T cells are produced in the bone marrow, they do not 

develop and undergo selection until they are in the thymus. Two lineages of T cells 

develop in the thymus, these can be discriminated on the basis of their TCRs; the γδ T 
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cells and the αβ T cells, which make up the majority of T cell repertoire. Similar to B 

cells, T cells also develop TCRs specific for antigen, this occurs as the T cell 

precursors (thymocytes) pass through the thymus. The TCR genes consist of a 

variable (V) and constant (C) domains, which are encoded by separate exons. The 

sequence of the V domain exon is determined through a process of gene 

rearrangement, which mediates the process of variable, diversity (D) and joining (J) 

gene sequences or VDJ. The random union of VDJ sequences determines the 

sequence of the functional V domain for the TCR β and δ genes, while the 

rearrangement of the V and J genes determines the sequence for the TCR α genes. 

Following successful gene rearrangement, generating thymocytes with a broad 

diversity of specificities, the specificity of the TCR expressed on its surface will 

determine its fate.  

 

The thymocytes are subjected to the processes of positive and negative selection to 

generate a repertoire of peripheral T cells that are functional and not autoreactive. 

During positive selection, it is important that thymocytes can recognise peptides 

bound by self MHC on the cortical epithelial cells present within the thymus, in order 

to be selected for further differentiation (Sha et al., 1988). At the time of positive 

selection, thymocytes express both CD4 and CD8 co-receptor molecules. All mature 

thymocytes that recognise peptides bound to MHC class II molecules will ultimately 

express CD4 receptors on their surface, while those that express CD8 receptors on 

their surface will ultimately recognise peptide presented by MHC Class I molecules. 

Therefore, at the end of positive selection mature thymocytes will express only one of 

these co-receptors.  
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During negative selection, thymocytes with TCRs that strongly recognise self 

antigens presented by MHC Class I or MHC Class II on the surface of DCs or 

macrophages, will be eliminated by apoptosis to prevent the likelihood of 

encountering the same peptides once they are mature T cells (Kappler et al., 1987). 

The paradox that recognition of self MHC:self peptide by the TCRs on the 

thymocytes can lead to two different outcomes still remains to be resolved but has 

been proposed to be related to the affinity of TCR-peptide-MHC interactions 

delivering qualitatively different signals (Hogquist et al., 1994; Thien et al., 2005). 

However, once these selection processes have taken place, the thymocyte can leave 

the central lymphoid tissues and enter the periphery as naïve T cells until they 

encounter their cognate antigen.  

 

T cell activation and memory 

Once the naïve T cells have undergone thymic selection, they recirculate between the 

blood and peripheral lymphoid tissues, such as the lymph nodes and Peyer’s patches 

in search of their cognate antigen. This preferential homing of naïve T cells to the 

lymphoid tissues requires the expression of chemokines and their cognate receptors 

on the T cells, as well as adhesion molecules, including selectins, integrins and 

corresponding vascular ligands (Ebert et al., 2005). Naïve T cells can recognise 

antigen in the T cell areas of the secondary lymphoid organs presented on the surface 

of an antigen presenting cell (APC) bound to a self MHC molecule in a MHC:peptide 

complex.  

 

The most potent APCs are dendritic cells (DCs).  Immature DCs in the tissues take up 

antigen at sites of infection, travel to local lymphoid tissues, under the guidance of 
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chemokine expression and mature to present epitopes from their captured antigens to 

T cells. For T cell activation by DCs, two signals are required; the first from the 

interaction between the TCR and the MHC:peptide complex and the second through 

signals derived from co-stimulatory molecule stimulation (Reis e Sousa, 2004). This 

helps to regulate appropriate stimulation of epitope-specific T cells. The second 

signals typically involve co-stimulation through the CD28 molecule, that is present on 

most human T cells especially naive T cells, which binds to the B7 glycoprotein 

family members B7.1 (CD80) or B7.2 (CD86) on the surface of the APC (Bour-

Jordan et al., 2002). Once the naïve T cell is activated it expresses a number of 

proteins that contribute towards its proliferation and differentiation, such as CD40 and 

CD40L, which belong to the tumour necrosis factor (TNF) family of receptors and 

ligands. These proteins also have an important role in its effector function once fully 

differentiated.  

 

T cells can be divided into three main classes, specialised to deal with the recognition 

of different targets. Cytotoxic T cells, which express the CD8 co-receptor, are capable 

of directly killing virally infected or foreign cells which display epitope-peptides by 

MHC class I on their surface. The T helper cells, TH1 and TH2, both express the CD4 

co-receptor and recognise peptides presented by surface MHC Class II molecules. 

TH1 cells have been proposed to activate macrophages, enabling them to remove 

microorganisms such as bacteria more efficiently, as well as activating B cells to 

produce strongly opsonising antibodies and also have cytotoxic potential. Through the 

cytokine profile that TH2 cells show, these have been proposed to provide help to B 

cells, driving differentiation, antibody production and isotype switching.  
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Following the resolution of an infection, the majority of armed effector T cells die 

from apoptosis or become anergic, as the antigens that elicited the response are no 

longer present at the level needed to sustain the T cells (Callan et al., 2000). However, 

a minority of the effector T cells as well as activated naïve T cells may become 

memory T cells, these remain and confer protection upon rechallenge with the antigen 

or recrudescence of a latent infection (Hislop et al., 2002; Amyes et al., 2003). 

Memory CD8+ T cells exhibit a different phenotype to that of naïve T cells, they can 

be distinguished based on their expression of homing lymphoid markers such as 

CD62 ligand (CD62L) and chemokine receptor 7 (CCR7), as well as the integrin 

LFA-1, with the memory CD8+ T cells expressing an LFA-1(high)CCR7(low) 

phenotype  (Faint et al., 2001).  

 

These memory T cells can be divided into two functionally distinct populations based 

on their CCR7 expression. The first of which are the effector memory T cells, these 

are CCR7-, express receptors for migration to peripheral tissues and show immediate 

effector function upon encounter with the same pathogen, rapidly producing cytokines 

such as IFN-γ, IL-4 and IL-5. While the second population are the central memory 

cells, these are CCR7+ and typically express CD62L, these cells can therefore 

recirculate more easily to the lymph nodes but lack immediate effector function 

(Sallusto et al., 1999). More recent studies have shown that these two populations are 

not from independent lineages but rather differentiate in a linear fashion. Following 

the clearance of antigen from an acute infection of vaccination, effector CD8 T cells 

will initially differentiate into CCR7- effector memory cells and, with the continued 

absence of antigen, the cells will undergo further differentiation into CCR7+ central 

memory cells (Wherry et al., 2003). These memory cells will persist at constant 
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numbers for many years, as a homeostatic balance exists between the slow 

proliferation, survival and death of these cells (Gourley et al., 2004).  

 

The CD8+ T cell response 

CD8+ T cells recognise peptides presented by MHC I molecules present on the 

surface of all nucleated cells in the body. CD8+ T cells are known as cytotoxic T cells 

(Tc’s) for their ability to kill mainly virally infected cells or cells that are otherwise 

damaged or dysfunctional. The primary mechanism through which CD8+ T cells act 

is through the release of lytic granules upon the recognition of their target peptide. 

The release of the proteins from these granules is calcium-dependent, these include 

perforin, granzymes and granulysin (reviewed in (Blott et al., 2002; Barry et al., 

2002)). Perforin, forms a structure on target cell-membranes creating transmembrane 

pores. The second component of the lytic granules are the granzymes, these consist of 

at least three proteases, behaving as destructive enzymes. Finally, granulysin induces 

apoptosis and has anti-microbrial action (Lieberman, 2003).  

 

However, Tc’s can continue killing their target cells following calcium depletion, 

suggesting a different mechanism of action. One such mechanism involves an 

interaction between the Fas ligand (FasL) protein expressed on the surface of the Tc’s 

and Fas expressed on the target cells, leading to the activation of caspases and 

subsequent apoptosis of the target cells. Tc’s also release the cytokines IFN-γ, TNF-α 

and TNF-β, all of which contribute to host defence. IFN-γ directly inhibits viral 

replication, increases expression of MHC Class I in infected cells and activates 

macrophages recruiting them to the site of infection as effector cells or APCs. TNF-α 

and TNF-β, synergise with IFN-γ in recruiting macrophages, they are also directly 
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involved in target cell killing through interaction with TNFR-1.  

 

The CD4+ T cell response 

CD4+ T cells recognise peptides presented by cells expressing surface MHC Class II, 

these include B cells, DC’s and macrophages. CD4+ T cells are divided into various 

subtypes, based on their cytokine expression and functions in vivo. The TH1 cells also 

known as the inflammatory T cells, help activate macrophages to kill intracellular 

microorganisms such as mycobacteria. Macrophages require two signals for 

activation, the first of which is IFN-γ produced by the TH1 cells upon the recognition 

of the peptide:MHC II complex on the surface of macrophages. The second signal 

sensitises the macrophages to respond to IFN-γ, this is provided by the interaction 

between the CD40 ligand (CD40L) expressed on the surface of the TH1 cells and 

CD40 on the macrophage. Moreover, IFN-γ produced by the TH1 cells can synergise 

with TNF-α produced by the activated macrophages, aiding the production of reactive 

nitrogen metabolite nitric oxide (NO), which has broad antimicrobial activity 

(Munoz-Fernandez et al., 1992). In addition to these functions, activated TH1 cells 

produce pro-inflammatory cytokines, such as interleukin-2 (IL-2) inducing T cell 

proliferation and interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating 

factor (GM-CSF), inducing macrophage differentiation in the bone marrow. More 

recent studies have focussed on the cytotoxic potential of these cells with effectors 

found that can kill in a perforin dependent manner (Haigh et al., 2008). As well as 

exerting effector functions through Fas-dependent mechanisms as FasL is expressed 

on the surfaces of TH1 and some TH2 cells (Green et al., 2003).   

 

The TH2 cells, also known as the helper T cells are essential for B cell activation and 
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proliferation, they also facilitate the activation of mast cells. Upon the recognition of 

their specific ligand on the surface of a B-cell, TH2 cells produce interleukin-4 (IL-4). 

The interaction between IL-4 and CD40L synergistically acts to drive the clonal 

expansion of B-cells (Valle et al., 1989), IL-4 is also a regulator of mast cell and 

eosinophil function.  Following several rounds of proliferation of the clonal B cells, 

TH2 cells secrete interleukin-5 (IL-5) and interleukin-6 (IL-6), which contribute to the 

subsequent B-cell differentiation into antibody-secreting plasma cells, particularly 

immunoglobulin E (IgE) antibody expressing plasma cells (Del Prete, 1992). An 

additional cytokine released by TH2 cells is interleukin-10 (IL-10), which upregulates 

surface MHC Class II on macrophages and inhibits the TH1 response (Mosmann et al., 

1991).  

 

The fate of a CD4+ T-cell is not predetermined: it is unknown whether it will 

differentiate into a TH1 or TH2 lineage. The decision of the progeny that the naïve 

CD4+ T cell will take, is made during the clonal expansion following the initial 

encounter with antigen. However, the factors that determine this differentiation 

remain unclear. It is generally thought to be a combination of the co-stimulators used 

to drive the response, the nature of peptide:MHC ligand and the cytokine milieu 

elicited by the response, primarily IFN-γ, interlukin-12 (IL-12) and IL-4. These 

cytokines can have contrasting effects, the development of TH1 cells is enhanced by 

IL-12 but inhibited by IL-4, while the differentiation into TH2 cells is stimulated by 

IL-4 and inhibited by IL-12 and their proliferation inhibited by IFN-γ (reviewed in 

(Mosmann et al., 1996)).   

 

In contrast to the helper CD4+ T cells an additional subset of CD4+ T cells, the 
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regulatory CD4+ T cells (Tregs), are distinguished from T helper cells based on their 

expression of CD4, CD25 (the α chain of the IL-2 receptor) and the forkhead/winged 

helix transcription factor gene FoxP3 (Fontenot et al., 2003). Tregs play an important 

role in controlling the magnitude and duration of T cell responses through the 

secretion of cytokines such as IL-10 and TGF-β, both of which can inhibit T cell 

proliferation. Tregs also have a role in maintaining tolerance as during positive 

selection in the thymus, some autoreactive T cells may not be deleted as the 

autoantigen is not available. Tregs on encounter of an autoantigen will release 

inhibitory cytokines IL-10 and transforming growth factor (TGF-β), inhibiting all 

surrounding autoreactive T cells, irrespective of their precise autoantigen specificity. 

This process is known as regulatory tolerance (reviewed in (Sakaguchi, 2000)). 

 

Other regulatory CD4+ T cell subsets have also been found, however unlike the 

CD4+ CD25+ Tregs, these are CD4+ CD25- cells and include the TH3 and TR1 cells 

found in the mucosal immune system. The TH3 cells secrete IL-4, IL-10 and can be 

distinguished from the TH2 cells by their production of TGF-β, while the TR1 cells 

share a similar cytokine profile but can be distinguished from the TH3 cells by their 

inability to secrete IL-4.  The exact origin and role of these regulatory cells is unclear, 

however a lack of these cells has been linked to autoimmune disease in the gut, as IL-

10 has been shown to have an important role in maintaining intestinal tolerance to 

normal enteric antigens and in the systemic tolerance to self antigens (reviewed in 

(Roncarolo et al., 2000)). 

 

More recently an additional subset of helper T cells known as the TH17 cells have 

been identified, which challenges the well-established TH1/TH2/Treg paradigm 
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(reviewed in (Peck et al., 2010)). The TH17 cells are an IL-17 producing subset of 

CD4+ effector T cells and in contrast to the CD4+ CD25+ Treg cells, the TH17 have 

been shown to have a crucial role in the production of autoimmune tissue injury (Park 

et al., 2005; Bettelli et al., 2006). There is evidence to suggest that the 

proinflammatory cytokine milieu that contributes to TH17 cell differentiation and 

maintenance is characterisitic to that of the autoimmune process, such as the 

cytokines: TGF-β, IL-6, IL-1β, IL-21 and IL-23 (Veldhoen et al., 2006; Serada et al., 

2008; Sutton et al., 2009; Korn et al., 2007).  It was initially thought that the cytokine 

IL-23 was responsible for the differentiation of TH17 cells, however it was later 

established that their differentiation is induced by IL-6 and TGF-β (Bettelli et al., 

2006) and in the absence of IL-6, by IL-21 and TGF-β (Korn et al., 2007). The 

cytokine TGF-β has been shown to be essential in driving the differentiation of both 

the Treg and TH17 cell lineages. More recently TGF-β combined with IL-4 has been 

shown to induce the differentiation of an additional T helper cell subset which 

predominantly produce the cytokine IL-9 and have subsequently been named the TH9 

cells. An exact role for these TH9 cells is unclear, however they have been proposed to 

have a role in regulating chronic allergic inflammation (reviewed in (Jager et al., 

2010)). 

 

1.2 Antigen processing and presentation  

Antigens can be derived from many sources including pathogens but also self 

proteins. However, as T cells can only recognise antigens presented on the surface of 

APCs in the context of MHC molecules, these peptides need to be processed and 

subsequently presented in these molecules. Processing of the peptides occurs using 

one of two pathways, the MHC class I processing pathway or the MHC class II 
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processing pathway. The MHC molecules are host glycoproteins encoded by a large 

cluster of genes, in humans these are referred to as human leucocyte antigens (HLA), 

which are very polymorphic in the human population. These are located on the loci of 

chromosome six, the molecules encoded on these loci are respectively termed MHC 

class I molecules HLA-A, -B, -C, -D, -E and –G alleles and the MHC class II 

molecules HLA-DR, -DQ, and –DP. Each of the HLA molecules can bind to a range 

of peptides derived from antigens and present them for T cell recognition.  

 

1.2.1 MHC class I processing and presentation  

MHC class I is expressed on the surface of all nucleated cells and conventionally 

presents peptides derived from endogenously expressed antigens. These are degraded 

in the cytosol by a multi-subunit protease known as the proteasome into small 

peptides. These peptides are then transported into the endoplasmic reticulum (ER) by 

the transporter associated with antigen processing (TAP), where they are loaded onto 

MHC class I molecules with the help of chaperone proteins. Upon the formation of 

the peptide;MHC class I complex, they are presented on the surface of the cell for 

recognition by CD8+ T cells (Bouvier, 2003). The processes involved in MHC class I 

processing and presentation are illustrated in figure 1.1 and discussed further in this 

chapter.  

 

Structure of MHC class I molecules  

The distinct structure of the MHC class I molecule allows it to serve its function in 

antigen presentation, binding peptides and activating different subsets of T cells. The  

MHC class I molecule is a heterodimer of two polypeptide chains, the α chain bound 

non-covalently to the smaller highly conserved β2 miroglobulin (β2m). The α chain 
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spans the membrane and folds into three domains: α1, α2 and α3. The α1 and α2 

domains fold together to form the peptide-binding groove of the molecule. While the 

α3 domain and β2m have a folded structure similar to that of an immunoglobulin 

domain. The most polymorphic part of the MHC class I molecule is the peptide-

binding groove, which confers the unique peptide and TCR binding properties of each 

MHC molecule (reviewed in (Madden, 1995)).  

 

There are six pockets in the peptide-binding groove, of variable shape and 

composition, which have preferences for certain amino acids, binding the specific 

amino acid side chains of antigenic peptides. The specific amino acids from each 

peptide responsible for the stable binding are referred to as the anchor residues. As a 

result of these unique binding pockets, MHC class I molecules show preferences for 

peptides with certain amino acids in anchor positions and different MHC class I 

molecules will then bind and present different peptides. As expression of the HLA 

genes are codominant, each allele is expressed binding and presenting different arrays 

of peptides (Falk et al., 1991). As the amino and carboxy termini of the peptides are 

enclosed within the peptide-binding groove, this restricts the length of the peptide that 

can bind, therefore peptides that bind to the MHC class I molecule are usually 8-10 

amino acids long (Bouvier et al., 1994).  

 

Peptide generation 

The peptides that bind to MHC class I for CD8+ T cell recognition are derived from 

endogenous proteins, most commonly from intracellular sources including viruses that 

have overtaken the cellular machinery. Proteins in the cells are continuously being 

degraded and replaced with newly synthesised proteins, as part of the normal protein  
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turnover within the cell. The majority of endogenous proteins obtain or acquire 

signals for degradation through the attachment of poly-ubiquitin chains (Ub) to free 

amino groups on the target proteins. This signals that the proteins are to be degraded 

using the multi catalytic protease complex, the proteasome. All eukaryotes possess 

20S proteasomes, these are complex barrel-like structures that contain a catalytic core 

and can digest proteins into oligopeptides. Poly-ubiquitinated proteins are recognised 

by the 19S regulatory subunit of the proteasome, which deubiquitylates, unfolds and 

threads substrates into the 20S proteasome, producing peptides ranging from 4-30 

amino acids in length (reviewed in (Yewdell, 2007)).   

 

The proteasome can exist in two forms: the constitutively active proteasome found in 

all cells and the immunoproteasome found in cells stimulated with interferons. In the 

immunoproteasome three of the constitutively expressed 20S proteasome subunits are 

replaced with the interferon-inducible counterparts bli (LMP2), b5i (LMP7) and b2i 

(MECL-1). This results in changes to the specificity of the proteasome, altering the 

cleavage of polypeptides resulting in the production of peptides with carboxy-terminal 

residues which are preferred for binding to MHC Class I molecules and transport by 

TAP. An additional change elicited by the release of IFN-γ is the expression of the 

PA28 proteasome-activator molecule, this binds to either or both ends of the 

proteasomal cylinder, opening up the cylinder and subsequently increasing the rate of 

efflux of peptides (Toes et al., 2001). Therefore, degradation of proteins by the 

immunoproteasome results in an increased generation of peptides with different 

peptide sequences.  

 

The half-life of endogenous proteins can vary from minutes to up two weeks, with the 
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average half-life being approximately 1-2 days. However, virally infected cells can be 

recognised by T cells within an hour of virus infection (Yewdell et al., 2007). As such 

it has been suggested that viral epitope-peptides are preferentially derived from a 

distinct subset of translated products that are short-lived proteins which are rapidly 

degraded after synthesis rather than from long-term stable proteins (Qian et al., 2006). 

These short lived polypeptides have been termed defective ribosomal products 

(DRiPs). These are mainly derived from viral (or cellular) proteins that have been 

unable to achieve a stable conformation, as a result of errors during their synthesis or 

folding (Yewdell et al., 1996).   

 

Formation of the MHC class I-peptide complex  

Following proteasomal degradation, the peptides generated are translocated by the 

TAP proteins from the cytosol and into the endoplasmic reticulum (ER) for loading 

onto the nascent MHC class I molecules. TAP mediated transport into the ER is a 

multistep process, requiring both MHC-encoded TAP proteins TAP1 and TAP2.  

These form a heterodimeric complex that spans the ER membrane and hydrolysis of 

ATP by TAP leads to the opening and closing of the pore, allowing peptides to be 

translocated from the cytosol and into the ER lumen (Neefjes et al., 1993). It has also 

been shown that the TAP complex shows some specificity for the peptide it will 

transport, preferring peptides between 8 and 16 amino acids in length, with 9-12 

amino acid residues suited best, possessing hydrophobic or basic residues at the 

carboxy-terminus (reviewed in (Uebel et al., 1999)). The majority of MHC class I 

peptides are supplied by TAP translocation, however in some circumstances peptides 

have been successfully presented by MHC class I molecules in the absence of the 

TAP complex (Wei et al., 1992). This has been highlighted in a number of studies 
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using TAP-deficient cell lines leading to the identification of TAP-independent 

epitopes within the γ1 human herpesvirus, Epstein Barr virus (EBV) (Khanna et al., 

1996; Lautscham et al., 2001; Bell et al., 2009). 

 

Once in the ER, although the appropriate C-termini residues on the peptides were 

generated in the cytosol, the peptides that are too long to bind to MHC class I 

molecules are trimmed by an IFN-γ inducible ER aminopeptidase associated with 

antigen processing (ERAAP) at the N-termini (reviewed in (Wearsch et al., 2008)). 

The importance of ERAAP in antigen processing is highlighted by a study carried out 

on ERAAP-knockout mice, in which many unstable and ‘unedited’ peptides were 

bound to MHC class I molecules that were capable of eliciting CD8+ T cell responses 

(Hammer et al., 2007). The mechanism of action of ERAAP is still a matter of debate, 

as it is unclear whether it acts pre- or post- binding to the MHC class I molecule 

(reviewed in (Wearsch et al., 2008)).    

 

Peptides in the ER bind to nascent β2m-associated MHC class I molecules, which 

have been assembled with the assistance of the ER-resident accessory proteins 

calnexin, calreticulin, tapasin and Erp57. Newly synthesised MHC class I α chains 

that enter the ER membranes bind to the chaperone protein calnexin, which has a 

central role in the folding of many immunological proteins. Upon the binding of the α 

chain to β2m, the heterodimer dissociates from calnexin and binds to calreticulin, a 

component of the peptide loading complex (PLC), with a similar chaperone function 

(Radcliffe et al., 2002). The remaining components of this complex, the TAP-

associated protein tapasin and Erp57, a thiol oxidoreductase, form a bridge between 

MHC class I molecule and TAP, enhancing the loading of antigenic peptides onto the 
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α:β2m heterodimer (reviewed in (Williams et al., 2002)). The binding of peptides 

increases the stability of the MHC class-I complex, with the affinity between the 

heavy chain and β2m being increased ten-fold, as well as the affinity of heavy chains 

for peptides increasing dramatically in the presence of β2m (Elliott, 1991).  Following 

peptide-binding, the peptide:MHC complex is released from the PLC and leaves the 

ER through the golgi apparatus and to the plasma membrane, for surveillance by their 

specific CD8+ T cells.  

 

Alternative routes of MHC class I processing: the exogenous pathway 

It is generally accepted that antigens presented on the surface of MHC class I 

molecules are derived from endogenous antigens, usually synthesised within the cell 

itself that is presenting the antigen. However, a study conducted by Bevan dating back 

to 1976 identified an alternative route for deriving MHC class I antigens from an 

exogenous source, this has been referred to as ‘cross-presentation’ and the subsequent 

activation of CD8+ T cells is referred to as ‘cross-priming’ (Bevan, 1976). This 

phenomenon provides an explanation for the ability of uninfected APCs to initiate a 

CD8+ T cell response against the infectious agent.  

 

Since the first evidence presented by Bevan’s study, Albert et al. have provided 

further evidence that the APCs that are mainly responsible for cross-presentation of 

antigen from the virus-infected apoptotic cells are the DCs (Albert et al., 1998). 

Subsequent studies have been carried out demonstrating this phenomenon, viral 

proteins were expressed by transformed, transfected cells or within transgenic mice 

and their cross-presentation was shown to rely on DCs for the presentation of several 

viral antigens derived from a number of viruses such as influenza virus (Sigal et al., 
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2000), vaccinia virus and poliovirus (Sigal et al., 1999).   

 

Cross-presentation is thought to occur by three potential mechanisms. The first of 

which is that antigens could be degraded by endosomal proteases and loaded onto 

MHC Class I molecules in the endosomes, this has been referred as proteasome- and 

TAP-independent crosspresentation (Gromme et al., 1999; Reid et al., 1990). The 

second mechanism involves the transport of endocytosed antigen from the endosome 

and into the cytosol, where it is degraded by the cytoplasmic proteases and 

subsequently transported by TAP into the ER (Ackerman et al., 2004). In the third 

proposed mechanism, antigens are degraded in the cytosol and reimported into the 

endosome by TAP molecules present in the endosomal membrane, where MHC I 

loading will take place (Albert et al., 1998).  

 

Furthermore, autophagy has been implicated in the sequestration and delivery of 

antigens for cross presentation. Autophagy is a cellular process that degrades long-

lived, misfolded or damaged proteins and larger cytoplasmic components, it is 

induced under conditions of stress in the cell, such as starvation. A study by Li et al. 

has shown the importance of autophagy in the presentation of tumour antigens or the 

model antigen OVA, inhibition of autophagy by 3-methyladenine (3-MA) almost 

completely abolished cross-presentation. While autophagy induction by cell starvation 

or treatment with rapamycin greatly enhanced cross-presentation (Li et al., 2008), an 

additional study by Uhl et al. highlighted the importance of autophagy in the cross-

priming of viral and tumour-specific CD8+ T cells; the inhibition of autophagy-

related gene Atg5 expression in virus-infected fibroblasts resulted in the inhibition of 

cross-presentation of the antigen-specific CD8+ T cells (Uhl et al., 2009).  
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1.2.2 MHC class II processing and presentation 

MHC class II is only expressed on the surface of particular cells, mainly the APCs, 

these include B cells, macrophages and DCs. However, class II expression can be 

induced on different cell types such as fibroblasts and endothelial cells by IFN-γ 

treatment. Peptides that are presented on the surface of cells expressing MHC class II 

molecules are usually derived from exogenously acquired antigens. These antigens 

are degraded in the endolysosomal compartment of the cell by proteases under acidic 

conditions and loaded onto nascent MHC class II molecules; thereafter the 

peptide:MHC class II complex are transported onto the surface of the cell for 

recognition by CD4+ T cells. The processes involved in MHC class II processing and 

presentation are illustrated in figure 1.3 and discussed further in this chapter.  

 

Structure of MHC class II molecules 

The MHC class II molecule is composed of two transmembrane glycoprotein chains, 

α and β, both of which are MHC encoded. Each chain is composed of two 

extracellular domains (α1 and β1) and two membrane proximal domains (α2 and β2).  

Figure 1.4 illustrates the structure of the MHC class II molecule. The extracellular 

domains α1 and β1 fold to form the peptide-binding groove in a very similar structure 

to the MHC class I molecule (Brown et al., 1988). In contrast to MHC class I 

molecules, the ends of the peptide-binding grooves in MHC class II molecules are 

more open and peptides that bind can protrude from the groove. This characteristic 

allows MHC class II molecules to bind peptides of variable length and sequence; 

MHC class II molecules predominantly bind peptides between 13-17 residues 

(Rudensky et al., 1991), with peptides as long as 30 residues being identified 

(Engelhard, 1994).  
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Peptide generation 

Peptides presented on the surface of MHC class II molecules are usually derived from 

exogenous proteins. Soluble antigens are internalised by APCs through either 

clathrin-dependent receptor-mediated endocytosis or clathrin-independent 

macropinocytosis and perhaps alternatively from particulate antigens that have been 

engulfed through receptor-mediated phagocytosis (Robinson et al., 2002). Following 

uptake into the cell, proteins become enclosed in endocytic vesicles and enter the 

endocytic pathway, which is composed of three main components: the early 

endosomes, the late endosomes and the lysosomes. The endosomes become 

increasingly more acidic as they progress into the interior of the cell, eventually 

fusing with lysosomes to form the endolysosomal compartment. This acidic 

environment is essential for the unfolding and degradation of the proteins; GILT (γ-

IFN-inducible lysosomal thiol reductase) is the enzyme responsible for the reduction 

of the intra- and inter-molecular disulphide bonds, a process which is necessary for 

the complete denaturation and unfolding of the protein (Lennon-Dumenil et al., 2002). 

Following this denaturation, the cysteine, serine and aspartic proteases cathepsins B, 

D, S and L, as well as enzymes related to the cysteine protease papain, such as 

cathepsins H, L, S, F, Z and AEP (asparingyl endopeptidase) are expressed in APCs 

for the digestion of proteins. The majority of these proteases are optimal at an acidic 

pH and have broad substrate specifity, with the exception of AEP, which cleaves only 

after asparagines residues (Watts, 2001). Cathepsins S and L have been implicated as 

the predominant proteases involved in the processing of vesicular antigens (Pluger et 

al., 2002; Hsieh et al., 2002).  
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Formation of the MHC class II-peptide complex 

The biosynthetic pathway of MHC class II molecules begins with translocation into 

the ER whereby it associates with a chaperone protein known as the MHC class II-

associated invariant chain (li), to form the nanomeric (αβI)3 complexes (Marks et al., 

1990). The li serves a number of distinct and crucial roles in the transport and 

assembly of the MHC class II:peptide complex. Its initial role is to assist in the correct 

folding of the nascent MHC class II molecules, preventing the aggregation of 

unfolded MHC class II molecules in the ER (Bonnerot et al., 1994). Its second role is 

to stabilise the MHC class II molecule, and prevent it from prematurely binding any 

peptides in the ER. This function is primarily achieved through the blocking of the 

peptide-binding groove with a short fragment of the li referred to as the class II-

associated invariant chain peptide (CLIP) (Hiltbold et al., 2002). Thirdly, a signal 

motif in the cytoplasmic tail of the li targets the delivery of the MHC class II 

molecules to the endosomal compartment (Anderson et al., 1992). Once the MHC 

class II-li complex enters the endocytic pathway, it is retained for 2-4hrs, during 

which the li is cleaved by proteases such as cathepsin S leaving only the CLIP 

fragment bound to the MHC class II molecule.   

 

The loading of MHC class II molecules with antigenic peptides occurs in an 

endosomal compartment late in the endosomal pathway, referred to as the MHC class 

II compartment (MIIC). Within the MIIC, a specialised MHC class II-like chaperone 

molecule HLA-DM, catalyses the removal of CLIP and the subsequent loading of the 

MHC class II molecules with antigenic peptides (Sherman et al., 1995). HLA-DM 

also catalyses the release of unstably bound or low-affinity peptides, a process often 

referred to as ‘peptide editing’, increasing the likelihood that the MHC class 
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II:peptide complexes formed are maintained long enough on the surface of the APC 

for recognition by CD4+ T cells (Pu et al., 2004). The importance of HLA-DM in 

MHC class II presentation, has been highlighted in a number of studies that have 

shown that mutant B-cell lines which have a defect in HLA-DM, often fail to bind 

peptides derived from the internalised proteins and arrive at the cell surface with 

CLIP peptide still bound to the surface of the MHC class II molecule (Weenink et al., 

1997; Riberdy et al., 1992).  

 

HLA-DM activity can be regulated by a second atypical MHC class II molecule 

HLA-DO, which is predominantly expressed in the intracellular vesicles of B cells 

and thymic epithelial cells. HLA-DO is a negative regulator of HLA-DM, it elicits its 

effects by binding to and inhibiting HLA-DM from catalysing the removal of CLIP 

from MHC class II molecules, preventing the binding of antigenic peptides (Jensen, 

1998). HLA-DO also acts by restricting the pH range at which HLA-DM is usually 

functional (Liljedahl et al., 1998). However, during an inflammatory response the 

production of IFN-γ increases the expression of HLA-DM, subsequently overcoming 

the inhibitory effects of HLA-DO (Albanesi et al., 1998). Upon the exchange of 

CLIP-peptide for a target peptide-epitope on the surface of the MHC class II 

molecules, the complex is transported from the MIIC to the cell surface by 

mechanisms that are still undefined, for recognition by CD4+ T cells.  

 

Alternative routes of MHC class II processing: the endogenous pathway 

Antigens presented by the MHC class II pathway are usually derived from exogenous 

sources of protein acquired by APCs, however it is now well established that 

endogenous cytosolic or nuclear derived antigens can be presented by MHC class II 
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molecules. The analysis of natural ligands eluted from MHC class II molecules has 

revealed that a large number of MHC Class II peptides are derived from endogenous 

proteins that intersect the class II pathway (Chicz et al., 1993; Rammensee et al., 

1999). A number of theories have been proposed for why endogenous proteins are 

able to access the class II pathway. Firstly, the MHC class II molecules may directly 

form complexes with unfolded proteins in the ER and this complex is subsequently 

transported to the endosome, where it is cleaved by proteolysis and presented on the 

cell surface for CD4+ T cell recognition. In this theory the binding of premature 

protein may precede the association of the MHC class II molecule with the li chain. 

This pathway has been shown to favour transmembrane or secreted proteins, such as 

the influenza-derived haemagglutinin (HA) antigen (Aichinger et al., 1997). The 

second theory proposes a TAP-dependent mechanism for the import of cytosolic 

proteins into the ER and onto MHC class II molecules, this has been referred to as 

MHC class II molecules ‘hijacking’ the MHC class I pathway (Lechler et al., 1996). 

A study by Malnati et al. has shown that influenza-HA derived peptides are processed 

in a TAP-dependent manner for CD4+ T cell recognition, the peptides that are 

presented by MHC class II molecules using this pathway are usually short cytosolic 

peptides. However in the same study, a TAP-independent mechanism for the transport 

of the HA-derived antigens was also identified (Malnati et al., 1992). This finding has 

been supported by a number of other studies suggesting that TAP plays no role in the 

presentation of endogenous antigens by the MHC class II pathway, this can occur in a 

proteasome-dependent (Lich et al., 2000) or proteasome-independent manner 

(Dissanayake et al., 2005).  

 

Autophagy has also been reported to play an important role in the presentation of 
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endogenous antigens using the MHC class II pathway. APCs are constitutively 

undergoing autophagy, of which chaperone-mediated autophagy (CMA) (Zhou et al., 

2005) and macroautophagy (Paludan et al., 2005) have been implicated in the 

presentation of peptides for CD4+ T cell recognition. In CMA, proteins carrying 

signal peptides for sorting into lysosomes, are specifically transported into lysosomes 

by the concerted action of the lysosome-associated membrane protein (LAMP-2a) and 

lysosomal heat shock cognate protein 70 (HSC70). In contrast to other autophagic 

pathways, CMA does not require vesicle formation or major changes in the lysosomal 

membrane. CMA has been implicated in the enhanced presentation of the 

autoantigens GAD and SMA, with over-expression of LAMP2a increasing the 

presentation of these peptides (Zhou et al., 2005). CMA has found to be upregulated 

during prolonged metabolic stress, while macroautophagy is the early stress response 

pathway (Kaushik et al., 2008).  

 

Macroautophagy is the major route of degradation of cytoplasmic constituents. 

During macroautophagy a double membrane vacoule forms around a region of 

cytoplasm termed the autophagosome, which goes on to fuse with lysosomes and late 

endosomes for degradation of the autophagosomal contents (reviewed in (Lunemann 

et al., 2009)).  The first study that implicated macroautophagy in antigen presentation 

was conducted by Brazil et al. on the presentation of a model endogenously expressed 

protein, the C5 complement protein, by the class II processing pathway. The use of 

the autophagy inhibitor 3-methyladenine (3-MA), abrogated the presentation of 

endogenous C5, indicating the importance of lysosomal degradation in the generation 

of peptides for MHC class II presentation (Brazil et al., 1997). More recent studies 

have emphasised a role for macroautophagy in the presentation of endogenous 
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peptides, demonstrated by their sensitivity to autophagy inhibitors such as 3-MA and 

another PI3-kinase inhibitor wortmannin in the processing of the cytosolic protein 

neomycin phosphotransferase II (NeoR) (Nimmerjahn et al., 2003). In addition to 

these inhibitors, downregulation of genes expressed in the autophagy process, such as 

Atg12 by siRNA mediated silencing, reduced the MHC class II presentation of 

epitopes from EBV’s genome maintenance protein EBNA1 (Paludan et al., 2005). 

Furthermore, it has been shown that MHC class II presentation to CD4+ T cells can 

be enhanced, by the direct targeting of antigens into the autophagy pathway. Schmid 

et al. demonstrated that the fusion of the influenza MP1 to the autophagosome marker 

Atg8/LC3, strongly increased MHC class II presentation to MP1-specific CD4+ T 

cells (Schmid et al., 2007).  

 

1.3 Kaposi’s sarcoma-associated herpesvirus (KSHV) 

The herpesvirus family is a group of large and complex viruses with double-stranded 

(ds) linear DNA genomes. Historically these were divided into three main subfamilies 

α, β and γ grouped according to their biological properties; predominantly their 

cellular tropism. Kaposi’s sarcoma-associated herpes virus (KSHV) is a 

lymphotrophic γ-herpes virus, also known as human herpes virus 8 (HHV8), 

belonging to the γ2 or rhadinovirus genus. KSHV was first discovered in 1994 by 

Chang et al. using representational difference analysis (a PCR-based technique) on 

restricted cellular DNA from a Kaposi’s sarcoma tissue biopsy which had herpesvirus 

sequence homology (Chang et al., 1994). Soon after, the entire double stranded linear 

DNA viral genome was cloned apart from a 3-kb sequence near the right end of the 

genome, revealing sequence homology with EBV and herpes virus saimiri (HVS) 

(Russo et al., 1996). KSHV is the second human herpes virus identified, following 
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EBV, which shows oncogenic potential. It is linked to the establishment of the 

malignancies Kaposi’s sarcoma (KS) and the B cell malignancies, primary effusion 

lymphoma (PEL) and Multicentric castleman’s disease (MCD) (reviewed in (Bouvard 

et al., 2009)).  

 

1.3.1 KSHV infection 

Unlike other human herpes viruses, KSHV infection is not ubiquitous amongst the 

general healthy population. Seroprevalence is highest in sub-Saharan Africa at more 

than 50%, while in the Mediterranean region has intermediate seroprevalence at 10-

30%, mostly among elderly men. While the seroprevalence in northern Europe, Asia 

and the United States is lowest at less than 10% (reviewed in (Uldrick et. al, 2011)). 

Routes of transmission for KSHV are unclear, however there is evidence for oral and 

sexual route of transmission as KSHV incidence is very high among homosexual men 

with HIV. However, among heterosexuals a main mode of transmission is yet to be 

identified, there is evidence for both sexual and non-sexual routes of transmission. In 

western countries, the incidence of KSHV infection is higher in women co-infected 

with HIV and commercial sex work suggesting a sexual route of transmission 

(Bestetti et al., 1998)  (reviewed in (Schulz, 2000)). While in African countries with 

endemic KS such as the Gambia, Uganda and Cameroon, KSHV incidence is found in 

a large number of pre-pubescent children, suggesting a nonsexual horizontal mode of 

transmission (reviewed in (Geraminejad et al., 2002)). Furthermore, over the past 

three decades there has been an increased incidence of KSHV infection in organ 

transplant recipients receiving immunosuppressive therapy; in countries where classic 

KS can occur such as Saudi Arabia, KS is the most common post transplant tumour in 

renal transplant recipients (Qunibi et al., 1988).  
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KSHV mediated pathogenesis is enhanced in the presence of a number of growth 

factors and inflammatory cytokines. These are responsible for endothelial cell 

recruitment, activation of lymphocytes, and the reactivation of KSHV. Some of the 

growth factors that have an essential role in promoting KSHV infection include: IFN-

γ, Tissue necrosis factor (TNF), IL-1, IL-6, basic fibroblast growth factor (BFGF), 

and oncostatin-M (OSM) (reviewed in (Bryan et al., 2005)). The growth factor that 

plays a significant role in KSHV pathogenesis is vascular endothelial growth factor 

(VEGF); it has been implicated in a number of processes such as differentiation, 

migration, cell survival and activation of oncogenesis. VEGF has also been reported 

to be upregulated along with its receptor (VEGFR) in tumour angiogenesis and 

proliferation (Ferrara, 2004; Masood et al., 2002) (reviewed in (Uldrick et al., 2011)). 

 

In vivo, KSHV DNA and transcripts have been detected in B cells, endothelial cells, 

monocytes, epithelial cells and keratinocytes, suggesting KSHV has a wide cellular 

tropism. KSHV undergoes both lytic and latent replication but primarily establishes a 

latent state of expression in two cell types, endothelial cells and B cells. To date, it 

has been difficult to establish a KSHV infected endothelial cell line from KS lesions 

as KS cells grow poorly in culture, or the cells rapidly lose the viral genome (Lebbe et 

al., 1997; Ganem, 2007). However, human B cells and monocytes appear to be 

reservoirs of latent infection (Ambroziak et al., 1995). Furthermore, cells with B-cell 

characteristics have been established from the PEL biopsies, such as the tumour line 

BC-1 (Cesarman et al., 1995). The majority of these lines are co-infected with EBV 

and similar to EBV transformed B cells (LCLs), only 1-3% of the PELs will 

spontaneously reactivate and enter lytic cycle (reviewed in (Chandran, 2010)).  
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In vitro KSHV infects endothelial cells (Blackbourn et al., 2000), epithelial cells, 

fibroblasts (Matthews et al., 2011), and more recently primary B cells (Rappocciolo et 

al., 2008), tonsillar B cells (Myoung et al., 2011) and EBV-negative Burkitt 

lymphoma cell lines (Myoung et al., 2011) resulting in a mainly latent infection. 

However, primary non-stimulated B cells show a low percentage of infection with 

KSHV and unlike EBV infection of B cells, KSHV infection does not result in the 

immortalisation or transformation of B cells into LCLs (Myoung et al., 2011). 

However, lytic replication has been reported in activated and tonsillar B cells 

(Rappocciolo et al., 2008; Myoung et al., 2011). In other cases however, in vitro 

KSHV infection of adherent target cells such as human dermal microvascular 

endothelial cells (HMVEC-d), human umbilicial vein endothelial cells (HUVEC), 

human foreskin fibroblasts (HFF) and human embryonic kidney epithelial cells (HEK 

293 cells) results mainly in the expression of the latent genes with very little lytic 

replication occurring within the cells. Therefore studying KSHV lytic replication in 

these cells requires induction of the virus into lytic cycle using chemicals such as 

phorbol ester or by expression of KSHV lytic switch gene, the lytic cycle open 

reading frame 50 (RTA) (Krishnan et al., 2004; Lagunoff et al., 2002).  

 

The KSHV genome encodes 87 ORFs and, similar to EBV during lytic replication, 

viral genes are expressed in a temporally regulated cascade: the immediate early (IE), 

early (E) and late lytic (LL), which encompass lytic cycle gene expression and latent 

(L) gene expression. The most important immediate early gene is ORF50 which 

encodes the lytic switch protein RTA and is the central event in the induction of lytic 

cycle gene expression through its action as a transcriptional activator (Lukac et al., 

1999). Deletion of RTA from the viral genome has been shown to inactivate 
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spontaneous or chemically triggered induction of lytic replication (Xu et al., 2005). 

The early lytic genes encode for a large class of viral proteins that prepare the cell for 

DNA replication or viral gene expression. The regulators of viral gene expression in 

this class of proteins include the post transcriptional regulator MTA, encoded by 

ORF57 (mRNA transcript accumulation) (Sandri-Goldin, 2001) and replication 

associated protein (RAP) or K-bZIP encoded by ORF-K8 (Polson et al., 2001).  

Whereas, the late lytic genes encode predominantly for viral structural proteins, these 

include envelope and capsid proteins such as ORF65, which has shown to be essential 

for capsid assembly (Perkins et al., 2008).  

 

1.3.2 KSHV latency 

In contrast to gene expression profiles seen during lytic cycle replication, KSHV 

which has entered a latent form of replication shows a highly restricted pattern of 

gene expression. In these forms of infection, the viral genome is maintained in a 

circularised episomal state and viral gene expression does not result in virion 

production. However in these forms of infection, the viral genome and cell viability is 

maintained, preserving the potential for virion production upon reactivation (reviewed 

in (Dourmishev et al., 2003)). The major latency viral transcripts expressed in all 

KSHV-infected cells and malignancies encode the genome maintenance protein 

latency-associated nuclear antigen (LANA), the viral cyclin (vCyclin), the anti-

apoptototic multifunctional protein viral FLICE-like inhibitory protein (vFLIP) and 

Kaposin (reviewed in (Tempera et al., 2010)). In the case of the PELs and infected 

cells in MCD a different form of latency is seen with at least two additional proteins, 

the viral IL-6 and the immunomodulatory and anti-apoptotic protein vIRF3 being 
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expressed. More recently ORF-K1 has also been described as a latency protein which 

mimics signaling through the B-cell receptor (Chandriani et al., 2010).  

 

LANA, encoded by ORF73, is a large multifunctional protein that is localised to the 

nucleus of latently infected cells where it is responsible for maintaining the KSHV 

viral genome. It has three major domains: An N-terminal region that has been 

associated in chromatin attachment and co-repressor recruitment, a central region that 

is highly acidic, and finally a C-terminal region that is involved in DNA binding and 

oligomerisation (Renne et al., 2001). LANA has also been associated with the 

dysregulation of many pathways that play a role in cell growth and survival 

promoting tumourigenesis. Friborg et. al. showed that LANA interacts with tumour 

suppressor p53, repressing its transcription and ability to induce apoptosis, implying a 

contribution of LANA to KSHV induced oncogenesis (Friborg et al., 1999). LANA 

also binds to the tumour suppressor Retinoblastoma (Rb) protein resulting in its 

inactivation, and the consequent upregulation of E2F dependent genes in LANA 

transfected cells (Radkov et al., 2000). Furthermore, LANA has been shown to 

modulate Wnt signalling. Wnt-1 stimulates proliferation of primary endothelial cells 

in vitro and LANA can interfere with this, thereby promoting KSHV induced growth 

deregulation (Osborne et al., 1999; Fujimuro et al., 2003).  

 

A second KSHV latency protein that interferes with cell growth regulatory pathways 

is vCyclin, encoded by ORF72, the viral homolog of cellular cyclin D, which binds 

and activates cdk6. The vCyclin-cdk6 complex phosphorylates Rb overcoming Rb-

mediated growth arrest induced by cdk-inhibitors, which in turn activates S phase 

genes allowing cell cycle progression and cell transformation that may contribute to 
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KS formation (Swanton et al., 1997). It has proven difficult to culture cell lines 

expressing vCyclin as they regularly undergo apoptosis, especially if the cdk6 levels 

are high, as the vCyclin-cdk6 complex phosphorylates the antiapoptotic factor bcl2 

resulting in its inactivation (Ojala et al., 1999; Ojala et al., 2000). Furthermore, 

vCyclin expression in primary cells leads to cytokinesis defects and polyploidy, 

activating p53, however the loss of functional p53 allowed the cells to survive in the 

presence of high levels of vCyclin, highlighting the oncogenic potential of vCyclin 

(Verschuren et al., 2002).   

 

The third latency protein transcribed from the major latency locus is vFLIP, encoded 

by ORF71/K13, the viral homologue to cellular FADD-like interleukin-1β converting 

enzyme inhibitor protein (FLIP). It has been consistently shown that KSHV vFLIP 

expression can upregulate the anti-apoptotic transcription factor NF-κB by binding to 

inhibitor κB kinase-γ (IKKγ) or NEMO, this complex activates IKK leading to the 

phosphorylation of IKB and release of active NF-κB (Liu et al., 2002). This activation 

of NF-κB also induces the release of various cytokines such as IL-8 in endothelial 

cells that have been implicated in KS pathogenesis (Sun et al., 2006). vFLIP is also 

responsible for the spindle cell morphology of endothelial cells elicited by KSHV 

infection (Grossmann et al., 2006). More recently vFLIP has been reported to have a 

role in the suppression of autophagy by preventing Atg3 the E2-like enzyme from 

binding and processing LC3 (Lee et al., 2009).  

 

Kaposins are encoded from the alternatively spliced ORF K12, the most abundant 

transcript expressed in KSHV latently infected cells. The Kaposin proteins are 

expressed at low levels in uninduced PEL cells and in KS spindle cells, but are highly 
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upregulated during lytic replication (Sadler et al., 1999). Kaposin mRNA codes for at 

least 3 proteins: kaposin A, B, and C. Kaposin A is present on both the cell surface 

and intracellular membranes and has transforming ability in rodent fibroblasts 

(Tomkowicz et al., 2002; Muralidhar et al., 1998). Kaposin B increases the expression 

of cytokines by blocking the degradation of messenger RNAs (mRNAs), by binding 

to and activating the kinase MK2 which is a major target of the p38 pathway that is 

involved in regulating the stability of a specific class of cytoplasmic mRNA, 

preventing their turnover and enhancing their accumulation (McCormick et al., 2005). 

Kaposins A and B, as well as latent gene vFLIP, may contribute to the inflammatory 

microenvironment of KS.  

 

Unlike the majority of KSHV-infected spindle cells seen in KS lesions, infected PEL 

and MCD cells additionally express vIL-6. This viral protein shows sequence and 

functional homology to human IL-6, an important B cell growth and differentiation 

factor (Parravicini et al., 1997). However, vIL-6 may have a broader tropism and is 

not subjected to the same regulation as human IL-6. vIL-6 is able to bind the gp130 

co-receptor independently of the human IL-6 gp80 receptor, allowing signal 

transduction upon vIL-6 binding, in the absence of the specific IL-6 receptor. vIL-6 

protects PELs from the antiviral effects of IFN-α, which down-regulates the surface 

expression of gp80 but not gp130 (Chatterjee et al., 2002; Osborne et al., 1999).  

 

An additional latent protein that is expressed in PELs and MCD is vIRF3 or LANA2 

encoded by ORF K10.5. vIRF3 is a multifunctional protein that has been shown to 

inhibit type I interferon signaling, is required for the survival of PELs (Wies et al., 

2008), inhibits p53 function (Rivas et al., 2001) and more recently in PELs has been 
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shown to inhibit promoter function of the HLA class II transactivator CIITA, 

decreasing expression of surface MHC class II and IFN-γ production (Schmidt et al., 

2011).  

 

1.3.3 KSHV pathogenesis 

KSHV has been identified as the causative agent of the endothelial pathology KS and 

B cell lymphoproliferative disorders PEL and MCD (Bouvard et al., 2009). KS has 

been identified as the most common KSHV-associated malignancy; it is the most 

frequently reported cancer in HIV infected individuals and one of the commonest 

cancers affecting men and children in sub-Saharan Africa (Masood et al., 2002). KS is 

a highly vascular tumour that originates from endothelial cells resulting in 

inappropriate endothelial cell proliferation and inflammatory lesions that are localised 

in the skin and visceral organs. There are 4 main types of KS: Classic KS, AIDS-

related KS, African-endemic KS, and iatrogenic KS (reviewed in (Geraminejad et al., 

2002)).  Classic KS mainly affects elderly men of Mediterranean, eastern-European or 

Jewish descent.  Lesions are mainly localised to the lower extremities, generally does 

not disseminate and is mostly an indolent disease. AIDS-related KS is however 

extremely aggressive with lesions spreading rapidly and viscerally, affecting major 

organs such as the lungs. The African-endemic form of KS most often affects young 

men with disseminated lymphadenopathy. Finally, iatrogenic KS develops in 

immunosuppressed patients following organ transplantation, the lesions are reduced 

upon the relaxation of immunosuppression (reviewed in (Bryan et al., 2005; Mesri et 

al., 2010)).  
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The second malignancy linked to KSHV infection is primary effusion lymphoma 

(PEL), a rare form of monoclonal B cell lymphoma thought to be of post germinal 

centre origin, that most often occurs in HIV-AIDS patients and has a highly 

aggressive course (Schulz, 2001). PEL mainly manifests in body cavities; it is very 

rare to see lymphodenopathy and solid tumours, however soft tissue masses and 

infiltration into body cavity tissues has been reported (Rivas et al., 2001). In vitro, 

PEL cell lines have been established and have been an essential tool to studying 

KSHV latency in a B cell background (Brander et al., 2000; Cesarman et al., 1995; 

Renne et al., 1996; Cannon et al., 2000).  

 

A second B cell proliferative disorder associated with KSHV infection is Multicentric 

Castleman’s disease (MCD), characterised by proliferation of B cells in a 

microenvironment of excess interleukin 6 (IL-6) (Parravicini et al., 1997). KSHV 

infection is found in almost 100% of cases of reported HIV positive related MCD, and 

40-50% of cases that are HIV negative (Soulier et al., 1995). Clinical exacerbations of 

MCD correlate with KSHV replication and high viral loads in the blood (Parravicini 

et al., 1997). MCD when seen in individuals such as AIDS patients follows a 

relapsing remitting course, the risk of relapse appearing to correlate with virus load 

(Stebbing et al., 2011), sometimes requiring chemotherapy or B cell depleting 

treatments such as administration of Rituximab (Guihot et al., 2005; Bower, 2010).  

 

High viral loads during MCD disease flares suggest that immune control of the virus 

is lost (Lallemand et al., 2000). This has also been suggested for individuals with 

iatrogenic KS and AIDS-related KS, as restoration of the immune system in these 

immunocompromised individuals with treatment of HAART or relaxation of 
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immunosuppression has shown regression of these malignancies (Bihl et al., 2007; 

Duman et al., 2002). These observations suggest an important role for the immune 

response in the control of the pathogenesis of this virus.  

 

1.3.4 Immunity to KSHV  

Similar to all other herpesviruses, KSHV infection persists in the host for life where it 

can enter either of two transcriptional programs: lytic and latent cycles. During 

latency, a passive strategy for immune evasion, a minimal number of gene products 

are expressed, decreasing the number of antigens available for immune surveillance. 

However, during lytic replication, the majority of viral proteins are expressed and 

these require more active immune evasion strategies to modulate both the innate and 

adaptive immune response to the virus. Indeed, KSHV has amassed a formidable 

repertoire of genes capable of moderating immune recognition and function, with a 

recent annotation of the viral genome ascribing potential immunomodulatory function 

to 22 genes of a total of 87 (Rezaee et al., 2006). 

 

1.3.4.1 The innate immune response  

The first line of defense against virus infection following the entry of the virus into 

the host is the production of interferons, IFN-α and IFN-β. These induce a number of 

autocrine and paracrine effects which limit viral replication, increase the expression of 

surface MHC class I, inhibit cell proliferation and increase apoptosis (Randall et al., 

2008).  

 

The interferon regulatory factor (IRF) family are transcription mediators of viral, 

bacterial and IFN-induced signaling pathways in humans which regulate the IFN-
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responsive genes: IRF-1, 3 and 7 have been implicated in transactivation of the IFN-α 

and -β genes. KSHV encodes four genes which have limited homology to the cellular 

IRFs, called the vIRF genes. These genes are mainly expressed during the lytic cycle, 

however vIRF-1 and vIRF-3 have also been detected during latency (Rivas et al., 

2001). It has been hypothesised that these genes have evolved to subvert the cellular 

IRF signaling pathways. vIRF-1, encoded by ORF K9, negatively regulates IFN 

signaling in the cell by suppressing the transcriptional activity of cellular IRF-1 and 

IRF-3 (reviewed in (Offermann, 2007)). Overexpression of vIRF1 in lymphatic 

endothelial cells has also been shown to downregulate surface MHC class I 

expression (Lagos et al., 2007). vIRF-2, translated from K11 and K11.5, inhibits both 

IRF-3 and  transactivation of the IFN-α and IFN-λ driven signaling pathways (Fuld et 

al., 2006). vIRF-3, in addition to its other functions mentioned previously, interacts 

with IRF-7 inhibiting its DNA binding activity and subsequent IFN-α production (Joo 

et al., 2007). Finally, a role for vIRF-4 in regulating the IFN antiviral response is yet 

to be determined. A number of other proteins have been shown to have a role in 

regulating the IFN-mediated antiviral response: the virion-associated protein ORF45 

which blocks the transactivation of IRF-7 and replication (Zhu, 2002; Honda et al., 

2005), RTA negatively regulates IRF-7 by targeting it for proteasomal-mediated 

degradation, inhibiting the activation of the type I IFNs (Yu et al., 2005), the K8-

encoded K-bZIP protein interacts with IRF-3 and prevents its binding to IFN-β 

promoter, preventing IFN-β transcription (Lefort et al., 2007).  

 

An essential component of antiviral immunity is the TLR recognition of KSHV.  A 

recent study has shown that KSHV infection of monocytes can upregulate the TLR3 

pathway inducing the expression of TLR3-specific cytokines such as IFN-β1, CXCL-
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10 and CCL2 (West et al., 2008). The infection of endothelial cells with KSHV 

results in the immediate suppression of TLR4 expression, it has been shown that 

levels of TLR4 expressed on cells in vitro inversely affects the susceptibility of cells 

to KSHV infection (Lagos et al., 2008). Furthermore, the role of TLR9 in 

gammaherpes immunity was highlighted in a mouse model of MHV-68, DCs derived 

from TLR9 -/- mice secreted lowers level of the cytokines IL-12, IL-6 and IFN-α 

compared to DCs from wildtype mice (Guggemoos, et al.  2008). KSHV also encodes 

three chemokine homologue proteins viral CCchemokines - vCCL-1, vCCL-2 and 

vCCL-3 during lytic replication, they have various immune regulatory functions, 

however collectively these cytokines play a role in polarizing the adaptive immune 

response towards a TH2-like or humoral response, most likely reducing the efficiency 

of the antiviral response (reviewed in (Rezaee et al., 2006)). 

 

1.3.4.2 The adaptive immune response  

The B cell immune response 

The adaptive immune response to KSHV infection involves both the humoral and 

cell-mediated immune response. Currently systematic surveys of antibody responses 

to all KSHV ORF products are being conducted, to definitively identify the targets of 

the antibody response in healthy donors (Whitby, personal communication).  

However, the main mapped ORF targets of the antibody response have been identified 

as LANA (Kellam et al., 1997), K8.1 (Raab et al., 1998) and ORF65 (Simpson et al., 

1996). 

 

A role for neutralising antibodies in the control of KSHV infection has been 
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suggested in a study which compared neutralising antibody levels between healthy 

KSHV infected donors and donors with KS, showing significantly lower levels of 

neutralising antibodies in the cohort with KS (Kimball et al., 2004). An additional 

study carried out by Sullivan et al. has shown that in HIV infected homosexual men 

HAART increases the KSHV-specific humoral immune response, coincident with 

clearance of viremia and regression of KS (Sullivan et al., 2010).  

 

The T cell immune response 

Cytotoxic T Lymphocytes (CTLs) play a key role in the control of viral infections, 

especially as effectors of long-term immune surveillance against viruses in the 

infected host. Unlike some primary infections with EBV that result in infectious 

mononucleosis with a rapid expansion of activated CD8+ T cells specific for a 

number of lytic proteins (Maini et al., 2000; Pudney et al., 2005), little is known about 

primary KSHV infection. Primary infection in children may be associated with an 

acute febrile illness and a maculopapular rash (Andreoni et al., 2002), while 

lymphadenopathy has been reported in men who have sex with men, at the time of 

seroconversion (Casper et al., 2002). Goudsmit et al. investigated the events that 

occur surrounding the time of seroconversion and provided evidence to support the 

assumption that KSHV seroconverters have primary infections, as the majority of 

seroconverters showed detectable levels of virus close to the point of conversion 

(Goudsmit et al., 2000).  

 

Where T cell responses have been studied in primary KSHV infection has been in 

carefully monitored HIV infected patients. Here these patients showed non-specific 

symptoms at the time of seroconversion with no gross alterations in circulating levels 
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of CD4 and CD8 T cells. Analysis of the specificity of the T cell response elicited 

suggested a broad repertoire of T cell responses was made, targeting epitopes derived 

from early and late expressed proteins (Wang et al., 2001). The frequency of 

responses reached peak levels at one to two years following seroconversion before 

decreasing again.   

 

To date, a few minimal epitopes have been identified to which CD8+ and CD4+ T 

cell responses in KSHV infected individuals are directed. A detailed analysis of 

KSHV specific T cell responses has proven to be very difficult as a result of its very 

large genome encoding 87 ORFs. Furthermore, the responses that have been detected 

are generally much weaker to KSHV epitopes in comparison to EBV epitopes. The ex 

vivo detection of these requires several stimulations with the target antigens and the 

application of professional antigen presenting cells to extract any noticeable response 

(Fabiola Micheletti et al., 2002; Robey et al., 2009; Lepone et al., 2010). 

 

Despite the difficulty in detecting the epitopes responsible for KSHV responses, a 

number of epitopes have been identified, the majority of which are HLA-A*0201 

restricted and derived from lytic proteins (Wang et al., 2001; Wang et al., 2002; 

Ribechini et al., 2006; Fabiola Micheletti et al., 2002) and more recently to the latent 

proteins (Lepone et al., 2010; Guihot et al., 2006). The first MHC Class I specific 

epitope found to induce a CD8+ T cell response in HLA-A2 individuals was specific 

to the Kaposin A protein encoded by ORF K12, the optimal CTL epitope 

LLNGWRWRL (Brander et al., 2001). Soon after a second HLA-A2 restricted 

epitope was identified in the lytic antigen glycoprotein H (gH), encoded by ORF22, 

the CTL optimal epitope FLNWQNLLNV. CTL cultures raised against both peptides 
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could efficiently target HLA-A*0201 matched PEL cells following a series of peptide 

stimulations, indicating that these two epitopes are targets of CTL-mediated immunity 

(Fabiola Micheletti et al., 2002). 

 

It is very difficult to be confident that these epitopes are immunogenic in vivo, as the 

CTL responses ex vivo were very weak in comparison to the closely related γ-

herpesvirus EBV. This difference was highlighted in a study that directly compared 

CTL responses between various latent and lytic EBV and KSHV proteins using an 

overlapping peptide library spanning their sequences in an IFN-γ ELISpot. The 

average EBV response was almost ten-fold higher, emphasising the weakness of 

KSHV responses compared to EBV (Bihl et al., 2007).  

 

The size of the CTL response has been shown to vary between different KSHV 

infected cohorts, depending on: presence of KS, immunosuppression in post-

transplant recipients, HIV co-infection and if the HIV patients are receiving HAART 

treatment. These are all factors that have been shown to influence the frequency of T 

cell responses to KSHV proteins. A study carried out by Woodberry et al. showed T 

cell responses to LANA and ORF65 were more frequently seen in HIV co-infected 

individuals. Furthermore, a higher detectable T cell response has been reported in 

subjects with active KS compared to those without KS, the highest cellular immune 

responses were found at time points of highest KSHV DNA loads, suggesting viral 

loads are driving the T cell response (Woodberry et al., 2005). However, these 

findings are in contrast to a different study that compared KSHV specific CTL 

responses between transplant recipients, AIDS-related KS patients on HAART and 

patients with classic KS and found that KSHV CTL responses were least frequent in 
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AIDS-related KS (Lambert et al., 2006). Furthermore, a number of studies have also 

found that CTL responses detected in patients without KS or in control of their KS 

had more frequent and diverse CTL responses than those with progressive disease 

(Lambert et al., 2006; Bihl et al., 2009; Guihot et al., 2006). 

 

The CD8+ T cell immune response in MCD patients has also been investigated in a 

comparison between MCD patients co-infected with HIV and asymptomatic HIV co-

infected individuals, using IFN-γ ELISpot with 56 peptides representing a number of 

KSHV latent and lytic proteins. The screen revealed a similar magnitude of responses 

between MCD patients and asymptomatic carriers and also identified a new 10 amino 

acid long HLA-B*7 restricted CD8+ epitope in the K15 protein. These results imply 

that unlike in KS, MCD does not appear to lack a functional KSHV CD8+ T cell 

immune response (Guihot et al., 2008).  

 

A number of molecular mechanisms have been reported that might account for the 

weak T cell responses. The down-regulation of MHC class I molecules on the surface 

of B cells infected with KSHV through the DC-SIGN receptor has been reported 

(Rappocciolo et al., 2008). Proteins encoded by KSHV have been shown to have the 

capacity to downregulate surface MHC class I: these are the K3 and K5 proteins, also 

known as modulators of immune recognition (MIR1) and MIR2, respectively. These 

function through the ubiquitination of the MHC class I molecules cytoplasmic tail, 

subsequently targeting it for proteasomal degradation (Coscoy et al., 2001). The 

proximity of the cellular proteins varies depending on their proximity to the 

transmembrance domain, with MIR2 preferentially ubiquitinating residues closer to 

the membrane than MIR1 (Cadwell et al., 2008). MIR2 also downregulates other 
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components of the immune synapse such as ICAM-1 and PECAM in vitro and this 

effect is directly correlated to the levels of MIR2 expressed during KSHV infection 

(Adang et al., 2007). The K3 and K5 proteins are mainly expressed during the lytic 

cycle, however recent studies have found that K5 can be expressed in endothelial cells 

up to 5 days later following KSHV infection (Krishnan et al., 2004). An additional 

target of MIR1 and MIR2 is the IFN-γ receptor which is also ubiquituinated and 

targeted for degradation, preventing IFN-γ from exerting its anti-viral effects which 

include the upregulation the antigen processing and presentation machinery for both 

the MHC class I and class II pathways (Li et al., 2007).  

 

An additional lytic protein which also inhibits CD8+ T cell recognition of targets, is 

the KSHV shutoff and exonuclease (SOX) protein, encoded by ORF37. Its EBV 

homologue is BGLF5 and both function using a similar mechanism, which involves 

the acceleration of degradation of host mRNA, inhibiting all host-cell gene expression 

within 12hr of lytic reactivation and consequently inhibiting antigen presentation (Zuo 

et al., 2008).  

 

The latency protein LANA is functionally analogous to the EBV genome maintenance 

protein EBNA1, both of which possess a central repeat domain. In EBNA1 this repeat 

domain has been shown to retard protein translation and degradation, limiting the 

antigen supply for presentation for T cell recognition (Levitskaya et al., 1995; Yin et 

al., 2003). The acidic repeat domain within LANA has also been shown to reduce the 

rate of translation and increase protein stability, consequently limiting the source of 

viral antigens for presentation in a similar fashion to EBNA1 (Kwun et al., 

2007;Zaldumbide et al., 2007). 
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1.4 Aims of this project: To examine the T cell response to the KSHV latent 

proteins 

As described above, a number of studies have examined the T cell response to KSHV 

within a clinical setting. The majority of work to date has been focused on T cell 

responses in HIV co-infected individuals, post transplant recipients or patients with 

KS. More importantly, when immune control is restored in these patient groups, 

either through the administration of HAART or relaxation of immunosuppression, 

these malignancies can regress, implying a significant role for T cell immunity in the 

control of KSHV pathogenesis (Bihl et al., 2007; Duman et al., 2002). Few 

therapeutic strategies exist to control KSHV disease and progression, this is partly 

due to the lack of a well-characterised T cell repertoire and being able to determine 

whether these will be effective in vivo. As mentioned above, the virus has developed 

numerous immune evasion strategies to hinder its recognition by the host immune 

system. The aim of this project was to examine the T cell response to latent antigens 

in healthy KSHV-infected donors, which are controlling their virus infection, to 

establish a repertoire of latent T cell target epitopes from these donors and develop 

well-characterised T cell clones to these newly identified target epitopes. These will 

then be used to ask whether T cells specific to these epitopes can effectively respond 

to in vitro antigen expressing targets or infected cells including the malignant PELs. An 

understanding of which viral proteins can be efficiently targeted by the immune 

response or what immune evasions may be employed to avoid or inhibit this 

recognition may help further the understanding of the pathogenesis of this oncogenic 

virus and the development of therapeutic interventions. 
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Chapter 2 
 
 

Material and Methods 
 

 
 
2.1 Tissue culture media and reagents 

RPMI-1640 supplemented with 2mM L-glutamine (Sigma), stored at 4°C and used 

for washing cells and the culture of B cells.  

 

Foetal calf serum (FCS) (PAA Laboratories) stored at -20°C in 100ml aliquots until 

use.  

 

Penicillin-streptomycin solution (Invitrogen) containing 5000IU/ml penicillin and 

5000µg/ml streptomycin used at a final dilution of 1 in 100 in culture medium.  

 

Standard cell culture medium was used for the culturing of Epstein-Barr virus 

(EBV) transformed lymphoblastoid cell lines (LCLs), primary effusion lymphoma 

lines (PELs) and other B cell lines. This media contained RPMI-1640 supplemented 

with 10% FCS and penicillin-streptomycin solution.  

 

HMEC-1 cell culture medium was used for the culture of the cell line human 

microvascular endothelial cell-1 (HMEC-1). Culture medium contained M199 

(Gibco) supplemented with 20% FCS, 2.5µg/ml amphotericin B, 1µg/ml 

hydrocortisone, 10ng/ml epidermal growth factor (all from Sigma-Aldrich). 
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EBM-2 (Lonza Clonetics) Endothelial cell basal medium-2 which contains no growth 

factors cytokines, or supplements was used for KSHV infection of HMEC-1 cells. 

 

DMEM supplemented with 2mM L-glutamine (Sigma), stored at 4°C and used for the 

culture of epithelial cell lines.  

 

Opti-MEM1 (Invitrogen) was stored at 4°C and used on cell lines which were used in 

transfection experiments. 

 

Human serum (TCS Biologicals) was stored in 50ml aliquots at -20°C.  

 

Phosphate buffered saline (PBS) was made by dissolving 1 Dulbecco A tablet 

(Oxoid) per 100ml of distilled water; the solution was autoclaved for sterility if 

necessary.  

 

Recombinant interleukin-2 (IL-2) (Peprotech) stored at -20°C and used at 50 IU per 

ml.  

 

Cyclosporin A (Sandimmun, Sandoz) was reconstituted in RPMI 1640 to give a final 

concentration of 10µg/ml and stored at 4°C.  

 

Doxycycline (dox) was prepared from doxycycline hyclate powder (Sigma) by 

dissolving in distilled water to give a final concentration of 100µg/ml. The solution 

was sterilised through a 0.22µM filter and stored at 4°C in the dark.  
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MLA-144 supernatant (MLA) was obtained from the Gibbon-derived MLA-144 cell 

line, which spontaneously releases IL-2. The cells were grown in standard cell 

medium for 2 weeks without further feeding. The supernatant was then harvested by 

centrifugation at 300xg for 10mins, followed by filtration through Millipore steritop 

0.22µM filter membrane by vacuum suction. The filtered MLA supernatant was 

stored at -20°C in 60ml aliquots.  

 

T cell cloning and culture medium contained RPMI 1640 supplemented with L-

glutamine, 30% MLA, 10% FCS, 1% human serum, 1% penicillin and streptomycin 

and 50IU per ml of recombinant human IL-2, stored at 4°C until use.  

 

Synthetic peptides synthetic 15-mer peptides overlapping by 10 amino acids with the 

neighbouring peptides, generated by Mimotopes, were dissolved in dimethyl 

sulfoxide (DMSO) (Sigma) for 30mins at RT then stored at -20°C. These peptides 

spanned the KSHV proteins Kaposin, vFLIP, vCyclin and LANA, excluding the 

acidic repeat region. Sequences of the peptides were based on the BC-1 strain of 

virus. 

 

Biuret assay was used to determine the peptide concentration (Doumas, 1975). 

Twenty µl peptide solution was added to 100µl biuret reagent in a 96-well V-bottom 

plate (Nunc). The plate was incubated for 30mins at RT to allow colour development, 

and then centrifuged at 200xg for 5mins. One hundred µl of the supernatant from each 

well was transferred into 96-well flat bottom plate, and the absorbance was measured 

at 540nm using an automated microplate reader (Bio-Rad). Peptide concentration was 
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calculated against a standard curve of bovine serum albumin (0-40mg/ml) incubated 

with the biuret reagent, measured in the same assay.  

 

Trypan blue staining was carried out to determine the number of viable cells within 

a cell culture. The cell culture was mixed 1:1 with trypan blue (Sigma) and the 

number of unstained cells/ml was determined using a haemocytometer.  

 

Mycoplasma testing was routinely carried out on cultured cells using MycoAlert® 

Mycoplasma detection kit (Cambrex). The testing was carried out according to the 

manufacturer’s instructions.  

 

Cryopreservation and recovery of cryopreserved cells   

Cells to be cryopreserved were pelleted by centrifugation at 300xg for 6 mins, the 

supernatant was removed and the cells were resuspended in 1ml of freezing medium: 

RPMI 1640 supplemented with 20% FCS and 10% DMSO. The cells were transferred 

into sterile 1.5ml plastic cryovials (Nunc) and placed in a Mr Frosty (Nalgene), 

containing isopropanol and placed in a -80°C freezer. For long term storage, the 

frozen cells were transferred into a freezer containing liquid nitrogen. Cells were 

recovered from such storage by thawing in a 37°C waterbath and then transferring the 

cells into a 15ml tube (Starstedt) followed by the dropwise addition of 10mls of the 

appropriate growth medium. The cells were pelleted by centrifugation at 300xg for 

6mins and resuspended in the appropriate growth medium for culture.  
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2.2 Generation and culture of cell lines 

Blood donors 

Blood was obtained from 100 donors recruited at the Medical Research Council in 

Fajara, the Gambia. The donors were tested for HIV1 and 2, Hepatitis B, and 

Hepatitis C and confirmed to be negative before taking 20mls of blood for the study. 

Blood was also obtained from healthy laboratory personnel. Buffy coats were 

obtained from the Birmingham National Blood Service. All experiments were 

conducted with ethical approval from the South Birmingham Local Research Ethics 

Committee (REC reference 06/Q2707/300) and The Gambia Government/MRC 

Laboratories Joint Ethics Committee.   

 

HLA typing 

The HLA status of the donors was confirmed through PCR-based DNA typing by the 

Anthony Nolan trust, Histocompatibility laboratories in Hampstead, London.  

 

Isolation of peripheral blood mononuclear cells (PBMCs) 

PBMCs were obtained from peripheral blood collected either by venous puncture into 

heparinised syringes, or from buffy coat preparations. Blood donations were diluted 

1:1 in RPMI 1640 medium (Sigma) and layered onto lymphoprep (Axis-shield) before 

centrifugation at 300xg for 30 minutes, with no braking applied. The PBMCs were 

harvested from the lymphoprep interface and washed three times with RPMI 1640. 

The PBMCs were counted and if being stored were separated into 5 x 106 cell 

aliquots, resuspended in freezing medium and frozen, or used immediately.   
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Generation of LCLs 

LCLs were generated in vitro by EBV-infection of B cells within PBMC preparations 

using the B95.8 strain of the virus. One million PBMCs were pelleted by 

centrifugation, 500µl of 100x concentrated virus supernatant from the virus producer 

cell line B95.8 was added to the cells and incubated overnight at 37°C and 5% CO2. 

The following day, the cells were washed with RPMI 1640 and resuspended in 

standard medium with the addition of 0.25µg/ml of Cyclosporin A and cultured in a 

48-well plate (Iwaki). The B cell’s transformation into LCLs was monitored and 

proliferating cells expanded accordingly until they could be maintained in a 25cm2 

flask (Iwaki), after which they were split and fed twice a week with standard medium.  

 

2.3 Generation of T cell clones 

Establishment of peptide-specific polyclonal T cell cultures by peptide 

stimulation 

KSHV-specific T cells were initially expanded from PBMC preparations using a 

protocol based on Lalvani et al (Lalvani et al., 1997).  Here 1-10x106 PBMCs were 

pelleted by centrifugation and pulsed with overlapping 15-mer peptides grouped into 

pools for the relevant KSHV proteins at a concentration of 5 µM for 1hr 30mins at 

37°C and 5% CO2, resuspending the mixture every 20 mins. The cells were 

subsequently washed and cultured in 1ml of RPMI 1640 medium supplemented with 

10% FCS, and 25ng/ml of IL-7 (Peprotech) in a 24-well plate (Iwaki). IL-2 

(Peprotech) was added at a final concentration of 10 IU/ml to the medium every 3 

days up until day 7, when the cells were harvested for IFN-γ capture magnetic sort 

cloning.  
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IFN-γ  capture magnetic sort cloning 

Epitope-specific T cells were isolated by IFN-γ capture and magnetically sorted from 

the peptide stimulated polyclonal T cell cultures. PBMCs were restimulated for 1 hr 

with 5µM of the relevant peptide pools, washed and incubated at 37oC for 3 hours in 

RPMI 1640 supplemented with 5% human serum. The cells were harvested and the 

IFN-γ producing cells isolated using an IFN-γ secretion assay-cell enrichment and 

detection kit (Miltenyi-Biotec) according to the manufacturer’s instructions. 

Following the incubation, the cells were washed in MACS buffer (PBS, 1% BSA and 

2mM EDTA), resuspended in 80µl of RPMI/10% FCS with 20µl of IFN-γ catch 

reagent added.  The cells were then incubated on ice for 5mins, after which 10mls of 

pre-warmed RPMI/10% FCS was added and incubated at 37°C for 45mins on a cell 

roller. These were then washed in MACS buffer, resuspended in 80µl of MACS 

buffer and 20µl of IFN-γ detection antibody added.  After a 10 minute incubation on 

ice, the cells were washed, resuspended in 80µl of MACS buffer and 20µl of 

magnetic microbeads added. The cells were then placed at 4°C for 15mins (shaking 

every 5mins). The cells were washed one final time and resuspended in 500µl of 

MACS buffer before being applied to a MACS MS column within a magnetic field. 

After extensive washing, retained labeled cells were collected by removing the 

column from the magnetic stand and flushing it with 1ml of MACS buffer. The 

isolated IFN-γ producing cells were then cloned by limiting dilution cloning.  

 

Limiting dilution cloning 

T cell clones were generated by limiting dilution cloning using the magnetically 

sorted IFN-γ producing cells isolated as described above. These cells were seeded at 

0.3 and 3 cells per well in 96-well round-bottom tissue culture plates (Iwaki), with γ-
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irradiated mixed allogeneic buffy coat feeder cells which had been activated with 

10µg/ml phytohaemaglutanin (PHA) overnight, at 105 cells per well.  Cultures were 

seeded in T cell medium supplemented with the anti-CD3 monoclonal antibody 

OKT3 (Insight Biotechnology LTD) at 30 ng/mL, in a total volume of 100µl per well. 

After 1 week a further 100µl of T cell medium was added to each well.  

 

Identification of epitope-specific clones 

After 2-3 weeks depending on the growth of the microcultures, proliferating cells 

were selected and expanded using T cell medium and γ-irradiated buffy coat feeder 

cells into 24 well plates (Nunc). The wells were subsequently screened for peptide 

specificity by IFN-γ ELISA. In this assay, 50µl of cells from each clone were 

removed into duplicate wells in a 96-well V-bottom plate and washed 3 times in 

RPMI 1640.  The cell pellets were then resuspended in 100µl of culture medium 

containing 1µM of the relevant peptide pool mixture, or an equivalent concentration 

of DMSO solvent.  These cultures were then incubated overnight at 37°C and 5% CO2 

and supernatants tested for the specific release of IFN-γ by ELISA the following day. 

Peptide-specific clones were identified as those giving increased IFN-γ release to the 

peptide pool mixture compared to DMSO alone. Peptide-specific clones were then 

assayed using this procedure against the individual peptides within reactive pools to 

identify the stimulating peptide. These T cell clones were maintained in culture by 

feeding twice a week with T cell medium.  
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2.4 Immunological assays 

ELISpot assays for detection of IFN-γ release 

Ninety six well Millipore plates (Bedford, MA) with Immobilon-P polyvinylidene 

difluoride membranes were coated with 15µg/ml of an anti-IFN-γ monoclonal 

antibody D1K (Mabtech, Stockholm) diluted in PBS for 3hr at RT, after which the 

plate was washed 6 times with RPMI 1640 and blocked for 30mins with standard 

medium. Four hundred thousand PBMCs were added to duplicate wells in 100µl of 

standard medium, to which pooled peptides were added at a final concentration of 

5µM peptide. The plate was incubated overnight at 37°C and 5% CO2. The following 

day the cells were removed and the plates were washed 6 times in PBS containing 

0.05% Tween 20 (PBS/T). Fifty µl of 1µg/ml biotinylated anti-IFN-γ mAb was added 

to the wells for 2-4hrs and washed again 6 times with PBS/T. Fifty µl of streptavidin-

conjugated alkaline phosphatase was added to the wells for 1-2hrs and the plates were 

washed again 6 times with PBS/T. The chromogenic substrate 5-bromo-4chloro-3-

indolyl phosphate and nitro blue tetrazolium was added to the wells to reveal IFN-γ 

produced by individual cells as dark spots, where each spot is representative of one 

reactive T cell. The reaction was stopped 15mins later by washing the plate with tap 

water and allowing it to dry. The number of spots were read using an AID automated 

ELISpot reader and data transformed to give the number of spot forming cells 106 

PBMC. 

 

Chromium release assays 

Cytotoxicity of the T cell clones was assessed in standard 5hr chromium release 

assays at known effector/target ratios. Target LCLs were placed in 15ml tubes 

(Starstedt) and pelleted by centrifugation at 300xg for 6 mins, the cells were then 
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pulsed with 10-fold dilutions of target peptide ranging from 10-7M to 10-12M or the 

peptide solvent DMSO as a negative control. The cells were labeled with 50µCi of 

51Cr and incubated for 90mins at 37°C and 5% CO2, shaking every 30mins. During 

this time, the effector T cells were counted, pelleted and resuspended in RPMI and 

10% FCS. The T cells were plated out in triplicate at two dilutions of 2500 and 5000 

T cells in 100 µl per well in 96 well V-bottom plates and incubated at 37°C and 5% 

CO2. The 51Cr labelled LCLs were then washed twice in RPMI 1640 at 300xg for 

6mins and resuspended in 1ml of LCL medium. These were counted and 2500 target 

LCLs in 100µl of RPM1 and 10% FCS added to the 96 well V-bottom plates 

containing the two dilutions of effector T cells. This gave effector:target ratios of 1:1 

and 2:1. For each 51Cr labelled target LCL, separate aliquots of cells were lysed with 

1% sodium-dodecyl sulphate (SDS) to represent 100% lysis, while 51Cr labelled target 

LCLs incubated in media alone were included to measure values for spontaneous 

lysis. The plates were centrifuged at 30xg for 4mins and incubated for 5 hours at 37°C 

and 5% CO2. Following the incubation, the plates were centrifuged again and 100µl 

of supernatant per well was harvested into LP2 tubes and the counts per minute 

(CPM) radiation emitted counted in a γ-radiation counter. The percentage specific lysis 

was calculated using the CPM values as follows: (lysis by CTL - spontaneous 

lysis)/(total lysis in 1% SDS - spontaneous lysis) x 100. 

 

IFN-γ  enzyme-linked immunosorbent assay (ELISA) 

IFN-γ ELISA was used to measure IFN-γ release from effector T cells upon 

recognition of their epitopes presented by target cells. As described below, effector-

target combinations were cultured in triplicate for 18 hours after which the 

supernatants were assayed for IFN-γ by ELISA. Here 96-well Maxisorp plates (Nunc) 
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were coated with 50µl of mouse anti-human IFN-γ diluted to 0.75µg/ml in coating 

buffer and incubated overnight at 4°C. The following day the antibody was removed 

from the plates and excess protein binding sites blocked for 1 hr at RT in 200µl of 

blocking buffer (PBS/T containing 1% bovine serum albumin (BSA)). The plates 

were then washed 6 times in PBS/T and 50µl of culture supernatant from the T cell 

assay either neat or diluted (1 in 10) was added to the wells. To quantify the IFN-γ 

released, recombinant IFN-γ (R&D Systems) was added to triplicate wells at a range 

of doubling dilutions from 2000pg/ml to 31.25pg/ml. The plates were incubated for 2-

4hrs at RT, after which the supernatants were discarded and the plates washed 6 times 

with PBS/T. The wells then had added to them 50µl of biotinylated mouse anti-human 

IFN-γ mAb at 0.75µg/ml diluted in blocking buffer and these incubated for 1-2hrs at 

RT. The plates were then washed again 6 times in PBS/T followed by a 30min 

incubation at RT with 50µl per well of ExtrAvidin peroxidase conjugate (Sigma) 

diluted 1/1000 in blocking buffer. Finally, the plates were washed 8 times in PBS/T 

followed by the addition of 100µl of 3,3’,5,5’-tetramethylbenzidine solution 

containing peroxide (TebuBiotech) and left at RT to allow the reaction to develop. To 

stop this reaction, 100µl of 1M hydrochloric acid was added and the absorbance of 

each well measured at 450nm with wavelength correction of 655nm, using an 

automated plate reader (Bio-Rad). IFN-γ release from each T cell was quantified from 

a standard curve generated from the dilutions of recombinant IFN-γ added to each 

assay.  

 

Standard T cell assay 
 
In a standard T cell assay, 5x104 HLA-matched or HLA-mismatched target cells were 

incubated with 5x103 T cells in a 96 well V-bottom plate. To serve as a positive 
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control in T cell assays, aliquots of target cells were pulsed with either 5µM of 

epitope peptide or an equivalent dilution of peptide solvent DMSO as a negative 

control for 1 hr at 37oC. These were then extensively washed before use in assays. T 

cells were co-cultured with target cells in triplicate and after overnight incubation at 

37°C and 5% CO2, 50µl of supernatant from each well was tested by ELISA for IFN-

γ.  

 

Modified vaccinia Ankara (MVA) virus infection assays 

Target LCLs and PELs were infected with recombinant MVA viruses expressing 

invariant chain tagged EBV or control antigens at a multiplicity of infection (moi) of 

10 for 2.5 hours.  These were then washed several times prior to incubation with EBV 

antigen-specific T cells in standard T cell assays. Recognition was assessed by IFN-γ 

ELISA the following day. 

 

Flow cytometry staining 

Between 2 x105 and 3 x105 cells were placed in 5ml polystyrene round-bottom tubes 

(BD Falcon), pelleted by centrifugation and washed once in PBS with 2% FCS at 

250xg for 4mins. Cells were resuspended and incubated for 30mins on ice in the dark 

with a pre-titrated concentration of primary antibody (see Table 2.1) or IgG isotype 

matched control diluted in PBS and 2% FCS. If an unlabelled primary antibody was 

used, cells were washed again with PBS and 2% FCS and incubated for 30mins on ice 

with the appropriate fluorochrome conjugated secondary antibody (see Table 2.1). 

The cells were then washed in PBS and 2% FCS and resuspended in 2% PFA diluted 

in PBS and 2% FCS. The samples were kept at 4°C in the dark until analysis was 

performed using an XL-MCL flow cytometer (Beckman Coulter) or an LSR-II  
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cytometer (Becton Dickinson). Flow cytometry data was analysed using Flowjo 

software (Treestar).  

 

LANA protein 

LANA protein for T cell recognition experiments was derived from BCBL-1 cells and 

provided by Dr Andrew Hislop. In brief, nuclear proteins were extracted from 

500x106 BCBL-1 cells using a procedure as described (Shore et al., 2006).  LANA 

proteins were enriched from these eluates by FPLC. Here the nuclear proteins were 

transferred into a low salt buffer of 0.2M NaCl, 0.05M Tris pH8.0 using PD-10 

columns (GE Healthcare) before being loaded onto a Mono Q anion exchange column 

(GE Healthcare). Protein fractions were eluted from the column using a NaCl gradient 

from 0.2M to 1M. Eluted fractions were tested for the presence of LANA by western 

blot analysis. Nuclear extracts from the KSHV- and EBV-negative Burkitts 

lymphoma line DG-75 were similarly processed to provide a control antigen. 

 

Protein feeding assay 

LCLs and PELs were pelleted by centrifugation, washed and resuspended in 500 µl of 

serum free AIM-V media (Gibco) in a 48 well plate (Iwaki). Purified protein was 

added to the cells to final concentrations of 80µg/ml and 40µg/ml and incubated 

overnight at 37°C and 5% CO2. The following day the cells were washed in RPMI 

1640 and incubated with CD4+ T cells in a standard T cell assay, followed by IFN-γ 

ELISA.  
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2.5 Clone characterisation  

CD4/CD8 staining 

Expanded T cell clones were analysed for CD4/CD8 status by flow cytometry 

staining. Approximately, 3x105 T cells were placed in a 5ml FACS tube (Falcon) and 

washed with 2.5ml of PBS/2%FCS. Fifty µl of diluted PE-conjugated anti-CD4, PE-

conjugated anti-CD8 (Serotec) mAbs and PE-conjugated IgG1 as an isotype control 

was added to different tubes of cells and incubated on ice for 30mins in the dark. The 

cells were then washed again in 2.5ml of PBS and 2%FCS and resuspended in 200µl 

of PBS and 2%FCS and 200µl of 4% paraformaldehyde (Sigma) in PBS and analysed 

using the XL2 flow cyotmeter (Beckman Coulter). 

 

Testing functional avidity 

Each T cells clone’s autologous lymphoblastoid cell line (LCL) was sensitised with 

cognate peptide at 10-fold dilutions ranging from 10-5M to 10-13M for 1hr at 37oC, 

washed and incubated with the T cell clone overnight. IFN-γ secreted by the T cells 

was quantified by ELISA and the functional avidity determined as the dose of peptide 

eliciting 50% maximal IFN-γ secretion. 

 

HLA restriction of T cell clones 

HLA restriction of T cell clones was performed by assaying these against a panel of 

peptide sensitised LCLs which shared one or two HLA-alleles with the T cell in 

question. The LCLs were pulsed with the clone’s specific peptide at 5µM for 1 hour, 

washed 4 times with RPMI 1640, resuspended in RPMI 1640 medium supplemented 

with 10% FCS and incubated overnight with the T cell clone in a standard assay. IFN-

γ release from the T cells was measured by IFN-γ ELISA to identify LCLs capable of 
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stimulating the T cells and thus identify which HLA molecule was responsible for 

presentation of the peptide.   

 

2.6 Establishment of stably transfected FL-LANA, LANAΔAcid & LANAΔAcid 

li-tet target lines 

LANA expression plasmids 

LANA constructs were ectopically expressed using derivatives of the pRTS-CD2 

plasmid (Kelly et al., 2009) which had been transfected into target cell lines. This 

construct contains the EBV origin of replication and constitutively expresses the rat 

CD2 molecule allowing maintenance and selection respectively in EBV negative cell 

lines. This vector also contains a bi-directional tetracycline responsive promoter, 

which allows inducible expression of inserted genes as well as the reporter molecules 

GFP and the truncated nerve growth factor receptor (NGFR). LANA sequences from 

the BCBL-1 strain of virus were inserted into this plasmid to generate a construct 

expressing full length LANA (FL-LANA), using standard techniques. LANA 

constructs were also created in which the acidic repeat sequence was removed 

(LANAΔacid) and a derivative of this construct was further engineered to incorporate 

the first 80 amino acids of the MHC class II invariant chain sequence at the amino 

terminus of this protein to direct it into the lysosomal compartment (LANAΔacid li) 

(Sanderson et al., 1995). All three LANA constructs were tagged at the C-terminus 

with the commonly used epitope tag HA from the influenza virus hemagglutinin 

protein for protein visualisation.  
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Transfection of LCLs and PELs with DNA plasmids  

DNA plasmids were introduced into the LCLs and PELs by electroporation. To 

achieve maximum transfection efficiency, cells were passaged 24hrs prior to 

electroporation to ensure they were in the optimal growth phase. Ten million LCLs or 

PELs were washed once in PBS and once in Optimem by centrifugation at 300xg for 

6 mins and then resuspended in 300µl Optimem containing 10µg of plasmid DNA. 

The cells were transferred into a 4mm sterile electroporation cuvette (Geneflow), 

electroporation was perfomed using a Bio-Rad electroporation apparatus at 230V and 

at a capacitance of 975µF. The cells were immediately transferred into a 6 well plate 

(Iwaki) containing 8ml of pre-warmed RPMI and 20%FCS and were incubated at 

37°C and 5% CO2. 

 

Selection of transfected cells expressing rat-CD2 (rCD2) 

Twenty four hours post-transfection, viable cells were isolated by layering onto 

lymphoprep and centrifuging at 300xg for 30mins with no brake. The viable cells 

were isolated from the lymphoprep layer and washed twice in MACS buffer. The 

vector positive cells were then enriched by magnetic activated cell sorting (MACS), 

selecting on the constitutively expressed rat CD2 marker. Transfected cells were 

resuspended in 10µg/ml of anti-rat CD2 mAb OX34 (ATCC) and incubated on ice for 

30mins. Following the incubation, the cells were washed twice in MACS buffer and 

resuspended in 80µl MACS buffer with 20µl of rat anti-mouse IgG2a+b microbeads  

added and incubated for 15mins at 4°C. The cells were then washed once in MACS 

buffer and positively selected by magnetically sorting with MACS LS columns 

(Miltenyi Biotech) according to the manufacturer’s instructions. The cells were placed 
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in a 96 well round bottom plate (Iwaki) in 200µl of RPMI and 20% FCS and 

expanded as necessary.  

 

Induction of protein expression from doxycycline (dox) tet-regulated plasmids 

Protein expression from tet-regulated plasmids was induced by the addition of the 

tetracycline analogue dox to the cell culture medium. Dox was added at dilutions 

ranging from 2µg/ml (maximum induction) down to 0.75ng/ml (minimum induction) 

in order to titrate and control protein expression levels. 

 

KSHV FLIP (vFLIP) DNA expression plasmids 

KSHV FLIP (vFLIP) constructs were kindly provided by Dr Priya Bellare, The 

University of California San Francisco (UCSF), USA. The following constructs 

included two vFLIP sequences: the wildtype vFLIP sequence referred to as Wt vFlip 

and the vFLIP with codon usage optimised using the human codon usage referred to 

as Hu vFLIP. Both sequences contained at the amino terminus FLAG tag and were 

expressed in pcDNA3.1 vectors, with expression driven by the CMV promoter in the 

vector and an internal ribosome entry site (IRES) GFP for measuring transfection 

efficiency through GFP fluorescence. The well-known EBV HLA-B*08011 restricted 

epitope FLRGRAYGL (FLR) sequence derived from the EBNA3A latent protein, was 

inserted at the carboxy terminus of the vFLIP constructs to act as a model antigen in T 

cell recognition studies.  

 

Transfection of attached cell lines with DNA plasmids 

The epithelial cell line HEK-293 and melanoma cell line MJS were transfected with 

KSHV expressing DNA plasmids prior to use in T cell recognition assays. The cells 
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were split into a 24-well plate (Iwaki) at a density of 2x105 cells per well and 

incubated overnight in 500µl of standard medium with no antibiotics at 37°C and 5% 

CO2.  The following day, 1.2µg of plasmid DNA was added to 50µl of Opti-MEM1 

(Invitrogen) while 2µl of transfection reagent Lipofectamine 2000 (Invitrogen) was 

mixed with 50µl of Opti-MEM1 and both incubated for 5mins at RT. The DNA and 

Lipofectamine were then mixed together and incubated for a further 20mins at RT, 

after which a further 50µl of Opti-MEM1 was added to the mixture prior to addition 

to the cells. The medium was then removed from the cells and replaced with 150µl of 

the DNA and lipofectamine mixture and incubated for 5-6 hours at 37°C and 5% CO2. 

Following on from the incubation, 500µl of standard medium without antibiotics was 

added to the cells and these incubated for 24-48 hours prior to being used as targets in 

subsequent T cell assays.  

 

Cytometric analysis of transfection efficiency 

 One to two hundred thousand of the pRTS-CD2 transfected cells were analysed by 

flow cytometry for expression of GFP after dox induction. The cells were washed 

twice with PBS and 2% FCS at 250xg for 4mins and resuspended in 2% 

paraformaldeyhde in PBS and 2% FCS. The GFP expression was determined using 

the XL-MCL flow cytometer (Beckman Coulter).  

 

Enrichment of LNGFR expressing transfected cells  

Transfected LCLs or PELs were induced with dox for at least 24hrs prior to selection 

for low-affinity nerve growth factor receptor (MACSelect™ LNGFR System), 

expressed by the pRTS-CD2 vectors upon induction. The cells were pelleted by 

centrifugation at 160xg for 10mins and resuspended in 320µl of MACS buffer and 



  Chapter 2 Materials and Methods  

 
 

69 

80µl of LNGFR beads (Miltenyi Biotec) to every 107 cells and incubated for 15mins 

on ice. Following the incubation, the cells were topped up to 2ml with MACS buffer 

and magnetically sorted using MACS LS columns (Miltenyi Biotec) according to the 

manufacturer’s instructions. The LS column was removed from the magnet and the 

positively selected population was flushed through with 5ml of MACS buffer. The 

cells were pelleted, washed once in RPMI 1640 and resuspended in standard medium, 

after which the cells are either used directly in a standard T cell assay or maintained in 

culture for later use.  

 

KSHV infection of HMEC-1  

Human microvascular endothelial cells (HMEC-1) which have successfully been 

immortalised with a plasmid expressing simian virus 40 A gene product, large T 

antigen (Ades et al., 1992). These cells were generously donated from Professor 

Gerard Nash, The University of Birmingham. HMEC-1 cells were split one day prior 

to infection and placed in a 24-well plate (Nunc) at a density of 2x105 cells per well in 

1ml of HMEC-1 medium. Titrated recombinant KSHV virus (rKSHV.219) derived 

from the engineered JSC-1 strain (Vieira et al., 2004), kindly provided by Professor 

David Blackbourn The University of Birmingham, was used to infect the cells. The 

virus was used at an MOI of 10. The virus was prepared by diluting the virus particles 

in 320µl of EBM-2 medium (Lonza Clonetics) for each well of cells. The HMEC-1 

medium was removed from the wells and the diluted virus EBM-2 mixture was added 

gently to the cells. The cells were then infected by spinoculation at 160xg at 32°C for 

30mins followed by 90min incubation at 37°C and 5% CO2. Following the 

incubation, the virus was gently removed from the wells, the cells washed with 400µl 

of EBM-2 medium and cultured in 400µl of HMEC-1 medium for 72hrs at 37°C and 
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5% CO2. The efficiency of KSHV infection of the cells was determined by the levels 

of GFP fluorescence by flow cytometry as this indicates successful latent KSHV 

infection. The infected cells were subsequently used in standard T cell recognition 

assays with LANA clones and recognition measured the following day by IFN-γ 

ELISA.  

 

2.7 Antigen detection 

Protein sample preparation for polyacrylamide gel electrophoresis (PAGE) and 

western blot analysis 

Cells were lysed in 9M urea buffer (9M urea, 0.075M Tris/HCl pH 7.5) and sonicated 

for 15seconds. Protein concentration was determined using the Bradford 

determination reagent (BioRad) according to manufacturer’s instructions. Twenty µg 

of each protein sample was prepared by adding a quarter of the volume of 4x SDS gel 

sample buffer (0.0625M Tris-HCl pH 6.8, 2%SDS, 10% glycerol, 5% 2-

mercaptoethanol and 0.001% bromophenol blue) (Laemmli et al., 1970) and 1M DTT. 

Protein samples were then denatured at 100°C for 5mins and solubilised proteins were 

separated by SDS-PAGE. Eight and twelve % acrylamide gels were used containing 

100mM Tris-HCl, 0.1% SDS, and 0.01% TEMED, diluted with water to give the 

appropriate percentage gel. Acrylamide polymerisation was initiated through the 

addition of ammonium persulphate (APS) to a final concentration of 0.02%. Gels 

were assembled using PROTEAN II Biorad apparatus according to manufacturer’s 

instructions in 1x Electrophoresis buffer. The denatured samples were loaded onto the 

gel and into one well the 6µl of the See Blue pre-stained standard (Invitrogen) as a 

protein molecular weight marker, electrophoresis was performed using standard 

protocols (Laemmli, 1970).  
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Western blot and antigen detection 

Following electrophoresis, separated proteins were transferred to nitrocellulose 

membranes. In brief, individual gels were laid onto a nitrocellulose membrane (Bio 

Trace NT, Gelman Sciences), sandwiched between three pieces of 3MM blotting filter 

paper (Whatmann) and two blotting sponge pads and placed in plastic cassettes, all of 

which had been pre-soaked in transfer buffer (0.01M 3-(Cyclohexylamino)-1-

propanesulfonic acid (CAPS, Sigma) pH1, 10% V/V methanol in deionised water). 

The blotting cassette (Bio-Rad) was assembled according to the manufacturer’s 

instructions in the order of a sponge, three pieces of filter paper, gel, nitrocellulose 

membrane, another three pieces of filter paper and a sponge, from black (cathode) to 

the white (anode). The assembled blotting cassettes and an ice block for cooling were 

inserted into the transfer tank filled with transfer buffer. Proteins were transferred to 

the membranes at 100V for 1hr, or 20V overnight. Following transfer, the blots were 

placed in a blocking agent (5% skimmed milk powder in PBS/T) overnight at 4°C or 

for 1hr at RT. The membrane was then incubated in the appropriate primary antibody 

(see Table 2.1) diluted in PBS/T containing 5% milk for 1 hr at RT with agitation. 

The membrane was washed 4 times with PBS/T and incubated with an appropriate 

diluted secondary horseradish peroxidase (HRP) conjugated antibody (see Table 2.1). 

The membrane was then washed as above. An enhanced Chemiluminescence (ECL) 

detection kit (Amersham Biosciences) and Amersham Hyperfilm (GE Healthcare) 

were used to visualise the HRP bound proteins.  

 

Immunofluorescence staining  

To check the KSHV status of the study participants, plasma was isolated from the 

blood samples of each of the donors and heat inactivated at 56°C for 30mins. 
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Multispot microscope slides (Hendley-Essex) had added to them either 100 000 

KSHV-infected BCBL-1 PEL cells or 100 000 KSHV negative BJAB cells. Slides 

were dried and fixed for 30mins in at -20°C acetone:methanol (1:1). Slides were 

blocked with 30µl of 10% heat-inactivated goat serum (HINGS) for 20mins at RT.  

This was then rinsed and replaced with 30µl of either donor plasma tested at 3 

dilutions of 1/20, 1/40 and 1/100 or monoclonal LANA antibody as a positive control 

or monoclonal HA antibody as a negative control (see table 2.1), all diluted in 10% 

HINGS in PBS.  The slides were then incubated at 37°C for 1hr in a humidified 

chamber. Following the incubation, slides were washed twice in PBS for 10mins with 

gentle stirring to remove any unbound antibody. Excess PBS was removed from the 

slides around the multispot wells with a cotton bud and 30µl of the appropriate 

fluorochrome conjugated secondary antibody diluted in 10% HINGS and PBS (see 

Table 2.1) added. Slides were incubated again at 37°C for 1hr in a humidified 

chamber. Following two 10mins washes in PBS, slides were dried between the 

multispot well, and a drop of 10% glycerol was added to each well and immediately 

mounted with a coverslip. Slides were examined on a Nikon E600 UV microscope. 
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Chapter 3 

 
Identification and characterisation of T cell responses to Kaposi’s 

sarcoma-associated herpesvirus latent proteins in healthy donors 

 

 

Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus that has come to 

prominence through its association with the vascular tumour Kaposi’s sarcoma (KS) 

and the B cell lymphoproliferative disorders primary effusion lymphoma (PEL) and 

the plasmablastic form of Multicentric Castleman’s disease (MCD). Evidence from 

immunosuppressed patients suggests that cellular immunity is crucial to the 

prevention and control of KSHV-associated malignancies (Osmond et al., 2002; 

Boshoff et al., 2002). Thus, KS can be seen in transplant recipients receiving 

immunosuppressive therapy or HIV patients who have progressed to AIDS (Frances 

et al., 2000). Importantly, control of KSHV malignancies can occur upon restoration 

of T cell immune function by relaxation of immunosuppression or HAART therapy, 

respectively (Wilkinson et al., 2002). Although immunity appears important in the 

control of KSHV-associated disease, little is known about the T cell targets of the 

immune response, the size of such responses and their biological effectiveness in 

controlling disease in healthy KSHV-infected donors.   

 

A subset of viral genes are consistently expressed in the KSHV-associated 

malignancies; mostly the latent genes (reviewed in (Geraminejad et al., 2002)). These 

genes include the genome maintenance protein LANA, the viral FLICE like inhibitory 

protein vFLIP, that has an anti-apoptotic function, the viral cyclin which can disrupt 
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the cell cycle, as well as Kaposin (Dittmer et al., 1998; Li et al., Guasparri et al., 

2004; Sarid et al., 1999). The products of these genes are potential targets of the 

immune response and thus may be important in immune mediated control of KSHV 

infection and disease. However, few T cell targets have been identified in these 

proteins (Bryan et al., 2005).  Furthermore, where these have been measured, mostly 

in immunocompromised donors, weak T cell responses have been detected ex vivo 

compared to responses made to the closely related γ-herpesvirus Epstein-Barr virus 

(Fabiola Micheletti et al., 2002; Bihl, et al.  2007).  

 

The lack of known KSHV-specific T cell targets makes studying the immune 

response in KSHV-infected donors, healthy or otherwise, much more challenging. A 

number of studies have attempted to fill this void by investigating the size of the T 

cell response to KSHV-antigens in immunocompromised donors such as HIV-

infected donors or patients with KSHV disease. HIV-infected patients with KS 

disease have very weak or no detectable responses to LANA and a number of lytic 

proteins, while patients receiving HAART who are controlling their disease did 

generally elicit responses towards the KSHV proteins tested (Lambert et al., 2006; 

Guihot et al., 2006). Furthermore, an additional study has shown that the 

administration of HAART to these immunocompromised patients over a period of 

time, decreased KSHV viral loads and KSHV-specific responses increased 

(Bourboulia et al., 2004).  

 

Several other studies have focused on identifying HLA-A*0201 restricted responses, 

since this HLA molecule possesses a well-defined binding motif, allowing the use of 

peptide prediction algorithms, and is the most common HLA type in the Caucasian 
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population (Wang et al., 2001; Wang et al., 2002; Ribechini et al., 2006; Fabiola 

Micheletti et al., 2002). However, this method of defining targets immediately 

excludes the many donors’ who are not HLA-A*0201 positive and prevents 

identification of epitopes presented by other HLA types. A more favourable approach 

of measuring the size of responses to proteins without identifying epitopes involves 

screening KSHV-infected donors PBMCs with all possible overlapping synthetic 

peptides spanning one protein, assayed in one pool. This method of screening gives a 

measure of the global response to those proteins, but makes it difficult to track 

individual epitope specific responses within donors (Woodberry et al., 2005; Bihl et 

al., 2007).  

 

The following study was designed to identify KSHV-specific latent responses taking 

these variables into account, thereby increasing the likelihood of identifying a wider 

range of T cell responses. Firstly, the study focused on identifying T cell responses 

within KSHV-infected healthy donors who showed no obvious KSHV disease and 

were likely effectively controlling their infection. Secondly, all the donors were 

recruited regardless of their HLA type, increasing the likelihood of identifying the 

maximal number of epitopes. Finally, the approach used to screen the donors and 

identify responses increased the chances of identifying both CD8 and CD4 T cell 

responses. 

 

3.1 ELISpot screening for KSHV latent protein T cell responses  

To characterise the T cell response to KSHV latent antigens in healthy donors and 

identify T cell epitopes, 30 healthy Gambian donors were recruited to this study who 

were HIV, Hepatitis B and Hepatitis C negative with no obvious KSHV disease. 
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Blood specimens were collected from each donor and plasma isolated and tested for 

evidence of KSHV-specific antibodies. Immunofluorescence assays were performed 

using the plasma on the KSHV infected PEL line BCBL-1, to detect LANA-specific 

responses as described in the materials and methods (Gao et al., 1996). Fourteen 

donors were identified as being KSHV positive and 16 donors as KSHV negative by 

this assay (data not shown).  

 

PBMCs from the KSHV seropositive and KSHV seronegative donors, as controls, 

were then used in IFN-γ ELISpot assays to identify KSHV-specific T cell responses. 

Here PBMCs from the donors were stimulated with a series of 237 15mer peptides 

(overlapping by 10 amino acids) spanning the sequences of the four well-defined 

latency proteins namely LANA (excluding the acidic repeat sequence), vFLIP, 

vCyclin and Kaposin, to screen for responses. The ELISpot assays were carried out as 

described in Chapter 2 with the peptides combined into 18 pools in sequential order, 

each containing 12-13 peptides, to minimise the number of PBMCs required due to 

the limited number of cells. The peptide pools were added to 4 x 105 PBMCs per well 

in duplicate in the ELISpot assays. The magnitude of the responses were calculated 

from the mean of the duplicate wells with the result adjusted to no. of spots/106 cells. 

The PBMCs were incubated with phytohaemagglutinin (PHA) as a positive control 

and with the peptide solvent DMSO as a negative control.  

 

Figure 3.1A shows examples of the results of these ELISpot assays from two 

seronegative donors KS08 and KS23, with the results presented as graphs of number 

spots per 106 cells versus peptide pools. PBMCs from these donors induced few or no  
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spots in response to stimulation with all of the peptide pools. Similarly, figure 3.1B 

shows results from assays conducted on PBMCs of two KSHV seropositive donors, 

donor KS21 and KS04. PBMCs from KS21 show a clear response to the LANA 

peptide pools, P and Q. However, PBMCs for donor KS04 showed no obvious 

response to any of the latent antigen peptide pools. This latter pattern of result was 

representative of the majority of KSHV seropositive donors responses in the ELISpot 

screens. Figures 3.2A and B show the ELISpot responses to the peptide pools for each 

of the different antigens for the seronegative and seropositive donors respectively. 

Overall, PBMCs from seronegative donors generally showed no or weak responses to 

stimulation with the KSHV latent peptide pools. PBMCs from the majority of the 

seropositive donors also showed no or weak responses to these peptide pools, despite 

all of the donors PBMCs being capable of producing IFN-γ in response to the T cell 

mitogen PHA. Statistical analysis was conducted using the Wilcoxon two-sample test 

using SAS software (SAS) and statistical differences were seen when comparing 

responses made by seropositive versus seronegative donors to pools Q, T and W (p≤ 

0.03), however the weakness of these responses questions the biological significance 

of these statistics. 

 

 Figures 3.3A and B shows the breakdown of the responses that were made by the 

donors, with each of the different coloured boxes representing a range of the number 

of spot forming cells (SFC) produced per 106 PBMCs in response to each of the 

peptide pools. The white boxes represent 0-20, the yellow boxes represent 21-40, the 

blue boxes 41-60 and finally the red boxes represent over 60 SFC/106 in response to 

an individual peptide pool. Of the KSHV seropositive donors, six made responses 

which were mostly weak but noticeably higher than the responses made by KSHV  



  Chapter 3 Results  

 
 

79 
 



  Chapter 3 Results  

 
 

80 
 



  Chapter 3 Results  

 
 

81 

seronegative donors. Of these six donors, four donors KS01, KS13, KS21 and KS38 

targeted LANA peptides only, donor KS29 had the largest response overall targeting 

peptides from three latent proteins LANA, vFLIP and vCyclin, while donor KS30 

responded only to one pool of the Kaposin peptides. 

 

These results indicate that detecting KSHV-specific responses by PBMC ELISpot 

screening will be difficult as the responses appear very weak. However the LANA 

peptides appeared to be more frequently recognised by donors and induced the 

numerically dominant responses. Furthermore, as LANA plays a crucial role in 

KSHV biology, epitope mapping studies were focused on this protein using an 

alternative strategy, namely through the generation of LANA-specific T cell clones.   

 

3.2 Identification and characterisation of LANA-specific clones 

A panel of LANA-specific T cell clones was generated for use in epitope mapping 

and antigen recognition experiments. Clones were derived from the PBMCs of KSHV 

seropositive donors by initially expanding antigen-specific T cells and then selecting 

these and subjecting them to single cell cloning. PBMCs from eight KSHV sero-

positive donors’: KSB1, KS01, KS13, KS18, KS21, KS29, KS30 and KS48, were 

stimulated for one week with pools of overlapping peptides that spanned the LANA 

sequence (excluding the acidic repeat region) at a concentration of 0.5µg/ml to 

establish polyclonal cultures enriched in peptide-specific T cells. On day 8, cells were 

restimulated with peptide and those secreting IFN-γ were immunomagnetically sorted 

using an IFN-γ secretion assay cell enrichment and detection kit (Miltenyi Biotech). 

These cells were then seeded at both 0.3 and 3 cells per well in microcultures with 

irradiated feeder cells to derive clonal populations. Within approximately 2-3 weeks, 
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growth of the microcultures could be observed. Proliferating microcultures were 

expanded using allogeneic γ-irradiated PBMC feeders for two weeks prior to 

screening for LANA-specific T cells. 

 

Figures 3.4, 3.5 and 3.6 show the characterisation of three representative LANA-

specific clones from three different donors using this procedure. Aliquots of the 

clones were initially screened for specificity by stimulation with pools of the LANA 

peptides, followed by assaying for T cell function by measuring IFN-γ production 

using an ELISA. This method was repeated against individual peptides of reactive 

pools to identify the clone’s cognate epitope-peptide within that pool. Clones were 

then confirmed to be CD4+ or CD8+ T cells by staining with monoclonal antibodies 

specific to these markers and analysing by flow cytometry. The HLA restriction of the 

clones was then identified by incubating these with peptide-sensitised LCLs which 

shared with the T cell donor one or more HLA class II or HLA class I alleles, for 

CD4+ or CD8+ clones respectively, and determining which could induce IFN-γ 

release. The functional avidity for each clone was then determined by sensitising 

autologous or HLA-matched LCLs with 10-fold dilutions of peptide, incubating these 

with the cognate T cells and responses assayed by IFN-γ production. The 

concentration of peptide which gave 50% of maximal IFN-γ production was then 

determined to allow comparisons between the clones. 

 

Figure 3.4 shows representative results of the characterisation experiments carried out 

on donor KSB1 clone 33 showing specificity in the initial IFN-γ screen by ELISA to 

one of the nine LANA pools, pool S, which contains thirteen peptides. The peptide  
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solvent DMSO was used as a negative control (Figure 3.4A). The T cell response to 

pool S was mapped to peptide LRS on subsequent screening against the individual 

peptides (Figure 3.4B). This clone had a functional avidity of 10-6 M, determined as 

the concentration of peptide which elicited 50% of the maximal IFN-γ release (Figure 

3.4C). The clone was confirmed as a CD4+ clone by expression of CD4 by flow 

cytometry analysis (Figure 3.4D).  HLA class II restriction mapping indicated that the 

clone secreted IFN-γ in response to peptide-loaded autologous LCL and also peptide-

loaded LCLs that were HLA-DR13 matched (Figure 3.4E). Thus it can be deduced 

that the 15-mer peptide LRS is presented in the context of HLA-DR13.  

 

Figure 3.5 shows representative results of the characterisation experiments on donor 

KS48 clone 10 showing specificity to pool Q in the initial screen (Figure 3.5A). Pool 

Q contains thirteen LANA peptides and the response was mapped to peptide GSP 

upon screening individual peptides (Figure 3.5B), with the clone having a functional 

avidity of 10-7 M (Figure 3.5C). This clone was confirmed to express CD4 by flow 

cytometric analysis (Figure 3.5D). HLA class II restriction mapping indicated the 

clone secreted IFN-γ in response to peptide-loaded autologous LCL and also peptide-

loaded LCLs that were HLA-DQ7 matched (Figure 3.5E). Thus it can be deduced that 

the 15-mer peptide GSP is presented in the context of HLA-DQ7. 

  

Figure 3.6 shows representative results of the characterisation experiments for the 

only CD8+ LANA-specificity that was found in the T cell cloning screens. The 

LANA-specific clone 12 from donor KS021 showed specificity to LANA pool S in 

the initial screen (Figure 3.6A). Subsequent screening against the individual LANA 

peptides within pool S revealed the two LANA peptides, NRS and PPW, induced  
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IFN-γ secretion from the clone (Figure 3.6B). The clone was confirmed to be CD8+ 

by flow cytometric analysis (Figure 3.6C). Upon HLA class I restriction analysis, the 

clone secreted IFN-γ in response to peptide-loaded LCLs that were matched only at 

HLA-B*3501 (Figure 3.6D); in this case no autologous LCL was available for this 

clone. Thus it can be deduced that the cognate peptide is presented in the context of 

HLA-B*3501.  

 

Unlike class II presented peptides, the peptide binding groove of the class I molecule 

anchors the ends of the peptide within the molecule, consequently restricting their 

length. As such, most class I epitope-peptides then have a well defined minimal 

sequence which is between 8-10 amino acids. As such the minimal peptide-epitope 

sequence was then determined. The identification of HLA-B*3501 as the class I 

molecule presenting the epitope contained within the two peptides, NRS and PPW, 

assisted in the prediction of the minimal CD8 epitope, since many MHC-alleles 

contain characteristic peptide-binding motifs. B*3501 preferentially binds peptides 

with a proline in the second anchor position and quite frequently with a tyrosine as the 

final residue (Parham et al., 2000). The peptides NRSVYPPWATESPIY and 

PPWATESPIYVGSSS, which are both recognised by the LANA CD8 clone, overlap 

by the following sequence PPWATESPIY. The ten amino acid overlap contains two 

prolines at the beginning of the sequence and a tyrosine at the end, which is consistent 

with HLA-B35 epitope predictions. Consequently, three peptides were synthesised, 

the 9mer sequence PWATESPIY, the 10mer sequence PPWATESPIY and the 11mer 

sequence YPPWATESPIY.  
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To identify the minimal epitope, the LANA-specific CD8 T cell clone was then tested 

against a HLA-B*3501 positive LCL sensitised with the synthesised peptides.  In this 

case, chromium release cytotoxicity assays were used as these gave clearer responses, 

compared to the IFN-γ secretion assays (data not shown). LCLs were individually 

sensitised with the truncated peptides and NRS 15mer peptide for comparison at 

decreasing peptide concentrations from 10-7M to 10-12M.  The peptide solvent DMSO 

was used as a negative control and is presented as point 0 on the graph in Figure 3.7. 

T cells were incubated with the targets at an effector/target ratio of 1:1. Figure 3.7 

shows that the peptide which stimulated the highest % lysis at the lowest 

concentrations was the 10mer peptide PPWATESPIY, suggesting it is the minimal 

epitope sequence. Henceforth, we refer to this novel CD8 epitope as PPW.  

 

In total, fourteen LANA-specific epitopes were identified from five different donors; 

thirteen of the epitopes were HLA class II restricted and one HLA class I. Table 3.1 

summarises the characteristics of the LANA-specific CD4+ and CD8+ T cell clones 

identified from five different donors. Table 3.1 shows that three of the donors’ clones 

have specificity to one particular class II presented peptide, peptide PAF, each in the 

context of a different HLA-type including DQ6, DQ7 and DR52b, suggesting the 

promiscuity of this peptide. Furthermore, the frequency of T cell clones specific to 

each of the isolated T cell targets was very low, with the exception of those isolated 

towards CD4+ T cell targets LAP and LRS, suggesting a potential immunodominance 

towards these peptides in donor KSB1.  
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3.3 Identification and characterisation of vCyclin and vFLIP epitopes 

In a further series of T cell cloning experiments, epitopes were sought in two other 

latent KSHV-proteins, namely vCyclin and vFLIP. Here the T cell clones were 

established using material from a local donor of Kenyan origin, KSB1, rather than the 

limited PBMC samples from the Gambian donors. 

 

A series of 50 15mer peptides that covered the entire protein sequence of vCyclin 

were grouped into four pools, each containing 12-13 peptides and used to stimulate 

KSB1 PBMC cultures and establish clones similar to experiments conducted in 

section 3.2. Figure 3.8 shows representative results of the characterisation 

experiments carried out on clone 31. In the initial IFN-γ ELISA screen this clone 

showed specificity to the vCyclin pool E, which contains thirteen peptides (Figure 

3.8A). Subsequently, the T cell response to pool E was mapped to peptide QIL 

(Figure 3.8B) and found to have a functional avidity of 10-6 M (Figure 3.8C). The 

clone was confirmed to express CD4 by flow cytometry staining analysis (Figure 

3.8D). HLA class II restriction mapping indicated the clone secreted IFN-γ in 

response to peptide-sensitised autologous LCL and also peptide-sensitised LCLs that 

were HLA-DR52c matched (Figure 3.8E). Thus it can be deduced that the 15-mer 

peptide QIL is presented in the context of HLA-DR52c. A second vCyclin-specific 

CD4 clone was also identified in this manner which responded to the overlapping 

peptides TFQ and LTS presented by HLA-DR13, as summarised in Table 3.2. 

 

A third vCyclin specificity was also identified in the cloning analysis. Figure 3.9 

shows representative results of the characterisation experiments carried out on clone 

c69, showing specificity in the initial IFN-γ screen by ELISA to vCyclin pool B,  
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which contains twelve peptides (Figure 3.9A). Subsequently the T cell response to 

pool B was mapped to peptide RKL (Figure 3.9B) and this clone was found to have a 

functional avidity of 10-6 M (Figure 3.9C). The clone was confirmed to express CD8 

by flow cytometry analysis (Figure 3.9D). HLA class I restriction mapping indicated 

the clone secreted IFN-γ in response to peptide-sensitised autologous LCL and also 

peptide-sensitised LCLs that were HLA-A*2901 matched. Note that we were unable 

to exclude HLA-B*81 or C*18 as being capable of presenting this peptide as these 

alleles are rare in Caucasian populations and we were unable to find partially matched 

LCLs which expressed them. Testing this clone against a second peptide sensitised 

HLA-A*2901 LCL demonstrated that it also could present this epitope suggesting 

HLA-A*2901 is responsible for presentation of peptide RKL (data not shown and 

Figure 3.9E). No clear peptide binding motif currently exists for HLA-A*2901 and so 

the minimal RKL CD8 epitope sequence was not determined. 

  

Thus, the vCyclin T cell cloning identified two new CD4 target epitopes and one CD8 

target epitope, the characterisation of which are summarised in Table 3.2. As can be 

seen the frequency of clones specific to the CD8 T cell target epitope was much 

higher than of that for both of the CD4 T cell target epitopes combined. 

 

In the final cloning experiment epitopes from the KSHV latent protein vFLIP were 

identified using KSB1 PBMCs.  In experiments similar to section 3.2 and 3.3. 36 

15mer peptides that covered the entire protein sequence of vFLIP were grouped into 

three pools each containing 12 peptides and used to stimulate KSB1 PBMC cultures 

and establish clones. Figure 3.10 shows representative results of the characterisation 

experiments carried out on clone 17. In the initial IFN-γ ELISA screen this clone  
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showed specificity to the vFLIP pool AD, which contains twelve peptides (Figure 

3.10A).  Subsequently, the T cell response to pool AD was mapped to peptide VDG 

(Figure 3.10B) and found to have a functional avidity of 10-7 M (Figure 3.10C). The 

clone was confirmed as a CD4+ clone by expression of CD4 by flow cytometry 

staining (Figure 3.10D). HLA class II restriction mapping indicated the clone secreted 

IFN-γ in response to peptide-sensitised autologous LCL and also peptide-sensitised 

LCLs that were HLA- DR52c matched (Figure 3.10E). Thus it can be deduced that 

the 15-mer peptide VDG is presented in the context of HLA-DR52c. Using this 

strategy three other CD4+ T cell clones were identified and their characteristics are 

summarised in Table 3.3.   

 

Within the vFLIP cloning, CD8+ T cell clones specific for one epitope were 

identified. Figure 3.11 shows representative results of the characterisation 

experiments for these clones. The vFLIP-specific clone 57 showed specificity to AD 

in the initial screen (Figure 3.11A), while subsequent screening against the individual 

vFLIP peptides within pool AD revealed the peptide-epitope was contained in the 

overlapping peptides GTM and FSP (Figure 3.11B). The T cell clone showed very 

similar functional avidity of 10-6M for both peptides (Figure 3.11C). The clone was 

confirmed to be CD8+ by flow cytometric analysis (Figure 3.11D) and the minimal 

peptide-epitope sequence is most likely overlapping between the two 15mer peptides, 

however it was not determined.   

 

Initial attempts to identify the HLA restriction of these GTM-specific clones were 

unsuccessful.  Although the clone secreted IFN-γ in response to the peptide-sensitised 

autologous LCL, as shown in figure 3.12 (A), peptide-loaded LCLs that were matched  
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through HLA-A*0101, A*2901, B*705 and C*15 were not recognised by the clone. 

This implied that the HLA class I molecules B*81 or C*18 may be responsible for 

presentation of the peptide-epitope however other than the KSB1 LCL, no LCLs or 

other cell lines which expressed these molecules were available. Consequently, the 

cDNAs encoding HLA-B*81 and C*18 were cloned into the plasmid expression 

vector pLZRS-NGFR and these as well as an empty vector control plasmid 

transfected into the epithelial cell line 293. These transfected cells were then used as 

targets in recognition assays where transfected and non-transfected 293 cells were 

peptide-loaded and tested for recognition by the CD8 clone using the same method as 

described for LCLs. Figure 3.12 (B) shows that only 293 cells transfected with HLA-

B*81 were capable of presenting the CD8 vFLIP peptides to the T cells and inducing 

recognition. Thus it can be deduced that the vFLIP CD8 epitope sequence is presented 

in the context of HLA-B*81.  

 

Table 3.3 provides a summary of the vFLIP T cell responses identified and the 

characterisation of all the vFLIP clones from donor KSB1. Four novel CD4 responses 

were identified, three of which were restricted to the MHC Class II DR52c allele and 

one to the DR13 allele. However, the frequency of the clones isolated which were 

specific to these CD4 epitopes was low relative to the frequency of clones identified 

specific to the CD8 epitope. 

 

Discussion  

This study identified T cell responses to epitopes within the KSHV latency proteins 

made by a cohort of healthy KSHV-infected donors. T cell clones were successfully 

generated and used to identify target epitopes restricted across a range of HLA types  
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within the KSHV latent proteins LANA, vCyclin and vFLIP. LANA elicited the 

highest number of T cell targets with fourteen epitopes being identified within its 

sequence, followed by five in vFLIP and three in vCyclin. These responses were 

restricted through a range of HLA types. Furthermore, the frequency of CD4 epitopes 

identified appears to be much higher than those for the CD8’s. All the epitope 

specificities and CD4 or CD8 phenotypes of the T cell clones produced to the KSHV 

latent proteins, together with their relative amino acid positions are summarised in 

figure 3.13.   

 
IFN-γ ELISpot screens were initially used to examine the size of the ex-vivo response 

to the KSHV latent proteins and to map epitopes within these proteins. However the 

overall ex-vivo response in these screens was very weak and consequently it would 

have been difficult to identify epitopes using this strategy. Moreover, these ELISpot 

responses were substantially lower when compared to those made to the other human 

γ-herpesvirus, EBV, in a study conducted on a similar population (Njie et al., 2009). 

Furthermore, responses to LANA appear considerably weaker than those made to its 

EBV homologue, EBNA1, in donors from this (Njie et al., 2009) and other 

populations (Blake et al., 2000; Fogg et al., 2009).  

 

Previous studies have used similar methods to screen for T cell responses within the 

KSHV lytic and latent proteins, the size of these T cell responses has been shown to 

vary within the different KSHV infected cohorts. The KSHV ELISpot screen 

responses detected in this study were lower than those reported in similar studies 

carried out on HIV co-infected individuals receiving HAART therapy (Bihl et al., 

2007; Woodberry et al., 2005). However, the responses in the healthy carriers did 

appear more frequent than those described in HIV infected donors with KS before  
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HAART treatment (Bihl et al., 2007) or transplant patients with KS prior to changing 

their immunosuppressive regime (Barozzi et al., 2008). An additional factor that may 

play a part in determining these variable T cell responses may be differences in 

KSHV virus loads present in these cohorts. Higher viral loads have been reported in 

HIV co-infected patients receiving HAART than in healthy KSHV infected 

individuals (Bourboulia et al., 2004; Qu et al., 2010), suggesting that higher viral 

loads may be driving the immune response. Although the viral loads were not tested 

in this study, based on published studies to date in KSHV infected healthy donors (Qu 

et al., 2010), it would be expected to be low.  

 

Additional contributing factors to the weak IFN-γ ELISpot responses detected in this 

study may be the sequences of the peptides that were used to stimulate responses from 

these donors. The sequence of the manufactured peptides was derived from the BC-1 

strain of the virus, which is classified as a North American A2 subtype virus. The 

donors used in this study however may be infected with a different subtype as the 

circulating strains in sub-Saharan Africa are predominantly B-type, based on 

sequence analysis of the hypervariable K1 and K15 genes present at each end of the 

genome, potentially resulting in amino acid differences in the sequences of the viral 

latent proteins (Zong et al., 2002). Few studies have examined sequence diversity of 

the latent proteins, however the available sequence analyses of LANA indicate that 

outside of the extensive repeat regions, this protein shows high levels of conservation 

between different strains (Piolot et al., 2001; Zhang et al., 2000).  Furthermore, in this 

study a number of LANA epitopes were derived from a variety of donors, suggesting 

that the amino acid sequence of LANA is largely conserved.  
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As well as these variables, an additional factor that may have contributed to these 

weak responses, was the use of 15mer overlapping peptides to stimulate responses. 

These peptides were initially designed for the mapping of CD8+ T cell responses, 

consequently CD4+ T cell responses may have been missed as a result of the 10 

amino acid overlap present between these 15mer peptides, as indeed others have 

found 15 mer peptides as used here tend to preferentially stimulate CD8+ T cells over 

CD4+ T cells (Draenert et al., 2003). However, the diversity of CD4+ responses 

identified to the latent proteins in the T cell clonings carried out were much greater 

than those of the CD8+ responses, especially for the genome maintenance protein 

LANA. This supports the observation that the CD4+ T cells may be the numerically 

dominant form of cellular immunity to LANA. This finding shows some contrast to 

the cellular immune responses made to the EBV homologue EBNA1 which, at least in 

some class I HLA contexts elicits relatively strong CD8+ responses (Fogg et al., 

2009; Blake et al., 2000) and weaker but more diverse CD4+ responses (Leen et al., 

2001). 

 

It cannot, however, be formally excluded that the culture conditions used to establish 

the clones preferentially expanded CD4 over CD8 specificities. If there is a 

preferential outgrowth of CD4s as suggested by the larger diversity of CD4+ T cell 

specificities compared to the CD8s for each of the latent proteins in this study, the 

very high frequency of clones specific each of the CD8+ T cell epitopes identified 

within vFLIP and vCyclin highlights the magnitude of these responses. A previous 

study investigating the T cell response across a wide range of KSHV proteins, 

stimulated T cells from a range of KSHV infected cohorts for six days using 

monocyte-derived dendritic cells (moDCs) transduced with lentiviral expression 
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vectors, this revealed a higher magnitude of CD8+ T cell responses to the latent 

proteins LANA, vFLIP and vCylin (Robey et al., 2009). In an additional study to 

identify KSHV-specific T cell targets, LANA-specific HLA-A*0201 restricted CD8+ 

T cell responses were derived from healthy KSHV infected donors, following a 1 

week stimulation peptide-loaded moDCs (Lepone et al., 2010). No such responses 

were identified in any of the HLA-A*0201 expressing donors used in this study, 

perhaps indicating that CD8+ T cell responses require an antigen-presenting cell 

stimulation from cells such as DCs in order to isolate these CD8 responses.  
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Chapter 4 

 
 
CD8+ T cell recognition of cells expressing the KSHV-latent antigens 

LANA or vFLIP 

 

 

Most viral genes are not expressed during latency, limiting the repertoire of viral 

antigens available for presentation to T cells by KSHV infected cells. However, the 

major latent viral proteins that are expressed during latent forms of infection include 

LANA, vFLIP, vCyclin and Kaposin. These proteins function in the establishment of 

latency and maintenance of the latent virus infection. They also play a role in viral 

oncogenesis, initiating growth and proliferative signals, evading apoptosis, inhibit 

pro-inflammatory signals and sustain replicative potential (reviewed in (Mesri et al., 

2010)).  

 

Similar to other herpesviruses such as EBV, the virus has evolved with humans and, 

having evolved in the presence of an immune system, is therefore likely to have 

developed strategies to minimise the impact of the T cells and natural killer (NK) cells 

responses. A number of immune evasion proteins have been described but these are 

mostly expressed during the lytic cycle, where the majority of KSHV proteins are 

expressed, increasing the range of potential immune targets. These immune evasion 

proteins include the lytic proteins K3 and K5 (also known as MIR1 and MIR2).  

These induce downregulation of the surface expression of MHC class I on infected 

cells by triggering endocytosis and proteasomal degradation of the MHC molecule 

through the ubiquitination of its cytoplasmic tail (Ishido et al., 2000). A third protein, 
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the vIRF1 product, also targets MHC class I by preventing basal transcription of the 

MHC class I gene (Lagos et al., 2007). Furthermore, the host shutoff or exonuclease 

protein (SOX) encoded by ORF37, accelerates the degradation of host mRNA, 

inhibiting host cell gene expression and consequently MHC class I expression and 

antigen presentation (Glaunsinger et al., 2004; Zuo et al., 2008). Despite these 

mechanisms for the downregulation of surface MHC class I expression, in vitro 

infected cells usually show normal levels of surface MHC class I several days after 

infection (Adang et al., 2007). As these cells at least also express latent proteins, 

conceivably KSHV latent epitope-specific CD8+ T cells could target cells expressing 

these proteins. 

 

To date a number of studies have been performed to investigate whether the KSHV 

latent genome maintenance protein LANA mimics the behaviour of the EBV genome 

maintenance protein EBNA1, as both proteins perform similar functions and show 

some similar biochemical features (Kwun et al., 2007; Zaldumbide et al., 2007). 

These two proteins both possess central repeat domains, however they do not contain 

amino acid similarities: LANA’s central repeat sequence is acidic as a result of its 

amino acid repeats of glutamine (Q), glutamic acid (E) and aspartic acid (D), while 

the EBNA1 central repeat sequence is smaller and consists of glycine-alanine repeats 

(GAr). Interestingly, although the two proteins show no amino acid sequence 

homology, when alternate reading frames of EBNA1 are examined, they can share up 

to 65% homology with the acidic repeat of LANA which has led to the suggestion of 

a common origin of these two sequences (Zaldumbide et al., 2007).  The EBNA1 GAr 

have been shown to inhibit target cell recognition by CD8+ T cells in two ways: by 

inhibiting its proteasomal degradation (Levitskaya et al., 1995) and by retarding its 
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own translation and subsequently protein synthesis (Yin et al., 2003). Indeed it was 

initially thought that EBNA1 derived epitopes could not be processed and presented 

using the classic MHC class I processing pathway (Khanna et al., 1992; Murray et al., 

1992).  However in recent years and using assays which measure single cell effector 

function, recognition of EBNA1 by EBNA1- specific CD8+ T cells has been shown. 

These studies have suggested that the major source of EBNA1 epitope-peptides are 

not from the stable protein but rather an alternative source (Tellam et al., 2004; 

Mackay et al., 2009). This alternative source has been proposed to be derived from 

newly synthesised protein which has been rapidly degraded due to the error-prone 

nature of protein synthesis: up to 20% of newly formed proteins are misfolded. These 

are referred to as defective ribosomal products (DRiPs) and undergo rapid 

degradation, providing an efficiently generated source of peptide-epitopes (Schubert 

et al., 2000; Tellam et al., 2004; Mackay et al., 2009). Consequently, the effects of 

EBNA1 on retarding protein synthesis and proteasomal degradation will greatly 

impact the supply of DRiPs available for processing and presentation as peptide-

epitopes. 

 

Studies examining the CD8+ T cell recognition of LANA have shown that the central 

acidic repeat sequence has mechanisms similar to EBNA1 of evading CD8+ T cell 

recognition. This is mainly by inhibiting proteasomal degradation and inhibition of 

translation of the protein (Kwun et al., 2007; Zaldumbide et al., 2007). However, 

more recent work has suggested that LANA evades CTL recognition through an 

additional mechanism that is different to EBNA1. Here the initial part of the acidic 

repeat has been shown to reduce the translocation of LANA peptides from the cytosol 

into the endoplasmic reticulum (ER) for loading onto MHC I molecules (Kwun et al., 
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2011). While these studies have addressed CD8+ T cell recognition of LANA, they 

have been undertaken using artificial model systems. Most frequently this has 

involved using non-pathogen derived model antigens, most commonly the ovalbumin 

peptide SIINFEKL presented by murine H-2Kb molecule, due to the availability of a 

unique MHC/epitope-specific antibody to assay epitope display by cell surface 

staining or by testing for recognition using the well characterised cytotoxic T 

lymphocyte hybridoma B3Z which has the same epitope specificity (Shastri et al., 

1993; Zaldumbide et al., 2007). Most importantly, similar to initial CD8+ T cell 

recognition studies carried out on EBNA1, there have been no studies testing 

recognition of LANA expressing cells by LANA-specific CD8+ T cells. Therefore, 

assaying LANA-specific CD8+ T cells against cells expressing this KSHV antigen 

would give some indication of the ability of the cell to process and present antigen to 

T cells in a more physiologically relevant setting.  

 

A second gene expressed in latently KSHV-infected cells such as those seen in KS 

and PEL biopsies is vFLIP or K13. This gene codes for the viral homologue of the 

Fas-associated death domain-like interleukin-1β converting enzyme (FLICE) inhibitor 

protein (FLIP). Proteins from this class have been shown to inhibit Fas-mediated 

apoptosis by interfering with caspase 8 recruitment to the death inducing signaling 

complex (DISC) (Chaudhary et al., 2000). Furthermore, vFLIP is a potent activator of 

the NF-ΚB pathway, promoting viral cell survival (Matta et al., 2004), transformation, 

inflammatory activation and morphological changes (Grossmann et al., 2006; Sun et 

al., 2006), all of which directly contribute to the pathogenesis of KSHV. However 

unlike LANA, the levels of vFLIP protein detected in infected or transfected cells is 

low (Alkharsah et al., 2011; Low et al., 2001; Guasparri et al., 2004). In the case of 
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cells transfected with vFLIP expression constructs, it has been shown that the low 

levels of vFLIP protein can be attributed to its sub-optimal codon usage. Thus 

expression of a re-engineered vFLIP gene with human-optimised codon usage 

generated abundant vFLIP protein and readily detectable levels of mRNA (Priya 

Bellare, data not published). As the vFLIP wildtype codon usage results in very low 

levels of vFLIP protein being expressed in comparison to the human-optimised 

vFLIP, it raises the question as to whether the inefficient protein synthesis would be 

reflected in reduced CD8+ T cell recognition of the vFLIP antigen. Assuming the 

DRiPs hypothesis also applies to the presentation of other antigens expressed within 

virally infected cells, this lower level of protein expression could potentially reflect a 

strategy employed by the virus to reduce peptide supply and consequently T cell 

recognition. 

 

Previously, CD8+ T cell clones were established against the KSHV latent proteins 

vCyclin, vFLIP and LANA (Chapter 3). These clones were then to be tested for their 

ability to recognise cells expressing different forms of the latent-antigens. However in 

this series of experiments, the ability of the vCyclin-specific clone to recognise cells 

expressing vCyclin was not assessed. Ectopic expression of this protein in cells 

induces apoptosis or cell cycle arrest, likely through p53 dependent mechanisms, 

making these difficult targets to work with (Ojala et al., 1999; Ojala et al., 2000).  

Furthermore, no HLA-A*2901 matched cell lines permissive for KSHV infection 

were available to be used as target cells for the vCyclin-specific T cells. As such, 

experiments were focussed on the ability of the vFLIP- and LANA-specific CD8+ T 

cells to recognise cells expressing different forms of antigen and where possible, 

KSHV-infected cells. 
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4.1 CD8+ T cell recognition of cells expressing wildtype versus humanised vFLIP 

encoding a model T cell epitope. 

vFLIP is a multifunctional protein, mostly known for its potent ability to activate NF-

kB. Observations by Bellare have suggested that the codon usage of this gene is 

unusual in that rare codons are used throughout the entire sequence, suggesting that 

this protein is likely to be inefficiently synthesised in cells.  Furthermore, experiments 

conducted by Bellare have shown that relative to a codon optimised version of this 

gene, vFLIP using the native viral sequence is poorly expressed (data not shown).  

Given that the DRiP hypothesis contends that newly synthesised proteins are likely to 

be the major source of epitope peptides for CD8+ T cells, restricting protein 

expression would limit the supply of peptides available for presentation to cognate 

CD8+ T cells, thereby reducing the chance of infected cells being killed by T cells.  

As such we examined whether CD8+ T cell epitopes are more efficiently presented to 

CD8+ T cells from a codon optimised vFLIP expression construct compared to the 

native viral sequence. 

 

Plasmid constructs encoding the vFLIP sequence which used either the wildtype gene 

sequence or a codon optimised “humanised” sequence vFLIP were kindly provided by 

Dr Priya Bellare, University of California San Francisco, USA. Both constructs 

contained the Flag antibody epitope tag at the amino terminus of vFLIP to allow 

detection. These constructs were further modified to encode a reporter CD8 epitope, 

the HLA-B*0801 restricted EBV CD8+ T cell epitope FLRGRAYGL (FLR), derived 

from the EBV latent antigen EBNA3A, at the carboxy terminus of the vFLIP 

sequences. These genes were cloned into a modified pcDNA3.1 vector (Invitrogen) 

(Figure 4.1), downstream from a CMV promoter (PCMV) and upstream from an  
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internal ribosome entry site (IRES) and GFP gene, allowing measurement of 

transfection efficiency by flow cytometry.  The empty pcDNA3.1 IRES GFP plasmid 

was used as a control.  

 

Initially to investigate the efficiency of T cell recognition of cells expressing the 

different vFLIP constructs, the plasmids were transfected into the easily transfectable 

HLA-B*0801 melanoma target cell line MJS. These cells were incubated for 48hrs 

and the proportion of each transfected cell type expressing GFP was analysed by flow 

cytometry (data not shown). To allow meaningful comparisons between the 

transfected cells in recognition assays, the percentage of GFP expressing MJS cells 

was then equalised for the different transfectants by the addition of non-transfected 

MJS cells, such that all transfected cells were 50% GFP positive. These were then 

used as targets in recognition assays by incubation with FLR-specific CD8+ T cell 

clones. Additionally, MJS cells sensitised with the FLR-peptide or the peptide solvent 

DMSO were used as positive and negative controls respectively. Figure 4.2 shows the 

results of the recognition assay using two FLR-specific CD8+ T cell clones (A) c45 

and (B) c147. Both clones showed recognition of the MJS FLR peptide-sensitised 

cells, with no recognition of the DMSO-sensitised MJS cells or MJS cells transfected 

with the control plasmid. More importantly, there was no recognition of the wildtype 

vFLIP FLR transfected MJS cells, however there was recognition of the cells 

expressing the humanised vFLIP FLR construct.  

 

To interpret the results of this recognition assay, aliquots of the transfected cells were 

analysed for the levels of vFLIP protein expressed in each cell type by western blot 

analysis with monoclonal antibodies specific to Flag and calregulin as a loading 
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control. Figure 4.3 (C) shows that MJS cells transfected with the humanised vFLIP 

plasmid expressed this protein, while none was detected in lysates of non-transfected 

or control plasmid transfected cells. Importantly, no vFLIP protein was detected from 

cells transfected with the wildtype vFLIP plasmid despite these cells expressing the 

GFP reporter protein which is contained in the same messenger RNA molecule as 

vFLIP. This was repeated on three different occasions using two independently 

generated wildtype vFLIP expressions, all yielding the exact same result.  

 

As one of the major cellular targets for KSHV infection are B lymphocytes, the next 

experiments determined whether the vFLIP plasmids expressing the FLR peptide 

could be recognised by the FLR-specific CD8+ T cells when expressed in an LCL 

background. The FLR plasmids were transfected by electroporation into HLA- 

B*0801 expressing LCLs from donors KSB6 and KSB7.  LCLs used were made with 

the B95.8 strain of virus which, although it expresses EBNA3A, does not encode the 

FLR peptide. Transfection efficiency was determined by analysing GFP fluorescence 

by flow cytometry (data not shown) and the percentage of GFP expression equalised 

by addition of non-transfected LCLs such that all transfectants were 4% GFP positive.  

These equalised mixtures of cells were then incubated with the FLR-specific CD8+ T 

cells and IFN-γ release measured to quantify recognition. LCLs were sensitised with 

either the FLR peptide or the peptide solvent DMSO as positive and negative controls 

respectively. Figure 4.3 shows the results of this CD8 recognition assay for donors, 

KSB6 and KSB7, incubated with the FLR-specific clones c177 (A & C) and c27 (B & 

D), respectively. The clones recognised the FLR-sensitised LCLs, with no recognition 

of the DMSO sensitised LCLs. There was also no recognition of the LCLs transfected 

with the control plasmid or, more importantly, with the wildtype vFLIP FLR plasmid.  
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However both LCLs transfected with codon optimised vFLIP FLR plasmid were 

recognised by the two FLR-specific T cell clones. This was repeated on three different 

occasions, each giving a similar result. 

 

4.2 vFLIP-specific CD8+ T cell recognition of cells expressing wildtype versus 

humanised vFLIP. 

The previous experiments established that in two different cell types, the model CD8+ 

epitope FLR is only presented from humanised vFLIP constructs which encode this 

epitope. We next asked whether a vFLIP-specific CD8+ T cell can recognise cells 

expressing either of these constructs. Initial clone screens carried out on donor KSB1 

identified a HLA-B*81 restricted vFLIP CD8+ epitope located within the overlapping 

peptides GTM and FSP recognised by clone 57, described in Chapter 3. This clone 

was then used in recognition assays against MJS cells or LCLs expressing these 

constructs. 

 

Initially the vFLIP-specific T cells were assayed against MJS cells transfected with 

the vFLIP and control plasmids. As MJS cells do not naturally express HLA-B*81, 

the vFLIP plasmids were co-transfected with a plasmid expressing the HLA-B*81 

allele. The efficiency of the vFLIP and control plasmids transfection was determined 

by measuring GFP fluorescence by flow cytometry. Figure 4.4 (A) shows similar 

levels of transfection between the Wt vFLIP and Hu vFLIP plasmids in the MJS cells, 

with 25.2% and 26.7%, respectively, expressing GFP. The control plasmid transfected 

cells show slightly higher levels of transfection efficiency, with 30.6% of the cells 

expressing GFP. Previous studies have suggested that co-transfection of plasmids 

using lipid based reagents delivers both constructs to cells (Zuo et al., 2009). These  
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cells were then used in recognition assays and separate aliquots of each transfectant 

were sensitised with the cognate epitope-peptides before being incubated with the 

vFLIP-specific CD8+ T cell clone 57 and assaying for IFN-γ secretion. Figure 4.4 (B) 

shows that the MJS cells were successfully co-transfected with the HLA-B*81 allele, 

as each of the peptide-sensitised transfectants was recognised by the vFLIP-specific 

CD8+ T cell clones. These clones did not recognise the control plasmid transfected 

MJS cells or those transfected with the wildtype vFLIP construct. However the clones 

did recognise MJS cells transfected with the humanised vFLIP construct, despite 

similar levels of transfection efficiency in these cells.  

 

To determine whether the lack of recognition of the wild type vFLIP transfected cells 

by the vFLIP-specific T cells was related to the cellular background in which the 

vFLIP genes were expressed, the vFLIP plasmids were transfected into a B cell 

background, namely LCLs, and these used as targets in recognition assays. Here the 

autologous donor KSB1 LCL was used as the target, as this expresses HLA-B*81. 

LCLs were transfected with the vFLIP and control plasmids 48 hours prior to being 

incubated with the vFLIP-specific CD8+ T cell clone 57 and assaying for IFN-γ 

secretion. LCLs were sensitised with either the cognate peptides or DMSO as positive 

or negative controls respectively. Peptide-sensitised LCLs were well recognised while 

those sensitised with DMSO were not (data not shown). However, there was no 

recognition of any of the vFLIP constructs (data not shown). Analysis of GFP 

fluorescence of transfected cells revealed a very low percentage of cells were 

transfected with the vFLIP plasmids, providing a potential explanation for the lack of 

recognition by the vFLIP-specific CD8+ T cell clone.  
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In order to increase the percentage of cells transfected with the expression constructs, 

KSB1 LCLs were transfected again with the vFLIP and control plasmids, and after 48 

hours, the GFP-expressing transfected cell population enriched by FACS. Figure 4.5 

(A) shows successful enrichment of the Wt vFLIP, Hu vFLIP and control plasmid 

transfected KSB1 LCLs, with 78-92% GFP expression. These GFP-sorted LCLs were 

subsequently incubated with the vFLIP CD8+ T cell clone 57 and assayed for 

recognition of the targets by measuring secreted IFN-γ by ELISA. As a positive 

control the LCLs were sensitised with cognate peptides and DMSO as a negative 

control. The assay revealed good levels of recognition of the peptide sensitised LCLs, 

with no recognition of the DMSO-sensitised LCLs. Furthermore, there was no 

recognition of the control plasmid in the autologous LCLs. Similarly there was no 

recognition of the wildtye vFLIP transfected LCLs but the humanised vFLIP LCLs 

were recognised by the vFLIP CD8+ T cell clone. This assay was repeated on two 

different occasions, yielding the same result.  

 
 
4.3 LANA-specific CD8+ T cell recognition of LCLs expressing LANA 

The previous experiments were unable to demonstrate T cell recognition of cells 

expressing the wild type vFLIP gene product. To determine whether CD8+ T cell 

clones specific for other latent antigens could recognise cognate antigen-expresing cells, 

the ability of a LANA-specific clone to recognise target cells was examined.  

 

A model system was developed where LANA expression vectors were transfected 

into B cells to test LANA-specific CD8+ T cell recognition of antigen-expressing 

cells. LANA constructs were ectopically expressed using derivatives of the pRTS-

CD2 plasmid shown in figure 4.6 (Bornkamm et al., 2005). This expression plasmid  
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constitutively expresses the rat-CD2 molecule allowing selection of transfected cells. 

The vector also contains a bi-directional tetracycline responsive promoter which upon 

the addition of doxycyline (dox) allows inducible expression of the inserted LANA 

construct as well as a reporter cassette containing GFP and truncated nerve growth 

factor receptor (ΔLNGFR). The two LANA construct sequences inserted for these 

experiments were derived from the BCBL-1 strain of the virus. The first of which 

expresses the unmodified LANA sequence, the full length LANA (FL-LANA) 

sequence, while the second expresses the LANA sequence from which the acidic 

repeat region (amino acids 345-916) was removed (LANAΔacid). This allows the 

investigation of whether the acidic repeat sequence contained within LANA inhibits or 

interferes with CD8+ T cell recognition of LANA expressing cells, using for the first 

time, a LANA-specific CD8+ T cell clone. The CD8+ clone is specific to the LANA 

peptide PPW and is HLA-B*3501 restricted, the characterisation of which is 

described in Chapter 3 - Section 3.2. No autologous LCL was available from donor 

KS021, consequently B95.8 LCLs from two HLA B*3501 expressing donors, KSB4 

and KSB5, were transfected with the LANA expression constructs for use as target 

cells.  

 

Expression of the LANA constructs was induced in the LCLs by incubation with 

2µg/ml dox for 24hrs. Prior to use in the CD8+ T cell recognition assay, the dox-

induced vector transfected LCLs were further enriched by selecting for the vector 

expressed reporter protein NGFR by MACS NGFR-specific beads. Following NGFR 

selection, in order to determine the percentage of vector-expressing cells GFP 

expression was analysed by flow cytometry (data not shown). The perecentage of 
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GFP expressing LCLs was equalised to 70% GFP between FL-LANA and 

LANAΔacid expressing LCLs, by the addition of non-transfected LCLs. Figure 4.7 

shows the results for donors, KSB4 and KSB5, NGFR enriched and GFP equalised 

expression in the LCLs. Initially, protein expression levels of the LANA constructs 

was checked by western blot analysis of lysates from the donor LCLs. Both donors 

(A) KSB4 and (C) KSB5 showed higher levels of LANA protein being ectopically 

expressed from LANAΔacid transfected LCLs than the FL-LANA transfected LCLs. 

This finding is consistent with previous studies, which have shown a higher rate of 

translation for LANAΔacid compared to the FL-LANA sequence (Kwun et al., 2007).  

 

The FL-LANA and LANAΔacid expressing LCLs were incubated with the LANA 

PPW-specific CD8+ T cell clone 12, to test for recognition by measuring IFN-γ 

production by ELISA. As a positive control the donor LCLs were sensitised with the 

cognate epitope-peptide and LCLs sensitised with the peptide solvent DMSO as a 

negative control.  Figure 4.7 shows the recognition assay results for both donors (B) 

KSB4 and (D) KSB5. The CD8+ LANA-specific T cell clone 12 recognised the 

positive control peptide sensitised LCLs but did not recognise LCLs sensitised with 

the peptide solvent DMSO. The LANAΔacid expressing LCLs were clearly 

recognised by the LANA-specific CD8+ T cell clone, importantly however the FL-

LANA expressing LCLs induced some yet weak recognition by the CD8+ T cells, this 

experiment was repeated twice yielding the same result. This result also supports 

previous work using model systems that suggests the acidic repeat sequence within 

LANA has an immune evasion function that impairs CD8+ T cell recognition.  
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4.4 KSHV-infection and CD8+ T cell recognition of HMEC-1 endothelial cells  

The previous experiments established that the acidic repeat sequence within LANA 

interferes with CD8+ T cell recognition in an LCL background. Importantly the full 

length protein can be recognised to some degree by a cognate CD8+ T cell clone and 

when this acidic repeat sequence is removed recognition is increased. The next 

experiments investigated whether the LANA specific CD8+ T cell clone can 

recognise LANA antigen expressed in the context of a KSHV infected cell, not just 

LANA expressing cells. To address this question, HLA-B*3501 human microvascular 

endothelial cells (HMEC-1) were to be infected with KSHV and used as targets. 

These cells have been successfully immortalised with a plasmid expressing simian 

virus 40 gene product, large T antigen (Ades et al., 1992). The HMEC-1 cells were 

generously donated from Professor Gerard Nash, The University of Birmingham.  

 

As HMEC-1 cells had not been previously used in CD8+ T cell recognition assays, 

their ability to process and present antigen needed to be confirmed. Here a model 

reporter antigen was expressed in these cells and their ability to process and present 

antigen to a cognate HLA-B*3501 restricted T cell examined. The HMEC-1 cells and, 

as a control, HLA-B*3501 LCLs known to be competent for antigen processing 

ability were infected with modified vaccinia Ankara (MVA) constructs expressing the 

EBV antigen EBNA1 lacking the glycine-alanine repeat (E1ΔGA). This construct was 

used as the repeat sequence has been previously shown to interfere with EBNA1 

antigen processing and presentation for CD8+ T cell recognition (Tellam et al., 2004; 

Tellam et al., 2004; Voo et al., 2004; Tellam et al., 2007). Separate aliquots of the 

HMEC-1 cells and LCLs were infected with an MVA expressing an irrelevant 

antigen. As controls, cells were sensitised with specific cognate epitope-peptide HPV 
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or peptide solvent DMSO, followed by overnight incubation with the EBNA1-specific 

peptide HPV HLA-B*3501 restricted CD8+ T cell clone 41 and recognition assessed 

by measuring IFN-γ secretion. Figure 4.8 shows that the EBV EBNA1 HPV-specific 

CD8+ clone recognised the peptide sensitised HMEC-1 cells and LCLs, with little or 

no recognition of the DMSO sensitised cells. More importantly, both the MVA 

E1ΔGA infected HMEC-1 cells and LCLs were well recognised by the HPV CD8+ 

clone with no recognition of the cells infected with the control MVA. This result 

shows that HMEC-1 cells can process and present the EBV peptide-epitope HPV 

from EBNA1ΔGA for CD8+ T cell recognition, showing that HMEC-1 cells are 

capable of processing and presenting viral antigen for CD8+ T cell recognition.  

 

To test whether the HMEC-1 cells were capable of processing and presenting LANA 

antigen for CD8+ T cell recognition. The HMEC-1 cells were infected with titrated 

recombinant KSHV virus (rKSHV.219) derived from the engineered JSC-1 strain 

(Vieira et al., 2004), kindly provided by Professor David Blackbourn, The University 

of Birmingham. The recombinant KSHV virus was engineered containing the red 

fluorescent protein (RFP) under the control of the lytic PAN RNA promoter and the 

GFP gene expressed by the human elongation factor 1-α promoter, used as an 

indicator of latent KSHV infection.  HMEC-1 cells were infected with the virus at an 

MOI of 10 for 72 hours and then checked for KSHV latent infection efficiency 

through analysis of GFP expression levels by flow cytometry. Figure 4.9 shows a 

representative result of one such KSHV infection. In the absence of virus, mock 

infected cells show no GFP fluorescence. KSHV-infected HMEC-1 cells at 72 hours 

post-infection showed 40.2% of cells expressing GFP, suggesting successful latent 

KSHV infection of the HMEC-1 cells.  
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The above experiment had suggested that the HMEC-1 cells had been successfully 

infected with KSHV, establishing latency 72 hours post-infection. These cells were 

then incubated with the LANA PPW-specific CD8+ T cell clone 12 and assayed for T 

cell recognition by IFN-γ ELISA. As a positive control the HMEC-1 cells were 

sensitised with the cognate peptide-epitope and as a negative control were mock 

infected. Figure 4.10 (A) shows the CD8+ LANA-specific clone recognised the 

peptide sensitised HMEC-1 cells but not the mock infected HMEC-1 cells. This 

suggests that the HMEC-1 cells are HLA-matched to the clone and that the T cells are 

functional and specific for their respective LANA epitope-peptide PPW. However, 

most importantly there was no recognition of the KSHV latently infected HMEC-1 

cells. This was repeated on three occasions all giving the same result.  

 

As no T cell recognition of the infected HMEC-1 cells was observed, the expression 

of LANA protein in the infected HMEC-1 cells was examined. Aliquots of KSHV 

infected HMEC-1 cells, HMEC-1 cells with no virus as a negative control and cells 

from the PEL JSC-1 as a positive control were lysed and analysed by western blot. 

The blots were probed with the rat monoclonal LANA antibody that binds to the 

acidic repeat sequence within LANA and β-actin was used as a loading control. 

Figure 4.10 (B) shows that the positive control PEL JSC-1 showed high levels of 

LANA protein expression, while no LANA protein expression was detected in the 

control HMEC-1 cells. LANA protein expression was detected in the KSHV infected 

HMEC-1 cells but at lower levels compared to the PEL JSC-1.   

 

In the previous experiments it was unclear whether the lack of recognition of the 

KSHV-infected HMEC-1 cells was due to not all cells being infected, with 40.2% of  
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cells showing GFP fluorescence. To increase the percentage of infected cells, HMEC-

1 cells were infected with the recombinant KSHV virus as before and the GFP 

expressing cells enriched by FACS. Almost 80% of the sorted KSHV infected 

HMEC-1 cells were GFP positive as shown in figure 4.11. These enriched HMEC-1 

cells were then used in a CD8+ T cell recognition using the same method described 

above, assaying IFN-γ secretion from the T cells by ELISA. Again there was no 

recognition of the KSHV infected HMEC-1 cells confirming that the numbers of 

KSHV infected cells was not preventing CD8+ T cell recognition in this assay. This 

experiment was repeated on two different occasions, both yielding a similar result.  

 

4.5 HLA class I levels on KSHV-infected HMEC-1 cells 

Previous and more recent work has highlighted the role of herpes virus proteins that 

interfere with the class I antigen processing pathway affecting the levels of MHC 

class I surface expression (Duncan et al., 2006; Ressing et al., 2008; Dugan et al., 

2009; Zuo et al., 2010). Initially we confirmed that endothelial cells are known to 

express MHC class I on their surface by staining the cells with a PE-conjugated 

W6/32 MHC class I monoclonal antibody prior to infecting the cells with KSHV (data 

not shown). 

 

To test whether proteins expressed during KSHV infection may have an effect on the 

surface MHC class I levels on HMEC-1 cells, a comparison of surface class I 

expression was carried out between the HMEC-1 cells and KSHV-infected HMEC-1 

cells by staining for surface MHC class I. Figure 4.12 (A) shows the results from the 

HMEC-1 unstained cells, KSHV-infected HMEC-1 unstained cell and KSHV-

infected HMEC-1 MHC class I w6/32-APC stained. The unstained KSHV infected  



  Chapter 4 Results  

 
 

134 

 



  Chapter 4 Results  

 
 

135 
 



  Chapter 4 Results  

 
 

136 

HMEC-1 cells show approximately 47% GFP fluorescence, reflecting the percentage 

of the cells that had been latently infected with the rKSHV.219 virus. MHC class I 

surface levels were detected by staining with the APC-conjugated W6/32 antibody. 

The staining shows a clear reduction in the surface class I levels on the latently 

KSHV-infected HMEC-1 cells compared to the non-infected HMEC-1 cells, this 

result is further highlighted in the histogram in figure 4.12 (B) showing a clear 

reduction in class I W6/32-APC fluorescence for the KSHV-infected HMEC-1 cells. 

This result suggests that KSHV infection is potentially interfering with LANA-

specific CD8+ T cell recognition of KSHV-infected HMEC-1 cells by reducing the 

levels of MHC class I expressed on the surface of the cells.  

 

Discussion 

These experiments examined native epitope recognition by CD8+ T cells specific for 

the LANA and vFLIP antigens expressed in various cellular backgrounds. In both 

cases, a role for each of these latent proteins in reducing or entirely inhibiting their 

own CD8+ T cell recognition was found. Initially, the influence of the sub-optimal 

codon usage identified within the wildtype vFLIP sequence and how this impacts its 

protein expression and subsequent CD8+ T cell recognition was investigated. The 

results showed that there was little or no protein expression or recognition of MJS or 

LCLs expressing the wildtype vFLIP sequence. However, using the human optimised 

codon sequence, protein expression was observed in MJS cells and CD8+ T cells 

recognised both MJS cells and LCLs expressing this construct. These results suggest 

that vFLIP uses sub-optimal codon sequences to reduce protein expression, a 

consequence of which is the limitation of the supply of viral peptides available for 

CD8+ T cell recognition. 
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Similar potential mechanisms to reduce CD8+ T cell targeting have been employed 

by a number of other viruses such as EBV, Human papillomavirus (HPV) and HIV.  

For EBV’s genome maintenance protein EBNA1, the GAr domain is overloaded with 

purine containing codons. When the purine bias was reduced by substituting 

pyrmidine based codons and maintaining the amino acid sequence, this dramatically 

altered the predicted mRNA structure of EBNA1, reversed the cis-inhibitory effect on 

EBNA1 synthesis, consequently increasing the availability of viral peptides and CTL 

recognition (Tellam et al., 2008). While for HPV type 16, the E7 gene was reported to 

also be using a sub-optimal codon sequence inducing only moderate immune 

responses in murine DNA vaccination models. However, expression of an optimised 

E7 codon sequence in vitro resulted in increased levels of protein expression as a 

result of increased mRNA translation. When optimised vectors were used in vivo in 

vaccination studies, these induced much higher CTL responses than those elicited 

with the wildtype E7 sequence (Liu et al., 2002). In the case of HIV, optimising the 

codon usage of the gag protein increases protein expression, not through increased 

translation efficiency but rather through increased mRNA stability and export of 

nuclear mRNA (Ngumbela et al., 2008).   

 

In the following vFLIP CD8+ recognition experiments, one issue that was repeatedly 

present in each of the recognition assays was the distinct lack of wildtype vFLIP 

protein expression being detected by western blot analysis, despite transfection being 

confirmed by GFP analysis by flow cytometry. This result conflicts with previous 

work in which wildtype vFLIP protein is detected using a vFLIP antibody after 

expression from a lentiviral vector in vitro (Rowe et al., 2009) but is consistent with 

other studies (Alkharsah et al., 2011). This could potentially be explained by the use 
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of different antibodies to detect expression, levels of transfection efficiency or the use 

of different expression vectors. An additional factor may be that the monocistronic 

vFLIP expression vectors used in these recognition studies do not recapitulate the 

expression of the vFLIP gene that occurs in vivo or in in vitro KSHV infected cells. 

While monocistronic vFLIP mRNA message can be detected in PELs, this is usually 

at a low abundance (Grundhoff et al., 2001). As vFLIP belongs to the latency 

transcript cluster that also encodes LANA and vCyclin, it is transcribed from a 

constitutively active promoter and through alternative splicing gives rise 

predominantly to an mRNA vFLIP encoding tricistonic or bicistronic transcript 

(Pearce et al., 2005). Ideally these CD8+ T cell recognitions experiments should be 

repeated using a different model system, in which the humanised and wildtype vFLIP 

sequences would be transcribed from a tricistronic or bicistronic transcript mimicking 

vFLIP expression in vivo.  

 

The following study investigated CD8+ T cell recognition of the LANA antigen in a 

native setting using a LANA-specific CD8+ T cell clone. The role of the acidic repeat 

sequence present within LANA was investigated through a direct comparison of 

LANA CD8+ T cell recognition of both the native form of the protein (FL-LANA) 

and a form lacking the acidic repeat sequence (LANAΔacid) expressed in an LCL 

background. These experiments confirmed that similar to EBNA1, the repeat 

sequence within LANA reduces protein synthesis and consequently CD8+ T cell 

recognition. This retardation of LANA protein synthesis by the repeat sequence and 

consequent inhibition of its CD8+ T cell recognition has been highlighted using a 

model system (Kwun et al., 2007; Zaldumbide et al., 2007). However, like the 

EBNA1 studies using native EBNA1 clones to recognise EBV-infected or EBNA1 
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expressing cells, these experiments have demonstrated that the FL-LANA sequence 

can be recognised by LANA-specific CD8+ T cells, albeit to a lesser extent than 

LANA lacking the acidic repeat sequence.  

 

In addition to this finding, the CD8+ T cell recognition of LANA was investigated in 

one of the most physiological settings possible by infecting an endothelial cell line, 

HMEC-1, with rKSHV.219. Latent KSHV infection was established and LANA 

protein expression detected. However there was no CD8+ T cell recognition of the 

LANA antigen presented by these cells. This is likely a result of the acidic repeat 

sequence present within LANA reducing the supply of epitope-peptides combined 

with the reduced class I surface expression upon KSHV infection of the cells. This 

effect on MHC class I expression may be attributed to the transient expression of the 

lytic gene K5 (MIR2) which has been shown to persist in KSHV infected endothelial 

cells in vitro, with K5 being detected up to 5 days post infection (Krishnan et al., 

2004). Kedes et al. confirmed downregulation of surface MHC class I by K5 in latent 

KSHV infected endothelial cells, as well as identifying its effect on the reduction of 

surface expression of the leukocyte recruitment molecule ICAM-1. Furthermore, they 

showed that levels of K5 expression correlated with the MOI and degree of KSHV 

latent infection in endothelial cells and that after several days in culture, these cells 

would express normal levels of surface MHC class I (Adang et al., 2007). These 

studies have allowed us to hypothesise that K5 expression is responsible for the 

downregulation of surface MHC class I in the KSHV infected endothelial cells. 

Ideally K5 expression in these cells would have been confirmed in order to determine 

if it does play a role in the downregulation of surface MHC class I in the KSHV 

infected HMEC-1 cells. Alternatively, as the degree of downregulation of surface 
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class correlates with the multiplicity of infection used to infect the target cells (Adang 

et al., 2007), future experiments examining the recognition of endothelial cells 

infected with lower levels of virus would be useful to dissect the potential influence of 

K5 in this system. Alternatively, as the virus appears to stably maintain latency in 

these cells, infected cells could be cultured for several days and surface MHC class I 

levels allowed to be restored and then these cells used as targets in recognition assays. 

Given that LANA is expressed in all infected cells and malignancies, the observation 

that when full length LANA is expressed in target cells by itself and can elicit at least 

some degree of recognition from the T cells warrants future investigation of the 

ability of these T cell specificities to recognise LANA expressing cells. 
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Chapter 5 

 

CD4+ T cell recognition of LANA-expressing cell lines and primary 

effusion lymphoma cell lines 

 

 

Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are 

the two lymphotropic human herpesviruses with oncogenic potential. Similar to EBV, 

KSHV infects B cells and establishes latency in vivo. B cell infection is integral for 

the lifecycle of KSHV as latency is established in this cell type, preserving the 

potential for virion production upon reactivation and allowing the virus to spread 

infection. A number of studies have highlighted the role of CD4+ T cells in 

controlling herpes virus infections, such as mouse γ-herpesvirus 68 (MHV-68) and 

EBV. Mice infected with MHV-68 have shown the importance of CD4+ T cells in the 

control of chronic MHV-68 infection and its malignant consequences (Christensen et 

al., 1999; Robertson et al., 2001).  Furthermore, evidence from the study of control of 

EBV infection in vivo and in vitro has also emphasised the importance of CD4+ T 

cells, in inhibiting outgrowth of EBV transformed B cells (Nikiforow et al., 2003; 

Omiya et al., 2002) and acting as CTL’s in their own right, targeting LCLs (Haigh et 

al., 2008) and EBV-associated Burkitt’s lymphoma (Paludan et al., 2002).   

 

The role of KSHV-specific T cells in the control of KSHV-infected cells and 

associated malignancies has not been well defined. In contrast to EBV, the 

establishment of latent stably infected B cells in vitro for KSHV has proven very 
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difficult (Bechtel et al., 2003; Renne et al., 1998), greatly limiting the study of KSHV 

lymphoid infections. To date, two groups have identified systems for studying KSHV 

infection in primary B cells. The first of which showed that B cells can be infected in 

vitro but only when activated by IL-4 and CD40 Ligand (Rappocciolo et al., 2008; 

Hassman et al., 2011). More recently, tonsillar B cells have been successfully infected 

with recombinant KSHV virus (rKSHV.219), establishing lytic and latent infection. 

Activated CD4+ T cells were shown to inhibit viral replication in these cells, albeit in 

an MHC independent mechanism (Myoung et al., 2011). However, to date no 

published studies have tested the ability of KSHV-specific MHC-restricted T cells to 

recognise KSHV-infected cells from the endothelial neoplasm Kaposi’s sarcoma (KS) 

or the B cell malignancy Multicentric Castleman’s disease (MCD). Where this has 

been examined is in PEL cell lines expressing an HIV-reporter antigen and 

challenging these with their cognate CD8+ T cell. No recognition was seen as these 

cells were found to have a defective class I processing pathway; the PELs were found 

to express reduced levels of TAP-1 mRNA and low levels of surface MHC class I 

(Brander et al., 2000). Such cells are incapable of efficiently presenting intracellularly 

derived epitopes and are consequently likely to be poorly targeted by CD8+ T cells. 

Additionally, it has been shown that cell surface proteins involved in T cell activation 

and cell adhesion are expressed at significantly lower levels on PEL cells when 

compared to LCLs or primary B cells, potentially impairing the antigenicity of PEL 

cells in vitro (Suscovich et al., 2004). These findings question the ability of the 

immune response to effectively control these virus-associated pathologies.  

 

From the previous chapter, evidence suggesting that the virus has developed 

mechanisms by which to reduce the supply of CD8 epitopes from two key latent 
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proteins, LANA and vFLIP, to T cells was found; thereby potentially limiting control 

exercised by these T cells. However these mechanisms may not be effective at 

constraining epitope presentation to CD4+ T cells. Currently a role for CD4+ T cell 

control of HLA class II targets such as infected B cells or PEL and MCD is unclear.  

This study was conducted to investigate whether LANA-specific CD4+ T cells can 

respond to LANA-expressing cells or infected cells in the form of PEL cell lines. The 

panel of LANA-specific CD4+ T cells identified and characterised in Chapter 3 were 

used to determine whether HLA-matched LANA-expressing EBV-transformed B 

lymphoblastoid cell lines (LCLs) or PEL cell lines can be targeted by CD4+ T cells.  

 

5.1 Ectopic expression of LANA in lymphoblastoid cell lines (LCLs) for use as a 

model target cell line 

To test recognition of LANA-expressing cells by LANA-specific CD4+ T cells, a 

model system was developed where LANA expression vectors were transfected into 

B cells to test LANA-specific CD4+ T cell recognition of antigen-expressing cells. 

LANA constructs were ectopically expressed using derivatives of the pRTS-CD2 

plasmid shown in figure 5.1 and described in Chapter 4 (Kelly et al., 2009). The 

LANA-gene constructs used were derived from the BCBL-1 strain of virus and 

modified to remove the acidic repeat sequence (LANAΔacid) as this has been shown 

to increase protein expression (Kwun et al., 2007). These were further engineered to 

encode the haemagglutinin (HA) antibody epitope at the C-terminus of the protein to 

allow detection.  A derivative of this construct was also engineered to incorporate the 

amino terminus of the MHC class II invariant chain sequence at the amino terminus of 

this protein (LANAΔacid li). This modification directs proteins into the 

endolysosomal compartment, giving efficient processing and presentation of epitopes  
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from the fusion protein by class II MHC molecules (Sanderson et al., 1995), allowing 

cells transfected with this construct to act as positive controls in the LANA CD4+ T 

cell recognition experiments. 

 

The LANAΔacid expression vectors were transfected into EBV-transformed B-

lymphoblastoid cell lines (LCLs), selected for expression of rat-CD2 and expanded in 

the absence of dox. Once expanded, the transfected LCLs were stimulated with high 

levels of dox, 2µg/ml, for 24, 48, 72, and 96 hours to determine when maximal 

LANA construct expression occurs. Cells were lysed at each time point with 9M urea 

and kept at -70°C until all the time points were collected. Proteins in the lysates were 

separated on an 8% SDS gel, blotted onto nitrocellulose membranes which were 

probed for LANAΔacid expression using a monoclonal antibody specific for the HA 

epitope tag. LANAΔacid li and LANAΔacid expression in the dox-induced 

transfected LCLs from KSB1 and KS48 are shown in figures 5.2 and 5.3, 

respectively. LANAΔacid protein expression in each donor’s LANAΔacid li and 

LANAΔacid transfected LCLs was sufficient at 72hrs post-induction so this time of 

induction was used in subsequent studies.  

 

Figures 5.2 and 5.3 show that LANA protein was capable of being expressed in the 

transfected LCLs upon dox induction. However, the LANA constructs showed 

different levels of protein expression in the LCLs upon induction with the same 

concentration of dox. It was reproducibly found that the LANAΔacid li transfected 

LCLs expressed much higher levels of protein at each time point compared to the 

LANAΔacid transfected LCLs. So that meaningful comparisons between cells 

expressing the two constructs could be made in T cell recognition experiments, the  
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levels of protein expressed on a per cell basis were equalised by reducing the 

concentration of dox used to induce LANAΔacid li expression. LANAΔacid li 

transfected LCLs were induced with concentrations of dox titrated from 12ng/ml 

down to 0.75ng/ml and the levels of protein expressed in these cells were compared to 

LANAΔacid transfected LCLs induced with 2µg/ml dox by western blot analysis. As 

dox induction also induces expression of the GFP reporter molecule in this vector, the 

percentage of LANAΔacid and LANAΔacid li expressing LCLs can also be 

determined at each dox concentration as measured by GFP expression using flow 

cytometry analysis (data not shown). Figure 5.4 shows results of the western blot 

analysis probing for HA to detect LANA construct expression, or β-actin which was 

used as a loading control. The percentage of cells expressing GFP at each dox 

concentration is shown under the appropriate gel lane. The percentage of GFP 

expression and also LANAΔacid li expression in the LCLs decreased as the 

concentrations of dox was titrated out. 

 

As LANAΔacid li is behaving as the positive control in the LANA CD4+ T cell 

recognition experiments, levels of dox used to induce LANAΔacid li protein 

expression were selected to ideally give equivalent or lower levels of expression 

relative to parallel induced LANAΔacid transfected LCLs used in the recognition 

assays. Taking these variables into account, the concentrations of dox selected to give 

LANAΔacid li expression levels similar to or lower than 2µg/ml dox induction of 

LANAΔacid was 6ng/ml for both KSB1 and KS48 respectively.  
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5.2 LANA-specific CD4+ T cell recognition of LCLs ectopically expressing 

LANAΔacid constructs 

The next experiment sought to determine whether vector-derived LANAΔacid and 

LANAΔacid li antigen could be processed and presented by the MHC class II 

pathway of LCLs for recognition by LANA-specific CD4+ T cells. In this series of 

experiments, LANA-specific CD4+ T cells were incubated with their autologous 

LCLs expressing the LANAΔacid constructs and recognition assessed by measuring 

IFN-γ production by the T cells. LANAΔacid construct expression was induced in 

LCLs by incubation with the selected titrated dox concentration for 72hrs, as 

described above. The construct expressing LCLs were enriched by selecting for the 

induced co-expressed protein NGFR using MACS NGFR beads prior to their use in 

the CD4+ T cell recognition assay.  

 

Figure 5.5 (A) shows representative results using transfected donor KSB1 LCLs 

assayed against a panel of LANA-specific KSB1-derived T cells. Initially expression 

levels of the LANAΔacid constructs was checked by western blot analysis of lysates 

from the KSB1 LCLs. Higher total levels of LANA protein were detected in lysates 

from LANAΔacid versus LANAΔacid li transfected LCLs.  This correlated with 50% 

of the former LCLs expressing the reporter GFP, compared to the 2.6% GFP 

expression by the LANAΔacid li transfected LCLs. Representative results of 

recognition assays measuring IFN-γ production from 3 independent LANA-specific 

clones incubated with the dox induced autologous KSB1 transfected LCLs, or, as a 

positive control, cognate epitope-peptide sensitised autologous KSB1 LCLs are 

shown in figure 5.5 (B-D). Here the clones tested were the HLA-DQ6 restricted c63 

specific for peptide EYR (B), the HLA-DR13 restricted c33 specific for peptide LRS  



  Chapter 5 Results  

 
 

151 
 



  Chapter 5 Results  

 
 

152 

(C) and the HLA-DP1 restricted c86 specific for peptide LAP (D). For each of the 

LANA-specific clones, the positive control peptide pulsed LCLs were well recognised 

by the LANA-specific CD4+ T cells, but they did not recognise LCLs pulsed with 

peptide solvent DMSO showing that the T cells are functional and specific for their 

respective LANA epitope-peptide. The LANAΔacid li construct expressing LCLs 

were well recognised by each of the LANA-specific CD4+ T cell clones, showing that 

LANA protein directly routed into endo-lysosomal compartment in LCLs with the 

help of the MHC class II invariant chain can be processed and presented for CD4+ T 

cell recognition. More importantly, LANAΔacid construct expressing LCLs were 

recognised by the CD4+ T cells, showing that LCLs can process and present 

ectopically expressed LANAΔacid to LANA-specific CD4+ T cells. This experiment 

was repeated at least twice, using nine LANA-specific clones derived from donor 

KSB1 and gave similar results. 

 

LANA CD4+ recognition experiments using the HLA-DQ7 restricted KS48 derived 

GSP-specific clone was assayed against two additional transfected LCLs; the 

autologous KS48 LCL and HLA-DQ7 matched KSB2 LCL. As described above, 

LANA expression was induced in LCLs by incubation with the selected titrated dox 

concentration for 72hrs and further enriched by selecting for the vector expressed 

protein NGFR. Figure 5.6 (A) and (C) show representative results of a western blot 

analysis for LANAΔacid construct expression from transfected LCLs from donors 

KS48 and KSB2. For both LCLs, higher levels of LANA protein were detected in 

lysates from LANAΔacid transfected LCLs as compared to LANAΔacid li lysates. 

These results correlate the percentage GFP expression in the transfected LCLs, with 

44.6% and 44% GFP expression in the LANAΔacid transfected KS48 and KSB2  
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LCLs, compared to the 3.6% and 0.95% GFP expression of the LANAΔacid li 

transfected KS48 and KSB2 LCLs, respectively.  

 

These dox induced transfected LCLs were subsequently used in CD4+ LANA-

specific recognition assays. Figure 5.6 (B) and (D) shows results with HLA-

DQ7restricted KS48 C10 specific to LANA peptide GSP. The LANA-specific clone 

was incubated with the dox induced autologous KS48 (B) and HLA-DQ7 matched 

KSB2 (D) donor transfected LCLs. As a positive control, the LCLs were sensitised 

with cognate epitope-peptide GSP and peptide solvent DMSO as a negative control. 

The GSP-specific clone recognised the positive control peptide pulsed LCLs but not 

DMSO sensitised LCLs showing that the T cells are functional and specific. The 

LANAΔacid li construct expressing LCLs were also well recognised by the GSP-

specific CD4+ clone, showing that LANAΔacid protein directly routed into endo-

lysosomal compartment in LCLs can be processed and presented for CD4+ T cell 

recognition. More importantly, LANAΔacid construct expressing LCLs were 

recognised by the CD4+ T cells, showing that both autologous and HLA-matched 

LCLs can process and present ectopically expressed LANAΔacid to LANA-specific 

CD4+ T cells. For donor KS48 LANA expressing LCLs, this was tested on three 

different occasions and repeated twice for donor KSB2 LANA expressing LCLs with 

LANA-specific KS48 clone 10 derived. All experiments yielded a similar result.  

 

5.3 CD4+ T cell recognition of LCLs exogenously fed LANA protein 

These experiments have so far established that LCLs can process and present 

ectopically expressed LANAΔacid protein for LANA-specific CD4+ T cell 

recognition. Following on from this, the next question to address was whether the 
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LANA-specific CD4+ T cells were capable of responding to LCLs which had been 

fed exogenous LANA protein.  In this case for successful recognition, the LCLs 

would have to take up the LANA protein, process and present the peptides from the 

protein using the classical MHC class II processing pathway. The processing and 

presentation of exogenous LANA protein was tested using enriched LANA protein 

preparations derived from KSHV LANA positive PEL cell line BCBL-1, or a control 

antigen derived from KSHV negative cell line DG-75 described in section 2.4 of the 

materials and methods. Autologous LCLs were incubated with the protein for 18 

hours before being used in recognition assays with a range of LANA-specific CD4+ T 

cell clones. Figure 5.7 shows the results of this protein feeding experiment for four 

representative CD4+ LANA-specific clones using the two autologous donor’s LCLs, 

KSB1 (A-C) and KS48 (D). For each of the LANA-specific CD4+ clones, the positive 

control peptide pulsed LCLs were recognised by the LANA-specific CD4+ T cells, 

but they did not recognise LCLs pulsed with peptide solvent DMSO. The three KSB1 

clones tested were the HLA-DQ6 restricted c63 specific for peptide EYR (A), the 

HLA-DR13 restricted c33 specific for peptide LRS (B) and the HLA-DP1 restricted 

c86 specific for peptide LAP (C) and the donor KS48 HLA-DQ7 restricted c10 

specific for peptide GSP (D). All recognised the autologous LCLs fed exogenous 

LANA protein at both 80µg/ml and 40µg/ml, with no recognition of cells fed the 

control DG75 protein. Similar results were obtained for a further five KSB1 clones 

specific for different target epitopes on two different occasions (data not shown). 

These results show that LANA antigen can be processed and presented for LANA-

specific CD4+ T cell recognition using the classic MHC class II processing pathway 

and more importantly, the CD4+ LANA-specific T cell clones can recognise LANA 

antigen processed in this manner.  
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5.4 CD4+ T cell recognition of KSHV associated primary effusion lymphoma cell 

lines using EBV proteins as model antigens 

So far this work has established that LCLs can process and present LANA antigen for 

LANA-specific CD4+ T cell recognition. Following on from this finding, the next 

question to address was if KSHV infected B cells in the form of the KSHV 

malignancy primary effusion lymphoma (PEL) cell lines, are capable of processing 

and presenting CD4+ T cell epitopes for T cell recognition. PELs are B cells stably 

infected with KSHV, constitutively express LANA and are known to express MHC 

class II molecules on their surface (Cesarman et al., 1995). Moreover, PELs have 

previously been shown to have a defective CD8+ processing pathway as a result of 

reduced TAP-1 mRNA and decreased surface MHC class I (Brander et al., 2000). 

Initially then, surface MHC class I, total MHC class II, HLA-DQ and HLA-DR levels 

were measured by staining with mouse primary antibodies, these were detected with a 

secondary anti-mouse FITC conjugated antibody and intensity measured by flow 

cytometry analysis. Figure 5.8 shows representative results from four PELs BC-1, 

JSC-1, VG-1 and BCBL-1 that are HLA-matched (see Table 5.1) to the LANA-

specific CD4+ epitope-peptides identified in chapter 3, while figure 5.9 shows 

staining from two LCLs for comparison. For PELs BC-1 and JSC-1, relatively low 

levels of total class II staining were observed using the pan class II antibody, with 

slightly lower levels of expression of class II molecules HLA-DR and HLA-DQ 

observed on these cells. The PEL line VG-1 displayed extremely low surface levels of 

overall class I, class II, and the class II molecules HLA-DR and HLA-DQ. BCBL-1 

cells however differed from the other three PEL lines showing levels of surface class I 

and class II expression comparable to that of the donor LCLs KSB1 and KS48 (figure 

5.9).   
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As little is known about the class II processing of antigens in PEL lines, a series of 

preliminary experiments were conducted using a model system to assess their ability 

to present epitopes to CD4+ T cells. Here a panel of EBV-specific CD4+ T cells 

matched with the HLA types of the PELs was used to probe recognition of PELs 

expressing invariant chain tagged EBV-antigens delivered by infection with 

recombinant modified vaccinia Ankara (MVA) constructs encoding the EBV-

antigens. As a positive control, cells were pulsed with the cognate epitope-peptide or, 

as negative controls, infected with an MVA expressing an irrelevant protein or 

sensitised with DMSO. The EBV matched CD4+ T cells were incubated with the 

relevant target cells overnight and recognition assessed by measuring IFN-γ secretion. 

Figure 5.10 shows representative results for PELs BC-1, JSC-1, VG-1 and BCBL-1. 

PELs (A) BC-1, (B) JSC-1 and (C) VG-1 and HLA-matched LCLs were infected with 

an MVA-li expressing EBV protein EBNA2, and incubated with DR7 or DR4 

restricted CD4+ T cell clones specific to EBNA2’s PRS-peptide, as the PRS-peptide 

can be presented in more than one HLA context. Recognition of the EBNA2 MVA-li 

infected HLA-matched LCLs was detected for all three clones, confirming the 

specificity of the EBNA2-specific CD4+ T cell clones. In parallel, both the EBNA2 

MVA-li infected BC-1 and JSC-1 PELs were also recognised by their respective 

EBNA2-specific CD4+ T cell clones. In the case of VG-1, shown in figure 5.10 (C), 

there was relatively poor recognition of the VG-1 PRS pulsed cells and the EBNA2 

MVA-li infected VG-1 cells, consistent with the very low levels of MHC class II 

expressed on the surface of these cells (figure 5.8 (C)). Finally, BCBL-1 and HLA-

matched LCLs were infected with the EBNA3C MVA-li and incubated with the DQ5 

restricted CD4+ T cell clone specific to EBNA3C’s SDD peptide. As illustrated in 

figure 5.10 (D), both the MVA-li HLA-matched DQ5 LCL and BCBL-1 were  
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recognised by the CD4+ SDD specific clone, the SDD clone also recognised 

endogenous EBNA3C antigen expressed in these LCLs; a pattern noted by others who 

used this clone (Long et al., 2005). Overall, the PELs were recognised by their 

respective CD4+ T cell clones when the antigen is directed to the endo-lysosomal 

pathway by the invariant chain.  This suggests that at least part of the MHC class II 

processing pathway is intact in PELs and that they would be suitable targets for 

recognition by the LANA-specific CD4+ T cells.  

 

5.5 Establishment of control PEL lines overexpressing LANAΔacid and 

LANAΔacid li 

The previous experiments have established that LCLs ectopically expressing LANA-

antigen can be recognised by LANA-specific CD4+ T cells and PELs are capable of 

processing and presenting EBV li tagged antigens. The subsequent experiments set 

out to investigate whether the HLA-matched PELs can process and present LANA-

antigen for LANA-specific CD4+ T cell recognition. As well as addressing 

recognition of the PELs by the T cells, derivatives of the PELs were established 

which were transfected with the inducible LANAΔacid and LANAΔacid li plasmid 

constructs as used in the LCL studies. These lines were established as controls to 

allow overexpression of the LANAΔacid constructs in T cell recognition assays.  

PELs that are HLA-matched to the LANA-specific CD4+ T cell clones were 

transfected with the LANAΔacid and LANAΔacid li expression constructs using the 

same methods to transfect the LCLs described above in section 5.1. Initially the 

optimal time of induction of LANAΔacid construct expression was determined by 

inducing expression with 2µg/ml dox for 24, 48, 72, and 96 hours and monitoring 

protein expression levels by immunoblotting. LANAΔacid li and LANAΔacid 
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expression in the dox-induced transfected BC-1 cells are shown in figure 5.11. LANA 

protein expression in the LANAΔacid li was maximal at 96hrs post-induction, 

however LANAΔacid transfected BC-1 cells were maximal at 72hrs post-induction so 

this time of induction was used for the PELs in subsequent studies. 

 

As shown above with the transfected LCLs, higher levels of the LANAΔacid li 

expression compared to LANAΔacid were detected in the transfected BC-1 cells.  As 

before, the levels of LANAΔacid produced by the different constructs was equalised 

so that meaningful comparisons of T cell recognition of the PELs could be made. The 

concentration of dox used to induce expression of the LANAΔacid li construct was 

then titrated to decrease expression of the protein, using the same methods carried out 

on the transfected LCLs. Figures 5.12 and 5.13 shows results of the western blot 

analysis probing for HA to detect LANAΔacid construct expression at the different 

concentrations of dox in the HLA matched PELs. β-actin was used as a loading 

control. The percentage of cells expressing the GFP reporter at each dox 

concentration is shown under the appropriate gel lane.  As LANAΔacid li is to be used 

as the positive control in the LANA CD4+ T cell recognition experiments, levels of 

LANAΔacid li protein expression were induced such that they were at a similar or 

lower level than that of LANAΔacid in the PELs. Taking these variables into account, 

figure 5.12 illustrates the concentrations of dox selected to give LANAΔacid li 

expression levels similar to 2µg/ml dox induction of LANAΔacid for BC-1 and JSC-1 

was 0.75ng/ml and 1.5ng/ml, respectively. Figure 5.13 shows the selected dox 

concentration for LANAΔacid li expression in VG-1 and BCBL-1 of 3ng/ml gave 

lower levels of expression.  
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5.6 LANA-specific CD4+ T cell recognition of LANA and LANAΔacid 

expressing PEL lines 

The previous sets of experiments confirmed that PELs express MHC class II on their 

surface, albeit to variable levels, and at least some of the class II processing pathway 

is functional in these cells. It has been established that PELs are plasmablastoid B 

cells stably infected with KSHV and consequently express the genome maintenance 

protein LANA in every cell (Fakhari et al., 2006). Initially LANA expression was 

confirmed in the HLA matched PEL lines by immunoblotting with monoclonal 

LANA-antibody that is specific for the repeat sequence present in LANA (Figure 

5.14).  The next set of experiments sought to determine whether PELs can process and 

present endogenous and ectopically expressed LANA antigen for CD4+ T cell 

recognition.  

 

LANA-specific CD4+ T cells were incubated with HLA-matched PELs expressing 

endogenous LANA or, as controls, the PELs transfected induced LANAΔacid 

constructs and recognition assessed by measuring IFN-γ production by the T cells. 

LANAΔacid construct expression was induced in PELs by incubation with the 

selected titrated dox concentration for 72hrs, as described above. Prior to use in the 

CD4+ T cell recognition assay, the dox-induced LANAΔacid vector transfected PELs 

were enriched by selecting for the vector expressed reporter protein NGFR using 

MACS NGFR selection beads. Initially expression levels of the LANAΔacid 

constructs was checked by immunoblotting with the rat monoclonal HA antibody. 

Figures 5.15 (A) and 5.16 (A) show representative results of the NGFR enriched BC-

1 and JSC-1 transfected cells, showing expression of both the LANAΔacid and 

LANAΔacid li constructs. BC-1 LANAΔacid li transfected cells showed higher levels 
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of LANA protein, despite the 7% GFP compared to the 42.5% GFP of the 

LANAΔacid transfected BC-1 cells, highlighting that the LANAΔacid li transfected 

cells produce higher levels of protein for reasons that is unclear. In the case of JSC-1, 

expression of both LANAΔacid and LANAΔacid li constructs was detected.  

 

We next tested whether the LANA-specific CD4+ T cell clones could recognise the 

endogenous LANA expressed within these PELs or the control overexpressed 

recombinant LANA constructs that were previously recognised in LCLs. Recognition 

assays were conducted assaying the HLA-DQ7 restricted KS48c10 GSP-specific 

clone against the HLA matched PELs BC-1 and JSC-1. The clone was incubated with 

either the uninduced or DMSO sensitised PELs to measure recognition of endogenous 

LANA, or the control dox induced transfected PELs, or GSP peptide-sensitised PELs.  

Results of IFN-γ secretion by the clones are shown in Figures 5.15 and 5.16(B). The 

GSP peptide-sensitised BC-1 and JSC-1 cells were recognised by the GSP-specific 

CD4+ T cells with minimal recognition of these cells when pulsed with DMSO. The 

LANAΔacid li construct expressing BC-1 and JSC-1 cells were recognised by the 

GSP-specific CD4+ T cell clone, showing that LANA protein directly routed into 

endo-lysosomal compartment in PELs can be processed and presented for CD4+ T 

cell recognition. However most importantly, there was little if any recognition by the 

CD4+ T cell clone of endogenous LANA expressed in these PELs (uninduced cells) 

or any additional recognition of cells expressing the LANAΔacid construct. These 

results suggest that BC-1 and JSC-1 cannot process and present endogenous LANA or 

ectopically expressed LANAΔacid to LANA-specific CD4+ T cells. These 

experiments were repeated on three different occasions with KS48 LANA GSP- 

 



  Chapter 5 Results  

 
 

171 

 

 



  Chapter 5 Results  

 
 

172 

 

 



  Chapter 5 Results  

 
 

173 

specific clone 10, and consistently showed no recognition of the endogenous LANA 

expressed by unmanipulated PELs or overexpressed LANAΔacid. 

 

LANA-specific CD4+ recognition experiments were performed on an additional two 

PELs, VG-1 and BCBL-1. As described above, in addition to recognition of the 

endogenous LANA expressed by the PELs, LANAΔacid construct expression was 

induced in these PELs by incubation with the selected titrated dox concentration for 

72hrs and cells expressing LANAΔacid further enriched by selecting for the vector 

expressed reporter protein NGFR. Figure 5.17(A) shows LANA protein expression 

levels in VG-1 by immunoblotting with a monoclonal mouse antibody specific to the 

N’-terminus of LANA. This allows a comparison between the levels of endogenous 

LANA and the ectopically expressed LANAΔacid constructs, showing higher levels 

of the ectopically expressed LANAΔacid proteins compared to the endogenous 

protein. Recognition assays measuring IFN-γ production from two independent HLA-

matched LANA-specific clones incubated with the dox induced and uninduced VG-1 

transfected cells, or as a positive control, cognate epitope-peptide sensitised VG-1 

cells are shown in Figure 5.17.  Here the KSB1 derived T cell clones c204, restricted 

through DQ6 specific for peptide WGD (B) and clone c33 restricted through DR13 

specific for peptide LRS (C) were assayed for recognition of the different VG-1 

targets. For each of the LANA-specific clones, the positive control peptide pulsed 

VG-1 cells were recognised by the LANA-specific CD4+ T cells, but there was 

minimal recognition of VG-1 cells pulsed with DMSO. Recognition of the VG-1 

transfected cells gave a similar pattern of results as to those seen using the KS48c10 

clone against BC-1 and JSC-1. Here the LANAΔacid li construct expressing VG-1 

cells were recognised by the LANA-specific CD4+ T cell clones, however the 
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uninduced PELs, i.e. only those expressing the endogenous form of LANA showed 

minimal recognition by the CD4+ T cells with no increased recognition of cells over 

those expressing the LANAΔacid protein. This suggests that VG-1 is also unable to 

process and present endogenous LANA or ectopically expressed LANAΔacid to 

LANA-specific CD4+ T cells. This recognition assay was repeated three times with 

all seven VG-1 HLA-matched restricted CD4+ T cell clones, in no experiments was 

there recognition of the endogenous LANA expressed in VG-1 or the LANAΔacid 

expressing VG-1 by any of the T cell clones.  

 

Figure 5.18 shows the result of similar experiments carried out on the PEL BCBL-1. 

As with the other PELs, the BCBL-1 cells transfected with the LANAΔacid and 

LANAΔacid li expressing constructs were induced with dox and expression 

confirmed by immunoblotting with the monoclonal HA antibody as illustrated in 

figure 5.18(A). Lysates from the LANAΔacid transfected cells showed higher levels 

of the recombinant LANA protein, when compared to the LANAΔacid li transfected 

cells, likely reflecting the higher percentage of cells transfected with LANAΔacid. 

The BCBL-1 cells were incubated with the HLA-DQ6 restricted LANA EYR peptide-

specific CD4+ T cell clone 63 to test for recognition of LANA antigens. The positive 

control EYR peptide pulsed BCBL-1 cells were recognised by the EYR-specific 

CD4+ T cells and showed an increased response over the DMSO sensitised BCBL-1 

cells. However the BCBL-1 cells either pulsed with peptide solvent DMSO, dox 

induced or uninduced LANAΔacid and LANAΔacid li transfected BCBL-1 cells all 

induced IFN-γ release by the EYR-specific CD4+ T cells. However, no increase in 

IFN-γ secretion above background DMSO levels was detected from LANAΔacid and  
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LANAΔacid li expressing BCBL-1 cells, suggesting no recognition of the 

overexpressed recombinant LANA protein.  To ensure the EYR-specific CD4+ T cell 

clone was not responding non-specifically to BCBL-1 or that it is a phenomenon 

specific to this clone, all of the LANA-specific CD4+ T cell clones that are restricted 

through HLA-DQ6 were tested against BCBL-1 and, in parallel, the HLA-DQ6 

matched PEL VG-1. In these assays the BCBL-1 and VG-1 cells were either 

unmanipulated, sensitised with either the clone’s cognate epitope-peptide as a positive 

control, or with peptide solvent DMSO as a negative control.  These target PEL cells 

were incubated with the LANA-specific CD4+ T cell clones and recognition 

quantified by IFN-γ ELISA. Figure 5.19 shows the results of this assay using the four 

HLA-DQ6 restricted LANA-specific clones derived from KSB1: (A) clone 63 

specific for peptide EYR, (B) clone 71 specific for peptide PAF, (C) clone 204 

specific for peptide WGD and (D) c110 specific for peptides LAP/LRS. Each of the 

clones secreted IFN-γ in response to challenge with the peptide-sensitised BCBL-1 

and VG-1 cells substantially above the levels induced when incubated with the 

DMSO sensitised or unmanipulated PEL. However, the unmanipulated and DMSO 

sensitised BCBL-1 cells induced IFN-γ secretion by each of the four T cell clones 

while in parallel assays, VG-1 induced little response. This finding supports the 

BCBL-1 result shown previously in figure 5.18, suggesting the HLA-DQ6 restricted T 

cell clones are likely recognising LANA epitopes expressed on these BCBL-1 cells. 

 

5.7 CD4+ T cell recognition of PELs exogenously fed LANA protein 

To further characterise the antigen processing function of the PELs, these cells were 

fed enriched LANA protein preparations and used as targets for the LANA-specific  
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CD4+ T cells in recognition assays. These experiments were conducted similar to 

those using LCLs as targets as described in section 4.3, with the PELs fed either a 

LANA protein preparation from BCBL-1 cells or a control preparation from DG75 

cells. The PELs were incubated with the protein for 18 hours before being used in 

recognition assays with a range of HLA-matched LANA-specific CD4+ T cell clones 

and recognition quantified by IFN-γ ELISA. Figure 5.20 shows the results of this 

protein feeding experiment for the PELs (A) BC-1 and (B) JSC-1 incubated with the 

HLA-DQ7 restricted LANA-specific GSP clone 10 from donor KS48. The protein fed 

PEL (C) VG-1 was incubated with the HLA-DR13 restricted LANA-specific LRS 

clone 33 and (D) BCBL-1 with the HLA-DQ6 restricted LANA-specific EYR clone 

63. For each of the LANA-specific CD4+ clones, the positive control peptide 

sensitised PELs were recognised by the LANA-specific CD4+ T cells, but the clones 

did not recognise PELs pulsed with peptide solvent DMSO apart from the PEL 

BCBL-1 in which there was some background recognition. In contrast to the 

experiments conducted with LCLs fed these protein preparations (Figure 5.7), no 

recognition of the BC-1, JSC-1 and VG-1 PELs fed exogenous LANA protein at both 

80µg/ml and 40µg/ml was observed, nor was recognition of the PELs fed the control 

DG75 protein by all the LANA-specific CD4+ T cell clones. These results suggest 

that LANA antigen cannot be processed and presented for LANA-specific CD4+ T 

cell recognition using the classic MHC class II processing pathway by BC-1, JSC-1 

and VG-1. For the BCBL-1 cells there was no increase in recognition of the cells fed 

LANA protein and this result was consistent across all the HLA-DQ6 restricted 

LANA-specific clones (data not shown). These experiments were repeated twice for 

each of the PELs with their HLA-matched LANA-specific clones, all yielding a 

similar result. 
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5.8 Levels of CLIP on the MHC class II molecules of PELs suggest appropriate 

peptide exchange takes place in at least some PELs 

The T cell recognition assays carried out in this section have shown that unlike LCLs 

most PELs are incapable of processing and presenting ectopically expressed, 

exogenously fed or endogenously expressed LANA for CD4+ recognition. The 

exception to this was the PEL BCBL-1, which consistently induced IFN-γ production 

by the HLA-matched LANA-specific clones. This raises the question how does 

BCBL-1 differ in its MHC class II processing machinery from the other three PELs 

tested?  

 

The MHC class II processing pathway involves a number of steps as described 

previously in the introduction. A crucial part of this pathway for CD4+ T cell 

presentation is the loading of the MHC class II molecule with the CD4+ T cell’s 

cognate epitope-peptide.  In order for this to occur, the MHC class II-like molecule 

HLA-DM catalyses the removal of the class II associated invariant chain peptide 

(CLIP) to allow binding of the target epitope-peptide. Previous studies have shown 

that mutant B-cell lines with a defect in antigen presentation often fail to bind 

peptides derived from the internalised proteins and often arrive at the cell surface with 

the CLIP peptide still bound as a result of a defect in HLA-DM function (Weenink et 

al., 1997; Riberdy et al., 1992; Sette et al., 1992). To test whether this phenomenon 

was occurring in BC-1, JSC-1 and VG-1, these PELs were stained for surface MHC 

class II and CLIP in parallel and analysed by flow cytometry. For comparison BCBL-

1 and donor LCLs, KS48 and KSB1 were also analysed. Figure 5.21 shows the results 

of this staining, the levels of surface MHC class II and CLIP on the different PELs.  

Staining with this antibody was validated using the mutant cell line T2 DR5 which 
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lacks HLA-DM as a positive control, which showed high levels of surface CLIP. The 

cell line T2 DR5 engineered to express HLA-DM was used as a negative control and 

showed no CLIP staining on the surface of the cells (data not shown). The donor 

LCLs, KS48 and KSB1, showed approximately 25-30% surface CLIP expression 

compared to their surface MHC class II. The PELs varied greatly in CLIP expression, 

with JSC-1 and BCBL-1 showing almost no CLIP surface expression, while BC-1 

showed high levels of CLIP expression compared to its surface MHC class II. VG-1 

showed similar levels of CLIP expression compared to its surface MHC class II, 

however it is difficult to interpret this result as the VG-1 surface MHC class II levels 

were so low. These results suggest that for the PEL BC-1, HLA-DM may be a 

limiting factor in the MHC Class II antigen processing and presentation pathway.   

 

5.9 Restoration of HLA class II expression on PELs and recognition by LANA-

specific CD4+ T cells 

The MHC class II surface staining on the PELs shown in figure 5.8 and figure 5.21 

above have consistently shown that higher levels of surface MHC class II is expressed 

by BCBL-1 compared to the other PELs, being at levels similar to those seen on the 

LCLs. Furthermore, the previous experiments have shown that only LCLs and the 

PEL BCBL-1 are capable of presenting LANA antigen for CD4+ T cell recognition. 

Recent evidence from studying the function of the KSHV-encoded vIRF3 gene, which 

is expressed in PELs provides a potential explanation as to why PELs express low 

surface MHC class II. The KSHV protein vIRF3, expressed during latency in PELs, 

functions to disrupt type I IFN signaling and is required for the continuous 

proliferation of PEL cells (Wies et al., 2009; Wies et al., 2008). However this protein 

has now been shown to inhibit the function of both the IFN-γ-sensitive CIITA  
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promoter pIV and the lymphoid cell-specific CIITA promoter pIII (Schmidt et al., 

2011). These both drive expression of the class II transactivator (CIITA) gene, whose 

product binds to the MHC class II enhanceosome where it recruits factors that drive 

the expression of MHC class II genes amongst others.  The expression of vIRF3 in the 

different PEL lines used in this study was analysed by western blot analysis using a 

mouse monoclonal vIRF3 antibody and actin was used as a loading control. Figure 

5.22 shows that as expected all the PEL lines express vIRF3, interestingly BCBL-1 

which was consistently recognised by the LANA-specific CD4+ T cells showed the 

lowest level of expression of this protein.  

 

It has been shown that ectopic expression of vIRF3 decreased surface class II 

expression in B cells and siRNA knockdown of vIRF3 in PELs increased surface 

class II expression (Schmidt et al., 2011). In an attempt to reverse the effects of vIRF-

3 expression on the PELs BC-1, JSC-1 and VG-1, a panel of siRNAs and protocols 

that have been previously described in the above study were used to knock down 

expression in the PELs. However, these attempts to knockdown the vIRF3 protein 

were unsuccessful and no change in surface class II expression, vIRF3 protein 

expression levels or recognition by the LANA-specific CD4+ T cells was detected 

(data not shown). Alternatively, as vIRF3 is thought to interfere with the CIITA 

promoter, CIITA was expressed from a different promoter, these experiments were 

carried out by Dr Andrew Hislop, as I was unable to complete this part of the study 

due to time restrictions. Here the PELs were transduced with a retrovirus expressing 

either CIITA or a control construct (HLA-B*81) from the retroviral long terminal 

repeats, immediately downstream from this gene was an IRES and the truncated 

NGFR. The transduced cells were selected by magnetically sorting for NGFR using  
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MACS NGFR-specific beads. Lysates of the CIITA transduced cells compared to 

control transduced cells analysed by western blot showed expression of CIITA and 

proteins that it transactivates, namely CD74 (MHC class II invariant chain) and HLA-

DR, demonstrating function of the CIITA transgene (data not shown). Expression of 

surface levels of class II were also measured by flow cytometry on the transduced 

PELs and compared to levels on BCBL-1, an LCL and class II negative fibroblasts. 

Surface HLA class II levels were measured on NGFR-expressing cells by co-staining 

with anti-NGFR antibody and an anti-class II MHC antibody. The control transduced 

cells showed little difference in surface class II expression compared to non-

transduced cells (data not shown), however figure 5.23 shows that the CIITA 

transduced PELs VG-1, BC-1 and JSC-1 expressed increased levels of class II, 

comparable to those expressed by the LCL or BCBL-1. 

 

As the CIITA transduced PELs now expressed increased levels of surface class II, the 

ability of the different LANA-specific CD4+ T cell clones to recognise these cells 

was reexamined. The non-transduced PELs, control-transduced PELs and autologous 

LCLs were compared to the CIITA transduced PELs when incubated with HLA-

matched LANA-specific CD4+ T cell clones and recognition quantified by IFN-γ 

ELISA. As controls, aliquots of these cells were sensitised with the cognate peptide- 

epitope.  Figure 5.24 shows representative results of these assays, when (A) BC-1 and  

(B) JSC-1 cells were assayed against the HLA-DQ7 restricted KS48 clone 10 specific 

for LANA peptide GSP and (C) VG-1 cells against the HLA-DQ6 restricted KSB1 

clone 110 specific for LANA peptides LAP and LRS. For all three PELs, little or no 

IFN-γ was released in response to the non-transduced PELs, consistent with the  
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 previous observations.  The clones also showed a similar pattern of recognition to the 

control HLA-B*81 transduced cells. Similarly HLA mis-matched LANA-specific 

clones were assayed against each of the PELs in parallel assays secreting minimal 

amounts of IFN-γ. Each of the CIITA transduced PELs however were able to induce 

IFN-γ secretion from their HLA-matched clone, indicating the clones could now 

recognise these PELs. The PEL VG-1 was further tested against a range of HLA-DR, 

DQ and DP restricted and HLA-matched LANA-specific clones which consistently 

showed recognition of the CIITA transduced VG-1 cells (data not shown). These 

results show that the overexpression of CIITA in the PELs allows the recognition of 

endogenously expressed LANA antigen by the CD4+ T cells, overcoming the 

potential immune evasion function elicited by vIRF-3.  

  

Discussion 

This study used LANA-specific CD4+ T cell clones to probe recognition of LANA-

expressing B cells. EBV-transformed B cells (LCLs) which have an intact class II 

antigen processing pathway were capable of efficiently processing and presenting 

LANA antigens for CD4+ T cell recognition. However the majority of the KSHV B 

cell malignant PELs, which natively express LANA, were not recognised by the 

LANA-specific CD4+ T cells; the exception being the BCBL-1 PEL. Only when 

LANA was ectopically expressed in PELs as a fusion protein with the MHC class II 

invariant chain was T cell recognition of JSC-1, BC-1 and VG-1 induced. 

Interestingly, BCBL-1 cells relative to the other PELs expressed lower amounts of 

vIRF3 and expressed higher levels of MHC class II on their surface.  The inhibition of 

CIITA transcription by vIRF3 provides an explanation as to why there is poor T cell 

recognition of the PELs JSC-1, BC-1 and VG-1. Consequently, bypassing the   
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inhibitory effects of vIRF-3 on CIITA transcription by ectopically expressing CIITA 

in these PELs increases MHC Class II levels on their surface and allows CD4+ T cell 

recognition by the LANA-specific T cell clones. This is the first study to investigate 

the recognition of LANA expressing cells or malignancies using CD4+ LANA-

specific T cells. In contrast, a number of studies have investigated T cell recognition 

of the EBV genome maintenance protein EBNA1 using EBNA1-specific CD4+ T 

cells, however each with variable results. The first reported EBNA1-specific CTL 

CD4+ clone studied did not lyse target LCLs (Khanna et al., 1995). This result was 

further supported by another group that reported EBNA1 evades direct immune 

recognition by CD4+ T cells (Mautner et al., 2004). However, other studies have 

shown that cytotoxic CD4+ T cell clones reactive to EBNA1 inhibited B-cell 

proliferation in vitro (Nikiforow et al., 2003). Further investigations into this 

variability in EBNA1 CD4+ T cell recognition was carried out by the Rickinson 

group which appear to support the theory that the majority of EBNA1-specific CD4+ 

T cell clone do not efficiently recognise LCLs. This group further suggested that 

efficiency of recognition may be an EBNA1 CD4+ epitope-specific phenomenon 

(Long et al., 2005; Tsang et al., 2006; Leung et al., 2010).  

 

Similar to what is seen toward PELs, the MHC Class I restricted CTL response has 

been shown to be ineffective against cells from the EBV associated B cell malignancy 

Burkitts lymphoma (Rooney et al., 1985), highlighting the potential role of the CD4+ 

response in the control of these malignancies. For Burkitt’s lymphoma this was 

confirmed in an in vitro study in which EBNA1-specific T helper 1 (Th1) CD4+ 

CTLs were capable of recognising Burkitt Lymphoma lines (Paludan et al., 2002). 

Some PELs are co-infected with EBV and similar to Burkitts lymphoma have an EBV 
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latency I phenotype, in which they only express EBNA1. In preliminary studies we 

have examined the ability of EBNA1-specific CD4+ T cell clones to recognise the 

EBV co-infected PEL BC-1. Similar to what we found with the LANA-specific 

clones, no recognition of endogenous EBNA1 was observed.  Only when an invariant 

chain tagged form of EBNA1 was expressed in the PELs was recognition observed 

(data not shown). These results highlight that unlike Burkitt’s lymphoma, PELs 

potentially have an immune evasion mechanism that interferes with the CD4+ T cell 

recognition of expressed antigens.  

 

An interesting phenomenon observed in these studies was the higher level of 

expression of the LANAΔacid li protein compared with LANAΔacid when expression 

was induced from the pRTS-CD2 vectors. Given these constructs have been cloned 

into the same vector at the same sites and the LANA sequences are the same, the 

observed effect seems attributable to the invariant chain sequence fused to the amino 

terminus of the LANAΔacid li construct. When others have used a similar strategies 

and constructs for the expression of EBNA1, the invariant chain tagged construct was 

detected at lower levels compared to the non-tagged version. This was attributed to 

the endosomal routing of the fusion protein resulting in its rapid degradation (Leung 

et al., 2010). Why this is not seen in the comparable experiments conducted here with 

the equivalent LANA construct, expressed from the same vector is not clear. An 

emerging concept in the regulation of protein expression to minimise epitope 

production is the idea that translation initiation may be a mechanism by which viruses 

can restrict protein expression and consequently epitope-peptide generation (Apcher, 

et al.  2010; Apcher et al., 2009). One may speculate that in this instance, sequences 

in the 5' region of LANA may have such activity and are not conducive to efficient 
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transcription. However when a separate sequence taken from a human gene which is 

likely optimised for efficient expression is fused to the 5' terminus of the gene, such 

an effect is overcome. This could be tested by assessing in vitro translation of in vitro 

synthesised mRNA for both constructs. Alternatively, non-coding changes could be 

inserted into the 5' sequence of the LANAΔacid construct and changes in levels of 

expressed protein monitored. 

 

As well as PELs expressing the latency profile of infected cells in KS lesions, an 

additional two latency proteins are expressed, the viral IL-6 and the 

immunomodulatory and anti-apoptotic protein vIRF3. A previous study highlighted 

the role of vIRF3 in inhibiting the transcription of CIITA. This transactivator 

functions by binding to four transacting factors that act as an enhanceosome bound to 

regulatory modules within the promoter regions of genes associated with the class II 

pathway such as HLA-DP, HLA-DQ, HLA-DR, the invariant chain and the non-

classical MHC class II molecules HLA-DM and HLA-DO (Steimle et al., 1994; 

Harton et al., 2000: Reith et al., 2005). When bound to the enhanceosome, CIITA 

promotes transcription by recruiting and activating elements of the transcription 

machinery. Inhibiting CIITA expression then represents an effective strategy to 

restrict expression of many components of the HLA class II processing pathway.  The 

importance of CIITA function in immune control is highlighted by the observations 

that herpesviruses, EBV and CMV also interfere with CIITA expression (Apcher et 

al., 2009; Miller et al., 1998).  

 

The only PEL that was consistently recognised by the LANA-specific CD4+ T cell 

clone was BCBL-1. Interestingly, BCBL-1 expressed lower levels of vIRF3 and 
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higher levels of MHC Class II on its surface in comparison to the other three PELs 

studied BC-1, JSC-1 and VG-1. A previous study had demonstrated that siRNA 

knockdown of vIRF3 decreased the inhibition of CIITA transcription and increased 

surface MHC Class II expression on PELs (Schmidt, et al.  2011). Using similar 

protocols and siRNA vIRF3 sequences described in that study, our attempts were 

unsuccessful and we were unable to replicate these results. The study did not show 

efficient knockdown of vIRF3, suggesting sub optimal sequences of vIRF3 siRNAs 

were used or perhaps poor transfection efficiency. Given vIRF3 is required for 

proliferation of cells one may speculate these cells may be outgrown by non-

transfected cells within the culture.  A more controlled approach may be to transduce 

the PELs with retroviral based vectors expressing inhibitory shRNA sequences under 

the control of an inducible promoter which also expresses reporter proteins.  

 

These findings are consistent with the idea that vIRF3 inhibition of CIITA promoter 

usage was at least one factor in preventing efficient class II processing and 

presentation of LANA epitopes. However the observation that some PELs such as 

VG-1 which express similar levels of vIRF3 as compared to BC-1 or JSC-1 but have 

much lower levels of surface class II compared to these cells may suggest other 

factors are involved in subverting class II processing in PELs. In this context vFLIP 

has been proposed to be an inhibitor of autophagy (Lee et al., 2009), a process known 

to be important in the generation of CD4 epitopes (Paludan et al., 2005).  

Nevertheless, bypassing the CIITA promoter blockage by vIRF3 through the ectopic 

expression of CIITA restored expression of class II and other CIITA targets in the 

PELs sufficient to overcome any other potential inhibitory mechanisms. 
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The adaptive T cell immune response plays a key role in the control of viral 

infections, especially as effectors of long-term immune surveillance against viruses in 

the infected host. The molecular targets of T cells are peptide-epitopes derived from 

viral antigens that are processed and presented by the MHC complexes. Therefore, 

determining the identity of these viral peptide antigens is highly important, as they 

can be used to track the cognate T cell responses in disease, allowing a better 

understanding of their role in the control of virus pathogenesis. Ultimately these 

epitopes may find use as the basis of immunotherapeutic strategies to control virus 

infection and disease progression.   

 

The previous observations of control of KSHV-associated disease such as KS in HIV 

patients and immunosuppressed transplant patients when their cellular response is 

restored by therapeutic intervention, argues strongly for a role of these effectors in 

control of at least some KSHV-associated diseases (Duman et al., 2002; Bihl et al., 

2007).  In light of this, several groups have attempted to define the viral antigens that 

are responsible for initiating and maintaining CTL immune responses in KSHV 

infected hosts. However to date, only a limited number of viral peptide-epitopes have 

been identified. These have mainly been derived from studying HIV co-infected 

individuals, identifying epitopes from lytic cycle proteins which are mostly HLA-

A*0201 restricted (Bourboulia et al., 2004; Guihot et al., 2006; Wang et al., 2002; 
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Wang et al., 2001; Ribechini et al., 2006). Furthermore, the responses elicited by 

these epitopes are generally weak, especially when compared to other herpesviruses 

such as EBV and CMV, and it is unclear whether the weakness of these responses is 

the normal state or were consequences of the patients pathological state (Bihl et al., 

2007). Very few studies have examined the T cell response to KSHV in healthy 

donors who are controlling their infection, in the absence of an immune disregulating 

HIV setting.  

 

To address this relatively unexplored area of KSHV T cell immunity, this study 

investigated the T cell response to the four well-defined KSHV latent proteins LANA, 

vFLIP, vCyclin and Kaposin in healthy Gambian KSHV infected donors using 

overlapping peptide libraries spanning their sequences to stimulate T cell responses. 

This gave an overall estimation of the T cell response to these antigens across all 

HLA types. The ELISpot screens showed that the ex vivo responses, as measured in 

the periphery to these overlapping peptide pools, were very weak and substantially 

lower than responses made to EBV by this donor population, implying the number of 

T cells controlling KSHV latent infection appear lower than those controlling EBV 

latent infections (Njie et al., 2009). These KSHV-specific responses were also lower 

than those reported for similar studies which have used peptide libraries to examine 

the T cell response in HIV co-infected donors to lytic and latent antigens. However, 

these studies were consistent with LANA being more frequently targeted than 

Kaposin (Woodberry et al., 2005: Bihl et al., 2007). Furthermore, the present analysis 

of ex vivo T cell responses also suggests that the other two latent proteins, vCyclin 

and vFLIP, induce and maintain weak responses in healthy donors. Thus unlike T cell 

responses to the EBNA3 family in EBV infected donors (Steven et al., 1996), KSHV-
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specific T cell responses do not appear to be focused on particular latent antigens, but 

appear to elicit weak responses to all latent antigens. Consequently, identifying novel 

and immunodominant epitopes using these methods has proven very challenging for 

KSHV immunologists.  

 

In order to discover the targets of these weak responses, this study used an alternative 

approach to isolate latent T cell specificities from the healthy KSHV infected cohort. 

KSHV-specific T cell clones were generated by ex vivo expansion, stimulating donors 

PBMCs with overlapping peptides spanning the sequences of LANA, vFLIP and 

vCyclin. Most of these studies were focussed on LANA as this appeared to be the 

dominant antigen in the ex vivo ELISpot screens. As such the majority of PBMCs 

from the KSHV seropositive donors were stimulated with the LANA peptide library 

to derive LANA-specific T cell clones. The T cell cloning primarily yielded CD4+ 

LANA-specific T cell epitopes, generating clones specific to one CD8+ and thirteen 

CD4+ targets from five donors, restricted by a wide range of HLA types. In terms of 

numbers of clones isolated, CD4 clones were more frequently isolated than CD8s.  T 

cell epitopes from vFLIP and vCyclin were also identified in responses from one local 

donor. PBMCs from the Gambian cohort were limited and so not used to identify 

epitopes from these proteins. Although the vFLIP and vCyclin responses were 

sourced from one donor’s response, four CD4+ targets to vFLIP, two to vCyclin and 

one CD8+ target were identified to each protein. Interestingly in this case the number 

of CD8 clones isolated to these epitopes was clearly greater than the more diverse 

CD4 clones.   
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The differential isolation of CD4 and CD8 T cell clones from the donors may give 

some idea as to the abundance of these responses in vivo. We cannot exclude the 

possibility that the ex vivo expansion and culture of these cells may have biased the 

expansion of specificities and lymphocyte subsets, indeed the use of 15 mer peptides 

to expand responses has been reported to show some bias to stimulating CD8 

responses (Draenert et al., 2003). However the higher frequency of isolated CD4+ T 

cell clones specific for LANA supports the idea that these may be the numerically 

dominant form of cellular immunity to LANA, while the preferential isolation of 

CD8+ T cells specific to vFLIP and vCyclin may be the dominant form of cellular 

immunity for these targets. This data is based on responses from one carefully studied 

donor, clearly other healthy donors must be assessed to confirm or disprove these 

contentions.  Having now identified CD4 and CD8 epitopes in these proteins across a 

range of HLA types it would be of great interest to repeat the ELISpot analysis on 

healthy KSHV-infected donors and determine if CD4 responses dominate the LANA-

specific response and whether CD8 responses dominate the vFLIP and vCyclin 

responses. 

 

To date very few CD4+ and CD8+ targets have been identified within the latent 

proteins. Consequently studies on the recognition of latent KSHV expressing cells 

have been very limited. This study investigated the recognition of both ectopically 

and natively expressed latent antigens in various cell backgrounds by the CD4+ and 

CD8+ KSHV-specific T cells identified in this study. Revealing that these genes show 

features which indicate that they have evolved strategies to minimise CD8+ T cell 

targeting.   
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Initially recognition of ectopically expressed vFLIP constructs using CD8+ T cells for 

both model and native vFLIP epitopes was examined. The wildtype (Wt) vFLIP 

sequence was poorly expressed and poorly recognised when expressed in MJS and 

LCL cell backgrounds. However, recognition was restored upon the expression of a 

human codon-optimised sequence of vFLIP, suggesting that vFLIP uses sub-optimal 

codon sequences to reduce protein expression, which consequently limits the supply 

of viral peptides available for T cell recognition. At present, it is difficult to determine 

whether the lack of detectable Wt vFLIP protein expression and recognition are due to 

the expression system used in this study or whether it is indeed the result of the poor 

codon usage in the Wt sequence resulting in inefficient protein translation as a 

potential immune evasion mechanism. Indeed, previous work has detected Wt vFLIP 

protein expression in vitro using a lentiviral expression system in DCs (Rowe et al., 

2009), however native expression in KSHV-infected B cells and endothelial cells 

appears low (Low et al., 2001; Alkharsah et al., 2011). In order to determine the 

protein translation and expression levels of vFLIP in a more physiologically relevant 

setting, a different expression system would need to be employed. The Hu and Wt 

vFLIP sequences would need to be transcribed from a tricistronic or bicistronic 

transcript mimicking vFLIP expression in vivo. In addition to this measuring vFLIP 

expression levels in primary B cells or endothelial cells latently infected with KSHV 

in vitro would provide a good indication of how well vFLIP is expressed from the 

virus genome in a KSHV relevant cell background.  

 

This study also provided further evidence that the acidic repeat sequence encoded 

within LANA interferes with its own processing and presentation, reducing its 

recognition by LANA-specific CD8+ T cells in an LCL background. It has been 
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previously shown that the acidic repeat sequence inhibits degradation and its own 

translation efficiency (Kwun et al., 2007); indeed previous studies using a murine T 

cell epitope inserted in LANA has suggested that LANA expressing cells are not 

recognised by CD8+ T cells (Zaldumbide et al., 2007). This is the first study to test 

this recognition in a native setting using a LANA-specific CD8+ T cell clone. The 

results of this study are similar to CD8+ T cell recognition studies on EBV genome 

maintenance protein EBNA1, which have shown that the GAr domain within its 

sequence is responsible for reduced CD8+ T cell recognition by downregulating the 

rate of protein translation and proteasomal degradation (Tellam, 2007; Levitskaya et 

al., 1995). As the primary source of endogenous antigen for EBNA1 presentation has 

been shown to be derived from DRiPs, the translation efficiency of EBNA1 directly 

correlated with the efficiency at which DRiPs were produced and presented for CD8+ 

T cell recognition (Tellam, 2004 et al.; Tellam, 2007 et al.). We hypothesise that 

LANA antigens for presentation to CD8+ T cells are derived from a similar route, as 

previous work has shown the acidic repeat sequence interferes with LANA translation 

and proteasomal degradation (Kwun et al., 2007; Zaldumbide et al., 2007), supporting 

the inefficient recognition of FL-LANA expressing cells by LANA-specific CD8+ T 

cells used in this study. This would need to be confirmed in this system by measuring 

rates of translation and degradation to determine whether this correlates with the 

CD8+ T cell recognition of the respective constructs. Furthermore, this finding would 

need to be confirmed using different LANA-specific CD8+ T cell targets to exclude 

the possibility that this is an epitope-specific phenomenon.  

 

The CD8+ T cell recognition of LANA was also assessed in in vitro KSHV-infected 

HMEC-1 cells. However despite successful infection of the cells and detectable levels 
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of LANA protein expression, there was no CD8+ T cell recognition of LANA. The 

HMEC-1 cells were confirmed to be capable of processing and presenting antigen, yet 

when surface MHC class I levels were tested on infected cells, they were found to be 

reduced compared to uninfected cells. This result was somewhat unexpected as the 

KSHV proteins primarily thought to be responsible for downregulating MHC class I 

surface expression, K3 and K5, are classified as lytic cycle antigens. However, studies 

have shown that K5 protein can be detected in endothelial cells up to 5 days later 

following KSHV infection and the levels of expression correlate with MOI used 

(Krishnan et al., 2004; Adang et al., 2007). Ideally, we would have checked for K5 

expression levels in the endothelial cells in parallel to MHC class I staining, as well as 

titrating the MOI of the virus used for infection in these assays. We hypothesise that 

the combined roles of the acidic repeat sequence within LANA with the reduced 

levels of MHC class I expression was sufficient to overcome any level of CD8+ T cell 

recognition that may have been present in these cells.  

 

This work so far has shown that in these models, the latent antigens vFLIP and LANA 

are inefficiently recognised by CD8+ T cells. This is most likely as a result of the 

virus employing strategies to restrict protein translation, consequently limiting the 

amount of DRiPs available (Yewdell et al., 1996), which are thought to be the major 

source of peptide-epitopes which feed into the class I processing pathway (Tellam et 

al., 2007; Mackay et al., 2009). In contrast, CD4+ T cells are thought to derive their 

peptide-epitopes from the mature protein pool (Mackay et al., 2009) and so may not 

be affected by these evasion strategies. As such the ability of LANA-specific CD4+ T 

cells to recognise LANA-expressing LCLs and PELs was investigated. The CD4+ T 

cells recognised the LANA-expressing LCLs but could not recognise the majority of 
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the KSHV-infected B cell malignant PEL lines which natively express LANA, as they 

appear to have defects in their ability to process and present antigen. Part of this 

defect may relate to the function of vIRF3 which has been shown to inhibit the 

promoter activities of both the IFN-γ and CIITA genes resulting in reduced MHC 

class II surface expression on these PELs (Schmidt et al., 2011). However, BCBL-1 

cells relative to the other PELs expressed lower amounts of vIRF3 and expressed 

higher levels of MHC class II on their surface and was the only PEL line to be 

recognised by the LANA-specific CD4+ T cells. Although the LANA-specific CD4+ 

T cells did not recognise most PELs, it is not clear whether they would recognise B 

cells which had been infected with KSHV as part of the normal biology of KSHV 

infection. Thus although the LANA-specific CD4+ T cells may be ineffective against 

most PELs, they may have a role for control when the virus establishes latency in B 

cells. In this context, the recent ability to infect B cells in vitro with KSHV would 

allow for this to be tested in vitro at least (Myoung et al., 2011; Hassman et al., 2011). 

It would be of interest to know whether vIRF3 is also expressed at this stage of 

infection to determine whether it potentially protects newly infected cells from CD4+ 

T cell recognition. 

 

Taking the results of the recognition assays using CD8+ T cell clones specific for 

LANA and vFLIP together, it appears for these two latent proteins at least, the virus is 

going to great lengths to minimise CD8+ T cell targeting of these proteins. This raises 

the idea that CD4+ T cells may have a greater role in the control of KSHV infection 

and at least some KSHV-associated malignancies. Such an argument may help to 

explain why HIV co-infected donors are so sensitive to the development of KSHV-

associated malignancies. Thus, levels of CD4+ T cells will progressively decline in 
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untreated HIV patients and these patients appear to develop KSHV-associated disease 

before diseases associated with other herpesviruses (Rosenberg et al., 1997; Moore et 

al., 1996). Now that we have better defined epitopes, it would be of interest to 

measure the KSHV-specific CD4+ T cell responses to these proteins in untreated HIV 

patients with KSHV-associated disease when they initiate HAART and as they 

resolve disease. Previous studies have shown that peripheral levels of global KSHV-

specific T cells and KSHV-specific CD8+ T cells slowly increase with time after 

initiation of anti-retroviral treatment (Bihl et al., 2007; Bourboulia et al., 2004), 

however the KSHV-specific CD4 response has been largely untested in this 

population. A careful observational study of KSHV-specific CD4 responses with 

monitoring viral loads and disease resolution would help give some idea as to whether 

KSHV-specific CD4+ T cells have a role in control of KSHV-associated disease after 

HAART initiation. 

 

The importance of the CD4+ T cell response in controlling virus infection has been 

highlighted in recent years as CD4+ T cells have been shown to act as CTLs in their 

own right. It is now coming to light that a number of immune evasion mechanisms for 

CD4+ T cells are at play in herpesvirus infections. In KSHV infected PELs it has 

been shown that vIRF3 restricts CIITA gene expression by blocking expression from 

the lymphoid origin-specific promoter pIII and IFN-γ responsive promoter pIV of this 

gene. Consistent with this, we found stimulating PELs with recombinant IFN-γ did 

not increase expression of surface MHC class II, despite inducing surface MHC class 

II on cell types such as fibroblasts in parallel assays. However, the inhibitory effects 

of vIRF3 on CIITA transcription were bypassed by ectopically expressing CIITA in 

these PELs, increasing MHC class II levels on their surface and allowing CD4+ T cell 
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recognition by the LANA-specific T cell clones. However we were unable to 

determine whether vIRF3 is the sole determinant of the poor recognition of PELs by 

the LANA-specific T cells, or whether other mechanisms are at play in preventing 

CIITA transcription. In order to address this, vIRF3 expression will need to be 

knocked down using siRNAs or shRNAs with more optimal sequences and where the 

efficiency of transfection can be measured in parallel to CIITA and surface class II 

levels. However, if there is no significant restoration of function following vIRF3 

knockdown, this would suggest that other inhibitory mechanisms are responsible and 

other components of the MHC class II processing pathway would need to be 

examined. It may also be of interest to determine whether, similar to some EBNA1 

CD4+ epitopes (Leung et al., 2010), LANA epitopes are generated through the 

autophagy pathway. A recent study has highlighted a role for vFLIP in the inhibition 

of the autophagy pathway in the PEL BCBL-1 (Lee et al., 2009).  However as BCBL-

1 was the only PEL capable of presenting LANA antigen for CD4+ T cell recognition 

in this study, it would suggest that it is unlikely that the specific LANA epitopes 

presented by BCBL-1 were generated through the autophagy pathway.  

 

The importance of evading CD4+ T cell recognition during herpesvirus replication is 

highlighted by studies on other herpesviruses which also downregulate surface MHC 

class II on infected cells and subsequently evade CD4+ T cell recognition. In EBV, 

the transcriptional regulator BZLF1 inhibits MHC class II expression at the 

transcriptional level by binding and repressing the CIITA promoter PIII, using a 

similar mechanism employed by vIRF3 (Li et al., 2009). While human CMV 

(HCMV) infection of human endothelial cells and fibroblasts also results in a defect 

in IFN-γ signal transduction disrupting MHC class II expression (Miller et al., 1998). 
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HCMV also encodes two proteins US2 and US3, which lead to the proteasomal 

degradation of MHC class II molecules (Tomazin et al., 1999) and inhibit the 

assembly of the peptide:MHC class II complex (Hegde et al., 2002), respectively.   

 

In contrast to studies on other herpesviruses, very few studies have investigated the 

CD4+ T cell response in KSHV infected cells. Recent work has highlighted a role for 

non-MHC restricted CD4+ T cells in the non-cytolytic control of KSHV lytic 

replication in tonsillar B cells, preventing lytic reactivation and promoting latency 

(Myoung et al., 2011). However, to our knowledge the data presented in this thesis is 

the first to investigate CD4+ T cell recognition of any KSHV malignancy. Our results 

have shown that, based on in vitro studies, direct recognition of most PEL cell lines 

may not lead to successful control of these infected cells by CD4+ T cells.  However 

inducing CIITA expression in the PELs represents a potential therapeutic intervention 

to restore recognition by CD4+ T cells.   

 

The second KSHV infected cell type which may be subject to direct control by 

KSHV-specific CD4+ T cells are the infected B cells of MCD lesions.  In contrast to 

HIV-associated KS patients, MCD patients show relatively conserved immune 

function, with higher levels of peripheral CD4+ T cells, yet may develop disease even 

when on HAART; indeed the incidence of MCD is increasing in HAART treated 

patients (Powles et al., 2009). Previous studies have suggested that KSHV-specific 

CD8+ T cell responses in MCD patients are of an equivalent frequency and 

functionality compared to asymptomatic KSHV carriers co-infected with HIV (Guihot 

et al., 2008). Although good levels of peripheral CD4+ T cells may be seen in MCD 

patients, little is known about the frequency of KSHV-specific CD4+ T cells. As B 
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cells express HLA class II, these KSHV-infected B cells conceivably may be targeted 

by specific CD4+ T cells. However, vIRF3 can be expressed in infected cells in 

MCD. Importantly, not all infected cells in MCD lesions express vIRF3, suggesting at 

least some may be targets for the CD4 response (Rivas et al., 2001). Also of interest is 

the observation that when follicular dendritic cells are found to express LANA in 

these lesions, this is associated with increased T cell infiltration and lower viral loads, 

implying a role for T cell control (El-Daly et al., 2010). As KSHV-specific CD8 

responses appear equivalent to HIV KSHV co-infected donors who control their 

disease, it would be of interest to examine the KSHV-specific CD4 response with the 

epitopes identified in this study, during the relapsing and remitting phases of this 

disease to determine if any correlates with KSHV-specific CD4+ T cell control exist.  

 

In this study, for the first time well-characterised CD8+ and CD4+ KSHV-specific T 

cells were used to test the recognition of ectopically and endogenously expressed 

latent antigens in various cell backgrounds including LCLs, KSHV-infected 

endothelial cells and KSHV malignant B cells in the form of PEL cell lines. This 

work has highlighted the potential roles of the latent proteins in disrupting recognition 

by the adaptive immune T cell response in a native setting. The strategies used by the 

virus to minimise recognition by CD8+ T cells explored in this study will be difficult 

to overcome in a therapeutic setting, as these evasion mechanisms primarily focus on 

restricting protein expression.  Similarly, the virus has mechanisms in place to prevent 

efficient CD4+ T cell recognition. However these latter evasion strategies, as we have 

demonstrated, are more susceptible to manipulation and represent potential 

therapeutics which can be used to favour immune control and restore the virus-host 

balance.  
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