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Abstract 

 
 Federated Learning (FL) is being actively studied as computing 

power of edge devices increase. Most of the existing studies assume 

that there are full labels of data. However, since labeling data on the 

edge devices requires high cost, this assumption is not suitable in the 

real world. In general, most of the data each client has is often 

unlabeled. In this study, we propose a novel federated semi-

supervised learning (FSSL) method. It uses prototype to utilize other 

clients’ knowledge and pseudo-labeling to compute loss about 

unlabeled data. It is a communication and computation efficient 

method than recent FSSL algorithm. In experiments, we showed that 

our method performed 3.8% better than not using unlabeled data with 

CIFAR-10 dataset, 4.6% better with SVHN dataset and 3.1% better 

with STL-10 dataset. 
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Chapter 1. Introduction 
 

 

Federated Learning (FL)[1] is a machine learning framework 

that has been actively studied recently. Instead of sending data 

accumulated on edge devices(clients) to the server, models are local 

trained using the computing power of the edge devices. Each model 

is then sent to the server, and the server updates the global model 

using FedAvg and then broadcasts it to the edge devices. 

There are many studies to improve FL algorithms. However, 

most of the existing studies have been done in a situation of 

supervised learning [2,3,4] that all clients have full labels of data. 

This is not the suitable setting for real world because data on the 

edge devices often do not have labels. For example, if data is 

collected to the server, some experts can be hired to label them, but 

data on the edge device is less likely to be labeled by users, and it 

may be mislabeled because they are not professional. Therefore, it 

is important to do study Federated Semi-Supervised Learning 

(FSSL). 

Recently, there are some researches about FSSL. In FedMatch 

[5], they utilized unlabeled data using inter-client consistency loss. 

One client uses other clients’ weights to compute loss for unlabeled 

data. They showed naïve solutions that just applying state of the art 

semi-supervised learning methods such as FixMatch [7] and UDA 

[6] to FL are not effective because in federated settings each client 

has much less data compared to their centralized setting, and they 

cannot use knowledge of other clients. On the other hand, FixMatch 

uses knowledge from other clients, so they showed good 

performance through experiments. 

Although their method improved accuracy utilizing unlabeled data, 

there are some drawbacks. First of all, there is increased 

communication overhead. In order to use other clients’ knowledge, 

the server has to send other clients’ weights of the local model. So, 

the communication cost increases linearly to the model size as the 

number of clients for utilizing increases. The other drawback is that 
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increased computation overhead. When the client computes loss for 

its unlabeled data, it has to run the model as many times as the 

number of other clients utilized. For both cases, if the size of the 

model is not so large, it may not be a problem, but vice versa, it will 

be a lot of overhead. To address these problems, we propose a new 

method for FSSL. Our method utilizes prototypes, not weights, so 

there is low overhead for communication. Also, there is low 

computation cost because it does not need to run the model several 

times. The contributions for our research are as follows: 

 We propose new FSSL algorithm that utilizes other clients’ 

knowledge when computing loss for unlabeled data. 

 Our method has better accuracy than FedAvg that does not 

use unlabeled data and FedAvg with a semi-supervised 

learning method. 

 Our method is more efficient in terms of communication and 

computation cost than FedMatch. 
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Chapter 2. Backgrounds 
 

 

2.1. Federated Learning 
 

Federated learning (FL) [1] is distributed learning between a 

server and clients that the clients do not send their data to the server 

but send their local models’ parameters. The training proceeds by 

repeating several rounds. When the round starts, the server sends 

parameters of the global model 𝜃𝑔 to the clients. Then each client 

trains global parameters 𝜃𝑔 as local parameters 𝜃𝑐 using their own 

data. After finishing local training, each client sends their local 

parameters 𝜃𝑐 to the server. Then, the server updates the global 

model with local parameters using FedAvg. 

 

 𝜃𝑔 =
1

∑ 𝑛𝑐
𝐶
𝑐=1

∑ 𝑛𝑐 ∙ 𝜃𝑐
𝐶
𝑐=1                       (1) 

 

where 𝐶 is the total number of clients that participated training in the 

round and 𝑛𝑐 is the number of data that the client 𝑐 used for training.  

 

2.2. FedMatch 
 

In FedMatch [5], the main part of the algorithm is inter-client 

consistency loss that is computed using unlabeled data. Let 𝑝𝜃(𝑦|𝑢) 

be a neural network that is parameterized by weights 𝜃 and predicts 

softmax output 𝑦 with given unlabeled input 𝑢. Then, inter-client 

consistency loss in client 𝑙 is defined as 

 

                𝑙𝑜𝑠𝑠 =  
1

𝐶
∑ 𝐾𝐿[𝑝

𝜃𝑗
∗ (𝑦|𝑢)||𝑝𝜃𝑙(𝑦|𝑢)]𝐶

𝑗=1                (2) 

 

where 𝐶 is the number of other clients that are used in client 𝑙, 𝜃𝑗 

is weights for 𝐶 clients (* denotes that the parameters are frozen), 

𝜃𝑙 is weights of client 𝑙, and 𝐾𝐿 means Kullback-Leibler divergence 

loss. In the original paper, loss using pseudo-labeling is also added, 
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but it is omitted for convenience of explanation. As we can see, other 

clients’ weights are needed to compute the loss. So, the server 

needs to send other clients’ weights as well as the global averaged 

weights. Furthermore, each client needs to run the model as many 

times as the number of clients. As a result, communication cost and 

computation cost are increased 𝐶 times compared to FedAvg. 

 

2.3. Prototypical Network 
 

Prototypical network [8] is originally used for meta-learning 

algorithm. However, our algorithm uses that it has the training 

process based on metric learning. The network is trained to learn 

good embedding vectors for input. Let 𝐷 is a training set and 𝐾 is a 

set of all classes. Then for each class 𝑘 in 𝐾, select support set 𝑆𝑘 

that is a random subset of 𝐷𝑘, a training set of class 𝑘. And select 

query set 𝑄𝑘  that is random subset of 𝐷𝑘 ∖ 𝑆𝑘 . Then compute 

prototype 𝑐𝑘 from support set for each class as 

 

𝑐𝑘 =
1

|𝑆𝑘|
∑ 𝑓𝜃(𝑥𝑖)(𝑥𝑖,𝑦𝑖)∈𝑆𝑘

                   (3) 

 

where 𝑓𝜃 is a neural network that is parameterized by weights 𝜃. 

Then, loss is computed as 

 

𝑙𝑜𝑠𝑠 =
1

|𝐾||𝑄𝑘|
∑ ∑ [𝑑(𝑓𝜃(𝑥), 𝑐𝑘) + 𝑙𝑜𝑔 ∑ exp (−𝑑(𝑓𝜃(𝑥), 𝑐𝑘′))𝑘′∈𝐾∖𝑘 ](𝑥,𝑦)∈𝑄𝑘𝑘∈𝐾   (4) 

 

where 𝑑 is Euclidean distance function. The model is trained so that 

embedding vectors of the same class are located close together, and 

those of different classes are located far away. 
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Figure 1. Colored circles without a red border are embedding vectors of 

support set. Each color means different class. Each prototype of classes is 

computed by averaging embedding vectors of each class and is expressed 

with a red border. The black circle means an embedding vector of query set 

and the distances between prototypes is used for computing loss. 

 

2.4. Pseudo-Labeling 
 

Pseudo-labeling is one of the techniques mainly used in semi-

supervised learning. It sets pseudo-label for unlabeled data and then 

use them to compute loss. There are several methods about pseudo-

labeling and we use one of them that used in MixMatch [9]. 

In MixMatch, it uses several augmented data for one unlabeled 

data to make pseudo-label. Let 𝑝𝜃  be a neural network 

parameterized by 𝜃 , 𝑢𝑏  be one unlabeled data, and 𝑢̂𝑏,𝑘  be an 

augmented data of 𝑢𝑏. Then, pseudo-label is computed as 

 

𝑞𝑏 =
1

𝐾
∑ 𝑝𝜃(𝑦|𝑢̂𝑏,𝑘)𝐾

𝑘=1                   (5) 

 

i.e., average of 𝐾  augmented data. And then, it uses entropy 

minimization to lower the entropy of guessed label as follows: 

 

𝑞̅𝑏,𝑖 = 𝑞
𝑏,𝑖

1
𝑇⁄

/ ∑ 𝑞
𝑏,𝑗

1
𝑇⁄𝐿

𝑗=1                    (6) 

 

where 𝐿 is the number of classes, 𝑞𝑏,𝑖 is 𝑖th class of probability, and 

𝑇 is a hyperparameter. As 𝑇 → 0, the probability distribution will be 

a one-hot distribution. 



 

 ６ 

Chapter 3. Algorithm 
 

 

In this chapter, we would explain about what our algorithm is. 

The algorithm is explained with four parts: Server to Clients, In 

Clients, Clients to Server, and In Server. These four parts are 

repeated every round.  

 

Algorithm 1: Federated Semi-Supervised with Prototypical Network 

𝑐: prototypes of all classes 

RunServer: 

Initialize global parameter 𝜃0 

for each round 𝑟 = 1, 2, …, R do 

        𝐴𝑟 ← (random sample of 𝑁 clients) 

        Send 𝜃𝑟−1,  {𝑐𝑡
𝑟−1: 𝑡 ∈ 𝐴𝑟−1} to all clients 

        for each client t ∈ 𝐴𝑟 in parallel do  

                𝜃𝑡
𝑟, 𝑐𝑡

𝑟 ← RunClient 

        end for 

        𝜃𝑟 ←
1

𝑁
∑ 𝜃𝑡

𝑟𝑁
𝑡=1   

        Store {𝑐𝑡
𝑟: 𝑡 ∈ 𝐴𝑟} 

end for 

 

RunClient: 

𝐷𝑠: labeled dataset, 𝐷𝑢: unlabeled dataset  

𝑦̅𝑢 ← 𝑃𝑠𝑒𝑢𝑑𝑜𝐿𝑎𝑏𝑒𝑙𝑖𝑛𝑔(𝐷𝑢, {𝑐𝑡
𝑟−1: 𝑡 ∈ 𝐴𝑟−1}) 

for each episode e = 1, 2, …, E do 

        support set 𝑅 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝑠) 

        query set 𝑄𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝑠 ∖ 𝑅) 

        query set 𝑄𝑢 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝑢) 

        prototype 𝑐 ← 𝑀𝑎𝑘𝑒𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒(𝑅) 

        𝑙𝑠, 𝑙𝑢 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐿𝑜𝑠𝑠(𝑐, 𝑄𝑠, 𝑄𝑢, 𝑦̅𝑢)  
        𝐿𝑜𝑠𝑠 = 𝑙𝑠 + 𝜆𝑢 ∙ 𝑙𝑢 

        𝜃 ← 𝜃 − 𝜂 ▽𝜃 𝐿𝑜𝑠𝑠 

end for 

prototype 𝑐 ← 𝑀𝑎𝑘𝑒𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒(𝐷𝑠) 

 

3.1. Server to Clients 
 

At the start of the round 𝑟, the server sends prototypes 𝑐𝑡
𝑟−1 of 

the clients 𝐴𝑟−1 which participated in the previous round as well as 

the global weights 𝜃𝑟−1 to the clients 𝐴𝑟 that participate in the round. 

In the later section, we will explain how the prototypes of other 
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clients and the global weights are computed. 

 

3.2. In Clients 
 

After receiving global weights and other clients’ prototypes, the 

client first pseudo-labels the unlabeled data using other clients’  

prototypes. For each unlabeled data 𝑥 ∈ 𝐷𝑢 , compute embedding 

vector 𝑧 using local model parameterized by 𝜃. 

 

𝑧 = 𝑓𝜃(𝑥)                         (7) 

 

Then compute Euclidian distance 𝑑𝑡,𝑘  between each class 𝑘  of 

prototypes 𝑐𝑡,𝑘 for each client 𝑡 that received from the server. 

 

𝑑𝑡,𝑘 = 𝐸𝐷(𝑧, 𝑐𝑡,𝑘)                      (8) 

 

where 𝐸𝐷 means Euclidean distance. Probability distributions can be 

computed using softmax of the negative of the distance for each class.  

 

𝑝𝑡,𝑘 = 𝑒−𝑑𝑡,𝑘

∑ 𝑒−𝑑𝑡,𝑗𝐿
𝑗=1

⁄                    (9) 

 

where 𝐿 is the total number of classes. After computing probability 

distributions for every other client’ s prototypes, pseudo-labels are 

computed by averaging probability distributions and entropy 

minimization.  

 

𝑝𝑘 =
1

𝑁
∑ 𝑝𝑡,𝑘

𝑁
𝑡=1                      (10) 

𝑦̅𝑘 = 𝑝𝑘

1
𝑇⁄

/ ∑ 𝑝𝑘

1
𝑇⁄𝐿

𝑘=1                   (11) 

 

where 𝑇 is a hyperparameter for entropy minimization. 
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Figure 2. Pseudo-labeling. 

 

Now, we’ll explain how to compute loss. First, a support set 

𝑅  is selected using some part of the labeled data 𝐷𝑠 , and the 

prototype 𝑐𝑘 for each class is computed by running it through the 

local model. The query set 𝑄𝑠 is selected from the remaining labeled 

data and the other query set  𝑄𝑢is also selected from the pseudo-

labeled data and create embedding vectors by running the model for 

each query set. Loss for labeled data is computed using equation (4). 

Loss for unlabeled data is computed little bit different.  A 

hyperparameter 𝜆𝑢 that regulates the effectiveness of the loss of 

unlabeled data is multiplied for the loss of the unlabeled data.  

 

Figure 3. Computing loss 

 

After local training, compute prototypes for sending to the 

server using all of the labeled data. 

 

3.3. Clients to Server 
 

The client not only sends the updated local weights to the server, 

but also sends the prototypes for each class. 
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3.4. In Server 
 

The server updates the global weights using FedAvg with the 

weights received from each client and keeps the prototypes The 

server sends the prototypes and the updated global weights to the 

clients participating training in the next round. 
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Chapter 4. Experiments 
 

 

4.1. Experimental Setup 
 

Tasks 

We use CIFAR-10, SVHN, and STL-10 datasets. For CIFAR-

10, we use 54,000 training set, 3,000 valid set, and 3,000 test set. 

For SVHN, we use 54,000 training set, 2,000 valid set, and 2,000 test 

set. For STL-10, we use 108,000 training set, 1500 valid set, and 

1500 test set. When split datasets, all splits have the same numbers 

of data per class. For CIFAR-10 and SVHN, we extract 5,000 labeled 

data and use the rest of the training set (49,000) as unlabeled data. 

For STL-10, we use 10,000 labeled data and 98,000 unlabeled data. 

There are 100 clients and we randomly select 5 active clients 

that participate training for each round. Each client has 50 labeled 

data and 490 unlabeled data for CIFAR-10 and SVHN, and 100 

labeled data and 980 unlabeled data for STL-10. For labeled data, 

there are 5 labeled data per class. For unlabeled data, we assume two 

settings: IID and non-IID. For IID setting, there are 49 unlabeled 

data per class and for non-IID setting, each class have the different 

number of data, (244, 73, 73, 15, 15, 15, 15, 15, 15, 10) with different 

combination of order that use in [5]. 

 

Baseline 

 Our baselines are: 1) FedAvg-SL and FedProx[10]-SL: 

each client has full labeled data. They update the global model via 

FedAvg and FedProx frameworks 2) FedAvg and FedProx: each 

client trains with 50 labeled data and does not use unlabeled data. 3) 

FixMatch-FedAvg and FixMatch-FedProx: naive combinations of 

FixMatch with FedAvg/FedProx. FixMatch is one of the SOTA 

algorithms for semi-supervised learning. 4) FedMatch: recent 

federated semi-supervised learning method. 
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Models 

 we use ResNet-9 network, same architecture that use in [5]. 

For our proposal method, it does not need output softmax layer, so 

we remove the output layer. There is detailed architecture of the 

network in Table 1. The network has about 6 million parameters.  

 

Layer Filter Shape Stride Output 

Input N/A N/A 32×32×3 

Conv 1 3×3×3×64 1 32×32×64 

Conv 2 3×3×64×128 1 32×32×128 

Pool 1 2×2 2 16×16×128 

Conv 3 3×3×128×128 1 16×16×128 

Conv4 3×3×128×128 1 16×16×128 

Conv 5 3×3×128×256 1 16×16×256 

Pool 2 2×2 2 8×8×256 

Conv 6 3×3×256×512 1 8×8×512 

Pool 3 2×2 2 4×4×512 

Conv 7 3×3×512×512 1 4×4×512 

Conv 8 3×3×512×512 1 4×4×512 

Pool 4 4×4 4 1×1×512 

Softmax 512×10 N/A 1×1×10 

Table 1. Network architecture of ResNet-9 

 

Hyperparameters 

The number of rounds is 300. We use RMSprop optimizer with 

1e-3 initial learning rate. For baseline, each client trains 1 local 

epochs and 8 batch size. For FedProx, the coefficient of 

regularization term is 1e-3. For FixMatch, the number of 

transformations is 2 and the hyperparameter for transformation 

range is 10. Weight of loss for unlabeled data is 1e-2 and batch size 

for unlabeled data is 100. For proposed method, the size of support 

set is 10 (1 per 10 class), the size of labeled query set is 20 (2 per 

10 class), and the size of unlabeled query set is 100 (random 

selection). The number of local episodes is 10. The hyperparameter 

for entropy minimization is 0.5 and weight of loss for unlabeled data 
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is 3e-1.  

4.2. Experimental Results 
 

Table 2. is the details of experimental results. The accuracies of 

FedAvg/FedProx-SL are upper bounds of accuracies of other 

methods. When measuring the performance of our proposed method, 

we use majority votes with the prototypes of the clients that 

participated the round. We observe that our proposal with FedAvg 

framework outperforms for all tasks. We can see that naive 

combinations of FixMatch with FedAvg/FedProx do not perform very 

well compared to FedAvg/FedProx that do not use unlabeled data. 

This is because each client has small amount of data and they do not 

use other clients’ knowledge. On the other hands, our method utilizes 

other clients’ knowledge when using unlabeled data. We also observe 

that our method is robust with non-IID setting. 

 

 

CIFAR-10  SVHN 

Method Test Acc.(%)  Method Test Acc.(%) 

 IID Non IID   IID Non IID 

FedAvg-SL 81.7 80.0  FedAvg-SL 93.4 91.7 

FedProx-SL 81.6 79.2  FedProx-SL 92.9 91.9 

FedAvg 62.2  FedAvg 93.5 

FedProx 62.0  FedProx 82.8 

 IID Non IID   IID Non IID 

FixMatch-FedAvg 62.4 61.8  FixMatch-FedAvg 86.5 87.0 

FixMatch-FedProx 62.9 61.6  FixMatch-FedProx 87.6 87.5 

FedMatch 57.7 59.1  Proposal-FedAvg 88.1 87.7 

Proposal-FedAvg 65.0 64.2  Proposal-FedProx 87.2 87.7 

Proposal-FedProx 64.4 63.8     
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STL-10 

Method Test Acc.(%) 

FedAvg 72.3 

FedProx 72.0 

 IID 

FixMatch-FedAvg 73.7 

FixMatch-FedProx 73.6 

Proposal-FedAvg 75.4 

Proposal-FedProx 74.5 

 

Table 2. Test accuracy. We use 100 clients (5 active clients per round) for 

300 rounds. We measure the global model accuracy. The ratio of labeled 

data and unlabeled data is about 1:10 

 

 

Figure 4. is test accuracy for each communication rounds. We plot 

IID cases for CIFAR-10 and SVHN dataset. 

 

Figure 4. Test accuracy for communication rounds 

 

Figure 5. is performances with different ratio of labeled and 

unlabeled data. It shows that as the number of unlabeled data 

decreases and the number of labeled data increases, the performance 

between FedAvg that does not use unlabeled data and our method 

becomes similar. It means that our method can have better 

performance when it can utilize more unlabeled data. 
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Figure 5. Performances with different ratio of labeled and unlabeled data. 

 

Figure 5. is performances with different ratio of labeled and 

unlabeled data. It shows that as the number of unlabeled data 

decreases and the number of labeled data increases, the performance 

between FedAvg that does not use unlabeled data and our method 

becomes similar. It means that our method can have better 

performance when it can utilize more unlabeled data. 

 

 Comm. Cost per Round Comp. Cost per Round 

FedMatch 14.46 MB 1229.9 GFLOP 

Proposal 13.16 MB 789.7 GFLOP 

Table 3. Communication cost and Computation cost for FedMatch and 

proposal. 

Table 3. is communication cost and computation cost for 

FedMatch and the proposal. For communication cost, we use 

prototypes, not the model parameters, so communication cost is 9% 

less than FedMatch. For computation cost, FedMatch has to run other 

clients’ models to compute loss for unlabeled data, so it has more 

overhead. By the way, our method only need to compute distance 

between prototypes and embedding vectors, so computation cost is 

about 35% less than FedMatch. 
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Chapter 5. Conclusion 
 

 

We propose the new framework for FSSL. With experiments, we 

show that our method can utilize well other clients’ knowledge with 

unlabeled data. Furthermore, there is small additional costs for 

communication and computation. The dimension of the prototype is 

much lower than the number of parameters of weights. Computing 

distance between embedding vectors and prototypes is also much 

lower overhead compared to running the model. In conclusion, our 

method is effective and efficient framework for FSSL. 

FSSL is a field that has not been studied much yet. Therefore, it 

is necessary to conduct more experiments in various setting, such as 

additional datasets, different number of clients, different distribution 

of labeled and unlabeled dataset, and so on.  
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초    록 
 

   연합 학습은 엣지 디바이스의 계산 능력이 증가하면서 활발하게 연구

되고 있는 분야이다. 대부분의 기존 연구는 클라이언트가 가지고 있는 

데이터에 레이블이 모두 있다고 가정한다. 하지만, 엣지 디바이스의 데

이터를 레이블링 하는 작업은 비용이 많이 들기 때문에, 이러한 가정은 

실생활에서 적합하지 않다. 일반적으로, 클라이언트가 가지고 있는 데이

터의 대부분은 레이블이 없는 경우가 많다. 본 연구에서, 우리는 새로운 

연합 준 지도 학습 방법을 제안한다. 이것은 다른 클라이언트의 지식을 

이용하기 위해 프로토타입이라는 것을 사용하고, 레이블이 없는 데이터

를 학습시킬 때 수도 레이블링이라는 작업을 한다. 제안 방법은 최신 기

법보다 높은 성능을 보이고, 또한 통신 비용과 계산 비용 측면에서 더 

효율적인 방법론이다. 실험을 통해 우리의 알고리즘이 레이블이 없는 데

이터를 사용하지 않은 경우에 비해 CIFAR-10 데이터셋에서는 3.8%, 

SVHN 데이터셋에서는 4.6%, 그리고 STL-10 데이터셋에서는 3.1% 

성능이 더 좋다는 결과를 얻었다. 
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