

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Data Science

Federated Semi-Supervised

Learning with Prototypical

Network

프로토티피컬 네트워크를 이용한 연합 준 지도 학습

February 2022

Graduate School of Seoul National University

 Department of Data Science (Data Science Major)

Woojung Kim

Federated Semi-Supervised

Learning with Prototypical

Network

Advisor Hyung-Sin Kim

Submitting a master’s thesis of
Data Science

December 2021

Graduate School of Seoul National University

Department of Data Science (Data Science Major)

Woojung Kim

Confirming the master’s thesis written by

Woojung Kim

January 2022

Chair Jaejin Lee (Seal)

Vice Chair Hyung-Sin Kim (Seal)

Examiner Wen-Syan Li (Seal)

Examiner Seunggeun Lee (Seal)

 i

Abstract

 Federated Learning (FL) is being actively studied as computing

power of edge devices increase. Most of the existing studies assume

that there are full labels of data. However, since labeling data on the

edge devices requires high cost, this assumption is not suitable in the

real world. In general, most of the data each client has is often

unlabeled. In this study, we propose a novel federated semi-

supervised learning (FSSL) method. It uses prototype to utilize other

clients’ knowledge and pseudo-labeling to compute loss about

unlabeled data. It is a communication and computation efficient

method than recent FSSL algorithm. In experiments, we showed that

our method performed 3.8% better than not using unlabeled data with

CIFAR-10 dataset, 4.6% better with SVHN dataset and 3.1% better

with STL-10 dataset.

Keyword : federated learning, semi-supervised learning,

prototypical network, pseudo-labeling

Student Number : 2020-23120

 ii

Table of Contents

Chapter 1. Introduction ... 1

Chapter 2. Backgrounds .. 3

Chapter 3. Algorithm ... 6

Chapter 4. Experiments .. 10

Chapter 5. Conclusion ... 15

Bibliography .. 16

 １

Chapter 1. Introduction

Federated Learning (FL)[1] is a machine learning framework

that has been actively studied recently. Instead of sending data

accumulated on edge devices(clients) to the server, models are local

trained using the computing power of the edge devices. Each model

is then sent to the server, and the server updates the global model

using FedAvg and then broadcasts it to the edge devices.

There are many studies to improve FL algorithms. However,

most of the existing studies have been done in a situation of

supervised learning [2,3,4] that all clients have full labels of data.

This is not the suitable setting for real world because data on the

edge devices often do not have labels. For example, if data is

collected to the server, some experts can be hired to label them, but

data on the edge device is less likely to be labeled by users, and it

may be mislabeled because they are not professional. Therefore, it

is important to do study Federated Semi-Supervised Learning

(FSSL).

Recently, there are some researches about FSSL. In FedMatch

[5], they utilized unlabeled data using inter-client consistency loss.

One client uses other clients’ weights to compute loss for unlabeled

data. They showed naïve solutions that just applying state of the art

semi-supervised learning methods such as FixMatch [7] and UDA

[6] to FL are not effective because in federated settings each client

has much less data compared to their centralized setting, and they

cannot use knowledge of other clients. On the other hand, FixMatch

uses knowledge from other clients, so they showed good

performance through experiments.

Although their method improved accuracy utilizing unlabeled data,

there are some drawbacks. First of all, there is increased

communication overhead. In order to use other clients’ knowledge,

the server has to send other clients’ weights of the local model. So,

the communication cost increases linearly to the model size as the

number of clients for utilizing increases. The other drawback is that

 ２

increased computation overhead. When the client computes loss for

its unlabeled data, it has to run the model as many times as the

number of other clients utilized. For both cases, if the size of the

model is not so large, it may not be a problem, but vice versa, it will

be a lot of overhead. To address these problems, we propose a new

method for FSSL. Our method utilizes prototypes, not weights, so

there is low overhead for communication. Also, there is low

computation cost because it does not need to run the model several

times. The contributions for our research are as follows:

 We propose new FSSL algorithm that utilizes other clients’

knowledge when computing loss for unlabeled data.

 Our method has better accuracy than FedAvg that does not

use unlabeled data and FedAvg with a semi-supervised

learning method.

 Our method is more efficient in terms of communication and

computation cost than FedMatch.

 ３

Chapter 2. Backgrounds

2.1. Federated Learning

Federated learning (FL) [1] is distributed learning between a

server and clients that the clients do not send their data to the server

but send their local models’ parameters. The training proceeds by

repeating several rounds. When the round starts, the server sends

parameters of the global model 𝜃𝑔 to the clients. Then each client

trains global parameters 𝜃𝑔 as local parameters 𝜃𝑐 using their own

data. After finishing local training, each client sends their local

parameters 𝜃𝑐 to the server. Then, the server updates the global

model with local parameters using FedAvg.

 𝜃𝑔 =
1

∑ 𝑛𝑐
𝐶
𝑐=1

∑ 𝑛𝑐 ∙ 𝜃𝑐
𝐶
𝑐=1 (1)

where 𝐶 is the total number of clients that participated training in the

round and 𝑛𝑐 is the number of data that the client 𝑐 used for training.

2.2. FedMatch

In FedMatch [5], the main part of the algorithm is inter-client

consistency loss that is computed using unlabeled data. Let 𝑝𝜃(𝑦|𝑢)

be a neural network that is parameterized by weights 𝜃 and predicts

softmax output 𝑦 with given unlabeled input 𝑢. Then, inter-client

consistency loss in client 𝑙 is defined as

 𝑙𝑜𝑠𝑠 =
1

𝐶
∑ 𝐾𝐿[𝑝

𝜃𝑗
∗ (𝑦|𝑢)||𝑝𝜃𝑙(𝑦|𝑢)]𝐶

𝑗=1 (2)

where 𝐶 is the number of other clients that are used in client 𝑙, 𝜃𝑗

is weights for 𝐶 clients (* denotes that the parameters are frozen),

𝜃𝑙 is weights of client 𝑙, and 𝐾𝐿 means Kullback-Leibler divergence

loss. In the original paper, loss using pseudo-labeling is also added,

 ４

but it is omitted for convenience of explanation. As we can see, other

clients’ weights are needed to compute the loss. So, the server

needs to send other clients’ weights as well as the global averaged

weights. Furthermore, each client needs to run the model as many

times as the number of clients. As a result, communication cost and

computation cost are increased 𝐶 times compared to FedAvg.

2.3. Prototypical Network

Prototypical network [8] is originally used for meta-learning

algorithm. However, our algorithm uses that it has the training

process based on metric learning. The network is trained to learn

good embedding vectors for input. Let 𝐷 is a training set and 𝐾 is a

set of all classes. Then for each class 𝑘 in 𝐾, select support set 𝑆𝑘

that is a random subset of 𝐷𝑘, a training set of class 𝑘. And select

query set 𝑄𝑘 that is random subset of 𝐷𝑘 ∖ 𝑆𝑘 . Then compute

prototype 𝑐𝑘 from support set for each class as

𝑐𝑘 =
1

|𝑆𝑘|
∑ 𝑓𝜃(𝑥𝑖)(𝑥𝑖,𝑦𝑖)∈𝑆𝑘

 (3)

where 𝑓𝜃 is a neural network that is parameterized by weights 𝜃.

Then, loss is computed as

𝑙𝑜𝑠𝑠 =
1

|𝐾||𝑄𝑘|
∑ ∑ [𝑑(𝑓𝜃(𝑥), 𝑐𝑘) + 𝑙𝑜𝑔 ∑ exp (−𝑑(𝑓𝜃(𝑥), 𝑐𝑘′))𝑘′∈𝐾∖𝑘](𝑥,𝑦)∈𝑄𝑘𝑘∈𝐾 (4)

where 𝑑 is Euclidean distance function. The model is trained so that

embedding vectors of the same class are located close together, and

those of different classes are located far away.

 ５

Figure 1. Colored circles without a red border are embedding vectors of

support set. Each color means different class. Each prototype of classes is

computed by averaging embedding vectors of each class and is expressed

with a red border. The black circle means an embedding vector of query set

and the distances between prototypes is used for computing loss.

2.4. Pseudo-Labeling

Pseudo-labeling is one of the techniques mainly used in semi-

supervised learning. It sets pseudo-label for unlabeled data and then

use them to compute loss. There are several methods about pseudo-

labeling and we use one of them that used in MixMatch [9].

In MixMatch, it uses several augmented data for one unlabeled

data to make pseudo-label. Let 𝑝𝜃 be a neural network

parameterized by 𝜃 , 𝑢𝑏 be one unlabeled data, and 𝑢̂𝑏,𝑘 be an

augmented data of 𝑢𝑏. Then, pseudo-label is computed as

𝑞𝑏 =
1

𝐾
∑ 𝑝𝜃(𝑦|𝑢̂𝑏,𝑘)𝐾

𝑘=1 (5)

i.e., average of 𝐾 augmented data. And then, it uses entropy

minimization to lower the entropy of guessed label as follows:

𝑞̅𝑏,𝑖 = 𝑞
𝑏,𝑖

1
𝑇⁄

/ ∑ 𝑞
𝑏,𝑗

1
𝑇⁄𝐿

𝑗=1 (6)

where 𝐿 is the number of classes, 𝑞𝑏,𝑖 is 𝑖th class of probability, and

𝑇 is a hyperparameter. As 𝑇 → 0, the probability distribution will be

a one-hot distribution.

 ６

Chapter 3. Algorithm

In this chapter, we would explain about what our algorithm is.

The algorithm is explained with four parts: Server to Clients, In

Clients, Clients to Server, and In Server. These four parts are

repeated every round.

Algorithm 1: Federated Semi-Supervised with Prototypical Network

𝑐: prototypes of all classes

RunServer:

Initialize global parameter 𝜃0

for each round 𝑟 = 1, 2, …, R do

 𝐴𝑟 ← (random sample of 𝑁 clients)

 Send 𝜃𝑟−1, {𝑐𝑡
𝑟−1: 𝑡 ∈ 𝐴𝑟−1} to all clients

 for each client t ∈ 𝐴𝑟 in parallel do

 𝜃𝑡
𝑟, 𝑐𝑡

𝑟 ← RunClient

 end for

 𝜃𝑟 ←
1

𝑁
∑ 𝜃𝑡

𝑟𝑁
𝑡=1

 Store {𝑐𝑡
𝑟: 𝑡 ∈ 𝐴𝑟}

end for

RunClient:

𝐷𝑠: labeled dataset, 𝐷𝑢: unlabeled dataset

𝑦̅𝑢 ← 𝑃𝑠𝑒𝑢𝑑𝑜𝐿𝑎𝑏𝑒𝑙𝑖𝑛𝑔(𝐷𝑢, {𝑐𝑡
𝑟−1: 𝑡 ∈ 𝐴𝑟−1})

for each episode e = 1, 2, …, E do

 support set 𝑅 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝑠)

 query set 𝑄𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝑠 ∖ 𝑅)

 query set 𝑄𝑢 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒(𝐷𝑢)

 prototype 𝑐 ← 𝑀𝑎𝑘𝑒𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒(𝑅)

 𝑙𝑠, 𝑙𝑢 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐿𝑜𝑠𝑠(𝑐, 𝑄𝑠, 𝑄𝑢, 𝑦̅𝑢)
 𝐿𝑜𝑠𝑠 = 𝑙𝑠 + 𝜆𝑢 ∙ 𝑙𝑢

 𝜃 ← 𝜃 − 𝜂 ▽𝜃 𝐿𝑜𝑠𝑠

end for

prototype 𝑐 ← 𝑀𝑎𝑘𝑒𝑃𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒(𝐷𝑠)

3.1. Server to Clients

At the start of the round 𝑟, the server sends prototypes 𝑐𝑡
𝑟−1 of

the clients 𝐴𝑟−1 which participated in the previous round as well as

the global weights 𝜃𝑟−1 to the clients 𝐴𝑟 that participate in the round.

In the later section, we will explain how the prototypes of other

 ７

clients and the global weights are computed.

3.2. In Clients

After receiving global weights and other clients’ prototypes, the

client first pseudo-labels the unlabeled data using other clients’

prototypes. For each unlabeled data 𝑥 ∈ 𝐷𝑢 , compute embedding

vector 𝑧 using local model parameterized by 𝜃.

𝑧 = 𝑓𝜃(𝑥) (7)

Then compute Euclidian distance 𝑑𝑡,𝑘 between each class 𝑘 of

prototypes 𝑐𝑡,𝑘 for each client 𝑡 that received from the server.

𝑑𝑡,𝑘 = 𝐸𝐷(𝑧, 𝑐𝑡,𝑘) (8)

where 𝐸𝐷 means Euclidean distance. Probability distributions can be

computed using softmax of the negative of the distance for each class.

𝑝𝑡,𝑘 = 𝑒−𝑑𝑡,𝑘

∑ 𝑒−𝑑𝑡,𝑗𝐿
𝑗=1

⁄ (9)

where 𝐿 is the total number of classes. After computing probability

distributions for every other client’ s prototypes, pseudo-labels are

computed by averaging probability distributions and entropy

minimization.

𝑝𝑘 =
1

𝑁
∑ 𝑝𝑡,𝑘

𝑁
𝑡=1 (10)

𝑦̅𝑘 = 𝑝𝑘

1
𝑇⁄

/ ∑ 𝑝𝑘

1
𝑇⁄𝐿

𝑘=1 (11)

where 𝑇 is a hyperparameter for entropy minimization.

 ８

Figure 2. Pseudo-labeling.

Now, we’ll explain how to compute loss. First, a support set

𝑅 is selected using some part of the labeled data 𝐷𝑠 , and the

prototype 𝑐𝑘 for each class is computed by running it through the

local model. The query set 𝑄𝑠 is selected from the remaining labeled

data and the other query set 𝑄𝑢is also selected from the pseudo-

labeled data and create embedding vectors by running the model for

each query set. Loss for labeled data is computed using equation (4).

Loss for unlabeled data is computed little bit different. A

hyperparameter 𝜆𝑢 that regulates the effectiveness of the loss of

unlabeled data is multiplied for the loss of the unlabeled data.

Figure 3. Computing loss

After local training, compute prototypes for sending to the

server using all of the labeled data.

3.3. Clients to Server

The client not only sends the updated local weights to the server,

but also sends the prototypes for each class.

 ９

3.4. In Server

The server updates the global weights using FedAvg with the

weights received from each client and keeps the prototypes The

server sends the prototypes and the updated global weights to the

clients participating training in the next round.

 １０

Chapter 4. Experiments

4.1. Experimental Setup

Tasks

We use CIFAR-10, SVHN, and STL-10 datasets. For CIFAR-

10, we use 54,000 training set, 3,000 valid set, and 3,000 test set.

For SVHN, we use 54,000 training set, 2,000 valid set, and 2,000 test

set. For STL-10, we use 108,000 training set, 1500 valid set, and

1500 test set. When split datasets, all splits have the same numbers

of data per class. For CIFAR-10 and SVHN, we extract 5,000 labeled

data and use the rest of the training set (49,000) as unlabeled data.

For STL-10, we use 10,000 labeled data and 98,000 unlabeled data.

There are 100 clients and we randomly select 5 active clients

that participate training for each round. Each client has 50 labeled

data and 490 unlabeled data for CIFAR-10 and SVHN, and 100

labeled data and 980 unlabeled data for STL-10. For labeled data,

there are 5 labeled data per class. For unlabeled data, we assume two

settings: IID and non-IID. For IID setting, there are 49 unlabeled

data per class and for non-IID setting, each class have the different

number of data, (244, 73, 73, 15, 15, 15, 15, 15, 15, 10) with different

combination of order that use in [5].

Baseline

 Our baselines are: 1) FedAvg-SL and FedProx[10]-SL:

each client has full labeled data. They update the global model via

FedAvg and FedProx frameworks 2) FedAvg and FedProx: each

client trains with 50 labeled data and does not use unlabeled data. 3)

FixMatch-FedAvg and FixMatch-FedProx: naive combinations of

FixMatch with FedAvg/FedProx. FixMatch is one of the SOTA

algorithms for semi-supervised learning. 4) FedMatch: recent

federated semi-supervised learning method.

 １１

Models

 we use ResNet-9 network, same architecture that use in [5].

For our proposal method, it does not need output softmax layer, so

we remove the output layer. There is detailed architecture of the

network in Table 1. The network has about 6 million parameters.

Layer Filter Shape Stride Output

Input N/A N/A 32×32×3

Conv 1 3×3×3×64 1 32×32×64

Conv 2 3×3×64×128 1 32×32×128

Pool 1 2×2 2 16×16×128

Conv 3 3×3×128×128 1 16×16×128

Conv4 3×3×128×128 1 16×16×128

Conv 5 3×3×128×256 1 16×16×256

Pool 2 2×2 2 8×8×256

Conv 6 3×3×256×512 1 8×8×512

Pool 3 2×2 2 4×4×512

Conv 7 3×3×512×512 1 4×4×512

Conv 8 3×3×512×512 1 4×4×512

Pool 4 4×4 4 1×1×512

Softmax 512×10 N/A 1×1×10

Table 1. Network architecture of ResNet-9

Hyperparameters

The number of rounds is 300. We use RMSprop optimizer with

1e-3 initial learning rate. For baseline, each client trains 1 local

epochs and 8 batch size. For FedProx, the coefficient of

regularization term is 1e-3. For FixMatch, the number of

transformations is 2 and the hyperparameter for transformation

range is 10. Weight of loss for unlabeled data is 1e-2 and batch size

for unlabeled data is 100. For proposed method, the size of support

set is 10 (1 per 10 class), the size of labeled query set is 20 (2 per

10 class), and the size of unlabeled query set is 100 (random

selection). The number of local episodes is 10. The hyperparameter

for entropy minimization is 0.5 and weight of loss for unlabeled data

 １２

is 3e-1.

4.2. Experimental Results

Table 2. is the details of experimental results. The accuracies of

FedAvg/FedProx-SL are upper bounds of accuracies of other

methods. When measuring the performance of our proposed method,

we use majority votes with the prototypes of the clients that

participated the round. We observe that our proposal with FedAvg

framework outperforms for all tasks. We can see that naive

combinations of FixMatch with FedAvg/FedProx do not perform very

well compared to FedAvg/FedProx that do not use unlabeled data.

This is because each client has small amount of data and they do not

use other clients’ knowledge. On the other hands, our method utilizes

other clients’ knowledge when using unlabeled data. We also observe

that our method is robust with non-IID setting.

CIFAR-10 SVHN

Method Test Acc.(%) Method Test Acc.(%)

 IID Non IID IID Non IID

FedAvg-SL 81.7 80.0 FedAvg-SL 93.4 91.7

FedProx-SL 81.6 79.2 FedProx-SL 92.9 91.9

FedAvg 62.2 FedAvg 93.5

FedProx 62.0 FedProx 82.8

 IID Non IID IID Non IID

FixMatch-FedAvg 62.4 61.8 FixMatch-FedAvg 86.5 87.0

FixMatch-FedProx 62.9 61.6 FixMatch-FedProx 87.6 87.5

FedMatch 57.7 59.1 Proposal-FedAvg 88.1 87.7

Proposal-FedAvg 65.0 64.2 Proposal-FedProx 87.2 87.7

Proposal-FedProx 64.4 63.8

 １３

STL-10

Method Test Acc.(%)

FedAvg 72.3

FedProx 72.0

 IID

FixMatch-FedAvg 73.7

FixMatch-FedProx 73.6

Proposal-FedAvg 75.4

Proposal-FedProx 74.5

Table 2. Test accuracy. We use 100 clients (5 active clients per round) for

300 rounds. We measure the global model accuracy. The ratio of labeled

data and unlabeled data is about 1:10

Figure 4. is test accuracy for each communication rounds. We plot

IID cases for CIFAR-10 and SVHN dataset.

Figure 4. Test accuracy for communication rounds

Figure 5. is performances with different ratio of labeled and

unlabeled data. It shows that as the number of unlabeled data

decreases and the number of labeled data increases, the performance

between FedAvg that does not use unlabeled data and our method

becomes similar. It means that our method can have better

performance when it can utilize more unlabeled data.

 １４

Figure 5. Performances with different ratio of labeled and unlabeled data.

Figure 5. is performances with different ratio of labeled and

unlabeled data. It shows that as the number of unlabeled data

decreases and the number of labeled data increases, the performance

between FedAvg that does not use unlabeled data and our method

becomes similar. It means that our method can have better

performance when it can utilize more unlabeled data.

 Comm. Cost per Round Comp. Cost per Round

FedMatch 14.46 MB 1229.9 GFLOP

Proposal 13.16 MB 789.7 GFLOP

Table 3. Communication cost and Computation cost for FedMatch and

proposal.

Table 3. is communication cost and computation cost for

FedMatch and the proposal. For communication cost, we use

prototypes, not the model parameters, so communication cost is 9%

less than FedMatch. For computation cost, FedMatch has to run other

clients’ models to compute loss for unlabeled data, so it has more

overhead. By the way, our method only need to compute distance

between prototypes and embedding vectors, so computation cost is

about 35% less than FedMatch.

 １５

Chapter 5. Conclusion

We propose the new framework for FSSL. With experiments, we

show that our method can utilize well other clients’ knowledge with

unlabeled data. Furthermore, there is small additional costs for

communication and computation. The dimension of the prototype is

much lower than the number of parameters of weights. Computing

distance between embedding vectors and prototypes is also much

lower overhead compared to running the model. In conclusion, our

method is effective and efficient framework for FSSL.

FSSL is a field that has not been studied much yet. Therefore, it

is necessary to conduct more experiments in various setting, such as

additional datasets, different number of clients, different distribution

of labeled and unlabeled dataset, and so on.

 １６

Bibliography

[1] McMahan, Brendan, et al. ”Communication-efficient learning of

deep networks from decentralized data.” Artificial intelligence and

statistics. PMLR, 2017.

[2] He, Chaoyang, Murali Annavaram, and Salman

Avestimehr. ”Group knowledge transfer: Federated learning of large

cnns at the edge.” arXiv preprint arXiv:2007.14513 (2020).

[3] Zhu, Zhuangdi, Junyuan Hong, and Jiayu Zhou. ”Data-Free

Knowledge Distillation for Heterogeneous Federated Learning.”

arXiv preprint arXiv:2105.10056 (2021).

[4] Li, Qinbin, Bingsheng He, and Dawn Song. ”Model-Contrastive

Federated Learning.” Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition. 2021.

[5] Jeong, Wonyong, et al. ”Federated Semi-Supervised Learning

with InterClient Consistency & Disjoint Learning.” arXiv preprint

arXiv:2006.12097 (2020).

[6] Xie, Qizhe, et al. ”Unsupervised data augmentation for

consistency training.” arXiv preprint arXiv:1904.12848 (2019).

[7] Sohn, Kihyuk, et al. ”Fixmatch: Simplifying semi-supervised

learning with consistency and confidence.” arXiv preprint

arXiv:2001.07685 (2020).

[8] Snell, Jake, Kevin Swersky, and Richard S. Zemel. ”Prototypical

networks for few-shot learning.” arXiv preprint arXiv:1703.05175

(2017).

[9] Berthelot, David, et al. "Mixmatch: A holistic approach to semi-

supervised learning." arXiv preprint arXiv:1905.02249 (2019).

[10] Li, Tian, et al. "Federated optimization in heterogeneous

networks." Proceedings of Machine Learning and Systems 2 (2020):

429-450.

 １７

초 록

 연합 학습은 엣지 디바이스의 계산 능력이 증가하면서 활발하게 연구

되고 있는 분야이다. 대부분의 기존 연구는 클라이언트가 가지고 있는

데이터에 레이블이 모두 있다고 가정한다. 하지만, 엣지 디바이스의 데

이터를 레이블링 하는 작업은 비용이 많이 들기 때문에, 이러한 가정은

실생활에서 적합하지 않다. 일반적으로, 클라이언트가 가지고 있는 데이

터의 대부분은 레이블이 없는 경우가 많다. 본 연구에서, 우리는 새로운

연합 준 지도 학습 방법을 제안한다. 이것은 다른 클라이언트의 지식을

이용하기 위해 프로토타입이라는 것을 사용하고, 레이블이 없는 데이터

를 학습시킬 때 수도 레이블링이라는 작업을 한다. 제안 방법은 최신 기

법보다 높은 성능을 보이고, 또한 통신 비용과 계산 비용 측면에서 더

효율적인 방법론이다. 실험을 통해 우리의 알고리즘이 레이블이 없는 데

이터를 사용하지 않은 경우에 비해 CIFAR-10 데이터셋에서는 3.8%,

SVHN 데이터셋에서는 4.6%, 그리고 STL-10 데이터셋에서는 3.1%

성능이 더 좋다는 결과를 얻었다.

Keywords : 연합 학습, 준 지도 학습, 프로토티피컬 네트워크, 수도 레

이블링

Student Number : 2020-23120

	Chapter 1. Introduction
	Chapter 2. Backgrounds
	Chapter 3. Algorithm
	Chapter 4. Experiments
	Chapter 5. Conclusion
	Bibliography

<startpage>6
Chapter 1. Introduction 1
Chapter 2. Backgrounds 3
Chapter 3. Algorithm 6
Chapter 4. Experiments 10
Chapter 5. Conclusion 15
Bibliography 16
</body>

