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Abstract

Federated Learning (FL) is being actively studied as computing
power of edge devices increase. Most of the existing studies assume
that there are full labels of data. However, since labeling data on the
edge devices requires high cost, this assumption is not suitable in the
real world. In general, most of the data each client has is often
unlabeled. In this study, we propose a novel federated semi—
supervised learning (FSSL) method. It uses prototype to utilize other
clients’ knowledge and pseudo—labeling to compute loss about
unlabeled data. It is a communication and computation efficient
method than recent FSSL algorithm. In experiments, we showed that
our method performed 3.8% better than not using unlabeled data with
CIFAR—-10 dataset, 4.6% better with SVHN dataset and 3.1% better
with STL—10 dataset.

Keyword : federated learning, semi—supervised learning,
prototypical network, pseudo—labeling
Student Number : 2020—-23120
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Chapter 1. Introduction

Federated Learning (FL)[1] is a machine learning framework
that has been actively studied recently. Instead of sending data
accumulated on edge devices(clients) to the server, models are local
trained using the computing power of the edge devices. Each model
i1s then sent to the server, and the server updates the global model
using FedAvg and then broadcasts it to the edge devices.

There are many studies to improve FL algorithms. However,
most of the existing studies have been done in a situation of
supervised learning [2,3,4] that all clients have full labels of data.
This is not the suitable setting for real world because data on the
edge devices often do not have labels. For example, if data is
collected to the server, some experts can be hired to label them, but
data on the edge device is less likely to be labeled by users, and it
may be mislabeled because they are not professional. Therefore, it
is important to do study Federated Semi—Supervised Learning
(FSSL).

Recently, there are some researches about FSSL. In FedMatch
[5], they utilized unlabeled data using inter—client consistency loss.
One client uses other clients’ weights to compute loss for unlabeled
data. They showed naive solutions that just applying state of the art
semi—supervised learning methods such as FixMatch [7] and UDA
[6] to FL are not effective because in federated settings each client
has much less data compared to their centralized setting, and they
cannot use knowledge of other clients. On the other hand, FixMatch
uses knowledge from other clients, so they showed good
performance through experiments.

Although their method improved accuracy utilizing unlabeled data,
there are some drawbacks. First of all, there is increased
communication overhead. In order to use other clients’ knowledge,
the server has to send other clients” weights of the local model. So,
the communication cost increases linearly to the model size as the

number of clients for utilizing increases. The other drawback is that
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increased computation overhead. When the client computes loss for
its unlabeled data, it has to run the model as many times as the
number of other clients utilized. For both cases, if the size of the
model is not so large, it may not be a problem, but vice versa, it will
be a lot of overhead. To address these problems, we propose a new
method for FSSL. Our method utilizes profotypes, not weights, so
there is low overhead for communication. Also, there is low
computation cost because it does not need to run the model several
times. The contributions for our research are as follows:
e We propose new FSSL algorithm that utilizes other clients’
knowledge when computing loss for unlabeled data.
¢  QOur method has better accuracy than FedAvg that does not
use unlabeled data and FedAvg with a semi—supervised
learning method.
* Our method is more efficient in terms of communication and

computation cost than FedMatch.



Chapter 2. Backgrounds

2.1. Federated Learning

Federated learning (FL) [1] is distributed learning between a
server and clients that the clients do not send their data to the server
but send their local models’ parameters. The training proceeds by
repeating several rounds. When the round starts, the server sends
parameters of the global model 8, to the clients. Then each client
trains global parameters 6, as local parameters 6, using their own
data. After finishing local training, each client sends their local
parameters 6, to the server. Then, the server updates the global

model with local parameters using FedAvg.

0y =2 nc - 6, (1)

4
Yé=1Mc

where C is the total number of clients that participated training in the

round and n, is the number of data that the client ¢ used for training.

2.2. FedMatch

In FedMatch [5], the main part of the algorithm is inter—client
consistency loss that is computed using unlabeled data. Let pg(y|u)
be a neural network that 1s parameterized by weights 0 and predicts
softmax output y with given unlabeled input u. Then, inter—client

consistency loss in client [ is defined as

loss = ¢ 2ot KLIpg /)] Ipge ()] 2

where C is the number of other clients that are used in client [, 67
is weights for C clients (* denotes that the parameters are frozen),
f! is weights of client [, and KL means Kullback—Leibler divergence

loss. In the original paper, loss using pseudo—labeling is also added,
§
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but it is omitted for convenience of explanation. As we can see, other
clients’ weights are needed to compute the loss. So, the server
needs to send other clients’ weights as well as the global averaged
weights. Furthermore, each client needs to run the model as many
times as the number of clients. As a result, communication cost and

computation cost are increased C times compared to FedAvg.

2.3. Prototypical Network

Prototypical network [8] is originally used for meta—learning
algorithm. However, our algorithm uses that it has the training
process based on metric learning. The network is trained to learn
good embedding vectors for input. Let D is a training set and K is a
set of all classes. Then for each class k in K, select support set Sy
that is a random subset of Dy, a training set of class k. And select
query set Qp that is random subset of D, \S,. Then compute

prototype ¢, from support set for each class as
1
Cr = @Z(xi,yi)esk fo(x;) (3)

where fy is a neural network that is parameterized by weights 6.

Then, loss is computed as

1

loss =
|K Q!

Ykek Z(x,y)er[d(fB (x),cr) + log Zk’EK\k exp (—d(fp(x), Ck'))] (4)

where d is Euclidean distance function. The model is trained so that
embedding vectors of the same class are located close together, and

those of different classes are located far away.



Embedding space

Figure 1. Colored circles without a red border are embedding vectors of
support set. Each color means different class. Each prototype of classes is
computed by averaging embedding vectors of each class and is expressed
with a red border. The black circle means an embedding vector of query set
and the distances between prototypes is used for computing loss.

2.4. Pseudo—Labeling

Pseudo—labeling is one of the techniques mainly used in semi—
supervised learning. It sets pseudo—label for unlabeled data and then
use them to compute loss. There are several methods about pseudo—
labeling and we use one of them that used in MixMatch [9].

In MixMatch, it uses several augmented data for one unlabeled
data to make pseudo—label. Let pg be a neural network
parameterized by 6, u, be one unlabeled data, and ,, be an

augmented data of u;,. Then, pseudo—label is computed as

b = XK1 P Tl ) (5)

l.e., average of K augmented data. And then, it uses entropy

minimization to lower the entropy of guessed label as follows:

qbl/Z] 1qb] (6)

where L is the number of classes, q,; is ith class of probability, and
T is a hyperparameter. As T — 0, the probability distribution will be

a one—hot distribution.



Chapter 3. Algorithm

In this chapter, we would explain about what our algorithm is.
The algorithm is explained with four parts: Server to Clients, In
Clients, Clients to Server, and In Server. These four parts are

repeated every round.

Algorithm 1: Federated Semi-Supervised with Prototypical Network
c: prototypes of all classes

RunServer:
Initialize global parameter 6°
for eachround r =1, 2,...,Rdo

A" « (random sample of N clients)
Send 6"1, {cI~1:t € A""1}to all clients
for each clientt € A™ in parallel do
0f,c{ < RunClient

end for
0" « —T, 0f
Store {c]:t € A"}

end for

RunClient:

Dy: labeled dataset, D,,: unlabeled dataset

¥, < PseudoLabeling(D,,{cI1:t € AT"1})

for each episodee=1,2, ..., E do
support set R « RandomSample(Dy)
query set Qs <« RandomSample(D \ R)
query set Q,, « RandomSample(D,,)
prototype ¢ « MakePrototype(R)
I, 1, « ComputeLoss(c, Qg, Qu, Vi)
Loss=1l;+ 1,1,
0 «08—nVylLoss

end for

prototype ¢ < MakePrototype(D)

3.1. Server to Clients

At the start of the round r, the server sends prototypes ¢/~ ! of
the clients A"~! which participated in the previous round as well as
the global weights 671 to the clients A" that participate in the round.

In the later section, we will explain how the prototypes of other
11 2 =T
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clients and the global weights are computed.

3.2. In Clients

After receiving global weights and other clients’ prototypes, the
client first pseudo—labels the unlabeled data using other clients’
prototypes. For each unlabeled data x € D,, compute embedding

vector z using local model parameterized by 0.
z = fp(x) (7)

Then compute Euclidian distance d;, between each class k of

prototypes c., for each client t that received from the server.
dex = ED(z, ¢ ) (8)

where ED means Euclidean distance. Probability distributions can be

computed using softmax of the negative of the distance for each class.

—dek
Pej = L o—dy (9)
j=1

where L is the total number of classes. After computing probability
distributions for every other client’ s prototypes, pseudo—labels are
computed by averaging probability distributions and entropy

minimization.

Pk = %Z{“V:lpt,k (10)

- 1/T L 1/T
yk _pk /Zkzlpk (11)

where T 1s a hyperparameter for entropy minimization.
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Client 1 prototypes Client N prototypes
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Average & Entropy Minimization

Figure 2. Pseudo—labeling.

Now, we’ll explain how to compute loss. First, a support set
R is selected using some part of the labeled data Dy, and the
prototype ¢, for each class is computed by running it through the
local model. The query set Qg is selected from the remaining labeled
data and the other query set @Q,is also selected from the pseudo—
labeled data and create embedding vectors by running the model for
each query set. Loss for labeled data is computed using equation (4).
Loss for unlabeled data is computed little bit different. A
hyperparameter A, that regulates the effectiveness of the loss of

unlabeled data is multiplied for the loss of the unlabeled data.

— Local
Labeled data ; \Suppol‘t set\ RGO
—

Compute loss I,

—_
Query set 1 Local Embedding

PSGUCLO-tIabeIed ) \ model [T~y | vector1
- 1
\ Compute loss I,
Query set 2 vector 2

loss=1l;+ 4, -1,

Figure 3. Computing loss

After local training, compute prototypes for sending to the

server using all of the labeled data.

3.3. Clients to Server

The client not only sends the updated local weights to the server,

but also sends the prototypes for each class.
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3.4. In Server

The server updates the global weights using FedAvg with the
weights received from each client and keeps the prototypes The
server sends the prototypes and the updated global weights to the

clients participating training in the next round.



Chapter 4. Experiments

4.1. Experimental Setup

Tasks

We use CIFAR—10, SVHN, and STL—10 datasets. For CIFAR—
10, we use 54,000 training set, 3,000 valid set, and 3,000 test set.
For SVHN, we use 54,000 training set, 2,000 valid set, and 2,000 test
set. For STL—10, we use 108,000 training set, 1500 valid set, and
1500 test set. When split datasets, all splits have the same numbers
of data per class. For CIFAR—10 and SVHN, we extract 5,000 labeled
data and use the rest of the training set (49,000) as unlabeled data.
For STL—10, we use 10,000 labeled data and 98,000 unlabeled data.

There are 100 clients and we randomly select 5 active clients
that participate training for each round. Each client has 50 labeled
data and 490 unlabeled data for CIFAR—10 and SVHN, and 100
labeled data and 980 unlabeled data for STL—10. For labeled data,
there are 5 labeled data per class. For unlabeled data, we assume two
settings: IID and non—IID. For IID setting, there are 49 unlabeled
data per class and for non—IID setting, each class have the different
number of data, (244,73, 73,15, 15, 15, 15,15, 15, 10) with different

combination of order that use in [5].

Baseline

Our baselines are: 1) FedAvg—SL and FedProx[10]—-SL:
each client has full labeled data. They update the global model via
FedAvg and FedProx frameworks 2) FedAvg and FedProx: each
client trains with 50 labeled data and does not use unlabeled data. 3)
FixMatch—FedAvg and FixMatch—FedProx: naive combinations of
FixMatch with FedAvg/FedProx. FixMatch is one of the SOTA
algorithms for semi—supervised learning. 4) FedMatch: recent

federated semi—supervised learning method.
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Models

we use ResNet—9 network, same architecture that use in [5].
For our proposal method, it does not need output softmax layer, so
we remove the output layer. There is detailed architecture of the

network in Table 1. The network has about 6 million parameters.

Layer Filter Shape Stride Output
Input N/A N/A 32X32%3
Conv 1 3X3X3X64 1 32X 32X64
Conv 2 | 3X3X64X128 1 32X32X128
Pool 1 2X2 2 16 X16 X128
Conv 3 | 3X3X128%X128 1 16X16X128
Conv4d | 3X3X128X128 1 16 X16 X128
Conv 5 | 3X3X128 X256 1 16X16 X256
Pool 2 2X2 2 8 X8 X256
Conv 6 | 3X3X256X%X512 1 8X8X512
Pool 3 2X2 2 4 X4X512
Conv 7 | 3X3X512%X512 1 4 X4X512
Conv 8 | 3X3X512%X512 1 4 X4 X512
Pool 4 4 X4 4 1X1x512
Softmax 512%10 N/A 1X1X10

Table 1. Network architecture of ResNet—9

Hyperparameters

The number of rounds is 300. We use RMSprop optimizer with
le—3 initial learning rate. For baseline, each client trains 1 local
epochs and 8 batch size. For FedProx, the coefficient of
regularization term 1is 1le—3. For FixMatch, the number of
transformations is 2 and the hyperparameter for transformation
range is 10. Weight of loss for unlabeled data is 1e—2 and batch size
for unlabeled data is 100. For proposed method, the size of support
set is 10 (1 per 10 class), the size of labeled query set is 20 (2 per
10 class), and the size of unlabeled query set is 100 (random
selection). The number of local episodes is 10. The hyperparameter

for entropy minimization is 0.5 and weight of loss for unlabeled data
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is 3e—1.
4.2. Experimental Results

Table 2. is the details of experimental results. The accuracies of
FedAvg/FedProx—SL are upper bounds of accuracies of other
methods. When measuring the performance of our proposed method,
we use majority votes with the prototypes of the clients that
participated the round. We observe that our proposal with FedAvg
framework outperforms for all tasks. We can see that naive
combinations of FixMatch with FedAvg/FedProx do not perform very
well compared to FedAvg/FedProx that do not use unlabeled data.
This is because each client has small amount of data and they do not
use other clients’ knowledge. On the other hands, our method utilizes
other clients’ knowledge when using unlabeled data. We also observe

that our method is robust with non—IID setting.

CIFAR-10 SVHN
Method Test Acc.(%) Method Test Acc.(%)
IID |NonIID IID |NonIID
FedAvg—SL 81.7 | 80.0 FedAvg—SL 93.4 | 91.7
FedProx—SL 81.6 | 79.2 FedProx—SL 92.9 1 91.9
FedAvg 62.2 FedAvg 93.5
FedProx 62.0 FedProx 82.8
IID |NonIID IID |Non IID
FixMatch—FedAvg | 62.4 | 61.8 | | FixMatch—FedAvg | 86.5 | 87.0
FixMatch—FedProx | 62.9 | 61.6 | | FixMatch—FedProx | 87.6 | 87.5
FedMatch 57.7 1 59.1 Proposal—FedAvg | 88.1 | 87.7
Proposal—FedAvg | 65.0 | 64.2 Proposal—FedProx | 87.2 | 87.7

Proposal—FedProx | 64.4 | 63.8

12 Al =T}



STL-10

Method Test Acc.(%)
FedAvg 72.3
FedProx 72.0

11D

FixMatch—FedAvg 73.7
FixMatch—FedProx 73.6
Proposal—FedAvg 75.4
Proposal—FedProx 74.5

Table 2. Test accuracy. We use 100 clients (5 active clients per round) for
300 rounds. We measure the global model accuracy. The ratio of labeled

data and unlabeled data is about 1:10

Figure 4. is test accuracy for each communication rounds. We plot
IID cases for CIFAR—10 and SVHN dataset.

CIFAR-10 IID Test Acc SVHN-10 IID Test Acc. STL-10 Test Acc.

Figure 4. Test accuracy for communication rounds

Figure 5. is performances with different ratio of labeled and
unlabeled data. It shows that as the number of unlabeled data
decreases and the number of labeled data increases, the performance
between FedAvg that does not use unlabeled data and our method
becomes similar. It means that our method can have better

performance when it can utilize more unlabeled data.
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Figure 5. Performances with different ratio of labeled and unlabeled data.

Figure 5. is performances with different ratio of labeled and
unlabeled data. It shows that as the number of unlabeled data
decreases and the number of labeled data increases, the performance
between FedAvg that does not use unlabeled data and our method
becomes similar. It means that our method can have better

performance when it can utilize more unlabeled data.

Comm. Cost per Round | Comp. Cost per Round
FedMatch 14.46 MB 1229.9 GFLOP
Proposal 13.16 MB 789.7 GFLOP
Table 3. Communication cost and Computation cost for FedMatch and
proposal.

Table 3. is communication cost and computation cost for
FedMatch and the proposal. For communication cost, we use
prototypes, not the model parameters, so communication cost is 9%
less than FedMatch. For computation cost, FedMatch has to run other
clients’ models to compute loss for unlabeled data, so it has more
overhead. By the way, our method only need to compute distance
between prototypes and embedding vectors, so computation cost is
about 35% less than FedMatch.
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Chapter 5. Conclusion

We propose the new framework for FSSL. With experiments, we
show that our method can utilize well other clients’ knowledge with
unlabeled data. Furthermore, there is small additional costs for
communication and computation. The dimension of the prototype is
much lower than the number of parameters of weights. Computing
distance between embedding vectors and prototypes is also much
lower overhead compared to running the model. In conclusion, our
method is effective and efficient framework for FSSL.

FSSL is a field that has not been studied much yet. Therefore, it
1s necessary to conduct more experiments in various setting, such as
additional datasets, different number of clients, different distribution

of labeled and unlabeled dataset, and so on.
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