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Abstract

Federated Invariant EKF for Multi-sensor
Navigation System

Jeong Ho Hwang
Department of Aerospace Engineering
The Graduate School

Seoul National University

This thesis presents the federated invariant extended Kalman filter (IEKF) using
multiple measurements. IEKF has superior estimation performance compared to
EKF through the definition of state variables on matrix Lie group while using the
framework of the EKF. The IEKF enables trajectory independent estimation when
left- or right-invariant measurements are used with proper invariant error selection.
As aresult, the I[EKF ensures the convergence and accuracy of estimation, even when
the estimation error is large. Most IEKF studies assumed the use of single aiding
measurement. However, navigation systems often use multiple aiding sensors to
improve estimation performance in applications. When left- and right-invariant
measurements are used simultaneously, implementing the LIEKF or RIEKF with a
centralized filter structure causes some terms of the measurement matrix dependent
on the current estimates, which results in IEKF losing its trajectory independent
advantage. On the other hand, when a decentralized filter structure, especially a

federated filter structure, is applied, the estimation becomes trajectory independent



through separate update of each measurement in the local filters. This thesis proposes
a fusion method of IEKF using the federated filter structure for simultaneous use of
left- and right-invariant measurements. The performance of the proposed fusion
method is validated through simulations. The error convergence and accuracy of the

proposed method and the centralized IEKF are compared.

Keywords: Invariant extended Kalman filter, Nonlinear filtering, Multi sensor
navigation, Federated filter

Student number: 2020-24160
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Chapter 1

Introduction

1.1 Motivation

The extended Kalman filter (EKF) is the most common and widely used type
of filter in navigation [1,2,3]. It is used to solve the problems in various applications
by linearizing the nonlinear problem. Calculating the Jacobian matrix in the
linearization process might be difficult for inexperienced engineers, but it generally
has computational efficiency over other Kalman filter techniques.

The biggest problem with the EKF is that it uses an estimate as a linearization
point. Since the linearization process is performed under the small error assumption,
divergence is a concerning problem as the estimation error increases [4]. Due to this
fact, the EKF has a disadvantage that its convergence is not guaranteed. Various
techniques have been proposed to compensate for the shortcoming of EKF. The
unscented Kalman filter (UKF) replaced the linearization process of the EKF with
an unscented transform [5,6,7]. It is possible to solve the linearization error problem
by using the nonlinear function itself. In addition, the UKF is easy to implement
compared to the EKF. However, since an unscented transform uses multiple points
for the propagation, computation time increases compared to the EKF. Also, it is still
a second-order approximation. Like the UKF, the particle filter (PF) can reflect the

nonlinearity well because it uses many particles [8]. Still, there are problems such as



degeneracy, impoverishment, and the curse-of-dimensionality [9].

Recently, another variant of the EKF, the Invariant EKF (IEKF), has been
proposed and applied to various fields [10]. The IEKF differs in that it defines the
state variables in the matrix Lie group while maintaining the framework of the EKF.
Also, the definition of error and correction are changed. The advantages of the IEKF
by defining the state variables in the matrix Lie group are as follows. 1) Error
propagation is autonomous. 2) For the specific measurement models, the innovation
model is also independent of the estimate. 3) In the deterministic sense, the estimate
is not included in the calculation of Kalman gain. 4) The IEKF guarantees the
convergence of estimates, which EKF does not guarantee [11].

Using the IEKF, error propagation and measurement update process differ
depending on the selection between left- and right-invariant errors. The selection of
the invariant error is decided by the measurement used to compensate the error of
state estimates calculated from the reference system. If a measurement has the form
of the left-invariant, the left-invariant error is chosen to implement the left-IEKF
(LIEKF). Likewise, if a measurement has the form of the right-invariant, the right-
invariant error is chosen to design the right-IEKF (RIEKF). If a measurement model
does not belongs to either of the two invariant forms, it is recommended to compare
the estimation performance of the LIEKF and the RIEKF. For the multi-sensor
system, same rule is exploited. If all the aiding sensors have the left-invariant
measurement form, the centralized LIEKF is a proper choice. In the opposite case,
the centralized RIEKF is a proper choice.

However, when both the left- and the right-invariant measurements are used,
the centralized filter structure implementation of the LIEKF and the RIEKF

encounters a problem. The measurement matrix of the centralized LIEKF and



RIEKF would contain state estimates due to the mismatched measurements. It means
that the IEKF calculates the Kalman gain under the influence of the state estimate.
The IEKF is no more trajectory independent. It might lead to the deterioration of
estimation accuracy and convergence speed. Therefore, it is necessary to derive a
method to ensure that each measurement is used without losing the advantage of the

IEKF.

1.2 Objectives and contributions

In this thesis, the implementation method of the federated filter structure of the
IEKF is proposed. It is shown that the centralized filter estimation performance can
be improved in a system that uses the left-/right-invariant measurements
simultaneously. Since the IEKF is being studied widely in navigation field, this thesis
uses a navigation example to assess the performance of the proposed method. The
main contributions of this thesis are as follows:

® For the first time among studies on the IEKF, this thesis proposes a solution

when the left- and right-invariant measurements are used simultaneously. A
federated filter structure is exploited to process the left- and right-invariant
measurements separately in the local filters. Then the outputs of each local
filter are fused in the master filter. Since each measurement is processed
with proper IEKF, the proposed structure guarantees the trajectory
independent estimation.

® Since the centralized LIEKF and RIEKF use different measurement

matrices, the performance difference between the two techniques is

compared. From the simulation results that are consistent with the intuitive



prediction from the measurement matrix, the reason for applying the
centralized RIEKF in the previous studies is revealed.

Previously, there is a study on the fusion of several poses defined in the
right-invariant form. This thesis extends the method to fuse the poses when
some of the poses are defined with the left-invariant form and the rest of
the poses are defined with the right-invariant form. It is done by
transforming the left-invariant covariance into the right-invariant

covariance through the adjoint matrix.



Chapter 2

Related Works

2.1 Invariant extended Kalman filter (IEKF)

The IEKF is firstly introduced in [12]. It is a new version of the extended
Kalman filter (EKF). It uses the invariant state error and geometrically adapted
correction rather than the linear state error and the linear error correction. In the
problem of estimating attitude, velocity, gyro bias, and accelerometer scale factor
using 9-axis measurements of IMU and GPS velocity measurements, the left-IEKF
(LIEKF) and the right-IEKF (RIEKF) are derived in [13]. In [14], the [EKF was
implemented in the helicopter UAV system, and it showed a superior performance
to the conventional EKF.

The IEKF differs from the conventional EKF because it defines the state in the
matrix Lie group. As a result, the definition of the error state and the distribution of
the uncertainty are changed. For the state variables defined on matrix Lie group, the
linearization error is the logarithm of invariant error. This linearization error has the
Gaussian distribution in vector space. As a result, the uncertainty distribution of the
state variable becomes a concentrated Gaussian distribution. In [15], the
concentrated Gaussian distribution is used for the modeling. The concentrated
Gaussian distribution expresses the uncertainty of the actual system better than the

conventional Gaussian distribution in the Euclidean space. Contrary to the



conventional assumption, it is widely known that the uncertainty due to the noise of
the actual system has the banana-shaped distribution. [16,17] showed that the
concentrated Gaussian distribution captures the distribution better than the
conventional assumption.

In [11], the system to which the IEKF can be applied has been extended to the
group affine system. Moreover, they demonstrated that the invariant errors propagate
autonomously for the group affine systems. It means that nonlinear problems can be
transformed into linear problems in the error propagation stage. If the measurement
model belongs to either the left- or right-invariant measurement model, the
convergence of the filter is proven in the paper. Also, it was shown that the definition
of the state variable could be extended from existing SE(3) to SE,(3). This
extension enabled the application of the IEKF to the IMU states consisting of
position, velocity, and attitude.

The IEKF has been widely exploited in the simultaneous localization and
mapping (SLAM) problems. In [18,19,20], it has been shown that the [EKF can solve
the inconsistency problem presented in existing EKF-based SLAM. Especially in
[21], the IEKF based SLAM achieved estimation performance close to the iSAM, a
state-of-the-art method. Most IEKF studies assume use of a single aiding sensor.
However, [22] uses the position and velocity measured by GPS and the heading angle
estimated by the magnetometer as measurements. The GPS position and velocity
measurements are the left-invariant measurements and the magnetometer
measurement is the right-invariant measurement. The study used a centralized
RIEKF for the mixed measurements. Similarly, [23] implemented a centralized
RIEKF for navigation of the autonomous underwater vehicles (AUVs) equipped

with a doppler velocity log (DVL) and a pressure sensor. Since DVL is a right-



invariant measurement and pressure sensor is a left-invariant measurement, choosing

a centralized RIEKF is not the best choice.

2.2 Federated filter

For the decentralized filtering depicted in Figure 2.1, the standard Kalman filter
is divided into two stages: local filters and a master filter. Local filters are set as
many as the number of aiding sensors used by the system and process each sensor's
measurement. The outputs of the local filters are fused in the master filter. Since the
calculation of each local filter can be performed in parallel, the calculation efficiency
is improved. The most significant advantage of decentralized filtering is that it can
configure a fault-tolerant system. Since individual local filters process each sensor,
classifying sensor failures and isolating them is a structural advantage.

The federated filter is distinguished from the general decentralized filter in that
it uses an information-sharing factor. It was proposed by Carlson [25] to improve the
fault-tolerant properties. The master filter uses a sensor with a high sampling rate as
a reference sensor and puts estimates to the local filter. In each local filter, the
measurement update is performed using the dedicated sensor outputs. Therefore, the
state variable of each local filter is set according to the dedicated sensor, and the state
variable and model of the master filter may be a little more complicated. The overall
structure is depicted in Figure 2.2.

When designing a federated filter, it is a matter of choice whether to initialize
the local filter using the master filter's estimate or not. For the No Reset (NR) mode,
the initialization of the local filter is not done. In this mode, the fused value of the

estimate in the master filter is not optimal. Instead, the fault detectability is increased.



On the other hand, for the Fusion Reset (FR) mode, the estimate of state and the error

covariance is initialized by the value of the master filter. In this case, the estimates

are globally optimal, but the fault detectability decreases.
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Chapter 3

Framework of invariant EKF

In this chapter, the overall framework of IEKF is depicted. First, several
definitions required to use IEKF are briefly summarized. Then, the framework of the
IEKF is depicted and equations are derived for the general system. Next, the
advantages of the IEKF are confirmed once again by deriving detailed equations for

the IMU state variable, the INS dynamic, and various possible measurement models.

3.1 Mathematical preliminaries

The matrix Lie group G is a set of square invertible matrices in which matrix
multiplication and inversion are defined inside the set [26]. The matrix Lie group

satisfies the following properties

deg, (3.1)
VXeg X teg, (3.2)
VX,YEG, XY €G, (3.3)

The Lie algebra g is associated with the Lie group G is a tangent space of G
at the identity. The Lie algebra has the same dimension as the Lie group. The
mapping between the Euclidean vector space into the Lie algebra space is defined as

follows



ON (RYMS g (3.4)
()Y :g — RYmS, (3.5)

The exponential map of the Lie group exactly transfers the elements of the Lie

algebra to the Lie group.

exp(§) = expy (§"). (3.6)

Here, expy, () is usual exponential of square matrices. To calculate the vector &,

the logarithm is used as follows
log(exp(£))¥ =¢. (3.7
The adjoint of G at X, denoted as Ady, is as follows
Ady: g— g §" — Adx(§") =X¢&"X (3.8)

Since the adjoint is linear, an equivalent matrix operator, adjoint matrix Ady,

can be computed as

Ady = (XENX—H)V. (3.9)

3.2 States and model

3.2.1 Matrix Lie group states

Three matrix Lie groups are usually used for the navigation problems: the group
of rotation matrices SQ(3), the group of direct spatial isometries SE(3), and the
group of double direct isometries SE,(3). If the state variable which concern is the

attitude, the attitude is defined on the group of rotation matrices

X =R € SO(3), (3.10)

10



where R isa 3 X 3 rotation matrix that defines the rotation between the navigation
frame and the body frame. [12] used SO(3) for the attitude estimation problem.
If the state variable is the attitude and the position, the group of direct spatial

isometries is used

_[R p

X =
0 1

] € SE(3). (3.11)

Since R isa 3 X 3 matrix and the navigation frame position p isa 3 X 1 vector,
X is a 4 X 4 matrix. This 6D pose state is commonly used in the SLAM studies
[18]. Actually, [18] augmented other state variables, but the essential state variable
is composed of the attitude and position of the vehicle.

Finally, if the system uses an inertial measurement unit (IMU), velocity should
be estimated to calculate position. In this case, the state variable defined in the group

of double direct isometries is given by

R v p
Oi1x3 0 1

where the navigation frame v isa 3 X 1 vector. As shownin (3.12), X isa 5X 5
matrix. Like [21], researchers studying robotics often define the state variables in a
form where velocity and position are swapped in (3.10). However, in this thesis,
(3.12) will be used.

In addition to (3.10), (3.11), and (3.12), other state variables can be defined
using various matrix Lie groups. For example, in [27], the position of the landmarks
are augmented by

R v l
X=[ p 1

l
0 ; " € SE4n(3),  (3.13)
(2+n)x3 (24+n)x(2+4n)

11



where [; is the ith landmark's position, and n is the number of landmarks. There
is no problem in using such augmented states because all state variables are defined
on matrix Lie group. However, not all the state variables are always perfectly defined
on matrix Lie group. As can be checked from (3.11), (3.12), and (3.13), all state
variables augmented next to the attitude matrix are variables in the navigation/global
frame. It means that the state variables on the body frame cannot be defined on matrix
Lie group. For instance, in the precision navigation using IMU, bias of the
accelerometer and gyroscope needs to be estimated. In this case, the IMU states'
biases are augmented [28]. As aresult, in [17,23,29], biases are augmented to the Lie

group states, defined in Euclidean space.

3.2.2 Process model

A state process model evolving on matrix Lie group with the state at time ¢,

X; € G, is denoted by

S Xe = fu, (X0). (3.14)

Letting X, is a true state variable and X, is an estimate of the state X, the

state estimation error is defined by the following two forms
ng =X ' X, = (LXt)_l(LXt)' (3.15)
nf = RXit = (RL)(X, )7, (3.16)

where L is an arbitrary matrix that belongs to the Lie group. (3.15) is called the left-
invariant error since it is invariant to the left multiplication of an arbitrary matrix. In
the same way, (3.16) is called the right-invariant error since it is invariant to the right

multiplication.

12



If the function f;,, in (3.14) satisfies the following property for all t > 0, the

process model is said to be group affine system.
ABEgG fu,(AB) = f, (A)B + Af, ,(B) — Afy,(Id)B,  (3.17)

where Id € G is the group identity element. For the group affine system, the

invariant error dynamics are trajectory independent and satisfy following
d
w1t =94,mp)  where gi, (nf) = fu,8) — fu, Uadnt, (3.18)

d
w0f =968 where g, ) = £, —nffu, (). (3.19)

(3.18) and (3.19) mean that invariant error dynamics are only related to the invariant
itself and not the current state estimates. It is often called '"state-trajectory
independent propagation [11]" or "autonomous error dynamics [17]." The
independence of the error propagation is proved in [11].

c Rdimg xdim g

Let a matrix A% satisfies following

(>

g (exp(€D)) = (aked)" + o€, (3.20)

where i € {L,R}. If & is defined for all t > 0 and is the solution of the linear

and the initial error &5 € R4™M8  defines the initial invariant error exp(fé) =7,

then for all t > 0,

nt = exp(&), (3.22)

holds. (3.22) is called "Log-linear property of the error" and it means that the

13



nonlinear estimation error 1t can be exactly recovered from the time-varying linear
differential equation (3.21). Although it can be seen that (3.21) is a second-order
approximation, the true error can be recovered from & with no approximation error.
Note that no matter how big the difference between X, and X, is, the linearized
error & follows the linear differential equation. Also, since the invariant error can
be exactly recovered from the solution of (3.21), A% is not the typical linearized
Jacobian matrix.

(3.14) only considered deterministic elements of the process model. Usually,
the process model also contains the stochastic elements and noise in the system.

Considering the noises, the process model becomes

d

a Xt = fu, (X0 + X (WP), (3.23)
%Xt = fu, (Xp) + W)Xy, (3.24)

where choosing between (3.23) and (3.24) is decided by applications [30]. Using

(3.23), the invariant error dynamics are changed from (3.18) and (3.19) to
d
=Mt = gu, () — (wn; and (3.25)
LR = gR B — (Adg,wi)nF (3.26)
2t = Gu, "t Wt )Mt .

where gy, (n¢) and gy, (nf) are not changed. As a result, the linearized error

differential equation becomes
d . . . .
Efé = A} é[ + Biwy. (3.27)

B; is the Jacobian matrix for process noise vector.

Since the stochastic noises are introduced, they might affect the convergence

14



speed of the observer. However, the convergence property of the IEKF is still

guaranteed [30].

3.2.3 Measurement model

The time propagated state estimates are corrected by the sensor measurements
in the correction step. In the EKF, the measurement matrix can be calculated through
the linearization without any special requirements for the measurement model to be
satisfied. In the case of the IEKF, various measurement models can be used in the
same way, but in the case of using a specific type of measurement, more advantages
can be exploited.

There are two particular types of measurement models as
Z% = Xtd + ng and (328)
zZR=X'd +n, (3.29)
where d is a known constant vector and n; is the vector of white Gaussian noise.
If the measurement satisfies the form (3.28), it is called a left-invariant measurement.
If the measurement satisfies the form (3.29), it is called a right-invariant
measurement. If a measurement belongs to either left- or right-invariant, the
measurement model and the innovation will be autonomous [11,17].

Since the error definition has changed, the innovation also defined differently

from the conventional EKF as
VE=X71¢F-zD), (3.30)
VR = X, (28 - z0), (3.3
where 2F and 2F are the estimated measurements calculated from the current state

15



estimate. Using first-order approximation 1, = exp(¢;) ~ I + &7, the innovations

are linearized as follows [10,23]
Vi =Xk - 26)
= XAt_l( XAtd - Xtd - Tlt)
=d - () 'd— X',
~d—(1-g")d-%n,
=HY & — X7 n,. (3.32)
VR =X, 2f - 28)
=X(Xd- X7'd- n)
=d—nfd - Xn,
~d—(1+&")d - Zen,
= HR &R — Xn,. (3.33)

With proper error selection for either the left-/right-invariant measurement, the
measurement matrix HY or HR would be trajectory independent. Ignoring the
estimates included in the noise-related term, Kalman gain calculation is trajectory

independent in the deterministic sense.

3.24  Adjoint

Two invariant errors can be transformed to each other by an adjoint matrix as

follows [17,29]

nR = £X~1 = £X-18 £-1 = fnb £,

16



exp(fRA) =X exp(ELA))?_l = exp(AdzEL™,
ER = Adgé&l. (3.34)
Using (3.34), linearized left- and right-invariant errors can be transformed to
each other. Accordingly, error covariance can also be transformed as
PR=E [ngRT] = AdgE [fRfRT] AdY = AdgPLAdY. (3.35)
The adjoint matrix satisfies the following properties.
Ady-1 = Ady?, (3.36)

AdXY = AdxAdy. (337)

3.3 1EKEF for inertial navigation

In Section 4, the application methods of IEKF for systems using multiple
measurements will be discussed. Moreover, the methods are applicable for any
systems to which IEKF is applicable. Since this dissertation considers application in
navigation systems, inertial navigation is considered. So, for the expressions
described earlier in Section 3.2, the detailed equations are derived using the IMU

state variables.

3.31 IMU states and error states

The overall structure of a strapdown inertial navigation system is depicted in
[32]. From an angular rate w?, measured by the gyroscopes, the attitude of the

vehicle is calculated. Then using the updated attitude, the specific force f?
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Figure 3.1 Strapdown inertial navigation system
measured by accelerometer is decomposed to the specific force in the navigation
frame f' — superscript i is used for general representation — and then integrated to
calculate the velocity and position of the vehicle, compensating the gravity. So, to

use IMU, the state is composed of attitude, velocity, and position.

Ry ve p¢
Xt= 01X3 1 0 . (338)
043 0 1

where R; is a direction cosine matrix, v; is a velocity in navigation frame, p; is
a position in the navigation frame, and t is time. The superscript i is removed for
convenience.
. T
Suppose there isa vector § = [ &) 7] € R where &,¢,,&, € R3.

Then the "hat" operator, which maps the vector to the element in the Lie algebra, is

defined as
(fR)x fV fp
' =[0,x3s 0 O0f, (3.39)
Oix3 0 O
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where (ég)x denotes the skew-symmetric matrix of &z . The exponential of

SE,(3) are defined as

expso3)(§r)  Jdegév Jepép

€XPSE, (3) © = 01x3 0 0 | (3.40)
01x3 0 0

where

i 1-
exPso(§r) = fsxs + TR (5), + =R () 2 341

1—cos(lI§rlID I§R1I=sin([I$rID
Jep = 1+ e 280 () + BREERD ()2, (3.42)

Here, (3.41) is the closed-form equation of exponential mapping for SO(3) and
(3.42) is the left Jacobian for SQ(3). The Jacobian for SE,(3) and its inverse is

given by [33]

derp O3xz  O3x3
Je = |Qsré, Jex Osxs|, (3.43)
Qergy, Usxz  Jgg

Tz O3x3  O3x3

‘75_1 = _Jf—RleR'vaf—Rl Jf_Rl O3x3, (3.44)
-1 -1 -1
_JfR QfR»prfR O3x3 JER

where Qg ¢ is computed as

Qsrto = 5 8oy + C1(Erocuy F oy + Erycdvncin)

- Cz(fofofvx + v SrxSvx — 3fovafo)
+ C3(5Rvax€Rfox + fofofvfox)- (3.45)

sin 2— 2_2cos
[IERII=sin|l¢rll co = I€RI IERII and

The coefficients are calculated by ¢; = . 2= TG \
R R
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2|I§RrlI=3sinlI&rII+IIERIIcos]IERII . .
c3 = R SmZIII;RIIS RACOSTRE, Qgp, is calculated by replacing &, by &

3.3.2 Process model

The IMU dynamic model for flat Earth navigation is as follows

Ry = Re(@ + w9)y, (3.46)
Ve =Ry (G+wWY +g, (3.47)
Py = vy (3.48)

Here, @ is the gyroscope output, @ is the accelerometer output, w9 is the white

@ is the white Gaussian noise of

Gaussian noise of gyroscope output, w
accelerometer output, and g is the gravity vector. Assuming the flat Earth
navigation, the gravity vector is a constant vector that has only an element in the

local tangent vertical axis. For the state defined in the double direct isometries (3.38),

the dynamic model is formulated by

d R(@)x Red+g v Ry vy pe[wW9)yx w® 03y
aXt = 01><3 0 0 + 01X3 1 0 01)(3 0 0 . (349)
01x3 0 0 O1x3 0 11L04x3 O 0

Comparing (3.23) and (3.49),

Ri(@)x Ria+g v
fut(Xt) =] Oix3 0 0],
01x3 0 0
w9
w=|w? ],
03%1
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W9y w? 03y
wh = 01x3 0 0
01x3 0 0

are evident. To exploit the advantage of IEKF, the process model should be group

affine, which means f,, satisfies (3.17).

The invariant error states of (3.38) are calculated by (3.15) and (3.16) as

7715 = Xt_lXt
Ry v p! R, U D¢
=101x3 1 O O3 1 0
Oix3 0 1 O3 0 1

Rt_lﬁt Rt_l(ﬁt — V) Rt_l(ﬁt — D)
01x3 1 0

, (3.50)
rlf = XtXt_l
Re D¢ Pe|[Re vt Dr !
=053 1 0f]01x3 1 O
O1x3 0 1fl01x3 0 1
[éth—l Dy — ﬁth_lvt Dt — ﬁthlpt
= | O1x3 1 0 , (3.51)
01x3 0 1

where X, is a state estimate of X, and R,, ¥, P, are estimate of R;, v, p¢

. o . . . T
respectively. Then, the linearized error differential equations for & L

= ek &

L T" R RT ¢rT zrT]"
$o, ] and &' = [ R, » Svp » Sp, ] are calculated as

da
5t =F'e+Glw

_(5)>< 03><3 03><3 03><3 13><3 Wq
=[-@x —(@)x Osx3 |& +|lsx3 O3x3 [Wg] (3.52)
03><3 I3><3 _(a)x 03><3 03><3
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d
¢ =FRf + GRw

03><3 ﬁt W,
G| R OOR||we]  353)
Osxs (BxR:

O3x3  O3xz Osx3
(@)x O3x3 O3x3
O3xz  Izxz Osxs

Since the process model is group affine, the linearized error propagation matrices

FL and FR are state-trajectory independent.

3.3.3  Measurement model
3.3.31 Left-invariant measurement

Most of the sensor outputs that measure the navigation/global frame values
belong to the left-invariant measurement. Typical left-invariant measurement is the
global navigation satellite system (GNSS) outputs. Usually, two types of integration
are considered: loosely-coupled [34,35] and tightly-coupled [36]. Usually, the GNSS
sensor outputs both position and velocity measurements for loosely-coupled systems
and raw signals for the tightly-coupled system. For the position measurement, the

measurement model is

pos pos

Zy  =petng, (3.54)
pos

where n;  ~N(0,RP°®) is the measurement noise and RP? is the noise

covariance of position measurement. For SE,(3) state, (3.54) becomes

Ry ve pe][03xq n?os
Zfos =T||0x3 1 0 0 0 . (3.55)
0 1 1 0

01x3
I' = [Iz3xz 03x3] is pre-multiplied to remove the unnecessary terms. Compared to

_|_
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(3.28), the GNSS position is classified to a left-invariant measurement. Similarly, a
position measurement in the global frame is also a left-invariant measurement. Since
it is the left-invariant measurement, a proper invariant error should be a left-invariant
error. Using the approximation nf ~ I + (§£)", the innovation is linearized as

follows.

pPoS _ p{—1(4P0S _ _DOS
rvPes = PR - 2%

ol o 03x1 03%1 n?OS-
=TXg | Xl 0 | =Xl O |—=f o0
1 1 o |
03x1] O3x1] 2™
~ 0 |—U=-GOY] o [=X* o
1] 1 L o
O3x1] _  [n2”
=r|GOM o |-X7 o
1 0
0 0 I Rz _ﬁzﬁt _ﬁZﬁt Tl?OS
-r [03><3 03><3 03><3]E% “oyss 1 0 A
2x3 Uaxz  Ozx3 01rs 0 1 0
= [03x3 O3x3 I3x3léf — RTn{”. (3.56)

Since the proper error is used, a left-invariant error for a left-invariant measurement,
the measurement matrix HP? = [O3x3 Os3x3 I3x3] is trajectory independent.
Although the attitude estimate affects the measurement noise, it would not affect the
whole convergence property since it is bounded.

GNSS velocity measurement model is
zPet = v, + n¥el. (3.57)

where n?¢'~N(0, R¥¢") is measurement noise and R¢! is noise covariance of
¢

velocity measurement. Similar to the position measurement, the measurement model
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is a left-invariant model.

ngel
zvel — 0
0

In the same way, as in the case of position measurement, the innovation is calculated

R: v DPe][035,
01x3 0 1 |+
1 0

1
O1x3 0

as
I-vvtvel — I-vX"t—l(ZAgzel _ del)
~ [03x3 I3x3 O3x3]éf — ﬁtTn:t]ela (3.58)

where the measurement matrix HY¢!' = [03x3 I3xz Ozx3] is trajectory

independent.

3.3.3.2 Right-invariant measurement

If the aiding sensor measures the state variables in sensor/body frame coordinate,
it is likely a right-invariant measurement. For example, a wheel encoder attached to
the wheel of a robot, outputs the velocity in the body frame [37,38]. For maritime
applications, the doppler velocity log (DVL) measures the velocity of ships in
DVL/body frame [39,40]. The number of axes for which the velocity is measured

varies depending on the situation, but three axes velocity measurement is considered.

2£%° = R{vy + n2?. (3.59)

n "

Here, "odo" means both wheel encoder and DVL. ng4°~N(0,R°%°) is

Rodo

measurement noise and is the noise covariance of velocity measurement. For

SE,(3) state, (3.59) becomes
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odo
03><1 Tlt

Z{ 01x3 , (3.60)

R, Vt Pt
odo _ r
01x3

I' =[I3x3 03x2] is same with the left-invariant measurement model case.
Compared to (3.29), (3.60) is a right-invariant measurement. The innovation is

linearized as follows

I—vVodo — FX (Aodo odo)

03x1 03><1 ngde
—rx( &1 -1 |- x
0
0351] 03 ><1 ~ n?do
= —1[-U+EOY| -1 |-X| o
0 | 0 0
O3x1] _ [nf?°
=GO 1 [-X] o
L 0 0
odo
-r [03><3 I3x3 03><3]§t _ 01><3
0213 0O2x3  Ozx3 0
1x3
= [03x3 I5x3 O3x3]éf — Rn@?®. (3.61)

The measurement matrix H°% = [O3x3 I3x3 Osx3] is trajectory independent.
Another example of the right-invariant measurement is the relative position of

known features measured by a depth camera [11].
ngown,i — RZ‘(li _ pt) + nil:cnown’ (3.62)

where i =1,:--,K, K is number of known landmarks, Il e R3*! is the ith
position of a known landmark, and nfm°Wn~N(0, Rk"OWni) and R!4"4i s the

noise covariance of the position of the ith landmark. In this case, the measurement
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model becomes

. Ry vy pe] i nfnown’i
zfM =035 10 ol+| o , (3.63)
O1x3 0 1 0 0

which is a right-invariant measurement. The innovation is linearized as

known,i ¢ (sknown,i known,i
F‘/t Wl:I—vXtZt Wl_Zt Wl)

li

li known,i
~ [ A 3 ng
=TX | X' o|-XT1 0]— 0
0 0 0
li li known,i
=TI 0]—(1+(55)A)[0 -X| 0
0 0 0
i known,i
Ron l e
=T _(ft) 0|—X: 0
0 0
: R D p" nknown,i
It 0 0 t t t t
=I" ( )X 3X3 3X3:|Ega_ 01X3 1 0 0
Ozx3 Ozx3 Ozxs o o 1|l o
=[(19), Osxs Osx3]éF — Renf™o"™, (3.64)

Augmenting (3.64) for all the landmark measurements, the linearized model

becomes

A .. known,11
Ren;

(3.65)

(ll)x 03><3 03><3
I-thknown: : : . fg?_

(lK)x 03><3 03><3

5 .. knownK
Reng |

(IDx  03x3  03x3]
: : i | is trajectory

Still, the measurement matrix H*™own =[ : : :
()% 03x3  O3x3l
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independent. Often, the landmark's position is unknown. In this case, the position of
landmarks is augmented to the state estimates and then estimated together. Using the

special Euclidean group SE,,,(3) of (3.13), (3.65) is changed to

5 .. unknown,1
O3x9 I3x3 0O3x3 Osx3 Ring

I—thunknown — : : Eg? _ : , (366)
O3x9 0O3x3 0O3x3 I3x3 R nymimownk
T .
where &f=[&f & & & - & ] . The measurement matrix
HYEROWN s teqjectory independent.

3.3.3.3 Other measurement models

Various measurements may not belong to either left-invariant or right-invariant
measurement models. If it does not fit the model exactly, use the appropriate
invariant error for the closest invariant model [37]. However, both LIEKF and
RIEKF would have state-trajectory dependent measurement matrices since the

model does not perfectly fit.

3.34  Adjoint transformation

For IMU states defined by (3.38), the adjoint transformation matrix is calculated

as

ﬁt 03)(3 O3><3
Adg, = |(D)xR:  R:  Osxsl (3.67)

(ﬁt)xﬁt 03><3 ﬁt
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Chapter 4

IEKF Using Multiple Measurements

In chapter 3, the overall framework of IEKF has been introduced. To fully
exploit the advantage of the IEKF, two conditions are essential: 1) process model
should be group affine system, 2) measurement should have the form of left- or right-
invariant measurement. The IEKF will always be considered for the group affine
process model. Therefore, the second condition is the key. Also, proper invariant
error selection is required when the second condition is met. It is not a problem when
the system uses only one measurement to correct the state estimate. However,
navigation systems often use multiple aiding sensors to improve the estimation
accuracy and ensure the robustness to the sensor outliers and the failures
[41,42,43,44]. There is no problem if all the measurements belong to either the left-
or right-invariant measurements. However, if both left- and right-invariant
measurements are used, a problem occurs: what is a proper invariant error?

In this chapter, the centralized filter structure and the decentralized filter
structure are introduced for the multi-measurement system. Especially, a federated
filter structure is exploited to process the left- and right-invariant measurements
separately. To compare the equations of both structure, two measurements are
considered: 3D navigation frame position measurement and 3D body frame velocity
measurement. 3D navigation frame position measurement of (3.55) is a left-invariant

measurement. 3D body frame velocity measurement of (3.60) is a right-invariant
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measurement. Then the measurement model becomes

pos pos
oz Pe n;
L]

t

4.1 Centralized filter implementation

The centralized filter structure processes all the aiding sensor measurements in
the same filter (Figure 4.1 General centralized filter structurein [24]). The filter
structure does not change when using only one aiding sensor and several. Since the
update period also varies according to the sensor's sampling rate, even if multiple
aiding sensors are used, only one measurement value may be used for each update.
However, in this thesis, only the case where multiple sensor measurements are used
for filter update simultaneously. In this case, the measurement matrix of multiple

measurements is augmented into one and used for the update.

~ Filter
Xy —
Reference [¢ > Prediction
)?re ; A
\ 4
Sensor #1 >
Z
U
P N
Sensor #2 o D }{ P
ZZ A v
T
E
Sensor #N >
ZN

Figure 4.1 General centralized filter structure
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Since there are both left- and right-invariant measurements, there is no best
choice between the left- and right-invariant error. So, both LIEKF and RIEKF should
be considered and compared. In the following sections, the linearized innovation

models are derived for both cases.

411 Centralized LIEKF

The state (3.38), the left-invariant error (3.50), the linearized error, and the
linearized process model (3.52) are revisited. Using the equations, the centralized
LIEKF predicts the state estimate. To use two aiding sensor measurements, the
linearized innovations of both measurements are augmented. The innovation model
of the 3D body frame velocity measurement should be changed to augment the
innovations since it is derived only for the right-invariant error. Using (3.34) and
(3.67), the innovation model of 3D body frame velocity measurement for right-
invariant error is derived as

IV =[03x3 I3xz  O3x3]éf — Rn®
=[03x3 I3x3 03zx3] Ad)?tftL — Ryn?°
R, 03x3  O3x3

= [03><3 13><3 03><3] (ﬁt)xﬁt ﬁt 03><3 fg_ﬁtn?do
(ﬁt)xRt 03x3 Rt

= [(ﬁt)xﬁt ﬁt 03><3]ftL —ﬁtn?doa 4.2)

where the measurement matrix of 3D body frame velocity measurement derived for

the left-invariant error is defined as
HodoL = [(ﬁt)xﬁt ﬁt 03><3]- f(4.3)

Here, the superscript odo means that it is a measurement matrix of 3D body frame
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velocity measurement and L means that the measurement matrix is derived for left-
invariant error. Superscript L is added since it is derived with inappropriate
invariant error. If there isno L or R in the measurement matrix, it means that the
measurement matrix is derived with proper invariant error. It can be seen that the
measurement matrix includes the current state estimate because, unlike when derived
for the right-invariant error, the left-invariant error is not an error proper for the right-
invariant measurement model.

Using (3.56) and (4.2), the augmented linearized innovation for the 3D
navigation frame position and the 3D body frame velocity measurement derived for

left-invariant error is as follows

ST pos
rvt :[Hpos §tL—RZ"nt ']

odoL ¢L _ p ,,odo
H §¢ — Reng

4.4

(D)xR: Ry 0343 R

[ O3x3  0O3zx3 I3x3] L ﬁtTn?OS
R0 |

HLIEKF — 03X3 03)(3 I3X3
(D)xRe Ry 033

current state estimates, which means it is not trajectory independent. It is a

The measurement matrix ] clearly contains

contradictory situation because the most significant advantage of IEKF is trajectory
independent Kalman gain calculation. However, it is not trajectory independent
when implemented with the centralized filter structure.

It is necessary to compare it with the conventional EKF, whose original
measurement matrix is not trajectory independent. For the conventional EKF, the

state and the error state are as follows
xe = [¢f,vi i 1" (4.5)

ec = % — x, = [6¢(,6v(,6p{]" (4.6)
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where ¢, € R® is the attitude, v, € R® is the velocity and p, € R® is the
position of the vehicle. The error is defined in the vector space by the vector addition,
where 8¢, = log(R, RT) € R3 is the attitude error, dv, = D, — v, is the velocity

error, and 6p; = P, — p; is the position error. Then, the linearized innovation
equation of the 3D navigation frame position and the 3D body frame velocity
measurement is derived as

Apos pos pos
0z, = [ T pt M
t = | s0do _ odo T odo
Ry Uy — Ry Ut

Sp; — P

RT(Ut)x5¢t + Rt vy — ngdo

ni)OS
odo :
ng

_[ 03x3 03x3 13><3] 4.7)

=|ap. . ~ e, —
RtT(Vt)x RtT O3x3

Here, a first-order approximation of R,R} ~ I + (6¢¢)x is used. The measurement

03><3 O3><3 13><3

matrix HEKF = [A ~ >
RI(W)x  RY  03x3

] is trajectory dependent. Since (4.4) and

(4.7) have similar forms and contain the current state estimates, the state estimate

errors would degrade the estimation performance.

41.2 Centralized RIEKF

The state (3.38), the left-invariant error (3.51), the linearized error, and the
linearized process model (3.53) are revisited. Using the equations, the centralized
RIEKF predicts the state estimate. In this case, the innovation equation of the 3D
navigation position measurement should be changed using the same method in

Section 4.1.1, as follows,
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Fthos =[03x3 O3x3 I3><3]fg“ - I?Zn?"s
= [03x3 O3x3 I3x3] Ad;%tlff —ﬁtTTl?os
RT 03x3  O3x3
=[03x3 Osx3 I3x3]|—RI (D)x RY Osys|&F — RTnP*
—R{(P)x 03x3 R{
= [=RI®)x Osxs RUNEE —RInE™ (4.8)
where the measurement matrix of 3D navigation frame position measurement

derived for right-invariant error is defined as
HPOSR = [-R{ () Osxz RfI. (4.9)

Using (3.61) and (4.9), the augmented linearized innovation for 3D navigation
frame position and 3D body frame velocity measurement derived for right-invariant

error is as follows

: 5T. POS
[ g R
t odo R _ p ,,0do
H $¢ — Reng
5T n 5 BT, DOS
[T« 0sa BT ] L_[R?"t ] (4.10)
O3x3 I3x3  O3x3 R/ngd

—RT®B)x O3xs Rl

The measurement matrix HREKF =
033 I3x3  03x3

] clearly contains

current state estimates terms related to the 3D position measurement. From (4.4) and
(4.10), it can be said that using a centralized filter structure to implement the IEKF
for a multi-measurement system causes IEKF to lose its advantage, frajectory

independent estimation. The centralized filter structure is depicted in Figure 4.2.
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Centralized Filter

MU a @ > 1. Prediction
Calculate X, P
Left-invariant > 2. Update
measurement oL
Process measurements
using LIEKF or RIEKF
Right-invariant _
measurement 7R -

Figure 4.2 Centralized filter structure

4.2  Federated filter implementation

This section exploits the decentralized filter structure to design IEKF without
losing the trajectory independent property. Since previous studies on IEKF usually
assumed a single aiding sensor case, it is the first time introducing a decentralized
filter structure to IEKF. Mainly, this thesis proposes a structure based on the
federated filter structure. It is because federated filter requires information sharing

stage which ensures the optimality of the estimation [24,25].

42.1 Overall structure

The main difference between the federated filter and other decentralized or
centralized filters is that information sharing exists. The information sharing is
required to preserve the total information of IMU. Consider the centralized filter

structure. The IMU data is used to predict the state and error covariance in the filter.
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It is not used repeatedly. On the other hand, in the federated filtering, the IMU data
is used repeatedly in local filters. Then, the outputs of the local filters will be fused
in the master filter. As a result, the information sharing is needed to conserve the
total IMU information.

This information sharing is usually done by applying 1/p; to the predicted a
priori error covariances P~. To reset the estimates and the error covariance of the
local filters before the measurement update process, ith local filter is reset with a

a—

priori state estimate X~ and a priori inflated error covariance (1/f;)P~. Here, f;

satisfies the following equation

Logi=1 (4.11)

where L is the number of the local filter. The information sharing and the reset of
the local filter are depicted in Figure 2.2.

Suppose there are two local filters; local filter 1 (LF1), which handles the left-
invariant measurement, and local filter 2 (LF2), which handles the right-invariant
measurement. To use the proper invariant error, LF1 is designed with the LIEKF, and
LF2 is designed with the RIEKF. Both invariant measurements will be processed
through this separate handling of the left- and right-invariant measurements without
losing the trajectory independent property. The overall structure of the modified
federated filter structure to fuse the LIEKF and the RIEKF is depicted in Figure 4.3.
The overall process is as follows:

1) In the master filter, a priori state X,, and covariance PF are
predicted using IMU data. In general, since the sampling rate of the
IMU is higher than the measurement update rate,the prediction using

only the IMU data continues until the measurement update. Here,
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2)

3)

4)

prediction is performed using the RIEKF's error and linearized process
model. However, the LIEKF can be used if necessary, and the
calculation related to the RIEKF should be changed to that of the
LIEKEF for the entire process (1. Prediction in Figure 4.3).

For the aiding sensor measurement update, the local filter is reset using
the state estimate and covariance predicted by the master filter. Since
LF1 uses the LIEKF, the covariance for the right-invariant error PR
is converted into the covariance for the left-invariant error P using

the adjoint transform PL = Ad}}iPrﬁAdgm (2. Transformation in

Figure 4.3). The state estimate is independent of the invariant error, so
no transformation is required. Then, after dividing the covariance by
the information sharing factor f;, the state and covariance of each
local filter are initialized. Here, f; = 0.5 and S, = 0.5 are used.
The update is performed using the left-invariant measurement in LF1.
In the case of the 3D navigation frame position measurement, (3.56) is
used. If there are two or more left-invariant measurements, the
measurement matrix is augmented and updated at once like the
centralized filter. Since all the measurements are left-invariant, the
augmented measurement matrix is trajectory independent (3. LIEKF
update in Figure 4.3). A posteriori estimate of the state and the error
covariance from LF1 is denoted as X* and PL.

In the same way in 3), LF2 processes all the right-invariant
measurements (4. RIEKF update in Figure 4.3). 4 posteriori estimate

of the state and the error covariance from LF2 are denoted as X® and
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PR,

5) Before step 4), the state estimates of the two local filters are the same,
but after step 4), the state estimates of the two local filters, X and
XR are different. To fuse the outputs of the local filters, P* should be
converted back to the covariance for the right-invariant error PR*
using PR* = AdXLPLAd)%}, (5. Transformation in Figure 4.3).

6) In the master filter, XX with PR* and X® with PR are fused (6.
Fusion in Figure 4.3). The fused estimate X rus and P}eus are used for

the prediction of the next step.

The adjoint transformation requires a state estimate. Nevertheless, since each
measurement is processed with trajectory independent Kalman gain, it can be said
that the proposed structure exploits the full advantage of IEKF.

Conventional federated or decentralized filters use fusion equations like
Prus = Liza P (4.12)
J’C\fus = Pfus 2%:1 Pi_lj?ia (4.13)

where X;, P; are outputs of ith local filter and X7y, Prys are fused estimates of

state and covariance. This conventional fusion method cannot be used for IEKF.

Details about the fusion method of Lie group poses are introduced in the next section.
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Figure 4.3 Proposed federated IEKF structure
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4.2.2 Fusion process

As described in [16], poses defined on matrix Lie group and associated
covariance cannot be fused using (4.12) and (4.13). It is because the error definition
is changed. Unlike the traditional cases, the IEKF defined the error as left- or right-
invariant. And the linearized error ¢ in vector space is assumed to have white
Gaussian distribution, $~N(0, P¢). So, instead of (4.12) and (4.13), the iteration
method fusing K poses on SE(3) and associated uncertainties is proposed in [16].
The method can be extended to SE,(3) cases.

Define the errors of two local filters as follows
. ~ ~:—1 \% ~ ~r—1 \
€' == log (Xopt Xt ) = log (exp(f")XfusX‘ )

ANV
= log (exp(e") exp (§7))
~ &+ g€ (4.14)
where {X%, PR*} and {XF, PR} are denoted as {X%, P} for i € {L ,R}, the error
is defined as e!~N(0, PY), )?Opt is the optimal state estimate, )?fus is the current
guess, ¢ is the perturbation between )?opt and )?fus, and &' is the difference
between Xfus and X'. J;! is the inverse Jacobian for &, calculated by (3.44).
The cost function is defined as
V=2 (et P el + eRTPRTTER), (4.15)
which is quadratic in &. Taking the derivative for ¢ and setting to zero results in

following

(Zicsr TP € = = T n IR (4.16)
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The optimal perturbation & calculated from (4.16) is then applied to X Fus»

)?fus = exp(EA)XAfus- 4.17)

This calculation is repeated until the convergence. At the last iteration, the fused state

X rus» and fused error covariance is calculated by

— -1
Phis = (Zie 37 PTITY) (4.18)

The method described through (4.14)-(4.18) is the same as that of [16]. But, in
this section, it is extended from SE(3) to SE,(3) based on [33]. The original
method for poses and uncertainties defined in the right-invariant form can be
changed to fuse the poses defined in the left-invariant form if the master filter uses

the LIEKF.

4.3 Numerical simulations

This section applies the proposed fusion method to a 3D inertial navigation
example. As mentioned earlier, INS is compensated by two aiding measurements;
the 3D navigation frame position and the 3D body frame velocity measurement. To
verify the estimation performance of the proposed method, Monte-Carlo simulations
are performed. The trajectory and the sensor measurements are generated according
to the noise statistics from Table 4.1. The sampling rate of IMU is 100Hz, while the
aiding sensors are 10Hz. The vehicle moves at the forward speed of 5m/s for 60
seconds along the 3D spiral trajectory described in Figure 4.4.

The information about the initial error and its distribution is generally given in

the navigation frame. Since the initial error is defined in the navigation frame, the
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proper transformation is required to set the initial error covariance. In addition, the
performance comparison between LIEKF and RIEKF can be made by adding the

error defined in the navigation frame. So, the initial errors are added to the true values
using Table 4.2. The initial attitude error &2 is added by R = exp (E }2/\) R, whereas

the velocity and the position error 6X are added by X = X + 5X.

The transformation from the navigation frame to the invariant-error space is
required to set a proper initial covariance. It can be performed by first-order
approximation of the invariant error. For example, the navigation frame error can be

calculated from the left-invariant error using

6v¢ | = |03x3 ﬁt]Rt 03x3 fﬁt, (4.19)

[5(!)1 ﬁt 03><3 03><3 é"kt
SPt 03><3 03><3 ﬁt]Rt €th

where Jp, is a left Jacobian of SO(3). Through (4.19), the initial error covariance
represented in the navigation frame can be transformed to the error covariance in the
left-invariant error frame. Similarly, the navigation frame error can be calculated

from the right-invariant error using

Sve| = [~(Pdx  Jr,  Osx3||ER | (4.20)

[6¢1 I3xz  O3x3 ngjrgt
8pe —(B)x O3xz  Jg, &

With (4.20), the initial error covariance represented in the navigation frame can be
transformed to the one in the right-invariant error frame. So, the initial error

covariance setting for the IEKF can be adequately done [37].
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Figure 4.4 Simulation trajectory
Table 4.1 Simulation noise statistics
Measurement Noise 1o
Gyro ARW 3x 10™*rad/VHz
Accelerometer VRW 3 x 10™*m/sec? /VHz
3D position S5m
3D velocity 0.2m/s
Table 4.2 Initial error standard deviation
Case Position Velocity Attitude
A 2.5m 0.1m/s 15°
Inltlal error B 50m 02m/s 300
lo C 7.5m 0.3m/s 45°
D 10.0m 0.4m/s 60°
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The errors are calculated and compared in the navigation frame. The attitude

. - v . .. .

error is calculated by & = log(X X _1) . The velocity and position error is calculated
by vector subtraction X — X. An error is more intuitive and interpretable in the
navigation frame than in the Lie algebra space. Then, root-mean-square error (RMSE)

will be calculated.

43.1 Convergence test

Since IEKF has its strength in error convergence property, many studies
evaluated the error convergence using Monte Carlo simulation [17,23,37]. In this
thesis, 100 Monte Carlo simulations are performed for the convergence comparison.
The initial error covariance and initial state estimate are initialized using the values
of case 3 in Table 4.2. Every ensemble uses the same sensor measurements set, but
the initial state estimates are different. The convergence test results are plotted in

Figures 4.5, 4.6, 4.7, and 4.8.
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Figure 4.5 Error ensembles of centralized EKF for case C
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Centralized LIEKF
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Figure 4.6 Error ensembles of centralized LIEKF for case C
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Figure 4.7 Error ensembles of centralized RIEKF for case C
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Figure 4.8 Error ensembles of proposed method for case C
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The centralized EKF and LIEKF have troubles in error convergence. In many
ensembles, error diverges or very slowly converges. On the other hand, the
centralized RIEKF and the proposed method show perfect error convergence.
Especially, it can be seen that the ensemble that did not converge quickly in the
centralized RIEKF converges quickly in the proposed method. Also, from the fact
that the distribution between each ensemble is denser in the proposed method, it can

be seen that the error convergence of the proposed method is the best.

4.3.2 Comparison of centralized IEKF and EKF

Since the centralized IEKF uses trajectory dependent matrix similar to that of
EKF, it is necessary to check whether there is a performance difference between EKF
and IEKF. In invariant Kalman filtering, although the measurement matrix is
trajectory dependent, the propagation of linearized error by the process model is
made without linearization error. Since the propagation of the error is also affected
by the linearization error in the conventional EKF, it can be predicted that there will
be a performance difference between the IEKF and the EKF only by the difference
in the prediction step.

To compare EKF and IEKF, 1,000 Monte Carlo simulations are performed, and
RMSE is calculated for position, velocity, and attitude. Results of initial error cases

A and B from Table 4.2 are compared.

4321 Initial error case A

Table 4.3 compares the average RMSE of EKF, LIEKF, and RIEKF. It can be
seen that both LIEKF and RIEKF have improved errors compared to EKF. Also, it

can be seen that RIEKF has a larger error improvement rate than LIEKF among
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IEKFs.

Table 4.3 Average RMSE comparison for case A

Position [m] Velocity [m/s] Attitude [deg]
EKF 0.4838 0.0490 0.4977
(improvement) (0%) (0%) (0%)
LIEKF 0.4703 0.0477 0.4888
(improvement) (2.79%) (2.65%) (1.79%)
RIEKF 0.4690 0.0452 0.4591
(improvement) (3.06%) (8.41%) (7.76%)
Table 4.4 ANEES comparison for case A
Position Velocity Attitude Total
EKF 1.0653 1.2399 1.1731 1.1216
LIEKF 1.0046 1.0666 1.0719 1.0431
RIEKF 0.9996 1.0115 1.0180 1.0139

Table 4.4 compares the three methods' time-averaged average normalized

estimation error squared (ANEES). ANEES is calculated by

where M is the number of ensembles, N is the dimension of states, &;(t;) is the
error at the time t;, and P;(t;) is the error covariance of the filter at the time t;.

The closer the value of ANEES to 1, the better the filter consistency. From Table 4.4,

ANEES(ty) = ﬁZifi(fk)TPi(tk)_lfi(tk)a

it is evident that LIEKF and RIEKF have better consistency than EKF.
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4322 Initial error case B

From Figure 4.9 to Figure 4.11, RMSE for more extensive initial error
conditions, case B, are compared. Since the small error assumption of the EKF is
broken, the performance of the EKF severely deteriorates. In some ensembles, errors
cannot converge to zero. In the case of IEKF, although the prediction step is not
affected by the estimation error, trajectory dependent measurement matrices affect
the estimation accuracy. In Table 4.5, compared to the degradation of the EKF
estimation performance due to the large initial error, the degradation of the IEKF is
insignificant, and the improvement of the estimation performance of the IEKF
compared to the EKF is confirmed. The error improvement of 60~90% confirms that
the performance of the IEKF is still superior to that of the EKF even when the

trajectory dependent measurement matrix was used.

14 -

e * EKF

= === RIEKF

Position error [m]
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Figure 4.9 Position RMSE comparison of EKF, LIEKF, and RIEKF for case B
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Figure 4.10 Velocity RMSE comparison of EKF, LIEKF, and RIEKF for case B
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Figure 4.11 Attitude RMSE comparison of EKF, LIEKF, and RIEKF for case B
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Table 4.5 Average RMSE comparison for case B

Position [m] Velocity [m/s] Attitude [deg]
EKF 9.6173 1.0475 5.9889
(improvement) (0%) (0%) (0%)
LIEKF 0.9862 0.2032 2.3545
(improvement) (89.75%) (80.60%) (60.69%)
RIEKF 0.5338 0.0741 0.8467
(improvement) (94.45%) (92.93%) (85.86%)
Table 4.6 ANEES comparison for case B
Position Velocity Attitude Total
EKF 1,019 6,149 2,665 4,537
LIEKF 3.5010 11.5184 10.7975 9.3956
RIEKF 1.0747 1.3134 1.4376 1.2174

Interestingly, the difference in estimation performance between the LIEKF and
the RIEKF is clear. From the average RMSE in Table 4.5 and ANEES in Table 4.6,
it can be said that the RIEKF has a more consistent and accurate estimation
performance than the LIEKF.

4.3.3 Comparison of IEKF and the proposed method

To evaluate the performance of the proposed method, RMSE of 1,000 Monte
Carlo runs are compared for four initial error cases. The main point is to validate
whether the proposed method can improve estimation performance compared to

RIEKF.
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Table 4.7 Average RMSE comparison for case A

Position [m] Velocity [m/s] Attitude [deg]
LIEKF 0.4703 0.0477 0.4888
RIEKF 0.4690 0.0452 0.4591
Proposed 0.4681 0.0451 0.4569

Table 4.8 Average RMSE comparison for case B

Position [m] Velocity [m/s] Attitude [deg]
LIEKF 0.9862 0.2032 2.3545
RIEKF 0.5338 0.0741 0.8467
Proposed 0.5136 0.0647 0.7333

Table 4.9 Average RMSE comparison for case C

Position [m] Velocity [m/s] Attitude [deg]
LIEKF 4.3348 0.8743 11.2918
RIEKF 0.7803 0.1736 2.1065
Proposed 0.5849 0.1089 1.2924

Table 4.10 Average RMSE comparison for case D

Position [m] Velocity [m/s] Attitude [deg]
LIEKF 9.4751 1.8161 24.9064
RIEKF 1.7507 0.4230 5.4453
Proposed 1.0433 0.2500 3.2651




Table 4.11 ANEES comparison for case A

Position Velocity Attitude Total
LIEKF 1.0046 1.0666 1.0719 1.0431
RIEKF 0.9996 1.0115 1.0180 1.0139
Proposed 0.9975 1.0103 1.0165 1.0129
Table 4.12 ANEES comparison for case B
Position Velocity Attitude Total
LIEKF 3.5010 11.5184 10.7975 9.3956
RIEKF 1.0747 1.3134 1.4376 1.2174
Proposed 1.0270 1.1743 1.3070 1.1520
Table 4.13 ANEES comparison for case C
Position Velocity Attitude Total
LIEKF 97 479 305 1,102
RIEKF 2.0366 7.2848 4.1601 8.3059
Proposed 1.1542 2.2749 2.0720 1.9499
Table 4.14 ANEES comparison for case D
Position Velocity Attitude Total
LIEKF 552 3,042 1,724 7,914
RIEKF 12.9273 69.0961 21.9635 126.5863
Proposed 3.9400 25.7468 6.6385 47.0181
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From Figure 4.12 to Figure 4.15 and Table 4.7 to Table 4.10, the proposed
method shows improved estimation accuracy compared to the RIEKF. In case A, the
difference between LIEKF, RIEKF, and the proposed method is insignificant since
the initial error is small. However, there is a slight improvement for all state variables.
As the initial error gets larger, the difference becomes apparent. For case B, the
proposed method shows improved accuracy compared to the RIEKF by 3.78% for
the position, 12.69% for the velocity, and 13.39% for the attitude. In case C, the
proposed method improved by 25%, 37%, 38% for position, velocity, and attitude,
respectively. Finally, average RMSEs are improved by 40% for every state variable
in case D.

In terms of the consistency, the proposed method always shows improved
consistency compared to the RIEKF. The ANEES of LIEKF, RIEKF, and the
proposed method are compared from Table 4.11 to Table 4.14. In each table, the
consistency of the proposed method always has the smallest value. As the initial error
conditions case C and case D go, the ANEES of the proposed method also increases.
In addition, there would be errors due to the use of iteration-based fusion rather than
closed-form solution in the fusion process of the master filter.

As aresult, it can be said that the proposed method shows improved estimation
performance compared to the centralized IEKF in aspects of the estimation accuracy
and the consistency. Although the effect of increasing the initial error could not be

eliminated, the most robust method to the initial error is the proposed method.
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Chapter 5

Conclusion

5.1.1 Conclusion and summary

In this thesis, a federated IEKF structure is proposed for the multi-sensor
systems using both left- and right-invariant measurements. The framework of the
IEKF is arranged, and the equations of the IEKF are derived for the state variables
defined in SE,(3) to apply to the inertial navigation. For various left-/right-
invariant measurement models, it was shown that the measurement matrix is
trajectory independent when an appropriate invariant error is used.

A multi-sensor system using 3D navigation frame position measurement, which
is a left-invariant measurement, and 3D body frame velocity measurement, a right-
invariant measurement, is considered. Implementing the LIEKF and the RIEKF as
the centralized filters would lose trajectory independent property. A federated filter
structure is introduced to process each invariant measurement in each local filter. In
the proposed structure, the pose fusion method proposed in previous studies is
extended to the SE,(3) case. Monte Carlo simulation is performed to perform
numerical simulations for various initial error conditions, and the estimated
performance and consistency of EKF, LIEKF, RIEKF, and the proposed method are
compared. It was shown that the estimation performance of the centralized IEKF can

be improved through the proposed method in a situation where the estimation
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performance has deteriorated.

5.1.2 Future works

The bias of the accelerometer and the gyroscope must be estimated for the
inertial navigation applications. So, the proposed method should be extended to
estimate IMU biases. It can be done using the mixed state with biases augmented to
SE,(3). In addition, performance verification based on simulation and experimental

data that considers the actual system rather than numerical simulation is required.
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