
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


 Master’s Thesis of Engineering 

 

 

Federated Invariant EKF for Multi-

sensor Navigation System 
 

 

다중 센서 항법시스템을 위한 연합형 불변 확장칼만필터 

 

 

 

 

February 2022 

 

 

 

Graduate School of Engineering 

Seoul National University 

Aerospace Engineering Major 

Jeong Ho Hwang   



Federated Invariant EKF for Multi-

sensor Navigation System 
 

 

Advised by Professor Chan Gook Park 
 
 

Submitting a master’s thesis of Engineering 
 

December 2021 
 

Graduate School of Engineering 

Seoul National University 

Aerospace Engineering Major 

 

Jeong Ho Hwang 
 
 
 

Confirming the master’s thesis written by 

Jeong Ho Hwang 

December 2021 
 

 

Chair                      (Seal) 

Vice Chair                     (Seal) 

Examiner                     (Seal)



 

Abstract 

 

Federated Invariant EKF for Multi-sensor 

Navigation System 

 

Jeong Ho Hwang 

Department of Aerospace Engineering 
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Seoul National University 

 

This thesis presents the federated invariant extended Kalman filter (IEKF) using 

multiple measurements. IEKF has superior estimation performance compared to 

EKF through the definition of state variables on matrix Lie group while using the 

framework of the EKF. The IEKF enables trajectory independent estimation when 

left- or right-invariant measurements are used with proper invariant error selection. 

As a result, the IEKF ensures the convergence and accuracy of estimation, even when 

the estimation error is large. Most IEKF studies assumed the use of single aiding 

measurement. However, navigation systems often use multiple aiding sensors to 

improve estimation performance in applications. When left- and right-invariant 

measurements are used simultaneously, implementing the LIEKF or RIEKF with a 

centralized filter structure causes some terms of the measurement matrix dependent 

on the current estimates, which results in IEKF losing its trajectory independent 

advantage. On the other hand, when a decentralized filter structure, especially a 

federated filter structure, is applied, the estimation becomes trajectory independent 



 

through separate update of each measurement in the local filters. This thesis proposes 

a fusion method of IEKF using the federated filter structure for simultaneous use of 

left- and right-invariant measurements. The performance of the proposed fusion 

method is validated through simulations. The error convergence and accuracy of the 

proposed method and the centralized IEKF are compared. 
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1.1 Motivation 

The extended Kalman filter (EKF) is the most common and widely used type 

of filter in navigation [1,2,3]. It is used to solve the problems in various applications 

by linearizing the nonlinear problem. Calculating the Jacobian matrix in the 

linearization process might be difficult for inexperienced engineers, but it generally 

has computational efficiency over other Kalman filter techniques. 

The biggest problem with the EKF is that it uses an estimate as a linearization 

point. Since the linearization process is performed under the small error assumption, 

divergence is a concerning problem as the estimation error increases [4]. Due to this 

fact, the EKF has a disadvantage that its convergence is not guaranteed. Various 

techniques have been proposed to compensate for the shortcoming of EKF. The 

unscented Kalman filter (UKF) replaced the linearization process of the EKF with 

an unscented transform [5,6,7]. It is possible to solve the linearization error problem 

by using the nonlinear function itself. In addition, the UKF is easy to implement 

compared to the EKF. However, since an unscented transform uses multiple points 

for the propagation, computation time increases compared to the EKF. Also, it is still 

a second-order approximation. Like the UKF, the particle filter (PF) can reflect the 

nonlinearity well because it uses many particles [8]. Still, there are problems such as 
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degeneracy, impoverishment, and the curse-of-dimensionality [9]. 

Recently, another variant of the EKF, the Invariant EKF (IEKF), has been 

proposed and applied to various fields [10]. The IEKF differs in that it defines the 

state variables in the matrix Lie group while maintaining the framework of the EKF. 

Also, the definition of error and correction are changed. The advantages of the IEKF 

by defining the state variables in the matrix Lie group are as follows. 1) Error 

propagation is autonomous. 2) For the specific measurement models, the innovation 

model is also independent of the estimate. 3) In the deterministic sense, the estimate 

is not included in the calculation of Kalman gain. 4) The IEKF guarantees the 

convergence of estimates, which EKF does not guarantee [11]. 

Using the IEKF, error propagation and measurement update process differ 

depending on the selection between left- and right-invariant errors. The selection of 

the invariant error is decided by the measurement used to compensate the error of 

state estimates calculated from the reference system. If a measurement has the form 

of the left-invariant, the left-invariant error is chosen to implement the left-IEKF 

(LIEKF). Likewise, if a measurement has the form of the right-invariant, the right-

invariant error is chosen to design the right-IEKF (RIEKF). If a measurement model 

does not belongs to either of the two invariant forms, it is recommended to compare 

the estimation performance of the LIEKF and the RIEKF. For the multi-sensor 

system, same rule is exploited. If all the aiding sensors have the left-invariant 

measurement form, the centralized LIEKF is a proper choice. In the opposite case, 

the centralized RIEKF is a proper choice.  

However, when both the left- and the right-invariant measurements are used, 

the centralized filter structure implementation of the LIEKF and the RIEKF 

encounters a problem. The measurement matrix of the centralized LIEKF and 
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RIEKF would contain state estimates due to the mismatched measurements. It means 

that the IEKF calculates the Kalman gain under the influence of the state estimate. 

The IEKF is no more trajectory independent. It might lead to the deterioration of 

estimation accuracy and convergence speed. Therefore, it is necessary to derive a 

method to ensure that each measurement is used without losing the advantage of the 

IEKF. 

 

1.2 Objectives and contributions 

In this thesis, the implementation method of the federated filter structure of the 

IEKF is proposed. It is shown that the centralized filter estimation performance can 

be improved in a system that uses the left-/right-invariant measurements 

simultaneously. Since the IEKF is being studied widely in navigation field, this thesis 

uses a navigation example to assess the performance of the proposed method. The 

main contributions of this thesis are as follows: 

 For the first time among studies on the IEKF, this thesis proposes a solution 

when the left- and right-invariant measurements are used simultaneously. A 

federated filter structure is exploited to process the left- and right-invariant 

measurements separately in the local filters. Then the outputs of each local 

filter are fused in the master filter. Since each measurement is processed 

with proper IEKF, the proposed structure guarantees the trajectory 

independent estimation. 

 Since the centralized LIEKF and RIEKF use different measurement 

matrices, the performance difference between the two techniques is 

compared. From the simulation results that are consistent with the intuitive 
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prediction from the measurement matrix, the reason for applying the 

centralized RIEKF in the previous studies is revealed. 

 Previously, there is a study on the fusion of several poses defined in the 

right-invariant form. This thesis extends the method to fuse the poses when 

some of the poses are defined with the left-invariant form and the rest of 

the poses are defined with the right-invariant form. It is done by 

transforming the left-invariant covariance into the right-invariant 

covariance through the adjoint matrix. 
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2.1 Invariant extended Kalman filter (IEKF) 

The IEKF is firstly introduced in [12]. It is a new version of the extended 

Kalman filter (EKF). It uses the invariant state error and geometrically adapted 

correction rather than the linear state error and the linear error correction. In the 

problem of estimating attitude, velocity, gyro bias, and accelerometer scale factor 

using 9-axis measurements of IMU and GPS velocity measurements, the left-IEKF 

(LIEKF) and the right-IEKF (RIEKF) are derived in [13]. In [14], the IEKF was 

implemented in the helicopter UAV system, and it showed a superior performance 

to the conventional EKF. 

The IEKF differs from the conventional EKF because it defines the state in the 

matrix Lie group. As a result, the definition of the error state and the distribution of 

the uncertainty are changed. For the state variables defined on matrix Lie group, the 

linearization error is the logarithm of invariant error. This linearization error has the 

Gaussian distribution in vector space. As a result, the uncertainty distribution of the 

state variable becomes a concentrated Gaussian distribution. In [15], the 

concentrated Gaussian distribution is used for the modeling. The concentrated 

Gaussian distribution expresses the uncertainty of the actual system better than the 

conventional Gaussian distribution in the Euclidean space. Contrary to the 
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conventional assumption, it is widely known that the uncertainty due to the noise of 

the actual system has the banana-shaped distribution. [16,17] showed that the 

concentrated Gaussian distribution captures the distribution better than the 

conventional assumption. 

In [11], the system to which the IEKF can be applied has been extended to the 

group affine system. Moreover, they demonstrated that the invariant errors propagate 

autonomously for the group affine systems. It means that nonlinear problems can be 

transformed into linear problems in the error propagation stage. If the measurement 

model belongs to either the left- or right-invariant measurement model, the 

convergence of the filter is proven in the paper. Also, it was shown that the definition 

of the state variable could be extended from existing 𝕊𝔼(3)  to 𝕊𝔼2(3) . This 

extension enabled the application of the IEKF to the IMU states consisting of 

position, velocity, and attitude. 

The IEKF has been widely exploited in the simultaneous localization and 

mapping (SLAM) problems. In [18,19,20], it has been shown that the IEKF can solve 

the inconsistency problem presented in existing EKF-based SLAM. Especially in 

[21], the IEKF based SLAM achieved estimation performance close to the iSAM, a 

state-of-the-art method. Most IEKF studies assume use of a single aiding sensor. 

However, [22] uses the position and velocity measured by GPS and the heading angle 

estimated by the magnetometer as measurements. The GPS position and velocity 

measurements are the left-invariant measurements and the magnetometer 

measurement is the right-invariant measurement. The study used a centralized 

RIEKF for the mixed measurements. Similarly, [23] implemented a centralized 

RIEKF for navigation of the autonomous underwater vehicles (AUVs) equipped 

with a doppler velocity log (DVL) and a pressure sensor. Since DVL is a right-
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invariant measurement and pressure sensor is a left-invariant measurement, choosing 

a centralized RIEKF is not the best choice.  

 

2.2 Federated filter 

For the decentralized filtering depicted in Figure 2.1, the standard Kalman filter 

is divided into two stages: local filters and a master filter. Local filters are set as 

many as the number of aiding sensors used by the system and process each sensor's 

measurement. The outputs of the local filters are fused in the master filter. Since the 

calculation of each local filter can be performed in parallel, the calculation efficiency 

is improved. The most significant advantage of decentralized filtering is that it can 

configure a fault-tolerant system. Since individual local filters process each sensor, 

classifying sensor failures and isolating them is a structural advantage. 

 The federated filter is distinguished from the general decentralized filter in that 

it uses an information-sharing factor. It was proposed by Carlson [25] to improve the 

fault-tolerant properties. The master filter uses a sensor with a high sampling rate as 

a reference sensor and puts estimates to the local filter. In each local filter, the 

measurement update is performed using the dedicated sensor outputs. Therefore, the 

state variable of each local filter is set according to the dedicated sensor, and the state 

variable and model of the master filter may be a little more complicated. The overall 

structure is depicted in Figure 2.2. 

When designing a federated filter, it is a matter of choice whether to initialize 

the local filter using the master filter's estimate or not. For the No Reset (NR) mode, 

the initialization of the local filter is not done. In this mode, the fused value of the 

estimate in the master filter is not optimal. Instead, the fault detectability is increased. 



8 

 

On the other hand, for the Fusion Reset (FR) mode, the estimate of state and the error 

covariance is initialized by the value of the master filter. In this case, the estimates 

are globally optimal, but the fault detectability decreases.  

 

Figure 2.1 Decentralized filter structure 

Figure 2.2 Federated filter structure 
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In this chapter, the overall framework of IEKF is depicted. First, several 

definitions required to use IEKF are briefly summarized. Then, the framework of the 

IEKF is depicted and equations are derived for the general system. Next, the 

advantages of the IEKF are confirmed once again by deriving detailed equations for 

the IMU state variable, the INS dynamic, and various possible measurement models. 

 

3.1 Mathematical preliminaries 

The matrix Lie group 𝒢 is a set of square invertible matrices in which matrix 

multiplication and inversion are defined inside the set [26]. The matrix Lie group 

satisfies the following properties 

 Id ∈ 𝒢,  (3.1) 

 ∀𝑋 ∈ 𝒢, X−1 ∈ 𝒢,  (3.2) 

 ∀𝑋, 𝑌 ∈ 𝒢, 𝑋𝑌 ∈ 𝒢,  (3.3) 

The Lie algebra 𝔤 is associated with the Lie group 𝒢 is a tangent space of 𝒢 

at the identity. The Lie algebra has the same dimension as the Lie group. The 

mapping between the Euclidean vector space into the Lie algebra space is defined as 

follows 
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 (∙)∧ : ℝdim𝔤 ⟶ 𝔤,  (3.4) 

 (∙)∨ : 𝔤 ⟶ ℝdim𝔤,  (3.5) 

The exponential map of the Lie group exactly transfers the elements of the Lie 

algebra to the Lie group. 

 exp(𝜉) = expm(𝜉∧).  (3.6) 

Here, expm(∙) is usual exponential of square matrices. To calculate the vector 𝜉, 

the logarithm is used as follows 

 log(exp(𝜉))∨ = 𝜉.  (3.7) 

The adjoint of 𝒢 at X, denoted as AdX, is as follows 

 AdX ∶  𝔤 ⟶ 𝔤; 𝜉∧  ⟶ AdX(𝜉∧) = X𝜉∧X−1.  (3.8) 

Since the adjoint is linear, an equivalent matrix operator, adjoint matrix 𝐴𝑑𝑋, 

can be computed as 

 𝐴𝑑𝑋 = (X𝜉∧X−1)∨.  (3.9) 

 

3.2 States and model 

3.2.1 Matrix Lie group states 

Three matrix Lie groups are usually used for the navigation problems: the group 

of rotation matrices 𝕊𝕆(3), the group of direct spatial isometries 𝕊𝔼(3), and the 

group of double direct isometries 𝕊𝔼2(3). If the state variable which concern is the 

attitude, the attitude is defined on the group of rotation matrices 

 𝑋 = 𝑅 ∈ 𝕊𝕆(3),  (3.10) 
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where 𝑅 is a 3 × 3 rotation matrix that defines the rotation between the navigation 

frame and the body frame. [12] used 𝕊𝕆(3) for the attitude estimation problem. 

If the state variable is the attitude and the position, the group of direct spatial 

isometries is used 

 𝑋 = [
𝑅 𝑝
0 1

] ∈ 𝕊𝔼(3).  (3.11) 

Since 𝑅 is a 3 × 3 matrix and the navigation frame position 𝑝 is a 3 × 1 vector, 

𝑋 is a 4 × 4 matrix. This 6D pose state is commonly used in the SLAM studies 

[18]. Actually, [18] augmented other state variables, but the essential state variable 

is composed of the attitude and position of the vehicle.  

Finally, if the system uses an inertial measurement unit (IMU), velocity should 

be estimated to calculate position. In this case, the state variable defined in the group 

of double direct isometries is given by 

 𝑋 = [

𝑅 𝑣 𝑝
01×3 1 0
01×3 0 1

] ∈ 𝕊𝔼2(3),  (3.12) 

where the navigation frame 𝑣 is a 3 × 1 vector. As shown in (3.12), 𝑋 is a 5 × 5 

matrix. Like [21], researchers studying robotics often define the state variables in a 

form where velocity and position are swapped in (3.10). However, in this thesis, 

(3.12) will be used. 

In addition to (3.10), (3.11), and (3.12), other state variables can be defined 

using various matrix Lie groups. For example, in [27], the position of the landmarks 

are augmented by  

 𝑋 = [
𝑅 𝑣 𝑝 𝑙1 ⋯ 𝑙𝑛

0(2+𝑛)×3 𝐼(2+𝑛)×(2+𝑛)
] ∈ 𝕊𝔼2+n(3),  (3.13) 
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where 𝑙𝑖 is the 𝑖th landmark's position, and 𝑛 is the number of landmarks. There 

is no problem in using such augmented states because all state variables are defined 

on matrix Lie group. However, not all the state variables are always perfectly defined 

on matrix Lie group. As can be checked from (3.11), (3.12), and (3.13), all state 

variables augmented next to the attitude matrix are variables in the navigation/global 

frame. It means that the state variables on the body frame cannot be defined on matrix 

Lie group. For instance, in the precision navigation using IMU, bias of the 

accelerometer and gyroscope needs to be estimated. In this case, the IMU states' 

biases are augmented [28]. As a result, in [17,23,29], biases are augmented to the Lie 

group states, defined in Euclidean space. 

 

3.2.2 Process model 

A state process model evolving on matrix Lie group with the state at time 𝑡, 

𝑋𝑡 ∈ 𝒢, is denoted by 

 
𝑑

𝑑𝑡
𝑋𝑡 = 𝑓𝑢𝑡

(𝑋𝑡).  (3.14) 

Letting 𝑋𝑡 is a true state variable and 𝑋̂𝑡 is an estimate of the state 𝑋𝑡, the 

state estimation error is defined by the following two forms 

 𝜂𝑡
𝐿 = 𝑋𝑡

−1𝑋̂𝑡 = (𝐿𝑋𝑡)−1(𝐿𝑋̂𝑡),  (3.15) 

 𝜂𝑡
𝑅 = 𝑋̂𝑡𝑋𝑡

−1 = (𝑋̂𝑡𝐿)(𝑋𝑡𝐿)−1,  (3.16) 

where 𝐿 is an arbitrary matrix that belongs to the Lie group. (3.15) is called the left-

invariant error since it is invariant to the left multiplication of an arbitrary matrix. In 

the same way, (3.16) is called the right-invariant error since it is invariant to the right 

multiplication.  
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If the function 𝑓𝑢𝑡
 in (3.14) satisfies the following property for all 𝑡 > 0, the 

process model is said to be group affine system. 

 𝐴, 𝐵 ∈ 𝒢      𝑓𝑢𝑡
(𝐴𝐵) = 𝑓𝑢𝑡

(𝐴)𝐵 + 𝐴𝑓𝑢𝑡
(𝐵) − 𝐴𝑓𝑢𝑡

(𝐼𝑑)𝐵,  (3.17) 

where 𝐼𝑑 ∈ 𝒢  is the group identity element. For the group affine system, the 

invariant error dynamics are trajectory independent and satisfy following 

 
d

dt
𝜂𝑡

𝐿 = 𝑔𝑢𝑡
𝐿 (𝜂𝑡

𝐿)   where 𝑔𝑢𝑡
𝐿 (𝜂𝑡

𝐿) = 𝑓𝑢𝑡
(𝜂𝑡

𝐿) − 𝑓𝑢𝑡
(𝐼𝑑)𝜂𝑡

𝐿,  (3.18) 

 
d

dt
𝜂𝑡

𝑅 = 𝑔𝑢𝑡
𝑅 (𝜂𝑡

𝑅)   where 𝑔𝑢𝑡
𝑅 (𝜂𝑡

𝑅) = 𝑓𝑢𝑡
(𝜂𝑡

𝑅) − 𝜂𝑡
𝑅𝑓𝑢𝑡

(𝐼𝑑).  (3.19) 

(3.18) and (3.19) mean that invariant error dynamics are only related to the invariant 

itself and not the current state estimates. It is often called "state-trajectory 

independent propagation [11]" or "autonomous error dynamics [17]." The 

independence of the error propagation is proved in [11]. 

Let a matrix 𝐴𝑡
𝑖 ∈ ℝdim 𝔤 ×dim 𝔤 satisfies following  

 𝑔𝑢𝑡
𝑖 (exp(𝜉𝑡

𝑖))  ≜ (𝐴𝑡
𝑖 𝜉𝑡

𝑖)
∧

+ 𝒪(‖𝜉𝑡
𝑖‖

2
),  (3.20) 

where 𝑖 ∈ {𝐿, 𝑅}. If 𝜉𝑡
𝑖 is defined for all 𝑡 > 0 and is the solution of the linear 

differential equation 

 
𝑑

𝑑𝑡
𝜉𝑡

𝑖 = 𝐴𝑡
𝑖  𝜉𝑡

𝑖,  (3.21) 

and the initial error 𝜉0
𝑖 ∈ ℝdim 𝔤  defines the initial invariant error exp(𝜉0

𝑖 ) = 𝜂0
𝑖 , 

then for all 𝑡 > 0, 

 𝜂𝑡
𝑖 = exp (𝜉𝑡

𝑖),  (3.22) 

holds. (3.22) is called "Log-linear property of the error" and it means that the 
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nonlinear estimation error 𝜂𝑡
𝑖  can be exactly recovered from the time-varying linear 

differential equation (3.21). Although it can be seen that (3.21) is a second-order 

approximation, the true error can be recovered from 𝜉𝑡
𝑖 with no approximation error. 

Note that no matter how big the difference between 𝑋𝑡 and 𝑋̂𝑡 is, the linearized 

error 𝜉𝑡
𝑖 follows the linear differential equation. Also, since the invariant error can 

be exactly recovered from the solution of (3.21), 𝐴𝑡
𝑖  is not the typical linearized 

Jacobian matrix. 

(3.14) only considered deterministic elements of the process model. Usually, 

the process model also contains the stochastic elements and noise in the system. 

Considering the noises, the process model becomes 

 
d

dt
𝑋𝑡 = 𝑓𝑢𝑡

(𝑋𝑡) + 𝑋𝑡(𝑤𝑡
∧),  (3.23) 

 
d

dt
𝑋𝑡 = 𝑓𝑢𝑡

(𝑋𝑡) + (𝑤𝑡
∧)𝑋𝑡,  (3.24) 

where choosing between (3.23) and (3.24) is decided by applications [30]. Using 

(3.23), the invariant error dynamics are changed from (3.18) and (3.19) to 

 
𝑑

𝑑𝑡
𝜂𝑡

𝐿 = 𝑔𝑢𝑡
𝐿 (𝜂𝑡

𝐿) − (𝑤𝑡
∧)𝜂𝑡

𝐿 and  (3.25) 

 
𝑑

𝑑𝑡
𝜂𝑡

𝑅 = 𝑔𝑢𝑡
𝑅 (𝜂𝑡

𝑅) − (𝐴𝑑𝑋̂𝑡
𝑤𝑡

∧)𝜂𝑡
𝑅,  (3.26) 

where 𝑔𝑢𝑡
𝐿 (𝜂𝑡

𝐿)  and 𝑔𝑢𝑡
𝑅 (𝜂𝑡

𝑅)  are not changed. As a result, the linearized error 

differential equation becomes 

 
𝑑

𝑑𝑡
𝜉𝑡

𝑖 = 𝐴𝑡
𝑖  𝜉𝑡

𝑖 + 𝐵𝑡
𝑖𝑤𝑡 .  (3.27) 

𝐵𝑡
𝑖 is the Jacobian matrix for process noise vector. 

Since the stochastic noises are introduced, they might affect the convergence 
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speed of the observer. However, the convergence property of the IEKF is still 

guaranteed [30]. 

 

3.2.3 Measurement model 

The time propagated state estimates are corrected by the sensor measurements 

in the correction step. In the EKF, the measurement matrix can be calculated through 

the linearization without any special requirements for the measurement model to be 

satisfied. In the case of the IEKF, various measurement models can be used in the 

same way, but in the case of using a specific type of measurement, more advantages 

can be exploited. 

There are two particular types of measurement models as  

𝑧𝑡
𝐿 = 𝑋𝑡𝑑 + 𝑛𝑡 and  (3.28) 

𝑧𝑡
𝑅 = 𝑋𝑡

−1𝑑 + 𝑛𝑡,  (3.29) 

where 𝑑 is a known constant vector and 𝑛𝑡 is the vector of white Gaussian noise. 

If the measurement satisfies the form (3.28), it is called a left-invariant measurement. 

If the measurement satisfies the form (3.29), it is called a right-invariant 

measurement. If a measurement belongs to either left- or right-invariant, the 

measurement model and the innovation will be autonomous [11,17].  

Since the error definition has changed, the innovation also defined differently 

from the conventional EKF as 

𝑉𝑡
𝐿 = 𝑋̂𝑡

−1(𝑧̂𝑡
𝐿 − 𝑧𝑡

𝐿),  (3.30) 

 𝑉𝑡
𝑅 = 𝑋̂𝑡(𝑧̂𝑡

𝑅 − 𝑧𝑡
𝑅),  (3.31) 

where 𝑧̂𝑡
𝐿 and 𝑧̂𝑡

𝑅 are the estimated measurements calculated from the current state 
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estimate. Using first-order approximation 𝜂𝑡 = exp (𝜉𝑡) ≈ 𝐼 + 𝜉𝑡
∧, the innovations 

are linearized as follows [10,23] 

𝑉𝑡
𝐿 = 𝑋̂𝑡

−1(𝑧̂𝑡
𝐿 − 𝑧𝑡

𝐿)  

                          = 𝑋̂𝑡
−1( 𝑋̂𝑡𝑑 −  𝑋𝑡𝑑 −  𝑛𝑡)  

                          = 𝑑 − (𝜂𝑡
𝐿)−1𝑑 − 𝑋̂𝑡

−1𝑛𝑡  

                          ≈ 𝑑 − (𝐼 − 𝜉𝑡
𝐿∧

) 𝑑 − 𝑋̂𝑡
−1𝑛𝑡  

      = 𝐻𝐿 𝜉𝑡
𝐿 − 𝑋̂𝑡

−1𝑛𝑡.  (3.32) 

𝑉𝑡
𝑅 = 𝑋̂𝑡(𝑧̂𝑡

𝑅 − 𝑧𝑡
𝑅)  

        = 𝑋̂𝑡(𝑋̂𝑡
−1𝑑 − 𝑋𝑡

−1𝑑 −  𝑛𝑡)  

                   = 𝑑 − 𝜂𝑡
𝑅𝑑 − 𝑋̂𝑡𝑛𝑡  

                  ≈ 𝑑 − (𝐼 + 𝜉𝑡
𝑅∧

) 𝑑 − 𝑋̂𝑡𝑛𝑡    

       = 𝐻𝑅 𝜉𝑡
𝑅 − 𝑋̂𝑡𝑛𝑡.  (3.33) 

With proper error selection for either the left-/right-invariant measurement, the 

measurement matrix 𝐻𝐿  or 𝐻𝑅  would be trajectory independent. Ignoring the 

estimates included in the noise-related term, Kalman gain calculation is trajectory 

independent in the deterministic sense. 

 

3.2.4 Adjoint 

Two invariant errors can be transformed to each other by an adjoint matrix as 

follows [17,29] 

𝜂𝑅 = 𝑋̂𝑋−1 = 𝑋̂𝑋−1𝑋̂ 𝑋̂−1 = 𝑋̂𝜂𝐿  𝑋̂−1,   
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exp(𝜉𝑅∧
) = 𝑋̂ exp(𝜉𝐿∧

) 𝑋̂−1 = exp(𝐴𝑑𝑋̂𝜉𝐿∧
),    

𝜉𝑅 = 𝐴𝑑𝑋̂𝜉𝐿.  (3.34) 

Using (3.34), linearized left- and right-invariant errors can be transformed to 

each other. Accordingly, error covariance can also be transformed as 

𝑃𝑅 = 𝐸 [𝜉𝑅𝜉𝑅𝑇
] = 𝐴𝑑𝑋̂𝐸 [𝜉𝑅𝜉𝑅𝑇

] 𝐴𝑑𝑋̂
𝑇 = 𝐴𝑑𝑋̂𝑃𝐿𝐴𝑑𝑋̂

𝑇 .  (3.35) 

The adjoint matrix satisfies the following properties. 

𝐴𝑑𝑋−1 = 𝐴𝑑𝑋
−1,  (3.36) 

𝐴𝑑𝑋𝑌 = 𝐴𝑑𝑋𝐴𝑑𝑌.  (3.37) 

 

3.3 IEKF for inertial navigation 

In Section 4, the application methods of IEKF for systems using multiple 

measurements will be discussed. Moreover, the methods are applicable for any 

systems to which IEKF is applicable. Since this dissertation considers application in 

navigation systems, inertial navigation is considered. So, for the expressions 

described earlier in Section 3.2, the detailed equations are derived using the IMU 

state variables. 

 

3.3.1 IMU states and error states 

The overall structure of a strapdown inertial navigation system is depicted in 

[32]. From an angular rate 𝜔𝑖𝑏
𝑏   measured by the gyroscopes, the attitude of the 

vehicle is calculated. Then using the updated attitude, the specific force 𝑓𝑏 
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measured by accelerometer is decomposed to the specific force in the navigation 

frame 𝑓𝑖 – superscript 𝑖 is used for general representation – and then integrated to 

calculate the velocity and position of the vehicle, compensating the gravity. So, to 

use IMU, the state is composed of attitude, velocity, and position. 

𝑋𝑡 = [

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

].  (3.38) 

where 𝑅𝑡 is a direction cosine matrix, 𝑣𝑡 is a velocity in navigation frame, 𝑝𝑡 is 

a position in the navigation frame, and 𝑡 is time. The superscript 𝑖 is removed for 

convenience. 

Suppose there is a vector 𝝃 = [𝜉𝑅
𝑇   𝜉𝑣

𝑇   𝜉𝑝
𝑇]

𝑇
∈ ℝ9 where 𝜉𝑅 , 𝜉𝑣 , 𝜉𝑝 ∈ ℝ3. 

Then the "hat" operator, which maps the vector to the element in the Lie algebra, is 

defined as 

𝝃∧ = [

(𝜉𝑅)× 𝜉v 𝜉𝑝

01×3 0 0
01×3 0 0

],  (3.39) 

Figure 3.1 Strapdown inertial navigation system 
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where (𝜉𝑅)×  denotes the skew-symmetric matrix of 𝜉𝑅 . The exponential of 

𝕊𝔼2(3) are defined as 

 exp𝕊𝔼2(3)(𝝃) = [

exp𝕊𝕆(3)(𝜉𝑅) 𝒥𝜉𝑅
𝜉v 𝒥𝜉𝑅

𝜉𝑝

01×3 0 0
01×3 0 0

],  (3.40) 

where 

 exp𝕊𝕆(3)(𝜉𝑅) = 𝐼3×3 +
sin(‖𝜉𝑅‖)

‖𝜉𝑅‖
(𝜉𝑅)× +

1−cos(‖𝜉𝑅‖)

‖𝜉𝑅‖
(𝜉𝑅)×

2
,  (3.41) 

 𝒥𝜉𝑅
= 𝐼 +

1−cos(‖𝜉𝑅‖)

‖𝜉𝑅‖2
(𝜉𝑅)× +

‖𝜉𝑅‖−sin(‖𝜉𝑅‖)

‖𝜉𝑅‖3
(𝜉𝑅)×

2 .  (3.42) 

Here, (3.41) is the closed-form equation of exponential mapping for 𝕊𝕆(3)  and 

(3.42) is the left Jacobian for 𝕊𝕆(3). The Jacobian for 𝕊𝔼2(3) and its inverse is 

given by [33] 

 𝒥𝝃 ≔ [

𝒥𝜉𝑅
03×3 03×3

𝑄𝜉𝑅,𝜉𝑣
𝒥𝜉𝑅

03×3

𝑄𝜉𝑅,𝜉𝑝
03×3 𝒥𝜉𝑅

],  (3.43) 

 𝒥𝝃
−1 ≔ [

𝒥𝜉𝑅

−1 03×3 03×3

−𝒥𝜉𝑅

−1𝑄𝜉𝑅,𝜉𝑣
𝒥𝜉𝑅

−1 𝒥𝜉𝑅

−1 03×3

−𝒥𝜉𝑅

−1𝑄𝜉𝑅,𝜉𝑝
𝒥𝜉𝑅

−1 03×3 𝒥𝜉𝑅

−1

],  (3.44) 

where 𝑄𝜉𝑅,𝜉𝑣
 is computed as 

 𝑄𝜉𝑅,𝜉v
≔

1

2
𝜉𝑣×

+ 𝑐1(𝜉𝑅×𝜉v×
+ 𝜉𝑣×

𝜉𝑅× + 𝜉𝑅×𝜉v×
𝜉𝑅×)  

        − c2(𝜉𝑅×𝜉𝑅×𝜉v×
+ 𝜉v×

𝜉𝑅×𝜉v×
− 3𝜉𝑅×𝜉v×

𝜉𝑅×)  

       + 𝑐3(𝜉𝑅×𝜉v×
𝜉𝑅×𝜉𝑅× + 𝜉𝑅×𝜉𝑅×𝜉v×

𝜉𝑅×). (3.45) 

The coefficients are calculated by c1 =
‖𝜉𝑅‖−𝑠𝑖𝑛‖𝜉𝑅‖

‖𝜉𝑅‖3 , c2 =  
2−‖𝜉𝑅‖2−2𝑐𝑜𝑠‖𝜉𝑅‖

‖𝜉𝑅‖4 , and 
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c3 =  
2‖𝜉𝑅‖−3𝑠𝑖𝑛‖𝜉𝑅‖+‖𝜉𝑅‖𝑐𝑜𝑠‖𝜉𝑅‖

2‖𝜉𝑅‖5 . 𝑄𝜉𝑅,𝜉p
 is calculated by replacing 𝜉𝑣 by 𝜉𝑝. 

 

3.3.2 Process model 

The IMU dynamic model for flat Earth navigation is as follows  

 𝑅̇𝑡 = 𝑅𝑡(𝜔̃ + 𝑤𝑔)×,  (3.46) 

 𝑣𝑡̇ = 𝑅𝑡  (𝑎̃ + 𝑤𝑎) + 𝑔,  (3.47) 

 𝑝̇𝑡 = 𝑣𝑡 .  (3.48) 

Here, 𝜔̃ is the gyroscope output, 𝑎̃ is the accelerometer output, 𝑤𝑔 is the white 

Gaussian noise of gyroscope output, 𝑤𝑎  is the white Gaussian noise of 

accelerometer output, and 𝑔  is the gravity vector. Assuming the flat Earth 

navigation, the gravity vector is a constant vector that has only an element in the 

local tangent vertical axis. For the state defined in the double direct isometries (3.38), 

the dynamic model is formulated by 

d

dt
𝑋𝑡 = [

𝑅𝑡(𝜔̃)× 𝑅𝑡𝑎̃ + 𝑔 𝑣𝑡

01×3 0 0
01×3 0 0

] + [

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

] [

(𝑤𝑔)× 𝑤𝑎 03×1

01×3 0 0
01×3 0 0

].  (3.49) 

Comparing (3.23) and (3.49),  

𝑓𝑢𝑡
(𝑋𝑡) = [

𝑅𝑡(𝜔̃)× 𝑅𝑡𝑎̃ + 𝑔 𝑣𝑡

01×3 0 0
01×3 0 0

], 

𝑤 = [
𝑤𝑔

𝑤𝑎

03×1

], 
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𝑤∧ = [

(𝑤𝑔)× 𝑤𝑎 03×1

01×3 0 0
01×3 0 0

] 

are evident. To exploit the advantage of IEKF, the process model should be group 

affine, which means 𝑓𝑢𝑡
 satisfies (3.17). 

The invariant error states of (3.38) are calculated by (3.15) and (3.16) as 

                𝜂𝑡
𝐿 = 𝑋𝑡

−1𝑋̂𝑡 

                  = [

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

]

−1

[
𝑅̂𝑡 𝑣𝑡 𝑝̂𝑡

01×3 1 0
01×3 0 1

]  

                  = [
𝑅𝑡

−1𝑅̂𝑡 𝑅𝑡
−1(𝑣𝑡 − 𝑣𝑡) 𝑅𝑡

−1(𝑝̂𝑡 − 𝑝𝑡)
01×3 1 0
01×3 0 1

],  (3.50) 

𝜂𝑡
𝑅 = 𝑋̂𝑡𝑋𝑡

−1  

                  = [
𝑅̂𝑡 𝑣𝑡 𝑝̂𝑡

01×3 1 0
01×3 0 1

] [

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

]

−1

  

                  = [
𝑅̂𝑡𝑅𝑡

−1 𝑣𝑡 − 𝑅̂𝑡𝑅𝑡
−1𝑣𝑡 𝑝̂𝑡 − 𝑅̂𝑡𝑅𝑡

−1𝑝𝑡

01×3 1 0
01×3 0 1

],  (3.51) 

where 𝑋̂𝑡  is a state estimate of 𝑋𝑡  and 𝑅̂𝑡 , 𝑣𝑡 , 𝑝̂𝑡  are estimate of 𝑅𝑡 , 𝑣𝑡 , 𝑝𝑡 

respectively. Then, the linearized error differential equations for 𝜉𝑡
𝐿 = [𝜉𝑅𝑡

𝐿 𝑇
, 𝜉𝑣𝑡

𝐿 𝑇
 ,

𝜉𝑝𝑡
𝐿 𝑇

]
𝑇
 and  𝜉𝑡

𝑅 = [𝜉𝑅𝑡

𝑅 𝑇
, 𝜉𝑣𝑡

𝑅 𝑇
 , 𝜉𝑝𝑡

𝑅 𝑇
]

𝑇
 are calculated as 

𝑑

𝑑𝑡
𝜉𝑡

𝐿 = 𝐹𝐿𝜉𝑡
𝐿 + 𝐺𝐿𝑤  

 = [

−(𝜔̃)× 03×3 03×3

−(𝑎̃)× −(𝜔̃)× 03×3

03×3 𝐼3×3 −(𝜔̃)×

] 𝜉𝑡
𝐿 + [

03×3 𝐼3×3

𝐼3×3 03×3

03×3 03×3

] [
𝑤𝑎

𝑤𝑔
]  (3.52) 
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𝑑

𝑑𝑡
𝜉𝑡

𝑅 = 𝐹𝑅𝜉𝑡
𝑅 + 𝐺𝑅𝑤  

            = [

03×3 03×3 03×3

(𝑔)× 03×3 03×3

03×3 𝐼3×3 03×3

] 𝜉𝑡
𝑅 + [

03×3 𝑅̂𝑡

𝑅̂𝑡 (𝑣𝑡)×𝑅̂𝑡

03×3 (𝑝̂𝑡)×𝑅̂𝑡

] [
𝑤𝑎

𝑤𝑔
].  (3.53) 

Since the process model is group affine, the linearized error propagation matrices 

𝐹𝐿 and 𝐹𝑅 are state-trajectory independent.  

 

3.3.3 Measurement model 

3.3.3.1 Left-invariant measurement 

Most of the sensor outputs that measure the navigation/global frame values 

belong to the left-invariant measurement. Typical left-invariant measurement is the 

global navigation satellite system (GNSS) outputs. Usually, two types of integration 

are considered: loosely-coupled [34,35] and tightly-coupled [36]. Usually, the GNSS 

sensor outputs both position and velocity measurements for loosely-coupled systems 

and raw signals for the tightly-coupled system. For the position measurement, the 

measurement model is 

 𝑧𝑡
𝑝𝑜𝑠

= 𝑝𝑡 + 𝑛𝑡
𝑝𝑜𝑠

,  (3.54) 

where 𝑛𝑡
𝑝𝑜𝑠

~𝑁(0, 𝑅𝑝𝑜𝑠)  is the measurement noise and 𝑅𝑝𝑜𝑠  is the noise 

covariance of position measurement. For 𝕊𝔼2(3) state, (3.54) becomes 

 𝑧𝑡
𝑝𝑜𝑠

= 𝛤 ([

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

] [
03×1

0
1

] + [
𝑛𝑡

𝑝𝑜𝑠

0
0

]).  (3.55) 

𝛤 = [𝐼3×3 03×2] is pre-multiplied to remove the unnecessary terms. Compared to 
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(3.28), the GNSS position is classified to a left-invariant measurement. Similarly, a 

position measurement in the global frame is also a left-invariant measurement. Since 

it is the left-invariant measurement, a proper invariant error should be a left-invariant 

error. Using the approximation 𝜂𝑡
𝐿 ≈ 𝐼 + (𝜉𝑡

𝐿)∧ , the innovation is linearized as 

follows. 

 𝛤𝑉𝑡
𝑝𝑜𝑠

= 𝛤𝑋̂𝑡
−1(𝑧̂𝑡

𝑝𝑜𝑠
− 𝑧𝑡

𝑝𝑜𝑠
) 

= 𝛤𝑋̂𝑡
−1 ( 𝑋̂𝑡 [

03×1

0
1

] − 𝑋𝑡 [
03×1

0
1

] − [
𝑛𝑡

𝑝𝑜𝑠

0
0

]) 

≈ 𝛤 ([
03×1

0
1

] − (𝐼 − (𝜉𝑡
𝐿)∧) [

03×1

0
1

] − 𝑋̂𝑡
−1 [

𝑛𝑡
𝑝𝑜𝑠

0
0

]) 

= 𝛤 ((𝜉𝑡
𝐿)∧ [

03×1

0
1

] − 𝑋̂𝑡
−1 [

𝑛𝑡
𝑝𝑜𝑠

0
0

]) 

= 𝛤 ([
03×3 03×3 I3×3

02×3 02×3 02×3
] 𝜉𝑡

𝐿 − [
𝑅̂𝑡

𝑇 −𝑅̂𝑡
𝑇𝑣̂𝑡 −𝑅̂𝑡

𝑇𝑝̂𝑡

01×3 1 0
01×3 0 1

] [
𝑛𝑡

𝑝𝑜𝑠

0
0

]) 

  = [03×3 03×3 𝐼3×3]𝜉𝑡
𝐿 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

.  (3.56) 

Since the proper error is used, a left-invariant error for a left-invariant measurement, 

the measurement matrix 𝐻𝑝𝑜𝑠 = [03×3 03×3 𝐼3×3]  is trajectory independent. 

Although the attitude estimate affects the measurement noise, it would not affect the 

whole convergence property since it is bounded. 

GNSS velocity measurement model is 

 𝑧𝑡
𝑣𝑒𝑙 = 𝑣𝑡 + 𝑛𝑡

𝑣𝑒𝑙.  (3.57) 

where 𝑛𝑡
𝑣𝑒𝑙~𝑁(0, 𝑅𝑣𝑒𝑙)  is measurement noise and 𝑅𝑣𝑒𝑙  is noise covariance of 

velocity measurement. Similar to the position measurement, the measurement model 
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is a left-invariant model. 

𝑧𝑣𝑒𝑙 = 𝛤 ([

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

] [
03×1

1
0

] + [
𝑛𝑡

𝑣𝑒𝑙

0
0

]) 

In the same way, as in the case of position measurement, the innovation is calculated 

as  

𝛤𝑉𝑡
𝑣𝑒𝑙 = 𝛤𝑋̂𝑡

−1(𝑧̂𝑡
𝑣𝑒𝑙 − 𝑧𝑡

𝑣𝑒𝑙)  

≈  [03×3 𝐼3×3 03×3]𝜉𝑡
𝐿 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑣𝑒𝑙,   (3.58) 

where the measurement matrix 𝐻𝑣𝑒𝑙 = [03×3 𝐼3×3 03×3]  is trajectory 

independent. 

 

3.3.3.2 Right-invariant measurement 

If the aiding sensor measures the state variables in sensor/body frame coordinate, 

it is likely a right-invariant measurement. For example, a wheel encoder attached to 

the wheel of a robot, outputs the velocity in the body frame [37,38]. For maritime 

applications, the doppler velocity log (DVL) measures the velocity of ships in 

DVL/body frame [39,40]. The number of axes for which the velocity is measured 

varies depending on the situation, but three axes velocity measurement is considered. 

 𝑧𝑡
𝑜𝑑𝑜 = 𝑅𝑡

𝑇𝑣𝑡 + 𝑛𝑡
𝑜𝑑𝑜.  (3.59) 

Here, "odo" means both wheel encoder and DVL. 𝑛𝑡
𝑜𝑑𝑜~𝑁(0, 𝑅𝑜𝑑𝑜)  is 

measurement noise and 𝑅𝑜𝑑𝑜 is the noise covariance of velocity measurement. For 

𝕊𝔼2(3) state, (3.59) becomes 
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 𝑧𝑡
𝑜𝑑𝑜 = 𝛤 ([

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

]

−1

[
03×1

−1
0

] + [
𝑛𝑡

𝑜𝑑𝑜

0
0

]),  (3.60) 

𝛤 = [𝐼3×3 03×2]  is same with the left-invariant measurement model case. 

Compared to (3.29), (3.60) is a right-invariant measurement. The innovation is 

linearized as follows 

𝛤𝑉𝑡
𝑜𝑑𝑜 = 𝛤𝑋̂𝑡(𝑧̂𝑡

𝑜𝑑𝑜 − 𝑧𝑡
𝑜𝑑𝑜)  

= 𝛤𝑋̂𝑡 ( 𝑋̂𝑡
−1 [

03×1

−1
0

] − 𝑋𝑡
−1 [

03×1

−1
0

] − [
𝑛𝑡

𝑜𝑑𝑜

0
0

])  

≈ 𝛤 ([
03×1

−1
0

] − (𝐼 + (𝜉𝑡
𝑅)∧) [

03×1

−1
0

] − 𝑋̂𝑡 [
𝑛𝑡

𝑜𝑑𝑜

0
0

])  

= 𝛤 ((𝜉𝑡
𝑅)∧ [

03×1

1
0

] − 𝑋̂𝑡 [
𝑛𝑡

𝑜𝑑𝑜

0
0

])  

= 𝛤 ([
03×3 I3×3 03×3

02×3 02×3 02×3
] 𝜉𝑡

𝑅 − [
𝑅̂𝑡 𝑣𝑡 𝑝̂𝑡

01×3 1 0
01×3 0 1

] [
𝑛𝑡

𝑜𝑑𝑜

0
0

])  

  = [03×3 𝐼3×3 03×3]𝜉𝑡
𝑅 − 𝑅̂𝑡𝑛𝑡

𝑜𝑑𝑜.  (3.61) 

The measurement matrix 𝐻𝑜𝑑𝑜 = [03×3 𝐼3×3 03×3] is trajectory independent.  

Another example of the right-invariant measurement is the relative position of 

known features measured by a depth camera [11]. 

 𝑧𝑡
𝑘𝑛𝑜𝑤𝑛,𝑖 = 𝑅𝑡

𝑇(𝑙𝑖 − 𝑝𝑡) + 𝑛𝑡
𝑘𝑛𝑜𝑤𝑛,  (3.62) 

where 𝑖 = 1, ⋯ , 𝐾 , 𝐾  is number of known landmarks, 𝑙𝑖 ∈ ℝ3×1  is the 𝑖 th 

position of a known landmark, and 𝑛𝑡
𝑘𝑛𝑜𝑤𝑛~𝑁(0, 𝑅𝑘𝑛𝑜𝑤𝑛,𝑖)  and 𝑅𝑙𝑎𝑛𝑑,𝑖  is the 

noise covariance of the position of the 𝑖th landmark. In this case, the measurement 
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model becomes 

 𝑧𝑡
𝑘𝑛𝑜𝑤𝑛,𝑖 = 𝛤 ([

𝑅𝑡 𝑣𝑡 𝑝𝑡

01×3 1 0
01×3 0 1

]

−1

[
𝑙𝑖 
0
0

] + [
𝑛𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖

0
0

]),  (3.63) 

which is a right-invariant measurement. The innovation is linearized as 

𝛤𝑉𝑡
𝑘𝑛𝑜𝑤𝑛,𝑖 = 𝛤𝑋̂𝑡(𝑧̂𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖 − 𝑧𝑡
𝑘𝑛𝑜𝑤𝑛,𝑖)  

= 𝛤𝑋̂𝑡 (𝑋̂𝑡
−1 [

𝑙𝑖 
0
0

] − 𝑋𝑡
−1 [

𝑙𝑖 
0
0

] − [
𝑛𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖

0
0

])  

= 𝛤 ([
𝑙𝑖  
0
0

] − (𝐼 + (𝜉𝑡
𝑅)∧) [

𝑙𝑖  
0
0

] − 𝑋̂𝑡 [
𝑛𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖

0
0

])  

=  𝛤 (−(𝜉𝑡
𝑅)∧ [

𝑙𝑖 
0
0

] − 𝑋̂𝑡 [
𝑛𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖

0
0

])  

= 𝛤 ([
(𝑙𝑖)

×
03×3 03×3

02×3 02×3 02×3

] 𝜉𝑡
𝑅 − [

𝑅̂𝑡 𝑣𝑡 𝑝̂𝑡

01×3 1 0
01×3 0 1

] [
𝑛𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖

0
0

])  

= [(𝑙𝑖)
×

03×3 03×3]𝜉𝑡
𝑅 − 𝑅̂𝑡𝑛𝑡

𝑘𝑛𝑜𝑤𝑛,𝑖,   (3.64) 

Augmenting (3.64) for all the landmark measurements, the linearized model 

becomes 

 𝛤𝑉𝑡
𝑘𝑛𝑜𝑤𝑛 = [

(𝑙1)× 03×3 03×3

⋮ ⋮ ⋮
(𝑙𝐾)× 03×3 03×3

] 𝜉𝑡
𝑅 − [

𝑅̂𝑡𝑛𝑡
𝑘𝑛𝑜𝑤𝑛,1

⋮

𝑅̂𝑡𝑛𝑡
𝑘𝑛𝑜𝑤𝑛,𝐾

].  (3.65) 

Still, the measurement matrix 𝐻𝑘𝑛𝑜𝑤𝑛 = [
(𝑙1)× 03×3 03×3

⋮ ⋮ ⋮
(𝑙𝐾)× 03×3 03×3

] is trajectory 
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independent. Often, the landmark's position is unknown. In this case, the position of 

landmarks is augmented to the state estimates and then estimated together. Using the 

special Euclidean group 𝕊𝔼2+n(3) of (3.13), (3.65) is changed to 

𝛤𝑉𝑡
𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = [

03×9 I3×3 03×3 03×3

⋮ ⋮ ⋮ ⋮
03×9 03×3 03×3 I3×3

] 𝜉𝑡
𝑅 − [

𝑅̂𝑡𝑛𝑡
𝑢𝑛𝑘𝑛𝑜𝑤𝑛,1

⋮

𝑅̂𝑡𝑛𝑡
𝑢𝑛𝑘𝑛𝑜𝑤𝑛,𝐾

],  (3.66) 

where 𝜉𝑡
𝑅 = [𝜉𝑅𝑡

𝑇   𝜉𝑣𝑡
𝑇    𝜉𝑝𝑡

𝑇   𝜉𝑙1

𝑇   ⋯  𝜉𝑙𝐾

𝑇 ]
T

 . The measurement matrix 

𝐻𝑢𝑛𝑘𝑛𝑜𝑤𝑛is trajectory independent. 

 

3.3.3.3 Other measurement models 

Various measurements may not belong to either left-invariant or right-invariant 

measurement models. If it does not fit the model exactly, use the appropriate 

invariant error for the closest invariant model [37]. However, both LIEKF and 

RIEKF would have state-trajectory dependent measurement matrices since the 

model does not perfectly fit. 

 

3.3.4 Adjoint transformation 

For IMU states defined by (3.38), the adjoint transformation matrix is calculated 

as 

 𝐴𝑑𝑋̂𝑡
= [

𝑅̂𝑡 03×3 03×3

(𝑣𝑡)×𝑅̂𝑡 𝑅̂𝑡 03×3

(𝑝̂𝑡)×𝑅̂𝑡 03×3 𝑅̂𝑡

].  (3.67) 
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 In chapter 3, the overall framework of IEKF has been introduced. To fully 

exploit the advantage of the IEKF, two conditions are essential: 1) process model 

should be group affine system, 2) measurement should have the form of left- or right-

invariant measurement. The IEKF will always be considered for the group affine 

process model. Therefore, the second condition is the key. Also, proper invariant 

error selection is required when the second condition is met. It is not a problem when 

the system uses only one measurement to correct the state estimate. However, 

navigation systems often use multiple aiding sensors to improve the estimation 

accuracy and ensure the robustness to the sensor outliers and the failures 

[41,42,43,44]. There is no problem if all the measurements belong to either the left- 

or right-invariant measurements. However, if both left- and right-invariant 

measurements are used, a problem occurs: what is a proper invariant error?  

In this chapter, the centralized filter structure and the decentralized filter 

structure are introduced for the multi-measurement system. Especially, a federated 

filter structure is exploited to process the left- and right-invariant measurements 

separately. To compare the equations of both structure, two measurements are 

considered: 3D navigation frame position measurement and 3D body frame velocity 

measurement. 3D navigation frame position measurement of (3.55) is a left-invariant 

measurement. 3D body frame velocity measurement of (3.60) is a right-invariant 

Chapter 4   

 

IEKF Using Multiple Measurements 
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measurement. Then the measurement model becomes 

 𝑧𝑡 = [
𝑧𝑡

𝑝𝑜𝑠

𝑧𝑡
𝑜𝑑𝑜

] = [
𝑝𝑡

𝑅𝑡
𝑇𝑣𝑡

] + [
𝑛𝑡

𝑝𝑜𝑠

𝑛𝑡
𝑜𝑑𝑜

]  (4.1) 

 

4.1 Centralized filter implementation 

The centralized filter structure processes all the aiding sensor measurements in 

the same filter (Figure 4.1 General centralized filter structurein [24]). The filter 

structure does not change when using only one aiding sensor and several. Since the 

update period also varies according to the sensor's sampling rate, even if multiple 

aiding sensors are used, only one measurement value may be used for each update. 

However, in this thesis, only the case where multiple sensor measurements are used 

for filter update simultaneously. In this case, the measurement matrix of multiple 

measurements is augmented into one and used for the update.  

Figure 4.1 General centralized filter structure 
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Sensor #2 

𝑧1 

𝑋̂⬚, 𝑃⬚ 

U 
P 
D 
A 
T 
E 

Prediction 

Filter 

Sensor #N 

𝑧2 
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𝑑𝑋̂𝑟𝑒𝑓 

𝑧𝑁 
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Since there are both left- and right-invariant measurements, there is no best 

choice between the left- and right-invariant error. So, both LIEKF and RIEKF should 

be considered and compared. In the following sections, the linearized innovation 

models are derived for both cases.  

 

4.1.1 Centralized LIEKF 

The state (3.38), the left-invariant error (3.50), the linearized error, and the 

linearized process model (3.52) are revisited. Using the equations, the centralized 

LIEKF predicts the state estimate. To use two aiding sensor measurements, the 

linearized innovations of both measurements are augmented. The innovation model 

of the 3D body frame velocity measurement should be changed to augment the 

innovations since it is derived only for the right-invariant error. Using (3.34) and 

(3.67), the innovation model of 3D body frame velocity measurement for right-

invariant error is derived as 

          𝛤𝑉𝑡
𝑜𝑑𝑜 = [03×3 𝐼3×3 03×3]𝜉𝑡

𝑅 − 𝑅̂𝑡𝑛𝑡
𝑜𝑑𝑜  

     = [03×3 𝐼3×3 03×3] 𝐴𝑑𝑋̂𝑡
𝜉𝑡

𝐿 − 𝑅̂𝑡𝑛𝑡
𝑜𝑑𝑜  

               = [03×3 𝐼3×3 03×3] [

𝑅̂𝑡 03×3 03×3

(𝑣𝑡)×𝑅̂𝑡 𝑅̂𝑡 03×3

(𝑝̂𝑡)×𝑅̂𝑡 03×3 𝑅̂𝑡

] 𝜉𝑡
𝐿 − 𝑅̂𝑡𝑛𝑡

𝑜𝑑𝑜  

               = [(𝑣𝑡)×𝑅̂𝑡 𝑅̂𝑡 03×3]𝜉𝑡
𝐿 − 𝑅̂𝑡𝑛𝑡

𝑜𝑑𝑜,  (4.2) 

where the measurement matrix of 3D body frame velocity measurement derived for 

the left-invariant error is defined as 

 𝐻𝑜𝑑𝑜,𝐿 = [(𝑣𝑡)×𝑅̂𝑡 𝑅̂𝑡 03×3].  f(4.3) 

Here, the superscript 𝑜𝑑𝑜 means that it is a measurement matrix of 3D body frame 
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velocity measurement and 𝐿 means that the measurement matrix is derived for left-

invariant error. Superscript 𝐿  is added since it is derived with inappropriate 

invariant error. If there is no 𝐿 or 𝑅 in the measurement matrix, it means that the 

measurement matrix is derived with proper invariant error. It can be seen that the 

measurement matrix includes the current state estimate because, unlike when derived 

for the right-invariant error, the left-invariant error is not an error proper for the right-

invariant measurement model. 

Using (3.56) and (4.2), the augmented linearized innovation for the 3D 

navigation frame position and the 3D body frame velocity measurement derived for 

left-invariant error is as follows 

𝛤𝑉𝑡
𝐿  = [

𝐻𝑝𝑜𝑠 𝜉𝑡
𝐿 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

,

𝐻𝑜𝑑𝑜,𝐿  𝜉𝑡
𝐿 − 𝑅̂𝑡𝑛𝑡

𝑜𝑑𝑜
]  

        =  [
03×3 03×3 𝐼3×3

(𝑣𝑡)×𝑅̂𝑡 𝑅̂𝑡 03×3
] 𝜉𝑡

𝐿 − [
𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

𝑅̂𝑡𝑛𝑡
𝑜𝑑𝑜

].  (4.4) 

The measurement matrix 𝐻𝐿𝐼𝐸𝐾𝐹 = [
03×3 03×3 𝐼3×3

(𝑣𝑡)×𝑅̂𝑡 𝑅̂𝑡 03×3
]  clearly contains 

current state estimates, which means it is not trajectory independent. It is a 

contradictory situation because the most significant advantage of IEKF is trajectory 

independent Kalman gain calculation. However, it is not trajectory independent 

when implemented with the centralized filter structure. 

It is necessary to compare it with the conventional EKF, whose original 

measurement matrix is not trajectory independent. For the conventional EKF, the 

state and the error state are as follows 

 𝑥𝑡 = [𝜙𝑡
𝑇 , 𝑣𝑡

𝑇 , 𝑝𝑡
𝑇]𝑇  (4.5) 

 𝑒𝑡 = 𝑥𝑡 − 𝑥𝑡 = [𝛿𝜙𝑡
𝑇 , 𝛿𝑣𝑡

𝑇 , 𝛿𝑝𝑡
𝑇]𝑇  (4.6) 
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where 𝜙𝑡 ∈ ℝ3  is the attitude, 𝑣𝑡 ∈ ℝ3  is the velocity and 𝑝𝑡 ∈ ℝ3  is the 

position of the vehicle. The error is defined in the vector space by the vector addition, 

where 𝛿𝜙𝑡 = log(𝑅̂𝑡𝑅𝑡
𝑇)

∨
∈ ℝ3 is the attitude error, 𝛿𝑣𝑡 = 𝑣𝑡 − 𝑣𝑡 is the velocity 

error, and 𝛿𝑝𝑡 = 𝑝̂𝑡 − 𝑝𝑡  is the position error. Then, the linearized innovation 

equation of the 3D navigation frame position and the 3D body frame velocity 

measurement is derived as 

𝛿𝑧𝑡 = [
𝑧̂𝑡

𝑝𝑜𝑠
− 𝑧𝑡

𝑝𝑜𝑠

𝑧̂𝑡
𝑜𝑑𝑜 − 𝑧𝑡

𝑜𝑑𝑜
] = [

𝑝𝑡̂ − 𝑝𝑡 − 𝑛𝑡
𝑝𝑜𝑠

𝑅̂𝑡
𝑇𝑣̂𝑡 − 𝑅𝑡

𝑇𝑣𝑡 − 𝑛𝑡
𝑜𝑑𝑜

]  

≈ [
𝛿𝑝𝑡 − 𝑛𝑡

𝑝𝑜𝑠

𝑅̂𝑡
𝑇(𝑣̂𝑡)×𝛿𝜙𝑡 + 𝑅̂𝑡

𝑇𝛿𝑣𝑡 − 𝑛𝑡
𝑜𝑑𝑜

]  

= [
03×3 03×3 𝐼3×3

𝑅̂𝑡
𝑇(𝑣̂𝑡)× 𝑅̂𝑡

𝑇 03×3
] 𝑒𝑡 − [

𝑛𝑡
𝑝𝑜𝑠

𝑛𝑡
𝑜𝑑𝑜

].  (4.7) 

Here, a first-order approximation of 𝑅̂𝑡𝑅𝑡
𝑇 ≈ 𝐼 + (𝛿𝜙𝑡)× is used. The measurement 

matrix 𝐻𝐸𝐾𝐹 = [
03×3 03×3 𝐼3×3

𝑅̂𝑡
𝑇(𝑣̂𝑡)× 𝑅̂𝑡

𝑇 03×3
] is trajectory dependent. Since (4.4) and 

(4.7) have similar forms and contain the current state estimates, the state estimate 

errors would degrade the estimation performance. 

 

4.1.2 Centralized RIEKF 

The state (3.38), the left-invariant error (3.51), the linearized error, and the 

linearized process model (3.53) are revisited. Using the equations, the centralized 

RIEKF predicts the state estimate. In this case, the innovation equation of the 3D 

navigation position measurement should be changed using the same method in 

Section 4.1.1, as follows, 
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𝛤𝑉𝑡
𝑝𝑜𝑠

= [03×3 03×3 𝐼3×3]𝜉𝑡
𝐿 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

  

            = [03×3 03×3 𝐼3×3] 𝐴𝑑𝑋̂𝑡

−1𝜉𝑡
𝑅 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

  

= [03×3 03×3 𝐼3×3] [

𝑅̂𝑡
𝑇 03×3 03×3

−𝑅̂𝑡
𝑇(𝑣̂𝑡)× 𝑅̂𝑡

𝑇 03×3

−𝑅̂𝑡
𝑇(𝑝̂𝑡)× 03×3 𝑅̂𝑡

𝑇

] 𝜉𝑡
𝑅 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

  

= [−𝑅̂𝑡
𝑇(𝑝̂𝑡)× 03×3 𝑅̂𝑡

𝑇]𝜉𝑡
𝑅 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

  (4.8) 

where the measurement matrix of 3D navigation frame position measurement 

derived for right-invariant error is defined as 

 𝐻𝑝𝑜𝑠,𝑅 = [−𝑅̂𝑡
𝑇(𝑝̂𝑡)× 03×3 𝑅̂𝑡

𝑇].  (4.9) 

Using (3.61) and (4.9), the augmented linearized innovation for 3D navigation 

frame position and 3D body frame velocity measurement derived for right-invariant 

error is as follows 

𝛤𝑉𝑡
𝑅  = [

𝐻𝑝𝑜𝑠,𝑅 𝜉𝑡
𝑅 − 𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

,

𝐻𝑜𝑑𝑜 𝜉𝑡
𝑅 − 𝑅̂𝑡𝑛𝑡

𝑜𝑑𝑜
]  

                 =  [
−𝑅̂𝑡

𝑇(𝑝̂𝑡)× 03×3 𝑅̂𝑡
𝑇

03×3 𝐼3×3 03×3
] 𝜉𝑡

𝐿 − [
𝑅̂𝑡

𝑇𝑛𝑡
𝑝𝑜𝑠

𝑅̂𝑡𝑛𝑡
𝑜𝑑𝑜

].  (4.10) 

The measurement matrix 𝐻𝑅𝐼𝐸𝐾𝐹 = [
−𝑅̂𝑡

𝑇(𝑝̂𝑡)× 03×3 𝑅̂𝑡
𝑇

03×3 𝐼3×3 03×3
]  clearly contains 

current state estimates terms related to the 3D position measurement. From (4.4) and 

(4.10), it can be said that using a centralized filter structure to implement the IEKF 

for a multi-measurement system causes IEKF to lose its advantage, trajectory 

independent estimation. The centralized filter structure is depicted in Figure 4.2.  
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4.2 Federated filter implementation 

This section exploits the decentralized filter structure to design IEKF without 

losing the trajectory independent property. Since previous studies on IEKF usually 

assumed a single aiding sensor case, it is the first time introducing a decentralized 

filter structure to IEKF. Mainly, this thesis proposes a structure based on the 

federated filter structure. It is because federated filter requires information sharing 

stage which ensures the optimality of the estimation [24,25]. 

 

4.2.1 Overall structure 

The main difference between the federated filter and other decentralized or 

centralized filters is that information sharing exists. The information sharing is 

required to preserve the total information of IMU. Consider the centralized filter 

structure. The IMU data is used to predict the state and error covariance in the filter. 

Figure 4.2 Centralized filter structure 

Process measurements 

using LIEKF or RIEKF 

Left-invariant 

measurement 𝑧𝐿 

𝑧𝑅 

Right-invariant 

measurement 

Centralized Filter 

 
Calculate 𝑋̂, 𝑃  

1. Prediction 

2. Update 

IMU 
𝑎̃, 𝜔̃ 
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It is not used repeatedly. On the other hand, in the federated filtering, the IMU data 

is used repeatedly in local filters. Then, the outputs of the local filters will be fused 

in the master filter. As a result, the information sharing is needed to conserve the 

total IMU information.  

This information sharing is usually done by applying 1 𝛽𝑖⁄  to the predicted a 

priori error covariances 𝑃−. To reset the estimates and the error covariance of the 

local filters before the measurement update process, 𝑖th local filter is reset with a 

priori state estimate 𝑥− and a priori inflated error covariance (1 𝛽𝑖⁄ )𝑃−. Here, 𝛽𝑖 

satisfies the following equation 

 ∑ 𝛽𝑖
𝐿
𝑖=1 = 1  (4.11) 

where 𝐿 is the number of the local filter. The information sharing and the reset of 

the local filter are depicted in Figure 2.2.  

Suppose there are two local filters; local filter 1 (LF1), which handles the left-

invariant measurement, and local filter 2 (LF2), which handles the right-invariant 

measurement. To use the proper invariant error, LF1 is designed with the LIEKF, and 

LF2 is designed with the RIEKF. Both invariant measurements will be processed 

through this separate handling of the left- and right-invariant measurements without 

losing the trajectory independent property. The overall structure of the modified 

federated filter structure to fuse the LIEKF and the RIEKF is depicted in Figure 4.3. 

The overall process is as follows: 

1) In the master filter, a priori state 𝑋̂𝑚  and covariance 𝑃𝑚
𝑅  are 

predicted using IMU data. In general, since the sampling rate of the 

IMU is higher than the measurement update rate,the  prediction using 

only the IMU data continues until the measurement update. Here, 
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prediction is performed using the RIEKF's error and linearized process 

model. However, the LIEKF can be used if necessary, and the 

calculation related to the RIEKF should be changed to that of the 

LIEKF for the entire process (1. Prediction in Figure 4.3). 

2) For the aiding sensor measurement update, the local filter is reset using 

the state estimate and covariance predicted by the master filter. Since 

LF1 uses the LIEKF, the covariance for the right-invariant error 𝑃𝑚
𝑅 

is converted into the covariance for the left-invariant error 𝑃𝑚
𝐿  using 

the adjoint transform 𝑃𝑚
𝐿 = 𝐴𝑑𝑋̂𝑚

−1 𝑃𝑚
𝑅𝐴𝑑𝑋̂𝑚

  (2. Transformation in 

Figure 4.3). The state estimate is independent of the invariant error, so 

no transformation is required. Then, after dividing the covariance by 

the information sharing factor 𝛽𝑖 , the state and covariance of each 

local filter are initialized. Here, 𝛽1 = 0.5 and 𝛽2 = 0.5 are used. 

3) The update is performed using the left-invariant measurement in LF1. 

In the case of the 3D navigation frame position measurement, (3.56) is 

used. If there are two or more left-invariant measurements, the 

measurement matrix is augmented and updated at once like the 

centralized filter. Since all the measurements are left-invariant, the 

augmented measurement matrix is trajectory independent (3. LIEKF 

update in Figure 4.3). A posteriori estimate of the state and the error 

covariance from LF1 is denoted as 𝑋̂𝐿 and 𝑃𝐿. 

4) In the same way in 3), LF2 processes all the right-invariant 

measurements (4. RIEKF update in Figure 4.3). A posteriori estimate 

of the state and the error covariance from LF2 are denoted as 𝑋̂𝑅 and 
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𝑃𝑅. 

5) Before step 4), the state estimates of the two local filters are the same, 

but after step 4), the state estimates of the two local filters, 𝑋̂𝐿 and 

𝑋̂𝑅, are different. To fuse the outputs of the local filters, 𝑃𝐿 should be 

converted back to the covariance for the right-invariant error 𝑃𝑅∗ 

using 𝑃𝑅∗ = 𝐴𝑑𝑋̂𝐿𝑃𝐿𝐴𝑑
𝑋̂𝐿
−1 (5. Transformation in Figure 4.3). 

6) In the master filter, 𝑋̂𝐿  with 𝑃𝑅∗  and 𝑋̂𝑅  with 𝑃𝑅  are fused (6. 

Fusion in Figure 4.3). The fused estimate 𝑋̂𝑓𝑢𝑠 and 𝑃𝑓𝑢𝑠
𝑅  are used for 

the prediction of the next step. 

 

The adjoint transformation requires a state estimate. Nevertheless, since each 

measurement is processed with trajectory independent Kalman gain, it can be said 

that the proposed structure exploits the full advantage of IEKF.  

Conventional federated or decentralized filters use fusion equations like 

 𝑃𝑓𝑢𝑠
−1 = ∑ 𝑃𝑖

−1𝐿
𝑖=1 ,  (4.12) 

 𝑥𝑓𝑢𝑠 = 𝑃𝑓𝑢𝑠 ∑ 𝑃𝑖
−1𝑥̂𝑖

𝐿
𝑖=1 ,  (4.13) 

where 𝑥𝑖, 𝑃𝑖 are outputs of 𝑖th local filter and 𝑥𝑓𝑢𝑠, 𝑃𝑓𝑢𝑠 are fused estimates of 

state and covariance. This conventional fusion method cannot be used for IEKF. 

Details about the fusion method of Lie group poses are introduced in the next section. 
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4.2.2 Fusion process 

As described in [16], poses defined on matrix Lie group and associated 

covariance cannot be fused using (4.12) and (4.13). It is because the error definition 

is changed. Unlike the traditional cases, the IEKF defined the error as left- or right-

invariant. And the linearized error 𝜉  in vector space is assumed to have white 

Gaussian distribution, 𝜉~𝑁(0, 𝑃𝜉). So, instead of (4.12) and (4.13), the iteration 

method fusing 𝐾 poses on 𝕊𝔼(3) and associated uncertainties is proposed in [16]. 

The method can be extended to 𝕊𝔼2(3) cases.  

Define the errors of two local filters as follows 

 𝜖𝑖 ≔ log (𝑋̂𝑜𝑝𝑡  𝑋̂𝑖−1
)

∨
= log (exp(𝜉∧)𝑋̂𝑓𝑢𝑠𝑋̂𝑖−1

)
∨
   

= log (exp(𝜉∧) exp (𝜉𝑖∧
))

∨
   

≈ 𝜉𝑖 + 𝒥𝑖
−1𝜉   (4.14) 

where {𝑋̂𝐿 , 𝑃𝑅∗} and {𝑋̂𝑅 , 𝑃𝑅} are denoted as {𝑋̂𝑖 , 𝑃𝑖} for 𝑖 ∈ {𝐿 , 𝑅}, the error 

is defined as 𝜖𝑖~𝑁(0, 𝑃𝑖), 𝑋̂𝑜𝑝𝑡 is the optimal state estimate, 𝑋̂𝑓𝑢𝑠 is the current 

guess, 𝜉  is the perturbation between 𝑋̂𝑜𝑝𝑡  and 𝑋̂𝑓𝑢𝑠 , and 𝜉𝑖  is the difference 

between 𝑋̂𝑓𝑢𝑠 and 𝑋̂𝑖. 𝒥𝑖
−1 is the inverse Jacobian for 𝜉𝑖, calculated by (3.44). 

The cost function is defined as 

 V =
1

2
(𝜖𝐿𝑇

𝑃𝐿−1
𝜖𝐿 + 𝜖𝑅𝑇

𝑃𝑅−1
𝜖𝑅),  (4.15) 

which is quadratic in 𝜉. Taking the derivative for 𝜉 and setting to zero results in 

following 

 (∑ 𝒥𝑖
−𝑇𝑃𝑖−1

𝒥𝑖
−1

𝑖=𝐿,𝑅 ) 𝜉 = − ∑ 𝒥𝑖
−𝑇𝑃𝑖−1

𝜉𝑖
𝑖=𝐿,𝑅 .  (4.16) 
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The optimal perturbation 𝜉 calculated from (4.16) is then applied to 𝑋̂𝑓𝑢𝑠, 

 𝑋̂𝑓𝑢𝑠 = exp(𝜉∧)𝑋̂𝑓𝑢𝑠.  (4.17) 

This calculation is repeated until the convergence. At the last iteration, the fused state 

𝑋̂𝑓𝑢𝑠, and fused error covariance is calculated by 

 𝑃𝑓𝑢𝑠
𝑅 = (∑ 𝒥𝑖

−𝑇𝑃𝑖−1
𝒥𝑖

−1
𝑖=𝐿,𝑅 )

−1
.  (4.18) 

The method described through (4.14)-(4.18) is the same as that of [16]. But, in 

this section, it is extended from 𝕊𝔼(3)  to 𝕊𝔼2(3)  based on [33]. The original 

method for poses and uncertainties defined in the right-invariant form can be 

changed to fuse the poses defined in the left-invariant form if the master filter uses 

the LIEKF. 

 

4.3 Numerical simulations 

This section applies the proposed fusion method to a 3D inertial navigation 

example. As mentioned earlier, INS is compensated by two aiding measurements; 

the 3D navigation frame position and the 3D body frame velocity measurement. To 

verify the estimation performance of the proposed method, Monte-Carlo simulations 

are performed. The trajectory and the sensor measurements are generated according 

to the noise statistics from Table 4.1. The sampling rate of IMU is 100Hz, while the 

aiding sensors are 10Hz. The vehicle moves at the forward speed of 5m/s for 60 

seconds along the 3D spiral trajectory described in Figure 4.4.  

The information about the initial error and its distribution is generally given in 

the navigation frame. Since the initial error is defined in the navigation frame, the 
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proper transformation is required to set the initial error covariance. In addition, the 

performance comparison between LIEKF and RIEKF can be made by adding the 

error defined in the navigation frame. So, the initial errors are added to the true values 

using Table 4.2. The initial attitude error 𝜉𝑅
0 is added by 𝑅̂ = exp (𝜉𝑅

0∧
) 𝑅, whereas 

the velocity and the position error 𝛿𝑋 are added by 𝑋̂ = 𝑋 + 𝛿𝑋. 

The transformation from the navigation frame to the invariant-error space is 

required to set a proper initial covariance. It can be performed by first-order 

approximation of the invariant error. For example, the navigation frame error can be 

calculated from the left-invariant error using 

 [

𝛿𝜙𝑡

𝛿𝑣𝑡

𝛿𝑝𝑡

] ≈ [

𝑅̂𝑡 03×3 03×3

03×3 𝑅̂𝑡𝐽𝑅𝑡
03×3

03×3 03×3 𝑅̂𝑡𝐽𝑅𝑡

] [

𝜉𝑅𝑡

𝐿

𝜉𝑣𝑡
𝐿

𝜉𝑝𝑡
𝐿

], (4.19) 

where 𝐽𝑅𝑡
 is a left Jacobian of 𝕊𝕆(3). Through (4.19), the initial error covariance 

represented in the navigation frame can be transformed to the error covariance in the 

left-invariant error frame. Similarly, the navigation frame error can be calculated 

from the right-invariant error using 

 [

𝛿𝜙𝑡

𝛿𝑣𝑡

𝛿𝑝𝑡

] ≈ [

𝐼3×3 03×3 03×3

−(𝑣𝑡)× 𝐽𝑅𝑡
03×3

−(𝑝̂𝑡)× 03×3 𝐽𝑅𝑡

] [

𝜉𝑅𝑡

𝑅

𝜉𝑣𝑡
𝑅

𝜉𝑝𝑡
𝑅

].  (4.20) 

With (4.20), the initial error covariance represented in the navigation frame can be 

transformed to the one in the right-invariant error frame. So, the initial error 

covariance setting for the IEKF can be adequately done [37].  
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Table 4.1 Simulation noise statistics 

Measurement Noise 1σ 

Gyro ARW 3 × 10−4𝑟𝑎𝑑/√𝐻𝑧 

Accelerometer VRW 3 × 10−4𝑚/sec2 /√𝐻𝑧 

3D position 5m 

3D velocity 0.2m/s 

 

Table 4.2 Initial error standard deviation 

 Case Position Velocity Attitude 

Initial error 

1σ 

A 2.5m 0.1m/s 15° 

B 5.0m 0.2m/s 30° 

C 7.5m 0.3m/s 45° 

D 10.0m 0.4m/s 60° 

 

Figure 4.4 Simulation trajectory 
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The errors are calculated and compared in the navigation frame. The attitude 

error is calculated by 𝜉 = log(𝑋̂𝑋−1)
∨
. The velocity and position error is calculated 

by vector subtraction 𝑋̂ − 𝑋 . An error is more intuitive and interpretable in the 

navigation frame than in the Lie algebra space. Then, root-mean-square error (RMSE) 

will be calculated. 

 

4.3.1 Convergence test 

Since IEKF has its strength in error convergence property, many studies 

evaluated the error convergence using Monte Carlo simulation [17,23,37]. In this 

thesis, 100 Monte Carlo simulations are performed for the convergence comparison. 

The initial error covariance and initial state estimate are initialized using the values 

of case 3 in Table 4.2. Every ensemble uses the same sensor measurements set, but 

the initial state estimates are different. The convergence test results are plotted in 

Figures 4.5, 4.6, 4.7, and 4.8. 
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Figure 4.5 Error ensembles of centralized EKF for case C 
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Figure 4.6 Error ensembles of centralized LIEKF for case C 
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Figure 4.7 Error ensembles of centralized RIEKF for case C 
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Figure 4.8 Error ensembles of proposed method for case C 
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The centralized EKF and LIEKF have troubles in error convergence. In many 

ensembles, error diverges or very slowly converges. On the other hand, the 

centralized RIEKF and the proposed method show perfect error convergence. 

Especially, it can be seen that the ensemble that did not converge quickly in the 

centralized RIEKF converges quickly in the proposed method. Also, from the fact 

that the distribution between each ensemble is denser in the proposed method, it can 

be seen that the error convergence of the proposed method is the best. 

 

4.3.2 Comparison of centralized IEKF and EKF 

Since the centralized IEKF uses trajectory dependent matrix similar to that of 

EKF, it is necessary to check whether there is a performance difference between EKF 

and IEKF. In invariant Kalman filtering, although the measurement matrix is 

trajectory dependent, the propagation of linearized error by the process model is 

made without linearization error. Since the propagation of the error is also affected 

by the linearization error in the conventional EKF, it can be predicted that there will 

be a performance difference between the IEKF and the EKF only by the difference 

in the prediction step. 

To compare EKF and IEKF, 1,000 Monte Carlo simulations are performed, and 

RMSE is calculated for position, velocity, and attitude. Results of initial error cases 

A and B from Table 4.2 are compared. 

 

4.3.2.1 Initial error case A 

Table 4.3 compares the average RMSE of EKF, LIEKF, and RIEKF. It can be 

seen that both LIEKF and RIEKF have improved errors compared to EKF. Also, it 

can be seen that RIEKF has a larger error improvement rate than LIEKF among 



49 

 

IEKFs. 

 

Table 4.3 Average RMSE comparison for case A 

 Position [m] Velocity [m/s] Attitude [deg] 

EKF 

(improvement) 

0.4838 

(0%) 

0.0490 

(0%) 

0.4977 

(0%) 

LIEKF 

(improvement) 

0.4703 

(2.79%) 

0.0477 

(2.65%) 

0.4888 

(1.79%) 

RIEKF 

(improvement) 

0.4690 

(3.06%) 

0.0452 

(8.41%) 

0.4591 

(7.76%) 

 

Table 4.4 ANEES comparison for case A 

 Position Velocity Attitude Total 

EKF 1.0653 1.2399 1.1731 1.1216 

LIEKF 1.0046 1.0666 1.0719 1.0431 

RIEKF 0.9996 1.0115 1.0180 1.0139 

 

Table 4.4 compares the three methods' time-averaged average normalized 

estimation error squared (ANEES). ANEES is calculated by 

 ANEES(𝑡𝑘) =
1

𝑀𝑁
∑ 𝜉𝑖(𝑡𝑘)𝑇𝑃𝑖(𝑡𝑘)−1𝜉𝑖(𝑡𝑘)𝑖 , 

where 𝑀 is the number of ensembles, 𝑁 is the dimension of states, 𝜉𝑖(𝑡𝑘) is the 

error at the time 𝑡𝑘, and 𝑃𝑖(𝑡𝑘) is the error covariance of the filter at the time 𝑡𝑘. 

The closer the value of ANEES to 1, the better the filter consistency. From Table 4.4, 

it is evident that LIEKF and RIEKF have better consistency than EKF.  
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4.3.2.2 Initial error case B 

From Figure 4.9 to Figure 4.11, RMSE for more extensive initial error 

conditions, case B, are compared. Since the small error assumption of the EKF is 

broken, the performance of the EKF severely deteriorates. In some ensembles, errors 

cannot converge to zero. In the case of IEKF, although the prediction step is not 

affected by the estimation error, trajectory dependent measurement matrices affect 

the estimation accuracy. In Table 4.5, compared to the degradation of the EKF 

estimation performance due to the large initial error, the degradation of the IEKF is 

insignificant, and the improvement of the estimation performance of the IEKF 

compared to the EKF is confirmed. The error improvement of 60~90% confirms that 

the performance of the IEKF is still superior to that of the EKF even when the 

trajectory dependent measurement matrix was used. 

 

Figure 4.9 Position RMSE comparison of EKF, LIEKF, and RIEKF for case B 
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Figure 4.10 Velocity RMSE comparison of EKF, LIEKF, and RIEKF for case B 

 

Figure 4.11 Attitude RMSE comparison of EKF, LIEKF, and RIEKF for case B 
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Table 4.5 Average RMSE comparison for case B 

 Position [m] Velocity [m/s] Attitude [deg] 

EKF 

(improvement) 

9.6173 

(0%) 

1.0475 

(0%) 

5.9889 

(0%) 

LIEKF 

(improvement) 

0.9862 

(89.75%) 

0.2032 

(80.60%) 

2.3545 

(60.69%) 

RIEKF 

(improvement) 

0.5338 

 (94.45%) 

0.0741 

(92.93%) 

0.8467 

 (85.86%) 

 

Table 4.6 ANEES comparison for case B 

 Position Velocity Attitude Total 

EKF 1,019 6,149 2,665 4,537 

LIEKF 3.5010 11.5184 10.7975 9.3956 

RIEKF 1.0747 1.3134 1.4376 1.2174 

 

Interestingly, the difference in estimation performance between the LIEKF and 

the RIEKF is clear. From the average RMSE in Table 4.5 and ANEES in Table 4.6, 

it can be said that the RIEKF has a more consistent and accurate estimation 

performance than the LIEKF. 

 

4.3.3 Comparison of IEKF and the proposed method 

To evaluate the performance of the proposed method, RMSE of 1,000 Monte 

Carlo runs are compared for four initial error cases. The main point is to validate 

whether the proposed method can improve estimation performance compared to 

RIEKF.  
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Figure 4.12 Comparison of IEKF and the proposed method for case A 



54 

 

 

Figure 4.13 Comparison of IEKF and the proposed method for case B 
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Figure 4.14 Comparison of IEKF and the proposed method for case C 
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Figure 4.15 Comparison of IEKF and the proposed method for case D 
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Table 4.7 Average RMSE comparison for case A 

 Position [m] Velocity [m/s] Attitude [deg] 

LIEKF 0.4703 0.0477 0.4888 

RIEKF 0.4690 0.0452 0.4591 

Proposed 0.4681 0.0451 0.4569 

 

Table 4.8 Average RMSE comparison for case B 

 Position [m] Velocity [m/s] Attitude [deg] 

LIEKF 0.9862 0.2032 2.3545 

RIEKF 0.5338 0.0741 0.8467 

Proposed 0.5136 0.0647 0.7333 

 

Table 4.9 Average RMSE comparison for case C 

 Position [m] Velocity [m/s] Attitude [deg] 

LIEKF 4.3348 0.8743 11.2918 

RIEKF 0.7803 0.1736 2.1065 

Proposed 0.5849 0.1089 1.2924 

 

Table 4.10 Average RMSE comparison for case D 

 Position [m] Velocity [m/s] Attitude [deg] 

LIEKF 9.4751 1.8161 24.9064 

RIEKF 1.7507 0.4230 5.4453 

Proposed 1.0433 0.2500 3.2651 
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Table 4.11 ANEES comparison for case A 

 Position Velocity Attitude Total 

LIEKF 1.0046 1.0666 1.0719 1.0431 

RIEKF 0.9996 1.0115 1.0180 1.0139 

Proposed 0.9975 1.0103 1.0165 1.0129 

 

Table 4.12 ANEES comparison for case B 

 Position Velocity Attitude Total 

LIEKF 3.5010 11.5184 10.7975 9.3956 

RIEKF 1.0747 1.3134 1.4376 1.2174 

Proposed 1.0270 1.1743 1.3070 1.1520 

 

Table 4.13 ANEES comparison for case C 

 Position Velocity Attitude Total 

LIEKF 97 479 305 1,102 

RIEKF 2.0366 7.2848 4.1601 8.3059 

Proposed 1.1542 2.2749 2.0720 1.9499 

 

Table 4.14 ANEES comparison for case D 

 Position Velocity Attitude Total 

LIEKF 552 3,042 1,724 7,914 

RIEKF 12.9273 69.0961 21.9635 126.5863 

Proposed 3.9400 25.7468 6.6385 47.0181 
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From Figure 4.12 to Figure 4.15 and Table 4.7 to Table 4.10, the proposed 

method shows improved estimation accuracy compared to the RIEKF. In case A, the 

difference between LIEKF, RIEKF, and the proposed method is insignificant since 

the initial error is small. However, there is a slight improvement for all state variables. 

As the initial error gets larger, the difference becomes apparent. For case B, the 

proposed method shows improved accuracy compared to the RIEKF by 3.78% for 

the position, 12.69% for the velocity, and 13.39% for the attitude. In case C, the 

proposed method improved by 25%, 37%, 38% for position, velocity, and attitude, 

respectively. Finally, average RMSEs are improved by 40% for every state variable 

in case D. 

In terms of the consistency, the proposed method always shows improved 

consistency compared to the RIEKF. The ANEES of LIEKF, RIEKF, and the 

proposed method are compared from Table 4.11 to Table 4.14. In each table, the 

consistency of the proposed method always has the smallest value. As the initial error 

conditions case C and case D go, the ANEES of the proposed method also increases. 

In addition, there would be errors due to the use of iteration-based fusion rather than 

closed-form solution in the fusion process of the master filter. 

As a result, it can be said that the proposed method shows improved estimation 

performance compared to the centralized IEKF in aspects of the estimation accuracy 

and the consistency. Although the effect of increasing the initial error could not be 

eliminated, the most robust method to the initial error is the proposed method. 
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5.1.1 Conclusion and summary 

In this thesis, a federated IEKF structure is proposed for the multi-sensor 

systems using both left- and right-invariant measurements. The framework of the 

IEKF is arranged, and the equations of the IEKF are derived for the state variables 

defined in 𝕊𝔼2(3)  to apply to the inertial navigation. For various left-/right-

invariant measurement models, it was shown that the measurement matrix is 

trajectory independent when an appropriate invariant error is used.  

A multi-sensor system using 3D navigation frame position measurement, which 

is a left-invariant measurement, and 3D body frame velocity measurement, a right-

invariant measurement, is considered. Implementing the LIEKF and the RIEKF as 

the centralized filters would lose trajectory independent property. A federated filter 

structure is introduced to process each invariant measurement in each local filter. In 

the proposed structure, the pose fusion method proposed in previous studies is 

extended to the 𝕊𝔼2(3)  case. Monte Carlo simulation is performed to perform 

numerical simulations for various initial error conditions, and the estimated 

performance and consistency of EKF, LIEKF, RIEKF, and the proposed method are 

compared. It was shown that the estimation performance of the centralized IEKF can 

be improved through the proposed method in a situation where the estimation 

Chapter 5   

 

Conclusion 
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performance has deteriorated. 

 

5.1.2 Future works 

The bias of the accelerometer and the gyroscope must be estimated for the 

inertial navigation applications. So, the proposed method should be extended to 

estimate IMU biases. It can be done using the mixed state with biases augmented to 

𝕊𝔼2(3). In addition, performance verification based on simulation and experimental 

data that considers the actual system rather than numerical simulation is required. 
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본 논문에서는 다수의 보정 센서를 사용하는 항법 시스템을 위한 연합

형 불변 확장 칼만필터의 구현을 제안한다. 불변 확장 칼만필터는 일반적

인 확장 칼만필터의 프레임워크는 그대로 사용하면서 상태변수를 행렬 리 

그룹 상에서 정의하여 확장 칼만필터 대비 우수한 추정 성능을 가진다. 좌

불변 혹은 우불변 측정치를 사용할 때 이에 적합한 불변 오차 정의를 선택

하여 구현한다면 궤적 독립적인 추정이 가능하다. 대부분의 불변 확장 칼

만필터에 대한 연구들은 단일 보정 센서의 사용을 가정한다. 그런데 실제 

적용에 있어, 항법 시스템은 추정 성능을 향상하기 위해 다수의 보정 센서

를 사용하는 경우가 많다. 좌불변 측정치와 우불변 측정치가 모두 사용되

는 상황이라면, 중앙집중형 좌불변 확장 칼만필터와 우불변 확장 칼만필터

는 모두 추정치에 영향을 받는 측정치 행렬을 사용하게 된다. 이로 인해 

불변 확장칼만필터가 갖는 가장 큰 장점인 궤적 독립 특성을 잃는다. 반면

에 연합형 필터 구조를 사용하면 각 측정치에 할당된 국소 필터에서 적절

한 필터로 각 측정치를 처리할 수 있다. 따라서 이 논문에서는 불변 확장 

칼만필터의 연합형 구조 구현을 제안한다. 리 그룹의 성질을 고려하는 적

절한 융합 방식을 사용한 구조를 제안하며, 그 성능을 시뮬레이션을 통해 

확인한다. 제안한 방식과 중앙집중형 불변 확장 칼만필터를 수렴성과 추정 

정확도의 관점에서 비교하였다. 

 

주요어: 불변 확장 칼만필터, 비선형 필터링, 다중 센서 항법, 연합형 필터 
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