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Abstract

Feature-analytic, Fleet-adaptive
Network for Fault Diagnosis of
Automated Material Handling Systems

Chaehyun Suh

Department of Mechanical Engineering
The Graduate School

Seoul National University

This paper proposes a Feature-analytic, Fleet-adaptive Network (FAFAN) for
fault diagnosis of automated material handling systems (AMHSS) in semiconductor
fabs. Constructing a fault-diagnosis model for a fleet of Overhead Hoist Transports
(OHTSs), which are the central part of AMHSs in semiconductor fabs, is challenging
since the torque signals from different OHT units diverge from each other; further,
the signals from many units consist of both labeled data and unlabeled data. To
effectively deal with this situation, the proposed method learns fault-discriminative
and OHT unit-domain-invariant features by selectively using pre-processed, multi-
channel torque signals. Next, the approach independently extracts features from each
channel and automatically learns the channel weights to leverage them, considering

domain generalizability and the presence of fault signatures. The proposed method



consists of three main steps; 1) dividing the OHT dataset into a fully labeled source
domain and a sparsely labeled target unit domain, 2) pre-processing front and rear
torque signals into three-channel signals, and 3) extracting features to classify signals
into normal, wheel fault, and gear fault states, while minimizing domain discrepancy
through the use of semi-supervised domain adaptation. We demonstrate the
effectiveness of the proposed method using data from 20 OHT units gathered from
an actual industrial line, in numerous combinations of OHT unit domains, and
different portions of target-domain-labeled data. The results of the validation verify
that the proposed method is effective for fault diagnosis of a group of OHTs under
insufficient label conditions and, further, that it provides physical evidence of the

diagnosing conditions.
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Chapter 1. Introduction
1.1 Research motivation

Overhead Hoist Transport (OHT) systems are an essential part of automated
material-handling systems in semiconductor factories. These transport systems play
a key role in the transportation of wafers, by autonomously moving on guide rails
installed on the factory ceiling [1]. Since the driving parts of OHTSs are subjected to
continuous high loading, and because OHT systems usually run continuously, their
components, such as their wheels and gearbox, are likely to degrade rapidly. If any
fault occurs in an OHT unit, other units running on the same railway are at risk of
being affected by the immobile unit, thereby putting the whole production line at
risk. Therefore, monitoring the conditions and diagnosing the fault status of every
OHT unit is crucial in maintaining a high wafer fabrication yield in a factory. To
help maintain reliable operation of automated systems and their subcomponents,
fault diagnosis methods have been developed, using signals measured from
components, such as vibration, current, and torque signals [2][3][25][26]. In
particular, fault diagnosis methods using current or torque signals obtained from
electric motor controllers are scalable to many machines in an actual line, since the
acquisition of these signals requires no additional sensors. For OHTSs, two-channel
torque signals from the controllers of dual-motor systems that are gathered for
command purposes are also available for condition monitoring. However, it is
difficult to generalize a fault diagnosis model for use with many OHT units, since
there are discrepancies in the distribution of signals obtained from different units.
Also, even though enough labeled data can be obtained from some units for fault

monitoring, labeled data from many OHT units may be insufficient, and the portion



of unlabeled data can be large due to practical issues that arise in labeling. Thus, to
construct a model that is applicable to not only a single OHT unit, but also to a group
of OHTs in an actual production line, deviations in the two-channel torque signals
gathered from the units must be overcome using unlabeled data and the small number

of labeled data.

To address the challenges of constructing a common fault diagnosis model using
unlabeled and sparsely labeled data from different machines, transfer learning,
domain adaptation, and semi-supervised learning methods have been suggested
[51[6]1[71[8][9]1[27]. Transfer learning has shown decent performance for transferring
knowledge from the informative source domain; it is usually executed using sparsely
labeled, target-domain data for fine-tuning the trained model. Domain-adaption
methods, which are a category of transfer learning, learn the feature spaces to
overcome the distributional discrepancy between domains in unsupervised or semi-
supervised settings, for use in the target domain. Common shallow domain-
adaptation methods aim to learn the mapping between fixed-source and target-
domain features. In industrial scenarios, these methods mostly rely on hand-
engineered input representations. Recently, deep domain-adaptation methods that
use deep architectures, such as a convolutional neural network (CNN), have shown
superior performance, since they can learn domain-invariant feature spaces
autonomously by backpropagation. The main branches of these methods are based
on adversarial training and a distance metric. Guo et al. [16] developed a domain-
adaptation model for fault diagnosis of bearings using unlabeled vibration signals
from three different testbeds, and Li et al. [8]developed a generalized model for

adapting real fault data to artificial bearing fault data utilizing the pseudo-label



technique.

However, since each channel of a multi-channel torque signal obtained from the
dual motors in an OHT can contain different physical characteristics and meanings,
the conventional CNN architecture utilized in the prior work described in the
literature has a limitation in extracting uniqueness in multi-channel input settings,
since the features from each channel are combined from the input layer with the same
kernel size [17][18]. Moreover, it is hard to quantify the relative contributions of
each channel for conducting fault diagnosis. In addition, leveraging this information
in the training procedure is difficult. These difficulties can prevent effective model

training and proper interpretation of the black-box model.

1.2 Research scope

This paper proposes a new method, a Feature-analytic, Fleet-adaptive Network,
that performs semi-supervised OHT unit-domain adaptation, considering different
characteristics and differing fault signatures in each channel of the torque signals.
The proposed method extracts features from a channel-independent CNN
architecture and automatically learns to weigh them to perform domain adaptation
and classification. Moreover, by analyzing the trained weight scores for each channel,
investigations of the contributions of each channel of the torque signal to the given
task can be performed. First, in the proposed method, the source and target OHT unit
domains are divided according to the portion of labeled data in each unit. Second,
the two-channel front and rear motor torque signals are pre-processed into three-

channel torque signals (Residual, Sum, and Difference) and standardized within each



channel. Third, features for each input channel are extracted through the use of
channel-independent CNN and are combined with weight to minimize classification
loss and semantic alignment loss (using labeled data) and to maximize domain
discrimination loss (using unlabeled data). In this paper, we limit the scope of the

fault modes of the OHT to gear and wheel faults.

1.3 Dissertation Layout

This paper is organized as follows. In section 2, the basics of OHTs and the
characteristics of dual-motor system torque signals are introduced. Next, the
proposed method is described in detail in section 3. Section 4 describes validation of
the proposed method using data from a real-world OHT line. Finally, the conclusion
and the contribution of the paper are summarized, and the future work is suggested,

in section 5.



Chapter 2. Background

In this section, first, the configuration of an OHT is explained in section 2.1. Then,
the characteristics of the control torque signals obtained from the dual-motor system

in an OHT are investigated in section 2.2.

2.1 Overhead Hoist Transport (OHT)

Driving Part

N

\_ 11\

Hoist

Figure 1. Overall configuration of Overhead Hoist Transport (OHT)



An OHT consists of two parts: a hoist part that carries wafers and a driving part
that maneuvers the whole system on a railway attached to the ceiling. The driving
part is steered by two speed-controlled surface-mounted permanent magnet
synchronous motors (SPMSMs) that are aligned along a guide rail. OHTSs run at a
constant speed on a regular basis along the straight sections of the closed-curve
railway system. Thus, to reduce variability and randomness that arise from the drive
commands for acceleration and deceleration, torque signals from the front and rear

SPMSMs are extracted from the constant-speed regions for all OHT units in a system.

In this paper, we aim to build a model that classifies the health condition of an OHT
as normal, wheel fault, or gear fault; these states were chosen since wheel and gear
faults represent a large proportion of OHT fault modes. The wheel fault mode occurs
due to wheel wear that is caused by the continuous high friction between the urethane
wheel and the railway. The gear fault mode consists of backlash and oil leak in the

gearbox, which are caused by continuous load transmissions.

2.2 Characteristics of the control torque signals of OHTs

Fault diagnosis can be performed using the torque signal of a motor, since the
fault-related periodic components at the load are transmitted from the load torque to
the electromagnetic torque Ty produced in the air gap of the motor. For a permanent

magnet synchronous motor (PMSM), Ty can be expressed as [19]:

T, = (:Tvtv+ZTn cosrfit+¢)+T o +T, "

n=1



where ] is the moment of inertia of the system driven by the motor, w is the
mechanical angular velocity of the rotor, Tg is electromagnetic torque, T, is the
constant part of the load torque, T, is no-load torque, and T,, f,, @, are the
amplitude, frequency, and phase angle of the harmonic component of the periodic
fault in the load torgue, respectively. In a constant-speed control scheme, (1) can be

summarized as:

Te =Tee + 2. T, cos(2xf t+¢,) ()

n=1

where Tg . is the constant part of the electromagnetic torque. Ty is affected
mainly by the command of the controller to output a certain amount of DC torque to
obtain the desired speed. Assuming that the change that results from the addition of
the payload is negligible, based on the weight of the total OHT system, this part
could be affected by the non-periodic mechanical faulty component at the load torque
[20]. In the case where a dual-motor system is the OHT driving part, the faulty
information from any part of either the front or rear motor’s load propagates through
the drivetrain and consequently affects the mutual characteristics of Ty for both
the front and rear motors [21][22]. Therefore, informative pre-processing of the
torque signals to highlight certain parts related to the fault can enhance the fault
diagnosis performance.

Since dozens of OHTS run on a single railway, it is important to monitor every unit,

since any single faulty unit can affect the whole process. However, constructing a



torque-signal-based fault diagnosis feature or a model that is applicable to many
OHTs is challenging, as the signals obtained from each unit diverge from each other
due to configuration parameter changes and the inherent randomness of the control
signal. Furthermore, labeled data — especially for fault modes — are not sufficient for
many OHT units in real production lines, since abnormal events rarely happen and
the labeling process is labor-intensive. Therefore, these challenges have to be

addressed in order to conduct fault diagnosis of OHTSs in an actual operation line.



Chapter 3. Proposed method
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Figure 2. Overall flowchart of the proposed method



This section describes the details of the proposed Feature-analytic, Fleet-adaptive
Network (FAFAN) for fault diagnosis of OHTs using semi-supervised unit-domain
adaptation. Fig. 2 shows the overall flowchart of the proposed FAFAN method. The
architecture of the proposed method is introduced in section 3.1, followed by an

explanation of the training steps for the model, which are described in section 3.2.

3.1 Configuration of the proposed FAFAN method

10
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Figure 3. Architecture of FAFAN: (a) overall FAFAN process, (b) 1D CNN block,
(¢) Condition classifier, (d) Domain discriminator



The proposed method is designed to deal with multi-channel torque signals as it
pursues the objective of learning OHT unit-domain invariant latent features, while
achieving high fault classification accuracy using both labeled and unlabeled data.
The proposed architecture develops conventional CNN’s autonomous feature
extraction ability to independently extract and leverage different fault characteristics
of each input torque channel. The overall architecture of the proposed FAFAN
approach is shown in Fig. 3; it consists of four parts, which are described in detail in

the following subsections.

3.1.1 Pre-processing module

First, constant-speed regions are identified the using motor encoder signals and the
front and rear torque signals of an OHT are extracted from these regions. Then, these
two-channel torque signals are pre-processed into three-channel torque signals,
including the Residual, Sum, and Difference, to highlight the different parts of the
torque signal that are affected by a fault. To obtain the Residual, a moving average
filter (MAF) that averages three consecutive time steps is applied to the raw front
torque signal and the filtered signal is subtracted from the original signal. This results
in a torque signal where the control-related part (T, in (1)) is minimized and
contains load torque oscillations in the high-frequency regions. Furthermore, to
consider the relation between the two SPMSMs in faulty load conditions, we define
Sum as the summation of the front and rear torque signals and Difference as the

subtraction of the rear torque from the front torque. These linear combinations of

12



front and rear torques contain control-related parts and some low-frequency load
torque oscillations. Since the control command is affected by the fault as it achieves
constant speed, the total power output of the OHT driving part is characterized by
the sum, and the power output asymmetry in the dual-motor system is characterized
by the Difference, accordingly [22]. After pre-processing, each of the three-channel
inputs is normalized independently to form a distribution of zero mean and a unit

standard deviation, considering all training data.

3.1.2 Feature extractor F: Channel-independent CNN

A CNN is constructed in three paths independently to extract unique features from
each channel. The convolutional layers in the CNN are assigned to each of the input
channels and are not combined with one another until the global average pooling
layer. Since high-frequency components dominate the Residual and low-frequency
components dominate the Sum and Difference, the kernel size that represents the
receptive field size for acquiring information from the raw time-series input is set as
relatively small for the Residual and relatively large for the Sum and Difference [23].
This whole process can induce the deep neural network to examine different regions

in the raw input and automatically extract meaningful features for the given task.

3.1.3 Feature extractor F: Channel-weighting block

13
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To quantify the relative contributions of each channel for the given tasks of
classification and domain adaption and to reflect this information in the training
procedure, a channel-weighting block that contains an auxiliary layer is adopted to
automatically learn the weights of each channel, as shown in Fig. 4. These weights
(ch; (3)) are calculated from the auxiliary layer; they take a concatenation of the
global average pooled feature vectors (G; in (3)) from each channel as the input and
output of the softmax function values. Every node in a fully connected layer
combines all values of the previous layer to consider the relationships among
features from each input channel and finally from among each of the three channels
[14]. The outputs are three positive values that sum up to 1; each of them is
multiplied by each channel’s global-average-pooled feature vector. The linear
summation of each channel’s global-average-pooled feature vector is passed on the
other side, which forms a residual connection to maintain the original information
from each channel and to facilitate the training procedure. The final feature vector is
(F(X) in (3)), which is obtained by summing these two vectors. The result is used
to form a latent feature space for the feature extractor part. The equations of this

process are as follows:

eZk W, i *concat(G); y +by 3
ch = ,i=123& ) ch =1
i 3 i
Zezkwivk*concat(G)jvwbj i—1
= A3)

3
F(X)=(ch*G, +ch,*G, +ch,*G,) + (G, +G, +G,) = Z(chi +1)*G,

i=1



where G; is the global-average-pooled vector of the it" input channel, W i 1s the

k" weight, b; is the bias of i input channel, and X is the input data.

3.1.4 Task module: Condition classifier C & Domain discriminator D
After the features from each channel are linearly summed using their weight, the
resultant feature vector is fed into two fully connected layers to perform domain
discrimination and condition classification tasks. In particular, the feature extractor
(part 2 & 3 of the architecture) is used to learn to deceive the domain discriminator

in an adversarial way, to learn the OHT unit-domain-invariant features.

3.2 Model training procedures

3.2.1 Train F and C to classify the condition

F and C are trained to minimize the source classification loss L s using only
source data {Xs, Y} that consist of fully labeled normal, wheel fault, and gear fault
data. Since the target domain is sparsely labeled, the latent feature space is first
constructed using an informative source domain, which will be used as a decent
initial base for later transformation. The classification loss used in this step is a cross-

entropy loss for 3-class classification. L¢; s is expressed as follows:

16



C(F(Xs,));

Latss (62 0) = - Y CEC(F(Xs Yo ) == X 3 MY = flloglS——) @)

s n=1 s n=1 j=1 ZeC(F(XSJ))k

k=1

where 6 and 6. are the parameters of F and C respectively, ng is the number
of source domain samples, and CE is cross-entropy loss. The term [Ys;=j] returns

1 when the equality holds.

3.2.2  Train D using to discriminate the OHT unit domain

D is trained to discriminate the source and target domain OHT units using the
learned F. The binary domain label is assigned as 1 for the source domain and O for
the target domain to distinguish the two domains. The source data X, the unlabeled
target data X7, and the corresponding domain label Y, are used to minimize the
domain discrimination loss Lp;s, given the fixed feature space from the previous
step. This step is crucial since developing a well-performing D can improve the
result of the adversarial learning in the next step by intensively challenging F to

modify the feature space to fool this strong opponent. Lp,;s is expressed as follows:

1 Ns +ry

Lois (65) = > BCE(D(F(X,)).Yp,)
1 i5+nTUU - (5)
T an Z (Yo, log(D(F (X)) +(@-Y,,;) log(l—D(F(X,))))

where 08 denotes the parameters of D, npy is the number of unlabeled target

domain samples, and BCE is the binary cross-entropy loss.
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3.2.3 Train F, C, and D to learn generalized feature representation for

the source and target domains

The F and C are trained to minimize the total classification loss L¢;sror and
contrastive semantic alignment loss L.s4 using source data {Xs, Y5} and labeled
target data {Xr;, Yri} Lcisror consists of Lcss and target classification

loss L¢ps 7, Which is expressed as follows:

1 o 1 M 3 . eC(F(XTL‘i))j
LCLS,T (= HC) = n_ZCE(C(F(XTL,i))vYTL,i) = __ZZ]'[YTLJ = ]] IOg(m)
TL i=1 TL n=1 j=1 e TLi Dk (6)

Leisror = @sbeiss +orlesy

where np; is the number of labeled target domain samples; ag and ar are the
weights to balance the source and target classification loss functions. The L2-norm
contrastive semantic alignment loss Lcg, measures the distance between the source
and target domain latent features of the same label (first term in the right hand side
of (7)) and of the different label (first term in the right hand side of (7)); this loss is
minimized to place the features of the same label near each other and to regulate the
features of the different label to be far from each other at the margin (it is set to be 1

in this paper). Lcg4 is expressed as follows:

18 il B |



Lea6.0)=—2( 3 IF(Xe))-FX ) IE+ Y max(0,margin-[F(X,) - F(Xx ) )?) (7)

n pairs i,samelabel i, difflabel

where 7,4y is the number of source and labeled target domain data pairs to derive
the distance. At the same time, the latent features are trained to make D fail to
identify from which domain the OHT unit comes, by maximizing the domain
discrimination loss Lp;s using Xs and X7y, as in the previous. D also learns to
update the loss function to make a balance in the adversarial learning procedure. This
whole step utilizes given sparsely labeled target data to make them fit in the pre-
trained feature space in the first step, which ultimately results in a generalized
diagnosis model applicable to many OHT units. The total loss function L¢;sror

and the optimal parameters are expressed as follows:

Lior (050,65 ) = s Lers vor (01 6:) + Gespbesa (O O ) — ALps (05, 65)
6:,6.) =argg min Lo, (6:,6;.6;) (8)

b

(HD) = arggmax L'TOT (eF ) HC ) HD)

where 85, 8, and 8, are the optimal parameters of F,C, and D respectively.
Acrs, %csa, and A are the weights to balance the classification, contrastive

semantic alignment, and domain adversarial learning processes.
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Chapter 4. Experimental validation

In this section, the performance of the proposed method is evaluated using data
obtained from OHTs running in an actual line. In section 4.1, the dataset used for
experimental studies is described. Then, the comparison methods are outlined in

section 4.2, followed by experimental results, which are provided in section 4.3.
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4.1 Dataset description
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Figure 5. Scatter plot of average values of the front and rear torque signals: (a) all

classes, (b) only normal class

A dataset consisting of torque signals from 20 OHT units from actual

semiconductor factories is used for validation of the proposed method. The torque

1
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signals are sampled with a frequency of 1 kHz from the front and rear motors in the
driving part of an OHT. Three health conditions of normal, wheel fault, and gear
fault are included in the dataset.

The averages of the normalized front and rear torque data of some OHT units are
shown in Fig. 5. It is hard to determine decision boundaries to classify the health
conditions in Fig. 5 (a) since the intra-class variance is large for all classes and the
inter-class variance is small, especially for the normal and gear fault states. The large
intra-class variance is due to the distributional shift between OHT units, as visualized
by the different colors in Fig. 5 (b); the small inter-class variance implies the
challenge in extracting distinguishable features using torque signals. To build a
generalized fault diagnosis model, these difficulties have to be addressed using a
ratio of a small amount of labeled data to a large amount of unlabeled data, for most

OHT units.

Source Target

Source Target

< ¢ SSSS

5 S S S
SRS RS RS 5 5 5 S

SIRSERSI RS

15 different
combinations

Figure 6. Source and target domain OHT configuration
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To verify the effectiveness of the proposed method for unit-wise domain adaptation,
given data are divided into the source and target domains. The source domain
consists of four fully labeled OHT units; the target domain consists of 16 sparsely
labeled OHT units. A total of 15 different combinations of these domains are

considered by randomly splitting the OHT units.

4.2 Description of the comparison methods

4.2.1 Source only (S-only)

For the S-only method, the architecture of the Feature-analytic, Fleet-adaptive
Network is trained to minimize L¢gs using only the source-domain data {Xg, Ys}.
The fault diagnosis performance of this method is directly related to the distance
between the source and target domains; the lower the performance, the larger the

domain gap.

4.2.2 Source Target Labeled (STL)
For the STL method, labeled target-domain data {Xy;, Y.} are added to S-only to
minimize L¢psror . This method shows the necessity of contrastive semantic

alignment, which aims to minimize L¢gy.

4.2.3 Source Target Labeled CSA loss (STL-CSA)



For the STL-CSA method, the same data that were used in STL are used again to
train the STL-CSA model; however, the optimization objective is to minimize
acrsLherstor + Acsalesa. Lesa 1s added to reduce the domain gap and increase the
inter-class variance. This method is compared to show the effect of domain

adaptation using unlabeled data.

424 Source Target Labeled CSA loss with Maximum Mean
Discrepancy (STL-CSA-MMD)

Maximum mean discrepancy (MMD) is widely used to quantify the discrepancy

between the source and the target domains, using statistical distance. The MMD loss

also utilizes unlabeled data, added to form aCLSLCLS,TOT + aCSALCSA + aMMDLMMD‘

Lumo = MMDZ(F(Xs)s F(XTU )
1 Ns Ny 1 My

L ERLE S » Y ERLIE I W CE LIS
Kx) =X 5200101110

MMD is the empirical maximum mean discrepancy estimated using the kernel trick.
The kernel is chosen as the Gaussian radial basis function (RBF)[24] and, since the
choice of the bandwidth parameter o2 greatly affects the performance, it is set to

four different values, ranging from 0.1 to 10, to enhance robustness.
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4.3 Experimental settings

All experiments were conducted on a Windows 10 computer with an Intel 17-9700
CPU (3.00 GHz) and an NVIDIA GeForce RTX 2080 SUPER GPU (3072 CUDA
cores, 8GB GDDR6 memory). The code was written in Python 3.7 and the PyTorch
deep learning framework was used for model training and testing. The experiments
for all methods were conducted with the learning rate of 0.0009, batch size of 16,

and an exponential learning decay rate of 0.99. 4 is set as — 1, where

1+exp(—10p)

h :
p= % .The hyper-parameters of the deep architecture (feature extractor,

condition classifier, and the domain discriminator) are listed in Table 1; the

comparison methods share the same feature extractor and condition classifier as

those used for the proposed FAFAN.



Table 1. Network configuration and parameters of the proposed method

Layer Parameters Outp;jiigtlll:]mnel,
Input Window size = 1000 [3, 1000]
Kernel size = 8 (Residual) / 200 [18,993]
CONV 1 (Sum, Difference), Channels = 18, (Residual) / [18,
Stride = 1, Activation = ReL.U, Batch 801] (Sum,
normalization Difference)
[18, 496]
MP 1 Kernel size = 2, Stride =2 (stégﬁt??u/ngl&
Difference)
Kernel size = 8, Channels = 36, ( Resgfig;?)8/963 6
Feature CONV 2 | Stride = 1, Activation = ReLU, Batch :
extractor (F) - o 393] (Sum,
normalization .
CNN Difference)
[36, 244]
MP 2 Kernel size = 2, Stride =2 (Risé?]w(l?u/m[?’@
Difference)
Kernel size = 8, Channels = 72, Stride ( Resi£l71,¢2a’l)2 ?7][72
CONV 3 =1, Activation = ReLU, Batch 189] (Stum ’
normalization !
Difference)
GAP - [1,72]
Feature Concatenate three [1, 72] GAPs from
extractor (F) CONCAT Residual, Sum, and Difference [1,216]
- Channel- B B
weighting block FC Node = (216, 3), Output = Softmax [1, 3]
. Node = (72, 36), Activation =
Condition Fel LeakyReLU (0.2) L1, 36]
classifier (©) ¢ Node = (36, 3), Output = Softmax [1,3]
Node = (72, 64), Activation =
FC1 e 1,64
Domain LeakyReLU (0.2) [1,64]
discriminator Node = (64, 32), Activation =
(D) FC2 LeakyReLU (0.2) [1,32]
FC3 Node = (32, 1), Output = Sigmoid [1,1]
b
-":lx_! 'q.l.- ok
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For the performance analysis, the training and test data are split with the ratio of
75:25, in a way that any pair of training and test data do not come from the same
constant-speed region. In particular, for fair validation, the training and test data for
a target OHT unit are divided in an inductive setting, where the test data with label

information are not used in the training procedure in any form.
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4.4 Results and discussion

4.4.1 Performance analysis

The fault diagnosis accuracies for the target domain test set in each target labeled
data condition are calculated using S-only, STL, STL-CSA, STL-CSA-MMD, and
the proposed method, as shown in Fig. 7. The accuracies are calculated for 15
different source and target OHT unit combinations; the mean accuracy is represented
as the height of the bar, and the black vertical line centered at the top of the bar

represents the 95% confidence interval of the corresponding accuracy.



Target test accuracy

Sonly

Target test accuracy (%)

5 10
Target labeled data portion (%)

25

30

Figure 7. Comparisons of fault diagnosis accuracies for target domain test data

Table 2. Fault diagnosis accuracies (%) for target domain test data

Target labeled percent (%)

Method
5 10 25 50
S-only 55+4 55+4 55+4 55+4
STL 73+3 77+3 78+3 85+2
STL-CSA 76+3 80+2 81+2 87+2
STL-CSA-MMD 78+3 82+2 842 8842
FAFAN 84+1 89+1 91+1 93+1
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Fig 8 shows 2D visualization of the high-dimensional deep latent space of the
methods in the 5% target label case, using t-Distributed Stochastic Neighbor
Embedding. As seen in Fig. 8 (a), the input data is complex, and the decision
boundaries for classification are impossible to determine. The feature space of S-
only and STL, as shown in Fig. 8 (b) and (c), indicate that the gap between the
domains is large and even the features within the domain are divergent. Thus, by
adding Lgs4 as for STL-CSA, the features are more organized; however, the
decision boundaries are imperfect, since the unlabeled data in the target domain are
not considered in the training procedure, as shown in Fig. 8 (d). By adding MMD
loss, the discrepancy of the source and target domain was slightly reduced; however,
the effect in fault diagnosis is limited. The FAFAN approach utilizes the domain
discriminator in an adversarial way, such that it eventually fails to identify to which
domain the feature belongs. In Fig. 8 (f) the features from different domains but with
the same label are clustered near each other. The features in Fig. 8 (d) can be
distinguished easily into the source and target domains by a simple domain decision
boundary; however, the features in Fig. 8 (e) successfully interrupt the domain

discriminator in determining the domain decision boundary.

4.4.2 Input channel investigation

The softmax outputs of the channel-weighting block are analyzed to investigate
whether the physical behavior is reflected in the learning of the proposed model.
Each of the softmax outputs ch, ch,, and chz corresponds to the learned weight of

each input channel Residual, Sum, and Difference.
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When FAFAN predicts each health condition given new test data, the features
from each input channel are weighted by the trained auxiliary layer in the channel-
weighting block. The mean and standard deviations of these weights are calculated
in the target domain and are shown in Fig. 9 (a). When predicting the normal class,
each channel is evenly weighted, as seen in Fig. 9 (a). Estimation of the wheel fault
mode requires the model to highlight the Difference. Also, in the torque average
scatter plot in Fig. 9 (b), many wheel fault data points can be distinguished using the
Difference. When a wheel fault occurs, the unbalance of the output energy between
the front and rear motor tends to increase, as compared to the normal condition. This
physical phenomenon is reflected in the training procedures of the proposed method,
as it extracts more class-distinguishable and domain-invariant features than the mere
average of the front and rear torque. For the gear-fault mode, the channel-weighting
block highlights slightly more on the Sum than it does for the other input channels.
The proposed method identifies the discriminability of the gear fault compared to
the normal condition, using Sum, and utilizes this information to extract deep

features.
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Chapter 5. Conclusion
5.1 Summary

This paper proposes a Feature-analytic, Fleet-adaptive Network (FAFAN) that can
quantify the relative importance of each multi-channel torque signal for conducting
semi-supervised OHT unit-domain adaptation. FAFAN consists of pre-processing
module, feature extractor that is a cascade of channel-independent CNN and
channel-weighting block, and task module of condition classifier and domain
discriminator. FAFAN is trained in three steps to learn fault-discriminative but OHT
unit-domain-invariant latent feature space. FAFAN’s fault diagnosis capability was
validated using real line OHTs torque data and it was compared with other methods
such as S-only that uses model trained only with source domain data, STL that uses
model trained with both source and target labeled data, STL-CSA that considers
contrastive semantic alignment loss additional to STL, and STL-CSA-MMD that
considers MMD additionally to STL-CSA to minimize discrepancy between source
and target domains using unlabeled target domain data. Consequently, the proposed
FAFAN was superior to other existing methods using datasets of various portions of
target domain labeled data and source and target OHT unit domain combinations.
The analysis of channel-weighting block after training provided evidence of

diagnosing faulty conditions in the physical context of the dual-motor torque signals.

5.2 Contribution

The proposed method offers the following primary contributions:



Contribution 1: Unified fault diagnosis model for a fleet of AMHS

The proposed method considers the signal discrepancy among different machines
of the same type to construct a unified fault diagnosis model using a fully labeled

source domain and a sparsely labeled target domain.

Contribution 2: Fault diagnosis method validated using data from actual

manufacturing lines

The proposed method is validated using torque data obtained from dozens of OHTs
running in actual semiconductor manufacturing lines, in contrast to most fault

diagnosis research, which is conducted only with laboratory-scale data.

Contribution 3: Enhancing explainability of the deep model using channel

weights

The proposed method’s architecture learns the relative weight score of each input
time-series channel to enhance feature learning for fault diagnosis and domain
adaptation and to additionally investigate which channel was relatively considered
in the given task. This eventually enhances explainability of the deep model in
estimating health states in the physical context such as total power output and power

output asymmetry.
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Contribution 4: Control signal based fault diagnosis method for general

application

The proposed method utilizes the command control torque signal from a surface-
mounted permanent magnet synchronous motor (SPMSM), which does not require
any additional sensors, to diagnosis mechanical faults such as wheel and gear fault.
Thus, the proposed framework is widely applicable to diverse industrial scenarios

where control signals are already available.

5.3 Future work

Future work will examine methods to improve the pre-processing and network
configuration to enhance the diagnosis performance and physical interpretability of
the deep neural network. To improve the pre-processing of two-channel torque
signals, filters that reduce the noise of the signal can be implemented and advanced
methods that capture the subtle relation between two-channel torque can be figured
out. To improve the deep neural network configuration, parameter optimization
using grid search or Bayesian optimization can be used. Further, extended
applications of the proposed method to different industrial systems will be conducted

in future studies such as industrial robots and other motor-driven mechanical systems.
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