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Abstract 

 

 

Feature-analytic, Fleet-adaptive 

Network for Fault Diagnosis of  

Automated Material Handling Systems 
 

Chaehyun Suh 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 

 

This paper proposes a Feature-analytic, Fleet-adaptive Network (FAFAN) for 

fault diagnosis of automated material handling systems (AMHSs) in semiconductor 

fabs. Constructing a fault-diagnosis model for a fleet of Overhead Hoist Transports 

(OHTs), which are the central part of AMHSs in semiconductor fabs, is challenging 

since the torque signals from different OHT units diverge from each other; further, 

the signals from many units consist of both labeled data and unlabeled data. To 

effectively deal with this situation, the proposed method learns fault-discriminative 

and OHT unit-domain-invariant features by selectively using pre-processed, multi-

channel torque signals. Next, the approach independently extracts features from each 

channel and automatically learns the channel weights to leverage them, considering 

domain generalizability and the presence of fault signatures. The proposed method 
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consists of three main steps; 1) dividing the OHT dataset into a fully labeled source 

domain and a sparsely labeled target unit domain, 2) pre-processing front and rear 

torque signals into three-channel signals, and 3) extracting features to classify signals 

into normal, wheel fault, and gear fault states, while minimizing domain discrepancy 

through the use of semi-supervised domain adaptation. We demonstrate the 

effectiveness of the proposed method using data from 20 OHT units gathered from 

an actual industrial line, in numerous combinations of OHT unit domains, and 

different portions of target-domain-labeled data. The results of the validation verify 

that the proposed method is effective for fault diagnosis of a group of OHTs under 

insufficient label conditions and, further, that it provides physical evidence of the 

diagnosing conditions. 
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Chapter 1. Introduction     

1.1 Research motivation 

Overhead Hoist Transport (OHT) systems are an essential part of automated 

material-handling systems in semiconductor factories. These transport systems play 

a key role in the transportation of wafers, by autonomously moving on guide rails 

installed on the factory ceiling [1]. Since the driving parts of OHTs are subjected to 

continuous high loading, and because OHT systems usually run continuously, their 

components, such as their wheels and gearbox, are likely to degrade rapidly. If any 

fault occurs in an OHT unit, other units running on the same railway are at risk of 

being affected by the immobile unit, thereby putting the whole production line at 

risk. Therefore, monitoring the conditions and diagnosing the fault status of every 

OHT unit is crucial in maintaining a high wafer fabrication yield in a factory. To 

help maintain reliable operation of automated systems and their subcomponents, 

fault diagnosis methods have been developed, using signals measured from 

components, such as vibration, current, and torque signals [2][3][25][26]. In 

particular, fault diagnosis methods using current or torque signals obtained from 

electric motor controllers are scalable to many machines in an actual line, since the 

acquisition of these signals requires no additional sensors. For OHTs, two-channel 

torque signals from the controllers of dual-motor systems that are gathered for 

command purposes are also available for condition monitoring. However, it is 

difficult to generalize a fault diagnosis model for use with many OHT units, since 

there are discrepancies in the distribution of signals obtained from different units. 

Also, even though enough labeled data can be obtained from some units for fault 

monitoring, labeled data from many OHT units may be insufficient, and the portion 
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of unlabeled data can be large due to practical issues that arise in labeling. Thus, to 

construct a model that is applicable to not only a single OHT unit, but also to a group 

of OHTs in an actual production line, deviations in the two-channel torque signals 

gathered from the units must be overcome using unlabeled data and the small number 

of labeled data. 

To address the challenges of constructing a common fault diagnosis model using 

unlabeled and sparsely labeled data from different machines, transfer learning, 

domain adaptation, and semi-supervised learning methods have been suggested 

[5][6][7][8][9][27]. Transfer learning has shown decent performance for transferring 

knowledge from the informative source domain; it is usually executed using sparsely 

labeled, target-domain data for fine-tuning the trained model. Domain-adaption 

methods, which are a category of transfer learning, learn the feature spaces to 

overcome the distributional discrepancy between domains in unsupervised or semi-

supervised settings, for use in the target domain. Common shallow domain-

adaptation methods aim to learn the mapping between fixed-source and target-

domain features. In industrial scenarios, these methods mostly rely on hand-

engineered input representations. Recently, deep domain-adaptation methods that 

use deep architectures, such as a convolutional neural network (CNN), have shown 

superior performance, since they can learn domain-invariant feature spaces 

autonomously by backpropagation. The main branches of these methods are based 

on adversarial training and a distance metric. Guo et al. [16] developed a domain-

adaptation model for fault diagnosis of bearings using unlabeled vibration signals 

from three different testbeds, and Li et al. [8]developed a generalized model for 

adapting real fault data to artificial bearing fault data utilizing the pseudo-label 
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technique. 

However, since each channel of a multi-channel torque signal obtained from the 

dual motors in an OHT can contain different physical characteristics and meanings, 

the conventional CNN architecture utilized in the prior work described in the 

literature has a limitation in extracting uniqueness in multi-channel input settings, 

since the features from each channel are combined from the input layer with the same 

kernel size [17][18]. Moreover, it is hard to quantify the relative contributions of 

each channel for conducting fault diagnosis. In addition, leveraging this information 

in the training procedure is difficult. These difficulties can prevent effective model 

training and proper interpretation of the black-box model.  

 

1.2 Research scope 

This paper proposes a new method, a Feature-analytic, Fleet-adaptive Network, 

that performs semi-supervised OHT unit-domain adaptation, considering different 

characteristics and differing fault signatures in each channel of the torque signals. 

The proposed method extracts features from a channel-independent CNN 

architecture and automatically learns to weigh them to perform domain adaptation 

and classification. Moreover, by analyzing the trained weight scores for each channel, 

investigations of the contributions of each channel of the torque signal to the given 

task can be performed. First, in the proposed method, the source and target OHT unit 

domains are divided according to the portion of labeled data in each unit. Second, 

the two-channel front and rear motor torque signals are pre-processed into three-

channel torque signals (Residual, Sum, and Difference) and standardized within each 
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channel. Third, features for each input channel are extracted through the use of 

channel-independent CNN and are combined with weight to minimize classification 

loss and semantic alignment loss (using labeled data) and to maximize domain 

discrimination loss (using unlabeled data). In this paper, we limit the scope of the 

fault modes of the OHT to gear and wheel faults. 

 

 

1.3 Dissertation Layout 

This paper is organized as follows. In section 2, the basics of OHTs and the 

characteristics of dual-motor system torque signals are introduced. Next, the 

proposed method is described in detail in section 3. Section 4 describes validation of 

the proposed method using data from a real-world OHT line. Finally, the conclusion 

and the contribution of the paper are summarized, and the future work is suggested, 

in section 5. 
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Chapter 2. Background 

In this section, first, the configuration of an OHT is explained in section 2.1. Then, 

the characteristics of the control torque signals obtained from the dual-motor system 

in an OHT are investigated in section 2.2. 

 

2.1 Overhead Hoist Transport (OHT) 

 

 

Figure 1. Overall configuration of Overhead Hoist Transport (OHT) 
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An OHT consists of two parts: a hoist part that carries wafers and a driving part 

that maneuvers the whole system on a railway attached to the ceiling. The driving 

part is steered by two speed-controlled surface-mounted permanent magnet 

synchronous motors (SPMSMs) that are aligned along a guide rail. OHTs run at a 

constant speed on a regular basis along the straight sections of the closed-curve 

railway system. Thus, to reduce variability and randomness that arise from the drive 

commands for acceleration and deceleration, torque signals from the front and rear 

SPMSMs are extracted from the constant-speed regions for all OHT units in a system.  

In this paper, we aim to build a model that classifies the health condition of an OHT 

as normal, wheel fault, or gear fault; these states were chosen since wheel and gear 

faults represent a large proportion of OHT fault modes. The wheel fault mode occurs 

due to wheel wear that is caused by the continuous high friction between the urethane 

wheel and the railway. The gear fault mode consists of backlash and oil leak in the 

gearbox, which are caused by continuous load transmissions. 

 

2.2 Characteristics of the control torque signals of OHTs 

Fault diagnosis can be performed using the torque signal of a motor, since the 

fault-related periodic components at the load are transmitted from the load torque to 

the electromagnetic torque 𝑇𝐸 produced in the air gap of the motor. For a permanent 

magnet synchronous motor (PMSM), 𝑇𝐸 can be expressed as [19]: 

 

, 0

1

cos(2 )E n n n L C

n

dw
T J T f t T T

dt
 



=

= + + + +  (1) 
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where 𝐽 is the moment of inertia of the system driven by the motor, 𝜔  is the 

mechanical angular velocity of the rotor, 𝑇𝐸 is electromagnetic torque, 𝑇𝐿,𝐶 is the 

constant part of the load torque, 𝑇0  is no-load torque, and 𝑇𝑛 ,  𝑓𝑛 ,  𝜑𝑛  are the 

amplitude, frequency, and phase angle of the harmonic component of the periodic 

fault in the load torque, respectively. In a constant-speed control scheme, (1) can be 

summarized as: 

 

,

1

cos(2 )E E C n n n

n

T T T f t 


=

= + +  (2) 

 

where 𝑇𝐸,𝐶  is the constant part of the electromagnetic torque. 𝑇𝐸,𝐶  is affected 

mainly by the command of the controller to output a certain amount of DC torque to 

obtain the desired speed. Assuming that the change that results from the addition of 

the payload is negligible, based on the weight of the total OHT system, this part 

could be affected by the non-periodic mechanical faulty component at the load torque 

[20]. In the case where a dual-motor system is the OHT driving part, the faulty 

information from any part of either the front or rear motor’s load propagates through 

the drivetrain and consequently affects the mutual characteristics of 𝑇𝐸,𝐶 for both 

the front and rear motors [21][22]. Therefore, informative pre-processing of the 

torque signals to highlight certain parts related to the fault can enhance the fault 

diagnosis performance.  

Since dozens of OHTs run on a single railway, it is important to monitor every unit, 

since any single faulty unit can affect the whole process. However, constructing a 
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torque-signal-based fault diagnosis feature or a model that is applicable to many 

OHTs is challenging, as the signals obtained from each unit diverge from each other 

due to configuration parameter changes and the inherent randomness of the control 

signal. Furthermore, labeled data – especially for fault modes – are not sufficient for 

many OHT units in real production lines, since abnormal events rarely happen and 

the labeling process is labor-intensive. Therefore, these challenges have to be 

addressed in order to conduct fault diagnosis of OHTs in an actual operation line. 
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Chapter 3. Proposed method  

 

Figure 2. Overall flowchart of the proposed method 
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This section describes the details of the proposed Feature-analytic, Fleet-adaptive 

Network (FAFAN) for fault diagnosis of OHTs using semi-supervised unit-domain 

adaptation. Fig. 2 shows the overall flowchart of the proposed FAFAN method. The 

architecture of the proposed method is introduced in section 3.1, followed by an 

explanation of the training steps for the model, which are described in section 3.2. 

 

3.1 Configuration of the proposed FAFAN method 
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Figure 3. Architecture of FAFAN: (a) overall FAFAN process, (b) 1D CNN block, 

(c) Condition classifier, (d) Domain discriminator 
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The proposed method is designed to deal with multi-channel torque signals as it 

pursues the objective of learning OHT unit-domain invariant latent features, while 

achieving high fault classification accuracy using both labeled and unlabeled data. 

The proposed architecture develops conventional CNN’s autonomous feature 

extraction ability to independently extract and leverage different fault characteristics 

of each input torque channel. The overall architecture of the proposed FAFAN 

approach is shown in Fig. 3; it consists of four parts, which are described in detail in 

the following subsections. 

 

3.1.1 Pre-processing module 

First, constant-speed regions are identified the using motor encoder signals and the 

front and rear torque signals of an OHT are extracted from these regions. Then, these 

two-channel torque signals are pre-processed into three-channel torque signals, 

including the Residual, Sum, and Difference, to highlight the different parts of the 

torque signal that are affected by a fault. To obtain the Residual, a moving average 

filter (MAF) that averages three consecutive time steps is applied to the raw front 

torque signal and the filtered signal is subtracted from the original signal. This results 

in a torque signal where the control-related part (𝑇𝐸,𝐶  in (1)) is minimized and 

contains load torque oscillations in the high-frequency regions. Furthermore, to 

consider the relation between the two SPMSMs in faulty load conditions, we define 

Sum as the summation of the front and rear torque signals and Difference as the 

subtraction of the rear torque from the front torque. These linear combinations of 



13 
 

 

 

front and rear torques contain control-related parts and some low-frequency load 

torque oscillations. Since the control command is affected by the fault as it achieves 

constant speed, the total power output of the OHT driving part is characterized by 

the sum, and the power output asymmetry in the dual-motor system is characterized 

by the Difference, accordingly [22]. After pre-processing, each of the three-channel 

inputs is normalized independently to form a distribution of zero mean and a unit 

standard deviation, considering all training data. 

 

3.1.2 Feature extractor F: Channel-independent CNN 

A CNN is constructed in three paths independently to extract unique features from 

each channel. The convolutional layers in the CNN are assigned to each of the input 

channels and are not combined with one another until the global average pooling 

layer. Since high-frequency components dominate the Residual and low-frequency 

components dominate the Sum and Difference, the kernel size that represents the 

receptive field size for acquiring information from the raw time-series input is set as 

relatively small for the Residual and relatively large for the Sum and Difference [23]. 

This whole process can induce the deep neural network to examine different regions 

in the raw input and automatically extract meaningful features for the given task. 

 

3.1.3 Feature extractor F: Channel-weighting block 
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Figure 4. Configuration of the channel-weighting block: (a) Channel-weighting 

block, (b) Auxiliary layer 
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To quantify the relative contributions of each channel for the given tasks of 

classification and domain adaption and to reflect this information in the training 

procedure, a channel-weighting block that contains an auxiliary layer is adopted to 

automatically learn the weights of each channel, as shown in Fig. 4. These weights 

(𝑐ℎ𝑖 (3)) are calculated from the auxiliary layer; they take a concatenation of the 

global average pooled feature vectors (𝐺𝑖 in (3)) from each channel as the input and 

output of the softmax function values. Every node in a fully connected layer 

combines all values of the previous layer to consider the relationships among 

features from each input channel and finally from among each of the three channels 

[14]. The outputs are three positive values that sum up to 1; each of them is 

multiplied by each channel’s global-average-pooled feature vector. The linear 

summation of each channel’s global-average-pooled feature vector is passed on the 

other side, which forms a residual connection to maintain the original information 

from each channel and to facilitate the training procedure. The final feature vector is 

(𝐹(𝑋) in (3)), which is obtained by summing these two vectors. The result is used 

to form a latent feature space for the feature extractor part. The equations of this 

process are as follows: 

 

, ,

, ,

* ( ) 3

3
* ( ) 1

1

3

1 1 2 2 3 3 1 2 3

1

, 1,2,3& 1

( ) ( * * * ) ( ) ( 1)*

i k i k ik

j k j k jk

w concat G b

i i
w concat G b i

j

i i

i

e
ch i ch

e

F X ch G ch G ch G G G G ch G

+

+ =

=

=


= = =



= + + + + + = +





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where 𝐺𝑖 is the global-average-pooled vector of the 𝑖𝑡ℎ input channel, 𝑤𝑖,𝑘  is the 

𝑘𝑡ℎ weight,  𝑏𝑖 is the bias of 𝑖𝑡ℎ input channel, and 𝑋 is the input data. 

 

3.1.4 Task module: Condition classifier C & Domain discriminator D 

After the features from each channel are linearly summed using their weight, the 

resultant feature vector is fed into two fully connected layers to perform domain 

discrimination and condition classification tasks. In particular, the feature extractor 

(part 2 & 3 of the architecture) is used to learn to deceive the domain discriminator 

in an adversarial way, to learn the OHT unit-domain-invariant features. 

 

3.2 Model training procedures 

 

3.2.1 Train F and C to classify the condition 

F and C are trained to minimize the source classification loss 𝐿𝐶𝐿𝑆,𝑆 using only 

source data {𝑋𝑆, 𝑌𝑆} that consist of fully labeled normal, wheel fault, and gear fault 

data. Since the target domain is sparsely labeled, the latent feature space is first 

constructed using an informative source domain, which will be used as a decent 

initial base for later transformation. The classification loss used in this step is a cross-

entropy loss for 3-class classification. 𝐿𝐶𝐿𝑆,𝑆 is expressed as follows: 

 



17 
 

 

 

,

,

( ( ))3

, , , , , 3
( ( ))1 1 1

1

1 1
( ) ( ( ( )), ) 1[ ]log( )

S i jS S

S i k

C F Xn n

CLS S F C S i S i S i
C F Xn n jS S

k

e
L CE C F X Y Y j

n n
e

 
= = =

=

= = − = 


 (4) 

where 𝜃𝐹 and 𝜃𝐶 are the parameters of 𝐹 and 𝐶 respectively, 𝑛𝑆 is the number 

of source domain samples, and 𝐶𝐸 is cross-entropy loss. The term [𝑌𝑆,𝑖=j] returns 

1 when the equality holds. 

 

3.2.2 Train D using to discriminate the OHT unit domain 

𝐷 is trained to discriminate the source and target domain OHT units using the 

learned 𝐹. The binary domain label is assigned as 1 for the source domain and 0 for 

the target domain to distinguish the two domains. The source data 𝑋𝑆, the unlabeled 

target data 𝑋𝑇𝑈, and the corresponding domain label 𝑌𝐷, are used to minimize the 

domain discrimination loss 𝐿𝐷𝐼𝑆, given the fixed feature space from the previous 

step. This step is crucial since developing a well-performing 𝐷 can improve the 

result of the adversarial learning in the next step by intensively challenging 𝐹 to 

modify the feature space to fool this strong opponent. 𝐿𝐷𝐼𝑆 is expressed as follows: 
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where 𝜃𝐷  denotes the parameters of 𝐷,  𝑛𝑇𝑈  is the number of unlabeled target 

domain samples, and 𝐵𝐶𝐸 is the binary cross-entropy loss. 
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3.2.3 Train F, C, and D to learn generalized feature representation for 

the source and target domains 

 

The 𝐹 and 𝐶 are trained to minimize the total classification loss 𝐿𝐶𝐿𝑆,𝑇𝑂𝑇 and 

contrastive semantic alignment loss 𝐿𝐶𝑆𝐴 using source data {𝑋𝑆, 𝑌𝑆} and labeled 

target data { 𝑋𝑇𝐿 ,  𝑌𝑇𝐿 }.  𝐿𝐶𝐿𝑆,𝑇𝑂𝑇  consists of  𝐿𝐶𝐿𝑆,𝑆 and target classification 

loss 𝐿𝐶𝐿𝑆,𝑇, which is expressed as follows:  
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where 𝑛𝑇𝐿  is the number of labeled target domain samples; 𝛼𝑆  and 𝛼𝑇  are the 

weights to balance the source and target classification loss functions. The L2-norm 

contrastive semantic alignment loss 𝐿𝐶𝑆𝐴 measures the distance between the source 

and target domain latent features of the same label (first term in the right hand side 

of (7)) and of the different label (first term in the right hand side of (7)); this loss is 

minimized to place the features of the same label near each other and to regulate the 

features of the different label to be far from each other at the margin (it is set to be 1 

in this paper). 𝐿𝐶𝑆𝐴 is expressed as follows: 
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where 𝑛𝑝𝑎𝑖𝑟𝑠 is the number of source and labeled target domain data pairs to derive 

the distance. At the same time, the latent features are trained to make 𝐷  fail to 

identify from which domain the OHT unit comes, by maximizing the domain 

discrimination loss 𝐿𝐷𝐼𝑆 using 𝑋𝑆 and 𝑋𝑇𝑈, as in the previous. 𝐷 also learns to 

update the loss function to make a balance in the adversarial learning procedure. This 

whole step utilizes given sparsely labeled target data to make them fit in the pre-

trained feature space in the first step, which ultimately results in a generalized 

diagnosis model applicable to many OHT units. The total loss function  𝐿𝐶𝐿𝑆,𝑇𝑂𝑇 

and the optimal parameters are expressed as follows: 
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where 𝜃𝐹̂ , 𝜃𝐶̂  and  𝜃𝐷̂  are the optimal parameters of 𝐹, 𝐶 , and 𝐷  respectively. 

𝛼𝐶𝐿𝑆 , 𝛼𝐶𝑆𝐴 , and 𝜆  are the weights to balance the classification, contrastive 

semantic alignment, and domain adversarial learning processes. 
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Chapter 4. Experimental validation 

In this section, the performance of the proposed method is evaluated using data 

obtained from OHTs running in an actual line. In section 4.1, the dataset used for 

experimental studies is described. Then, the comparison methods are outlined in 

section 4.2, followed by experimental results, which are provided in section 4.3. 
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4.1 Dataset description 

 

Figure 5. Scatter plot of average values of the front and rear torque signals: (a) all 

classes, (b) only normal class 

 

A dataset consisting of torque signals from 20 OHT units from actual 

semiconductor factories is used for validation of the proposed method. The torque 
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signals are sampled with a frequency of 1 kHz from the front and rear motors in the 

driving part of an OHT. Three health conditions of normal, wheel fault, and gear 

fault are included in the dataset. 

The averages of the normalized front and rear torque data of some OHT units are 

shown in Fig. 5. It is hard to determine decision boundaries to classify the health 

conditions in Fig. 5 (a) since the intra-class variance is large for all classes and the 

inter-class variance is small, especially for the normal and gear fault states. The large 

intra-class variance is due to the distributional shift between OHT units, as visualized 

by the different colors in Fig. 5 (b); the small inter-class variance implies the 

challenge in extracting distinguishable features using torque signals. To build a 

generalized fault diagnosis model, these difficulties have to be addressed using a 

ratio of a small amount of labeled data to a large amount of unlabeled data, for most 

OHT units. 

 

 

Figure 6. Source and target domain OHT configuration 
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To verify the effectiveness of the proposed method for unit-wise domain adaptation, 

given data are divided into the source and target domains. The source domain 

consists of four fully labeled OHT units; the target domain consists of 16 sparsely 

labeled OHT units. A total of 15 different combinations of these domains are 

considered by randomly splitting the OHT units.  

 

4.2 Description of the comparison methods 

 

4.2.1 Source only (S-only)  

For the S-only method, the architecture of the Feature-analytic, Fleet-adaptive 

Network is trained to minimize 𝐿𝐶𝐿𝑆,𝑆 using only the source-domain data {𝑋𝑆 , 𝑌𝑆}. 

The fault diagnosis performance of this method is directly related to the distance 

between the source and target domains; the lower the performance, the larger the 

domain gap. 

 

4.2.2 Source Target Labeled (STL) 

For the STL method, labeled target-domain data {𝑋𝑇𝐿 , 𝑌𝑇𝐿} are added to S-only to 

minimize  𝐿𝐶𝐿𝑆,𝑇𝑂𝑇 . This method shows the necessity of contrastive semantic 

alignment, which aims to minimize 𝐿𝐶𝑆𝐴. 

 

4.2.3 Source Target Labeled CSA loss (STL-CSA) 
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For the STL-CSA method, the same data that were used in STL are used again to 

train the STL-CSA model; however, the optimization objective is to minimize 

α𝐶𝐿𝑆𝐿𝐶𝐿𝑆,𝑇𝑂𝑇 + α𝐶𝑆𝐴𝐿𝐶𝑆𝐴. 𝐿𝐶𝑆𝐴 is added to reduce the domain gap and increase the 

inter-class variance. This method is compared to show the effect of domain 

adaptation using unlabeled data. 

 

4.2.4 Source Target Labeled CSA loss with Maximum Mean 

Discrepancy (STL-CSA-MMD) 

Maximum mean discrepancy (MMD) is widely used to quantify the discrepancy 

between the source and the target domains, using statistical distance. The MMD loss 

also utilizes unlabeled data, added to form α𝐶𝐿𝑆𝐿𝐶𝐿𝑆,𝑇𝑂𝑇 + α𝐶𝑆𝐴𝐿𝐶𝑆𝐴 + α𝑀𝑀𝐷𝐿𝑀𝑀𝐷.  
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MMD is the empirical maximum mean discrepancy estimated using the kernel trick. 

The kernel is chosen as the Gaussian radial basis function (RBF)[24] and, since the 

choice of the bandwidth parameter 𝜎2 greatly affects the performance, it is set to 

four different values, ranging from 0.1 to 10, to enhance robustness. 
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4.3 Experimental settings 

All experiments were conducted on a Windows 10 computer with an Intel i7-9700 

CPU (3.00 GHz) and an NVIDIA GeForce RTX 2080 SUPER GPU (3072 CUDA 

cores, 8GB GDDR6 memory). The code was written in Python 3.7 and the PyTorch 

deep learning framework was used for model training and testing. The experiments 

for all methods were conducted with the learning rate of 0.0009, batch size of 16, 

and an exponential learning decay rate of 0.99. 𝜆 is set as 
2

1+exp (−10𝑝)
− 1, where  

p =
current epoch

max epoch
 .The hyper-parameters of the deep architecture (feature extractor, 

condition classifier, and the domain discriminator) are listed in Table 1; the 

comparison methods share the same feature extractor and condition classifier as 

those used for the proposed FAFAN.  
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Table 1. Network configuration and parameters of the proposed method 

Layer Parameters 
Output [Channel, 

Length] 

Input Window size = 1000 [3, 1000] 

Feature 

extractor (F) - 

CNN 

CONV 1 

Kernel size = 8 (Residual) / 200 

(Sum, Difference), Channels = 18, 

Stride = 1, Activation = ReLU, Batch 

normalization 

[18, 993] 

(Residual) / [18, 

801] (Sum, 

Difference) 

MP 1 Kernel size = 2, Stride = 2 

[18, 496] 

(Residual) / [18, 

400] (Sum, 

Difference) 

CONV 2 

Kernel size = 8, Channels = 36, 

Stride = 1, Activation = ReLU, Batch 

normalization 

[36, 489] 

(Residual) / [36, 

393] (Sum, 

Difference) 

MP 2 Kernel size = 2, Stride = 2 

[36, 244] 

(Residual) / [36, 

196] (Sum, 

Difference) 

CONV 3 

Kernel size = 8, Channels = 72, Stride 

= 1, Activation = ReLU, Batch 

normalization 

[72, 237] 

(Residual) /  [72, 

189] (Sum, 

Difference) 

GAP - [1, 72] 

Feature 

extractor (F)  

- Channel-

weighting block 

CONCAT 
Concatenate three [1, 72] GAPs from 

Residual, Sum, and Difference 
[1, 216] 

FC Node = (216, 3), Output = Softmax [1, 3] 

Condition 

classifier (C) 

FC 1 
Node = (72, 36), Activation = 

LeakyReLU (0.2) 
[1, 36] 

FC 2 Node = (36, 3), Output = Softmax [1, 3] 

Domain 

discriminator 

(D) 

FC 1 
Node = (72, 64), Activation = 

LeakyReLU (0.2) 
[1, 64] 

FC 2 
Node = (64, 32), Activation = 

LeakyReLU (0.2) 
[1, 32] 

FC 3 Node = (32, 1), Output = Sigmoid [1, 1] 
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For the performance analysis, the training and test data are split with the ratio of 

75:25, in a way that any pair of training and test data do not come from the same 

constant-speed region. In particular, for fair validation, the training and test data for 

a target OHT unit are divided in an inductive setting, where the test data with label 

information are not used in the training procedure in any form. 
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4.4 Results and discussion 

 

4.4.1 Performance analysis 

The fault diagnosis accuracies for the target domain test set in each target labeled 

data condition are calculated using S-only, STL, STL-CSA, STL-CSA-MMD, and 

the proposed method, as shown in Fig. 7. The accuracies are calculated for 15 

different source and target OHT unit combinations; the mean accuracy is represented 

as the height of the bar, and the black vertical line centered at the top of the bar 

represents the 95% confidence interval of the corresponding accuracy. 
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Figure 7. Comparisons of fault diagnosis accuracies for target domain test data 

 

Table 2. Fault diagnosis accuracies (%) for target domain test data 

Method 

Target labeled percent (%) 

5 10 25 50 

S-only 55±4 55±4 55±4 55±4 

STL 73±3 77±3 78±3 85±2 

STL-CSA 76±3 80±2 81±2 87±2 

STL-CSA-MMD 78±3 82±2 84±2 88±2 

FAFAN 84±1 89±1 91±1 93±1 
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Figure 8. t-SNE visualization of the latent feature space: (a) Raw time series, (b) S-

only, (c) STL, (d) STL-CSA, (e) STL-CSA-MMD, (f) FAFAN 
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Fig 8 shows 2D visualization of the high-dimensional deep latent space of the 

methods in the 5% target label case, using t-Distributed Stochastic Neighbor 

Embedding. As seen in Fig. 8 (a), the input data is complex, and the decision 

boundaries for classification are impossible to determine. The feature space of S-

only and STL, as shown in Fig. 8 (b) and (c), indicate that the gap between the 

domains is large and even the features within the domain are divergent. Thus, by 

adding 𝐿𝐶𝑆𝐴  as for STL-CSA, the features are more organized; however, the 

decision boundaries are imperfect, since the unlabeled data in the target domain are 

not considered in the training procedure, as shown in Fig. 8 (d). By adding MMD 

loss, the discrepancy of the source and target domain was slightly reduced; however, 

the effect in fault diagnosis is limited. The FAFAN approach utilizes the domain 

discriminator in an adversarial way, such that it eventually fails to identify to which 

domain the feature belongs. In Fig. 8 (f) the features from different domains but with 

the same label are clustered near each other. The features in Fig. 8 (d) can be 

distinguished easily into the source and target domains by a simple domain decision 

boundary; however, the features in Fig. 8 (e) successfully interrupt the domain 

discriminator in determining the domain decision boundary. 

 

4.4.2 Input channel investigation 

The softmax outputs of the channel-weighting block are analyzed to investigate 

whether the physical behavior is reflected in the learning of the proposed model. 

Each of the softmax outputs 𝑐ℎ1, 𝑐ℎ2, and 𝑐ℎ3 corresponds to the learned weight of 

each input channel Residual, Sum, and Difference.  
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(a) 

(b) 

Figure 9. (a) Statistics of weights in the channel weighting block, by health 

condition, (b) Torque sum and difference line representation in the 

scatter plot of average values 
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When FAFAN predicts each health condition given new test data, the features 

from each input channel are weighted by the trained auxiliary layer in the channel-

weighting block. The mean and standard deviations of these weights are calculated 

in the target domain and are shown in Fig. 9 (a). When predicting the normal class, 

each channel is evenly weighted, as seen in Fig. 9 (a). Estimation of the wheel fault 

mode requires the model to highlight the Difference. Also, in the torque average 

scatter plot in Fig. 9 (b), many wheel fault data points can be distinguished using the 

Difference. When a wheel fault occurs, the unbalance of the output energy between 

the front and rear motor tends to increase, as compared to the normal condition. This 

physical phenomenon is reflected in the training procedures of the proposed method, 

as it extracts more class-distinguishable and domain-invariant features than the mere 

average of the front and rear torque. For the gear-fault mode, the channel-weighting 

block highlights slightly more on the Sum than it does for the other input channels. 

The proposed method identifies the discriminability of the gear fault compared to 

the normal condition, using Sum, and utilizes this information to extract deep 

features. 
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Chapter 5. Conclusion 

5.1 Summary  

This paper proposes a Feature-analytic, Fleet-adaptive Network (FAFAN) that can 

quantify the relative importance of each multi-channel torque signal for conducting 

semi-supervised OHT unit-domain adaptation. FAFAN consists of pre-processing 

module, feature extractor that is a cascade of channel-independent CNN and 

channel-weighting block, and task module of condition classifier and domain 

discriminator. FAFAN is trained in three steps to learn fault-discriminative but OHT 

unit-domain-invariant latent feature space. FAFAN’s fault diagnosis capability was 

validated using real line OHTs torque data and it was compared with other methods 

such as S-only that uses model trained only with source domain data, STL that uses 

model trained with both source and target labeled data, STL-CSA that considers 

contrastive semantic alignment loss additional to STL, and STL-CSA-MMD that 

considers MMD additionally to STL-CSA to minimize discrepancy between source 

and target domains using unlabeled target domain data. Consequently, the proposed 

FAFAN was superior to other existing methods using datasets of various portions of 

target domain labeled data and source and target OHT unit domain combinations. 

The analysis of channel-weighting block after training provided evidence of 

diagnosing faulty conditions in the physical context of the dual-motor torque signals.  

 

5.2 Contribution 

The proposed method offers the following primary contributions: 
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Contribution 1: Unified fault diagnosis model for a fleet of AMHS 

The proposed method considers the signal discrepancy among different machines 

of the same type to construct a unified fault diagnosis model using a fully labeled 

source domain and a sparsely labeled target domain. 

 

Contribution 2: Fault diagnosis method validated using data from actual 

manufacturing lines 

The proposed method is validated using torque data obtained from dozens of OHTs 

running in actual semiconductor manufacturing lines, in contrast to most fault 

diagnosis research, which is conducted only with laboratory-scale data. 

 

Contribution 3: Enhancing explainability of the deep model using channel 

weights 

The proposed method’s architecture learns the relative weight score of each input 

time-series channel to enhance feature learning for fault diagnosis and domain 

adaptation and to additionally investigate which channel was relatively considered 

in the given task. This eventually enhances explainability of the deep model in 

estimating health states in the physical context such as total power output and power 

output asymmetry. 

 



36 
 

 

 

Contribution 4: Control signal based fault diagnosis method for general 

application 

The proposed method utilizes the command control torque signal from a surface-

mounted permanent magnet synchronous motor (SPMSM), which does not require 

any additional sensors, to diagnosis mechanical faults such as wheel and gear fault. 

Thus, the proposed framework is widely applicable to diverse industrial scenarios 

where control signals are already available. 

 

5.3 Future work 

Future work will examine methods to improve the pre-processing and network 

configuration to enhance the diagnosis performance and physical interpretability of 

the deep neural network. To improve the pre-processing of two-channel torque 

signals, filters that reduce the noise of the signal can be implemented and advanced 

methods that capture the subtle relation between two-channel torque can be figured 

out. To improve the deep neural network configuration, parameter optimization 

using grid search or Bayesian optimization can be used.  Further, extended 

applications of the proposed method to different industrial systems will be conducted 

in future studies such as industrial robots and other motor-driven mechanical systems. 
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국문 초록 

 

물류자동화 시스템의 고장진단을 

위한 특징 분석 및 군집 적응형 

네트워크 연구 
 

 

서울대학교 공과대학 

기계공학부 대학원 

서 채 현 

 

본 논문은 반도체 공장의 물류자동화 시스템 (AMHS)의 고장 진단을 

위한 특징 분석 및 군집 적응형 네트워크 (FAFAN)를 제안한다. 

반도체 공장 AMHS의 핵심인 천장 반송 시스템 (OHT) 군집에 대한 

고장 진단 모델을 구축하는 것은, 각 OHT 호기별로 토크 신호의 

편차가 존재하기 때문에 어렵다. 또한, 많은 호기에서 취득되는 신호는 

정상/고장 레이블이 있는 데이터와 레이블이 없는 데이터로 구성되어 

있다. 이러한 상황에서 제안된 방법은, 전처리된 다채널 토크 신호를 

활용하여 고장을 진단함과 동시에 OHT 호기 도메인에 대한 일반적인 

특징을 학습한다. 특히, 전처리된 입력 채널에서 특징을 독립적으로 

추출하고 도메인 일반화 가능성과 고장 진단의 정보량을 모델 학습 

과정에 활용하기 위해 채널 가중치를 자동으로 학습한다. 제안된 방법은 

1) 레이블이 있는 데이터로만 구성된 소스 도메인과, 레이블이 있는 
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데이터가 매우 적은 타겟 도메인으로 OHT 데이터세트를 나누는 단계, 

2) 전면 및 후면 토크 신호를 3채널 신호로 전처리하는 단계, 그리고 

3) 준지도 도메인 적응을 활용하여 OHT 호기 도메인 간의 신호 

편차를 최소화함과 동시에 정상, 바퀴 결함 및 기어 결함 상태로 

분류하는 특징을 추출하는 단계로 구성된다. 실제 산업 현장에서 수집된 

20개의 OHT 호기 데이터에 대해, 많은 OHT 호기 도메인 조합 및 

타겟 도메인 레이블 데이터의 다양한 비율 조합을 활용하여 제안된 

방법의 효과를 입증한다. 검증 결과, 제안된 방법이 불충분한 레이블 

데이터 조건에서 OHT 군집의 고장 진단에 효과적이며, 나아가 진단 

결과의 물리적 근거를 제공함을 확인하였다. 

 

주요어:  고장 진단 

 천장 반송 시스템 

 물류자동화 시스템 

 도메인 적응 

 토크 신호 

 준지도 학습 
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