

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

Fast Automatic Circuit Design Framework
Using Genetic and Reinforcement

Learning Algorithm

유전알고리즘및강화학습을사용한고속회로설계
자동화프레임워크

February 2022

Graduate School of Convergence Science and Technology
Seoul National University

Intelligence and Information Major

Jiwoo Hong

Master’s Thesis of Engineering

Fast Automatic Circuit Design Framework
Using Genetic and Reinforcement

Learning Algorithm

유전알고리즘및강화학습을사용한고속회로설계
자동화프레임워크

February 2022

Graduate School of Convergence Science and Technology
Seoul National University

Intelligence and Information Major

Jiwoo Hong

Fast Automatic Circuit Design Framework
Using Genetic and Reinforcement

Learning Algorithm

유전알고리즘및강화학습을사용한고속회로설계
자동화프레임워크

지도교수전동석

이논문을공학석사학위논문으로제출함

2022년 1월

서울대학교대학원

지능정보융합학과

홍지우

홍지우의공학석사학위논문을인준함

2022년 1월

위 원 장: 안정호 (인)

부위원장: 전동석 (인)

위 원: 곽노준 (인)

Abstract

Although design automation is a key enabler of modern large-scale digital systems,

automating the transistor-level circuit design process still remains a challenge. Some

recent works suggest that deep learning algorithms could be adopted to find optimal

transistor dimensions in relatively small circuitry such as analog amplifiers. However,

those approaches are not capable of exploring different circuit structures to meet the

given design constraints. In this work, we propose an automatic circuit design frame-

work that can generate practical circuit structures from scratch as well as optimize the

size of each transistor, considering performance and reliability. We employ the frame-

work to design level shifter circuits, and the experimental results show that the frame-

work produces novel level shifter circuit topologies and the automatically optimized

designs achieve 2.8-5.3× lower PDP than prior arts designed by human experts.

keywords: Circuit Design Automation, Deep Learning, Evolutionary Algorithm,

Level Shifter, Reinforcement Learning.

student number: 2019-21653

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

List of Algorithms vi

1 Introduction 1

2 Related work 6

2.1 Genetic Algorithm . 6

2.2 NeuroEvolution of Augmenting Topologies (NEAT) 7

2.3 Reinforcement Learning (RL) . 10

2.4 DDPG, D4PG, and PPO . 12

2.5 Level Shifter . 14

3 Proposed circuit design framework 17

3.1 Topology Generator . 17

3.2 Circuit Optimizer . 25

4 Experiment Result 32

4.1 Level Shifter Design . 32

4.2 Topology Generation . 34

4.3 Circuit Optimization . 36

4.4 Test Chip Fabrication . 42

ii

4.5 Applicability of Topology Generator 47

5 Conclusion 50

Abstract (In Korean) 57

iii

List of Tables

Table 4.1 Experimental setup for level shifter design 33

Table 4.2 Results of topology generation 35

Table 4.3 Experiments with different weights in circuit optimization . . . 41

Table 4.4 Results of optimizing generated circuits 42

Table 4.5 Results of Measurement generated circuits 45

iv

List of Figures

Fig. 1.1 Trend of size optimization study 4

Fig. 2.1 Process of genetic algorithm 7

Fig. 2.2 Basic structure of RL . 10

Fig. 2.3 Network structure of DDPG 12

Fig. 2.4 Difference type of critic network 14

Fig. 2.5 Conventional level shifters . 15

Fig. 3.1 Overview of the proposed circuit design framework. 18

Fig. 3.2 Examples of proposed graph-based circuit representation. 19

Fig. 4.1 Level shifter circuit topologies generated by topology generator 34

Fig. 4.2 Experimental results of topology generation. 35

Fig. 4.3 Trends of reward improvement without techniques. 37

Fig. 4.4 Trends of reward improvement with multi-update techniques. . . 38

Fig. 4.5 Trends of reward improvement with multi-update and episode

early stopping. 39

Fig. 4.6 Reward trends of alternative approaches for comparisons. 40

Fig. 4.7 Trends of output swing ratio with TT only and all corner. Con-

sidering process corners significantly improves reliability. 41

Fig. 4.8 Layout of generated circuits and their size. 43

Fig. 4.9 Delay measurement circuit for testing 44

Fig. 4.10 (a) test chip layout, (b) test chip micrography. 45

Fig. 4.11 Baseline level shifter designs from prior work. 47

Fig. 4.12 AND gates generated by topology generator. 48

Fig. 4.13 Differential amplifiers generated by topology generator. 48

v

List of Algorithms

1 Topology Generator . 20

2 Circuit Optimizer . 29

vi

Chapter 1. Introduction

With increasing hardware design complexity and variability of the fabrication pro-

cess, design automation has been widely adopted in a large portion of the IC design

process. For instance, various electronic design automation (EDA) tools are now avail-

able for designing digital blocks and SoCs (System-on-Chips). Using a standard cell

library, the EDA tools can generate a large block composed of millions of logic gates

very efficiently [1]. However, when it comes to designing circuits, design automation

remains a challenge. Most digital and analog circuits are still carefully designed by

human experts due to high design complexity and reliability concerns [2].

Circuit design automation can be decomposed into two design problems: circuit

topology selection and transistor size optimization. Because the topology mainly sets

the limit on the performance and reliability a circuit can achieve, it is important to

choose a proper circuit topology in the first place. We also need to optimize the size

of each transistor to realize its true potential. Various approaches have been reported

for automatic circuit topology generation. For digital logic gates, the Boolean expres-

sion factoring method that generates series-parallel (SP) associations of transistors for

the given function was suggested [3]. The authors in [4] proposed an improved graph-

based method that creates a logic gate by introducing Non-Series-Parallel (NSP) ar-

rangements into the SP structure, thus reducing the number of transistors. But these

methods regard transistors as ideal switches and hence are only applicable to design-

ing digital logic gates based on static operations.

There have also been several circuit topology synthesis approaches aimed at more

general circuits. The library-based methods [5, 6] select one of the predefined circuit

structures (e.g., a two-stage amplifier) in the library based on the desired operating

characteristics. However, one must construct a library containing all possible circuit

structures in advance, which is a time-consuming process that also necessitates a con-

1

siderable amount of human effort. Building-block-based methods [7–9] take a similar

approach, but rely on a library of smaller building blocks such as a current mirror and a

differential input pair. They employ various algorithms to search for the best topology,

such as multi-objective evolutionary algorithm [7], framework for explorative analog

topology synthesis method (FEATS) [8], and graph-grammar-based topology genera-

tion (GGTG) [9]. Since the library- or building-block-based approaches have relatively

limited search space, they are suitable for the fast generation of integrated circuits us-

ing a well-established topology. However, the search space is constrained within the

predefined set of circuit structures or building blocks, and hence they are less adap-

tive to changes in design parameters or fabrication process. In addition, there is little

possibility that they could generate a novel topology that has not been studied yet.

On the other hand, the transistor-based methods [10–13] do not rely on predefined

components for topology generation; instead, they progressively construct a circuit by

adding or removing a transistor in the topology. For instance, the circuit-constructing

robot (CC-BOT) [11] starts with a single node and conditionally adds a transistor fol-

lowing an evolutionary algorithm. An active bot moves to a newly created node and

continues adding transistors from there. The algorithm in [13] represents transistors

and passive devices as a 3-node graph (hypergraph) and an edge, respectively. In each

generation, it removes and adds multiple hypergraphs and edges, also following an

evolutionary algorithm. The transistor-based approaches have a significantly larger

search space and, as a result, are capable of generating an optimal circuit topology

under different design constraints. And these approaches do not require much prior

knowledge on the target circuit, removing the need for the aid of human experts dur-

ing the design process. However, they essentially rely on trial-and-errors; an inefficient

search algorithm results in very slow search speed, requiring an extensive amount of

SPICE simulations to evaluate candidate integrated circuits.

Transistor sizing is another crucial part of integrated circuit design automation

since it directly affects the performance and reliability of a circuit. The authors in [14]

2

proposed the multi-objective uncertain optimization with ordinal optimization LSS

and parallel computation (MOOLP) optimizer based on a differential evolutionary al-

gorithm, whereas other prior works suggest using particle swarm optimization [15,16]

or Bayesian methods [17, 18]. Recent works demonstrate promising results by apply-

ing deep learning algorithms to transistor sizing optimization (Fig. 1.1). For instance,

Learning to Design Circuit (L2DC) [19] and AutoCkt [20] adopt reinforcement learn-

ing (RL) for optimizing transistor sizes in analog amplifiers. It was demonstrated that

those RL-based approaches could successfully optimize the integrated circuit to meet

the given design constraints such as gain, bandwidth, and input-referred noise. While

the RL-based methods achieve significantly faster convergence than conventional opti-

mization algorithms, they still need numerous SPICE simulations during optimization.

Also, both L2DC and AutoCkt utilize prior knowledge on the circuit topology during

optimization (e.g., the signal path and tightly coupled transistors), limiting their ap-

plicability to other types of integrated circuits. To address these problems, the authors

in [21] employ a graph convolutional network in RL (GCN-RL) and utilize transfer

learning. They show that using a pre-trained network can reduce the number of SPICE

simulations in optimizing two-stage and three-stage transimpedance amplifiers. How-

ever, the initial training of the neural network still requires a large number of SPICE

simulations, and the pre-trained network is only effective when applied to another cir-

cuit with a similar structure.

Level shifter circuits are widely used in digital systems to convert the level of

signals between voltage domains. The signals from the internal core must be boosted to

communicate with external discrete components or the data between core blocks with

different supply voltages should be level converted for proper operation. Various level

shifter circuit topologies have been studied, and the optimal topology can vary greatly

depending on the operating conditions such as voltage conversion range (e.g., core to

core or core to I/O) and power budget. For instance, differential cascode voltage switch

(DCVS) exhibits better conversion speed and energy efficiency for conversion between

3

Fig. 1.1: Trend of size optimization study

core voltage domains, whereas Wilson current mirror level shifter (WCMLS) and its

variant are suitable for converting subthreshold voltage input due to relaxed contention

[22–24]. Therefore, we may have to switch to a totally different topology and start the

design process again when the design constraints and operating conditions change,

making conventional circuit design automation frameworks unsuitable for level shifter

design.

In this work, we propose a unified circuit design automation framework that can

generate an optimal circuit topology from scratch as well as optimize the size of each

transistor. Our key contributions are: i) a 2-stage circuit design framework that sig-

nificantly speeds up the design process, ii) a new voltage-based graph representation

of integrated circuits, iii) a fast circuit optimizer adopting a multi-agent RL algorithm

for faster convergence, and iv) a process variation-aware optimization algorithm that

results in a practical, robust design. The framework was employed to design a level

shifter circuit, and the resulting level shifter circuits are fabricated in a 180nm CMOS

process to validate the effectiveness of the proposed circuit design framework.

4

The rest of the paper elaborates on the proposed framework as follows: Chap-

ter II discusses related studies. Chapter III describes the overall architecture of the

framework and its distinct features. Chapter IV discusses the experimental results, and

Chapter V concludes the paper.

5

Chapter 2. Related work

In this chapter, we discuss the research related to the proposed framework. We

will discuss the genetic algorithm related to the first step of the framework, and the

algorithm that is the basis of this study. Also, we will discuss reinforcement learning

related to the second step and look at each major algorithm. Lastly, We will discuss

level shifter.

2.1 Genetic Algorithm

The genetic algorithm is one of the representative methods of the evolutionary

algorithm and can be used in various optimization problems. Genetic algorithms that

mimic natural selection of genes utilize randomness in the search process and have

strengths in large search spaces or multi-modal spatial searches. In general, even when

the problem to be solved is uncomputably complex, the genetic algorithm can obtain

an answer close to the optimal solution. Therefore, it is widely used to solve complex

nonlinear or incalculable problems in various fields.

Genetic algorithm is performed with offspring as the most basic unit. Each off-

spring has several genes corresponding to the metric to be optimized, and how well

these genes are suitable for the final solution is evaluated through fitness value. There-

fore, in order to apply the genetic algorithm, the solution must be expressed in the form

of a gene, and how well the solution is suitable must be calculated through the fitness

function.

The genetic algorithm repeats selection, crossover, mutation, and replacement per

generation (Fig. 2.1). In the selection step, fitness value is measured and a parent pool

is created by selecting offspring candidatesto be transmitted its traits to the next gen-

eration. In the crossover step, two offsprings are randomly selected from the parent

6

Fig. 2.1: Process of genetic algorithm

pool created in the previous step, and then the gene crossover operation is performed.

In crossover process, a part of the gene is stochastically swapped with each other. The

offsprings created through crossover process go through the mutation process. In the

mutation process, the order or value of genes in offspring are changed stochastically.

Lastly, in the replace stage, a new population is formed with newly created offsprings

and passed on to the next generation. The new population passed in this way repeats

the selection, crossover, mutation, and replacement process again.

2.2 NeuroEvolution of Augmenting Topologies (NEAT)

The NeuroEvolution of Augmenting Topologies (NEAT) [25] algorithm is one of

the genetic algorithms proposed by Kenneth O. Stanley in 2002 and continues to be

utilized and research for improvement is in progress [26–30]. The NEAT algorithm,

which was proposed to develop the initial machine learning network structure and

weights, applied the method of expressing the network as a graph to the genetic al-

gorithm. Unlike the existing genetic algorithm, the NEAT algorithm shows different

characteristics while graphing the network. The NEAT algorithm has two types of

genes classified into connection and node. The connection gene has the innovation

7

number, which will be explained later, weight, in node, out node, and enable as internal

properties. The node gene has the innovation number and type as internal properties.

In general, unlike the existing genetic algorithm in which the number of genes is the

same, the NEAT algorithm for searching a graph changes the number of two types of

genes as the composition of the graph are changed.

The mutation of the NEAT algorithm has been changed from the simply changing

the state of a gene like general genetic algorithm to changing the graph. The basic

NEAT algorithm has three operations (changing weight, adding connection, adding

node) for mutation process. Changing weight changes the weight property of the con-

nection gene. Adding connection selects two random nodes and adds the connection

gene which connect two selected nodes. Adding node creates a new node gene by se-

lecting an existing connection gene, adding the connection gene that connects the in

node to the new node and adding the connection gene that connects the out node and

the new node, then disables the existing connection gene. Through these three muta-

tion functions, the NEAT algorithm continuously increases the nodes and connections

of the graph and optimizes the machine learning network structure by changing the

weight.

In the NEAT algorithm, since the number of genes continuously changes, crossover

is also difficult to perform in the conventional way. In order to explain crossover of

NEAT algorithm, understanding innovation number is needed. In the NEAT algorithm,

the connection gene and the node gene have innovation numbers in individual order.

However, if each offspring has an individual innovation number, it is difficult to deter-

mine whether the created graph structure is the same or not. To solve this problem, the

NEAT algorithm introduces the global innovation number and historical marker. When

a new gene is created during the mutation process, historical markers are used to find

out whether there is a gene that forms the same structure as the corresponding gene.

If there is no gene forming the same structure in the historical marker, the new gene

is added to the historical marker, the current global innovation number is assigned as

8

the innovation number of the gene, and the value of the global innovation number is

increased by 1. All historical markers are initialized when one generation ends. In this

way, all offsprings have the same innovation number for the gene of same structure

that occurs in the same generation.

Unlike the conventional genetic algorithm which crossover offsprings selected by

the selection process, the NEAT algorithm crossovers based on species. species is a

set of offsprings whose distance result of distance function from seed offspring of

species do not exceed a certain threshold, meaning that graphs with similar structures

are gathered. Crossover by species can compensate for the case where achieve good

performance structurally possible, but is not achieved due to weight. Also, It improve

the algorithm in terms of diversity. In the NEAT algorithm, the species fitness is cal-

culated through the fitness value of the offsprings belonging to the species, and the

number of offsprings to belong to the next generation is determined for each species

in proportion to this value. Species that do not score good fitness value create a small

number of offsprings, so it compensates for temporary poor performance to species

of lower fitness value, but gives more development opportunities to species of bet-

ter fitness value and finds the direction of optimization better. When the number of

offspring generation is determined, the offspring with the best performance in each

species is included in the population of the next generation, and the parent pool is

created by collecting the top offspring among offsprings belonging to the species. In

the crossover process, based on an offspring with a high fitness score, if two offspring

genes have each other at the same time, the property of the gene of base offspring

is probabilistically changed. If the gene is not in the base offspring and has only the

other offspring, the gene is probabilistically included to the base offspring. Through

this process, a new offspring is created that will be passed on to the mutation process.

This process proceeds as many as the number of offsprings created by each species,

and the created offsprings are sent to the mutation process.

9

Fig. 2.2: Basic structure of RL

2.3 Reinforcement Learning (RL)

Reinforcement learning (RL), which is one of the fields of the machine learning

where various studies are being conducted recently, aims to learn networks based on

trial and error. RL is applied to applications that need to make decisions sequentially

based on the Markov Decision Process (MDP), and most of them learn the action

or sequence of actions to receive the maximum reward by using and changing the

Bellman equation.

In RL, there are basically an agent that can perform a action and an environment

where an agent performs an action. Fig. 2.2 shows how the environment and agent

interact. The agent determines which action to perform based on the current state, and

executes the corresponding action in the environment. The environment is changed

based on the action performed by the agent, and then the state and reward due to the

action are delivered to the agent as next state and reward. The agent uses this reward

for learning.

In RL, the rules used by the agent to determine the actions to be performed are

called policies. There are two types of policy: a deterministic policy that outputs one

action value and a stochastic policy that outputs the probability distribution of an action

10

value. The difference between these two policies is the behavior of the agent. The be-

havior of the agent is divided into exploitation, which selects the optimal behavior, and

exploration, which acquires samples by performing various behaviors. The stochastic

policy selects the most optimal action in the exploitation process and performs the ac-

tion, and in the exploration process, it selects a random action and performs the action.

However, since deterministic policy outputs one action value, the action output in the

exploitation process is used, and in the exploration process, a random noise value is

added to the action to create a random action value.

The policy of RL is also closely related to the use of learning data. If the policy

determining behavior and the learning policy are the same, the experience data accu-

mulated with the current policy cannot be used to update the next policy after policy

update. This type of policy is called on-policy, and on-policy reduces data efficiency

because it has to discard existing experience data and accumulate new data every time

it is updated. Conversely, if the policy that determines the behavior and the learning

policy are different, the experience data accumulated with the current policy can be

used any time regardless of the policy update. This method is called off-policy, and a

space to store experience data, such as replay memory, is used, and data accumulated

in the past is continuously used for learning. So data efficiency is good. Therefore, in

general, it is better to use the on-policy method for applications that can easily obtain

data, and use the off-policy method for applications that are difficult or take a long

time to obtain data.

RL also classifies algorithms according to the presence or absence of an environ-

ment model that an agent can use when searching for an environment. The agent’s

access to the environment model means that the agent can accurately predict the state

and reward it will acquire in the future. Therefore, it becomes possible to establish a

plan by using these predictions in the process of selecting an action, and because the

sample made through a good plan is used, the sample efficiency or data efficiency is

greatly increased. This method is classified as model-based RL. However, in general,

11

environment models are often not available for use by agents. In this case, the agent

continuously explores the environment to learn the environment model and uses the

learned model to learn the policy, but there are cases in which bias exists in the learned

model, and proper learning occurs in many cases. RL that does not use an environment

model for learning is called model-free RL, and although there is a disadvantage of

low data efficiency, there is an advantage of being easy to implement, so many studies

are being conducted.

2.4 DDPG, D4PG, and PPO

Recently, many studies have been conducted to apply neural networks to RL. The

deep deterministic policy gradient (DDPG) [31] algorithm was proposed in 2015 and

is an RL algorithm using deterministic policy with model-free, off-policy, and actor-

critic structure features. DDPG combines deterministic policy gradient (DPG) [32]

using deterministic policy for the first time, and deep Q-network (DQN) [33], which is

evaluated to use replay memory and stabilized Q-function learning, through an actor-

critic structure. DDPG algorithm also can be applied to continuous action space appli-

cation which is more complex problem.

Fig. 2.3: Network structure of DDPG

12

The network structure of DDPG is shown in Fig. 2.3. The DDPG algorithm which

has actor-critic structure is divided into actor network that receives state as input and

outputs action, and critic network that receives state and action as input and outputs ex-

pected reward. Both networks are composed of neural networks and are trained through

backpropagation.

The operation of DDPG is performed as follows. When the agent creates an action

by inputting the current state into the actor network, the action is performed in the

environment through the created action and the next state and reward are delivered.

The agent creates a sample by grouping the current state, action, reward, and next

state, and delivers the sample to the replay memory. In case of real-time learning, if

one sample is received from the replay memory, a mini-batch is made by randomly

selecting as many samples as the predefined mini-batch size. This mini-batch is used

to train the network. Learning proceeds from the critic network. Backpropagation is

performed using the expected reward value, which is created through the action and

the current state in the sample, and the sum of the reward in the sample and the next

expected reward value. the next expected reward value is created by inputting the next

state into the network. After learning the critic network, the actor network is trained,

and the learned critic network is used in this process. After passing the current state in

the sample to the actor network and the critic network, the gradient is propagated, and

the gradients for learning the actor network are propagated through the critic network.

For this reason, it is very important to train the critic network well in DDPG.

The distributed distributional deep deterministic policy gradient (D4PG) [34] al-

gorithm is a RL algorithm derived from DDPG. While the existing DDPG algorithm

used a scalar value critic network in which the expected reward value is expressed as

a scalar value, the D4PG uses a distributional critic network in which the expected

reward value is expressed as a distributional form(Fig. 2.4). It can be seen that the

intrinsic uncertainty generated in the process of approximating the function is better

expressed in the distributional critic network, so that the learning is performed more

13

Fig. 2.4: Difference type of critic network

stably.

Proximal policy optimization (PPO) [35] algorithm is a policy optimization RL

algorithm with model-free, on-policy, and multi-agent features. To improve training

stability, PPO uses a method that imposes restrictions on the policy update size. The

operation of the PPO proceeds as follows. After the N-agent collects samples during

T-step, K mini-batches are made using the collected sample data. If you update K

times through K mini-batches created in this way, all data accumulated in the past are

discarded because PPO is on-policy. Repeat this process over and over again. PPO

shows good performance in a simple way on various benchmarks.

2.5 Level Shifter

As described in the introduction chapter, the level shifter is used when the voltage

levels of the signals of the two circuit parts are different, such as core to core or core to

I/O. As for the level shifter, there are a level shifter with the same vss before and after

level conversion and a floating level shifter with a floating node as vss after conversion.

While the former is used in general VLSI circuits, the latter is mainly used in high

14

INBIN

out

INBIN

out

(a) DCVS

INBIN

out

INBIN

out

(b) current mirror

INBIN

out

INBIN

out

(c) WCMLS

Fig. 2.5: Conventional level shifters

voltage applications. In this study, we intend to discuss a level shifter with the same

vss before and after level transformation.

Various level shifters are being studied, but conventionally used level shifters are

DCVS, current mirror, and WCMLS. DCVS is a level shifter that applies positive feed-

back to P-channel MOSFET of differential structure as shown in Fig. 2.5(a). DCVS

with a structure in which the signal changes when the power of N-channel MOSFET

to take current out is stronger than the power of P-channel MOSFET to put current

into the net is strong against noise and has fast switching speed due to positive feed-

back. but it is not easy to operate at near sub-threshold voltage. As a way to solve

this problem, various studies have been conducted [36, 37]. Level shifter in [36] uses

an auxiliary circuit that limits the current in the conversion process. In [37], the num-

ber of transistors is reduced by changing the auxiliary circuit to a simple P-channel

MOSFET structure.

The current mirror level shifter is a level shifter using the P-channel MOSFET

of the simplest type of current mirror structure as shown in Fig. 2.5(b). When the

input becomes VDDL, the voltage level of the output net rises as the current flows. The

current mirror level shifter has the advantage of being able to operate at low voltage

because there is no contention between P-channel MOSFET and N-channel MOSFET,

but there is a disadvantage that static current flows continuously when the input is

VDDL. To solve this problem, various studies have been conducted [22, 23]. WCMLS

15

(Fig. 2.5(c)) added P-channel MOSFET gated by output to the P-channel MOSFET

drain part of the current mirror, and in [23], a current mirror in the opposite direction

was added above the P-channel MOSFET to prevent static current.

16

Chapter 3. Proposed circuit design framework

The overall flow of the proposed circuit design framework is shown in Fig. 3.1.

Instead of relying on a single algorithm to design a circuit, we propose to split the

design process into two distinct stages. The first stage (topology generator) employs an

genetic algorithm to search for candidate circuit structures quickly. The second stage

(circuit optimizer) performs an RL-based transistor size optimization on the generated

integrated circuits to maximize performance, while guaranteeing reliable operation

under process variations. Each stage is described in detail in the following sections.

3.1 Topology Generator

In the topology generator, we represent each circuit topology as a graph and em-

ploy a graph generation algorithm to obtain candidate circuit structures. The graph-

based method in [4] gives an example of expressing digital circuits as a graph, where

pull-up and pull-down networks are generated separately, and each transistor corre-

sponds to an edge in the graph. The two nodes connected by an edge define the source

and drain, whereas the gate connection is defined as one of the node properties. How-

ever, this approach is not applicable to other types of circuits that do not have separate

pull-up and pull-down paths, where N-channel and P-channel MOSFET devices can

be placed more arbitrarily. Therefore, we propose a generalized graph representation

method suitable for a broader range of circuits shown in Fig. 3.2. In our representation

method, an edge (transistor) has gate and size properties, representing the net con-

nected to the gate and transistor size. A Node has a type property that represents the

net type (e.g., input port, output port, supply, ground, and internal net). Additionally,

we introduce a new property voltage in the nodes. This property represents a relative

voltage of each node and has a range of [-1, 1]. The voltage of an edge is obtained by

17

Topology Generator

Evolutionary
Algorithm

SPICE
Simulation

TT cornerFitness Calculation

Mutation

Simulation Results
for Fitness Calculation

Generated Topologies

Topology Generator

Evolutionary
Algorithm

SPICE
Simulation

TT cornerFitness Calculation

Mutation

Simulation Results
for Fitness Calculation

Generated Topologies

Candidates List

S: Strong / M: Medium / W: Weak

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

S

WM W

M

S

W

W

W

M S

W

MW

M
S

W

M

M

W

W

M

W

S M

S

Candidates List

S: Strong / M: Medium / W: Weak

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

S

WM W

M

S

W

W

W

M S

W

MW

M
S

W

M

M

W

W

M

W

S M

S

Optimized Circuit

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

220
270
220
270

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
220
220
220

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
220
220
220

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

220
180
220
180

Optimized Circuit

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

220
270

220
180

220
180

220
180

220
180

220
180

220
180

220
180

220
180

220
220

220
180

220
180

220
180

220
180

220
180

220
180

220
180

220
180

220
220

220
180

220
180

220
180

220
180

220
180

220
180

220
180

Circuit Optimizer

Reinforcement
Learning

SPICE
Simulation

TT/FF/SS/FS/SF cornerDistributed Distributional
Deep Deterministic Policy
Gradient Algorithm(D4PG)

Input: Observation

Output: Action (width, length, multiplier)

Optimized circuit

Observations
& Simulation Results

for Reward Calculation

Actor & Critic : Multi Layer Perceptron

Circuit Optimizer

Reinforcement
Learning

SPICE
Simulation

TT/FF/SS/FS/SF cornerDistributed Distributional
Deep Deterministic Policy
Gradient Algorithm(D4PG)

Input: Observation

Output: Action (width, length, multiplier)

Optimized circuit

Observations
& Simulation Results

for Reward Calculation

Actor & Critic : Multi Layer Perceptron

Fig. 3.1: Overview of the proposed circuit design framework.

18

VDDVDD

VSS

n1

Relative
voltage

1

-1

0

0.5

-0.5

n1

VDDVDD

VSS

n1

Relative
voltage

1

-1

0

0.5

-0.5

n1

(a) Simple circuit with a

pair of MOSFET devices

gate
=n1

VDD

VSS

n1

n2

n3

n1
n3

n2

VDD

in0

in1

gate
=in0

gate
=n1

gate
=n3

gate
=n2gate

=in1

gate
=n1

VDD

VSS

n1

n2

n3

n1
n3

n2

VDD

in0

in1

gate
=in0

gate
=n1

gate
=n3

gate
=n2gate

=in1

(b) Complex circuit where gates are con-

nected to other nodes

Fig. 3.2: Examples of proposed graph-based circuit representation.

averaging the voltages of the nodes on both ends (source and drain). The edges with

positive voltage translate to P-channel MOSFET devices, whereas the edges having

zero or negative voltage represent N-channel MOSFET devices. This method allows

for generating more generalized circuit structures while preserving a common circuit

property that P-channel MOSFET devices are typically placed near the power supply

voltage, whereas N-channel MOSFET devices are biased at lower voltages to maxi-

mize operation range.

Since we aim to generate an optimal circuit topology without prior knowledge, we

suggest employing an genetic algorithm in the topology generator. NeuroEvolution of

Augmenting Topologies (NEAT) is a widely used genetic algorithm for exploring arti-

ficial neural network structures [25]. The algorithm starts from a simple network with

a single fully-connected layer, and the network evolves into more complex structures

through crossover and mutation over generations. We modify the NEAT algorithm to

make it suitable for circuit topology generation; we introduce the voltage concept into

19

Algorithm 1 Topology Generator
Input: Population size N , Max Generations G, Mutation Probability

Output: Candidate Topologies

1: P : Population, C: Offspring, P0: Initial Population

2: for g = 1, 2, ..., G do

3: Simulate all Ci(i ∈ N) and Calculate Fitness

4: Remove Stagnated Species and Extract Candidates

5: Calculate Fitness of Species sk ∈ Sg

6: Calculate Reproduction Size Rk of each sk

7: for all sk in Sg do

8: Add Best Candidate in sk to Pg+1

9: Make Parent Pool with N ′ Top Candidates in sk

10: for j = 1, 2, ..., Rk do

11: Crossover

12: Mutate

13: Add Cj to Pg+1

14: end for

15: end for

16: Speciate Pg+1

17: end for

the NEAT algorithm, and the mutation functions and the properties of genes are heav-

ily modified aimed at circuit topology generation.

Algorithm 1 details the proposed circuit topology generation algorithm. An off-

spring represents a candidate circuit topology and has node and connection genes. The

node gene represents a node in the graph and has type, voltage and innovation number

properties. The type property determines the type of the nodes (input port, output port,

supply, ground, or internal net) and the voltage property represents its relative voltage,

whereas the innovation number is a unique identifier. The connection genes represent

20

edges in the graph with in, out, size, gate, and innovation number properties. The in

and out properties define two endpoints of the edge (source and drain of the transistor),

and the size property defines the relative strength of the transistor. As described above,

since a transistor is a three-terminal device, the node to which the gate of the transistor

is connected is defined by the gate property. The innovation number is a unique iden-

tifier. A population is a set of all offspring of the current generation. The population

is divided into several species based on similarity. Each species has a base model, and

the offspring close to the base model are included in the species.

The topology generator first creates an initial population P0 which consists of off-

spring with only three node genes and two connection genes: VDD, VSS, and an internal

node connected by one P-channel MOSFET & N-channel MOSFET pair (Fig. 3.2(a)).

The gate of each transistor is randomly connected to the node except VDD and VSS. In

each generation, evolution begins by calculating the fitness of the species in the cur-

rent population. The algorithm converts each offspring into a netlist and runs a SPICE

simulation to calculate the offspring’s fitness based on the observed functionality and

performance. Then, the fitness of the offsprings included in the species is averaged

to obtain the species fitness. The number of offspring that can reproduce from each

species to the next generation is determined in proportion to the species fitness. Dur-

ing circuit topology generation, simulations are performed only at the typical (TT)

corner to scan large search spaces and find the best candidates quickly.

Before reproducing a new population, the algorithm observes whether the fitness

of the best offspring in each species has been improved or not in the last few gener-

ations. If the fitness of a species does not improve any further for a certain number

of generations, then the species is considered stagnant, and offsprings of that species

are removed from the population. The evolution process is independently performed

for each species. First, the offspring with the highest fitness in each species is auto-

matically included in the population of the next generation. Next, a set of offspring

with the highest fitness within each species is selected as a parent pool. Two offspring

21

are randomly chosen from the pool and compared with each other, where the winner

evolves through mutation and joins the population of the next generation.

The fitness function represents the performance and reliability of a circuit as a

single value. We consider two types of design constraints for fitness calculation: hard

constraints and soft constraints. The hard constraints are the set of design constraints

that a circuit must satisfy (e.g., rail-to-rail output swing for level shifters), whereas the

soft constraints indicate the design quality (e.g., power consumption and conversion

delay of level shifters). The fitness of an offspring at the x-th generation is calculated

as

fitx =
∑
i∈H

αif(qi,x) + {
∏
i∈H

f(qi,x)}{
∑
j∈S

αjf(qj,x)} (3.1)

where fitx is the calculated fitness of an offspring, qi,x is the observed performance

of the circuit in SPICE simulations corresponding to the i-th constraint, f(qi,x) is the

score function for each constraint, αi is the weight of the i-th constraint, and H and

S represent the sets of hard and soft constraints, respectively. This is similar to the

reward function used in RL for circuit optimization in [19], but our approach has two

distinct differences: i) we use log(qi,x) instead of qi,x for the scores that have a large

dynamic range, and ii) the contribution of soft constraints in the fitness is regulated by

the scores related to the hard constraints, instead of using a hyper-parameter manually

tuned for a specific type of circuit. In early generations, it is highly likely that most

offspring would fail to function properly. The scores related to the hard constraints

would be very low, making the fitness largely dictated by the hard constraints. Hence,

the algorithm focuses on finding feasible topologies that produce a desired output.

Once the algorithm finds properly working circuit topologies, the scores related to the

hard constraints saturate and do not affect the fitness. The remainder of the evolution

process further modifies the topology to improve circuit performance.

The topology generator employs various mutation functions so that it can cover

a wide range of circuit topologies. Note that the nodes without any connection (i.e.,

floating nodes) can be generated as a result of mutation. Hence, we label the nodes

22

with one or more connections as active nodes, and only active nodes are selected for

mutation. The types of mutations are discussed below:

Add connection : This mutation randomly chooses two active nodes and connects

them by adding a new edge. Since an edge corresponds to a transistor in the actual

circuit, it links the gate of the new edge to one of the existing active nodes by updating

the gate property.

Add node : This inserts a new node in one of the edges. In other words, a single

transistor is replaced with two stacked transistors. The gates of the stacked transistors

are connected to the same node to which the gate of the original transistor was con-

nected. This process is often used when designing a circuit to increase output resistance

or minimize leakage current.

Add P-channel MOSFET & N-channel MOSFET pair : A P-channel MOSFET

& N-channel MOSFET pair makes a new connection between VDD and VSS. If a single

P-channel or N-channel MOSFET transistor is placed between VDD and VSS, this will

be just a current leaking path. Therefore, we place transistors as a pair of P-channel

and N-channel MOSFET devices when making a new connection between the supply

rails.

Change gate : The gate of a transistor is connected to a different active node except

for VDD and VSS nodes.

Remove connection : This mutation randomly removes one of the connections,

which allows for removing transistors from the current topology. This prevents the

circuit from continuously becoming larger.

Change size : The size of the connection genes represents the relative size (strength)

of a transistor. Since our goal is to quickly go through a variety of circuit topologies

and find promising candidates, we define each transistor’s strength in only three steps:

strong, medium, and weak. During mutation, transistor size randomly changes in each

connection gene independently.

Change output port : This mutation changes the location of the output port. One

23

of the active nodes is selected as an output.

In the original NEAT algorithm, each mutation function is randomly selected in

each mutation. Hence, multiple types of mutations may be performed simultaneously.

However, this may result in an excessive amount of change in a circuit. For instance,

removing a transistor from the circuit and changing the gate connection of another

transistor would produce a circuit with entirely different characteristics. Hence, we

limit the mutation process to select only one of the add, remove or gate change muta-

tions (mutations 1 through 5 above). In addition, other minor mutations (mutations 6

and 7) are independently introduced with a certain probability. Let PaddNode, PaddCon,

PaddPair, PchangeGate, and PrmCon denote the probability of mutations 1 through 5

above. Then, the mutation process follows the equation below:

PaddNode + PaddCon + PaddPair + PchangeGate + PrmCon = 1 (3.2)

During topology exploration, we do not want the algorithm to keep adding transis-

tors indefinitely. Otherwise, the number of transistors in a circuit may explode, and

the resulting circuit would be far from what we desire. For instance, an ideal analog

amplifier or level shifter circuit typically has tens of transistors at most. Therefore, we

balance the expected number of removed and added transistors in each mutation by

enforcing the relationship below:

2PaddNode + PaddCon + 2PaddPair − PrmCon = 0 (3.3)

since adding a node (a net in the circuit) adds two transistors, whereas adding or re-

moving a connection adds or removes a single transistor in the circuit.

After a new generation is obtained by mutating all the offspring of the current gen-

eration, the newly generated offspring are grouped again into a set of species. Each

offspring is compared to the base models of existing species. If the number of differ-

ences in the connection genes is below the threshold for one or more existing species,

then the offspring joins the closest species. Otherwise, the offspring constitutes a new

species and becomes its base model. After the grouping process is done, the population

24

undergoes another iteration of the mutation process to obtain the next generation. This

process continues until it reaches the maximum number of generations defined by the

user.

The topology generator selects candidate topologies both during and at the end of

the evolution. When a stagnant species is removed during evolution, the offspring with

the best fitness in that species is selected and added to the candidate list if it meets all

the given design constraints. When the algorithm finishes the last iteration, the same

operation is performed on all the remaining species. Note that there may exist floating

nodes and floating paths as a result of mutation. Before adding an offspring to the

candidate list, the topology generator finds and removes the floating nodes and paths.

3.2 Circuit Optimizer

The topology generator is aimed at quickly finding promising circuit topologies.

Hence, each transistor is only roughly sized during exploration (e.g., strong, medium,

or weak). This accelerates the search process by significantly limiting the search space,

but the size of each transistor must be further tuned for optimal performance. For this

purpose, we employ an additional circuit optimizer as the second stage in the proposed

circuit design framework.

The circuit optimizer adopts a reinforcement learning (RL) algorithm to opti-

mize candidate circuits. Various RL algorithms have been used for circuit optimiza-

tion. L2DC [19] and GCN-RL [21] are based on deep deterministic policy gradient

(DDPG) [31], and AutoCkt [20] adopts proximal policy optimization (PPO) [35].

DDPG has an actor-critic structure and generally works well in continuous or high-

dimensional action spaces. An agent collects and saves a sample into a replay memory.

Then, a mini-batch is randomly selected from the replay memory to train the network.

While PPO also has an actor-critic structure suitable for training in continuous or high-

dimensional action space, it does not have a replay memory. Instead, N agents collect

25

samples in parallel during an episode which consists of T time steps, and a mini-batch

is constructed using the collected samples and used for training the algorithm. Then,

all the samples are discarded. DDPG exhibits slower convergence during training since

it only uses one agent contrary to PPO, but has the advantage of being able to reuse

the samples stored in the replay memory. PPO trains the model more quickly by using

multiple agents, but it only uses the samples collected in the current episode for train-

ing, which reduces sample efficiency. In circuit optimization, samples are obtained by

running time-consuming SPICE simulations. Therefore, it is crucial to maximize sam-

ple efficiency (i.e., reduce the number of samples required for algorithm convergence)

to speed up the circuit optimization process. To resolve this issue, we adopt distributed

distributional deep deterministic policy gradient (D4PG) [34] algorithm in the circuit

optimizer. D4PG supports both multi-agent training and sample reuse by using a re-

play memory. Unlike DDPG and PPO which express future rewards as a single scalar

value, D4PG expresses rewards as a probability distribution. It models the inherent un-

certainty imposed by function approximation in a continuous environment, resulting

in better gradients and improving the training performance compared to DDPG. It also

shows more stable performance when multiple agents are used [34].

In the RL algorithms using actor-critic structure, two different neural networks are

typically employed: an actor network and a critic network. The actor network takes a

state vector as an input and produces an action vector, whereas the critic network takes

state and action vectors as inputs and predicts the reward value an agent is expected

to receive as a result of the current and future actions. The RL algorithm trains those

neural networks on the observed samples. As the complexity of the neural network in-

creases with the dimension of input vectors, it is important to minimize the dimension

of the input vector for faster optimization. Since the action vector represents relative

size changes of all the transistors in the circuit, its dimension is fixed. Hence, we aim to

optimize the critic network by reducing the dimension of the state vector. Specifically,

we use the simulated circuit performance (e.g., power consumption and delay) and

26

area as a state, instead of feeding each transistor’s size or other characteristics (e.g.,

Vth, Vsat, and µ0) as did in prior works [19–21]. Therefore, the dimension of the state

vector is independent of the number of transistors in the topology and the optimization

process can be efficiently accelerated when the target circuit topology consists of many

transistors.

The actor network creates an action based on the state obtained by SPICE simula-

tions. An action represents a relative change in the size (width, length, and multiplier)

of each transistor. If the target topology has N transistors in total, the dimension of the

action vector would be 3N. Each dimension of the action vector has a value in [-1, 1].

Then, the amount of change in the size of the i-th transistor is

∆Size = round(Action · sizemax − sizemin

LmaxStep
) (3.4)

where ∆Size is the amount of change in transistor size, Action is the output of the ac-

tor network, LmaxStep is the number of steps in one episode, and sizemax and sizemin

are the allowable maximum and minimum transistor sizes. This translates to the max-

imum size change that can occur in one episode equal to sizemax − sizemin. The size

values are real numbers, so they are rounded to the closest values allowed in the given

process before converted to an actual circuit.

In D4PG, when a sample collected by one of the agents is stored in the replay

memory, a mini-batch is created by randomly choosing samples from the replay mem-

ory. However, as the training progresses, the amount of samples stored in the memory

becomes larger; thus, only a fraction of stored samples is used to generate a mini-batch,

reducing sample efficiency. In addition, the learner updates the network only once in

each time step, and the SPICE simulation to obtain a new sample becomes the process-

ing bottleneck. To address these issues, we propose to adopt a multi-update technique

that has been used for unbiased learning. When a sample is obtained by the agent and

stored in the replay memory, unlike the conventional method of circuit optimization

that creates one mini-batch from the stored samples, we create several mini-batches

and update the critic and actor networks multiple times. This accelerates the circuit op-

27

timization process without time overheads since multiple updates could be performed

while SPICE simulations are running. This scheme also allows for unbiased learning

through random sampling that removes correlation between mini-batches, reducing the

possibility of overfitting.

At the beginning of training, the actor network tends to generate the same action

even if the state changes gradually in each step. In other words, the size of a transis-

tor continues to increase or decrease regardless of the current state. This is because

the output is close to either 1 or -1 in most cases when the actor network weights are

randomly initialized. The actor network typically uses the tanh function as the acti-

vation function. In a randomly initialized network, the output of the network, which

is the input to the final tanh activation function, typically has an absolute value of 2

or larger, rendering the final output close to ±1. This effect is amplified by the fact

that circuit performance is converted to a state using a logarithmic function. Even if

the state changes, the sign of the action which determines size change direction (in-

crease or decrease) is likely to stay the same. In addition, the weights of the actor

network in each agent are updated only when an episode ends, and they remain fixed

for all the steps within an episode. Therefore, in the first few episodes, the sizes of

many transistors just move to the minimum or maximum value. This severely hinders

circuit optimization by moving the design far from the initial point, which is already

a near-optimal design found in the circuit topology generator. To solve this problem,

we propose an episode early stopping technique that limits the number of steps in an

episode in the early stage of training. As the learning progresses, it gradually increases

the number of steps in each episode, and the episode finally proceeds with the maxi-

mum number of steps defined by a hyperparameter. This technique allows the network

to learn more stably while acquiring more meaningful samples near the initial point in

early episodes.

Algorithm 2 details the proposed circuit optimizer. The exploration agent gets an

action by entering the current state into the actor network in each step. The algorithm

28

Algorithm 2 Circuit Optimizer
Learner

Input: Number of Steps in Episode N , Batch Size M , Replay Memory Size R,

Learning Rates α0 and β0, Multi-Update Parameter U

1: Determine Network Size by Analyzing Netlist

2: Initialize Network Weights with Kaiming Initialization

3: for i = 1, 2, ..., N do

4: Wait for Samples from Agents

5: for j = 1, 2, ..., U do

6: Randomly Choose M Samples from Replay Memory

7: Compute Updates of Actor and Critic Networks Using Samples

8: Update Network Parameters

9: end for

10: end for

Agent

Input: Number of Steps in Episode N , Number of Actors P , Episode Early Stopping

Interval T

1: repeat

2: Initialize Episode

3: Copy Actor Network from Learner

4: for step = 0, ...,K do

5: Get Action from Actor Network and Change Size

6: Simulate and Calculate State (s) and Reward (r)

7: Send Sample to Learner

8: end for

9: Increase K every T Episodes

10: until Learner Finishes

29

uses the network output (action) to change the size of transistors with the correspond-

ing action values and runs a SPICE simulation to obtain the reward and the state. The

reward function in the circuit optimizer is identical to the fitness function (Eq. 3.1)

employed in the topology generator, except that the scores are obtained at different

process corners, as explained later in this section. The current state, the action, the

next state, and the calculated reward constitute a single sample and are written to the

replay memory. Each time a new sample is sent to the replay memory, the optimizer

creates multiple mini-batches to update the neural networks. This update process con-

tinues until it reaches a user-defined maximum number of steps. Then, the best set of

the parameters found in the course of training is selected as the final design.

L2DC [19] uses a Recursive Neural Network (RNN) in the actor network and

Multi-Layer Perceptron (MLP) as the critic network. However, RNN is typically hard

to train due to the vanishing and exploding gradient problems [38]. Also, the state is

composed of the observed values (e.g., gm and Vth) of each transistor, and the order is

determined by the signal path of the circuit, necessitating manual examination of the

circuit topology. Instead, we use an MLP as the actor as did in AutoCkt [20], where

the specifications of topology are combined into a state vector in an arbitrary order.

Also, we initialize the weights of the MLP following the method in [39].

While the circuit optimizer primarily focuses on maximizing circuit performance,

it is also very important to guarantee that the circuit properly operates under process

variations. Contrary to prior works on circuit optimization [19–21], we run SPICE

simulations at five different process corners (TT, FF, SS, FS, and SF). The optimizer

constantly observes if the circuit meets the hard constraints at all corners during op-

timization. Contrarily, the scores related to the soft constraints are only measured at

the typical (TT) corner. This allows the circuit to exhibit maximum performance at

the corner of most concern while still guaranteeing proper functionality in the worst

cases. Note that Monte-Carlo analysis better captures the robustness of a circuit under

process variation. However, since the size of each transistor continues to change dur-

30

ing optimization, adopting Monte-Carlo analysis will require a large number of SPICE

simulations in each time step, incurring a large time overhead. Contrarily, the corner

analysis requires only a few simulations for each design point and hence is more suit-

able for fast optimization.

31

Chapter 4. Experiment Result

In the previous section, we presented an unified circuit design framework that au-

tomatically generates appropriate circuit topologies and further optimizes each design

through finding an optimal size of each transistor. In this section, we experimentally

verify the proposed circuit design framework. By employing the framework to design

level shifter circuits, we demonstrate that the topology generator produces novel level

shifter topologies, and the circuit optimizer successfully improves the design. Finally,

the resulting level shifter designs are fabricated and compared against prior arts de-

signed by human experts. All experiments are conducted on a workstation running

CentOS 7.4 with two Intel E5-2687W v4 processors, 128GB DRAM, and an Nvidia

GTX Titan X GPU. The topology generator only uses the processors whereas the cir-

cuit optimizer uses both the processors and GPU.

4.1 Level Shifter Design

We choose a level shifter circuit as a test vehicle for our framework since it is an

active research area where new circuit topologies are continuously developed. There

are many different topologies, and an optimal topology varies with the design con-

straints [24]. Therefore, the effectiveness of our framework that is capable of find-

ing optimal circuit topologies could be verified more clearly. In addition, level shifter

circuits share common properties both with digital and analog circuits. For instance,

level shifters operate on a rail-to-rail input signal and produce a rail-to-rail output in

a higher voltage, similar to digital circuits [22]. On the other hand, the internal opera-

tion is similar to that of analog circuits such as amplifiers. In experiments, we adopt the

framework to design level shifter circuits in a 180nm CMOS process, and the resulting

circuits are compared to prior designs reported in the literature.

32

A level shifter circuit converts a low-voltage (VDDL) digital signal to a high-voltage

(VDDH) signal. Level shifters must generate a rail-to-rail swing between the ground

and VDDH at the output. Therefore, we use output signal swing as a hard constraint

in the framework. Because level shifters are typically expected to operate with high

conversion speed and low power consumption with minimal footprint [40], we use

delay, total power (Ptotal), static power (Pstatic), and area as soft constraints. The circuit

area is calculated as the number of transistors in the topology generator, whereas the

circuit optimizer uses the total active area.

Table 4.1: Experimental setup for level shifter design

Topology Generator Circuit Optimizer

Generation & Step 400 350,000

Process Corners TT TT/FF/SS/FS/SF

Hard Swing
qi,x / VDDH qi,x / VDDH

Constraint Ratio

Soft
Constraints

Delay −logqi,x + b −logqi,x + b

Ptotal −logqi,x + b −logqi,x + b

Pstatic −logqi,x + b −logqi,x + b

Area 1− max(qi,x−b,0)
slope −logqi,x + b

Table 4.1 shows the score functions used in each step. The scores related to the

soft constraints are calculated as -log(qi,x) except for the area in the topology genera-

tor, whereas the score for the hard constraint (output swing) is calculated as the swing

observed in simulation divided by VDDH. In topology generation, the area is calculated

as the number of transistors in the circuit. When the number of transistors exceeds a

threshold (b in Table 4.1), the score is divided by a slope which is a hyperparamter. In

the circuit optimizer, we use the worst values across all process corners when calcu-

lating the score for the hard constraint. Soft constraint scores are obtained at the TT

33

corner.

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

INB

OUT

INB

OUT IN

IN

VDDH VDDH VDDH

M0

M1

M2 M3 M6

M4

M5

M7

M8

(a) C1

IN IN INB

VDDH VDDH VDDH

OUT

IN IN INB

VDDH VDDH VDDH

OUT

M2

M3

M4

M1

M6

M0

M5

M7

M8

(b) C2

IN INB OUT

INB
INB

VDDH VDDH VDDH

IN INB OUT

INB
INB

VDDH VDDH VDDH

M5

M7

M1
M6

M8

M3

M2

M0

M10

M4

M9

M11

(c) C3

OUT

INBIN

IN

VDDH VDDH

OUT

INBIN

IN

VDDH VDDH

M4

M7M1

M5

M6

M2

M0
M3

M8

(d) C4

INOUT

INB
OUT

INB

VDDH VDDH VDDH

INOUT

INB
OUT

INB

VDDH VDDH VDDH

M7

M6

M1

M4

M3 M5

M0

M2

(e) C5

Fig. 4.1: Level shifter circuit topologies generated by topology generator

4.2 Topology Generation

The topology generator runs seven SPICE simulations in parallel only at the TT

corner for fast topology search. The input inverter of level-shifter is implemented us-

ing low threshold voltage (Vth) devices, whereas the other transistors are standard Vth

devices. We use a minimum-sized transistor with 180nm channel length and 220nm

channel width as a weak device. Medium and strong devices have 2× and 4× larger

channel width, respectively. The initial population size is set to 450, and the popula-

tion evolves for 600 generations, which takes approximately 5h 30m. In addition, we

experiment with varying the soft constraint weights in the fitness function to observe

how the topology generator performs under different design constraints. The generated

circuit topologies are displayed in Fig. 4.1. Specifically, three cases are tested: i) all the

34

Table 4.2: Results of topology generation

VDDL=0.4V @ 1MHz

Swing Ratio Ptotal(nW) Pstatic(nW) Delay(ns) Transistors Fitness

C1 1.00 47.3 0.10 22.2 9 28.39

C2 0.98 52.2 0.22 11.9 9 26.43

C3 1.00 50.5 0.70 17.8 12 26.36

C4 0.99 58.0 0.71 16.6 9 27.38

C5 1.00 39.8 0.65 15.0 8 27.75

constraints have the same weight (C1 in Fig. 4.1), ii) only the weight of static power is

lowered (C2-C3), and iii) the weight of delay is increased while the weights of static

and total powers are decreased (C4-C5). Table 4.2 summarizes the performance and

fitness of the generated circuits (C1-C5). Simulation results show that the circuits gen-

erated with lower static power weight (C2-C3) exhibit higher static power than C1. In

addition, the circuits optimized for delay (C4-C5) achieve lower delay than C1 at the

expense of power consumption increases.

0 100 200 300 400 500 600
Number of SPICE Simulations

0

5

10

15

20

25

30

Fi
tn

es
s

Run#0
Run#1
Run#2

(a) Fitness

0 100 200 300 400 500 600
Number of SPICE Simulations

0

20

40

60

80

100

120

Nu
m

be
r o

f S
pe

cie
s

Run#0
Run#1
Run#2

(b) Number of species

Fig. 4.2: Experimental results of topology generation.

35

We also perform three independent runs of circuit topology generation to estimate

algorithm stability. Fig. 4.2 shows the fitness and the number of species as the evolution

proceeds. The best fitness, which is the fitness of the best circuit in the population,

rapidly increases in the first 7-9 generations, and then gradually improves through fine

tuning of the circuit topology. Note that the value of fitness is not capped at a fixed

value. While the fitness of a circuit can have an arbitrary value, the generated circuits

exhibit fitness values less than 30 in our experiments. The number of species is nearly

constant during evolution except in the first few generations, suggesting that stagnant

species are replaced with a similar number of new species.

4.3 Circuit Optimization

In experiments, we use an MLP with three hidden layers and 200 nodes in each

layer as the actor network. The critic network has the same structure but has two hid-

den layers. First, we evaluate each of the proposed RL optimization techniques using

WCMLS circuit, which is widely adopted in level shifter designs [22–24]. Experiments

are performed using a total of seven actors, where one of them is used to estimate

the performance of the optimization algorithm in real time (evaluation actor). 30,000

SPICE simulations are run across all the actors except the evaluation actor, which takes

2h 20m. Since the RL algorithm has some degree of randomness, we test each con-

figuration on three independent runs to observe its reliability. Fig. 4.3-4.5 summarizes

the experimental results. Fig. 4.3(a) shows that conventional D4PG fails to converge

in two of the three runs. However, when the multi-update technique with U=10 is ap-

plied, the algorithm successfully finds a correct optimization direction and properly

biases transistors in the circuit after about 7,000 SPICE simulations (Fig. 4.4(a)). Fig.

4.5(a) shows the optimization results when the episode early stopping method is also

employed. Initially, an episode stops only after four steps, and the episode length in-

creases by two after every five episodes in each exploration agent until it reaches the

36

maximum length of 20. This method reduces the number of SPICE simulations re-

quired to capture the bias points from 7,000 to 5,000, suggesting that this technique

accelerates RL training in the early stage. Note that the algorithm shows more fluc-

tuation during optimization when the early stopping method is adopted. We suspect

that the conventional approach is exposed to more ”bad” samples, which are far from

the initial nearly-optimized design from the topology generator, in the early stages of

training. Those samples exhibit very low rewards as they do not meet the hard con-

straints. As a result, the actor is trained to be more conservative, and once the design

enters the near-optimal region where the hard constraints are satisfied, the algorithm

tends to stay near that point only with fine tuning to avoid a large drop in the reward

value. Contrarily, the episode early stopping method allows the design to enter the

near-optimal region quickly, significantly reducing the number of bad samples during

initial training. When the design approaches an optimal point during optimization, the

algorithm now searches for better design points more aggressively. In other words, the

algorithm is less reluctant to depart from the local optima, which helps find a global

optimum.

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35

Re
wa

rd

Run#0
Run#1
Run#2

(a) D4PG

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35

Re
wa

rd

Run#0
Run#1
Run#2

(b) DDPG

Fig. 4.3: Trends of reward improvement without techniques.

37

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35
Re

wa
rd

Run#0
Run#1
Run#2

(a) D4PG with multi-update

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35

Re
wa

rd

Run#0
Run#1
Run#2

(b) DDPG with multi-update

Fig. 4.4: Trends of reward improvement with multi-update techniques.

For comparison, we experiment with the DDPG algorithm adopted in prior work

[19] using the same environment. D4PG, which is employed in our framework, is sim-

ilar to DDPG except that it uses multiple agents in parallel, and the output of the critic

network is represented as the probability distribution. The DDPG algorithm is trained

for 30,000 SPICE simulations in total, and the total running time is 14h 30m. This

is more than six times longer than the time required for our approach to process the

same number of SPICE simulations, which confirms the effectiveness of the multi-

agent training of D4PG. The experimental results are displayed in Fig. 4.3-4.5. We

experimented with a vanilla DDPG algorithm (Fig. 4.3(b)), DDPG with multi-update

(Fig. 4.4(b)), and DDPG with both techniques (Fig. 4.5(b)). Experimental results show

that DDPG exhibits larger variations between runs and unstable training convergence

compared to our approach. To observe how the type of critic affects the training perfor-

mance, we experimentally apply the scalar value critic used in DDPG to our algorithm.

With both multi-update and episode early stopping applied, Fig. 4.6(a) shows that us-

ing the scalar value critic results in more unstable training convergence compared to

Fig. 4.5(a).

38

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35
Re

wa
rd

Run#0
Run#1
Run#2

(a) D4PG with multi-update

and episode early stopping

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35

Re
wa

rd

Run#0
Run#1
Run#2

(b) DDPG with multi-update

and episode early stopping

Fig. 4.5: Trends of reward improvement with multi-update and episode early stopping.

The episode early stopping method effectively limits the agent’s exploration capa-

bility in the early stages of training, and a similar effect could be achieved by scaling

the output of the actor network. We conducted additional experiments in which we

multiplied the output of the actor network with a scaling factor before passing it to

the environment. The scaling factor is set to 0.2 at first and is increased by 0.1 every

five epochs, which translates to the maximum amount of size change in each episode

identical to the episode early stopping method. Experimental results are displayed in

Fig. 4.6(b). It can be seen that this scaling method results in a slower convergence. We

suspect that this is because the actor network is not properly trained in early episodes

due to the continuously changing scaling factor. More specifically, the actor network

is trained in a way to generate the best action for the current state. However, the out-

put of the actor network is scaled before being applied to the environment, and hence

the actor should take this into account during training. Since we are now changing the

scaling factor, the actor should be trained in different directions as the optimization

process continues, hindering proper training.

39

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35
Re

wa
rd

Run#0
Run#1
Run#2

(a) Scalar value critic

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0

5

10

15

20

25

30

35

Re
wa

rd

Run#0
Run#1
Run#2

(b) Action scaling

Fig. 4.6: Reward trends of alternative approaches for comparisons.

During optimization, our framework considers multiple process corners to make

sure the circuit properly works under process variations. Fig. 4.7 compares our ap-

proach to the conventional method that observes the circuit performance at the TT

corner only. When the circuit is optimized only at the TT corner, the relative out-

put voltage swing reaches 0.95 at the same corner, but the design may produce much

smaller swing at different corners (Fig. 4.7(a)). On the other hand, if we obtain the

score related to the hard constraint at the worst corner during optimization, the result-

ing circuit achieves >0.95 output swing at all the corners.

Similar to topology generator, we also experiment with changing the weights of

the soft constraints. The sum of the weights is fixed, and their values are allocated

differently in each case. Table 4.3 summarizes experimental results for optimization

with 32,000 SPICE simulations. The last column shows the actual weights of the soft

constraint of interest and the others. As expected, increasing the weight for total power

consumption further reduces power consumption during optimization while sacrificing

delay and area since the circuit is subject to a trade-off between delay, power, and area.

Similarly, using a higher weight for delay produces a faster level shifter circuit at the

40

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 S

wi
ng

 R
at

io

TT
SS
FF
SF
FS

(a) Optimization at TT corner only

0 5K 10K 15K 20K 25K 30K
Number of SPICE Simulations

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 S

wi
ng

 R
at

io

TT
SS
FF
SF
FS

(b) Optimization at all corners

Fig. 4.7: Trends of output swing ratio with TT only and all corner. Considering process

corners significantly improves reliability.

Table 4.3: Experiments with different weights in circuit optimization

VDDL=0.4V @ 1MHz

Prioritized Swing Ptotal Pstatic Delay Area
Weight*

Metric Ratio (nW) (nW) (ns) (µm2)

None 0.97 27.5 1.05 22.5 1.06 1.0/1.0

Ptotal

0.98 26.2 1.05 22.3 1.07 1.6/0.8

0.99 25.1 0.93 29.6 1.26 2.3/0.6

0.97 25.0 0.93 27.9 1.18 2.9/0.4

0.96 24.7 0.89 31.9 1.24 3.1/0.3

Delay

0.97 26.6 1.09 21.1 1.00 1.6/0.8

0.99 26.6 1.10 20.8 1.03 2.3/0.6

1.00 27.5 1.16 20.7 1.20 2.9/0.4

1.00 62.6 6.41 17.9 4.32 3.1/0.3

* Weight of prioritized metric / weight of other metrics

41

Table 4.4: Results of optimizing generated circuits

VDDL=0.4V @ 1MHz

Swing Ratio Ptotal(nW) Pstatic(nW) Delay(ns) Area(µm2) RW

C1 1.00 26.2 0.30 11.4 0.38 33.35

C2 1.00 34.2 0.16 9.7 0.45 33.49

C3 1.00 34.3 0.36 12.5 0.68 33.02

C4 0.99 37.3 0.32 9.8 0.37 33.28

C5 1.00 26.0 0.43 11.3 0.32 33.25

expense of power and area increase.

Finally, we apply our circuit optimizer to the circuits generated by the topology

generator (C1-C5). Similar to previous experiments, we use seven actors in the RL

algorithm, where one of them is used as an evaluation actor. For each circuit topology,

38,000 SPICE simulations were performed except the evaluation actor, and the multi-

update constant U was set to 13. The optimizer successfully improved all the generated

circuit topologies, which is verified by comparing the results in Table 4.4 to the results

in Table 4.2. Note that the area represents the total active area, not the actual layout

size.

4.4 Test Chip Fabrication

To validate level shifter circuits designed by our framework, we fabricated the

generated and optimized circuits C1-C5 in a 180nm process. Since the framework only

provides a netlist as the output, the layout was manually drawn, as shown in Fig. 4.8.

The input inverter supplied by VDDL is included in the layout. It is difficult to measure

the conversion delay of a level shifter accurately, since parasitic components (e.g., I/O

cell, PCB trace, and bond wire) also contribute to the delay. Hence, we adopt the dual-

path measurement method in [41]. Two different paths with and without a level shifter

42

M2 M3

M6 M7

M1

M0 M8M5

M4

INPUT
Inverter

(a) C1 (4.7µm×8.6µm)

M4

M1

M6

M7 M3
M2

M8

M5

M0

INPUT
Inverter

(b) C2 (3.5µm×11.2µm)

M1 M6M8

M0

M7

M10

M4

M2M3

INPUT
Inverter

M5

M11

M9

(c) C3 (4.5µm×10.3µm)

M1

M5

M6

M3

M7

M4

M8

M0

M2

INPUT
Inverter

(d) C4 (4.0µm×8.4µm)

M1

M4

M3 M2

M6

M7

M0

M5

INPUT
Inverter

(e) C5 (4.0µm×8.2µm)

Fig. 4.8: Layout of generated circuits and their size.

43

are implemented, and the conversion delay is indirectly measured by subtracting their

delays as depicted in Fig. 4.9. The VDDL inverter (colored gray in the figure) converts

a high-voltage input to a low-voltage signal, which is later converted back to VDDH

by the level shifter. Each level shifter has a dedicated power supply rail to measure its

power consumption. A different level shifter can be selected by a control signal to the

multiplexer and demultiplexer. The conversion delay is measured as the difference in

arrival times of OUT and REF signals. Fig. 4.10(a) shows the top-level layout of the

test chip, and Fig. 4.10(b) is the chip micrography.

Level shifter

Level shifter

...

...

Ctrl

IN

OUT

REF

VDDL
Inverter

VDD0

VDDL0

VDDk

VDDLk

Fig. 4.9: Delay measurement circuit for testing

Table 4.5 displays measurement results and comparisons against recent level shifter

circuits reported in the literature (Fig. 4.11). Note that the performance of the baseline

circuits (B1-B5) are simulation results obtained from [40]. In measurements, all of

the generated circuits (C1-C5) successfully perform level conversions. Measurement

results show that our designs consume much smaller power consumption during con-

version with similar or lower conversion delay. More specifically, our designs exhibit

2.6-4.7× lower total power consumption than the design with the lowest power con-

sumption (B3) and 1.0-1.7× larger conversion delay than the fastest design (B5). In

addition, our designs occupy 1.5-2.1× smaller area than the smallest design (B1). The

power-delay product (PDP) is a metric commonly used for comparing level shifter

circuits [24, 37, 40], and the generated circuits achieve 2.8-5.3× lower PDP than the

44

(a) (b)

Fig. 4.10: (a) test chip layout, (b) test chip micrography.

Table 4.5: Results of Measurement generated circuits

VDDL=0.4V @ 1MHz

VDDLmin(mV) Ptotal(nW) Pstatic(nW) Delay(ns) Area(µm2) PDP

B1∗ 400 / – 2654 0.98 61 69.1 161894

B2∗ 370 / – 584 0.18 36 74.4 21024

B3∗ 380 / – 290 0.22 54 99.8 15660

B4∗ 370 / – 320 0.13 35 103.5 11200

B5∗ 360 / – 327 0.13 31 120.9 10137

C1 320 / 42 69.8 0.44 51.6 40.3 3604

C2 280 / 41 85.4 0.47 30.7 39.2 2620

C3 310 / 34 113.2 0.45 31.2 46.3 3533

C4 320 / 70 76.3 1.01 39.2 33.1 2991

C5 270 / 48 62.0 0.95 30.8 32.4 1911

* Simulation results reported in [40]

45

baseline circuits.

VDDLmin represents the minimum input voltage that a level shifter can convert to a

high voltage signal. VDDLmin was first measured for the input with 1MHz frequency.

Generated circuits (C1-C5) achieve 320mV or lower VDDLmin, outperforming baseline

circuits. To determine the lowest possible voltage that the level shifters could handle,

we also experimented with a 100Hz input signal and checked if the output shows full

swing. In this case, the generated level shifters achieve significantly lower VDDLmin

less than 100mV.

Although C1-C5 performed better compared to the baseline, there are some points

to consider. First of all, in the case of C1, the input range does not appear as a full

range because the level shifter targeted in this experiment set 0.4V as the input voltage.

When VDDL rises above a certain voltage by input connected to M6, the voltage stops.

Next, there is a case where an unnecessary transistor is inserted into the circuit. M5

of C3 does not play any role because it is directly connected to VDDH. In this case,

area can be wasted. Finally, as a feedback structure is formed by the output voltage in

the circuit, a part vulnerable to noise occurs. For example, in the case of C5, if under

noise occurs in the net between M7 and M6 while the input enters 0 and the output

is maintained at 0, there is a possibility that the static current may increase. However,

in the case of problems except the insertion of unnecessary transistors, it seems that

it can be sufficiently supplemented by configuring the metric to be considered during

the generation and optimization process.

46

IN INB

VDDHVDDH

OUT

IN INB

VDDHVDDH

OUT

(a) B1 [22]

IN INB

VDDH VDDH VDDH

IN

IN

OUT

VDDH

IN INB

VDDH VDDH VDDH

IN

IN

OUT

VDDH

(b) B2 [23]

VDDH VDDH VDDH

OUT

INBIN

VDDH VDDH VDDH

OUT

INBIN

(c) B3 [42]

VDDH

OUT

IN INB

IN

OUT

IN
OUT

VDDH VDDH VDDH

INB

VDDH

OUT

IN INB

IN

OUT

IN
OUT

VDDH VDDH VDDH

INB

(d) B4 [43]

OUT

INB

OUT

IN

Q

IN

INB

VDDH VDDH VDDH VDDH

VDDH

OUT

INB

OUT

IN

Q

IN

INB

VDDH VDDH VDDH VDDH

VDDH

(e) B5 [36]

Fig. 4.11: Baseline level shifter designs from prior work.

4.5 Applicability of Topology Generator

We conduct further experiments to observe if the proposed topology generator

could be used for designing other types of circuits. For experiments, the topology gen-

erator is tested on both digital (AND gate) and analog (differential amplifier) circuits.

In both cases, the algorithm starts with a P-channel MOSFET & N-channel MOS-

FET pair as the initial offspring and an initial population size of 600. For AND gate,

the population evolves for 300 generations. We use a minimum-sized transistor with

180nm channel length and 220nm channel width as a weak device. Medium and strong

devices have 2× and 4× larger channel width, respectively. The topology generator suc-

cessfully produces a standard AND gate composed of a NAND gate and an inverter as

shown in Fig. 4.12(a). The left part of the circuit in Fig. 4.12(b) is similar to a standard

NAND gate, but the output is not fully pulled up since one of the PMOS devices is

47

connected to an internal node. However, the additional PMOS keeper fully pulls up

the output node, providing a rail-to-rail output.

A

A

B

B

out

A

A

B

B

out

(a)

A

B

out

B A

A

B

out

B A

(b)

Fig. 4.12: AND gates generated by topology generator.

inp inn

out

inp inn

out

(a)

inninp

out

inninp

out

(b)

Fig. 4.13: Differential amplifiers generated by topology generator.

For amplifier design, the population evolves for 600 generations. Since analog cir-

cuits often require proper biasing, a bias node that supplies a DC voltage is introduced

in the algorithm. In addition, five sizing options are used for topology generation.

We use a transistor with 720nm channel length and 220nm channel width as a base-

line. Two stronger devices have 2× and 4× larger channel width, respectively, whereas

two weaker devices have 2× and 4× larger channel length, respectively. The topol-

ogy generator successfully generates circuit topologies that are similar to widely used

48

amplifier circuits. The amplifier circuit in Fig. 4.13(a) is a self-biased 5T OTA (Op-

erational Transconductance Amplifier) circuit [44], and the circuit in Fig. 4.13(b) is a

low-voltage pseudo-differential amplifier [45, 46].

49

Chapter 5. Conclusion

In this work, we proposed an automatic circuit design framework for level shifter

circuits. To design a circuit without pre-constructed building blocks and prior knowl-

edge, the framework implements a two-step design process using the topology genera-

tor and the circuit optimizer. We first propose a new graph-based circuit representation,

and the topology generator employs an evolutionary algorithm to search for possible

circuit topologies quickly, considering the given design constraints. Then, the circuit

optimizer utilizes reinforcement learning to fine-tune the size of each transistor, where

we adopt various algorithmic optimizations such as multi-agent training, process vari-

ation aware optimization, multi-update, and episode early stopping to improve sam-

ple efficiency. In experiments, the framework was applied to designing level shifter

circuits. The topology generator produced novel level shifter topologies, and they are

successfully optimized by the circuit optimizer. Fabricated in a 180nm CMOS process,

the test chip demonstrates that the automatically designed circuits achieve 2.8-5.3×

lower PDP than manually designed level shifter circuits reported in the literature.

50

Bibliography

[1] L. Lavagno, L. Scheffer, and G. Martin, EDA for IC implementation, circuit de-

sign, and process technology. CRC press, 2016.

[2] O. Aaserud and I. R. Nielsen, “Trends in current analog design-a panel debate,”

Analog Integrated Circuits and Signal Processing, vol. 7, no. 1, pp. 5–9, 1995.

[3] M. C. Golumbic, A. Mintz, and U. Rotics, “An improvement on the complexity of

factoring read-once Boolean functions,” Discret. Appl. Math., vol. 156, pp. 1633–

1636, may 2008.

[4] V. N. Possani, V. Callegaro, A. I. Reis, R. P. Ribas, F. De Souza Marques, and

L. S. Da Rosa, “Graph-Based Transistor Network Generation Method for Super-

gate Design,” IEEE Trans. VLSI Syst., vol. 24, pp. 692–705, feb 2016.

[5] H. Y. Koh, C. H. Séquin, and P. R. Gray, “OPASYN: A Computer for CMOS Op-

erational Amplifiers,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 9, no. 2, pp. 113–125, 1990.

[6] W. Kruiskamp and D. Leenaerts, “DARWIN: CMOS opamp synthesis by means

of a genetic algorithm,” in Proc. 32nd Annu. ACM/IEEE Des. Autom. Conf.,

pp. 139–144, 2002.

[7] T. McConaghy, P. Palmers, M. Steyaert, and G. G. Gielen, “Variation-aware

structural synthesis of analog circuits via hierarchical building blocks and struc-

tural homotopy,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,

vol. 28, pp. 1281–1294, jan 2009.

[8] M. Meissner and L. Hedrich, “FEATS: Framework for explorative analog topol-

ogy synthesis,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34,

pp. 213–226, feb 2015.

51

[9] Z. Zhao and L. Zhang, “Graph-grammar-based analog circuit topology synthe-

sis,” in Proc. IEEE Int. Symp. Circuits Syst., pp. 1–5, 2019.

[10] J. R. Koza, F. Dunlap, F. H. Bennett, M. A. Keane, J. Lohn, and D. Andre, “Auto-

mated synthesis of computational circuits using genetic programming,” in Proc.

IEEE Int. Conf. Evol. Comput., pp. 447–452, 1997.

[11] J. D. Lohn and S. P. Colombano, “A Circuit Representation Technique for Au-

tomated Circuit Design,” IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 205–219,

1999.

[12] Y. Sapargaliyev and T. G. Kalganova, “Unconstrained Evolution of Analogue

Computational “QR” Circuit with Oscillating Length Representation,” in Proc.

Int. Conf. Evolvable Syst., pp. 1–10, sep 2008.

[13] J. Slez´ak, S. Slez´ak, and J. P. Zela, “Evolutionary Synthesis of Cube Root

Computational Circuit Using Graph Hybrid Estimation of Distribution Algo-

rithm,” Radioengineering, vol. 23, no. 1, p. 549, 2014.

[14] B. Liu, Q. Zhang, F. V. Fernandez, and G. G. Gielen, “An efficient evolution-

ary algorithm for chance-constrained bi-objective stochastic optimization,” IEEE

Trans. Evol. Comput., vol. 17, pp. 786–796, dec 2013.

[15] P. P. Prajapati and M. V. Shah, “Two stage CMOS operational amplifier design us-

ing particle swarm optimization algorithm,” in Proc. IEEE UP Sect. Conf. Electr.

Comput. Electron., pp. 1–5, 2015.

[16] R. A. Thakker, M. S. Baghini, and M. B. Patil, “Low-Power Low-Voltage analog

circuit design using hierarchical particle swarm optimization,” in Proc. Int. Conf.

VLSI Des., pp. 427–432, 2009.

52

[17] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An efficient

Bayesian optimization approach for automated optimization of analog circuits,”

IEEE Trans. Circuits Syst. I Regul. Pap., vol. 65, pp. 1954–1967, jun 2018.

[18] B. He, S. Zhang, F. Yang, C. Yan, D. Zhou, and X. Zeng, “An Efficient Bayesian

Optimization Approach for Analog Circuit Synthesis via Sparse Gaussian Pro-

cess Modeling,” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2020.

[19] H. Wang, J. Yang, H.-S. Lee, and S. Han, “Learning to Design Circuits,” arXiv,

2018.

[20] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic, “AutoCkt:

Deep Reinforcement Learning of Analog Circuit Designs,” in Proc. Des. Autom.

Test Eur. Conf. Exhib., pp. 490–495, 2020.

[21] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han, “GCN-RL

Circuit Designer: Transferable Transistor Sizing with Graph Neural Networks

and Reinforcement Learning,” in Des. Autom. Conf., pp. 1–6, 2020.

[22] S. Lutkemeier and U. Ruckert, “A subthreshold to above-threshold level shifter

comprising a Wilson current mirror,” IEEE Trans. Circuits Syst. II Express Briefs,

vol. 57, no. 9, pp. 721–724, 2010.

[23] S. C. Luo, C. J. Huang, and Y. H. Chu, “A wide-range level shifter using a mod-

ified wilson current mirror hybrid buffer,” IEEE Trans. Circuits Syst. I Regul.

Pap., vol. 61, no. 6, pp. 1656–1665, 2014.

[24] S. Kabirpour and M. Jalali, “A power-delay and area efficient voltage level shifter

based on a reflected-output wilson current mirror level shifter,” IEEE Trans. Cir-

cuits Syst. II Express Briefs, vol. 67, no. 2, pp. 250–254, 2020.

[25] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through augment-

ing topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

53

[26] J. Yosinski and J. Clune, “Evolving robot gaits in hardware: the HyperNEAT

generative encoding vs. parameter optimization,” Eur. Conf. Artif. Life, pp. 890–

897, 2011.

[27] P. Verbancsics and K. O. Stanley, “Constraining connectivity to encourage mod-

ularity in HyperNEAT,” Genet. Evol. Comput. Conf., p. 1483, 2011.

[28] Tomáš Kocmánek, HyperNEAT and Novelty Search. PhD thesis, Czech Technical

University in Prague, 2015.

[29] B. Jolley and A. Channon, “Toward evolving robust, deliberate motion planning

with HyperNEAT,” IEEE Symp. Ser. Comput. Intell., vol. 2018-Janua, pp. 1–8,

2018.

[30] J. Merrild, M. A. Rasmussen, and S. Risi, “HyperNTM: Evolving Scalable Neu-

ral Turing Machines Through HyperNEAT,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10784 LNCS,

pp. 750–766, 2018.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv, sep

2015.

[32] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-

terministic policy gradient algorithms,” in International conference on machine

learning, pp. 387–395, PMLR, 2014.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

54

[34] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan, D. TB,

A. Muldal, N. Heess, and T. Lillicrap, “Distributed Distributional Deterministic

Policy Gradients,” arXiv, apr 2018.

[35] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Pol-

icy Optimization Algorithms,” arXiv, jul 2017.

[36] S. R. Hosseini, M. Saberi, and R. Lotfi, “A low-power subthreshold to above-

threshold voltage level shifter,” IEEE Trans. Circuits Syst. II Express Briefs,

vol. 61, pp. 753–757, oct 2014.

[37] S. Kabirpour and M. Jalali, “A Low-Power and High-Speed Voltage Level Shifter

Based on a Regulated Cross-Coupled Pull-Up Network,” IEEE Trans. Circuits

Syst. II Express Briefs, vol. 66, no. 6, pp. 909–913, 2019.

[38] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” in Proc. Int. Conf. Mach. Learn., pp. 1310–1318, 2013.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification,” in Proc. IEEE Int. Conf.

Comput. Vis., pp. 1026–1034, 2015.

[40] S. R. Hosseini, M. Saberi, and R. Lotfi, “A High-Speed and Power-Efficient Volt-

age Level Shifter for Dual-Supply Applications,” IEEE Trans. VLSI Syst., vol. 25,

no. 3, pp. 1154–1158, 2017.

[41] R. Lotfi, M. Saberi, S. R. Hosseini, A. R. Ahmadi-Mehr, and R. B.

Staszewski, “Energy-Efficient Wide-Range Voltage Level Shifters Reaching 4.2

fJ/Transition,” IEEE Solid-State Circuits Lett., vol. 1, no. 2, pp. 34–37, 2018.

[42] M. Lanuzza, P. Corsonello, and S. Perri, “Fast and wide range voltage conversion

in multisupply voltage designs,” IEEE Trans. VLSI Syst., vol. 23, pp. 388–391,

feb 2015.

55

[43] Y. Osaki, T. Hirose, N. Kuroki, and M. Numa, “A low-power level shifter with

logic error correction for extremely low-voltage digital CMOS LSIs,” IEEE J.

Solid-State Circuits, vol. 47, no. 7, pp. 1776–1783, 2012.

[44] B. A. Chappell, T. I. Chappell, S. E. Schuster, H. M. Segmuller, J. W. Allan,

R. L. Franch, and P. J. Restle, “Fast cmos ecl receivers with 100-mv worst-case

sensitivity,” IEEE J. Solid-State Circuits, vol. 23, no. 1, pp. 59–67, 1988.

[45] C. J. A. Gomez, H. Klimach, E. Fabris, and O. E. Mattia, “High psrr nano-watt

mos-only threshold voltage monitor circuit,” in IEEE Symp. Integr. Circuits Syst.

Design (SBCCI), pp. 1–6, IEEE, 2015.

[46] A. Shankar, J. Silva-Martı́nez, and E. Sánchez-Sinencio, “A low voltage oper-

ational transconductance amplifier using common mode feedforward for high

frequency switched capacitor circuits,” in IEEE Int. Symp. Circuits Syst., vol. 1,

pp. 643–646, IEEE, 2001.

56

초록

유전알고리즘및강화학습을사용한고속회로설계

자동화프레임워크

홍지우

지능정보융합학과

서울대학교대학원

설계자동화는대규모디지털시스템을가능하게하는핵심요소이지만트랜지

스터 수준에서 회로 설계 프로세스를 자동화하는 것은 여전히 어려운 과제로 남아

있습니다.최근연구에서는아날로그앰프와같은비교적작은회로에서최적의성

능을 보이는 트랜지스터 크기를 찾기 위해 deep learning 알고리즘을 활용할 수 있

다고말합니다.그러나이러한접근방식은주어진설계 constraint를충족하는다른

회로 구조 탐색에 적용하기 어렵습니다. 본 연구에서는 성능과 신뢰성을 고려하여

각트랜지스터의크기를최적화할뿐만아니라처음부터실용적인회로구조를생성

할수있는자동회로설계 framework를제안합니다.우리는 framework를사용하여

level shifter회로를설계했으며실험결과는프레임워크가새로운 level shifter회로

토폴로지를생성하고자동으로최적화된설계가인간전문가가설계한선행기술보

다 2.8-5.3배더낮은 PDP를달성한다는것을보여줍니다.

주요어:회로설계자동화,딥러닝,유전알고리즘,레벨시프터,강화학습.

학번: 2019-21653

57

	Abstract
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	1 Introduction
	2 Related work
	2.1 Genetic Algorithm
	2.2 NeuroEvolution of Augmenting Topologies (NEAT)
	2.3 Reinforcement Learning (RL)
	2.4 DDPG, D4PG, and PPO
	2.5 Level Shifter

	3 Proposed circuit design framework
	3.1 Topology Generator
	3.2 Circuit Optimizer

	4 Experiment Result
	4.1 Level Shifter Design
	4.2 Topology Generation
	4.3 Circuit Optimization
	4.4 Test Chip Fabrication
	4.5 Applicability of Topology Generator

	5 Conclusion
	Abstract (In Korean)

<startpage>11
Abstract i
Contents ii
List of Tables iv
List of Figures v
List of Algorithms vi
1 Introduction 1
2 Related work 6
 2.1 Genetic Algorithm 6
 2.2 NeuroEvolution of Augmenting Topologies (NEAT) 7
 2.3 Reinforcement Learning (RL) 10
 2.4 DDPG, D4PG, and PPO 12
 2.5 Level Shifter 14
3 Proposed circuit design framework 17
 3.1 Topology Generator 17
 3.2 Circuit Optimizer 25
4 Experiment Result 32
 4.1 Level Shifter Design 32
 4.2 Topology Generation 34
 4.3 Circuit Optimization 36
 4.4 Test Chip Fabrication 42
 4.5 Applicability of Topology Generator 47
5 Conclusion 50
Abstract (In Korean) 57
</body>

