

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Fast and Lightweight Path Guiding

Algorithm on GPU

GPU 상에서의 빠르고 가벼운 Path Guiding 알고리즘

BY

Juhyeon Kim

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

M.S. THESIS

Fast and Lightweight Path Guiding

Algorithm on GPU

GPU 상에서의 빠르고 가벼운 Path Guiding 알고리즘

BY

Juhyeon Kim

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Fast and Lightweight Path Guiding Algorithm on

GPU

GPU 상에서의 빠르고 가벼운 Path Guiding 알고리즘

지도교수 Young Min Kim

이 논문을 공학석사 학위논문으로 제출함

2022 년 2 월

서울대학교 대학원

전기 정보 공학부

Juhyeon Kim

Juhyeon Kim의 공학석사 학위논문을 인준함

2022 년 2 월

위 원 장 (서명)

부위원장 (서명)

위 원 (서명)

IV

Abstract

We propose a simple, yet practical path guiding algorithm that runs on GPU.

Path guiding renders photo-realistic images by simulating the iterative bounces

of rays, which are sampled from the radiance distribution. The radiance dis-

tribution is often learned by serially updating the hierarchical data structure

to represent complex scene geometry, which is not easily implemented with

GPU. In contrast, we employ a regular data structure and allow fast updates

by processing a significant number of rays with GPU. We further increase the

efficiency of radiance learning by employing SARSA [22] used in reinforcement

learning. SARSA does not include aggregation of incident radiance from all di-

rections nor storing all of the previous paths. The learned distribution is then

importance-sampled with an optimized rejection sampling, which adapts the

current surface normal to reflect finer geometry than the grid resolution. All of

the algorithms have been implemented on GPU using megakernal architecture

with NVIDIA OptiX [19]. Through numerous experiments on complex scenes,

we demonstrate that our proposed path guiding algorithm works efficiently on

GPU, drastically reducing the number of wasted paths.

Keywords: Path Guiding, Reinforcement Learning, Ray Tracing

Student Number: 2019-27633

i

Contents

Abstract i

Chapter 1 Introduction 1

Chapter 2 Background and Related Works 4

2.1 Ray Tracing on GPU . 4

2.2 Path Guiding . 5

2.3 Reinforcement Learning and Light Transport 6

Chapter 3 Problem Setting and Overview 7

Chapter 4 Fast and Lightweight Radiance Learning 10

4.1 Analogy between the Rendering Equation and Reinforcement

Learning . 10

4.2 Fast and Lightweight Radiance Learning with SARSA 12

Chapter 5 Efficient Importance Sampling from Learned Radi-

ance 16

5.1 Importance Sampling on Hemispherical Domain 16

ii

5.2 Fast and Efficient Importance Sampling with Optimized Rejec-

tion Sampling . 18

5.3 Normalizing Term Calculation with Memoization 20

Chapter 6 Experiments and Results 22

6.1 GPU-based Path Guiding with a Regular Grid 23

6.2 Comparison for Radiance Learning Methods 25

6.3 Comparison for Radiance Sampling Methods 27

Chapter 7 Conclusion 35

Appendix A Additional Experimental Results 36

A.1 Comparison for Spatial Directional Resolution 36

A.2 Equal SPP Comparison . 36

Appendix B Pseudocode for the Algorithm 39

초록 46

Acknowledgements 47

iii

List of Figures

Figure 1.1 The idea of path guiding. Sampling according to BRDF

or direct illumination (blue lines) makes it fails to reach

the light source. We have to guide the path to follow the

red colored path in order to reach the light source. . . . 2

Figure 3.1 The overall flow of our proposed method. We store in-

cident radiance Li(x, ω) in GPU-friendly regular data

structure. We process rays and efficiently update Li(x, ω)

with SARSA, while, from Li(x, ω), we quickly sample

valid rays to render the scene with rejection sampling. . 9

Figure 4.1 Difference between three updating method (a) expected-

SARSA, (b) Monte Carlo and (c) SARSA in standard

RL and path tracing. 15

Figure 5.1 The hemispherical domain sampling removes probability

of sampling from invalid hemisphere. 17

Figure 5.2 Rejection rate alleviation with mixing uniform PDF. . . 20

iv

Figure 6.1 The learned radiance map at the position indicated as a

red dot in the scene on the left. MAE and required time

per sample (ms) are showed. We increased directional

grid resolution to emphasize the difference. 27

Figure 6.2 Metropolis sampling causes visual artifact. 30

Figure 6.3 Numerical analysis on various aspects of rejection sam-

pling with mixed distribution. (a) The light hit rate in-

creases as number of iteration increases, or the radiance

distribution is learned. (b) The error in the rendered

image changes as the mixture ratio of two distributions

changes for the rejection sampling. SARSA has the min-

imal error when using the correct ϵ. (c) The trade-off

between the hit rate and the number of samples. The

hit rate is high with small ϵ while the number of valid

samples might decreases. 31

Figure 6.4 Qualitative result for equal time comparison. Each col-

umn refers to standard path tracer with BRDF sam-

pling, our proposed method, our proposed method with-

out rejection optimization, our proposed method with-

out SARSA (expected-SARSA) was used instead as [2])

and quadtree based sampling [14] with MC learning. . . 32

Figure 6.5 Continue of Figure 6.4. 33

Figure 6.6 Continue of Figure 6.4. 34

v

List of Tables

Table 4.1 Analogy between RL (Eq. 4.2) and rendering equation

(Eq. 4.1) . 11

Table 6.1 Equal time comparison for several methods. BRDF-based

method samples the ray according to BRDF and does not

consider the radiance distribution, and quadtree-based

method is our implementation of [14] on GPU. We also

show several variations of path guiding using our proposed

regular grid structure. ‘Ours without Rej+’ samples the

distribution without rejection optimization. ‘Ours with-

out SARSA’ utilizes expected-SARSA for radiance learn-

ing [2]. 24

Table 6.2 Equal time comparison for different learning and sampling

method discussed in Chapter 4 and Chapter 5. Metropolis

sampling is skipped since it turns out to be unstable due

to racing condition. 28

Table A.1 Comparison for different spatial directional resolutions. S

means spatial and D means directional in the table. . . . 37

vi

Table A.2 Comparison for equal spp(1024) budget. For BRDFmethod

and quadtree method (MC), error is 0.0645 and 0.0522 each. 38

vii

Chapter 1

Introduction

Path tracing is a Monte Carlo method in the computer graphics field that faith-

fully simulates light transport to synthesize a photo-realistic image. Basically,

path tracing synthesizes an image by estimating the rendering equation [9]

(Equation 3.1) with Monte Carlo integration that simulates the light transport.

Given limited resources, how we sample the light transport path significantly

affects the quality of the result image. Path guiding focuses on efficiently sam-

pling the ray to reduce the variance of estimates during the Monte Carlo inte-

gration. The idea is based on importance sampling, where the path with higher

contribution to the estimation is sampled more frequently.

The goal in path guiding is to iteratively (i) learn high-energy light paths

and (ii) efficiently sample according to the learned distribution. Unlike infor-

mation known before rendering such as BRDF or the light source that does not

consider the complex interplay of geometry (Figure 1.1), path guiding learns

the radiance distributions embracing the sophisticated geometry and resulting

indirect illumination for each setting.

1

Figure 1.1 The idea of path guiding. Sampling according to BRDF or direct

illumination (blue lines) makes it fails to reach the light source. We have to

guide the path to follow the red colored path in order to reach the light source.

Although a considerable amount of research has been conducted on path

guiding [8, 7, 24, 14], most of them are implemented on the CPU and the

GPU case has been rarely studied except a few cases [4]. With the emergence

of GPU ray tracing libraries such as NVIDIA OptiX [19], more commercial

ray tracing programs will shift to GPU-based versions to take advantage of

massively parallel processing. Nevertheless, it is not straightforward to apply

path guiding on GPU and even has not been considered in most of the previous

works.

In this thesis, we propose a fast and lightweight path guiding algorithm that

can be incorporated into the existing GPU path tracing pipeline. We adopt a

GPU-friendly data structure that is regular in both spatial and directional do-

mains and store the radiance distribution from previous samples. In order to

achieve (i), we exploit knowledge from reinforcement learning (RL). The out-

going radiance can be represented as the weighted sum of incoming radiance,

whose online estimation is identified to be similar to the Q value learning in

standard RL [2]. Inspired by RL techniques, we propose to use a light algorithm

2

based on SARSA, which does not require accumulated sum, instead of expected-

SARSA [22] that was originally proposed in [2]. As a result, we can achieve fast

on-line learning of the radiance distribution in GPU. Meanwhile, regarding (ii),

we propose a fast importance sampling with rejection sampling using only half of

the directional distribution that overlaps with the normal-oriented hemisphere.

A näıve implementation of rejection sampling on the locally-adaptive hemi-

sphere can increase the time complexity as many samples can be rejected and

we need to calculate the adaptive normalization factor. The ratio of rejection

can be controlled by mixing the sampling distribution with the uniform distri-

bution, and the online normalization can be accelerated with memoization. The

sampling algorithm can be efficiently implemented under a GPU environment.

To sum up, the major contributions of the thesis could be listed as follows.

• We propose a path guiding algorithm that employs regular spatial-directional

data structure and light-weight computation such that we can highly uti-

lize GPU and accelerate the entire process.

• Inspired from the analogy between RL and light transport [2], we intro-

duce a lightweight RL algorithm (SARSA) that can efficiently update

radiance without aggregating all previous samples.

• We suggest a fast importance sampling using the rejection sampling method

that adapts the learned directional distribution to the local geometry with

an optimized mixture distribution.

We implement the data structure and sampling algorithm on GPU and demon-

strate that the proposed method can accelerate the path-guiding algorithm in

various scenes.

3

Chapter 2

Background and Related Works

2.1 Ray Tracing on GPU

The recent advance of GPU technology has enabled ray tracing to be imple-

mented in the GPU environment. The major difference between CPU and GPU

environments is the number of concurrent threads. Unlike CPU which only al-

lows a handful of threads, GPU allows thousands of threads to run simultane-

ously with SIMT (Single Instruction Multiple Threads) execution models. The

algorithm must be structured to allow thousands of threads to concurrently

operate, read/write memory, and perform instructions, with careful memory

management.

NVIDIA’s OptiX [19] is one of the first user-programmable GPU ray tracing

engines that fully exploits the aforementioned nature of GPU. It is implemented

in a single megakernel architecture that encompasses all components for ray

tracing - ray generation, ray intersection, and material codes. [12] pointed out

that megakernel suffers from divergence issue under SIMT execution, and pro-

4

posed wavefront-based rendering that propagates a large set of rays together us-

ing large memory. Each approach has advantages and disadvantages, but recent

GPU architecture is designed highly optimized for megakernel [18]. Therefore,

we decided to use megakernel for our work, but we also designed it to work as

efficiently as possible on wavefront architectures.

2.2 Path Guiding

Path guiding aims to learn indirect radiance and utilize it for efficient impor-

tance sampling. Earlier works proposed different data structures to store the

directional distribution on the surface points such as photon map [8], rasterized

5D tree [11] or hemispherical particle footprints [7]. However, these works pre-

calculate the radiance offline which is approximated from a limited number of

initial particles. Also, it is not known how many samples need to be processed

for the approximation to converge to a decent distribution.

To overcome the limitation of offline path guiding, recent works proposed

to update the distribution online while performing the path tracing. Several

works [6, 23, 24] proposed to represent the sampling distribution using Gaus-

sian Mixture Model (GMM) and used EM algorithm to mix the offline and

online learning. The online distribution can also be efficiently updated using a

hierarchical data structure. Müller et al. [14] proposed using the binary tree for

the spatial distribution and quadtree for the directional distribution (SD-tree).

The algorithm can be further optimized to consider the stochastic behavior

of the ray samples [13, 20] or use the linear cosine transform [3] for product

importance sampling.

All of the previous path guiding algorithms with online updates adaptively

store the distribution, and the ray tracing has to be processed in the CPU.

5

The radiance distribution can also be stored and sampled using a neural net-

work [16, 15], where the neural network is implemented in GPU but the ray

tracing is left to CPU. Our algorithm is one of the first path-guiding frame-

works to run the light transport in parallel using GPU with online updates of

the radiance distribution. Note that Dittebrandt et al. [4] recently proposed

real-time GPU path guiding based on simplified SD-tree. They focused on the

real-time performance using only one sample per pixel and ignoring multiple

bounces of paths, and the quality of rendered images is inevitably lower than

what we are targeting.

2.3 Reinforcement Learning and Light Transport

Another interesting line of works [2, 10] observed that the rendering equation

and expected-SARSA [21], a well-known variation of Q-learning, have structural

similarity. The equation for the online updates of the value function in reinforce-

ment learning resembles that for the online radiance updates, which provided

the theoretical inspiration to our work. However, expected-SARSA requires

summing over all possible actions which is computationally heavy. Also, their

proposed method requires sequential updates and cannot be directly applied to

concurrently run in a GPU.

6

Chapter 3

Problem Setting and Overview

The rendering equation [9] describes the outgoing radiance Lo(x, ωo) from point

x toward outgoing direction ωo as

Lo(x, ωo) = Le(x, ωo) +

∫
Ω
Li(x, ωi)fr(x, ωo, ωi)(n · ωi)dωi. (3.1)

The first term Le(x, ωo) is the emitting radiance from the location x in the direc-

tion of ωo and the second term aggregates the reflection of incoming radiance.

Specifically, the incident radiance Li(x, ωi) from the direction ωi is attenuated

by n · ωi, the cosine angle between the surface normal and the incident angle.

The proportion reflected into the outgoing direction ωo is defined with the bidi-

rectional reflectance distribution function (BRDF) fr(x, ωo, ωi). The product of

the three terms Li, fr, and (n·ωi) is integrated over all of the incoming direction

in normal-oriented hemisphere Ω.

Path tracing evaluates the above rendering equation using Monte Carlo

7

integration with N samples

⟨Lo(x, ωo)⟩ = Le(x, ωo) +
1

N

N∑
j=1

Li(x, ωj)fr(x, ωo, ωj)(n · ωj)

p(ωj |x, ωo)
, (3.2)

where p(ωj |x, ωo) is the sampling PDF for the incoming direction ωj given the

position x and the outgoing direction ωo. The variance of the estimator in

Equation 3.2 depends on the sampling PDF p(ωj |x, ωo). Ideally, zero-variance

could be achieved if the sampling PDF is exactly proportional to the numerator.

Out of the three terms in the numerator, BRDF fr and cosine term n ·ωj can be

easily determined but incident radiance term Li(x, ωj) remains unknown before

rendering. However, within a complex scene where the illumination condition

changes according to the local geometry, it is crucial to consider the radiance

distribution Li(x, ωj).

The incident radiance field Li(x, ω) is a function of position x and direction

ω and the distribution is represented with 5D data structure. Li(x, ω) is highly

irregular due to the interplay between the geometric configuration and light, and

needs to be approximated with samples of rays using Equation 3.2. The complex

distribution is commonly represented with a hierarchical data structure, which

is updated online as more samples are processed. The frequent update of the

adaptive data structure cannot be easily implemented with GPU.

To make the path guiding available in GPU, we adapt the framework to be

parallelizable by employing GPU-friendly regular data structure and concurrent

updates of the distribution. As illustrated in Figure 3.1, the scene is divided

into voxels, and the directions are discretized using the equal-area projection

with regular shape as proposed in [5]. We learn the radiance field and store it

in the aforementioned grid-based structure with a fast and lightweight RL algo-

rithm called SARSA to circumvent computationally heavy radiance estimation

as described in Chapter 4. We also suggest a fast rejection sampling method

8

to quickly advocate for the fine geometry within the grid cell as presented in

Chapter 5. All of the implementations are built on megakernel architecture to

fully utilize the computation capability of the modern GPU.

GPU-friendly regular grid

Update 𝐿𝑖(𝑥, 𝜔)

Sample from 𝐿𝑖(𝑥, 𝜔)

SARSA→ 𝑂 1 time

Rejection sampling → 𝑂 1/𝑐 time

※ 𝑐: acceptance rate

𝐿𝑖(𝑥, 𝜔)

𝑥

𝜔

𝑦 = ℎ(𝑥, 𝜔)

𝜔𝑖

𝑥

𝜔

Figure 3.1 The overall flow of our proposed method. We store incident radiance

Li(x, ω) in GPU-friendly regular data structure. We process rays and efficiently

update Li(x, ω) with SARSA, while, from Li(x, ω), we quickly sample valid rays

to render the scene with rejection sampling.

9

Chapter 4

Fast and Lightweight Radiance
Learning

We propose a fast and lightweight method to learn the complex distribution of

the radiance taking inspiration from the frameworks in reinforcement learning

(RL).

4.1 Analogy between the Rendering Equation and Re-

inforcement Learning

As Dahm et al. [2] had identified, rendering equation has a close relationship

with RL. Like the action-value function in RL, the rendering equation in Equa-

tion 3.1 can be written in a recursive way. If there is no participating media,

the incoming radiance Li(x, ω) is the same as the outgoing radiance Lo(y,−ω),

where y = h(x, ω) is the hitpoint when we trace the ray from x to direction ω.

Using this representation, we can rewrite the rendering equation in a recurrent

10

Table 4.1 Analogy between RL (Eq. 4.2) and rendering equation (Eq. 4.1)

Reinforcement Learning (Eq. 4.2) Rendering Equation (Eq. 4.1)

s, s′ ∈ S x, y ∈ R3

a, a′ ∈ A ω, ωi ∈ Ω

Q(s, a) Li(x, ω)

r(s, a, s′) Le(y,−ω)

Q(s′, a′) Li(y, ωi)

π(s′, a′) fr(y,−ω, ωi)(n · ωi)

form using the incident radiance Li:

Li(x, ω) = Lo(y,−ω)

= Le(y,−ω) +
∫
Ω
Li(y, ωi)fr(y,−ω, ωi)(n · ωi)dωi.

(4.1)

While coming from a different context, the recursive equation in Equa-

tion 4.1 resembles the equations in RL. Given a set of states S and a set of

actions A, an agent at state s takes an action a and transit to the next state

s′ receiving the reward r(s, a, s′). For the sake of finding the optimal policy of

actions, we often define the action-value functionQ(s, a) as an expected cumula-

tive reward, and iteratively update it. Expected-SARSA, one of the algorithms

to update the Q function, acts with the following equation:

Q(s, a)← (1− α) ·Q(s, a)

+ α ·
(
r(s, a, s′) + γ

∫
A
π(s′, a′)Q(s′, a′)da′

)
,

(4.2)

where π(s′, a′) (also known as the policy) is a probability to choose next action

a′ at the next state s′, α is a learning rate and γ is a discount factor.

Because of structural similarity between Equation 4.1 and the update target

in Equation 4.2 which is summarized in Table 4.1, learning radiance distribu-

11

tion Li(x, ω) can be achieved using expected-SARSA with γ = 1 [2]. Regarding

the integral term, [2] used stratified sampling over the hemisphere. More specif-

ically, the radiance Li(x
(m), ω(m)) at m-th iteration of length M path (m < M)

(Figure 4.1) can be updated as following

Le(x
(m+1),−ω(m))

+
2π

N

N∑
k=1

Li(x
(m+1), ωk)fr(x

(m+1),−ω(m), ωk)(n · ωk),
(4.3)

where x(m+1) = h(x(m), ω(m)). The sampling direction of the hemisphere is

equally partitioned into N stratum and ωk for each stratum is extracted by

stratified sampling with uniform probability p(ωk|x, ω) = 1/2π. This method

is computationally heavy because it includes aggregating N incident radiance

which involves the BRDF computation O(N) times.

4.2 Fast and Lightweight Radiance Learning with SARSA

We examine algorithms to update the Q function in RL that could be used in

the place of expected-SARSA for the fast and light-weight update. Basically,

in RL, prediction that estimates Q function, could be largely categorized into

three groups; dynamic programming (DP), Monte Carlo (MC), and temporal

difference (TD) methods. Figure 4.1 illustrates how the aforementioned Q value

prediction algorithms can be interpreted in radiance learning.

DP updates Q value to expected future return that is aggregated over whole

next possible actions with full-width backups. The radiance update using the

expected-SARSA in Equation 4.3 could be regarded as DP method. It involves

the exhaustive aggregation over the hemisphere as DP, also indicated in Fig-

ure 4.1(a). While DP can lead to more accurate estimation with low variance

and low bias, it is computationally heavy and considerably slower than MC or

12

TD.

MC method updates Q value to the actual return from complete episodes

without bootstrapping. When it is applied for the radiance update (Figure 4.1(b)),

one has to store all previous bounces (x(j), ω(j)) and update the radiance of the

entire sequence when the ray finally reaches the light source

M∑
j=m+1

(
Le(x

(j),−ω(j−1))

j−1∏
k=m+1

a(k)

)
, (4.4)

where a(j) is the attenuation factor which is defined as follow:

a(j) =
fr(x

(j), ω(j−1), ω(j))(n · ω(j))

p(ω(j)|x(j), ω(j−1))
. (4.5)

Having a full path to the terminate state, MC tends to have low bias. However

using distinct paths instead of bootstrapping results in high variance. Further-

more, more importantly, MC requires a large memory because we have to store

all intermediate points. It can be a serious problem when we concurrently pro-

cess a large number of rays. For example, a wavefront-based rendering typically

maintains a pool of millions of rays and storing the length M paths for all rays

would be disastrous.

TD method updates Q value to expected future return with bootstrapping.

The only appropriate variation of TD method is SARSA update

Q(s, a)← (1− α) ·Q(s, a) + α ·
(
r(s, a, s′) + γQ(s′, a′)

)
. (4.6)

Note Q-learning, the other TD method, only considers the maximum Q value

and cannot accurately estimate the integral over incident radiance [2]. The

SARSA’s update target is similar to expected-SARSA, while it only differs in

estimating future expected rewards

Le(x
(m+1),−ω(m)) + a(m+1)Li(x

(m+1), ω(m+1)). (4.7)

13

Unlike expected-SARSA, SARSA only considers the single next action,

which does not require aggregation (Figure 4.1(c)). Therefore, time complex-

ity could be reduced from O(N) to O(1) where N is a number of the possible

actions. Although MC also takes O(1) time to update a single path, it empiri-

cally turned out to take more time compared to SARSA, which may be due to

read/write overhead from the array that stores previous points. In conclusion,

we suggest to use SARSA for radiance learning because of its superiority in

speed and memory consumption compared to MC or expected-SARSA, which

is further verified in the experiments.

The update in Equation 4.7 is attenuated by α and combined with Equa-

tion 4.6, yielding the full update equation

Li(x, ω)← (1− α) · Li(x, ω) + α (Le(y,−ω) + ayLi(y, ωi)) (4.8)

where ay is the attenuation factor at (y,−ω, ωi). However such update still

suffers from the concurrency issue, and possibly yields the race condition in

GPU environment. We resolve the problem by separating the rendering iteration

into a few steps and updating Li in a batch.

14

Standard RL Path Tracing

Single path (𝑥(𝑚), 𝜔(𝑚))

Surface

Possible next directions

State, action pair

(𝑠(𝑡), 𝑎(𝑡))

Possible next actions

T Terminal state

(c
)

S
A

R
S

A

𝑥(𝑚)

𝜔(𝑚)

…𝜔(𝑚+1)

𝑥(𝑚+1) 𝑥(𝑀−1)

𝑥(𝑀)

𝑥(𝑚)

𝜔(𝑚)

𝜔(𝑚+1)

𝑥(𝑚+1)

𝑥(𝑚)

𝜔(𝑚)

𝑥(𝑚+1)

𝑠(𝑀)

𝑠(𝑡)

𝑠(𝑡+1)
𝑎(𝑡)

T T

T

𝑎(𝑡+1)

𝑠(𝑡)

𝑠(𝑡+1)
𝑎(𝑡)

T T

T

𝑎(𝑡+1)

𝑠(𝑡)

𝑠(𝑡+1)
𝑎(𝑡)

T T

T

(b
)

M
o
n
te

 C
a
rl
o

(a
)

E
x
p
e
c
te

d
-

S
A

R
S

A
Update Target : 𝑄(𝑠 𝑡 , 𝑎 𝑡) Update Target :𝐿𝑖 𝑥

(𝑚), 𝜔(𝑚)

Figure 4.1 Difference between three updating method (a) expected-SARSA, (b)

Monte Carlo and (c) SARSA in standard RL and path tracing.

15

Chapter 5

Efficient Importance Sampling
from Learned Radiance

As we update the radiance value, we concurrently run path guiding in Equa-

tion 3.2 using the estimated distribution as the sampling distribution ω ∼

p(ωi|x, ωo) ∝ Li(x, ωi)fr(x, ωo, ωi)(n · ωi) where the value of the product is ap-

proximated for each of the distcretized angle. Note that the distribution jointly

considers the radiance, BRDF, and the cosine term such that we can effectively

perform product important sampling. The ray samples are quickly processed

in GPU with an efficient hemisphere sampling and memoization technique to

substitute computing the marginalization of the online PDF.

5.1 Importance Sampling on Hemispherical Domain

The 5D radiance field Li(x, ω) is tabulated as a coarse spatial grid, and within

each 3D cell, the 2D directional radiance distribution is stored in a spherical

domain as shown in Figure 5.1. The direction sampling methods in path guiding

16

𝑛

𝑛

𝜔normal-oriented
hemisphere

Invalid regions are excluded

Radiance stored in
spherical domain

Sample 𝜔

Figure 5.1 The hemispherical domain sampling removes probability of sampling

from invalid hemisphere.

can either consider the entire sphere or only a hemisphere that aligns with the

surface normal [2, 24]. While the hemisphere distribution avoids sampling the

invalid directions that face inside the surface, the individual spatial grid cells

that contain different normal directions have to be in fine resolution such that

correctly reflect the complex scene geometry. The hemisphere domain requires

a prohibitive amount of memory in complex scenes, for example, human hair or

tree leaves as demonstrated by [14]. In contrast, our approach considers the full

spherical directions and does not need to correctly represent the surface normal

directions. It does not have the memory requirement as hemisphere distribution

and can be implemented with much lower memory in GPU even in complicated

scenes. However, since sampling in spherical domain is not normal-sensitive, it

is likely that many invalid samples that face inside the surface are produced.

We propose a hybrid approach to efficiently sample the distribution con-

sidering the local geometry. Specifically, we find the intersection between the

stored spherical distribution and the hemisphere that aligns with the normal

17

direction of the current surface point, and sample only from the intersection

distribution as illustrated in Figure 5.1. While our GPU-friendly grid structure

may suffer from lower directional resolution than the quadtree-based implemen-

tation [14], our regularity can quickly adapt to finer geometry within the cell

and therefore efficiently utilized to product importance sampling. The sampled

distribution p(ω) changes according to the normal direction of the hitpoint and

minimizes wasted samples.

5.2 Fast and Efficient Importance Sampling with Op-

timized Rejection Sampling

We propose to perform importance sampling from learned radiance with opti-

mized rejection sampling. In fact, the evolving distribution p(ω) can be sampled

in three possible ways including our proposed method. We will review each sam-

pling strategy and discuss its advantage and disadvantage.

Inversion sampling The most intuitive way is inversion sampling method,

which samples from the cumulative density function (CDF). For a static distri-

bution, the CDF can be pre-computed and the inverse sampling can be executed

in O(logN) with a binary search. However, we are sampling from the intersec-

tion of the normal-oriented hemisphere and the spherical distribution, and we

have to dynamically construct the CDF for each direction which requires O(N)

time complexity.

Rejection sampling Another possible way is rejection sampling, which is also

known as the dart-throwing approach. Rejection sampling first produces sample

from other easy-to-sample PDF u(ω) such that cp(ω) < u(ω) for some scalar

value c. Then, it probabilistically accepts the sample only if η < cp(ω)/u(ω)

for a uniform random variable η. If u is a uniform distribution and c is set to

18

the tightest value (1/pmax), then c becomes the same as the acceptance rate

which represents the relative area between the two distributions, as illustrated

in Figure 5.2, left. High c implies less rejection. In our setting, we use the

uniform distribution u(ω) whose domain is the normal-oriented hemisphere.

One possible drawback of the rejection sampling is rejecting too many sam-

ples if there is a large discrepancy between the distribution u(ω) for the initial

sampling and the true distribution p(ω) used for rejection. For example, if the

sampling distribution is concentrated at a narrow range of ω, then most of the

uniform samples can be rejected, hurting the overall performance. The speed of

rejection sampling can be improved with mixed distribution

psampling = (1− ϵ)p+ ϵu, (5.1)

where ϵ ∈ [0, 1] is a constant value that controls the trade-off between using

the correct distribution for the importance sampling and the high rejection

rate. The effect of the mixed distribution is also illustrated in Figure 5.2. When

the sample is generated with the modified distribution in Equation 5.1, the

acceptance rate for mixed distribution would be c′ = c + (1 − c)ϵ instead of

the accept rate c of the original rejection sampling. Since only (1 − ϵ) of the

samples are extracted from p, we can expect (1− ϵ) (c+ (1− c)ϵ) is the amount

of samples extracted from p. If we know the exact c, we can solve for the optimal

ϵ by maximizing the number of effective samples with the following optimization

argmax
ϵ∈[0,1]

(1− ϵ) (c+ (1− c)ϵ) (5.2)

and the optimal ϵ is max(1−2c
2−2c , 0). Choosing the appropriate ϵ is important to

guarantee the performance of the rejection sampling, which is further evaluated

in Section 6.3.

Metropolis sampling Metropolis sampling is a kind of Monte Carlo Markov

Chain algorithm, where samples are drawn from an arbitrary mutation function

19

𝑝𝑠𝑎𝑚𝑝𝑙𝑒 = 1 − 𝜖 𝑝 + 𝜖𝑢

𝑝

Acceptance rate: 𝑐

Mix with 𝑢

Acceptance rate:

𝑐′ = 𝑐 + 𝜖(1 − 𝑐)

𝜔 10 𝜔 10

𝑝𝑚𝑎𝑥

𝑐 = =
1

𝑝𝑚𝑎𝑥

Figure 5.2 Rejection rate alleviation with mixing uniform PDF.

and then the samples are mutated with a pre-defined probability. There can be

various mutation functions, but we used simple two strategies, random and

adjacent movements with a probability of 0.1 and 0.9, respectively. However,

such sequential mutation on a random variable cannot be correctly implemented

on GPU, possibly causing race conditions that update the same random variable

simultaneously.

Although we introduced 3 possible methods for importance sampling, we

suggest using rejection sampling with our proposed optimization strategy since

inversion sampling and Metropolis sampling have disadvantages of speed and

race condition respectively.

5.3 Normalizing Term Calculation with Memoization

In our implementation, we further accelerate the pipeline on GPU with mem-

oization for the normalizing constant. Note that the rejection sampling or

Metropolis sampling does not require normalized distribution, and we sam-

20

ple from the available un-normalized distribution Li(x, ωi)fr(x, ωo, ωi)(n ·ωi) ∝

p(ωi|x, ωo). However, we need to scale the distribution so that its sum becomes

one in order to finally evaluate the Monte Carlo integration as described in

Equation 3.2, or to find the pmax for the optimized rejection sampling. The nor-

malization term changes frequently because we only consider the hemisphere

that aligns with the local surface normal instead of using the stored whole

spherical directions. To make the problem simple, we only apply guiding to

diffuse-like materials and avoid repetitive calculation with memoization. In this

case, we can store the normalizing factor N(x, ωo, n) ≃ N(x, n) at position x

with normal n by using the same data structure to store the incident radiance

field Li(x, ω). Similarly, we can store and memoize pmax which is used for mixing

distribution in rejection sampling.

21

Chapter 6

Experiments and Results

We implemented our algorithm on a GPU environment with megakernel archi-

tecture. While there are some customizable renderers available based on wave-

front architecture such as Mitsuba2 [17], there is no well-established physically-

based renderer for megakernel architecture. We wrote the path-guiding algo-

rithm with our own renderer using OptiX [19] and built several BRDFs refer-

ring to the rich material library of Mitsuba2[17]. The algorithm is transplanted

on Python environment using wrapper PyOptix for faster testing.

We tested our algorithm for 12 scenes from [1] with varying geometries,

materials, and complexity. All of the path guiding methods used unidirectional

path tracing without next event estimation (NEE) for simplicity as [14] and the

following works. The reference images were prepared using standard BRDF pro-

portional sampling with 131,072 samples per pixel (spp) and maximum depth

32 without Russian roulette. The reference image is used to evaluate the quality

of the rendered image by comparing the mean absolute error (MAE). For each

path guiding algorithm, a time budget (40 sec) or spp budget (1024) was im-

22

posed, but a time budget was mainly used for fair comparison. Maximum depth

was set to 16 and Russian roulette was set to begin after depth 8. Learning and

rendering were fused into the same pipeline in a totally online manner. Instead

of exponential growth in [14], we used the constant number of samples per iter-

ation and accumulated the distribution over the iteration. Learned distribution

was updated for new distribution at every step that single step is composed of

8 spp. We also forced to sample randomly at the first few steps like the epsilon

greedy algorithm in RL, to encourage enough exploration. Spatial and direc-

tional resolution was both set to 8, 16 respectively (83 × 162). We also tested

higher resolutions, but we found that too high resolution rather increased the

error. Note that the sampled directional grid represents the hemisphere and the

amount of stored directional domain size is twice the sampled grid representing

a sphere. The details of implementing directional grid are the same with [5].

6.1 GPU-based Path Guiding with a Regular Grid

Our path guiding algorithm using a regular grid is compared against the BRDF-

based method and path guiding using the quadtree [14] in Table 6.1 and Fig-

ure 6.4, 6.5, 6.6. Quadtree structure adaption is implemented using additional

OptiX kernel and updated per exponentially growing steps with flux threshold

0.01. We also used multiple importance sampling with BRDF with a probability

of 0.5, the same with the original paper. We set the maximum leaf node number

the same as the size of the regular grid so that the total memory used remains

unchanged. Also, as the original paper, it is set to use the MC method only to

learn radiance.

The BRDF-based method can be easily implemented on GPU and fast,

leading to process more number of samples for equal-time comparison. However,

23

Table 6.1 Equal time comparison for several methods. BRDF-based method

samples the ray according to BRDF and does not consider the radiance dis-

tribution, and quadtree-based method is our implementation of [14] on GPU.

We also show several variations of path guiding using our proposed regular grid

structure. ‘Ours without Rej+’ samples the distribution without rejection opti-

mization. ‘Ours without SARSA’ utilizes expected-SARSA for radiance learning

[2].

Scene Name BRDF Quadtree
Ours w/o

Rej+

Ours w/o

SARSA
Ours

Bathroom 0.0374 0.0358 0.0554 0.0387 0.0366

Bathroom-2 0.0345 0.0339 0.0338 0.0344 0.0288

Cornell-Box 0.0114 0.0062 0.0093 0.0098 0.0072

Cornell-Box-Hard 0.0216 0.0134 0.0182 0.0181 0.0134

Kitchen 0.0227 0.0209 0.0198 0.0216 0.0190

Living-Room 0.0092 0.0087 0.0180 0.0130 0.0116

Living-Room-2 0.0190 0.0181 0.0197 0.0189 0.0169

Living-Room-3 0.0558 0.0611 0.0767 0.0622 0.0511

Staircase 0.0144 0.0105 0.0164 0.0122 0.0094

Staircase-2 0.0146 0.0101 0.0178 0.0107 0.0092

Veach-ajar 0.0747 0.0640 0.2010 0.0772 0.0745

Veach-ajar-2 0.1233 0.1066 0.1222 0.1323 0.1029

Mean (MAE) 0.0366 0.0324 0.0507 0.0374 0.0317

Time per Sample (ms) 10.59 11.18 54.73 34.48 16.30

Samples per Pixel 4005 3774 1302 1239 2523

Invalid Sample Rate 0 0.1719 ∼ 0 ∼ 0 ∼ 0

24

the quality of the produced image does not meet that of path tracing especially

when there is complicated occlusion and inter-reflection leading to larger mean

absolute error (MAE). The quadtree update is fast enough and also gives better

results than pure BRDF sampling, but seems to suffer from invalid samples

that head down to the surface. On the other hand, our implementation of the

path guiding algorithm is normal-sensitive, thus providing nearly zero invalid

samples. It has an advantage over quadtree by product importance sampling

with GPU-friendly regular grid structure. Our method evolves to converge to

the true radiance distribution Li and sample more efficient paths as the iteration

proceeds. This can be verified by counting the number of rays that hit the

light source for each iteration as shown in Figure 6.3-(a). Compared to BRDF

sampling, our method achieves 10 ∼ 20 times higher hit rate. Furthermore,

we found that our proposed radiance learning method (SARSA) and radiance

sampling method (rejection sampling with optimization) both play a pivotal

role in performance improvement, which is further discussed in the following

sections.

6.2 Comparison for Radiance Learning Methods

In this section, we compare several radiance learning methods discussed in

Chapter 4, which are namely based on expected-SARSA, Monte Carlo and

SARSA. Table 6.2 shows SARSA is the best choice for radiance learning in

GPU, leading to the smallest noise when rendered with an equal time limit. This

is mainly due to the fast speed of SARSA. Compared to the BRDF sampling

method that does not involve any radiance learning, the computational time of

SARSA turns out to be minimal. In contrast, the increase of computation time

for expected-SARSA is nearly ×2.1, which significantly decreases the number of

25

completed samples under the equal time budget. MC is fairly fast, but slightly

slower than SARSA which may be due to accessing a record that stores previous

points.

Figure 6.1 shows an example of the learned radiance field using the three RL

methods. It is widely known in RL that SARSA tends to have higher bias, while

Monte Carlo method tends to have higher variance [22]. We can easily verify

this in Figure 6.1 that Monte Carlo method results in spotty noise. Expected-

SARSA and SARSA are known to be biased, which means they cannot generate

the correct reference image even though we the increase number of samples.

However, by comparing equal-spp results, we found out that the variance or

bias of approximated radiance field have a minimal effect on the final image,

and speed is a more important factor when time becomes the budget.

Memory consumption is also an important issue for practical path guiding in

GPU. Expected-SARSA and SARSA do not require additional memory. How-

ever, Monte Carlo method stores every intermediate point (the maximum could

be limited as 32 in [14]) which may require a considerable amount of memory.

The approximated memory usage can be calculated by (size of single data) ×

(maximum concurrent ray) × (maximum depth). In our setting, the distribu-

tion is stored in a total 12 floats for single data, 16 maximum depth, and

about 46,000 concurrent rays, indicating that Monte Carlo method causes an

additional 35 MB of stack usage. Of course, this may still be harmful for per-

formance, the more serious problem occurs when we use the wavefront-based

method that have to keep millions of rays; it would lead to significant memory

usage (1 million ∼ 768 MB). Therefore, we could conclude that our SARSA-

based update is fast, memory-efficient, while also competent in performance.

26

Expected-SARSA

Monte Carlo SARSA (Ours)

Time: 31.40

MAE: 0.0242

Time: 3.88

MAE: 0.0290

Time: 3.54

MAE:0.0276

Reference

Figure 6.1 The learned radiance map at the position indicated as a red dot in

the scene on the left. MAE and required time per sample (ms) are showed. We

increased directional grid resolution to emphasize the difference.

6.3 Comparison for Radiance Sampling Methods

In this section, we compare the radiance sampling methods covered in Chap-

ter 5, namely the inversion, rejection, and Metropolis sampling methods. The

quantitative result is in Table 6.2 and pseudocode for the implementation could

be found in Appendix B.

The simplest way is the inversion method using the stored spherical dis-

tribution without considering normal. Ignoring the local geometry, the CDF

does not change and can be calculated beforehand with a minimal overhead of

O(logN) where N is the number of directional grid bins. Despite the speed, a

significant number of samples are invalid representing rays that direct toward

the inside of the surface, resulting in degradation of the quality.

27

Table 6.2 Equal time comparison for different learning and sampling method

discussed in Chapter 4 and Chapter 5. Metropolis sampling is skipped since it

turns out to be unstable due to racing condition.

MAE
Sphere Hemisphere

Inv Inv Rej Rej+

Expected

-SARSA
0.0425 0.0474 0.0521 0.0374

MC 0.0368 0.0467 0.0524 0.0332

SARSA 0.0340 0.0434 0.0507 0.0317

Time per

Sample(ms)

Sphere Hemisphere

Inv Inv Rej Rej+

Expected

-SARSA
21.62 45.57 66.37 34.48

MC 10.94 26.09 76.61 17.67

SARSA 9.23 25.37 54.73 16.30

28

We can overcome the limitation by considering the valid hemisphere that

aligns with the surface normal. Overall, our proposed rejection-based sampling

with optimization gave the best result. The inversion method with the hemi-

sphere sampling involves calculating the normal-adaptive CDF online, which is

O(N), and it is no longer fast.

Rejection sampling can be an alternative method because theoretically the

time complexity is O(1/c) where c is the acceptance rate. With a näıve imple-

mentation, however, the rejection sampling does not improve the performance.

A significant number of samples is rejected due to the discrepancy between the

initial and the target sampling distribution. We can achieve faster sampling

by optimizing ϵ that mixes the distributions as described in Equation 5.1. The

optimized rejection sampling (indicated with post-fixed ‘+’ sign in Table 6.1

and 6.2) results in the best quality image for the equal time comparison, greatly

reducing the time. The sampling complexity of the optimized version is O(1/c′)

where c′ = c+ (1− c)ϵ is an acceptance rate for the mixed PDF as proposed in

Section 5.2.

Note that Metropolis sampling is lightweight with the time complexity of

O(1), but the race condition appears to be causing the crucial performance

degradation. Figure 6.2 shows exemplar patches with noticeable artifact.

Effect of ϵ in Equation 5.1 We further investigate the effect of mixing the

sampling distributions with different ϵ ∈ [0.0001, 1] in Figure 6.3. Figure 6.3-(b)

confirms that the performance of SARSA (TD) is better than BRDF-based sam-

pling or other RL-based algorithms such as expected-SARSA (DP) or Monte

Carlo when implemented in GPU. The optimal ϵ allows us to efficiently sample

the rays, and clearly leads to performance improvement. Figure 6.3-(c) further

scrutinize the effect of different ϵ with SARSA. With a small ϵ, we could draw

more samples proportional to radiance such that the hit rate increases, but too

29

Figure 6.2 Metropolis sampling causes visual artifact.

many samples get rejected which drastically increases time to sample and re-

duces the number of samples. As we increase ϵ, while it increases the acceptance

rate, the rejection optimization dilutes the estimated radiance distribution Li.

As a result, we can observe that the hit rate doubles without the rejection

optimization (Figure 6.3-(a)). The optimal value has to balance between the

number of samples and the hit rate, and we found the minimum MAE for ϵ

near 0.5.

Effect of memoization Another key factor that speeds up the rejection sam-

pling is memoization, which pre-calculates the normalizing factor. However, the

pre-calculated values might be inaccurate due to the recurrent updates of dis-

tribution during the Monte Carlo integration. We compared images produced

with the same number of samples using our sampling approach and compared

the MAE and the runtime. Empirically we observed that the inaccuracy is neg-

ligible while the reduction in the total calculation time is about 15%.

30

0.035

0.04

0.045

0.05

0.055

0.06

0.0001 0.001 0.01 0.1 1

M
A

E

𝜖

BRDF
expected-SARSA
Monte Carlo
SARSA (Ours)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

200

400

600

800

1000

1200

0.0001 0.001 0.01 0.1 1

H
it
 r

a
te

#
 o

f
s
a

m
p

le
s

𝜖

of samples

Hit rate

(a)

(b)

(c)

0

10

20

30

40

50

60

#
 o

f
ra

y
 h

it
 l
ig

h
t

(1
k
)

Iteration

BRDF

Ours

Ours w/o Rej+

Figure 6.3 Numerical analysis on various aspects of rejection sampling with

mixed distribution. (a) The light hit rate increases as number of iteration in-

creases, or the radiance distribution is learned. (b) The error in the rendered

image changes as the mixture ratio of two distributions changes for the rejec-

tion sampling. SARSA has the minimal error when using the correct ϵ. (c) The

trade-off between the hit rate and the number of samples. The hit rate is high

with small ϵ while the number of valid samples might decreases.

31

BRDF Quadtree
Ours w/o

rejection opt

Ours w/o

SARSA
Ours Reference

0.0374 0.0358 0.0554 0.0387 0.0366 MAE

B
AT
H
R
O
O
M

0.0345 0.0339 0.0338 0.0344 0.0288 MAE

B
AT
H
R
O
O
M
-2

0.0114 0.0062 0.0093 0.0098 0.0072 MAE

C
O
R
N
EL
L-
B
O
X

0.0216 0.0134 0.0182 0.0181 0.0134 MAE

C
O
R
N
EL
L-
B
O
X
-2

Figure 6.4 Qualitative result for equal time comparison. Each column refers to

standard path tracer with BRDF sampling, our proposed method, our proposed

method without rejection optimization, our proposed method without SARSA

(expected-SARSA) was used instead as [2]) and quadtree based sampling [14]

with MC learning.

32

BRDF Quadtree
Ours w/o

rejection opt

Ours w/o

SARSA
Ours Reference

0.0227 0.0209 0.0198 0.0216 0.0190 MAE

K
IT
C
H
EN

0.0092 0.0087 0.0180 0.0130 0.0116 MAE

LI
V
IN
G
-R

O
O
M
-1

0.0190 0.0181 0.0197 0.0189 0.0169 MAE

LI
V
IN
G
-R

O
O
M
-2

LI
V
IN
G
-R

O
O
M
-3

0.0558 0.0611 0.0767 0.0622 0.0511 MAE

Figure 6.5 Continue of Figure 6.4.

33

BRDF Quadtree
Ours w/o

rejection opt

Ours w/o

SARSA
Ours Reference

0.0144 0.0105 0.0164 0.0122 0.0094 MAE

ST
A
IR
C
A
SE

0.0146 0.0101 0.0178 0.0107 0.0092 MAE

ST
A
IR
C
A
SE
-2

0.0747 0.0640 0.2010 0.0772 0.0740 MAE

V
EA

C
H
-A

JA
R

0.1233 0.1066 0.1222 0.1323 0.1029 MAE

V
EA

C
H
-A

JA
R
2

Figure 6.6 Continue of Figure 6.4.

34

Chapter 7

Conclusion

In this work, we propose a fast and memory-efficient path guiding algorithm

in the GPU environment. We divided path guiding into two alternating tasks;

learning radiance and sampling radiance. For learning radiance, we suggest a

SARSA-based update which outperforms the expected-SARSA or Monte Carlo

method. SARSA has a low computational cost since it does not include aggrega-

tion over the next actions as expected-SARSA, but also has low memory usage

in estimation compared to the Monte Carlo method. For sampling radiance, we

only sample in the valid hemisphere from spherical distribution using rejection

sampling. Furthermore, we mixed the sampling distribution with randomness

to reduce the rejection rate and exploit memoization to avoid repeated com-

putation. All of our suggested methods have been implemented on GPU with

megakernel architecture using OptiX [19]. However, our work is designed to

also work on wavefront-based rendering which could be covered in future work.

Although we used a simple grid-shaped data structure, a more sophisticated

data structure for GPU could be investigated.

35

Appendix A

Additional Experimental Results

In this chapter, we present additional experimental results that are not dis-

cussed in the main manuscript.

A.1 Comparison for Spatial Directional Resolution

Table A.1 shows MAE for different spatial, directional resolutions. We only

tested our proposed algorithm using SARSA and optimized rejection sampling.

For faster comparison, we halve the image size, so the error value is different

from the main paper. Spatial resolution 4 and directional resolution 16 gave

the best result, we think that 4 is too small, so used 8 instead for the main

experiments.

A.2 Equal SPP Comparison

Table A.2 shows MAE for equal spp (1024) budget. For BRDF method and

quadtree method (MC), error is 0.0645 and 0.0522 each. Note that unlike the

36

Table A.1 Comparison for different spatial directional resolutions. S means spa-

tial and D means directional in the table.

S

D
32 16 8 4

32 0.0936 0.0564 0.0435 0.0466

16 0.0489 0.0380 0.0367 0.0448

8 0.0376 0.0347 0.0362 0.0443

4 0.0351 0.0344 0.0363 0.0461

equal-time budget, SARSA does not give the best result. Another thing to note

is that Rej+ gives better results than Rej even though Rej shows a higher light

hit rate. This seems because of the error in calculating the normalizing term.

Since we use stratified Monte Carlo integration to calculate the normalizing

term, if sampling radiance distribution is highly unbalanced it causes a higher

error, and mixing uniform function helps to reduce the error.

37

Table A.2 Comparison for equal spp(1024) budget. For BRDF method and

quadtree method (MC), error is 0.0645 and 0.0522 each.

MAE
Sphere Hemisphere

Inv Inv Rej Rej+

Expected

-SARSA
0.0501 0.0466 0.0531 0.0391

MC 0.0482 0.0495 0.0543 0.0380

SARSA 0.0504 0.0475 0.0551 0.0392

38

Appendix B

Pseudocode for the Algorithm

We provide pseudocode of our algorithms for the following 5 sampling methods.

• Spherical domain, inversion sampling

• Hemispherical domain, inversion sampling

• Hemispherical domain, rejection sampling

• Hemispherical domain, rejection sampling with optimization

• Hemispherical domain, Metropolis sampling

Each algorithm can be found in Algorithm 1 to 5. Here, η is a uniform random

variable in [0, 1], N(x, ω, n) is a normalizing term,
∫
Ω Li(x, ωi)fr(x, ω, ωi)(n ·

ωi)dωi and pmax(x, ω, n) is maxωi Li(x, ωi)fr(x, ω, ωi)(n · ωi). N(x, ω, n) is cal-

culated with stratified Monte-Carlo integration and pmax(x, ω, n) is found with

linear search. For diffuse material, these values can be memoized with 5D ta-

ble since N(x, ω, n) = N(x, n) and pmax(x, ω, n) = pmax(x, n). M(x, ω, n) in

39

Metropolis sampling (Algorithm 5) represents previous state corresponding to

given conditions x, ω, n. Again, for diffuse material, we can remove ω depen-

dency, so M(x, ω, n) could be stored similar to N(x, ω, n). Also, note that for

spherical domain sampling, multiple importance sampling (balance heuristics)

is used with a probability of 0.5 to sample from pure BRDF without considering

radiance as [14] did for quadtree sampling.

Algorithm 1 Inversion sampling on spherical domain

1: procedure InversionSampleSphere(x, ω)

2: r ← η

3: return BinarySearch(CDF (x), r)

Algorithm 2 Inversion sampling on hemispherical domain

1: procedure InversionSample(x, n, ω)

2: r ← η

3: v ← 0

4: for k = 1, 2, . . . , N do

5: p← Li(x, ωk)fr(x, ω, ωk)(n · ωk)/N(x, ω, n)

6: v ← v + p

7: if r ≤ v then

8: return ωk, p

40

Algorithm 3 Rejection sampling

1: procedure RejectSample(x, n, ω)

2: while True do

3: ωi ← UniformHemisphere(n)

4: p← Li(x, ωi)fr(x, ω, ωi)(n · ωi)/N(x, ω, n)

5: if η < p/pmax(x, ω, n) then

6: break

7: return ωi, p

Algorithm 4 Rejection sampling with speed optimization

1: procedure RejectSampleOpt(x, n, ω)

2: c← 1/pmax(x, ω, n)

3: ϵ← max(1−2c
2−2c , 0)

4: pmax ← (1− ϵ)pmax(x, ω, n) + ϵu

5: while True do

6: ωi ← UniformHemisphere(n)

7: p← Li(x, ωi)fr(x, ω, ωi)(n · ωi)/N(x, ω, n)

8: p← (1− ϵ)p+ ϵu

9: if η < p/pmax then

10: break

11: return ωi, p

41

Algorithm 5 Metropolis sampling

1: procedure MetropolisSample(x, n, ω)

2: m←M(x, ω, n)

3: m′ ←Mutate(m)

4: p← Li(x,m)fr(x, ω,m)(n ·m)/N(x,m, n)

5: p′ ← Li(x,m
′)fr(x, ω,m

′)(n ·m′)/N(x,m′, n)

6: a← min(1, p
′

p)

7: if η < a then

8: M(x, ω, n),m← m′

9: p← p′

10: return m, p

42

Bibliography

[1] Benedikt Bitterli. Rendering resources. https://benedikt-bitterli.me/resources/.

2016.

[2] Ken Dahm and Alexander Keller. “Learning light transport the reinforced

way”. In: ACM SIGGRAPH 2017 Talks. 2017, pp. 1–2.

[3] Stavros Diolatzis et al. “Practical Product Path Guiding Using Linearly

Transformed Cosines”. In: Computer Graphics Forum. Vol. 39. 4. Wiley

Online Library. 2020, pp. 23–33.

[4] Addis Dittebrandt, Johannes Hanika, and Carsten Dachsbacher. “Tem-

poral Sample Reuse for Next Event Estimation and Path Guiding for

Real-Time Path Tracing”. In: (2020).

[5] Gene Greger et al. “The irradiance volume”. In: IEEE Computer Graphics

and Applications 18.2 (1998), pp. 32–43.

[6] Sebastian Herholz et al. “Product importance sampling for light transport

path guiding”. In: Computer Graphics Forum. Vol. 35. 4. Wiley Online

Library. 2016, pp. 67–77.

43

[7] Heinrich Hey and Werner Purgathofer. “Importance sampling with hemi-

spherical particle footprints”. In: Proceedings of the 18th spring conference

on Computer graphics. 2002, pp. 107–114.

[8] Henrik Wann Jensen. “Importance driven path tracing using the photon

map”. In: Eurographics Workshop on Rendering Techniques. Springer.

1995, pp. 326–335.

[9] James T Kajiya. “The rendering equation”. In: Proceedings of the 13th

annual conference on Computer graphics and interactive techniques. 1986,

pp. 143–150.

[10] Alexander Keller and Ken Dahm. Integral Equations and Machine Learn-

ing. 2019. arXiv: 1712.06115 [cs.LG].

[11] Eric P Lafortune and Yves D Willems. “A 5D tree to reduce the variance

of Monte Carlo ray tracing”. In: Eurographics Workshop on Rendering

Techniques. Springer. 1995, pp. 11–20.

[12] Samuli Laine, Tero Karras, and Timo Aila. “Megakernels considered harm-

ful: Wavefront path tracing on GPUs”. In: Proceedings of the 5th High-

Performance Graphics Conference. 2013, pp. 137–143.

[13] Thomas Müller. ““Practical Path Guiding” in Production”. In: ACM

SIGGRAPH Courses: Path Guiding in Production, Chapter 10. Los Ange-

les, California: ACM, 2019, 18:35–18:48. doi: 10.1145/3305366.3328091.

[14] Thomas Müller, Markus Gross, and Jan Novák. “Practical path guiding

for efficient light-transport simulation”. In: Computer Graphics Forum.

Vol. 36. 4. Wiley Online Library. 2017, pp. 91–100.

[15] Thomas Müller et al. “Neural control variates”. In: ACM Transactions

on Graphics (TOG) 39.6 (2020), pp. 1–19.

44

https://arxiv.org/abs/1712.06115
https://doi.org/10.1145/3305366.3328091

[16] Thomas Müller et al. “Neural importance sampling”. In: ACM Transac-

tions on Graphics (TOG) 38.5 (2019), pp. 1–19.

[17] Merlin Nimier-David et al. “Mitsuba 2: A retargetable forward and inverse

renderer”. In: ACM Transactions on Graphics (TOG) 38.6 (2019), pp. 1–

17.

[18] Merlin Nimier-David et al. “Radiative backpropagation: an adjoint method

for lightning-fast differentiable rendering”. In: ACM Transactions on Graph-

ics (TOG) 39.4 (2020), pp. 146–1.

[19] Steven G Parker et al. “Optix: a general purpose ray tracing engine”. In:

Acm transactions on graphics (tog) 29.4 (2010), pp. 1–13.

[20] Alexander Rath et al. “Variance-aware path guiding”. In: ACM Transac-

tions on Graphics (TOG) 39.4 (2020), pp. 151–1.

[21] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement

learning. Vol. 135. MIT press Cambridge, 1998.

[22] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-

troduction. MIT press, 2018.

[23] Jǐŕı Vorba and Jaroslav Křivánek. “Adjoint-driven Russian roulette and

splitting in light transport simulation”. In: ACM Transactions on Graph-

ics (TOG) 35.4 (2016), pp. 1–11.

[24] Jǐŕı Vorba et al. “On-line learning of parametric mixture models for light

transport simulation”. In: ACM Transactions on Graphics (TOG) 33.4

(2014), pp. 1–11.

45

초록

본 연구는 GPU 상에서 작동하는 간단하지만 효과적인 path guiding 알고리즘을

제안한다. Path guiding은 path tracing의 노이즈를 줄이기 위해 제안된 기법으

로 샘플링 과정에서 복사 휘도(radiance)를 배우고 이를 이용해 중요도 샘플링

(importance sampling)을 수행한다. 복사 휘도의 복잡한 분포를 배우기 위해 이전

의 논문들에서는 복잡한 재귀적 데이터 구조를 제안하고 이를 순차적으로 업데이

트 하였지만 이는 CPU상에서의 path tracing만을 가정한 것으로 GPU상에서는

쉽게구현하기어려우며효과적으로작동하지않는다.본논문에서는 GPU친화적

인 간단한 그리드 형태의 데이터를 사용해 path guiding 알고리즘을 진행하였다.

또한 path guiding의 두 가지 목표-(1) 복사 휘도 학습과 (2) 학습된 복사 휘도

분포를 이용한 중요도 샘플링-를 GPU 상에서 효과적으로 구현하기 위해 다음과

같은 방법을 제시한다. 우선 복사 휘도 학습의 경우, 강화학습과 복사 휘도 학습

의 구조적 유사성을 밝힌 이전 연구 [2]를 확장하여 가볍고 빠른 SARSA [22]를

이용한 학습 방법을 제안하였다. 학습된 복사 휘도는 공간-방향을 그리드 형태로

분할한 GPU상의 데이터 구조에 저장된다. 학습된 복사 휘도를 사용한 중요도 샘

플링의 경우 법선 벡터 방향에 유효하지 않은 샘플들은 제외한 뒤, 리젝션 샘플링

(rejection sampling)을 이용해 중요도 샘플링(importance sampling)을 수행하였

다. 모든 알고리즘은 NVIDIA OptiX [19]를 사용해 GPU상에서 megakernel 구조

로 구현되었다. 복잡한 구조의 씬 데이터에 대해 여러번 실험을 수행하였으며 본

연구에서 제안한 방법의 우수성을 확인하였다.

주요어: Path Guiding, 강화학습, 광선 추적법

학번: 2019-27633

46

Acknowledgements

연구 및 논문 작성 과정에서 많은 도움을 주신 김영민 교수님께 감사드린다. 또한

3D vision 연구실 학생들에게도 감사를 표하고 싶다.

47

	Abstract
	Chapter 1 Introduction
	Chapter 2 Background and Related Works
	2.1 Ray Tracing on GPU
	2.2 Path Guiding
	2.3 Reinforcement Learning and Light Transport

	Chapter 3 Problem Setting and Overview
	Chapter 4 Fast and Lightweight Radiance Learning
	4.1 Analogy between the Rendering Equation and Reinforcement Learning
	4.2 Fast and Lightweight Radiance Learning with SARSA

	Chapter 5 Efficient Importance Sampling from Learned Radiance
	5.1 Importance Sampling on Hemispherical Domain
	5.2 Fast and Efficient Importance Sampling with Optimized Rejection Sampling
	5.3 Normalizing Term Calculation with Memoization

	Chapter 6 Experiments and Results
	6.1 GPU-based Path Guiding with a Regular Grid
	6.2 Comparison for Radiance Learning Methods
	6.3 Comparison for Radiance Sampling Methods

	Chapter 7 Conclusion
	Appendix A Additional Experimental Results
	A.1 Comparison for Spatial Directional Resolution
	A.2 Equal SPP Comparison

	Appendix B Pseudocode for the Algorithm
	초록
	Acknowledgements

<startpage>13
Abstract i
Chapter 1 Introduction 1
Chapter 2 Background and Related Works 4
 2.1 Ray Tracing on GPU 4
 2.2 Path Guiding 5
 2.3 Reinforcement Learning and Light Transport 6
Chapter 3 Problem Setting and Overview 7
Chapter 4 Fast and Lightweight Radiance Learning 10
 4.1 Analogy between the Rendering Equation and Reinforcement Learning 10
 4.2 Fast and Lightweight Radiance Learning with SARSA 12
Chapter 5 Efficient Importance Sampling from Learned Radiance 16
 5.1 Importance Sampling on Hemispherical Domain 16
 5.2 Fast and Efficient Importance Sampling with Optimized Rejection Sampling 18
 5.3 Normalizing Term Calculation with Memoization 20
Chapter 6 Experiments and Results 22
 6.1 GPU-based Path Guiding with a Regular Grid 23
 6.2 Comparison for Radiance Learning Methods 25
 6.3 Comparison for Radiance Sampling Methods 27
Chapter 7 Conclusion 35
Appendix A Additional Experimental Results 36
 A.1 Comparison for Spatial Directional Resolution 36
 A.2 Equal SPP Comparison 36
Appendix B Pseudocode for the Algorithm 39
초록 46
Acknowledgements 47
</body>

