creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86t AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Metok ELIChH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aeles 212 LWS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Fast and Lightweight Path Guiding
Algorithm on GPU

GPU Ao 4] w2 7 7}H-& Path Guiding &1 2]&

BY

Juhyeon Kim

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

M.S. THESIS

Fast and Lightweight Path Guiding
Algorithm on GPU

GPU Ao 4] w2 7 7}H-& Path Guiding &1 2]&

BY

Juhyeon Kim

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

2 A e

SECRIL WATIOMAL LIMINVERSTY

Fast and Lightweight Path Guiding Algorithm on
GPU

GPU Aof| A 9] w217 71H-& Path Guiding &i12]&

Z| 14 Young Min Kim

ol =Ee T SRR AlES

2022 & 24

AMatistyl dishd
B2 AR B

Juhyeon Kim

Juhyeon Kim2] FsHAA} Q=22 ©

=
AL

uc;l'

2022 & 2 ¥

9493 Gik:)
ey (A3)
s (41%)

7} 5 1 y
v AMETH

Abstract

We propose a simple, yet practical path guiding algorithm that runs on GPU.
Path guiding renders photo-realistic images by simulating the iterative bounces
of rays, which are sampled from the radiance distribution. The radiance dis-
tribution is often learned by serially updating the hierarchical data structure
to represent complex scene geometry, which is not easily implemented with
GPU. In contrast, we employ a regular data structure and allow fast updates
by processing a significant number of rays with GPU. We further increase the
efficiency of radiance learning by employing SARSA [22] used in reinforcement
learning. SARSA does not include aggregation of incident radiance from all di-
rections nor storing all of the previous paths. The learned distribution is then
importance-sampled with an optimized rejection sampling, which adapts the
current surface normal to reflect finer geometry than the grid resolution. All of
the algorithms have been implemented on GPU using megakernal architecture
with NVIDIA OptiX [19]. Through numerous experiments on complex scenes,
we demonstrate that our proposed path guiding algorithm works efficiently on

GPU, drastically reducing the number of wasted paths.

Keywords: Path Guiding, Reinforcement Learning, Ray Tracing
Student Number: 2019-27633

Contents

[Abstract] i
|[Chapter 1 Introduction| 1
|[Chapter 2 Background and Related Works| 4
2.1 Ray Tracingon GPU|. 4
2.2 Path Guidingl oo 5
2.3 Reinforcement Learning and Light Transport| 6
|[Chapter 3 Problem Setting and Overview| 7
|[Chapter 4 Fast and Lightweight Radiance Learning] 10
4.1 Analogy between the Rendering Equation and Reinforcement |
| Learning|. L 10
4.2 Fast and Lightweight Radiance Learning with SARSA|[. 12
[Chapter 5 Efficient Importance Sampling from Learned Radi- |
[ancel 16
5.1 Importance Sampling on Hemispherical Domain|. 16

o) &

T H ©
1 ’H = "]]

1.2 Fast and Efficient Importance Sampling with Optimized Rejec- |

| tion Sampling|o Lo 18
5.3 Normalizing Term Calculation with Memoization| 20
|[Chapter 6 Experiments and Results| 22
6.1 GPU-based Path Guiding with a Regular Grid| 23
6.2 Comparison for Radiance Learning Methods|. 25
6.3 Comparison for Radiance Sampling Methods| 27
|[Chapter 7 Conclusion| 35
|Appendix A Additional Experimental Results| 36
[A.1 Comparison for Spatial Directional Resolution|. 36
[A.2 Equal SPP Comparison| 36
[Appendix B Pseudocode for the Algorithm| 39
46
|Acknowledgements| 47

i # ftf] 2- t-_-] ':’1 Tl

List of Figures

|[Figure 1.1 The idea of path guiding. Sampling according to BRDF |

| or direct illumination (blue lines) makes it fails to reach |

| the light source. We have to guide the path to follow the |

| red colored path in order to reach the light source| . .. 2

|[Figure 3.1 The overall flow of our proposed method. We store in- |

| cident radiance L;(z,w) in GPU-friendly regular data |

| structure. We process rays and efficiently update L;(z,w) |

[with SARSA, while, from L;(z,w), we quickly sample |

| valid rays to render the scene with rejection sampling. | . 9

[Figure 4.1 Difference between three updating method (a) expected- |

| SARSA, (b) Monte Carlo and (c¢) SARSA in standard |
| RL and path tracing| 15

|[Figure 5.1 The hemispherical domain sampling removes probability |

| of sampling from invalid hemisphere.| 17

|[Figure 5.2 Rejection rate alleviation with mixing uniform PDF| . . 20

m |
T
—

iv R e 1A

|[Figure 6.1

The learned radiance map at the position indicated as a

red dot in the scene on the lett. MAE and required time

per sample (ms) are showed. We increased directional

grid resolution to emphasize the difterence.|

|[Figure 6.2

Metropolis sampling causes visual artifact.|

30

[Figure 6.3

Numerical analysis on various aspects ot rejection sam-

pling with mixed distribution. (a) The light hit rate in-

creases as number of iteration increases, or the radiance

distribution is learned. (b) The error in the rendered

image changes as the mixture ratio of two distributions

changes for the rejection sampling. SARSA has the min-

imal error when using the correct €. (¢) The trade-off

between the hit rate and the number of samples. The

hit rate 1s high with small € while the number ot valid

samples might decreases. |.

31

[Figure 6.4

Qualitative result for equal time comparison. Each col-

umn refers to standard path tracer with BRDFE sam-

pling, our proposed method, our proposed method with-

out rejection optimization, our proposed method with-

out SARSA (expected-SARSA) was used instead as [2])

and quadtree based sampling [14] with MC learning.| . .

[Figure 6.5

Continue of Figure[6.4}f

|[Figure 6.6

Continue of Figurel6.4l|

32

List of Tables

[Table 4.1 Analogy between RL (Eq. 4.2) and rendering equation |
[(Eq.). oo 11

[Table 6.1 Equal time comparison for several methods. BRDF-based |

| method samples the ray according to BRDF and does not |

| consider the radiance distribution, and quadtree-based |

| method is our implementation of [14] on GPU. We also |

| show several variations of path guiding using our proposed |

| regular grid structure. ‘Ours without Rej+’ samples the |

| distribution without rejection optimization. ‘Ours with- |

| out SARSA’ utilizes expected-SARSA for radiance learn- |

[Table 6.2 Equal time comparison for different learning and sampling |

| method discussed in Chapter[4/and Chapter[5| Metropolis |

| sampling 1s skipped since i1t turns out to be unstable due |

| to racing condition. |o 28

[Table A.1 Comparison for different spatial directional resolutions. S |

| means spatial and D means directional in the table| . . . 37

I
T
—

u ,JE:I L t_'_” 'E:} T

[Table A.2 Comparison for equal spp(1024) budget. For BRDF method

and quadtree method (MC), error is 0.0645 and 0.0522 each.| 38

s

Chapter 1

Introduction

Path tracing is a Monte Carlo method in the computer graphics field that faith-
fully simulates light transport to synthesize a photo-realistic image. Basically,
path tracing synthesizes an image by estimating the rendering equation |9)
(Equation with Monte Carlo integration that simulates the light transport.
Given limited resources, how we sample the light transport path significantly
affects the quality of the result image. Path guiding focuses on efficiently sam-
pling the ray to reduce the variance of estimates during the Monte Carlo inte-
gration. The idea is based on importance sampling, where the path with higher
contribution to the estimation is sampled more frequently.

The goal in path guiding is to iteratively (i) learn high-energy light paths
and (ii) efficiently sample according to the learned distribution. Unlike infor-
mation known before rendering such as BRDF or the light source that does not
consider the complex interplay of geometry (Figure , path guiding learns
the radiance distributions embracing the sophisticated geometry and resulting

indirect illumination for each setting.

Figure 1.1 The idea of path guiding. Sampling according to BRDF or direct
illumination (blue lines) makes it fails to reach the light source. We have to

guide the path to follow the red colored path in order to reach the light source.

Although a considerable amount of research has been conducted on path
guiding [8, |7, |24, (14], most of them are implemented on the CPU and the
GPU case has been rarely studied except a few cases [4]. With the emergence
of GPU ray tracing libraries such as NVIDIA OptiX [19], more commercial
ray tracing programs will shift to GPU-based versions to take advantage of
massively parallel processing. Nevertheless, it is not straightforward to apply
path guiding on GPU and even has not been considered in most of the previous
works.

In this thesis, we propose a fast and lightweight path guiding algorithm that
can be incorporated into the existing GPU path tracing pipeline. We adopt a
GPU-friendly data structure that is regular in both spatial and directional do-
mains and store the radiance distribution from previous samples. In order to
achieve (i), we exploit knowledge from reinforcement learning (RL). The out-
going radiance can be represented as the weighted sum of incoming radiance,
whose online estimation is identified to be similar to the) value learning in

standard RL [2]. Inspired by RL techniques, we propose to use a light algorithm

2 3‘-! -“F.' ‘_'.]i &k 7

'||

based on SARSA, which does not require accumulated sum, instead of expected-
SARSA [22] that was originally proposed in |2]|. As a result, we can achieve fast
on-line learning of the radiance distribution in GPU. Meanwhile, regarding (ii),
we propose a fast importance sampling with rejection sampling using only half of
the directional distribution that overlaps with the normal-oriented hemisphere.
A naive implementation of rejection sampling on the locally-adaptive hemi-
sphere can increase the time complexity as many samples can be rejected and
we need to calculate the adaptive normalization factor. The ratio of rejection
can be controlled by mixing the sampling distribution with the uniform distri-
bution, and the online normalization can be accelerated with memoization. The
sampling algorithm can be efficiently implemented under a GPU environment.

To sum up, the major contributions of the thesis could be listed as follows.

e We propose a path guiding algorithm that employs regular spatial-directional

data structure and light-weight computation such that we can highly uti-

lize GPU and accelerate the entire process.

e Inspired from the analogy between RL and light transport |2], we intro-
duce a lightweight RL algorithm (SARSA) that can efficiently update

radiance without aggregating all previous samples.

o We suggest a fast importance sampling using the rejection sampling method

that adapts the learned directional distribution to the local geometry with

an optimized mixture distribution.

We implement the data structure and sampling algorithm on GPU and demon-
strate that the proposed method can accelerate the path-guiding algorithm in

various scenes.

Chapter 2

Background and Related Works

2.1 Ray Tracing on GPU

The recent advance of GPU technology has enabled ray tracing to be imple-
mented in the GPU environment. The major difference between CPU and GPU
environments is the number of concurrent threads. Unlike CPU which only al-
lows a handful of threads, GPU allows thousands of threads to run simultane-
ously with SIMT (Single Instruction Multiple Threads) execution models. The
algorithm must be structured to allow thousands of threads to concurrently
operate, read/write memory, and perform instructions, with careful memory
management.

NVIDIA’s OptiX [19] is one of the first user-programmable GPU ray tracing
engines that fully exploits the aforementioned nature of GPU. It is implemented
in a single megakernel architecture that encompasses all components for ray
tracing - ray generation, ray intersection, and material codes. [12] pointed out

that megakernel suffers from divergence issue under SIMT execution, and pro-

posed wavefront-based rendering that propagates a large set of rays together us-
ing large memory. Each approach has advantages and disadvantages, but recent
GPU architecture is designed highly optimized for megakernel [18]. Therefore,
we decided to use megakernel for our work, but we also designed it to work as

efficiently as possible on wavefront architectures.

2.2 Path Guiding

Path guiding aims to learn indirect radiance and utilize it for efficient impor-
tance sampling. Earlier works proposed different data structures to store the
directional distribution on the surface points such as photon map [8], rasterized
5D tree [11] or hemispherical particle footprints [7]. However, these works pre-
calculate the radiance offline which is approximated from a limited number of
initial particles. Also, it is not known how many samples need to be processed
for the approximation to converge to a decent distribution.

To overcome the limitation of offline path guiding, recent works proposed
to update the distribution online while performing the path tracing. Several
works [6, 23, |24] proposed to represent the sampling distribution using Gaus-
sian Mixture Model (GMM) and used EM algorithm to mix the offline and
online learning. The online distribution can also be efficiently updated using a
hierarchical data structure. Miiller et al. [14] proposed using the binary tree for
the spatial distribution and quadtree for the directional distribution (SD-tree).
The algorithm can be further optimized to consider the stochastic behavior
of the ray samples [13| 20] or use the linear cosine transform [3] for product
importance sampling.

All of the previous path guiding algorithms with online updates adaptively

store the distribution, and the ray tracing has to be processed in the CPU.

The radiance distribution can also be stored and sampled using a neural net-
work |16}, |15], where the neural network is implemented in GPU but the ray
tracing is left to CPU. Our algorithm is one of the first path-guiding frame-
works to run the light transport in parallel using GPU with online updates of
the radiance distribution. Note that Dittebrandt et al. [4] recently proposed
real-time GPU path guiding based on simplified SD-tree. They focused on the
real-time performance using only one sample per pixel and ignoring multiple
bounces of paths, and the quality of rendered images is inevitably lower than

what we are targeting.

2.3 Reinforcement Learning and Light Transport

Another interesting line of works [2, 10| observed that the rendering equation
and expected-SARSA [21], a well-known variation of Q-learning, have structural
similarity. The equation for the online updates of the value function in reinforce-
ment learning resembles that for the online radiance updates, which provided
the theoretical inspiration to our work. However, expected-SARSA requires
summing over all possible actions which is computationally heavy. Also, their
proposed method requires sequential updates and cannot be directly applied to

concurrently run in a GPU.

Chapter 3

Problem Setting and Overview

The rendering equation [9] describes the outgoing radiance L,(z,w,) from point
x toward outgoing direction w, as

Lo(z,wo) = Le(x,w,o) + /Q Li(z,w;) fr(z, wo,w;)(n - w;)dw;. (3.1)
The first term L (x, w,) is the emitting radiance from the location x in the direc-
tion of w, and the second term aggregates the reflection of incoming radiance.
Specifically, the incident radiance L;(x,w;) from the direction w; is attenuated
by n - w;, the cosine angle between the surface normal and the incident angle.
The proportion reflected into the outgoing direction w, is defined with the bidi-
rectional reflectance distribution function (BRDF) f,.(x, w,,w;). The product of
the three terms L;, f,, and (n-w;) is integrated over all of the incoming direction
in normal-oriented hemisphere).

Path tracing evaluates the above rendering equation using Monte Carlo

integration with N samples

N

(Lole) = Lelaa) + Y- Al gy

j=1
where p(wj|z,w,) is the sampling PDF for the incoming direction w; given the
position x and the outgoing direction w,. The variance of the estimator in
Equation depends on the sampling PDF p(wj|z,w,). Ideally, zero-variance
could be achieved if the sampling PDF is exactly proportional to the numerator.
Out of the three terms in the numerator, BRDF f, and cosine term n-w; can be
easily determined but incident radiance term L;(z,w;) remains unknown before
rendering. However, within a complex scene where the illumination condition
changes according to the local geometry, it is crucial to consider the radiance
distribution L;(z,w;).

The incident radiance field L;(x,w) is a function of position x and direction
w and the distribution is represented with 5D data structure. L;(z,w) is highly
irregular due to the interplay between the geometric configuration and light, and
needs to be approximated with samples of rays using Equation The complex
distribution is commonly represented with a hierarchical data structure, which
is updated online as more samples are processed. The frequent update of the
adaptive data structure cannot be easily implemented with GPU.

To make the path guiding available in GPU, we adapt the framework to be
parallelizable by employing GPU-friendly regular data structure and concurrent
updates of the distribution. As illustrated in Figure [3.1] the scene is divided
into voxels, and the directions are discretized using the equal-area projection
with regular shape as proposed in [5]. We learn the radiance field and store it
in the aforementioned grid-based structure with a fast and lightweight RL algo-
rithm called SARSA to circumvent computationally heavy radiance estimation

as described in Chapter] We also suggest a fast rejection sampling method

to quickly advocate for the fine geometry within the grid cell as presented in
Chapter [5] All of the implementations are built on megakernel architecture to

fully utilize the computation capability of the modern GPU.

Update L;(x, w)
SARSA > 0(1) time Li(x, w)
GPU-friendly regular grid

w

LV

—>
—

g

| N N
N N

X

Sample from L;(x, w)
Rejection sampling 2> 0(1/c) time

X ¢: acceptance rate

Figure 3.1 The overall flow of our proposed method. We store incident radiance
L;(z,w) in GPU-friendly regular data structure. We process rays and efficiently
update L;(z,w) with SARSA, while, from L;(x,w), we quickly sample valid rays

to render the scene with rejection sampling.

9 s A2 t)sk

Chapter 4

Fast and Lightweight Radiance
Learning

We propose a fast and lightweight method to learn the complex distribution of
the radiance taking inspiration from the frameworks in reinforcement learning

(RL).

4.1 Analogy between the Rendering Equation and Re-

inforcement Learning

As Dahm et al. [2] had identified, rendering equation has a close relationship
with RL. Like the action-value function in RL, the rendering equation in Equa-
tion can be written in a recursive way. If there is no participating media,
the incoming radiance L;(z,w) is the same as the outgoing radiance L,(y, —w),
where y = h(z,w) is the hitpoint when we trace the ray from z to direction w.

Using this representation, we can rewrite the rendering equation in a recurrent

10

Table 4.1 Analogy between RL (Eq. 4.2)) and rendering equation (Eq. [4.1

Reinforcement Learning (Eq. [4.2) | Rendering Equation (Eq. 4.1
s, €S z,y € R3
a,a’ € A w,w; € £
Q(s,a) Li(z,w)
r(s,a,s) L.(y, —w)
Q(s',d) Li(y, wi)
(s’ a’) fr(y, —w,wi)(n - w;)

form using the incident radiance L;:
Li(z,w) = Lo(y, —w)

(4.1)
= Le(y7 _w) + /QLZ(ya wi)fr(?% _wawi)(n : wi>dwi'

While coming from a different context, the recursive equation in Equa-
tion resembles the equations in RL. Given a set of states S and a set of
actions A, an agent at state s takes an action @ and transit to the next state
s’ receiving the reward r(s,a, s’). For the sake of finding the optimal policy of
actions, we often define the action-value function (s, a) as an expected cumula-
tive reward, and iteratively update it. Expected-SARSA, one of the algorithms

to update the @ function, acts with the following equation:
Q(s,a) «+ (1 —a)-Q(s,a)

ta- <T(s,a,)+ /A W(S',a’)Q(s’,a')da’), 2

where 7(s’,a’) (also known as the policy) is a probability to choose next action
a’ at the next state s’, a is a learning rate and + is a discount factor.

Because of structural similarity between Equation and the update target
in Equation which is summarized in Table learning radiance distribu-

11 Sk

tion L;(x,w) can be achieved using expected-SARSA with v = 1 [2]. Regarding
the integral term, [2] used stratified sampling over the hemisphere. More specif-
ically, the radiance L;(z("™,w(™)) at m-th iteration of length M path (m < M)
(Figure can be updated as following

Le(zm+1) | —,(m)

20 S g i) (1), (m) *3)
+o ;Lm D)) Fr(@ D, ™)) (-),
where z(m+1) = h(x(m),w(m)). The sampling direction of the hemisphere is

equally partitioned into N stratum and wy for each stratum is extracted by
stratified sampling with uniform probability p(wg|z,w) = 1/27. This method
is computationally heavy because it includes aggregating N incident radiance

which involves the BRDF computation O(N) times.

4.2 Fast and Lightweight Radiance Learning with SARSA

We examine algorithms to update the @@ function in RL that could be used in
the place of expected-SARSA for the fast and light-weight update. Basically,
in RL, prediction that estimates () function, could be largely categorized into
three groups; dynamic programming (DP), Monte Carlo (MC), and temporal
difference (TD) methods. Figure {4.1]illustrates how the aforementioned @ value
prediction algorithms can be interpreted in radiance learning.

DP updates @ value to expected future return that is aggregated over whole
next possible actions with full-width backups. The radiance update using the
expected-SARSA in Equation [4.3] could be regarded as DP method. It involves
the exhaustive aggregation over the hemisphere as DP, also indicated in Fig-
ure [4.1a). While DP can lead to more accurate estimation with low variance

and low bias, it is computationally heavy and considerably slower than MC or

]
12 -i == T

TD.

MC method updates @) value to the actual return from complete episodes

without bootstrapping. When it is applied for the radiance update (Figure (b)),

one has to store all previous bounces (z(7),w)) and update the radiance of the

entire sequence when the ray finally reaches the light source
Z (Le(xm, —wl=1) H a(k‘)> , (4.4)
j=m+1 k=m-~+1
where a) is the attenuation factor which is defined as follow:

N p(w®|z(), wG-D)

(4.5)

Having a full path to the terminate state, MC tends to have low bias. However
using distinct paths instead of bootstrapping results in high variance. Further-
more, more importantly, MC requires a large memory because we have to store
all intermediate points. It can be a serious problem when we concurrently pro-
cess a large number of rays. For example, a wavefront-based rendering typically
maintains a pool of millions of rays and storing the length M paths for all rays
would be disastrous.

TD method updates) value to expected future return with bootstrapping.

The only appropriate variation of TD method is SARSA update
Q(37 a) A (1 - O() ’ Q(87a) ta- (T(S7 a, 3/) + 7@(817 CL/)) : (46)

Note Q-learning, the other TD method, only considers the maximum) value
and cannot accurately estimate the integral over incident radiance [2]. The
SARSA’s update target is similar to expected-SARSA, while it only differs in

estimating future expected rewards

Le(zm+D | —,(m)) 4 q(mFD) [(D), (m+1)y, (4.7)

13 -":er -I_I' 1_-“

Unlike expected-SARSA, SARSA only considers the single next action,
which does not require aggregation (Figure ¢)). Therefore, time complex-
ity could be reduced from O(N) to O(1) where N is a number of the possible
actions. Although MC also takes O(1) time to update a single path, it empiri-
cally turned out to take more time compared to SARSA, which may be due to
read/write overhead from the array that stores previous points. In conclusion,
we suggest to use SARSA for radiance learning because of its superiority in
speed and memory consumption compared to MC or expected-SARSA, which
is further verified in the experiments.

The update in Equation [£.7) is attenuated by a and combined with Equa-
tion yielding the full update equation

Li(z,w) < (1 — o) - Li(z,w) + a (Le(y, —w) + ayLi(y, w;)) (4.8)

where a, is the attenuation factor at (y, —w,w;). However such update still
suffers from the concurrency issue, and possibly yields the race condition in
GPU environment. We resolve the problem by separating the rendering iteration

into a few steps and updating L; in a batch.

14 J’—'! k= ‘_]l

Standard RL Path Tracing

Update Target : Q(s®, a®) Update Target :L; (x(™, w(™)

t
s®)

™ \

a®

S(t+1)

(a) Expected-
SARSA

x(m+1)
(M)
o
§
O (1)
IS (m)
S)
S wm+1D)
S
5 (m+1) xM-1)
(M)
<
(7]
o
3:) o \
g wm+D)
x(m+1)

o———5 Single path (x™, »(™)
| Terminal state Surface

® Possible next actions Possible next directions

Figure 4.1 Difference between three updating method (a) expected-SARSA, (b)
Monte Carlo and (c¢) SARSA in standard RL and path tracing.

s Ay

Chapter 5

Efficient Importance Sampling
from Learned Radiance

As we update the radiance value, we concurrently run path guiding in Equa-
tion using the estimated distribution as the sampling distribution w ~
p(wilz, wo) o< Li(z,w;) fr(x,we, w;)(n - w;) where the value of the product is ap-
proximated for each of the distcretized angle. Note that the distribution jointly
considers the radiance, BRDF, and the cosine term such that we can effectively
perform product important sampling. The ray samples are quickly processed
in GPU with an efficient hemisphere sampling and memoization technique to

substitute computing the marginalization of the online PDF.

5.1 Importance Sampling on Hemispherical Domain

The 5D radiance field L;(z,w) is tabulated as a coarse spatial grid, and within
each 3D cell, the 2D directional radiance distribution is stored in a spherical

domain as shown in Figure The direction sampling methods in path guiding

16 A= Tf

Invalid regions are excluded

Sample w
- 3 H
n
T normal-oriented Radiance stored in W
hemisphere spherical domain

Figure 5.1 The hemispherical domain sampling removes probability of sampling

from invalid hemisphere.

can either consider the entire sphere or only a hemisphere that aligns with the
surface normal . While the hemisphere distribution avoids sampling the
invalid directions that face inside the surface, the individual spatial grid cells
that contain different normal directions have to be in fine resolution such that
correctly reflect the complex scene geometry. The hemisphere domain requires
a prohibitive amount of memory in complex scenes, for example, human hair or
tree leaves as demonstrated by . In contrast, our approach considers the full
spherical directions and does not need to correctly represent the surface normal
directions. It does not have the memory requirement as hemisphere distribution
and can be implemented with much lower memory in GPU even in complicated
scenes. However, since sampling in spherical domain is not normal-sensitive, it
is likely that many invalid samples that face inside the surface are produced.
We propose a hybrid approach to efficiently sample the distribution con-
sidering the local geometry. Specifically, we find the intersection between the

stored spherical distribution and the hemisphere that aligns with the normal

17 , _H {l 1_'_” '-:.u} T

o

direction of the current surface point, and sample only from the intersection
distribution as illustrated in Figure While our GPU-friendly grid structure
may suffer from lower directional resolution than the quadtree-based implemen-
tation [14], our regularity can quickly adapt to finer geometry within the cell
and therefore efficiently utilized to product importance sampling. The sampled
distribution p(w) changes according to the normal direction of the hitpoint and

minimizes wasted samples.

5.2 Fast and Efficient Importance Sampling with Op-

timized Rejection Sampling

We propose to perform importance sampling from learned radiance with opti-
mized rejection sampling. In fact, the evolving distribution p(w) can be sampled
in three possible ways including our proposed method. We will review each sam-
pling strategy and discuss its advantage and disadvantage.

Inversion sampling The most intuitive way is tnversion sampling method,
which samples from the cumulative density function (CDF). For a static distri-
bution, the CDF can be pre-computed and the inverse sampling can be executed
in O(log N) with a binary search. However, we are sampling from the intersec-
tion of the normal-oriented hemisphere and the spherical distribution, and we
have to dynamically construct the CDF for each direction which requires O(V)
time complexity.

Rejection sampling Another possible way is rejection sampling, which is also
known as the dart-throwing approach. Rejection sampling first produces sample
from other easy-to-sample PDF u(w) such that cp(w) < u(w) for some scalar
value c. Then, it probabilistically accepts the sample only if n < ep(w)/u(w)

for a uniform random variable 5. If u is a uniform distribution and c is set to

18 -’x_i'l'll.-i L

the tightest value (1/pmax), then ¢ becomes the same as the acceptance rate
which represents the relative area between the two distributions, as illustrated
in Figure left. High ¢ implies less rejection. In our setting, we use the
uniform distribution u(w) whose domain is the normal-oriented hemisphere.
One possible drawback of the rejection sampling is rejecting too many sam-
ples if there is a large discrepancy between the distribution u(w) for the initial
sampling and the true distribution p(w) used for rejection. For example, if the
sampling distribution is concentrated at a narrow range of w, then most of the
uniform samples can be rejected, hurting the overall performance. The speed of

rejection sampling can be improved with mixed distribution

Psampling = (1 — 6)p + eu, (5.1)

where € € [0,1] is a constant value that controls the trade-off between using
the correct distribution for the importance sampling and the high rejection
rate. The effect of the mixed distribution is also illustrated in Figure When
the sample is generated with the modified distribution in Equation the
acceptance rate for mixed distribution would be ¢ = ¢+ (1 — ¢)e instead of
the accept rate ¢ of the original rejection sampling. Since only (1 — €) of the
samples are extracted from p, we can expect (1—¢€) (¢ + (1 — ¢)e) is the amount
of samples extracted from p. If we know the exact ¢, we can solve for the optimal

€ by maximizing the number of effective samples with the following optimization

argmax(l —e€) (c+ (1 — c)e) (5.2)
€€[0,1]

1—2¢
2—2¢?

and the optimal € is max(). Choosing the appropriate € is important to

guarantee the performance of the rejection sampling, which is further evaluated
in Section
Metropolis sampling Metropolis sampling is a kind of Monte Carlo Markov

Chain algorithm, where samples are drawn from an arbitrary mutation function

19 -":er -I_I' 1_-“

Pa _ 1
C i e——
l:l Pmax
Pmax [~ A~ T T T T Mix with u Psampte = (1 — €)p + €u
. - -
_ Acceptance rate:
Acceptance rate: ¢ c'=c+e(l—c)
0 w 1 0 w 1

Figure 5.2 Rejection rate alleviation with mixing uniform PDF.

and then the samples are mutated with a pre-defined probability. There can be
various mutation functions, but we used simple two strategies, random and
adjacent movements with a probability of 0.1 and 0.9, respectively. However,
such sequential mutation on a random variable cannot be correctly implemented
on GPU, possibly causing race conditions that update the same random variable
simultaneously.

Although we introduced 3 possible methods for importance sampling, we
suggest using rejection sampling with our proposed optimization strategy since
inversion sampling and Metropolis sampling have disadvantages of speed and

race condition respectively.

5.3 Normalizing Term Calculation with Memoization

In our implementation, we further accelerate the pipeline on GPU with mem-
oization for the normalizing constant. Note that the rejection sampling or

Metropolis sampling does not require normalized distribution, and we sam-

. 54T

ple from the available un-normalized distribution L;(x,w;) fr (2, we, w;) (1 - w;) o
p(wi|x,w,). However, we need to scale the distribution so that its sum becomes
one in order to finally evaluate the Monte Carlo integration as described in
Equation or to find the pyax for the optimized rejection sampling. The nor-
malization term changes frequently because we only consider the hemisphere
that aligns with the local surface normal instead of using the stored whole
spherical directions. To make the problem simple, we only apply guiding to
diffuse-like materials and avoid repetitive calculation with memoization. In this
case, we can store the normalizing factor N(z,w,,n) ~ N(xz,n) at position z
with normal n by using the same data structure to store the incident radiance
field L;(z,w). Similarly, we can store and memoize pyax which is used for mixing

distribution in rejection sampling.

21 J’—'! k= ‘_]l

Chapter 6

Experiments and Results

We implemented our algorithm on a GPU environment with megakernel archi-
tecture. While there are some customizable renderers available based on wave-
front architecture such as Mitsuba2 [17], there is no well-established physically-
based renderer for megakernel architecture. We wrote the path-guiding algo-
rithm with our own renderer using OptiX [19] and built several BRDFs refer-
ring to the rich material library of Mitsuba2[17]. The algorithm is transplanted
on Python environment using wrapper PyOptix for faster testing.

We tested our algorithm for 12 scenes from [1] with varying geometries,
materials, and complexity. All of the path guiding methods used unidirectional
path tracing without next event estimation (NEE) for simplicity as [14] and the
following works. The reference images were prepared using standard BRDF pro-
portional sampling with 131,072 samples per pizel (spp) and maximum depth
32 without Russian roulette. The reference image is used to evaluate the quality
of the rendered image by comparing the mean absolute error (MAE). For each

path guiding algorithm, a time budget (40 sec) or spp budget (1024) was im-

22 N =

posed, but a time budget was mainly used for fair comparison. Maximum depth
was set to 16 and Russian roulette was set to begin after depth 8. Learning and
rendering were fused into the same pipeline in a totally online manner. Instead
of exponential growth in [14], we used the constant number of samples per iter-
ation and accumulated the distribution over the iteration. Learned distribution
was updated for new distribution at every step that single step is composed of
8 spp. We also forced to sample randomly at the first few steps like the epsilon
greedy algorithm in RL, to encourage enough exploration. Spatial and direc-
tional resolution was both set to 8, 16 respectively (8% x 162). We also tested
higher resolutions, but we found that too high resolution rather increased the
error. Note that the sampled directional grid represents the hemisphere and the
amount of stored directional domain size is twice the sampled grid representing

a sphere. The details of implementing directional grid are the same with [5].

6.1 GPU-based Path Guiding with a Regular Grid

Our path guiding algorithm using a regular grid is compared against the BRDF-
based method and path guiding using the quadtree [14] in Table and Fig-
ure Quadtree structure adaption is implemented using additional
OptiX kernel and updated per exponentially growing steps with flux threshold
0.01. We also used multiple importance sampling with BRDF with a probability
of 0.5, the same with the original paper. We set the maximum leaf node number
the same as the size of the regular grid so that the total memory used remains
unchanged. Also, as the original paper, it is set to use the MC method only to
learn radiance.

The BRDF-based method can be easily implemented on GPU and fast,

leading to process more number of samples for equal-time comparison. However,

-1
23 -i == T

Table 6.1 Equal time comparison for several methods. BRDF-based method
samples the ray according to BRDF and does not consider the radiance dis-
tribution, and quadtree-based method is our implementation of [14] on GPU.
We also show several variations of path guiding using our proposed regular grid
structure. ‘Ours without Rej+’ samples the distribution without rejection opti-

mization. ‘Ours without SARSA’ utilizes expected-SARSA for radiance learning

[2]-
Scene Name BRDF | Quadtree Ours w/o | Ours w/o Ours
Rej+ SARSA
BATHROOM 0.0374 | 0.0358 0.0554 0.0387 0.0366
BATHROOM-2 0.0345 0.0339 0.0338 0.0344 0.0288
CORNELL-Box 0.0114 | 0.0062 0.0093 0.0098 0.0072
CORNELL-Box-HARD | 0.0216 0.0134 0.0182 0.0181 0.0134
KITCHEN 0.0227 0.0209 0.0198 0.0216 0.0190
LiviNng-Room 0.0092 | 0.0087 0.0180 0.0130 0.0116
LivING-RoOoM-2 0.0190 0.0181 0.0197 0.0189 0.0169
Livine-RooM-3 0.0558 0.0611 0.0767 0.0622 0.0511
STAIRCASE 0.0144 0.0105 0.0164 0.0122 0.0094
STAIRCASE-2 0.0146 0.0101 0.0178 0.0107 0.0092
VEACH-AJAR 0.0747 | 0.0640 0.2010 0.0772 0.0745
VEACH-AJAR-2 0.1233 0.1066 0.1222 0.1323 0.1029
Mean (MAE) 0.0366 0.0324 0.0507 0.0374 0.0317
Time per Sample (ms) | 10.59 11.18 54.73 34.48 16.30
Samples per Pixel 4005 3774 1302 1239 2523
Invalid Sample Rate 0 0.1719 ~ 0 ~ 0 ~0
A == 1

24

the quality of the produced image does not meet that of path tracing especially
when there is complicated occlusion and inter-reflection leading to larger mean
absolute error (MAE). The quadtree update is fast enough and also gives better
results than pure BRDF sampling, but seems to suffer from invalid samples
that head down to the surface. On the other hand, our implementation of the
path guiding algorithm is normal-sensitive, thus providing nearly zero invalid
samples. It has an advantage over quadtree by product importance sampling
with GPU-friendly regular grid structure. Our method evolves to converge to
the true radiance distribution L; and sample more efficient paths as the iteration
proceeds. This can be verified by counting the number of rays that hit the
light source for each iteration as shown in Figure (a). Compared to BRDF
sampling, our method achieves 10 ~ 20 times higher hit rate. Furthermore,
we found that our proposed radiance learning method (SARSA) and radiance
sampling method (rejection sampling with optimization) both play a pivotal
role in performance improvement, which is further discussed in the following

sections.

6.2 Comparison for Radiance Learning Methods

In this section, we compare several radiance learning methods discussed in
Chapter [which are namely based on expected-SARSA, Monte Carlo and
SARSA. Table shows SARSA is the best choice for radiance learning in
GPU, leading to the smallest noise when rendered with an equal time limit. This
is mainly due to the fast speed of SARSA. Compared to the BRDF sampling
method that does not involve any radiance learning, the computational time of
SARSA turns out to be minimal. In contrast, the increase of computation time

for expected-SARSA is nearly x2.1, which significantly decreases the number of

1l 7
2 & Ly

completed samples under the equal time budget. MC is fairly fast, but slightly
slower than SARSA which may be due to accessing a record that stores previous
points.

Figure[6.1] shows an example of the learned radiance field using the three RL
methods. It is widely known in RL that SARSA tends to have higher bias, while
Monte Carlo method tends to have higher variance [22]. We can easily verify
this in Figure that Monte Carlo method results in spotty noise. Expected-
SARSA and SARSA are known to be biased, which means they cannot generate
the correct reference image even though we the increase number of samples.
However, by comparing equal-spp results, we found out that the variance or
bias of approximated radiance field have a minimal effect on the final image,
and speed is a more important factor when time becomes the budget.

Memory consumption is also an important issue for practical path guiding in
GPU. Expected-SARSA and SARSA do not require additional memory. How-
ever, Monte Carlo method stores every intermediate point (the maximum could
be limited as 32 in [14]) which may require a considerable amount of memory.
The approximated memory usage can be calculated by (size of single data) x
(maximum concurrent ray) x (maximum depth). In our setting, the distribu-
tion is stored in a total 12 floats for single data, 16 maximum depth, and
about 46,000 concurrent rays, indicating that Monte Carlo method causes an
additional 35 MB of stack usage. Of course, this may still be harmful for per-
formance, the more serious problem occurs when we use the wavefront-based
method that have to keep millions of rays; it would lead to significant memory
usage (1 million ~ 768 MB). Therefore, we could conclude that our SARSA-

based update is fast, memory-efficient, while also competent in performance.

26 -":er -I_I' 1_-“

Reference Expected-SARSA

Time: 31.40
MAE: 0.0242

Monte Carlo SARSA (Ours)

Time? 3.88 Time: 3.54
MAE: 0.0290 MAE:0.0276

Figure 6.1 The learned radiance map at the position indicated as a red dot in
the scene on the left. MAE and required time per sample (ms) are showed. We

increased directional grid resolution to emphasize the difference.

6.3 Comparison for Radiance Sampling Methods

In this section, we compare the radiance sampling methods covered in Chap-
ter |5, namely the inversion, rejection, and Metropolis sampling methods. The
quantitative result is in Table[6.2] and pseudocode for the implementation could
be found in Appendix

The simplest way is the inversion method using the stored spherical dis-
tribution without considering normal. Ignoring the local geometry, the CDF
does not change and can be calculated beforehand with a minimal overhead of
O(log N) where N is the number of directional grid bins. Despite the speed, a
significant number of samples are invalid representing rays that direct toward

the inside of the surface, resulting in degradation of the quality.

97 , ,.H *E 1_'_” '{11[T

Table 6.2 Equal time comparison for different learning and sampling method
discussed in Chapter 4] and Chapter [5} Metropolis sampling is skipped since it

turns out to be unstable due to racing condition.

Sphere Hemisphere
MAE
Inv Inv Rej Rej+
Expected
0.0425 0.0474 0.0521 0.0374
-SARSA
MC 0.0368 0.0467 0.0524 0.0332
SARSA 0.0340 0.0434 0.0507 0.0317
Time per Sphere Hemisphere
Sample(ms) Inv Inv Rej Rej+
Expected
21.62 45.57 66.37 34.48
-SARSA
MC 10.94 26.09 76.61 17.67
SARSA 9.23 25.37 54.73 16.30

28 A=

We can overcome the limitation by considering the valid hemisphere that
aligns with the surface normal. Overall, our proposed rejection-based sampling
with optimization gave the best result. The inversion method with the hemi-
sphere sampling involves calculating the normal-adaptive CDF online, which is
O(N), and it is no longer fast.

Rejection sampling can be an alternative method because theoretically the
time complexity is O(1/c) where ¢ is the acceptance rate. With a naive imple-
mentation, however, the rejection sampling does not improve the performance.
A significant number of samples is rejected due to the discrepancy between the
initial and the target sampling distribution. We can achieve faster sampling
by optimizing e that mixes the distributions as described in Equation The
optimized rejection sampling (indicated with post-fixed ‘+’ sign in Table
and results in the best quality image for the equal time comparison, greatly
reducing the time. The sampling complexity of the optimized version is O(1/¢’)
where ¢ = ¢+ (1 — ¢)e is an acceptance rate for the mixed PDF as proposed in
Section

Note that Metropolis sampling is lightweight with the time complexity of
O(1), but the race condition appears to be causing the crucial performance
degradation. Figure [6.2] shows exemplar patches with noticeable artifact.
Effect of ¢ in Equation We further investigate the effect of mixing the
sampling distributions with different € € [0.0001, 1] in Figure[6.3] Figure[6.3}(b)
confirms that the performance of SARSA (TD) is better than BRDF-based sam-
pling or other RL-based algorithms such as expected-SARSA (DP) or Monte
Carlo when implemented in GPU. The optimal € allows us to efficiently sample
the rays, and clearly leads to performance improvement. Figure (c) further
scrutinize the effect of different € with SARSA. With a small €, we could draw

more samples proportional to radiance such that the hit rate increases, but too

29 -":er -I_I' 1_-“

Figure 6.2 Metropolis sampling causes visual artifact.

many samples get rejected which drastically increases time to sample and re-
duces the number of samples. As we increase ¢, while it increases the acceptance
rate, the rejection optimization dilutes the estimated radiance distribution Lj;.
As a result, we can observe that the hit rate doubles without the rejection
optimization (Figure [6.3}(a)). The optimal value has to balance between the
number of samples and the hit rate, and we found the minimum MAE for €
near 0.5.

Effect of memoization Another key factor that speeds up the rejection sam-
pling is memoization, which pre-calculates the normalizing factor. However, the
pre-calculated values might be inaccurate due to the recurrent updates of dis-
tribution during the Monte Carlo integration. We compared images produced
with the same number of samples using our sampling approach and compared
the MAE and the runtime. Empirically we observed that the inaccuracy is neg-

ligible while the reduction in the total calculation time is about 15%.

30 1 éﬂ 2- ‘-_-” ‘:’1 Tl

—
QD
Rl

60

50

40

30

20

- = BRDF
Ours
Ours w/o Rej+

Iteration

of ray hit light (1k)

10

(b)

1200 0.6

1000 0.5

800 0.4

600 0.3

of samples
Hit rate

400 0.2

of
200 —— .o samples 01
—e—Hit rate

0.0001 0.001 0.01 0.1 1

(©)

0.06

0.055 {

BRDF
—e—expected-SARSA
Monte Carlo

—#— SARSA (Ours)

0.04

0.035
0.0001 0.001 0.01 0.1 1

Figure 6.3 Numerical analysis on various aspects of rejection sampling with
mixed distribution. (a) The light hit rate increases as number of iteration in-
creases, or the radiance distribution is learned. (b) The error in the rendered
image changes as the mixture ratio of two distributions changes for the rejec-
tion sampling. SARSA has the minimal error when using the correct €. (¢) The
trade-off between the hit rate and the number of samples. The hit rate is high

with small € while the number of valid samples might decreases.

1 R ks LT

& e

Ours w/o Ours w/o
BRDF Quadtree rejection opt SARSA Ours Reference

BATHROOM

CORNELL-BOX BATHROOM-2

CORNELL-BOX-2

0.0216 0.0134 0.0182 0.0181 0.0134 MAE

Figure 6.4 Qualitative result for equal time comparison. Each column refers to
standard path tracer with BRDF sampling, our proposed method, our proposed
method without rejection optimization, our proposed method without SARSA
(expected-SARSA) was used instead as [2]) and quadtree based sampling
with MC learning.

LIVING-ROOM-2 LIvING-RoOM-1 KITCHEN

LIvING-RoOM-3

Ours w/o Ours w/o
rejection opt SARSA

BRDF Quadtree Ours Reference

0.0227 0.0209 0.0198 0.0216 0.0190 MAE

0.0092 0.0087 0.0180 0.0130 0.0116 MAE

0.0190 0.0181 0.0197 0.0189 0.0169 MAE

Figure 6.5 Continue of Figure

33 i A=l 8t

Ours w/o Ours w/o
rejection opt SARSA

BRDF Quadtree Ours Reference

w
7]
<
[v)
<
<

n

0.0144 0.0105 0.0164 0.0122 0.0094 MAE
o~
:
9
<
o
<
<
n
o«
<
<
T
o
<
w
>
0.0747 0.0640 0.2010 0.0772 0.0740 MAE

[
<
<
<
T
o
<
w
>

0.1233 0.1066 0.1222 0.1323 0.1029 MAE

Figure 6.6 Continue of Figure

. o |
34 ."_'_-':.,-"It —_L_!E}E.

Aot

Chapter 7

Conclusion

In this work, we propose a fast and memory-efficient path guiding algorithm
in the GPU environment. We divided path guiding into two alternating tasks;
learning radiance and sampling radiance. For learning radiance, we suggest a
SARSA-based update which outperforms the expected-SARSA or Monte Carlo
method. SARSA has a low computational cost since it does not include aggrega-
tion over the next actions as expected-SARSA, but also has low memory usage
in estimation compared to the Monte Carlo method. For sampling radiance, we
only sample in the valid hemisphere from spherical distribution using rejection
sampling. Furthermore, we mixed the sampling distribution with randomness
to reduce the rejection rate and exploit memoization to avoid repeated com-
putation. All of our suggested methods have been implemented on GPU with
megakernel architecture using OptiX [19]. However, our work is designed to
also work on wavefront-based rendering which could be covered in future work.
Although we used a simple grid-shaped data structure, a more sophisticated

data structure for GPU could be investigated.

35 AL

Appendix A

Additional Experimental Results

In this chapter, we present additional experimental results that are not dis-

cussed in the main manuscript.

A.1 Comparison for Spatial Directional Resolution

Table shows MAE for different spatial, directional resolutions. We only
tested our proposed algorithm using SARSA and optimized rejection sampling.
For faster comparison, we halve the image size, so the error value is different
from the main paper. Spatial resolution 4 and directional resolution 16 gave
the best result, we think that 4 is too small, so used 8 instead for the main

experiments.

A.2 Equal SPP Comparison

Table shows MAE for equal spp (1024) budget. For BRDF method and
quadtree method (MC), error is 0.0645 and 0.0522 each. Note that unlike the

36 A 2

Table A.1 Comparison for different spatial directional resolutions. S means spa-

tial and D means directional in the table.

D
32 16 8 4

32 0.0936 | 0.0564 | 0.0435 | 0.0466

16 0.0489 | 0.0380 | 0.0367 | 0.0448

8 0.0376 | 0.0347 | 0.0362 | 0.0443

4 0.0351 | 0.0344 | 0.0363 | 0.0461

equal-time budget, SARSA does not give the best result. Another thing to note
is that Rej+ gives better results than Rej even though Rej shows a higher light
hit rate. This seems because of the error in calculating the normalizing term.
Since we use stratified Monte Carlo integration to calculate the normalizing
term, if sampling radiance distribution is highly unbalanced it causes a higher

error, and mixing uniform function helps to reduce the error.

T [1] 3
37 -"x_g-|'1_-|'

Table A.2 Comparison for equal spp(1024) budget. For BRDF method and

quadtree method (MC), error is 0.0645 and 0.0522 each.

Sphere Hemisphere
MAE

Inv Inv Rej Rej+

Expected
0.0501 0.0466 0.0531 0.0391

-SARSA
MC 0.0482 0.0495 0.0543 0.0380
SARSA 0.0504 0.0475 0.0551 0.0392

38

Appendix B

Pseudocode for the Algorithm

We provide pseudocode of our algorithms for the following 5 sampling methods.

e Spherical domain, inversion sampling

Hemispherical domain, inversion sampling

Hemispherical domain, rejection sampling

Hemispherical domain, rejection sampling with optimization

Hemispherical domain, Metropolis sampling

Each algorithm can be found in Algorithm [1] to 5| Here, 1 is a uniform random
variable in [0,1], N(x,w,n) is a normalizing term, [L;(x,w;)fr(2,w,w;)(n -
wi)dw; and ppaz (T, w,n) is maxy, Li(z,w;) fr(z,w,w;)(n - w;). N(z,w,n) is cal-
culated with stratified Monte-Carlo integration and pyq. (2, w,n) is found with
linear search. For diffuse material, these values can be memoized with 5D ta-

ble since N(x,w,n) = N(z,n) and pmas(z,w,n) = pmaz(z,n). M(x,w,n) in

39 .-'-\._—E -Il_' -'II Fi

Metropolis sampling (Algorithm [5)) represents previous state corresponding to
given conditions z,w,n. Again, for diffuse material, we can remove w depen-
dency, so M(z,w,n) could be stored similar to N(z,w,n). Also, note that for
spherical domain sampling, multiple importance sampling (balance heuristics)
is used with a probability of 0.5 to sample from pure BRDF without considering

radiance as [14] did for quadtree sampling.

Algorithm 1 Inversion sampling on spherical domain
1: procedure INVERSIONSAMPLESPHERE(z, w)

2: rT<n

3: return BINARYSEARCH(CDF'(z),r)

Algorithm 2 Inversion sampling on hemispherical domain
1: procedure INVERSIONSAMPLE(x, n,w)

2: r<n
3: v+ 0

4: for k=1,2,...,N do

5: p <+ Li(z,wg) fr(z,w,wi)(n - wg)/N(z,w,n)
6: V& U+D

7: if »r <wv then

8: return wy,p

0 SER=k

Algorithm 3 Rejection sampling

1: procedure REJECTSAMPLE(z, n,w)

2:

3:

4:

while True do
w; <~ UNIFORMHEMISPHERE(n)
p < Li(x,w;) fr(z,w,w;)(n - w;)/N(xz,w,n)
if 7 < p/Pmaz(x,w,n) then
break

return w;,p

Algorithm 4 Rejection sampling with speed optimization

1: procedure REJECTSAMPLEOPT(z, n,w)

2:

3:

4:

10:

11:

¢+ 1/pmaz(z,w,n)

€ max(%:%i, 0)
Pmaz < (1 — €)pmaz(T,0,n) + €u
while True do
w; <~ UNIFORMHEMISPHERE(n)
p < Li(z,w;) fr(z,w,w;)(n - w;)/N(z,w,n)
p+ (1—e)p+eu
if 1 < p/Pmas then
break

return w;, p

41

Algorithm 5 Metropolis sampling

1: procedure METROPOLISSAMPLE(z, N, w)

2:

3:

4:

10:

m < M(z,w,n)
m’ < MUTATE(m)
p < Li(x,m)f.(x,w,m)(n-m)/N(x,m,n)
p' « Lij(x,m) fr(z,w,m")(n-m')/N(z,m',n)
i 28
a + min(1, =)
if n < a then
M(z,w,n),m < m/
p

return m,p

42

Bibliography

Benedikt Bitterli. Rendering resources. https://benedikt-bitterli.me/resources)/ .

2016.

Ken Dahm and Alexander Keller. “Learning light transport the reinforced

way”. In: ACM SIGGRAPH 2017 Talks. 2017, pp. 1-2.

Stavros Diolatzis et al. “Practical Product Path Guiding Using Linearly
Transformed Cosines”. In: Computer Graphics Forum. Vol. 39. 4. Wiley
Online Library. 2020, pp. 23-33.

Addis Dittebrandt, Johannes Hanika, and Carsten Dachsbacher. “Tem-
poral Sample Reuse for Next Event Estimation and Path Guiding for
Real-Time Path Tracing”. In: (2020).

Gene Greger et al. “The irradiance volume”. In: IEEE Computer Graphics
and Applications 18.2 (1998), pp. 32-43.

Sebastian Herholz et al. “Product importance sampling for light transport
path guiding”. In: Computer Graphics Forum. Vol. 35. 4. Wiley Online
Library. 2016, pp. 67-77.

T) 1
43 """\-_E 'kl H 1 |

[12]

[14]

[15]

Heinrich Hey and Werner Purgathofer. “Importance sampling with hemi-
spherical particle footprints”. In: Proceedings of the 18th spring conference

on Computer graphics. 2002, pp. 107-114.

Henrik Wann Jensen. “Importance driven path tracing using the photon
map”. In: Furographics Workshop on Rendering Techniques. Springer.

1995, pp. 326-335.

James T Kajiya. “The rendering equation”. In: Proceedings of the 13th
annual conference on Computer graphics and interactive techniques. 1986,

pp. 143-150.

Alexander Keller and Ken Dahm. Integral Equations and Machine Learn-

ing. 2019. arXiv: [1712.06115 [cs.LG].

Eric P Lafortune and Yves D Willems. “A 5D tree to reduce the variance
of Monte Carlo ray tracing”. In: FEurographics Workshop on Rendering

Techniques. Springer. 1995, pp. 11-20.

Samuli Laine, Tero Karras, and Timo Aila. “Megakernels considered harm-
ful: Wavefront path tracing on GPUs”. In: Proceedings of the 5th High-
Performance Graphics Conference. 2013, pp. 137-143.

Thomas Miiller. ““Practical Path Guiding” in Production”. In: ACM
SIGGRAPH Courses: Path Guiding in Production, Chapter 10. Los Ange-
les, California: ACM, 2019, 18:35-18:48. DOI:[10.1145/3305366 . 3328091.

Thomas Miiller, Markus Gross, and Jan Novék. “Practical path guiding
for efficient light-transport simulation”. In: Computer Graphics Forum.

Vol. 36. 4. Wiley Online Library. 2017, pp. 91-100.

Thomas Miiller et al. “Neural control variates”. In: ACM Transactions

on Graphics (TOG) 39.6 (2020), pp. 1-19.

A5
44 M=

https://arxiv.org/abs/1712.06115
https://doi.org/10.1145/3305366.3328091

[24]

Thomas Miiller et al. “Neural importance sampling”. In: ACM Transac-

tions on Graphics (TOG) 38.5 (2019), pp. 1-19.

Merlin Nimier-David et al. “Mitsuba 2: A retargetable forward and inverse
renderer”. In: ACM Transactions on Graphics (TOG) 38.6 (2019), pp. 1-
17.

Merlin Nimier-David et al. “Radiative backpropagation: an adjoint method

for lightning-fast differentiable rendering”. In: ACM Transactions on Graph-

ics (TOG) 39.4 (2020), pp. 146-1.

Steven G Parker et al. “Optix: a general purpose ray tracing engine”. In:

Acm transactions on graphics (tog) 29.4 (2010), pp. 1-13.

Alexander Rath et al. “Variance-aware path guiding”. In: ACM Transac-
tions on Graphics (TOG) 39.4 (2020), pp. 151-1.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement

learning. Vol. 135. MIT press Cambridge, 1998.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-

troduction. MIT press, 2018.

Jit{ Vorba and Jaroslav Kfivanek. “Adjoint-driven Russian roulette and
splitting in light transport simulation”. In: ACM Transactions on Graph-
ics (TOG) 35.4 (2016), pp. 1-11.

Jit{ Vorba et al. “On-line learning of parametric mixture models for light
transport simulation”. In: ACM Transactions on Graphics (TOG) 33.4
(2014), pp. 1-11.

i SRS

B AT GPU oA 215 ek 2eshAut EatAel path guiding 31¢]
|otsttt. Path guiding2 path tracing®] o] =& &o|7] 95 AtH 7]
AEH A FAF 2k (radiance)E HI-¢-3L o5 o83 T8E
(importance sampling)= 54ttt BAF S| 0] B3¢ EX S uj-9-7
o] =iEode S5t AAH Hlole & A5l o] eAd o g A
SR o]= CPUAY| A Q] path tracing®HS 714 5H =
A F@sH7] o Ayt o m AEsHA] b=t & =2 olA= GPU 38k
Q1 Zteet 1= H €| Hlo]E S AHESl path guiding ¢A12|E2 {185

T3 path guiding®] T 712 ZE-(1) BA} 3% k&t (2) shsE AL 3=
__\"%_

_>¢
lo o

i o o

z

HU
ol

o

I/

ol

o)
oo

m

RES ol S5 S-S GPU AN ARz Fas] 99 oaa
e S AL A A A% B50) 29, ZeTET BA A e
o 724 AL U oF AT P8 Sgelo] /T BE SARSA P28
o183 st WS AT S BA FEE UL 19E dYe
2 GPUAS) dloje] 2o AR, s B4 FES A 8T R
2eyo) A9 WA Me FPol SEA G ABEL AYT H, AHH S
(rejection sampling)-S ©]-83] S Q%= AEZF (importance sampling)-& 4~

of. B dae]E2 NVIDIA OptiX (1915 AR&-sf GPUAFO| Al megakernel
= FAHAG B 720 4 dolelol tial o2l AR S AL
AT A W] S5 S Felstoh

2

o2
_O|L
B3R ol m

Z.90]: Path Guiding, 781515, 34 22

SHH: 2019-27633

Acknowledgements

e
K

B!

3D vision A+t

47

	Abstract
	Chapter 1 Introduction
	Chapter 2 Background and Related Works
	2.1 Ray Tracing on GPU
	2.2 Path Guiding
	2.3 Reinforcement Learning and Light Transport

	Chapter 3 Problem Setting and Overview
	Chapter 4 Fast and Lightweight Radiance Learning
	4.1 Analogy between the Rendering Equation and Reinforcement Learning
	4.2 Fast and Lightweight Radiance Learning with SARSA

	Chapter 5 Efficient Importance Sampling from Learned Radiance
	5.1 Importance Sampling on Hemispherical Domain
	5.2 Fast and Efficient Importance Sampling with Optimized Rejection Sampling
	5.3 Normalizing Term Calculation with Memoization

	Chapter 6 Experiments and Results
	6.1 GPU-based Path Guiding with a Regular Grid
	6.2 Comparison for Radiance Learning Methods
	6.3 Comparison for Radiance Sampling Methods

	Chapter 7 Conclusion
	Appendix A Additional Experimental Results
	A.1 Comparison for Spatial Directional Resolution
	A.2 Equal SPP Comparison

	Appendix B Pseudocode for the Algorithm
	초록
	Acknowledgements

<startpage>13
Abstract i
Chapter 1 Introduction 1
Chapter 2 Background and Related Works 4
 2.1 Ray Tracing on GPU 4
 2.2 Path Guiding 5
 2.3 Reinforcement Learning and Light Transport 6
Chapter 3 Problem Setting and Overview 7
Chapter 4 Fast and Lightweight Radiance Learning 10
 4.1 Analogy between the Rendering Equation and Reinforcement Learning 10
 4.2 Fast and Lightweight Radiance Learning with SARSA 12
Chapter 5 Efficient Importance Sampling from Learned Radiance 16
 5.1 Importance Sampling on Hemispherical Domain 16
 5.2 Fast and Efficient Importance Sampling with Optimized Rejection Sampling 18
 5.3 Normalizing Term Calculation with Memoization 20
Chapter 6 Experiments and Results 22
 6.1 GPU-based Path Guiding with a Regular Grid 23
 6.2 Comparison for Radiance Learning Methods 25
 6.3 Comparison for Radiance Sampling Methods 27
Chapter 7 Conclusion 35
Appendix A Additional Experimental Results 36
 A.1 Comparison for Spatial Directional Resolution 36
 A.2 Equal SPP Comparison 36
Appendix B Pseudocode for the Algorithm 39
초록 46
Acknowledgements 47
</body>

