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Abstract

Fast Adaptation of Deep Learning
Vision Applications with Limited Data
for Edge Device

Taemin Lee
Department of Computer Science and Engineering
The Graduate School

Seoul National University

The remarkable success of deep learning-based methods are mainly ac-
complished by a large amount of labeled data. Compared to conventional
machine learning methods, deep learning-based methods are able to learn
high quality model with a large dataset size. However, high-quality la-
beled data is expensive to obtain and sometimes preparing a large dataset
is impossible due to privacy concern. Furthermore, human shows out-
standing generalization performance without a huge amount of labeled
data.

Edge devices have a limited capability in computation compared to
servers. Especially, it is challenging to implement training on edge de-

vices. However, training on edge device is desirable when considering



domain-shift problem and privacy concern. In this dissertation, I con-
sider adaptation process as a conventional training counterpart for low

computation capability edge device.

Conventional classification assumes that training data and test data
are drawn from the same distribution and training dataset is large. Un-
supervised domain adaptation addresses the problem when training data
and test data are drawn from different distribution and it is a problem to
label target domain data using already existing labeled data and models.
Few-shot learning assumes small training dataset and it is a task to predict
new data based on only a few labeled data. I present 1) co-optimization
of backbone network and parameter selection in unsupervised domain
adaptation for edge device and 2) augmenting few-shot learning with
supervised contrastive learning. Both methods are targeting low labeled

data regime but different scenarios.

The first method is to boost unsupervised domain adaptation by co-
optimization of backbone network and parameter selection for edge de-
vice. Pre-trained ImageNet models are crucial when dealing with small
dataset such as Office datasets. By using unsupervised domain adapta-
tion algorithm that does not update feature extractor, large and powerful
pre-trained ImageNet models can be used to boost the accuracy. We re-
port state-of-the-art accuracy result with the method. Moreover, we con-
duct an experiment to use small and lightweight pre-trained ImageNet

models for edge device. Co-optimization is performed to reduce the to-

il



tal latency by using predictor-guided evolutionary search. We also con-
sider pre-extraction of source feature. We conduct more realistic scenario
for edge device such as smaller target domain data and object detection.
Lastly, We conduct an experiment to utilize intermediate domain data to
reduce the algorithm latency further. We achieve 5.99x and 9.06x la-

tency reduction on Office31 and Office-Home dataset, respectively.

The second method is to augment few-shot learning with supervised
contrastive learning. We cannot use pre-trained ImageNet model in the
few-shot learning benchmark scenario as they provide base dataset to
train the feature extractor from scratch. Instead, we augment the feature
extractor with supervised contrastive learning method. Combining super-
vised contrastive learning with information maximization and prototype
estimation technique, we report state-of-the-art accuracy result with the
method. Then, we translate the accuracy gain to total runtime reduction
by changing the feature extractor and early stopping. We achieve 3.87 x

latency reduction for transductive 5-way S-shot learning scenarios.

Our approach can be summarized as boosting the accuracy followed
by latency reduction. We first upgrade the feature extractor by using more
advanced pre-trained ImageNet model or by supervised contrastive learn-
ing to achieve state-of-the-art accuracy. Then, we optimize the method
end-to-end with evolutionary search or early stopping to reduce the la-
tency. Our two stage approach which consists of accuracy boosting and

latency reduction is sufficient to achieve fast adaptation of deep learning

il



vision applications with limited data for edge device.

Keywords: Neural network, edge device, unsupervised domain adapta-
tion, few-shot learning, pseudo labeling, contrastive learning, informa-
tion maximization

Student Number: 2015-31052
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Chapter 1

Introduction

The exceptional success of deep learning-based methods are mainly achieved
by increasing size of labeled data. However, large labeled data by human
annotation is hard to obtain and sometimes it is not possible because of
privacy concern. On the other hand, human shows excellent generaliza-
tion performance without a large labeled dataset, bringing motivation to
the field of unsupervised domain adaptation and few-shot learning. Typ-
ical classification tasks assume that training data and test data are drawn
from the same distribution and the training dataset is large. Unsuper-
vised domain adaptation task relieves the same distribution assumption
and deals with the situation that training data and test data are drawn
from the different distribution. Few-shot learning also relieves the large
training dataset assumption and classifies the new data with a few labeled
examples per class. Therefore, both tasks aim to address non-ideal cases
of low labeled data count but with different scenarios.
Unsupervised domain adaptation aims to address the problem by reusing

already existing labeled data and models to label target domain data. The



source domain has a labeled dataset while the target domain has unla-
beled dataset and the goal of the methods is to label the target domain
dataset. The problem is that when the model trained by source domain
dataset is tested using target domain dataset, domain shift problem oc-
curs and degrades the models’ performance. Therefore, it is required to
reduce domain shift problem by aligning distributions of source and tar-

get domain.

The aim of few-shot learning is to classify unlabeled data based on
the observation of a few labeled data. Given a labeled base dataset and
a novel dataset, the objective of a few-shot learning task is to build a
visual model using the base dataset and to generalize to the novel dataset
which has only a few training images per class. A transductive few-shot
learning is in introduced to address the low data count. The setting allows
that the model can access all the test data at once instead of one by one

in the inference stage.

The speed of the adaptation algorithm is important in some working
scenarios. For example, we consider driving a car into the tunnel. Char-
acteristics of environment change drastically and they are maintained for
several minutes. The car cannot rely on server assistance due to high
communication cost. In such scenario, edge devices in the car need to
adapt to new environment by itself in the order of multiple seconds. An-
other example is about personalization which aims to provide customized

service to individuals based on private data. Each user has its own con-



text or domain which is based on its own environment to which algorithm
needs to perform domain adaptation to adapt. The local data cannot be
transferred to the centralized server due to the privacy concern. Indeed,
we suppose each edge device has its own private data and perform adap-
tation. The adaptation algorithm needs to be optimized to provide inter-
active service. Note that both car environment and user response are not
ultra fast (e.g., in the order of microseconds). Still, fast adaptation is im-
portant in such scenarios and it is critical to minimize computation cost
of adaptation as edge devices have a low computation capability com-

pared to typical servers.

Note that small data has not always adverse effect. We assume data
in each edge device is small and private because each edge device tries
to solve meaningful problem without transferring data to server due to
privacy concern and communication cost. If data is small, performing
adaptation to new data is relatively fast as typical execution time of algo-
rithm is proportional to data size. We keep the positive effect of limited
data in mind and develop approaches for the scenarios when the dataset

is not large.

In this dissertation, I propose two approaches to address low data
count. I present 1) co-optimization of backbone network and parame-
ter selection in unsupervised domain adaptation for edge device and 2)
augmenting few-shot learning with supervised contrastive learning. Both

methods have similar two stage approach that consists of accuracy boost-



ing and latency reduction to support fast adaptation of deep learning ap-

plications with limited data for edge device.

The first method is to boost unsupervised domain adaptation by co-
optimization of backbone network and parameter selection for edge de-
vice. The first stage of the first method is to boost the accuracy as much as
possible. The quality of feature extractor is crucial thereby we use pre-
trained ImageNet models to handle small datasets like Office datasets.
However, some of the unsupervised domain adaptation methods are not
resilient with advanced feature extractors due to complex and unrepro-
ducible feature extractor training protocols. Inspired by the existing work
[1], we use large and heavyweight feature extractors combined with an
algorithm without updating the feature extractor part. We report the ac-
curacy surpassing the state-of-the-art with EfficientNet [2] and Vision
Transformer [3] feature extractor combined with selective peseudo la-

beling (SPL) [4] algorithm.

The second stage of the first method is to reduce the latency while
maintaining the baseline accuracy. We experiment that uses small and
lightweight pre-trained ImageNet models named once-for-all (OFA) [5]
network and validate the fact that there is a few accuracy margin which
can be translated to latency reduction. We conduct co-optimization to
control both the feature extractor and SPL algorithm parameter to reduce
the total latency of the algorithm. Because of the large search space, a

predictor-guided evolutionary search is implemented to efficiently find



the appropriate feature extractor and SPL algorithm parameter settings.
We also experiment transferability between Office31 dataset and Office-
Home dataset due to the cost of data collection is high. We assume
pre-extraction of source feature to relieve privacy concern and propose
a method to store source feature along to each OFA networks instead
of specialized OFA network. We also conduct more realistic scenario
for edge device such as smaller target domain data and object detection.
Lastly, We conduct an experiment to utilize intermediate domain data to
reduce the algorithm latency further. We report 5.99x and 9.06 x latency

reduction on Office31 and Office-Home dataset, respectively.

The second method is to augment few-shot learning with supervised
contrastive learning. Again, the first stage of the second method is to
boost the accuracy of the few-shot learning scenarios. In the few-shot
learning scenarios, base dataset is provided to train the feature extrac-
tor from scratch thereby we cannot use pre-trained ImageNet models.
Instead of training the feature extractor using cross-entropy loss, we pro-
pose to use supervised contrastive learning [6] technique to augment the
quality of the feature extractor. We observe that supervised contrastive
loss instead of cross-entropy loss is especially effective in the low data
regime. We combine prototype estimation [7, 8] and transductive infor-
mation maximization (TIM) [9] with supervised contrastive learning to
achive state-of-the-art accuracy results. Furthermore, we show that a large

dataset is needed to address domain shift degradation and if our method



is applied, the need for a large dataset is removed.

the second stage of the second method is to reduce the latency of the
few-shot learning scenarios. We observe that MobileNet backbone net-
work with our method surpasses the baseline ResNet backbone model
and we use the accuracy margin to be translated to runtime reduction. By
applying early stopping with MobileNet backbone network, We achieve
3.87x latency reduction for transductive 5-way 5-shot learning scenar-
108.

In our method, characteristics of edge device (e.g., memory band-
width and small neural processing unit) are not considered. Instead, we
report latency measured on working edge system (i.e., NVIDIA Jetson
TX?2). More sophisticated method which considers edge device charac-
teristics 1s left for future work. This dissertation is organized as follows.
Chapter 2 introduces background. Chapter 3 presents problem definitions
and solutions overview. Chapter 4 explains the proposed method to boost
unsupervised domain adaptation with pre-trained ImageNet models for
edge device. Chapter 5 explains the proposed method to augment few-
shot learning with supervised contrastive learning. Chapter 6 concludes

the dissertation.



Chapter 2

Background

2.1 Dataset Size for Vision Applications

Dataset size is important for machine learning. Especially deep learning
methods are known for learning better classifier compared to classical
machine learning methods when the dataset size is large. Table 2.1 shows
image count of famous datasets from several vision applications namely

classification, unsupervised domain adaptation and few-shot learning.

There are diverse datasets with diverse image count. For example, the
image count of datasets for unsupervised domain adaptation varies from
4,110 (i.e., Office31) to 569,010 (i.e., DomainNet). The image count
of datasets for few-shot learning varies from 11,788 (CUB) to 779.165
(Tiered-ImageNet). In this dissertation we concentrate on low data count
regime thereby Office31, Office-Home, CUB, and Mini-ImageNet are

our main focus.



Table 2.1 Dataset size for vision applications

Applications Dataset Image count

ILSVRC2012 [10]

Classification 1,281,167
(ImageNet)
Office31 [11] 4,110
Office-Home [12] 15,588
Unsupervised domain adaptation

Syn2Real [13] 280,157
DomainNet [14] 569,010

CUB [15] 11,788

Few-shot learning Mini-ImageNet [16] 60,000

Tiered-ImageNet [17] 779,165




2.2 ImageNet Pre-trained Models

The performance and the size of model are also important for imple-
menting deep learning based method. Especially when the dataset size is
small, pre-training the model with ImageNet is widely used. We report
the number of parameters for feature extraction, the number of multiply-
accumulate operations for feature extraction, the size of input image and
accuracy on ImageNet validation dataset of the models in Table 2.2 and
Table 2.3. We measure the cost of feature extraction instead of end-to-
end cost because we use other methods for classifier in the subsequent
chapters. Note that the results are reproduced and may differ from the
result reported by papers.

Table 2.2 lists various ImageNet pre-trained models including ResNet
[18], MobileNet [19, 20], NASNet [21], Inception [22], Xception [23],
EfficientNet [2]. The accuracy of models ranges from 71.9 (i.e., Mo-
bilenet_v2) to 88.4 (i.e., Efficientnet_12_ns). Also the number of parame-
ters of models ranges from 2.2 millions (i.e., Mobilenet_v2) to 474.4 mil-
lions. The number of multiply-accumulate operations ranges from 152.2
millions (i.e., MobileNetv3_large_075) to 478,888.5 millions (i.e., Effi-
cientnet_12_ns) The input size ranges from typical 224 to 800 (i.e., Effi-
cientnet_12_ns). Note that the accuracy of EfficientNet surpasses ResNet
baseline by a large margin.

Table 2.3 lists various OFA networks [5] and specialized OFA net-



Table 2.2 ImageNet pre-trained models for feature extraction

Models Parameters M) MAC (M) Inputsize Accuracy
Resnet50 23.5 4,109.5 224 76.13
Mobilenetv3_large_100 4.2 214.9 224 75.5
Mobilenetv3_large_075 2.7 152.2 224 73.4
Nasnetalarge 84.7 23,922.5 331 82.6
Inceptionresnetv2 54.3 13,193.1 299 80.4
Inceptionv4 41.1 12,287 299 80.2

Xception 20.8 8,397.8 299 79

Nasnetamobile 4.2 5717.6 224 74.1
Mobilenet_v2 22 312.9 224 71.9
Efficientnet_12_ns 474.7 478,888.5 800 88.4
Efficientnet_12_ns_475 474.7 172,028.7 475 88.2
Efficientnet_b7_ns 63.7 38,191.9 600 86.8
Efficientnet_b6_ns 40.7 19,294 528 86.5
Efficientnet_b5_ns 28.3 10,389.6 456 86.1
Efficientnet_b8_ap 84.5 63,316.8 672 854
Efficientnet_b4 _ns 17.5 4,435.5 380 85.2
Vit_large_patch16_384 304 174,701.7 384 87.1
Vit_large_patch16_224 304 59,646.3 224 85.8
Vit_large_patch32_384 306.4 44,241.7 384 81.5

10



Table 2.3 Specialized OFA models for feature extraction

Models Parameters M) MAC (M) Inputsize Accuracy
ofa_mbv3_w1.0 6.4 583.7 224 77.4
ofa_mbv3_wl.2 9.2 866.4 224 79.0

ofa_proxyless_-w1.3 6.3 1,030 224 77.7
note10@80.2 7.6 765 260 80.2
note10@79.7 7.5 570.9 220 79.7
note10@79.3 7.5 469.5 220 79.3
note10@78.4 59 349.3 224 78.4
note10@76.6 4.6 244.6 224 76.6
notel0@75.5 3.7 167.6 192 75.5
note10@73.6 3 113 176 73.6
note10@71.4 2.5 78.1 160 71.4
pixell @76.9 4.5 237 220 76.9
LG-G8@76.4 4.5 237 220 76.4
1080ti@76.4 4.8 406 188 76.4
s7edge@76.3 5.1 225.7 192 76.3
note§ @76.1 4 226.4 204 76.1

v100_gpu64@76.1 4.5 359.6 192 76.1
pixel2@75.8 4.5 214.2 208 75.8

tx2_gpul6@75.8 4.5 357 172 75.8

11



works. The first row group shows three OFA networks which are used to
derive specialized OFA networks for target hardware platform. The sec-
ond row group presents specialized OFA networks for Samsung Notel0
cell phone with various accuracy. The third row group lists the special-
ized OFA networks that have similar accuracy with ResNet for vari-
ous hardware platforms. The accuracy of models ranges from 71.4 (i.e.,
note10@71.4) to 80.2 (note 10@80.2). The number of parameters of mod-
els ranges from 2.5 millions (i.e., notel0@71.4) to 9.2 millions (i.e.,
ofa_mbv3_w1.2). The number of multiply-accumulate operations ranges
from 78.1 millions (i.e., note10@71.4) to 1,030 millions (i.e., ofa_proxyless_w1.3).
The input size ranges from 160 (i.e., note10@71.4) to 260 (note 10 @80.2).
Note that the accuracy of specialized OFA networks surpasses ResNet

baseline while maintaining smaller parameters and MAC.

2.3 Augmentation Methods for ImageNet

We introduce several augmentation methods on ImageNet large scale vi-
sual recognition challenge. RandAugment [24] shows a high level of ac-
curacy with a reduced search space thus it is practical to use. The algo-
rithm has two parameters N and M. The parameter N denotes the number
of data augmentation functions used and the parameter M denotes the
strength of the data augmentation. Both parameters have similar inten-

tion that the larger parameters incurs the more regularization strength.

12



The code follows.

transforms = [

’Identity’, ’AutoContrast’, ’Equalize’,
’Rotate’, ’Solarize’, ’Color’, ’Posterize’,
’Contrast’, ’Brightness’, ’Sharpness’,

’ShearX’, ’ShearY’, ’TranslateX’, ’TranslateY’]

def randaugmnet(N, M):
sampled_ops = np.random.choice(transforms, N)

return [(op, M) for op in sampled_ops]

The parameters N and M can be determined by simple grid search.
RandAugment shows great success on various datasets achieving similar
accuracy with heavyweight data augmentation methods.

CutMix [25] is another very effective method to augment ImageNet
accuracy. It combines two training data to generate new training sample
for better generalizability of the model. CutMix algorithm is defined as

follows.
I=MOxy+(1-M)®xp
y=Aya+(1—=A)ys

where M denotes a binary mask that specifies where to remove and copy

from two images, 1 is a binary mask filled with one, @ denotes element-

13



wise multiplications, and A denotes a combination ratio between two
data which.

The algorithm first samples the bounding box coordinates (ry, ry, 7, 7)
by using uniform sampling where the combination ratio is sampled from

the beta distribution.

re=Unif(O,W), r,=Wy1-2

ry=Unif(0,H), rm=H\1-24

CutMix shows great success on various datasets including ImageNet
showing 2.28% accuracy improvements on ResNet.

In our experiment for few-shot learning, however, the accuracy gain
is marginal indicating that the accuracy boosting methods for ImageNet

is not always adaptable for few-shot learning scenarios.

2.4 Contrastive Learning

Contrastive learning is a method to pull similar samples (positives) and
push dissimilar samples (negatives) apart in the embedding space. We
introduce SImCLR [26] as a representative for contrastive learning. Sim-
CLR consists of data augmentation module, base encoder, projection
head and contrastive loss. A data augmentation module is used to gener-
ate two views of the same sample, which is to create positives in the em-

bedding space. Random cropping, color distortions and random Gaussian

14



blur are included in the data augmentation module. Note that the com-
bination of random crop and color distortion is important to boost the
accuracy. A base encoder is a neural network that extracts features from
augmented data. SimCLR uses ResNet for simplicity. A projection head
is an MLP with one hidden layer that converts features to space where
contrastive loss is applied. A contrastive loss is a measure to pull similar
samples and push dissimilar samples apart in the embedding space. The

self-supervised contrastive loss is defined as follows.

pself — ~ Y log exp (i 2j(1/7)
icl Z exp (zi*24/7)
€A(i)
= Proj(Enc(%;)) is a representation of the input in the embedding
space, the - symbol denotes the inner product, 7 is a scalar temperature
parameter, and A (i) =1\ i where the index i denotes anchor, the index j(i)
denotes the positive, and the other indices denote negatives. Note that the
inner product operation measures the similarity between two operands as
the result value is larger if two operands are more similar. The numerator
of the loss is larger if an anchor and the positive is similar. On the other
hand, the denominator of the loss is larger if an anchor and remaining
negatives are dissimilar. As gradients flow in the direction which loss
becomes smaller, it encourages to pull the positive and push the negative

apart.

SimCLR shows great success on ImageNet especially when the smaller

15



fraction of label is used. For example, SImCLR achieves 85.8% top-5 ac-
curacy on ImageNet with only 1% of labels while it achieves 92.6% top-5

accuracy on ImageNet with 10% of labels.
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Chapter 3

Problem Definitions and
Solutions Overview

3.1 Problem Definitions

This section presents the formulation of unsupervised domain adaptation
task and few-shot learning task in detail. Unsupervised domain adapta-
tion task aims to address the problem when training data and test data
are drawn from different distribution. Few-shot learning task addresses
the problem when there is only a few labeled data per class. Note that
an ideal classification tasks have the same distribution between training
dataset and test dataset and there are plenty of labeled dataset for training.

Both methods try to deal with non-ideal cases but different scenarios.

3.1.1 Unsupervised Domain Adaptation

The source domain S has a labeled dataset DS = (x3,y%),i = 1,2,...,ns,

where x¥ € R denotes the feature vector of i-th labeled sample in the
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source domain, d is the dimension of the feature vector and ylS e s
represents the source domain label. Unsupervised domain adaptation is
designed to label an unlabeled dataset DT = x! i =1,2,...,ny from the
target domain 7, x/ € R denotes the feature vector of i-th unlabeled
sample in the target domain. Note that the space of the target label %7
is the same with the space of the source domain %5. Both the labeled
source domain data and the unlabeled target domain data are accessible
in the model training phase unless the setting considers pre-extraction of
source feature. If the setting considers pre-extraction of source feature,
then the model training is two-phase. Only the source domain image is
available in the first phase while only the target domain image is available

in the second phase.

3.1.2 Few-shot learning

Given a labeled base dataset Dypase := {(Xi,¥i),¥i € Cpase} and a novel
dataset Dyovel := {(Xi,¥i),¥i € Cnovel } Where Cpase N Crovel = 0, the goal
of a few-shot learning task is to train a visual model using the base dataset
Dy.se and to generalize to the novel dataset Dyoye; Which has a few train-
ing images per class. At inference, each few-shot learning task episode
consists of a support set and a query set sampled from the novel dataset.
The support set (S) is labeled and includes K samples per class with N

classes (N-way K-shot setting), whereas the query set (Q) includes T
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samples per class with the same N classes without data labels. The goal
is to map the samples in the query set to the desired label using the infor-
mation gained from the support set. In the transductive setting, the model
can access the entire dataset including the query set (i.e., N X K+N x T
samples) at once instead of one by one (i.e., N x K 4 1 samples each) in

the traditional inductive setting.

3.2 Solutions overview

This section presents the proposed idea for unsupervised domain adapta-
tion task and few-shot learning task briefly. Both solutions have a similar
approach. Because the quality and latency of feature extractor is criti-
cal in both unsupervised domain adaptation and few-shot learning, we
upgrade the feature extractor using ImageNet pre-trained models or su-
pervised contrastive learning to boost the accuracy. Then, we perform
co-optimization by evolutionary search or early stopping to reduce the
latency while maintaining the baseline accuracy. The solution for unsu-
pervised domain adaptation is applied in situations which we can use a
large (i.e., ImageNet) pre-trained model while the solution for few-shot
learning is applied in situations which we train the feature extractor from
scratch instead of ImageNet pre-trained models. Especially, both solu-

tions are effective in limited data regime.
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3.2.1 Co-optimization of Backbone Network and
Parameter Selection in Unsupervised Domain

Adaptation for Edge Device

We use highly optimized ImageNet pre-trained feature extractor, namely
EfficientNet [2] and Vision Transformer [3] for accuracy boosting and
once-for-all (OFA) [5] network which is designed for edge device. With
EfficientNet feature extractor, we report state-of-the-art 95.8% and 91.5%
accuracy on Office31 and Office-Home dataset, respectively. With OFA
feature extractor, we report 2.6% and 2% higher accuracy than base-
line ResNet on Office31 and Office-Home dataset, respectively. We use
the accuracy margin to reduce the latency of the total algorithm after-
ward. There are two representative ways to reduce the latency. One is to
change the feature extractor with less heavyweight network. The other
is to tune the SPL algorithm with smaller parameters. We conduct a co-
optimization problem using predictor-guided evolutionary search algo-
rithm to set the feature extractor and the SPL parameters. Considering
the fact that training predictors are expensive, we also experiment trans-
ferability between Office31 and Office-Home dataset where predictors
are trained on one dataset and testing is performed on the other dataset.
Lastly, pre-extraction of source feature is considered and we propose to
store features only for OFA networks instead of all the OFA specialized

networks. We report 5.99x and 9.06x latency reduction on Office31 and
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Office-Home dataset, respectively.

3.2.2 Augmenting Few-Shot Learning with Super-
vised Contrastive Learning

We use supervised contrastive learning [6] to augment the feature ex-
tractor following the few-shot learning base dataset training protocol.
After the feature extractor is trained on supervised contrastive learning,
S-epochs of fine-tuning process is followed. At the beginning of TIM [9]
algorithms, prototype estimation method [7, 8] determines initialization
points by combining support set examples and query set examples in-
stead of the simple mean of support set examples. We report state-of-the-
art results 78.83% (87.76%) for 1-shot (5-shot) few-shot learning tasks
on Mini-ImageNet dataset and 88.81% (93.11%) for 1-shot (5-shot) few-
shot learning tasks on CUB dataset. Note that the accuracy we obtain
on CUB dataset is higher than the accuracy that is domain-shifted by
a large dataset (i.e., Tiered-ImageNet) thereby removing the need for a
large base dataset. We observe that our methods with MobileNet sur-
passes the baseline ResNet by 2.6% (0.8%) for 1-shot (5-shot) classifi-
cation on Mini-ImageNet. We exploit the accuracy gain to be translated
to latency reduction by using early-stopping for TIM algorithm. By do-
ing so, we report 3.87 x latency reduction for transductive 5-way 5-shot

learning scenarios.
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Chapter 4

Co-optimization of Backbone
Network and Parameter Selection
in Unsupervised Domain
Adaptation for Edge Device

Unsupervised domain adaptation deals with the absence of target domain
data label which incurs performance degradation with a simple transfer
method. Especially for edge device, little work was done to address how
various pre-trained ImageNet models influence the performance of algo-
rithms targeted to solve unsupervised domain adaptation. We propose a
model selection approach for unsupervised domain adaptation scenarios.
With the fact that the speed and accuracy of the feature extractor is a
critical factor in unsupervised domain adaptation, we select the feature
extractor with stronger pre-trained ImageNet models which are designed
to run efficiently for edge devices. Furthermore, we adjust the parame-
ters of unsupervised domain adaptation algorithm by co-optimization. At
first, we demonstrate that gradient-based approaches are insufficient for

unsupervised domain adaptation with small dataset because the feature
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extractor scaling is limited. Instead, we use a pseudo-labeling algorithm
with a large model to boost the performance and report the new state-
of-the-art accuracy for Office datasets. We also investigate the impact of
neural architecture search-based models with the pseudo-labeling algo-
rithm for higher runtime efficiency. In this case, NVIDIA Jetson TX2

platform is used to report the execution time of the algorithm.

4.1 Introduction

The recent success of deep neural networks is mainly supported by a
large labeled dataset such as ImageNet [10]. However, the labeled dataset
to train the deep model is often hard to archive because human labeling
is expensive and it raises a privacy concern. Unsupervised domain adap-
tation tries to relive the problem by reusing already existing labeled data
and models to label new data. The challenge is that when using the model
trained on one dataset to test another, domain shift problem occurs and
degrades the model’s accuracy. Therefore, the methods for unsupervised
domain adaptation are required to reduce the domain shift problem by
typically aligning marginal or conditional distribution of source and tar-
get domains.

The quality of feature extractor is crucial when building a better
model for classification. The recent improvement on ImageNet classi-

fication provides better feature extractors off-the-shelf. Therefore, it is
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natural to apply the state-of-the-art image classification model to un-
supervised domain adaptation context. However, some of the methods
are not adaptable because of the complex and unreproducible feature ex-
tractor training protocol. It is recommended to use unsupervised domain
adapatation methods without the need to fine-tune the feature extrac-
tor part when applying the heavyweight feature extractors. Inspired by
the existing work [1], which summarized the effect of various ImageNet
models on domain adaptation scenarios, we report the accuracy surpass-
ing the state-of-the-art by using the heavyweight EfficientNet [2] and
Vision Transformer [3] feature extractor and Selective Pseudo Labeling

(SPL) [4] algorithm.

Although the heavyweight feature extractor is sufficient to achieve
new state-of-the-art accuracy, the problem is raised when it is applied
to edge devices. Considering the fact that Office dataset, which is com-
monly used to evaluate the performance of unsupervised domain adap-
tation, is small compared to ImageNet, it is reasonable to implement the
entire pipeline of the algorithm on edge devices. We show that the cost of
feature extraction is dominant with the heavyweight feature extractors. If
an edge device is connected to server with high speed bandwidth, then all
the new data can be delivered to server for annotation and the edge device
merely performs a terminal. However, when an edge device is not con-
nected to server or data is not delivered due to the privacy concern, then

the entire pipeline of the algorithm is contained in the edge device and
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the efficiency of both the feature extractor and the back-end algorithm

becomes crucial.

For efficient feature extractor, neural architecture search is proposed
to build neural network models for edge devices. Conventional approach
is to design a neural network with hand-crafted sub-modules designed by
experts. The process of neural network design is indeed labor-intensive
and expensive. Neural architecture search automates the selection of deign
choices by mathematical formulation (e.g., minimizing loss function).
Therefore, it is possible to apply neural architecture search algorithm
on each of diverse hardware with small additional cost. Specifically, we
consider Once-for-All (OFA) [5] neural architecture search algorithm be-
cause the final models designed by OFA algorithm is highly efficient on
diverse hardware. Furthermore, OFA releases off-the-shelf neural net-

work models in various hardware and various latency target.

For efficient implementation of SPL algorithm, we consider adjust-
ing the parameters of the algorithm. There are main parameters that affect
model runtime significantly. The problem is to select which and how to
maximize the efficiency of the entire algorithm. Note that the feature ex-
tractor selection is also a critical factor for the accuracy and runtime of
the entire algorithm pipeline. We examine that applying OFA neural ar-
chitecture search to find a network model based on SPL accuracy instead
of ImageNet accuracy is based on fallacy. Rather, the use of pre-trained

ImageNet model from OFA is a reasonable design choice. Based on the
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observation, we propose an co-optimization method to jointly select the
feature extractor and the SPL parameters. The co-optimization algorithm
is based on the predictor-assisted evolutionary search to minimize the

search cost.

In recent years, unsupervised domain adaptation with a lack of access
to source data is proposed [27]. The algorithm trains the target-specific
feature extractor by information maximization and self-supervised pseudo-
labeling. Such source-free regime is also adaptable for the unsupervised
domain adaptation algorithms without fine-tuning the feature extractor.
Using the fact that the algorithms require source domain data features not
the source domain data itself, storing the source data features just beside
the feature extractor is sufficient. We name such scheme pre-extraction of
source feature. However, pre-extraction of source feature combined with
the neural architecture search is not straightforward because the neural
architecture search produces diverse set of specialized feature extractors
to support diverse hardware. Storing all the features from all the diverse
set of feature extractor is inefficient. We propose a simple practical ap-
proach to support the diverse set of specialized feature extractor (i.e.,

storing only one representative feature).

We also conduct more realistic scenario for edge device such as smaller
target domain data and object detection. Lastly, We conduct an experi-
ment to utilize intermediate domain data to reduce the algorithm latency

further.
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In our method, characteristics of edge device (e.g., memory band-
width and small neural processing unit) are not considered. Instead, we
report latency measured on working edge system (i.e., NVIDIA Jetson
TX?2). More sophisticated method which considers edge device charac-
teristics is left for future work.

In summary, the contributions of our study are as follows:

* We propose the use of a heavyweight feature extractor with an un-
supervised domain adaptation algorithm without fine-tuning fea-

ture extractor to boost the classification accuracy on Office dataset.

* We show the implementation of neural architecture search algo-
rithm on unsupervised domain adaptation is not straightforward
and we propose evolutionary search based co-optimization approach
to jointly select the feature extractor and the algorithm parameters

on Office dataset.

* We propose to store only one representative feature from the OFA
network instead of storing all the features from diverse set of spe-

cialized networks to support diverse set of hardware.

* We show that our method is effective on more realistic scenario

which includes smaller target domain and object detection.

* We propose that our method can be faster by fitting a classifier

using intermediate domain data.
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4.2 Related Works

Unsupervised domain adaptation: To alleviate domain shift problem,
unsupervised domain adaptation methods are proposed. There are tradi-
tional approaches [28-31] and deep learning-based approaches [32-35]

in unsupervised domain adaptation.

Traditional approaches mainly utilize extracted features from data
images. Previously lower-level SURF features are widely used in do-
main adaptation [28]. After the emergence of deep neural networks, pre-
trained ImageNet models are used to extract features from data images
(Alexnet [36], Decaf [30], Resnet50 [37], Xception [31], Nasnetlarge
[1]). Note that the traditional approaches don’t fine-tune the deep neu-
ral networks (i.e., feature extractor part). Performance of the features
extracted from deep neural networks typically exceed that from SURF
features. Furthermore, it is reasonable to conclude that the ImageNet ac-
curacy of the deep neural network has some positive correlation with the
accuracy of unsupervised domain adaptation [1]. [38] proposes transfer
component analysis for domain adaptation and it learns transfer compo-
nents across domains in a reproducing kernel Hilbert space using maxi-
mum mean discrepancy. [39] presents kernel distribution embedding and
Hilbert-Schmidt independence criterion based method to reduce the di-
mensionality of the data while it preserves the structural information.

[40] introduces transfer joint matching approach to formulate a joint op-
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timization problem of feature matching and instance reweighting. [29]
proposes a kernelized local-global approach to consider the domain adap-
tation problem as a bi-object optimization problem via the kernel method.
[41] proposes a method to extract conditional transferable components
whose conditional distribution is invariant after proper location-scale trans-
formations. [42] presents a general cross-domain learning framework
which uses the intra-affinity of classes to perform intra-class knowledge
transfer. [43] introduces balanced distribution adaptation method that can
adaptively leverage the importance of the marginal and conditional dis-
tribution discrepancies and also proposes weighted balanced distribution
adaptation which tackles the class imbalance problem. [30] proposes a
manifold embedded distribution alignment approach to learn a domain-
invariant classifier in Grassmann manifold with structural risk minimiza-
tion. [44] presents structural correspondence learning to automatically
induce correspondences among features from different domains [40] in-
troduces a novel transfer joint matching approach to model both feature
matching and instance reweighting in a unified optimization problem to
reduce the domain difference by a principled dimensionality reduction
procedure. SPL [4] algorithm is proposed to tackle inaccurate pseudo-
labeling problem by selective pseudo-labeling strategy based on struc-

tured prediction.

In recent years, deep learning-based methods are used to build a more

effective feature representation by gradient updates. [33] proposes a Con-
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volutional Neural Network (CNN) architecture that introduces an adapta-
tion layer and an additional domain confusion loss. [34] presents a deep
adaptation network architecture that generalizes deep convolutional neu-
ral network to the domain adaptation scenarios by embedding hidden
representations of all task-specific layers. [45] introduces multi-task au-
toencoder which extends the standard denoising autoencoder framework
by substituting artificially induced corruption. [35] proposes a neural net-
work architectures which are trained on labeled data from the source
domain and unlabeled data from the target domain not to discriminate
between the source and target domains. [46] presents adversarial dis-
criminative domain adaptation which combines discriminative model-
ing, untied weight sharing, and a generative adversarial network [47]
loss. [48] introduces domain separation network that learns to extract im-
age representations which are private to each domain and shared across
domains inspired by private-shared component analysis. [49] proposes
Batch Spectral Penalization (BSP) which is a general approach for pe-

nalizing the largest singular values to enhance transferability.

ImageNet models: Many deep nerual network architectures are trained
for ImageNet classification task. [50] presents AlexNet that consists of
five convolutional layers followed by max-pooling layers and three fully
connected layers. [51] introduces a network architecture with very small
convolution filters and pushes the depth to 16-19 weight layers. [52] pro-

poses SqueezeNet, which is a small deep neural network architecture

30



to achieve AlexNet [50] accuracy with 50 times fewer parameters. [53]
introduces GoogLeNet that consists of 22 layers and carefully crafted
design with increasing the depth and width of the network while keep-
ing the computational budget constant. [54] presents ShuffleNet, which
adapts pointwise group convolution and channel shuffle to reduce com-
putation cost while maintaining the accuracy for mobile devices. [18]
proposes residual learning framework to ease the training of deep net-
works with a depth of up to 152 layers by reformulating the layers as
learning residual functions. [19] introduces MobileNetV2 architecture
that consists of inverted residual structure and linear bottleneck layers
for mobile devices. [20] presents MobileNetV3 structure using a com-
bination of complementary search techniques based on hardware-aware
network architecture search complemented by the NetAdapt algorithm.
[21] proposes NASNet architecture using the design of a new search
space that enables transferability from CIFAR-10 dataset to ImageNet
dataset. [55] introduces DenseNet, which connects each layer to every
other layer in a feed-forward manner. [23] presents Xception architecture
that Inception modules are replaced with depthwise separable convolu-
tions. [22] proposes Inception-v4, which combines Inception architec-
tures with residual connections. [2] introduces EfficientNet using neural
architecture search to design a baseline network and adapting a novel
scaling method that scales the model with carefully balancing network

depth, width, and resolution. [56] presents RegNet using a network de-
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sign space that parametrizes populations of networks instead of focusing
on designing individual network instances. [3] proposes Vision Trans-
former, which deploys a pure transformer architecture applied directly to

sequences of image patches.

Neural architecture search: Neural architecture search automates
the deep neural network architecture design process [21, 57-60]. Initial
neural architecture search algorithms [21, 58, 61] find the network ar-
chitecture with a goal of maximum accuracy. Recent neural architecture
search algorithms [62-64] take hardware efficiency into consideration.
Furthermore, OFA [5] removes model retraining process to reduce GPU
hours, dollars, and CO; emission. [57] proposes a method using a recur-
rent neural network (RNN) to generate the model descriptions of neural
networks and train this RNN with reinforcement learning. [58] presents
AmoebaNet using tournament selection evolutionary algorithm by in-
troducing an age property to favor the younger genotypes. [59] intro-
duces a framework toward efficient architecture search using reinforce-
ment learning by exploring the architecture space based on the current
network and reusing its weights. [60] proposes the continuous relaxation
of the architecture representation allowing efficient search of the archi-
tecture using gradient descent. [61] presents a function-preserving trans-
formation for efficient neural architecture search, which allows reusing
previously trained networks and existing architectures. [62] introduces

ProxylessNAS that can directly learn the architectures for large-scale tar-
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get tasks and target hardware platforms by addressing the high memory
consumption of differentiable neural architecture search. [63] proposes
MnasNet for mobile neural network search, which explicitly incorporate
model latency into the main objective. [64] presents FBNets family that
optimizes convolutional neural network architecture for mobile devices

with differentiable neural architecture search framework.

4.3 Methodology

This section presents the proposed idea in detail.

4.3.1 Examining an Unsupervised Domain Adap-

tation Method

In this study, we consider the selective pseudo labeling (SPL) unsuper-
vised domain adaptation algorithm [4]. The algorithm aligns the condi-
tional distribution of source domain and target domain using following
techniques.

Firstly, the algorithm performs dimensionality reduction using prin-
ciple component analysis (PCA) because of redundant information con-
tained in the high dimensional feature vector. the redundant information
incurs unnecessary computation. PCA is formulated as eigenvalue prob-

lem and solved by singular value decomposition (SVD) solver. Feature
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vectors from the source domain and target domain are concatenated as a

matrix [xf ey X xlT,. xI' ] and performs PCA to reduce dimnesional-

s Xy B
ity of the matrix. Additional L2 normalization is performed to encourage
samples of different domains to be distributed on the surface of the same
hyper-sphere. The L2 normalization has a empirical evidence that it leads
to better performance.

Second, the algorithm performs domain alignment using the super-
vised locality preserving projection (SLPP) [65] to learn a projection

matrix P which aligns samples from different domains to the same la-

tent subspace.

mPéHZI P % — PTx[|5M;;
i

where P € R4*% g, < d, is the dimensionality of the learned space,
X; is the i-th column of the labeled data matrix and Mj; is the similarity

matrix and defined as follows.

L yi=y;
Mij:

0 otherwise.
The objective of the projection is that samples from the sample class
are projected adjacent to each other in the subspace. The problem is for-
mulates as generalized eigenvalue problem and solved by sparse eigen
solver.
Third, the algorithm performs pseudo-labeling. There are two meth-

ods of pseudo-labeling based on the distance definition. One is nearest
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class prototype (NCP). In NCP, the class prototype for each class is de-
fined as the mean of the samples with the same label. Then, the target
samples are classified as the label with minimum Euclidean distance to
the class prototype as the name nearest class prototype refers to. The
other is structured prediction (SP). SP aims to exploit intrinsic struc-
ture information of the target samples. Structured prediction employs K-
means clustering algorithm to generate clusters beforehand. The cluster
centers constitute class prototype for the target domain. Afterwards, the
algorithm assigns one-to-one match between the class prototypes from
the source domain and the cluster centers from the target domain. The
objective is to minimize the sum of all matched pairs. Therefore, the tar-
get domain samples are classified collectively following the clusters they
are involved in. The algorithm combines two methods by choosing max-
imum value of the probabilities which the target sample belongs to class

prototype from the source domain.

Fourth, the algorithm performs iterative learning strategy. Instead of
using full set of pseudo labels the algorithm generates, only pseudo la-
bels with probability greater than threshold are used. One drawback of
the iterative learning strategy is that it only selects labels from the spe-
cific class. Therefore, the algorithm implements the class-wise selection
strategy to assign each class from the target domain have the same im-

portance.

The time complexity of PCA is O(dn? +d?) approximately and the
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time complexity of SLPP is O(T (2din* +d3)).

4.3.2 Boosting Accuracy with Pre-Trained ImageNet

Models

We examine various ImageNet models for boosting unsupervised domain
adaptation algorithm. One of them is EfficientNet [2] which brings new
state-of-the-art result. EfficientNet proposes compound model scaling
which consists of depth, width and resolution scaling. Scaling up any di-
mension of the neural network improves accuracy, however the accuracy
gain saturates soon. Therefore, it is important to scale up three dimen-
sions carefully to maximize the accuracy gain. The compound scaling
method is defined as follows.

depth: d = o?

width: w = B¢

resolution: r = y¢

st.a-B2-y 2
a>1,>1y>1
where «, B,y are assigned by a grid search and ¢ is a coefficient user can
control to determine the amount of resources the neural network model
can use. EfficientNet architecture is a family of networks that first as-
sign a good baseline network and scales up with the compound scaling

method. The baseline network is generated by a multi-objective neural
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architecture search using the search space of [63] and use ACC(m) x
[FLOPS(m)/T]" as the optimization objective and called EfficientNet-
BO. As the search space is the same with [63], the network is similar
to MnasNet while EfficientNet-BO is slightly bigger. Building block of
the network is mobile inverted bottleneck and squeeze-and-excitation is

added.

The other ImageNet models that we use is Vision Transformer [3]
which outperforms convolutional neural networks with very different
network architecture. Transformer architecture is widely used for nat-
ural language processing tasks achieving new state-of-the-art accuracy
on various tasks. The Vision Transformer is a new adoption of the Trans-
former architecture for vision application. Sequences of image patches
are treated as tokens in natural language processing application and di-
rectly fed into the Vision Transformer model which consists of embed-
ding, Transformer encoder and multilayer perceptron head. Transformer
encoder is composed of multi-head attention, layer normalization and
multilayer perceptron which is same as the standard Transformer ar-
chitecture. Pure Transformer architecture scores the accuracy nearly the

same level of convolutional neural network counterparts.

Note that if latency of the algorithm doesn’t matter and server can
assist for feature extraction then using heavyweight feature extractor is
desirable. It provides high quality features and high accuracy by sacri-

ficing latency. However, we aim the scenario where latency matters and
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end-to-end algorithm is executed on the edge device thereby we cannot
use heavyweight feature extractor. Instead, we need to use light but effi-

cient feature extractor which is introduced in next subsection.

4.3.3 Boosting Accuracy for Edge Device

We need to use light but efficient feature extractor in the scenario where
the total latency of algorithm is important. In this study, we examine
once-for-all (OFA) [5] neural architecture search method because it shows
great success in many low-power computer vision challenges. Once-for-
all network is a combination of many sub-networks that share weights.
OFA proposes progressive shrinking (PS) process that supports different
depth, width, kernel size and resolution to reduce interference between
sub-networks. PS starts with the largest network and then progressively
samples smaller sub-network within the largest network and fine-tunes
it. After successfully trains the once-for-all network, the algorithm find
the proper sub-network for each hardware device. The search space is
approximately 2 x 10'° and the search process is guided by predictor-
assisted evolutionary search. The latency predictor is built using look-
up table (LUT) and the accuracy predictor is built using neural network
trained on data from randomly sampled 16K sub-networks. The found
sub-network that is optimized for specific hardware is fine-tuned for 25

or 75 epoches with ImageNet training data.
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4.3.4 Co-optimization of Backbone Network and

Parameter Selection

For neural network deployment, efficient inference is crucial. However,
there are many knobs to control the accuracy/latency trade-off. For ex-
ample, the feature extractor can be downgraded to reduce the feature
extraction latency. As noted earlier, OFA network provides a variety of
ImageNet pre-trained network for various hardware platforms with vari-
ous ImageNet accuracy. We use specialized OFA networks for Samsung
Notel0 because it provides the largest ImageNet accuracy range from
71.4 to 80.2. In fact, there are 8 specialized OFA networks for Sam-
sung Notel0 off-the-shelf. Although we use specialized OFA networks
for Notel0, we measure the latency on NVIDIA Jetson TX2 platform
which is a good representative for mobile GPU. Another examples for
reducing the algorithm’s execution time is to optimize the SPL hyper-
parameters. We control d, dj, and the number of iterations to optimize
the SPL algorithm’s execution time. Note that decreasing d and d; pa-
rameters corresponds to reducing the execution time of SVD solver and
eigen solver because smaller matrix is injected to the solvers. Decreasing
the number of iterations incurs the execution time reduction because the
algorithm performs pseudo labeling for more instances. Therefore, the
execution time of end-to-end algorithm depends on the choice of both

the feature extractor and hyperparameters of SPL algorithm.

39



As search space is about 10, enumerating all the possible combina-
tions is prohibitive. Instead, we implemented an accuracy predictor and
a latency predictor to perform evolutionary search, which is analogous to
OFA [5]. The accuracy predictor has an input of (feature extractor, SPL
parameters) pair to output the accuracy of unsupervised domain adapta-
tion accuracy on Office dataset. The latency predictor also has an input
of (feature extractor, SPL parameters) pair to output the latency of total
algorithm execution. And the evolutionary algorithm we use is [58]. In
our experiment for Office31 dataset, we collect 200 data points running
on NVIDIA Jetson TX2 by measuring average latency and average accu-
racy to generate train set and validation set with 0.3 test split ratio (i.e.,
140 data points for train and 60 data points for validation). We imple-
mented gradient boosting regressor for both accuracy and latency pre-
dictor because it shows excellent performance with manageable cost for
prediction. We conduct grid search with 5-fold cross validation to setup
hyperparameters of the gradient boosting regressors. We use max depth
3 and the number of estimators 300 for the gradient boosting regres-
sors. Accuracy performance is 0.33% RMSE for the accuracy predictor
and 4.3 seconds RMSE on Office31 dataset. We implement evolutionary

search algorithm with the following objective.
OBJ = ACCURACY —c-LATENCY

where c is a coefficient to control accuracy/latency trade-off. If ¢ is zero,
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then the algorithm seeks the most accurate model regardless of the algo-
rithm’s latency. If ¢ is nonzero, then the algorithm finds a model under
latency constraints. Note that [62] uses similar strategy when combining
the multiple objectives into one while [64] uses multiplication to com-
bine the multiple objectives. For details about evolutionary search, the
number of elements in population is 200 with number of iterations 2000.
For each iteration, the algorithm randomly samples 20 elements within
the population and choose an element with the highest OBJ value. Then,
mutation process, which changes one of attribute randomly, is performed
to guarantee diversity in the population. Lastly, remove the oldest ele-
ment in the population and insert the mutated element into the popula-
tion. As the evolutionary search process is guided by two predictors, total

cost of the search algorithm is negligible compared to data collections.

4.4 Experiments

Datasets: We examined two unsupervised domain adaptation datasets,
namely Office31 and Office-Home. The Office31 dataset [11] is com-
posed of three domains (i.e., Amazon, Webcam and DSLR) and 31 com-
mon classes. The images within Amazon are from amazon.com and the
images within Webcam or DSLR are taken using a webcam and a dslr
camera, respectively. It has 2,817, 795 and 498 images for Amazon, We-

bcam and DSLR, respectively (i.e., 4,110 images in total). The Office-
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Home dataset [12] is composed of four domains (i.e., Artistic images,
Clipart, Product images and Real-World images) and 65 common classes.
The images within Art are from paintings, sketches or artistic depic-
tions and the images within Clipart are from clipart images and the im-
ages within Product are from images without background and the images
within Real-World are from regular images capture with a camera. It has
2,427, 4,365, 4,439 and 4,357 images for Art, Clipart, Product and Real-
World, respectively (i.e., 15,588 images in total).

Evaluations: We evaluate the algorithm’s score by comparing the pre-
dicted label of target domain with the ground truth label. For each un-
supervised domain adaptation scenario, one pair of domains are selected
iteratively to serve as a source domain and a target domain. Therefore,
there are 6 pairs for Office31 dataset and 12 pairs for Office-Home dataset.
Once source domain and target domain is determined, samples and labels
of the source domain and samples of the target domain are accessible by
the algorithm. After accuracy scores of all the pairs are evaluated, the
accuracy scores are also averaged to summarize the algorithm’s perfor-
mance.

Implementation details: We examined various backbone network mod-
els, namely ResNet [18], MobileNet [19, 20], NASNet [21], Inception
[22], Xception [23], EfficientNet [2], Vision Transformer [3] and OFA

[5] network models. We rewrite original Matlab code ! to support Python

"https://github.com/hellowangqian/domain-adaptation-capls
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environment using NumPy [66], SciPy [67] and Scikit-learn [68]. The
functional correctness is verified by comparing a significant digits of
Python code with Matlab code when the backbone network is ResNet50.
We rewrite the constructW1 function by changing from a for loop to
an outer product of prime numbers because profiler indicates that the
function is a bottleneck. When extracting the features form the back-
bone networks using PyTorch [69], we follow the standard image pro-
cessing pipeline as described with the backbone networks. We manually
choose bilinear interpolation for the image size smaller or equal than 250
and choose bicubic interpolation otherwise. The interpolation method
marginally affect the accuracy of the model. When changing the back-
bone network, we also conduct additional hyperparameter tuning using

grid search to report the impact of the hyperparameter.

4.4.1 ImageNet and Unsupervised Domain Adap-
tation Accuracy

We evaluated the accuracy of SPL algorithm with various feature ex-
tractors on the Office31 and Office-Home datasets. First of all, the Of-
fice31 results are summarized in Table 4.1. The first row group describes
the verification of functional correctness. Accuracy numbers from the
Python code is almost the same with accuracy numbers from the re-
produced Matlab code and the paper. Therefore, we conclude that our

Python code is functionally correct. After that, we experiment various
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Table 4.1 Backbone networks and SPL on Office31

Model AW DW WD AD DA WA ‘ Avg

Resnet50 (paper) 927 9877 99.8 93.0 764 76.8 | 89.6
Resnet50 (reproduced, Matlab)  92.7 98.7 99.8 93.0 764 76.7 | 89.6
Resnet50 (reproduced, Python)  92.7 98.7 99.8 93.0 764 76.7 | 89.6
Resnet50 (torchvision) 933 98.6 100 932 757 77.1 | 89.7
Mobilenetv3_large_100 93.8 98 998 91 774 774 | 89.6
Mobilenetv3_large_075 90.7 97.6 99.6 91.8 753 764 | 88.6
Mobilenetv3_large_minimal 100 87.9 97 994 827 742 71.8 | 85.5
Mobilenetv3_small_100 80.3 979 99 847 7T1.1 64.6 | 829
Mobilenetv3_small 075 82 96.1 98.6 795 638 643 | 80.7
Mobilenetv3_small_minimal_ 100 75.7 96.5 99.2 75.7 59.7 624 | 78.2
Mobilenetv3_large_100 88.3 99 100 79.1 757 752 | 86.2
Mobilenetv3_rw 926 98 998 934 764 765 | 894
Nasnetalarge 962 989 994 954 799 802 |91.7
Inceptionresnetv2 95 99 100 952 80 793|914
Inceptionv4 904 98.6 994 956 76.7 789 | 89.9

Xception 922 989 100 932 769 77.8 | 89.8
Nasnetamobile 864 948 958 90 733 744 | 858
Mobilenetv2 834 97.1 99.6 932 734 732 | 86.6
Efficientnet_12_ns 99 100 100 994 847 87.6 | 95.1
Efficientnet_12_ns_475 98.1 99.2 100 99 853 853|945
Efficientnet_b7_ns 98.7 99.1 100 98 84.8 85.6 | 944
Efficientnet_b6_ns 97.7 99.1 100 98 82.6 835|935
Efficientnet_b5_ns 98.6 99.1 100 97.8 84.6 86.6 | 945
Efficientnet_b8_ap 972 99 100 97.8 83.6 83.1 | 935
Efficientnet_b4_ns 958 989 99.8 964 821 83 | 927
Efficientnet_b3_ns 96 989 100 97.8 81.3 82.5 | 927
Efficientnet_b2 _ns 952 982 100 948 812 79.6 | 915
Efficientnet_lite4 948 98 998 92 772 76.7 | 89.8
Efficientnet_b1_ns 95 987 99.8 96.6 79.8 803 | 91.7
Efficientnet_lite3 948 989 99.6 96.6 77.5 77.3 | 90.8
Efficientnet_lite2 889 98 994 926 785 764 | 88.9
Efficientnet_litel 914 982 99.2 926 744 75.6 | 88.6
Efficientnet_lite0 884 979 99 825 754 73.1 | 86.1
Vit_large_patch16_384 99.9 992 100 99 883 884 | 958
Vit_large_patch16_224 98.4 992 100 984 87 87.5 | 95.1
Vit_large_patch32_384 96.1 98.7 100 96.8 85.7 85.2 | 93.8
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feature extractor with our Python code. The second row group indicates
the MobileNetV3 model family with SPL algorithm. Accuracy of the
MobileNetV3 is almost same with accuracy of the ResNet50 when the
large model is deployed. The third row group implements other feature
extractors. NASNet performs the best among them exceeding ResNet50
by about 2%. The fourth row group shows the performance of Efficient-
Net feature extractors. The largest EfficientNet-L2 scores the best among
them exceeding ResNet50 by a large margin. Specifically, the perfor-
mance of EfficientNet-L2 is over 99% for A - W, D — W, W — D
and A — D which means that the algorithm finds almost correct labels
for the target domain samples. The performance of EfficientNet-L2 is
slightly lower (i.e., over 80%) for D — A and W — A. Note that the im-
age counts of domain D and W are comparably smaller than the images
counts of domain A. Therefore, we conjecture that domain shift from a
small domain to a large domain is harder to solve than domain shift from
a large domain to a small domain or domain shift from a similar sized
domain. The fifth row group summarizes the accuracy of Vision Trans-
former feature extractor. Vision Transformer surpasses the accuracy of

other feature extractors, it shows 95.8% accuracy on Office31 dataset.

Table 4.2 shows the accuracy of SPL algorithm with various fea-
ture extractors on Office31 dataset with hyperparameter tuned using grid
search. We focused on d and d| parameters as they are main parameters

to affect the accuracy of the algorithm. Note that the case of ResNet50
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Table 4.2 Backbone networks and SPL on Office31 (hyperparameter
tuned)

Model AW DW WD AD DA WA ‘ Avg  diff
Resnet50 (torchvision) 951 987 100 948 76.1 78.6 ‘ 90.6  +1.0
Mobilenetv3_large_100 92.7 98 99.8 926 776 77.1 | 89.6 +0
Mobilenetv3_large_075 90.7 97.6 99.6 918 753 764 | 88.6 +0

Mobilenetv3_large_minimal_100  89.9 969 994 91 733 733 | 873 +1.8
Mobilenetv3_small_100 824 976 99 88 728 642 84 +1.1
Mobilenetv3_small_075 84 97.6 988 80.7 676 651 | 823 +1.6

Mobilenetv3_small_minimal_100 76 96.5 992 777 602 614 | 785 403
Mobilenetv3_large_100 91.6 985 994 934 752 727 | 885 423

Mobilenetv3_rw 941 98.1 100 946 759 713 90 +0.6
Nasnetalarge 96.7 98.6 994 962 799 80.7 | 919 +0.2
Inceptionresnetv2 947 989 998 958 809 79.7 | 91.6 +0.2
Inceptionv4 928 984 996 956 766 795 | 904 +0.5
Xception 943 985 998 962 769 807 | 91.1 +1.3
Nasnetamobile 875 947 9538 91 738 743 | 862 +04
Mobilenetv2 86.7 969 99.6 892 764 738 | 8.1 405
Efficientnet_12_ns 99 100 100 994 852 875 | 952 +0.1
Efficientnet_12_ns_475 98.9 99.2 100 99 88.1 877 | 955 +1.0
Efficientnet_b7_ns 989 99.1 100 994 862 857 | 949 +0.5
Efficientnet_b6_ns 979 99.1 100 97.8 83.6 856 94 +0.5
Efficientnet_b5_ns 98.5  99.1 100 982 86 86.3 | 947 402
Efficientnet_b8_ap 97.1 99 100 982 83.8 837 | 936 +0.1
Efficientnet_b4_ns 958 989 998 964 823 836 | 928 +0.1
Efficientnet_b3_ns 96.6  98.7 99.8 97 81.8 84 93 +0.3
Efficientnet_b2_ns 956 979 100 964 80.2 808 | 91.8 +0.3
Efficientnet_lite4 94.6 98 99.8 922 782 767 | 899 +0.1
Efficientnet_bl_ns 95 98.7 99.8 96.6 799 803 | 91.7 +0
Efficientnet_lite3 953 989 99.6 976 79 774 | 91.3  +0.5
Efficientnet_lite2 933 981 994 94 78 76.1 | 89.8 +0.9
Efficientnet_lite1 946 984 994 932 743 747 | 89.1 +0.5
Efficientnet_lite0 91.7 9717 99 873 749 727 | 872 +1.1
Vit_large_patch16_384 100 992 100 992 89.6 882 96 +0.2
Vit_large_patch16.224 987 992 100 992 885 887 | 957 +0.6
Vit_large_patch32_384 97.6 984 100 972 858 857 | 941 +0.3
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the accuracy increases about 1% while the improvement of MobileNetV3
is marginal. In the case of EfficientNet, EfficientNet-L2-475 surpasses
EfficientNet-L2 after the hyperparameter tuning. We conjecture that the
input image size of the EfficienNet-L2 is too big (i.e., 800 x 800) for
Office31 dataset because the Office31 dataset typically has image size
of 250 x 250 ~ 1001 x 1001. Note that we use bicubic interpolation for
feature extractor with input image size larger than 250 x 250. Instead,
EfficientNet-1.2-475 has the input image size of 475, which is more ap-
propriate for the Office31 dataset. Still, Vision Transformer surpasses all

the other feature extractors.

Table 4.3 and Table 4.4 presents the accuracy of SPL algorithm with
various feature extractors on Office-Home dataset without hyperparame-
ter tuning. Office-Home datset is more complex than Office31 dataset so
the accuracy of the algorithm on Office-Home is lower than that of Of-
fice31. The first row group of Table 4.3 shows the functional correctness
of our Python code. The accuracy reproduced by Matlab code is the same
with the accuracy reproduced by our Python code. The second row group
of Table 4.3 presents the accuracy of MobileNetV3 model family with
SPL algorithm. Unlike Office31 dataset, MobileNetV3 models underper-
form on Office-Home dataset compared to ResNet50 about 4%. This in-
dicates careful model selection is needed to guarantee ResNet50-level
performance on complex dataset (i.e., Office-Home). The second row

group of Table 4.3 shows the performance of other feature extractors. The
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Table 4.3 Backbone networks and SPL on Office-Home

Model AC AP AR CA CP CR
PA- PC PR RA RC RP | Avg

Resnet50 (paper) 545 77.8 819 651 78.0 8l.1
66.0 53.1 828 699 553 86.0 | 71.0

Resnet50 (reproduced, Matlab)  54.5 77.8 819 65.1 780 81.1
66.0 53.1 828 699 553 86.0 | 71.0

Resnet50 (reproduced, Python)  54.1 77.8 81.8 65.1 782 81.1
66.0 53.1 828 699 555 86.0 | 71.0

Resnet50 (torchvision) 51.5 785 822 65.1 78  80.3
663 489 83 71.7 523 856 | 703

Mobilenetv3_large_100 523 768 79.1 583 727 756
61 49.7 804 669 523 80.2 | 67.1

Mobilenetv3_large 075 474 7177 764 534 705 742
56.3 478 785 648 493 785 | 64.1

Mobilenetv3_large_minimal 100 429 723 734 494 67.6 695
543 414 778 623 457 77 | 61.1

Mobilenetv3_small_100 418 672 68.6 443 629 653
47 402 716 556 456 737 | 57

Mobilenetv3_small_075 384 595 649 414 575 588
447 38 68 52 416 716 | 53

Mobilenetv3_small minimal 100 349 55 60.7 349 565 55.7
389 351 639 49 37  69.7 | 49.3

Mobilenetv3_large_100 53 73.6 788 56.7 70.1 745
60.7 50.7 81.1 69.5 548 808 | 67

Mobilenetv3_rw 512 759 794 557 728 76.2
609 495 805 68 54 802 | 67

Nasnetalarge 541 83.6 843 724 835 838
74 533 857 76.7 553 875|745

Inceptionresnetv2 542 819 847 724 82.6 838
742 542 858 76.8 589 872 | 747

Inceptionv4 525 814 82 70.7 794 80.6
744 52 842 76.1 52,6 85.6 | 72.6

Xception 53 813 825 709 77.8 80.8
734 528 839 757 544 852|726

Nasnetamobile 404 729 754 542 715 725
614 41 764 637 447 718 | 62.7

Mobilenetv2 444 719 751 56.1 707 744
563 44 788 652 459 81.7 | 63.7
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Table 4.4 Backbone networks and SPL on Office-Home (cont.)

Model AC AP AR CA CP CR
PA PC PR RA RC RP | Avg

Efficientnet_12_ns 74 936 92 882 936 91.7
855 733 929 884 752 954 | 87
Efficientnet 12 ns 475 78.7 93.1 925 89.8 938 922
872 78 933 905 779 949 | 88.5
Efficientnet_b7_ns 722 90 91.3 848 91.6 90
83.7 69.7 92 862 724 945 | 849
Efficientnet_b6_ns 71.8 899 91 835 893 895
819 713 91 849 73.6 925 | 842
Efficientnet_b5_ns 712 89.7 90.1 83 89.3 895
80.2 68 913 83 69.3 93.1 | 83.1
Efficientnet_b8_ap 65.8 89.1 89.3 81.6 893 88.6
81.1 63 89.8 835 672 913 | 81.6
Efficientnet_b4_ns 674 89.1 89.7 80.2 858 86.9
774 645 899 815 667 92 | 80.9
Efficientnet_b3_ns 642 885 885 799 873 86.8
775 659 89.6 802 67.1 90 | 80.5
Efficientnet_b2_ns 599 86 874 783 83.6 879
754 62.1 88.7 78 62.8 88.7 | 782
Efficientnet_lite4 51.5 822 836 682 808 81.3
672 521 845 727 53 85 | 71.8
Efficientnet_bl _ns 56.7 84.6 87.1 741 844 85
714 596 878 771 60 88.8 | 76.4
Efficientnet_lite3 515 79 832 649 77 81.7
66.8 512 83.1 726 523 833|705
Efficientnet_lite2 504 76 80.2 594 77.1 79
62.5 506 825 686 532 823|685
Efficientnet_litel 50.1 77 80 558 74.1 758
63.1 48.6 80.1 658 527 79.3 | 66.9
Efficientnet_liteO 483 686 749 54 701 74
58.1 504 76 629 522 789 | 64

Vit_large_patch16.384 86.2 952 94 913 954 943
90.1 849 941 91 859 952|915
Vit_large_patch16 224 833 947 93.6 89.7 932 93
88.8 824 938 895 829 949 | 90
Vit_large_patch32.384 70.7 91.7 90 837 91.8 091.1
829 69.7 90.8 841 69.8 919 | 84
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accuracy of InceptionResNetV?2 is the best among them. Table 4.4 imple-
ments EfficientNet model family and Vision Transformer as a feature ex-
tractor. Most of the network models from the EfficientNet outperform
ResNet50 except models with lite postfix (i.e., EfficientNet liteO, Ef-
ficientNet_lite1, EfficientNet_lite2 and EfficientNet_lite3). Furthermore,
EfficientNet-1.2-475 scores the accuracy of 88.5 exceeding ResNet50
more than 17% and Vision Transformer shows the accuracy of 91.5. In-
deed, this score is new state-of-the-art accuracy on Office-Home dataset.
We also observe that the accuracy of EfficienNet-L2 is inferior to EfficientNet-
L2-475 more than 1%. The Office-Home dataset has image sizes from
400 % 283 to 6500 x 4900. Still, the model with input image size of 475 x
475 performs better than the model with input image size of 800 x 800.
We empirically conclude that EfficientNet-L2-475 is more suitable than
EfficientNet-L2 on the dataset which includes single object per image

like Office datasets.

Although there are some exceptions, we observe that accuracy of fea-
ture extractor on ImageNet is highly correlated with accuracy of SPL al-
gorithm on Office datasets. Therefore, we recommend to use better pre-

trained ImageNet model as a feature extractor for SPL algorithms.

Note that using heavyweight feature extractor is desirable in the work-
ing scenario where the latency of the algorithm doesn’t matter and server
can assist for feature extraction. However, we aim the scenario where the

total latency of the algorithm matters.
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Table 4.5 OFA backbone networks and SPL on Office31

Model AW DW WD AD DA WA | Avg
Resnet50 (paper) 927 987 99.8 93.0 764 76.8 ‘ 89.6
ofa_D4_E6_K7 93.6 98.6 100 95 773 76.8 | 90.2
ofa_D4_E6_K357 882 98.6 100 928 785 76.8 | 89.1
ofa_D34_E6.K357 893 98.6 100 934 77.6 734 | 88.7

ofa_ D234 E6_.K357 928 992 99.8 95 80.2 753|904
ofa_D234_E46_K357 947 99.1 100 934 78.1 77 | 90.4
ofa_mbv3_wl1.0 89.7 99.1 998 934 78.6 77.2 | 89.6
ofa_mbv3_wl.2 91.3 982 100 958 795 794 | 90.7
ofa_proxyless.wl.3 91.9 985 996 954 77 793 | 903
note10@80.2 94.6 989 100 974 81.2 812|922
notel0@79.7 936 989 100 97 80.2 805|917
note10@79.3 928 989 100 956 804 812|915
note10@78.4 892 99 998 938 782 753 | 89.2
notel0@76.6 927 99 100 926 777 75 | 89.5
notel0@75.5 93.8 984 100 865 763 732 | 88
notel0@73.6 874 99 100 886 72 731 | 86.7
note10@71.4 80.8 979 994 869 69.6 66.8 | 83.6
pixell @76.9 93 987 100 91.6 76.6 73.6 | 88.9
note10@76.6 927 99 100 926 777 75 | 89.5
LG-G8@76.4 912 982 100 932 76 73 | 88.6
1080ti@76.4 936 99.1 998 924 762 757 | 89.5
s7edge@76.3 92.1 987 100 902 757 72.8 | 88.2
note§@76.1 89.2 984 100 916 764 73 | 88.1
v100_gpu64@76.1 94 985 998 96 759 76.2 | 90.1
pixel2@75.8 9277 984 100 88 729 779 | 883
tx2_gpul6@75.8 91.6 985 100 93 739 779 | 89.1
cpu@75.7 948 99 998 92 759 752 | 895
notel0@75.5 93.8 984 100 86.5 763 732 | 88
tx2_gpul6@75.4 90.7 99.1 100 &7.1 76 744 | 879
1080ti_gpu64@75.3 90.6 99 100 89.8 752 754 | 88.3
v100_gpu64@753 89.6 989 100 863 749 758 | 87.6

51



4.4.2 Accuracy with Once-For-All Network

We evaluated the accuracy of SPL algorithm with various OFA feature
extractors for edge device on the Office31 and Office-Home datasets.
The Office31 results are summarized in Table 4.5. The first row group of
the table indicates ResNet50 baseline. The second row group of the ta-
ble shows the performance of specialized OFA networks. We also report
the performance of OFA network in the course of progressive shrink-
ing algorithm. For example, ofa_D4_E6_K7 is an initial network without
progressive shrinking while ofa_D4 _E6_K357 is a network which sup-
ports elastic kernel. The progress of progressive shrinking affects the
SPL accuracy marginally. OFA networks after full progressive shrink-
ing are in the third row group of the table. The ofa_mbv3_w1.2 network
already surpasses the ResNet50 baseline more than 1%. The fourth row
group of the table shows specialized OFA networks for Samsung Note10
smartphone in descending order of ImageNet accuracy. Again, ImageNet
accuracy is highly correlated with unsupervised domain adaptation ac-
curacy. The fifth row group of the table indicates specialized OFA net-
works for various hardware platforms that have similar ImageNet ac-
curacy with ResNet50 in descending order of ImageNet accuracy. The
ImageNet accuracy is correlated with unsupervised domain adaptation
accuracy, however, the correlation is lower than the specialized OFA net-

works for NotelO smartphone. For example, the specialized OFA net-
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work for Google Pixell smartphone at ImageNet accuracy of 76.9 has
unsupervised domain adaptation accuracy of 88.9 while the specialized
OFA network for NVIDIA V100 GPU at ImageNet accuracy of 76.1 has
unsupervised domain adaptation accuracy of 90.1, that is, 0.8% lower
ImageNet accuracy incurs 1.2% higher unsupervised domain adaptation.
Therefore, ImageNet accuracy of specialized OFA networks is less corre-
lated with unsupervised domain adaptation accuracy when the difference
scale is fine-grained. We first assume that better subnetwork selection
can boost the unsupervised domain adaptation accuracy after observing
the fact and try to add unsupervised domain adaptation accuracy feed-
back into subnetwork selection process. However, we find that the try is
based on a fallacy. The progressive shrinking algorithm is performed on
ImageNet dataset. Therefore, subnetworks derived by OFA network are
guaranteed to perform predictably on ImageNet dataset. The accuracy
predictor of OFA subnetwork selection process has high prediction ac-
curacy on ImageNet dataset thereby enabling the selection algorithm to
find better subnetwork. However, when dealing with Office dataset, the
accuracy of the subnetwork depends on not only subnetwork selection
but also batch normalization statistics, which leads to unstable predic-
tion. One possible solution to solve the problem is to perform progres-
sive shrinking alogirhtm on Office dataset after ImageNet dataset, which
is not straightforward because the SPL algorithm is not implemented in

differentiable manner.
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Table 4.6 OFA backbone networks and SPL on Office31 (hyperparameter
tuned)

Model AW DW WD AD DA WA | Avg diff
Resnet50 (torchvision) 95.1 987 100 948 76.1 786 | 90.6 +1.0
ofa_D4_E6_K7 94 986 100 964 774 785|908 +0.6
ofa D4 E6.K357 938 99 100 954 788 78 | 90.8 +1.7
ofa D34 B6.K357 926 987 998 932 776 774|899 +1.2
ofa D234 E6 K357 925 992 998 95 802 76.6 | 90.6 +0.2
ofa D234 E46 K357 95 99 100 954 78 774 | 90.8 +0.4
ofa_mbv3_w1.0 925 985 100 95 78 784 ] 904 +0.8
ofa_mbv3_w1.2 926 982 998 97 793 799 |9L1 +04
ofa_proxyless_w1.3 953 987 996 962 792 798|915 +1.2
note10@80.2 951 99 100 984 804 81 | 923 +0.1
note10@79.7 943 989 100 96.6 809 804 | 91.9 +0.2
note10@79.3 933 99 998 962 813 805 | 9.7 +0.2
note10@78.4 90.7 987 99.8 952 802 789 |90.6 +1.4
notel0@76.6 91.6 99.1 100 934 781 77.4|89.9 +04
notel0@75.5 927 99 998 902 77.7 77.8 | 895 +1.5
note10@73.6 893 984 99.6 884 77 763|882 +15
notel0@71.4 887 97.1 992 86.1 744 732|865 +2.9
pixell @76.9 928 99 100 958 768 76.1 | 90.1 +1.2
note10@76.6 9.6 99.1 100 934 781 77.4|89.9 +0.4
LG-G8@76.4 926 98.5 100 946 755 765 |89.6 +1.0
1080ti @76.4 95.1 99 998 954 76.6 789 | 90.8 +1.3
s7edge@76.3 919 989 100 91.8 779 759 | 894 +1.2
note8@76.1 932 985 99.6 926 772 744|892 +l.1
v100_gpu64@76.1 947 987 100 964 781 768 | 908 +0.7
pixel2@75.8 93.1 987 99.8 90.8 78 759 | 894 +l.1
tx2_gpul6@758 937 98.6 99.8 94 762 77 | 899 +08
cpu@75.7 964 99 998 93 767 763|902 +0.7
note10@75.5 927 99 998 902 777 778|895 +1.5
tx2_gpul6@754 926 987 99.6 934 765 762|895 +16
1080ti_gpu64@75.3 927 99 100 90.8 745 762 | 88.9 +0.6
v100_gpu64@75.3 913 99.1 998 938 741 765 | 89.1 +1.5
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Table 4.6 shows the accuracy of SPL algorithm with various OFA fea-
ture extractors on Office31 dataset with hyperparameter tuned using grid
search. Again, we focused on d and d; parameters because the parame-
ters are the main parameters to affect the algorithm’s accuracy. We report
hyperparameter tuning results to quantify the impact of hyperparame-
ter tuning of SPL algorithm. Because the feature extractor is changed,
the SPL algorithm’s parameter is also changed. Note that the half of the
specialized OFA networks for Samsung Note10 surpass the ResNet accu-
racy, which leads us to the idea of co-optimization of OFA feature extrac-
tor and SPL algorithm. Most of the specialized OFA networks for various
hardware platforms that have similar ImageNet accuracy with ResNet50
underperform on Office31 dataset compared to ResNet50. We conjecture
that highly optimized networks like the specialized OFA network have

lower transferability than ResNet which includes high redundancy.

Table 4.7 and Table 4.8 shows the accuracy of SPL algorithm with
various OFA feature extractors on Office-Home dataset without hyper-
parameter tuning. The progressive shrinking algorithm marginally af-
fect the accuracy of the unsupervised domain adaptation as shown in
the second row group of Table 4.7. Again, the half of the specialized
OFA networks for Samsung Notel0 surpass the accuracy of ResNet50
which leads us to perform co-optimization of OFA feature extractor and
SPL algorithm. The wider OFA networks surpass the ResNet accuracy

while the accuracy of shallower OFA network, namely ofa_mbv3_w1.0,
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Table 4.7 OFA backbone networks and SPL on Office-Home

Model AC AP AR CA CP CR
PA- PC PR RA RC RP | Avg

Resnet50 (paper) 545 778 819 651 78.0 8l1.1
66.0 53.1 828 699 553 860|710

ofa_D4_E6_K7 50 797 824 63 80.6 804
632 494 835 719 528 84.8 | 70.1

ofa_D4_E6_K357 504 79.6 819 624 804 787
646 502 845 734 535 863|705

ofa_D34_E6.K357 499 793 822 62.6 805 792
67.6 504 838 706 532 863|705

ofa_ D234 E6_.K357 512 793 81.8 627 77.6 80.2
66 479 841 714 533 857 | 70.1

ofa_ D234 E46_K357 537 774 836 63.6 762 803
639 535 837 704 534 852|704

note10@80.2 536 80.6 843 675 825 834
69.6 51 859 759 547 874 | 73

note10@79.7 55,5 799 838 68.1 772 827
69.3 541 858 75 554 87.8 | 729

note10@79.3 542 803 835 677 794 831
68.7 53.6 857 738 555 877|728

notel0@78.4 51.6 793 831 662 79.6 822
66.1 525 84.1 73.1 532 87.1 | 715

note10@76.6 503 767 81.7 564 747 782
624 488 826 71 507 82.1 | 68

notel0@75.5 49.8 738 80.7 575 76 749
60.3 489 815 672 527 823 ] 67.1

notel0@73.6 457 724 785 517 678 73.6
554 429 792 641 50 812 | 635

note10@71.4 415 669 747 495 668 709
51.7 399 77 627 48.6 804 | 60.9
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Table 4.8 OFA backbone networks and SPL on Office-Home (cont.)

Model AC AP AR CA CP CR
PA° PC PR RA RC RP | Avg

ofa_mbv3_w1.0 52,6 782 813 595 737 779
61.3 487 831 72 53.8 84.1 | 68.8
ofa_mbv3_wl.2 528 805 84 67.1 80.2 813
68 524 854 749 56 86 | 72.4
ofa_proxyless.wl.3 512 795 828 647 74 829
683 509 845 738 545 856 | 71.1

pixell @76.9 50.1 78 815 61 762 793
62.8 479 836 704 527 83 | 68.9

note10@76.6 503 7677 817 564 747 782
624 488 826 71 50.7 821 | 68

LG-G8@76.4 478 759 81 578 7677 776
62.6 468 81.7 69.8 52.1 839 | 67.8

1080ti@76.4 458 76.7 80.7 60.2 743 784
62.6 46.1 826 694 495 842 | 675

s7edge@76.3 503 76.7 80.8 61.1 75 758
634 50.1 827 694 544 822 | 685

note§@76.1 467 749 795 594 742 752
58.7 463 812 679 532 825 | 66.6

v100_gpu64@76.1 473 765 814 597 752 717
619 477 826 699 50.1 84 | 67.8

pixel2@75.8 503 747 805 597 755 75.6
604 479 819 67.8 513 824|673

tx2_gpul6@75.8 495 767 80.8 614 744 718
62.2 46.8 813 705 504 84 68

cpu@75.7 454 768 81 556 731 779
604 443 817 69.1 46.6 834 | 66.3

notel0@75.5 498 738 80.7 575 76 749
60.3 489 815 672 527 823 | 67.1

tx2_gpul6@754 458 76.1 802 575 731 712
613 44.1 824 677 478 83.8 | 66.4
1080ti_gpu64@75.3 452 754 80.1 574 731 77
60.9 45.1 821 682 494 837 | 66.5

v100_gpu64@75.3 456 759 80.5 567 722 783
59.8 456 819 67.8 469 83.8 | 66.2
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underperforms on Office-Home dataset compared to ResNet50 as shown
in the first row group of Table 4.8. Indeed, all of the specialized OFA
networks for various hardware platforms that have similar ImageNet ac-
curacy with ResNet50 underperform on Office-Home dataset compared
to ResNet50. Again, We agree that highly optimized networks like the
specialized OFA network have lower transferability than ResNet which
includes high redundancy.

Although there are some exceptions, the ImageNet accuracy of fea-
ture extractor is highly correlated with the Office accuracy of SPL al-
gorithm. And the latency of the feature extraction depends directly on
the the feature extractor. Therefore, the accuracy and the latency of fea-
ture extractor is crucial. Note that implementing progressive shrinking
algorithm for Office dataset is not straightforward as indicated above.
We recommend to use highly optimized ImageNet pre-trained network

model as feature extractor to boost the efficiency of algorithm execution.

4.4.3 Comparison with State-of-the-Art Results

We summarize the accuracy of our method along with state-of-the-art
methods in Table 4.9 and Table 4.10. Our method with EfficientNet and
Vision Transformer combined with SPL algorithm surpasses existing meth-
ods by a large margin, more than 2% on Office31 dataset. Considering
the fact that the accuracy of existing methods on Office31 dataset is al-

ready mature (i.e., higher than 92%), the 2% accuracy gain on Office31
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dataset is noticeable. Note that PRPL algorithm uses EfficientNet-B7 fea-
ture extractor, which has 7.5 times fewer parameters than EfficientNet-
L2 with 1.4% lower ImageNet accuracy. The accuracy gain stems from
using better feature extractor. Furthermore, our method with the special-
ized OFA network and SPL algorithm surpasses the existing methods
except PRPL algorithm which uses heavyweight feature extractor. The
note10@80.2 specialized OFA network has 8.4 times fewer parameters
and almost 50 times fewer MAC counts than EfficientNet-B7. It is not
reasonable to include the PRPL algorithm with other methods when we
consider mobile setting. For mobile setting, therefore, our method with
the specialized OFA network scores the best among existing state-of-the-
art methods with 0.8% accuracy gain on Office31 dataset. The accuracy
result for Office-Home dataset has similar trends. Our method with Ef-
ficienNet and Vision Transformre combined with SPL algorithm outper-
forms all the existing method by a substantial margin, more than 5% on
Office-Home dataset. Except PRPL algorithm, our method with the spe-
cialized OFA network and SPL algorithm surpasses existing methods on

Office-Home dataset.

4.4.4 Co-optimization for Edge Device

Figure 4.1 shows the example of evolutionary search process with var-
ious c¢ coefficient. As shown in the ¢ = 0 accuracy plot, the search al-

gorithm converges to better accuracy compared to initial points with the
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Table 4.9 Accuracy comparison with state-of-the-art on Office31

Model AW DW WD AD DA WA | Avg

DM-ADA [70] 839 998 999 775 646 64 | 816

DANN [71] 82 969 99.1 79.7 682 674|822
HoMM [72] 90.8 993 100 879 693 69.5 | 86.1
MSTN* [73] 91.3 989 100 904 72.7 656 | 86.5

SAFN+ENT* [74] 90.3 987 100 92.1 734 712|876

rRevGrad+CAT [75] 944 98 100 90.8 722 702 | 87.6

CDAN+E [76] 94.1 986 100 929 71 693 | 87.7

DEV [77] 932 984 100 92.8 709 712 | 87.8

DMRL [78] 90.8 99 100 934 73 712|879

SymNets [79] 90.8 98.8 100 93.9 746 725 | 88.4
BSP+CDAN [49] 933 982 100 93 73.6 726 | 885

SHOT [27] 90.1 984 999 94 747 743 | 886

ALDA [80] 95.6 97.7 100 94 722 725 | 88.7

MDD [81] 945 984 100 935 746 722 | 88.9
DADA [82] 923 992 100 939 744 742 | 89

MCC [83] 954 986 100 956 726 739 | 89.4

SPL [4] 927 987 99.8 93.0 764 768 | 89.6

GSDA [84] 957 99.1 100 94.8 735 749 | 89.7
MDAIR [85] 94 969 992 926 787 77.6 | 89.8

CAN [86] 945 99.1 998 95 78 77 | 90.6

SRDC [87] 957 992 100 958 76.7 77.1 | 90.8
RSDA-MSTN [88] 96.1 99.3 100 958 774 789 | 91.1

FixBi [89] 96.1 993 100 95 787 79.4 | 914

PRPL [90] 959 971 992 97 83 824 | 924

Ours (Efficientnet_12_ns+SPL) 99 100 100 99.4 847 87.6 | 95.1
Ours (Vit_large patch16.384+SPL) 999 99.2 100 99 883 884 | 95.8

Ours (note10@80.2+SPL) 946 989 100 974 812 812|922
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Table 4.10 Accuracy comparison with state-of-the-art on Office-Home

Model AC AP AR CA CP CR
PA° PC PR RA RC RP | Avg

DANN [71] 456 593 70.1 47 585 609
46.1 4377 68.5 632 518 768 | 57.6

MSTN* [73] 49.8 703 763 604 685 69.6
614 489 757 709 55 81.1 | 65.7

CDAN+E [76] 50.7 706 76 576 70 70
574 509 773 709 56.7 81.6 | 65.8

BSP+CDAN [49] 52 68.6 76.1 58 70.3 702
586 502 77.6 722 593 819 | 66.3

ALDA [80] 53.7 70.1 764 602 72.6 71.5
568 519 77.1 702 563 82.1 | 66.6

SymNets [79] 477 729 785 642 713 742
642 488 795 745 526 827 | 67.6

MDD [81] 549 737 778 60 714 71.8
61.2 53.6 78.1 725 60.2 823 | 68.1

GSDA [84] 613 76.1 794 654 733 743
65 532 80 722 60.6 83.1 | 703

GVB-GD [91] 57 747 79.8 64.6 741 7T4.6
652 551 81 746 59.7 843 | 704

RSDA-MSTN [88] 532 777 813 664 74 765
679 53 82 758 57.8 854 | 70.9

SPL [4] 545 778 819 651 78 81.1
66 53.1 828 699 553 86.0| 71.0

SRDC [87] 523 763 81 695 762 78
68.7 538 81.7 763 57.1 85 | 713

SHOT [27] 57.1 78.1 815 68 782 78.1
674 549 822 733 588 843|718

FixBi [89] 58.1 773 804 6777 79.5 78.1
658 579 81.7 764 629 86.7 | 72.7

MDAIR [85] 55,6 804 81.6 702 80.7 80.8
71 556 825 735 577 839 | 728

PRPL [90] 67.6 845 894 79.8 857 86.3
79.2 69.1 887 838 689 915 | 81.2

Ours (Efficientnet_12_ns+SPL) 74 93,6 92 882 93.6 91.7
855 733 929 884 752 954 | 87

Ours (Vit_large_patch16_.384+SPL) 86.2 952 94 913 954 943
90.1 849 941 91 859 952|915

Ours (note10@80.2+SPL) 53.6 80.6 843 675 825 834
69.6 51 859 759 547 874 | 73
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diversity incurred by the mutation process. Similarly, the latency of ¢ =0
case also converges higher points without constraints as expected. With
¢ = 0.01, the accuracy converges slightly lower points while the latency
converges dramatically lower points due to the latency constraints. The
trend becomes more obvious with higher ¢ coefficient (i.e., ¢ = 0.15).
The accuracy of ¢ = 0.15 converges lower points due to the latency con-
straints. We conclude that the evolutionary search algorithm works as

intended and it is controlled by the value of ¢ coefficient.

Figure 4.2 presents the impact of various feature extractor and SPL
parameter selection on unsupervised domain adaptation accuracy of Of-
fice31 and Office-Home dataset. The number of data points are 200 and
280 for Office31 and Office-Home, respectively, and we collect the data
points by measuring average accuracy and average latency in grid search
manner. As expected, both feature extractor selection and SPL parame-
ter affects accuracy and latency significantly. The points with the same
color use the same feature extractor while the variation of SPL parame-
ters incur accuracy/latency difference. Note that the red point in the right
indicates the baseline which has ResNet feature extractor with baseline
SPL parameters. The other points use specialized OFA network for Sam-
sung Note10 with various latency constraints. There are many points that
have better accuracy and latency than the baseline. The problem is to find
the near Pareto optimal points without enumerating all the data points

and we use evolutionary search. The first characteristic of Pareto optimal
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points is that the feature extractor selection is more important than SPL
parameters in the low latency regime. For low latency algorithm execu-
tion, specifically, the execution time of SPL algorithm is assigned to near
minimal values and the selection of feature extractor can control the algo-
rithm’s accuracy/latency. On the other hand, the SPL parameter is more
important than the feature extractor selection in the high latency regime
as we have no choice but to use the best feature extractor. In the mid-
dle latency range, both the feature extractor and SPL parameter selection
is important. The evolutionary search algorithm automatically set up the
process of feature extractor and SPL parameter selection controlled by ¢

coefficient.

Figure 4.3 shows the result generated by our evolutionary search
shown in red with various ¢ coefficient on Office31 dataset. The data
points generated by grid search manner is shown in black. We experi-
ment 10 repetitive runs for each c coefficient value. If ¢ value gets larger,
the algorithm searches lower latency regime. Although the evolutionary
search algorithm has intrinsic randomness, the algorithm outputs near
Pareto optimal points without exception. Indeed, some of them surpass

Pareto frontier which consist of data points in grid search manner.

Figure 4.4 shows the result generated by our evolutionary search
shown in red with various ¢ coefficient on Office-Home dataset. Again,
we experiment 10 runs for each ¢ coefficient value and the data points

generated by grid search manner is shown in black. Office-Home dataset
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has more complex structure than Office31 dataset and the accuracy dif-
ference between feature extractor selection on Office-Home dataset is
higher than that on Office31 dataset. Still, the evolutionary search algo-
rithm finds near Pareto optimal points without exception according to the

¢ coefficient value.

The last point to mention about co-optimization for edge device is
transferability between Office31 dataset and Office-Home dataset. Al-
though the evolutionary search algorithm proves effectiveness to find
Pareto optimal setting for Office dataset, the evolutionary search algo-
rithm cannot be implemented on the fly due to the large cost induced by
data collection. It is analogous to typical neural architecture search al-
gorithms which consumes a lot of computing resources to find optimal
architecture thereby it is assumed to be performed in the server. As we
are targeting edge device, all the resource intensive operations are as-
sumed to be implemented in the server and they include the evolutionary
search algorithm. As the evolutionary search algorithm requires realis-
tic training, we assume the predictors are trained using Office31 dataset
and the test is performed on Office-Home dataset thereby we measure
transferability between Office31 dataset and Office-Home dataset. It is
reasonable that all the resource intensive operations including evolution-
ary search are performed in the server and output the specific (feature
extractor, SPL parameter) pair on proxy dataset (i.e., Office31) for each

hardware platform. Then, an arbitrary edge device loop up off-the-shelf
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setting and perform unsupervised domain adaptation task on incoming
dataset (i.e., Office-Home). The fundamental assumption of this scenario
is that the distribution and characteristic of proxy dataset is similar to that
of incoming dataset.

Figure 4.5 shows the transferability result that predictors are trained
on Office31 dataset and the found setting is applied on Office-Home
dataset. We experiment 10 repetitive runs for each c case. Note that there
is large variation in ¢ = 0 case, which indicates that the latency predic-
tor for Office31 dataset is not perfectly suited for Office-Home dataset.
Although there is dataset discrepancy, the algorithm finds near Pareto
optimal methods without exception.

Figure 4.6 shows the transferability result that predictors are trained
on Office-Home dataset and the found setting is applied on Office31
dataset. Again, we experiment 10 repetitive runs for each ¢ case. Inc =0
case, we observe that the found settings for Office-Home dataset do not
fit entirely on Office31 because the settings for Office-Home dataset typ-
ically use higher d and d; to get better accuracy. On the other hand, the
evolutionary search algorithm finds near Pareto optimal methods in ¢ =
0.15 and ¢ = 0.30 cases without difficulties. We conjecture that accuracy-
latency curve is similar between Office31 dataset and Office-Home dataset
in the middle and low latency regime.

Note that Office31 dataset has 2,817, 795 and 498 images for Ama-

zon, Webcam and DSLR, respectively while Office-Home dataset has
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2,427, 4,365, 4,439 and 4,357 images for Art, Clipart, Product and Real-
World, respectively. Although the number of images for Office-Home
dataset is about 4 times larger than the number of images for Office31
dataset, both dataset has a similar nature (i.e., classifying office objects
and some of domains are more difficult to classify than the others). It is
empirical that the average of accuracy for all domain pairs is transferable

between Office31 and Office-Home dataset.

4.4.5 Pre-extraction of Source Feature

In the previous work [27], SHOT aims to remove the access to source
domain data when adapting the model to target domain data. It is more
secure for decentralized private data. Following the setting proposed in
[27], we also consider the source-free setting which assumes absent of
source data when adapting the model. In this setting, we assume only the
source feature is available instead of source data. We assume that reveal-
ing the source feature instead of source data is secure because it is not
easy to recover source data from the source feature. So, we pre-extract
the source feature. It is straightforward to implement pre-extraction of
source feature because SPL algorithm requires only source feature in-
stead of source data. In this case, we assume the same network is used
to extract source feature and target feature. Storing source feature along
to each network which is used to extract source feature is one solution

to realize pre-extraction of source feature for unsupervised domain adap-
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Table 4.11 Pareto frontier methods on Office31 with pre-extraction of
source feature

source network target network ‘ d d;  iterations ‘ avg accuracy

note10@80.2 notel0@80.2 | 512 128 11 92.2
ofa_mbv3_wl.2 notel0@80.2 | 512 128 11 91.2
note10@80.2 notel0@80.2 | 256 64 11 92
ofambv3_wl.2 notel0@80.2 | 256 64 11 91.6
note10@80.2 notel0@80.2 | 512 128 9 91.9
ofa_mbv3_wl.2 notel0@80.2 | 512 128 9 91.3
note10@80.2 note1l0@80.2 | 256 128 9 91.5
ofambv3_wl.2 notel0@80.2 | 256 128 9 91.8
note10@80.2 notel0@80.2 | 256 64 5 91.6
ofambv3_wl.2 notel0@80.2 | 256 64 5 90.9
note10@79.7 notel0@79.7 | 256 128 7 91.4
ofa_mbv3_wl.2 notel0@79.7 | 256 128 7 91.2
note10@79.3 notel0@79.3 | 256 128 11 91.4
ofambv3_wl.2 notel0@79.3 | 256 128 11 90.8
note10@79.3 notel0@79.3 | 256 128 7 91.2
ofa_mbv3_wl.2 notel0@79.3 | 256 128 7 90.7
note10@79.3 notel0@79.3 | 128 64 7 90.7
ofambv3_wl.2 notel0@79.3 | 128 64 7 89.4

tation. However, the problem is when we combine specialized OFA net-
work and pre-extraction of source feature for edge device. As there are
diverse specialized OFA networks for diverse hardware platforms, we

cannot store all the source feature for each specialized OFA networks.

If feature extractors for source and target domain data are different,
then the accuracy is near zero. However, we observe that features ex-
tracted by OFA networks or specialized OFA networks which share the

same OFA network are compatible to each other. We propose to store
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Table 4.12 Pareto frontier methods on Office31 with pre-extraction of
source feature (cont.)

source network target network ‘ d d;  iterations ‘ avg accuracy
note10@79.3 notel0@79.3 | 256 128 5 90.9
ofa_mbv3_wl.2 notel0@79.3 | 256 128 5 90.4
note10@79.3 notel0@79.3 | 128 64 5 90.8
ofa_mbv3_wl.2 notel0@79.3 | 128 64 5 89.6
note10@79.3 notel0@79.3 | 128 64 3 90
ofambv3_wl.2 notel0@79.3 | 128 64 3 89.1
notel0@78.4 notel0@78.4 | 128 64 5 89.4
ofambv3_wl.2 notel0@78.4 | 128 64 5 88.2
notel0@78.4 notel0@78.4 | 128 64 3 89.3
ofambv3_wl.2 notel0@78.4 | 128 64 3 88.4
notel0@75.5 notel0@75.5 | 128 64 3 89
ofa_mbv3_wl.0 notel0@75.5 | 128 64 3 88.4
notel0@73.6 notel0@73.6 | 128 64 3 86.6
ofa_mbv3_wl1.0 notel0@73.6 | 128 64 3 88.1
notel0@71.4 notel0@71.4 | 128 64 3 85.3
ofambv3_wl.0 notel0@71.4 | 128 64 3 85.2
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Table 4.13 Pareto frontier methods on Office-Home with pre-extraction
of source feature

source network  target network ‘ d dp iterations ‘ avg accuracy
note10@79.7 notel0@79.7 | 256 64 3 73.3
ofa_mbv3_wl.2 notel0@79.7 | 256 64 3 72.7
note1l0@79.7 notel0@79.7 | 256 64 5 73.5
ofambv3_wl.2 notel0@79.7 | 256 64 5 73
note10@79.7 notel0@79.7 | 512 64 5 73.4
ofambv3_wl.2 notel0@79.7 | 512 64 5 72.9
note1l0@79.7 notel0@79.7 | 256 64 7 73.5
ofambv3_wl.2 notel0@79.7 | 256 64 7 72.9
note10@79.7 notel0@79.7 | 512 64 7 73.6
ofambv3_wl.2 notel0@79.7 | 512 64 7 72.9
notel0@79.7 notel0@79.7 | 512 64 11 73.6
ofambv3_wl.2 notel0@79.7 | 512 64 11 73
note10@79.3 notel0@79.3 | 128 64 3 72.3
ofambv3_wl.2 notel0@79.3 | 128 64 3 72
note10@79.3 notel0@79.3 | 256 64 3 73
ofa_mbv3_wl.2 notel0@79.3 | 256 64 3 72
notel0@78.4 notel0@78.4 | 128 64 3 71.6
ofambv3_wl.2 notel0@78.4 | 128 64 3 70.9
note10@76.6 notel0@76.6 | 128 64 3 67
ofambv3_wl1.0 notel0@76.6 | 128 64 3 67.1
notel0@75.5 notel0@75.5 | 128 64 3 66.2
ofambv3_wl1.0 notel0@75.5 | 128 64 3 66.2
note10@76.6 notel0@71.4 | 128 64 3 60.3
ofambv3_wl.0 notel0@71.4 | 128 64 3 60.2
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only one source feature for each OFA network. It is more efficient and
scalable because all the specialized OFA networks are derived by several

OFA networks. Therefore, we only store several source features.

Table 4.11 and Table 4.12 shows the accuracy of pre-extraction of
source feature for Pareto frontier methods on Office31 along with base-
line methods. We found Pareto frontier methods in grid search man-
ner. Specifically, we found 17 and 12 Pareto optimal points for Office31
and Office-Home, respectively. It is reasonable to mainly consider these
points as working points because the accuracy and latency of the meth-
ods are superior than the others. In the table, source network refers to the
network which is used to extract source domain data and target network
means it is used to extract target domain data. If source network and
target network is the same, then it assumes the baseline setting which
assumes the source feature is stored along to the network used or we
can access to the source domain data. If source network is OFA network
and target network is specialized OFA network, then we assume the pre-
extraction of source feature. Although there are some accuracy losses,
we observe that the accuracy of pre-extraction of source feature for each
specialized OFA network is similar to that of baseline setting. Therefore,
we can store source feature for several OFA networks instead of all the
specialized OFA networks to accomplish pre-extraction of source fea-

ture.

Table 4.13 shows the pre-extraction of source feature for Pareto fron-
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Table 4.14 Accuracy results on Office31 dataset for small target data sce-
nario

network | d  d; iterations | avg accuracy
Resnet50 512 128 11 82.6
notel0@78.4 | 151 90 3 84.6

Il SPL algorithm
I feature extraction

latency (s)

20 1

Resnet50 baseline Ours
methods

Figure 4.7 Latency results on Office31 dataset for small target data sce-
nario

tier methods on Office-Home dataset along with baseline methods. We
present 12 Pareto optimal points. There are only small accuracy losses
while the networks are compatible if they are derived from the same OFA

network. Therefore, we verify the effectiveness of our method.

4.4.6 Results for Small Target Data Scenario

Although labeling hundreds to thousands of target data images is stan-
dard for the Office datasets, it is not realistic to label such amount of

data on edge device in real use cases. We assume more realistic scenario
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which includes smaller target data. This is the scenario where latency of
algorithm is important. We randomly sampled 64 items from original tar-
get domain data while we keep the source domain data intact. Therefore,
the problem is to label 64 images instead of hundreds or thousands using
the information gained from source domain data. The seed for the ran-
dom number generator is fixed to certain number to make our sampling
strategy stable. In our observation, some of the target domain classes are
not sampled at all thereby it is not appropriate to use structured predic-
tion which includes clustering algorithm with initial points of the num-
ber of target domain classes. Therefore, we exclude the structured pre-
diction in the small target data scenario and achieve about 4% accuracy
gain. Table 4.14 shows the accuracy results for the scenario. Accuracy
is slightly degraded due to small size of target data information. Our ap-
proach scores 2% higher than the baseline method on Office31 dataset.
Figure 4.7 shows the latency results for the scenario. Our approach is
9.36 times faster than the baseline method by using lightweight backbone
network and smaller SPL algorithm parameter. In real use case, waiting
for more than a minute is not tolerable while our approach services a

query in about 10 seconds, which is more interactive.

4.4.7 Results for Object Detection

We assume object detection scenario, which is famous application for

edge device. We use Faster R-CNN [92] implementation from PyTorch
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Figure 4.8 Object Detection Results on PennFudan dataset

[69] for experiments. We use PennFudan dataset, which is consisted of
170 images with 375 labeled pedestrians. The goal of object detection al-
gorithm is to find bounding boxes of pedestrians in the input images. The
dataset is divided to form 120/25/25 images of training/validation/test
set. We conduct co-optimization of backbone network selection and ob-
ject detection algorithm parameter selection. The search space we con-
sider is 8 OFA backbone networks and an object detection algorithm pa-
rameter (i.e., 6 values) namely sampling ratio of multi scale ROI align
module. As the size of search space is 48, we conduct grid search based
on the accuracy using validation set. Figure 4.8 shows the latency and

accuracy of various backbone networks and object detection algorithm
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parameters. We averaged 5 runs to get stable latency and accuracy val-
ues. The red dot indicates MobileNet v2 baseline and ResNet baseline
which is clearly not in pareto optimal frontier. Instead of the baseline
method which uses ResNet-50 and the sampleing ratio of two, we use
note10@76.6 backbone network and the sampling ratio of one. The to-
tal latency is 2.43 times faster (i.e., from 1.40 seconds to 0.58 seconds)
while the COCO-style mAP is about 4 points higher (i.e., from 45.3 to

49.8) compared to the baseline method.

4.4.8 Results for Classifier Fitting Using Interme-
diate Domain

As the latency of SPL algorithm is a large portion in the total runtime,
it is desirable to fit a classifier instead of executing SPL algorithm from
scratch all the time. We conduct an experiment which has the scenario of
source domain, intermediate domain and target domain. The goal of the
algorithm is to label target domain data by using the information gained
from source domain and intermediate domain when the labels of inter-
mediate domain and target domain doesn’t exist. First of all, the algo-
rithm labels intermediate domain data using SPL algorithm with source
domain data. Second, the algorithm fits a classifier using the labels of
source domain data and intermediate data. After all, the algorithm la-
bels target domain data using a classifier without SPL algorithm. In this

scenario, labeling target domain data is fast as the latency of SPL algo-
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rithm diminishes. In our experiment, a classifier is consisted of a simple
fully-connected layer. If we fit a classifier after note10@78.4 backbone
network using Amazon domain data and tested on Webcam domain data,
then the accuracy is only 68.8% due to domain shift. If we use SPL algo-
rithm using Amazon domain data to label Webcam domain data, then the
accuracy is 90.8%. If we use SPL algorithm using Amazon domain data
to label DSLR domain data, then the accuracy is 95%. If we fit a classi-
fier using Amazon domain data and 95% corrected DSLR domain data to
test Webcam domain data, then the accuracy is 90.6%. Therefore, we get
90.6% accuracy instead of 90.8% accuracy using intermediate domain
information and we reduce the SPL algorithm latency by using classifier
fitting.

Note that the process of generating labels by SPL algorithm and per-
form classifier fitting is analogous to self-training. Implementing more
sophisticated algorithm for combining self-training and SPL algorithm
can provide both high accuracy and low latency for target domain. Fur-
thermore, choosing hyperparameter via proxy dataset can be altered by

self-training criteria. It is left for future work.

4.4.9 Summary

We integrate all the methods previously mentioned and show the sum-
mary of the results. For accuracy results on Office31 in Table 4.15, we

use the proxy dataset Office-Home to train accuracy and latency predic-
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Table 4.15 Summary accuracy results on Office31 dataset

source network  target network ‘ d d;  iterations ‘ avg accuracy

Resnet50 Resnet50 512 128 11 89.6
ofa_mbv3_wl.2 notel0@78.4 | 151 90 3 89.6
1751 I SPL algorithm

I feature extraction

150 1

latency (s)
= -
w1 N o N
o (6, o w

N
wv

o

Resnet50 baseline Ours
methods

Figure 4.9 Summary latency results on Office31 dataset

tors. Evolutionary search is performed on the proxy dataset and find the

suitable feature extractor and SPL setting.

Then we measure the unsupervised domain adaptation accuracy on

the Office31 dataset using the found setting and report the accuracy and
the latency on NVIDIA Jetson TX2. We also apply pre-extraction of
source feature which set source network to be OFA network instead of
specialized OFA network. Note that the accuracy is the same between the
baseline and the proposed method. The latency result is shown in Figure

4.9. Our approach can reduce the total latency by 5.99 x without loss of

accuracy on Office31 dataset.

82



Table 4.16 Summary accuracy results on Office-Home dataset

source network  target network ‘ d dy  iterations ‘ avg accuracy
Resnet50 Resnet50 1024 128 11 71.0
ofambv3_wl.2 notel0@78.4 171 110 3 71.1

I SPL algorithm

I feature extraction
800 A

latency (s)
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2001

Resnet50 baseline Ours
methods

Figure 4.10 Summary latency results on Office-Home dataset

Table 4.16 shows the accuracy results on Office-Home dataset. Dif-
ferently, we use the proxy dataset Office31 and the test dataset Office-
Home. The accuracy is almost the same between the baseline method
and our approach. The latency result is shown in Figure 4.10. We can
reduce the total latency by 9.06x on Office-Home compared to baseline
method.

Note that characteristics of edge device (e.g., memory bandwidth and
small neural processing unit) are not considered however we use latency
measured on working system for edge device (i.e., NVIDIA Jetson TX2).

More sophisticated method which considers edge device characteristics
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is left for future work.

4.5 Conclusion

We proposed applying pre-trained ImageNet model to feature extractor
of unsupervised domain adaptation for edge device. First, we report that
combining large feature extractors and the algorithm which doesn’t up-
date the feature extractor is an effective method to achieve state-of-the-
art accuracy on Office31 and Office-Home datasets. And we show that
highly optimized feature extractor is crucial to achieve state-of-the-art
efficiency for edge device. We use a predictor-guided evolutionary search
to explore accuracy-latency space of the proposed method. We show that
the evolutionary search algorithm is transferable between Office31 and
Office-Home datasets especially for middle and low latency regimes. We
observe that pre-extraction of source feature for edge device is viable
by storing source features along with OFA networks instead of storing
source features for all the specialized OFA networks. We report 5.99 x
and 9.06x latency reduction on Office31 and Office-Home datasets, re-
spectively. Lastly, we experiment more realistic scenarios which include
small target domain data, object detection, and classifier fitting. We show

that our method is still effective on those scenarios.
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Chapter 5

Augmenting Few-Shot Learning
with Supervised Contrastive
Learning

This work was published on IEEE Access journal, Apr. 2021 [93]. Few-
shot learning deals with a small amount of data which incurs insufficient
performance with conventional cross-entropy loss. We propose a pre-
training approach for few-shot learning scenarios. That is, considering
that the feature extractor quality is a critical factor in few-shot learning,
we augment the feature extractor using a contrastive learning technique.
It is reported that supervised contrastive learning [6] applied to base class
training in transductive few-shot training pipeline leads to improved re-
sults, outperforming the state-of-the-art methods on Mini-ImageNet and
CUB. Furthermore, our experiment shows that a much larger dataset
is needed to retain few-shot classification accuracy when domain-shift
degradation exists, and if our method is applied, the need for a large
dataset is eliminated. The accuracy gain can be translated to a runtime

reduction of 3.87 x in a resource-constrained environment.
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5.1 Introduction

The impressive results of deep learning-based methods are mainly achieved
using a large amount of labeled data [50,94]. However, massive image la-
beling is labor-intensive, and a balanced dataset is challenging to obtain.
By contrast, humans show excellent generalization performance from
only one or a few examples, bringing motivation to the field of few-shot
learning [16,95-97]. Likewise, the aim of few-shot learning is to pre-
dict unlabeled data based on the observation of a few labeled data (e.g.,
one or five examples per class). Likewise, the aim of few-shot learning is
to predict unlabeled data based on the observation of a few labeled data

(e.g., one or five examples per class).

Compared with traditional inductive few-shot learning, two settings
are introduced to address the low data count. A semi-supervised few-
shot setting [17,98] assumes that the model can utilize information from
additional unlabeled data. Better accuracy can be obtained by increased
amount of unlabeled data. A transductive few-shot setting [99, 100] ac-
cords that the model can access all the test data at once instead of one
by one in the inference procedure. In the scope of this study is confined
to the transductive few-shot setting as it is simple, yet effective [101] to

achieve state-of-the-art result [9].

Conventional few-shot learning algorithms implement a two-stage

training pipeline. Base classes, which are used only in the first stage of
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training, are large, separate classes for training the feature extractor, usu-
ally with conventional cross-entropy loss. In the consecutive stage, novel
classes, which are a disjoint set of base classes, are learning targets with a
few training examples per class. The first training stage attempts to learn
general, transferable visual features from the base classes, whereas the
main few-shot algorithms are implemented in the second stage to predict

images from the novel classes.

As a feature extractor’s performance is empirically related to the fi-
nal classification accuracy, it is reasonable to use various augmentation
techniques during the first training stage. These techniques [24,25, 102,
103] are motivated by large-scale image classification tasks, such as Im-
ageNet. Supervised contrastive learning [6] is proposed to replace cross-
entropy loss by applying self-supervised representation learning with la-
bel information. It is examined that supervised contrastive loss instead
of simple cross-entropy loss in the first training stage improves the final
classification accuracy by a large margin, especially when the dataset is

not large.

Assume that a few-shot learning task is running on an edge device,
considering the scale of the problem. However, as the cost of the step is
high—nearly a hundred epochs of training the entire dataset—the base
class training step is presumably processed by the server. The cost of su-
pervised contrastive learning is an additional pretraining step at the base

class training, which is amortized and processed efficiently by servers.
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With the accuracy gain obtained by the supervised contrastive learning,
one can optimize the runtime latency of the algorithm with a simple

method such as an early stopping.

Few-shot learning is associated with self-supervised representation
learning, as noted in [104]. Both approaches have a similar goal: train-
ing the model with few or no data labels. Self-supervised representation
learning is a method of unsupervised learning, which aims to learn from
a dataset with no annotation. Instead, it learns using pretext information,
such as the relative location of image patches or the rotation classification
of images. Contrastive learning is a form of self-supervised representa-
tion learning that trains the model to classify similar (positive) samples
and dissimilar (negative) samples in the embedding space. As supervised
contrastive learning is an extension of contrastive learning, it implies the
gain obtained in our experiment.

We observe that the feature extractor trained on a large, general dataset
(i.e., Tiered-ImageNet) performs better than the feature extractor trained
on a small, task-specific dataset (i.e., CUB) when evaluating a few-shot
learning task. In our experiment, supervised contrastive learning improves
the few-shot classification accuracy to the extent that even when trained
on a small, task-specific dataset, it performs better than the feature ex-
tractor trained on a large, general dataset. Therefore, it is data-efficient

and obtains superior performance without resort to a large dataset.

In summary, the contributions of our study are as follows:
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* We propose using supervised contrastive learning in the first stage
of few-shot learning to boost classification accuracy on the Mini-
ImageNet and CUB datasets. Our method is referred as SPTA fol-

lowing the name of combined methods.

* We study the domain-shift setting, in which the feature extractor is
trained on a different dataset, and the few-shot algorithm is eval-
uated on a fine-grained classification dataset, showing that a large
dataset (i.e., Tiered-ImageNet) is needed to overcome domain-shift
degradation. However, when supervised contrastive learning is ap-
plied to the CUB dataset, the case without a large dataset can score

higher than the case with a large dataset.

5.2 Related Works

Few-shot learning: There are many approaches to address few-shot learn-
ing tasks with less amount of data. Gradient descent-based approaches
[105—-107] learn how to re-adjust a model with a few gradient descent it-
erations to deal with a few-shot learning task. The model-agnostic meta-
learning (MAML) [105] method trains the model with many tasks to gen-
eralize a new task efficiently. Reptile [106] is a first-order gradient-based
meta-learning algorithm that trains the initialization of model param-
eters. [107] proposed a long short-term memory (LSTM)-based meta-

learner whose states represent the update of the model parameter.
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Metric-learning-based approaches [16, 108—110] learn distance met-
rics between a support set (training data of the target task) and a query set
(test data of the target task) better by reforming feature embedding. [108]
introduced Siamese convolutional neural networks that learn generic vi-
sual features on the character recognition task. The matching network
[16] architecture is inspired by a memory-augmented neural network and
generates a weighted nearest neighbor classifier using the distance be-
tween samples. Prototypical networks [109] utilize episodic training and
assign each class to each prototype in the representation space to predict
new data based on the distance metric to each prototype. [110] proposed
using an additional data sample generator, which is trained with meta-

learning methods, to augment the model training.

Transductive few-shot methods [7-9, 100, 101,111, 112] assume that
the model simultaneously accesses all the query set. A transductive episodic-
wise adaptive metric (TEAM) [100] defined the optimization process as
a standard semi-definite programming problem to train a generalizable
classifier. A distribution propagation graph network (DPGN) [111] pro-
posed utilizing both the distribution-level and instance-level relations by
designing a dual complete graph network consisting of a point graph and
a distribution graph. [101] proposed transductive fine-tuning, which pur-
sues outputs with a peaked posterior or low Shannon entropy, and a hard-
ness metric to deliver a standardized evaluation protocol. [7] proposed

the prototype rectification, which lowers the class prototype’s intra-class
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bias and cross-class bias and verifies the method theoretically. A syn-
thetic information bottleneck (SIB) [112] introduced an empirical Bayes
approach and a two-network architecture consisting of a synthetic gradi-
ent network and an initialization network to perform the synthetic gradi-
ent descent. LaplacianShot [8] implemented a constrained graph cluster-
ing method that attaches the query samples to the nearest prototype, and
a pairwise Laplacian term advocates similar samples to output the same
label. Transductive information maximization (TIM) [9] maximizes the
mutual information between the query features and the predicted query
label by minimizing the conditional entropy and maximizing the marginal
entropy, and the alternating direction optimizer enables faster conver-

gence than the typical gradient descent optimizer.

Contrastive learning: Contrastive learning [26, 113—-117] is a self-
supervised learning method inspired by noise contrastive estimation [118,
119] or N-pair losses [120]. [113] proposed the use of a non-parametric
softmax classifier to increase the instance-level distance on a 128-dimensional
unit sphere after the CNN extracts a feature vector of the image. [114]
improved contrastive predictive coding to implement a pretraining stage
with a feature extractor and a context network to predict the spatial loca-
tion of the image patches. Deep InfoMax [115] proposed an approach for
training an encoder that maximizes the mutual information between the
input data and output features. [116] aimed to maximize the mutual infor-

mation between different views of the same image by pulling views of the
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same scene together and pushing views of different scenes apart. Time-
contrastive networks (TCN) [117] proposed learning from multi-view
video by pulling the anchor and positive images together while pushing
negative images apart. SImCLR [26] implemented two data augmenta-
tion paths and a learnable nonlinear transformation to train an encoder
with a large batch by pulling the feature embedding from the same im-
age. Supervised contrastive learning [6] is an extension of conventional

contrastive learning that has been modified for supervised classification.

5.3 Methodology

This section introduces the proposed idea in detail.

5.3.1 Examining A Few-shot Learning Method

In this study, we examine the transductive information maximization
(TIM) few-shot learning algorithm [9]. First, a feature extractor trans-
forms an input image into embedded features. TIM maximizes the modi-
fied mutual information between the query image’s feature and the query
label by updating the soft-classifier’s trainable weights. To maximize the
information, TIM minimizes the conditional entropy and maximizes the
marginal entropy. Minimizing conditional entropy aims to make con-
fident predictions by modeling the cluster assumption, which implies
that the classification criterion should not be present in the dense re-

gions of the unlabeled features. Maximizing marginal entropy pushes the
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marginal distribution of labels to be uniform, which attempts to avoid
the solution of outputting only one class. Together with the conventional

cross-entropy loss, the TIM loss is defined as follows:

prim _ 75 Z Z Yinlog pin —
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where pj, is the posterior distribution over the labels given the fea-

tures and p, is the marginal distribution over the query labels.

Given the loss objective, two optimization methods are presented [9].
One is a conventional gradient descent (TIM-GD) method that mini-
mizes the loss objective through mini-batch sampling. Although TIM-
GD shows the best results, it is two orders of magnitude slower than
inductive methods, which leads to the second method called the alter-
nating direction method (TIM-ADM), which divides the problem into
two more manageable subproblems and optimizes them iteratively. TIM-
ADM shows competitive results compared to TIM-GD while being one
order of magnitude faster. In both methods, sufficiently large number of
iterations were required to converge to the best results. Typical values
for the number of iterations for TIM-GD and TIM-ADM were 1,000 and

150, respectively.
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5.3.2 Augmenting Few-shot Learning with Super-
vised Contrastive Learning
The quality of a feature extractor is one of the main challenges in im-
proving a few-shot learning algorithm because it is directly related to the
quality of the feature embeddings. Supervised contrastive learning [6]
is an extension of self-supervised representation learning; it has a simi-
lar two-stage training procedure, as shown in Figure 5.1. The first stage
prepares two copies of an input image and preprocesses them. An en-
coder network then transforms the images into normalized embedding,
and an additional projection network transforms the embedding into a
low-dimensional embedding. Supervised contrastive loss is computed on
the low-dimensional embedding by attracting positive samples, which
have the same class label or are from the same copied images, and by
repelling the negative samples. The supervised contrastive loss is defined

as follows:

1 exp (zi-2p/7T)
Lsup = — — log
iezi 140l peZP(i) ae%(i) exp (i 2a/T)

where z; is the low-dimensional embedding, 7 is a temperature parame-
ter, A(i) = I\ {i}, i is an anchor index, and P(i) = {p € A(i) : , = 3;}
is the set of indices of all positives except the anchor. The inner product
operation on the embedding space measures the similarity between two
feature embeddings. The loss is minimized when an anchor’s feature em-

bedding is similar to all the positive’s feature embeddings and is different

94



Supervised pretraining
SupCon loss

Supervised fine-tuning (optional) TIM adaptation
Cross entropy loss TIM loss

Projection
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Feature extractor

Feature extractor Feature extractor

Base Base Novel
dataset dataset dataset

Two-stage supervised contrastive learning

/

Two-stage few-shot learning

Figure 5.1 The proposed pretraining approach for few-shot learning con-
sists of a multi-stage training process.

from all the negative’s feature embeddings. The loss is generalized from
the conventional SImCLR [26] self-supervised contrastive loss to support

multiple positives in the multiviewed batch.

Notably, performing supervised contrastive learning in the first stage
of few-shot learning is proposed instead of performing the conventional
training with base classes and cross entropy. The second step of the train-
ing procedure is to discard the projection network and fine-tune the en-
coder network with a new classifier. As representation learning implies,
the encoder network becomes discriminative during the first step of the
training procedure; therefore, the fine-tuning process is relatively short
and is guided by a lower learning rate. Note that we fine-tuned the feature

extractor with the base class and cross-entropy, which was pre-trained in
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the first stage of supervised contrastive learning. The fine-tuning process
in supervised contrastive learning is optional; we can skip the process
that does not touch the feature extractor because we only use the fea-
ture extractor at the end. When we follow the linear evaluation proto-
col, we keep the feature extractor intact, which implies that we skip the
fine-tuning process. We chose to use the fine-tuning approach because it
produces better results than no fine-tuning as shown in Table 5.1. After
the supervised contrastive learning, optional fine-tuning follows. One-
shot and five-shot five-way classification accuracy on Mini-ImageNet is

reported. Our results are averaged over 10,000 episodes.

In addition, Figure 5.1 shows the details about proposed pretraining
approach. The first stage of supervised contrastive learning uses super-
vised contrastive loss and projection head with the base dataset to learn
visual representations. The second stage of supervised contrastive learn-
ing uses conventional cross-entropy loss with the base dataset to fine-tune
the feature extractor. This two-stage supervised contrastive learning com-
prises the first stage of few-shot learning. The second stage of few-shot
learning uses TIM [9] loss and the feature extractor fixed with the novel
dataset to perform TIM adaptation. If the supervised fine-tuning becomes
standard supervised training and the supervised contrastive pretraining is

skipped, then the entire pipeline is the same as in the baseline method [9]

In our experiment, we added a supervised contrastive learning ap-

proach as an additional pretraining step in the first few-shot training
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Table 5.1 Summary results for the fine-tuning setting.

\ fine-tune \ 1-shot \ 5-shot \
v 78.83 | 87.76

X 75.94 | 86.16

stage. Furthermore, we fine-tuned the feature extractor with cross-entropy

loss using the base class dataset.

5.4 Experiments

An implementation of our SPTA is publicly available'.

Datasets: We examined three few-shot learning datasets, namely Mini-
ImageNet, Tiered-ImageNet, and CUB. The Mini-ImageNet dataset [16]
is composed of 100 classes from the ImageNet [10] dataset. It has 64/16/20
base/validation/novel classes, respectively, with 600 84 x 84 sized im-
ages per class following the split proposed by [107]. The Tiered-ImageNet
[17]1s composed of 608 classes from the ImageNet dataset. It has 351/97/160
base/validation/novel classes, respectively, with 779,165 84 x 84 sized
images in total following the split proposed by [17]. Finally, the Caltech-
UCSD Birds 200-2011 [15] (CUB) dataset is composed of 200 classes
and 11,788 images in total. It has 100/50/50 base/validation/novel classes,
respectively, with 84 x 84 sized images following the split proposed by

[121].

"https://github.com/taemin-lee/SPTA
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Evaluations: We evaluate the algorithm’s score by comparing the final
predicted label at the second stage with the ground truth label. For each
few-shot learning episode, N-way K-shot tasks with 7" queries per class
were randomly selected from the dataset of novel classes. We chose N =
5, T =15, and K = 1 for 1-shot or K = 5 for 5-shot classification. We

followed the evaluation protocol in [9].

Implementation details: We examined mainly three different backbone
network models, namely ResNet-18, MobileNet, and WRN28-10, fol-
lowing the implementation of [9,122]. Note that the number after ResNet
indicates the depth of the network. Nevertheless, we report ResNet vari-
ants in one group following the convention of [8,9]. We mainly inves-
tigated the alternating direction method (ADM) version of the TIM al-
gorithm, which is faster than the gradient descent (GD) version?. We
have added a prototype estimation technique [7, 8] to TIM. This fur-
ther improved the 1-shot classification accuracy. We used a PyTorch [69]
re-implementation of RandAugment® on the preprocessing stage of su-
pervised contrastive learning* with N = 3 and M = 20 to implement
modified stacked RandAugment. When pretraining, we used the train-
ing epochs of 1,000 for the supervised contrastive learning, and this was
followed by five epochs of fine-tuning. Our method is referred as SPTA

following the name of combined methods (i.e., supervised contrastive

Zhttps://github.com/mboudiaf/TIM
3https://github.com/ildoonet/pytorch-randaugment
“https://github.com/HobbitLong/SupContrast
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learning, prototype estimation, and TIM-ADM).

5.4.1 Comparison to the State-of-the-Art

We evaluated the 5-way 1-shot and 5-shot classification accuracy of our
method on the Mini-ImageNet and CUB datasets. Our results were av-
eraged over 10,000 episodes following [9, 122] and are summarized in
Table 5.2. In the table, we present methods with 1-shot accuracy over
60% on Mini-ImageNet, and the methods are arranged in ascending or-
der. The results are categorized according to the backbone network the
algorithms use. The bold values are the best results within the algorithms
that use the same backbone network. We excluded results from a semi-
supervised setting because these methods require additional data at test
time. We observed that consistent accuracy gains over the existing meth-
ods, regardless of the backbone network models. For example, 1-shot ac-
curacy improved by more than 6% whereas 5-shot accuracy improved by
more than 5% with the MobileNet network backbone on Mini-ImageNet
surpassing all the existing methods with the ResNet network backbone
model on Mini-ImageNet. With the ResNet-18 network backbone model
on Mini-ImageNet, the 1-shot accuracy improved by almost 5% whereas
the 5-shot accuracy improved by more than 2% surpassing all the ex-
isting methods with the WRN28-10 network backbone model on Mini-
ImageNet. Therefore, the gain of our method is comparable to the se-

lection of a better network architecture on Mini-ImageNet in improving
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Table 5.2 Accuracy comparison to the state-of-the-art methods for five-
way classification on Mini-ImageNet and CUB.
Mini-ImageNet CUB

‘ Method ‘ Backbone ‘ I-shot  5-shot ‘ 1-shot  5-shot ‘
SimpleShot [122] MobileNet 61.30 78.37 - -
LaplacianShot [8] MobileNet 70.27 80.10 - -

| Ours-SPTA | MobileNet | 76.57 8582 | 83.76  89.01 |
TEAM [100] ResNet-18 60.07 75.90 80.16 87.17
MTL [123] ResNet-12 61.2 75.5 - -
vFSL [124] ResNet-12 61.23 77.69 - -
Neg-cosine [125] ResNet-18 62.33 80.94 72.66 89.40
AFHN [126] ResNet-18 62.38 78.16 70.53 83.95
MetaOpt [127] ResNet-12 62.64 78.63 - -
SimpleShot [122] ResNet-18 62.85 80.02 - -
Distill [128] ResNet-12 64.82 82.14 - -
ConstellationNet [129] ResNet-12 64.89 79.95 - -
DeepEMD [130] ResNet-12 65.91 82.41 75.65 88.69
FEAT [131] ResNet-12 66.78 82.05 - -
IEPT [132] ResNet-12 67.05 82.90 - -
TRAML [133] ResNet-12 67.10 79.54 - -
CAN+T [134] ResNet-12 67.19 80.64 - -
MELR [135] ResNet-12 67.40 83.40 - -
DPGN [111] ResNet-12 67.77 84.60 75.71 91.48
SIB+IFSL [136] ResNet-10 68.85 80.32 - -
LaplacianShot [8] ResNet-18 72.11 82.31 80.96 88.68
TIM-GD [9] ResNet-18 73.9 85.0 82.2 90.8

\ Ours-SPTA \ ResNet-18 \ 78.83 87.76 \ 88.81 93.11 \
LEO [137] WRN28-10 | 61.76 77.59 - -
CC+rot [104] WRN28-10 | 62.93 79.87 - -
AWGIM [138] WRN28-10 | 63.12 78.40 - -
SimpleShot [122] WRN28-10 | 63.50 80.33 - -
FEAT [131] WRN28-10 | 65.10 81.11 - -
Transductive tuning [101] WRN28-10 | 65.73 78.40 - -
Logistic Regression with DC [139] | WRN28-10 | 68.57 82.88 79.56  90.67
SIB [112] WRN28-10 70.0 79.2 - -
BD-CSPN [7] WRN28-10 | 70.31 81.89 - -
SIB+IFSL [136] WRN28-10 | 73.51 83.21 - -
LaplacianShot [8] WRN28-10 | 74.86 84.13 - -
TIM-GD [9] WRN28-10 77.8 87.4 - -
Ours-SPTA WRN28-10 | 80.32 8876 | - -
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Table 5.3 Accuracy comparison to the state-of-the-art methods for five-

way classification on Tiered-ImageNet.

Tiered-ImageNet

‘ Method ‘ Backbone ‘ 1-shot 5-shot ‘
SimpleShot [122] | MobileNet | 69.47 85.17
LaplacianShot [8] | MobileNet | 79.13 86.75

\ Ours-SPTA \ MobileNet \ 79.17 87.16 \
MetaOpt [127] ResNet-12 | 65.99 81.56
SimpleShot [122] | ResNet-18 | 69.09 84.58
FEAT [131] ResNet-12 | 70.80 84.79
DeepEMD [130] | ResNet-12 | 71.16 86.03
Distill [128] ResNet-12 | 71.52 86.03
MELR [135] ResNet-12 | 72.14 87.01
IEPT [132] ResNet-12 | 72.24 86.73
DPGN [111] ResNet-12 | 72.45 87.24
CAN+T [134] ResNet-12 | 73.21 84.93
SIB+IFSL [136] ResNet-10 | 78.03 85.43
LaplacianShot [8] | ResNet-18 | 78.98 86.39
TIM-GD [9] ResNet-18 | 79.9 88.5

| Ours-SPTA | ResNet-18 | 81.16 ~ 88.43 |
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performance.

The results for the Tiered-ImageNet are presented in Table 5.3. The
results are categorized according to the backbone network the algorithms
use. The bold values are the best results within the algorithms that use
the same backbone network. Again, our results are averaged over 10,000
episodes, and our method scores competitive accuracy results compared
to the existing methods. By comparison, the score gain on the Tiered-
ImageNet is not as high as that of Mini-ImageNet and CUBs (i.e., less
than or approximately 1%). We assume that the Tiered-ImageNet is a
very large dataset compared to Mini-ImageNet and CUB, and thus the vi-
sual representation learned from the Tiered-ImageNet is sufficiently dis-
criminative with conventional cross-entropy loss. This implies that our
method is data-efficient in terms of the dataset size. Thus, it works par-

ticularly well with small datasets, reducing the cost of data preparation.

5.4.2 Ablation Study

We evaluated the influence of prototype estimation and supervised con-
trastive learning on the final accuracy of the method. Instead of the sim-
ple mean of support set examples, the prototype estimation technique
calculates better initialization points by combining support set examples
and query set examples. The results are reported in Table 5.4, and all
of them used ResNet-18 as a backbone network model. Note that proto

refers to prototype estimation and supcon refers to supervised contrastive
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Table 5.4 Ablation study on the influence of prototype estimation and
supervised contrastive learning.

Mini-ImageNet

‘ Method ‘ Backbone ‘ proto  supcon ‘ I-shot  5-shot ‘
TIM-ADM [9] | ResNet-18 73.6 85.0
ResNet-18 | v 74.86 84.95
ResNet-18 v 77.38 87.82

| Ours-SPTA | ResNet-18 | v v | 7883 8776 |

Tiered-ImageNet

‘ Method ‘ Backbone ‘ proto  supcon ‘ I-shot  5-shot ‘
TIM-ADM [9] | ResNet-18 80.0 88.5
ResNet-18 | v 81.34 88.41
ResNet-18 v 80.22 88.49

| Ours-SPTA | ResNet-18 | v v | 8l16 8843 |

CUB

‘ Method ‘ Backbone ‘ proto  supcon ‘ I-shot  5-shot ‘
TIM-ADM [9] | ResNet-18 81.9 90.7
ResNet-18 | v 83.66 90.72
ResNet-18 4 87.63 93.08

Ours-SPTA | ResNet-18 | v v | 8881 9311 |
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Table 5.5 Summary of domain-shift setting results.

Method ‘ domain ‘ Backbone ‘ 1-shot  5-shot

TIM-GD [9] | CUB —CUB ResNet-18 | 82.2 90.8
Mini-ImageNet —CUB ResNet-18 | 53.04 71.04
Tiered-ImageNet -CUB | ResNet-18 | 82.58 91.39

Ours-SPTA | CUB —CUB ResNet-18 | 88.81 93.11
Mini-ImageNet —CUB ResNet-18 | 51.50 68.69
Tiered-ImageNet —CUB | ResNet-18 | 82.80 90.70

learning. The bold values are the best results among the methods. Our
results are averaged over 10,000 episodes. From the TIM-ADM base-
line method, prototype estimation and supervised contrastive learning
were added one by one. We observe that most of the accuracy gain on
the Mini-ImageNet and CUB datasets is from the supervised contrastive
learning, and the prototype estimation improves 1-shot accuracy further,
while it has a marginal impact on 5-shot accuracy. For example, 1-shot
accuracy improved by almost 7%, whereas 5-shot accuracy improved by
more than 2% on the CUB dataset. Most of the gain in 1-shot accuracy on
the CUB dataset is from supervised contrastive learning (i.e., more than
5%), whereas the gain of the prototype estimation is less than 2%. Sim-
ilarly, most of the gain in 5-shot accuracy on the CUB dataset is from
supervised contrastive learning, whereas the gain of the prototype esti-
mation is negligible. We assume that a 5-shot setting provides sufficient
information to build a proper prototype for each class, even without the

prototype estimation method.
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5.4.3 Domain-Shift

We measure the impact of the domain-shift and report the results in Table
5.5. Note that no domain-shift and domain-shift from the larger dataset
are presented. The bold values are the best results among the domain set-
tings. All results used ResNet-18 as a backbone network model, and our
results were averaged over 10,000 episodes. Domain A —B implies that
the feature extractor is trained on dataset A, whereas the few-shot learn-
ing method is evaluated on dataset B, similar to the setting from [121].
Domain CUB —CUB is the baseline result without a domain-shift. Note
that the domain-shift from a slightly large-sized dataset to a smaller
one (i.e., Mini-ImageNet —CUB) drastically degrades the accuracy of
the few-shot learning method. The results show a drop in 1-shot accu-
racy of approximately 29% and 19% in 5-shot accuracy. By compari-
son, the domain-shift from a much larger dataset (i.e., Tiered-ImageNet
—CUB) is slightly better than the no domain-shift (i.e., CUB —CUB)
baseline setting. It improves 1-shot accuracy by approximately 1%. The
results show that the existing method requires a much larger dataset in
the source domain to build an effective feature extractor under a domain-
shift. By contrast, the proposed method provides better feature extraction
when using a smaller dataset. Indeed, with our data-efficient augmenta-
tion method, CUB —CUB accuracy increases by a large margin surpass-

ing that of Tiered-ImageNet —CUB setting. Our method improves 1-shot
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Table 5.6 Results on increasing the number of ways on Mini-ImageNet.

10-way 20-way
Method Backbone | 1-shot 5-shot | 1-shot 5-shot
baseline [121] ResNet-18 - 55.00 - 42.03
baseline++ [121] | ResNet-18 - 63.40 - 50.85
TIM-ADM [9] ResNet-18 | 56.0 72.9 39.5 58.8
TIM-GD [9] ResNet-18 | 56.1 72.8 39.3 59.5
Ours-SPTA ResNet-18 | 61.15 77.12 | 43.29 64.23

accuracy by approximately 6%, and 5-shot accuracy by more than 2%.
Therefore, if our method is applied, it is possible to prepare a small base
class dataset, and it can still achieve superior accuracy without resorting
to the very large base class dataset. Note that our method suffers from
more degradation with domain-shift. We conjecture that our method is

highly dependent on the base dataset as discussed in Section 5.4.6.

5.4.4 Increasing the Number of Ways

We investigated the effect of increasing the number of ways on Mini-
ImageNet and report the results in Table 5.6. The bold values represent
the best results among the algorithms. All results used ResNet-18 as a
backbone network model, and our results were averaged over 10,000
episodes. These settings are more challenging than 5-way few-shot clas-
sification because there is a greater chance of misclassifying the input
image. Our method’s 10-way and 20-way few-shot classification accu-
racy scores are higher than those of existing methods by a large margin.

For example, it improves the 10-way 1-shot accuracy by approximately
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Table 5.7 Summary results for the runtime analysis.

Methods 1-shot | 5-shot
ResNet-18 TIM-ADM baseline | 73.6 85.0
MobileNet + ours 75.13 | 85.01

I TIM-ADM inference
prototype estimation
I feature extraction

2.01

prototype estimation

runtime (s)

ResNet-18 MobileNet + ours
TIM-ADM baseline

methods

Figure 5.2 Runtime breakdown on NVIDIA Jetson TX2.

5%, 10-way 5-shot accuracy by more than 4%, 20-way 1-shot accuracy
by approximately 4%, and 20-way 5-shot accuracy by more than 4%
compared to the existing best method. This implies that our method im-
proves the overall generalization performance of the few-shot learning

method.

5.4.5 Runtime Analysis

The accuracy gain of our method can be utilized for runtime reduc-
tion in few-shot learning, which could be especially useful in resource-

constrained contexts such as mobile settings. We measured the latency
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of the methods on an NVIDIA Jetson TX2 to quantify the runtime im-
pacts. The evaluation protocol included 100 warm-up runs, followed by
100 execution runs, and we reported the average over the execution runs.
Figure 5.2 shows a breakdown of the algorithm runtime. Note that the
runtime of prototype estimation is negligible. The runtime is measured
in 5-shot classification (i.e., the feature extraction batch size is 100, and
the algorithm assumes 5-shot classification). The baseline method is the
TIM-ADM algorithm with the ResNet-18 backbone, which scores a 1-
shot accuracy of 73.6 and a 5-shot accuracy of 85.0 as reported in Table
5.7. Note that supervised contrastive learning and prototype estimation
are used to compensate for accuracy loss induced by the runtime reduc-
tion methods. Our accuracy results are averaged over 10,000 episodes.
Note that the feature extraction latency is larger than the TIM-ADM in-
ference runtime for target task training, which confirms the importance
of backbone network selection. We chose to use the MobileNet backbone
network with our method under early stopping (i.e., 10 TIM-ADM iter-
ations instead of 150 iterations) and obtained a 1-shot accuracy of 75.13
and a 5-shot accuracy of 85.01, which is still higher than the baseline.
Thus, the accuracy gain enabled by our method could be translated to a

runtime reduction of 3.87x without loss of accuracy.
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5.4.6 Limitations

In domain-shift experiment, we observed that the feature extractor trained
by our method did not improve the accuracy of the few-shot learning un-
der the domain-shift setting (i.e., the last two rows in Table 5.5). This
implies that our method is highly dependent on the base dataset as it con-
sumes a high number of epochs (i.e., 1,000 epochs for supervised con-
trastive learning) with the base dataset. Therefore, we suggest that our
method’s application is limited to scenarios only when a domain-shift is
not present. No domain-shift setting encourages a smaller base dataset in

real-world implementations.

The cost of supervised contrastive learning is another limitation. A
batch size larger than the number of classes in the base dataset is rec-
ommended to provide a sufficient number of positives in a single mul-
tiviewed batch. This implies many graphic processing units (GPUs) are
required to implement and hinder extensive experiments. Specifically, we
used two GTX 2080 Ti GPUs to six P100 GPUs to support a single run of
the appropriate batch size for supervised contrastive learning. Therefore,
we emphasize that a server with sufficient computing power is necessary
to implement the pretraining stage. Note that once the pretraining stage
and fine-tuning are completed, the remaining algorithm can be imple-

mented in a resource-constrained environment.

In summary, both limitations indicate that our method has insufficient
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scalability in terms of dataset size, and hence, it is effective in small-scale
applications (e.g., few-shot learning). Reducing the cost of supervised

contrastive learning is left for future work.

5.5 Conclusion

We proposed applying supervised contrastive learning for pretraining in
the first stage of few-shot learning. The feature extractor was trained us-
ing supervised contrastive loss followed by fine-tuning, whereas the clas-
sifier performed adaptation using TIM loss. We report that our method
is data-efficient (i.e., works well with a small dataset) while retaining
competitive accuracy performance with a large dataset. Our experiment
shows that we achieved new state-of-the-art results on Mini-ImageNet

and CUB datasets.
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Chapter 6

Conclusion

In this dissertation, two deep learning vision applications are considered,
namely unsupervised domain adaptation and few-shot learning. I present
1) co-optimization of backbone network and parameter selection in unsu-
pervised domain adaptation for edge device and 2) augmenting few-shot
learning with supervised contrastive learning. Both methods aim to ad-
dress low labeled data count in different settings.

The first method is to boost unsupervised domain adaptation by co-
optimization of backbone network and parameter selection for edge de-
vice. Combining a large feature extractor and the unsupervised domain
adaptation method that does not update the feature extractor at runtime,
we can achieve new state-of-the-art accuracy result. Furthermore, we
experiment using small pre-trained ImageNet models for edge device
Predictor-guided evolutionary search is implemented to optimize the to-
tal latency end-to-end. We show that our method is Transferable be-
tween Office datasets without large accuracy drop. We also present pre-

extraction of source feature by storing source features for several OFA
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networks not specialized OFA networks. We also conduct more realistic
scenario for edge device such as smaller target domain data and object
detection. Lastly, We conduct an experiment to utilize intermediate do-
main data to reduce the algorithm latency further. We report 5.99x and
9.06 x latency reduction on Office31 and Office-Home dataset, respec-
tively.

The second method is to augment few-shot learning with supervised
contrastive learning. Following the few-shot learning protocol, we use
base dataset to train the feature extractor from scratch instead of using
pre-trained ImageNet model. We propose to augment the feature ex-
tractor using supervised contrastive learning. After the supervised con-
trastive learning, fine-tuning process follows to boost the accuracy. Su-
pervised contrastive learning with information maximization and proto-
type estimation methods achieves state-of-the-art accuracy result. After
that, the accuracy gain can be translated to total runtime reduction by us-
ing lightweight feature extractor and early stopping. We achieve 3.87 x
latency reduction few-shot learning scenarios.

Our two stage approach which consists of accuracy boosting and la-
tency reduction achieves a goal toward fast adaptation of deep learning
vision applications with limited data for edge device. Note that the search
space and search technique we use can be improved by using more ad-

vanced network model and algorithm, which is left for future work.
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