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Abstract

Fast Adaptation of Deep Learning
Vision Applications with Limited Data

for Edge Device

Taemin Lee

Department of Computer Science and Engineering

The Graduate School

Seoul National University

The remarkable success of deep learning-based methods are mainly ac-

complished by a large amount of labeled data. Compared to conventional

machine learning methods, deep learning-based methods are able to learn

high quality model with a large dataset size. However, high-quality la-

beled data is expensive to obtain and sometimes preparing a large dataset

is impossible due to privacy concern. Furthermore, human shows out-

standing generalization performance without a huge amount of labeled

data.

Edge devices have a limited capability in computation compared to

servers. Especially, it is challenging to implement training on edge de-

vices. However, training on edge device is desirable when considering
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domain-shift problem and privacy concern. In this dissertation, I con-

sider adaptation process as a conventional training counterpart for low

computation capability edge device.

Conventional classification assumes that training data and test data

are drawn from the same distribution and training dataset is large. Un-

supervised domain adaptation addresses the problem when training data

and test data are drawn from different distribution and it is a problem to

label target domain data using already existing labeled data and models.

Few-shot learning assumes small training dataset and it is a task to predict

new data based on only a few labeled data. I present 1) co-optimization

of backbone network and parameter selection in unsupervised domain

adaptation for edge device and 2) augmenting few-shot learning with

supervised contrastive learning. Both methods are targeting low labeled

data regime but different scenarios.

The first method is to boost unsupervised domain adaptation by co-

optimization of backbone network and parameter selection for edge de-

vice. Pre-trained ImageNet models are crucial when dealing with small

dataset such as Office datasets. By using unsupervised domain adapta-

tion algorithm that does not update feature extractor, large and powerful

pre-trained ImageNet models can be used to boost the accuracy. We re-

port state-of-the-art accuracy result with the method. Moreover, we con-

duct an experiment to use small and lightweight pre-trained ImageNet

models for edge device. Co-optimization is performed to reduce the to-
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tal latency by using predictor-guided evolutionary search. We also con-

sider pre-extraction of source feature. We conduct more realistic scenario

for edge device such as smaller target domain data and object detection.

Lastly, We conduct an experiment to utilize intermediate domain data to

reduce the algorithm latency further. We achieve 5.99× and 9.06× la-

tency reduction on Office31 and Office-Home dataset, respectively.

The second method is to augment few-shot learning with supervised

contrastive learning. We cannot use pre-trained ImageNet model in the

few-shot learning benchmark scenario as they provide base dataset to

train the feature extractor from scratch. Instead, we augment the feature

extractor with supervised contrastive learning method. Combining super-

vised contrastive learning with information maximization and prototype

estimation technique, we report state-of-the-art accuracy result with the

method. Then, we translate the accuracy gain to total runtime reduction

by changing the feature extractor and early stopping. We achieve 3.87×

latency reduction for transductive 5-way 5-shot learning scenarios.

Our approach can be summarized as boosting the accuracy followed

by latency reduction. We first upgrade the feature extractor by using more

advanced pre-trained ImageNet model or by supervised contrastive learn-

ing to achieve state-of-the-art accuracy. Then, we optimize the method

end-to-end with evolutionary search or early stopping to reduce the la-

tency. Our two stage approach which consists of accuracy boosting and

latency reduction is sufficient to achieve fast adaptation of deep learning
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vision applications with limited data for edge device.

Keywords: Neural network, edge device, unsupervised domain adapta-

tion, few-shot learning, pseudo labeling, contrastive learning, informa-

tion maximization

Student Number: 2015-31052
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Chapter 1

Introduction

The exceptional success of deep learning-based methods are mainly achieved

by increasing size of labeled data. However, large labeled data by human

annotation is hard to obtain and sometimes it is not possible because of

privacy concern. On the other hand, human shows excellent generaliza-

tion performance without a large labeled dataset, bringing motivation to

the field of unsupervised domain adaptation and few-shot learning. Typ-

ical classification tasks assume that training data and test data are drawn

from the same distribution and the training dataset is large. Unsuper-

vised domain adaptation task relieves the same distribution assumption

and deals with the situation that training data and test data are drawn

from the different distribution. Few-shot learning also relieves the large

training dataset assumption and classifies the new data with a few labeled

examples per class. Therefore, both tasks aim to address non-ideal cases

of low labeled data count but with different scenarios.

Unsupervised domain adaptation aims to address the problem by reusing

already existing labeled data and models to label target domain data. The
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source domain has a labeled dataset while the target domain has unla-

beled dataset and the goal of the methods is to label the target domain

dataset. The problem is that when the model trained by source domain

dataset is tested using target domain dataset, domain shift problem oc-

curs and degrades the models’ performance. Therefore, it is required to

reduce domain shift problem by aligning distributions of source and tar-

get domain.

The aim of few-shot learning is to classify unlabeled data based on

the observation of a few labeled data. Given a labeled base dataset and

a novel dataset, the objective of a few-shot learning task is to build a

visual model using the base dataset and to generalize to the novel dataset

which has only a few training images per class. A transductive few-shot

learning is in introduced to address the low data count. The setting allows

that the model can access all the test data at once instead of one by one

in the inference stage.

The speed of the adaptation algorithm is important in some working

scenarios. For example, we consider driving a car into the tunnel. Char-

acteristics of environment change drastically and they are maintained for

several minutes. The car cannot rely on server assistance due to high

communication cost. In such scenario, edge devices in the car need to

adapt to new environment by itself in the order of multiple seconds. An-

other example is about personalization which aims to provide customized

service to individuals based on private data. Each user has its own con-
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text or domain which is based on its own environment to which algorithm

needs to perform domain adaptation to adapt. The local data cannot be

transferred to the centralized server due to the privacy concern. Indeed,

we suppose each edge device has its own private data and perform adap-

tation. The adaptation algorithm needs to be optimized to provide inter-

active service. Note that both car environment and user response are not

ultra fast (e.g., in the order of microseconds). Still, fast adaptation is im-

portant in such scenarios and it is critical to minimize computation cost

of adaptation as edge devices have a low computation capability com-

pared to typical servers.

Note that small data has not always adverse effect. We assume data

in each edge device is small and private because each edge device tries

to solve meaningful problem without transferring data to server due to

privacy concern and communication cost. If data is small, performing

adaptation to new data is relatively fast as typical execution time of algo-

rithm is proportional to data size. We keep the positive effect of limited

data in mind and develop approaches for the scenarios when the dataset

is not large.

In this dissertation, I propose two approaches to address low data

count. I present 1) co-optimization of backbone network and parame-

ter selection in unsupervised domain adaptation for edge device and 2)

augmenting few-shot learning with supervised contrastive learning. Both

methods have similar two stage approach that consists of accuracy boost-
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ing and latency reduction to support fast adaptation of deep learning ap-

plications with limited data for edge device.

The first method is to boost unsupervised domain adaptation by co-

optimization of backbone network and parameter selection for edge de-

vice. The first stage of the first method is to boost the accuracy as much as

possible. The quality of feature extractor is crucial thereby we use pre-

trained ImageNet models to handle small datasets like Office datasets.

However, some of the unsupervised domain adaptation methods are not

resilient with advanced feature extractors due to complex and unrepro-

ducible feature extractor training protocols. Inspired by the existing work

[1], we use large and heavyweight feature extractors combined with an

algorithm without updating the feature extractor part. We report the ac-

curacy surpassing the state-of-the-art with EfficientNet [2] and Vision

Transformer [3] feature extractor combined with selective peseudo la-

beling (SPL) [4] algorithm.

The second stage of the first method is to reduce the latency while

maintaining the baseline accuracy. We experiment that uses small and

lightweight pre-trained ImageNet models named once-for-all (OFA) [5]

network and validate the fact that there is a few accuracy margin which

can be translated to latency reduction. We conduct co-optimization to

control both the feature extractor and SPL algorithm parameter to reduce

the total latency of the algorithm. Because of the large search space, a

predictor-guided evolutionary search is implemented to efficiently find
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the appropriate feature extractor and SPL algorithm parameter settings.

We also experiment transferability between Office31 dataset and Office-

Home dataset due to the cost of data collection is high. We assume

pre-extraction of source feature to relieve privacy concern and propose

a method to store source feature along to each OFA networks instead

of specialized OFA network. We also conduct more realistic scenario

for edge device such as smaller target domain data and object detection.

Lastly, We conduct an experiment to utilize intermediate domain data to

reduce the algorithm latency further. We report 5.99× and 9.06× latency

reduction on Office31 and Office-Home dataset, respectively.

The second method is to augment few-shot learning with supervised

contrastive learning. Again, the first stage of the second method is to

boost the accuracy of the few-shot learning scenarios. In the few-shot

learning scenarios, base dataset is provided to train the feature extrac-

tor from scratch thereby we cannot use pre-trained ImageNet models.

Instead of training the feature extractor using cross-entropy loss, we pro-

pose to use supervised contrastive learning [6] technique to augment the

quality of the feature extractor. We observe that supervised contrastive

loss instead of cross-entropy loss is especially effective in the low data

regime. We combine prototype estimation [7, 8] and transductive infor-

mation maximization (TIM) [9] with supervised contrastive learning to

achive state-of-the-art accuracy results. Furthermore, we show that a large

dataset is needed to address domain shift degradation and if our method
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is applied, the need for a large dataset is removed.

the second stage of the second method is to reduce the latency of the

few-shot learning scenarios. We observe that MobileNet backbone net-

work with our method surpasses the baseline ResNet backbone model

and we use the accuracy margin to be translated to runtime reduction. By

applying early stopping with MobileNet backbone network, We achieve

3.87× latency reduction for transductive 5-way 5-shot learning scenar-

ios.

In our method, characteristics of edge device (e.g., memory band-

width and small neural processing unit) are not considered. Instead, we

report latency measured on working edge system (i.e., NVIDIA Jetson

TX2). More sophisticated method which considers edge device charac-

teristics is left for future work. This dissertation is organized as follows.

Chapter 2 introduces background. Chapter 3 presents problem definitions

and solutions overview. Chapter 4 explains the proposed method to boost

unsupervised domain adaptation with pre-trained ImageNet models for

edge device. Chapter 5 explains the proposed method to augment few-

shot learning with supervised contrastive learning. Chapter 6 concludes

the dissertation.
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Chapter 2

Background

2.1 Dataset Size for Vision Applications

Dataset size is important for machine learning. Especially deep learning

methods are known for learning better classifier compared to classical

machine learning methods when the dataset size is large. Table 2.1 shows

image count of famous datasets from several vision applications namely

classification, unsupervised domain adaptation and few-shot learning.

There are diverse datasets with diverse image count. For example, the

image count of datasets for unsupervised domain adaptation varies from

4,110 (i.e., Office31) to 569,010 (i.e., DomainNet). The image count

of datasets for few-shot learning varies from 11,788 (CUB) to 779.165

(Tiered-ImageNet). In this dissertation we concentrate on low data count

regime thereby Office31, Office-Home, CUB, and Mini-ImageNet are

our main focus.
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Table 2.1 Dataset size for vision applications

Applications Dataset Image count

Classification
ILSVRC2012 [10]

1,281,167
(ImageNet)

Unsupervised domain adaptation

Office31 [11] 4,110

Office-Home [12] 15,588

Syn2Real [13] 280,157

DomainNet [14] 569,010

Few-shot learning

CUB [15] 11,788

Mini-ImageNet [16] 60,000

Tiered-ImageNet [17] 779,165
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2.2 ImageNet Pre-trained Models

The performance and the size of model are also important for imple-

menting deep learning based method. Especially when the dataset size is

small, pre-training the model with ImageNet is widely used. We report

the number of parameters for feature extraction, the number of multiply-

accumulate operations for feature extraction, the size of input image and

accuracy on ImageNet validation dataset of the models in Table 2.2 and

Table 2.3. We measure the cost of feature extraction instead of end-to-

end cost because we use other methods for classifier in the subsequent

chapters. Note that the results are reproduced and may differ from the

result reported by papers.

Table 2.2 lists various ImageNet pre-trained models including ResNet

[18], MobileNet [19, 20], NASNet [21], Inception [22], Xception [23],

EfficientNet [2]. The accuracy of models ranges from 71.9 (i.e., Mo-

bilenet v2) to 88.4 (i.e., Efficientnet l2 ns). Also the number of parame-

ters of models ranges from 2.2 millions (i.e., Mobilenet v2) to 474.4 mil-

lions. The number of multiply-accumulate operations ranges from 152.2

millions (i.e., MobileNetv3 large 075) to 478,888.5 millions (i.e., Effi-

cientnet l2 ns) The input size ranges from typical 224 to 800 (i.e., Effi-

cientnet l2 ns). Note that the accuracy of EfficientNet surpasses ResNet

baseline by a large margin.

Table 2.3 lists various OFA networks [5] and specialized OFA net-
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Table 2.2 ImageNet pre-trained models for feature extraction

Models Parameters (M) MAC (M) Input size Accuracy

Resnet50 23.5 4,109.5 224 76.13

Mobilenetv3 large 100 4.2 214.9 224 75.5

Mobilenetv3 large 075 2.7 152.2 224 73.4

Nasnetalarge 84.7 23,922.5 331 82.6

Inceptionresnetv2 54.3 13,193.1 299 80.4

Inceptionv4 41.1 12,287 299 80.2

Xception 20.8 8,397.8 299 79

Nasnetamobile 4.2 577.6 224 74.1

Mobilenet v2 2.2 312.9 224 71.9

Efficientnet l2 ns 474.7 478,888.5 800 88.4

Efficientnet l2 ns 475 474.7 172,028.7 475 88.2

Efficientnet b7 ns 63.7 38,191.9 600 86.8

Efficientnet b6 ns 40.7 19,294 528 86.5

Efficientnet b5 ns 28.3 10,389.6 456 86.1

Efficientnet b8 ap 84.5 63,316.8 672 85.4

Efficientnet b4 ns 17.5 4,435.5 380 85.2

Vit large patch16 384 304 174,701.7 384 87.1

Vit large patch16 224 304 59,646.3 224 85.8

Vit large patch32 384 306.4 44,241.7 384 81.5
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Table 2.3 Specialized OFA models for feature extraction

Models Parameters (M) MAC (M) Input size Accuracy

ofa mbv3 w1.0 6.4 583.7 224 77.4

ofa mbv3 w1.2 9.2 866.4 224 79.0

ofa proxyless w1.3 6.3 1,030 224 77.7

note10@80.2 7.6 765 260 80.2

note10@79.7 7.5 570.9 220 79.7

note10@79.3 7.5 469.5 220 79.3

note10@78.4 5.9 349.3 224 78.4

note10@76.6 4.6 244.6 224 76.6

note10@75.5 3.7 167.6 192 75.5

note10@73.6 3 113 176 73.6

note10@71.4 2.5 78.1 160 71.4

pixel1@76.9 4.5 237 220 76.9

LG-G8@76.4 4.5 237 220 76.4

1080ti@76.4 4.8 406 188 76.4

s7edge@76.3 5.1 225.7 192 76.3

note8@76.1 4 226.4 204 76.1

v100 gpu64@76.1 4.5 359.6 192 76.1

pixel2@75.8 4.5 214.2 208 75.8

tx2 gpu16@75.8 4.5 357 172 75.8
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works. The first row group shows three OFA networks which are used to

derive specialized OFA networks for target hardware platform. The sec-

ond row group presents specialized OFA networks for Samsung Note10

cell phone with various accuracy. The third row group lists the special-

ized OFA networks that have similar accuracy with ResNet for vari-

ous hardware platforms. The accuracy of models ranges from 71.4 (i.e.,

note10@71.4) to 80.2 (note10@80.2). The number of parameters of mod-

els ranges from 2.5 millions (i.e., note10@71.4) to 9.2 millions (i.e.,

ofa mbv3 w1.2). The number of multiply-accumulate operations ranges

from 78.1 millions (i.e., note10@71.4) to 1,030 millions (i.e., ofa proxyless w1.3).

The input size ranges from 160 (i.e., note10@71.4) to 260 (note10@80.2).

Note that the accuracy of specialized OFA networks surpasses ResNet

baseline while maintaining smaller parameters and MAC.

2.3 Augmentation Methods for ImageNet

We introduce several augmentation methods on ImageNet large scale vi-

sual recognition challenge. RandAugment [24] shows a high level of ac-

curacy with a reduced search space thus it is practical to use. The algo-

rithm has two parameters N and M. The parameter N denotes the number

of data augmentation functions used and the parameter M denotes the

strength of the data augmentation. Both parameters have similar inten-

tion that the larger parameters incurs the more regularization strength.
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The code follows.

transforms = [

’Identity’, ’AutoContrast’, ’Equalize’,

’Rotate’, ’Solarize’, ’Color’, ’Posterize’,

’Contrast’, ’Brightness’, ’Sharpness’,

’ShearX’, ’ShearY’, ’TranslateX’, ’TranslateY’]

def randaugmnet(N, M):

sampled_ops = np.random.choice(transforms, N)

return [(op, M) for op in sampled_ops]

The parameters N and M can be determined by simple grid search.

RandAugment shows great success on various datasets achieving similar

accuracy with heavyweight data augmentation methods.

CutMix [25] is another very effective method to augment ImageNet

accuracy. It combines two training data to generate new training sample

for better generalizability of the model. CutMix algorithm is defined as

follows.

x̃ = M xA +(1−M) xB

ỹ = λyA +(1−λ )yB

where M denotes a binary mask that specifies where to remove and copy

from two images, 1 is a binary mask filled with one, denotes element-
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wise multiplications, and λ denotes a combination ratio between two

data which.

The algorithm first samples the bounding box coordinates (rx,ry,rw,rh)

by using uniform sampling where the combination ratio is sampled from

the beta distribution.

rx =Uni f (0,W ), rw =W
√

1−λ

ry =Uni f (0,H), rh = H
√

1−λ

CutMix shows great success on various datasets including ImageNet

showing 2.28% accuracy improvements on ResNet.

In our experiment for few-shot learning, however, the accuracy gain

is marginal indicating that the accuracy boosting methods for ImageNet

is not always adaptable for few-shot learning scenarios.

2.4 Contrastive Learning

Contrastive learning is a method to pull similar samples (positives) and

push dissimilar samples (negatives) apart in the embedding space. We

introduce SimCLR [26] as a representative for contrastive learning. Sim-

CLR consists of data augmentation module, base encoder, projection

head and contrastive loss. A data augmentation module is used to gener-

ate two views of the same sample, which is to create positives in the em-

bedding space. Random cropping, color distortions and random Gaussian
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blur are included in the data augmentation module. Note that the com-

bination of random crop and color distortion is important to boost the

accuracy. A base encoder is a neural network that extracts features from

augmented data. SimCLR uses ResNet for simplicity. A projection head

is an MLP with one hidden layer that converts features to space where

contrastive loss is applied. A contrastive loss is a measure to pull similar

samples and push dissimilar samples apart in the embedding space. The

self-supervised contrastive loss is defined as follows.

Lsel f =−∑
i∈I

log
exp(zi · z j(i)/τ)

∑
a∈A(i)

exp(zi · za/τ)

zl = Pro j(Enc(x̃l)) is a representation of the input in the embedding

space, the · symbol denotes the inner product, τ is a scalar temperature

parameter, and A(i)≡ I\ i where the index i denotes anchor, the index j(i)

denotes the positive, and the other indices denote negatives. Note that the

inner product operation measures the similarity between two operands as

the result value is larger if two operands are more similar. The numerator

of the loss is larger if an anchor and the positive is similar. On the other

hand, the denominator of the loss is larger if an anchor and remaining

negatives are dissimilar. As gradients flow in the direction which loss

becomes smaller, it encourages to pull the positive and push the negative

apart.

SimCLR shows great success on ImageNet especially when the smaller
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fraction of label is used. For example, SimCLR achieves 85.8% top-5 ac-

curacy on ImageNet with only 1% of labels while it achieves 92.6% top-5

accuracy on ImageNet with 10% of labels.
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Chapter 3

Problem Definitions and
Solutions Overview

3.1 Problem Definitions

This section presents the formulation of unsupervised domain adaptation

task and few-shot learning task in detail. Unsupervised domain adapta-

tion task aims to address the problem when training data and test data

are drawn from different distribution. Few-shot learning task addresses

the problem when there is only a few labeled data per class. Note that

an ideal classification tasks have the same distribution between training

dataset and test dataset and there are plenty of labeled dataset for training.

Both methods try to deal with non-ideal cases but different scenarios.

3.1.1 Unsupervised Domain Adaptation

The source domain S has a labeled dataset DS = (xS
i ,y

S
i ), i = 1,2, ...,nS,

where xS
i ∈ Rd denotes the feature vector of i-th labeled sample in the
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source domain, d is the dimension of the feature vector and yS
i ∈ Y S

represents the source domain label. Unsupervised domain adaptation is

designed to label an unlabeled dataset DT = xT
i , i = 1,2, ...,nT from the

target domain T , xT
i ∈ Rd denotes the feature vector of i-th unlabeled

sample in the target domain. Note that the space of the target label Y T

is the same with the space of the source domain Y S. Both the labeled

source domain data and the unlabeled target domain data are accessible

in the model training phase unless the setting considers pre-extraction of

source feature. If the setting considers pre-extraction of source feature,

then the model training is two-phase. Only the source domain image is

available in the first phase while only the target domain image is available

in the second phase.

3.1.2 Few-shot learning

Given a labeled base dataset Dbase := {(xi,yi),yi ∈ Cbase} and a novel

dataset Dnovel := {(xi,yi),yi ∈Cnovel} where Cbase∩Cnovel = /0, the goal

of a few-shot learning task is to train a visual model using the base dataset

Dbase and to generalize to the novel dataset Dnovel which has a few train-

ing images per class. At inference, each few-shot learning task episode

consists of a support set and a query set sampled from the novel dataset.

The support set (S) is labeled and includes K samples per class with N

classes (N-way K-shot setting), whereas the query set (Q) includes T
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samples per class with the same N classes without data labels. The goal

is to map the samples in the query set to the desired label using the infor-

mation gained from the support set. In the transductive setting, the model

can access the entire dataset including the query set (i.e., N×K +N×T

samples) at once instead of one by one (i.e., N×K +1 samples each) in

the traditional inductive setting.

3.2 Solutions overview

This section presents the proposed idea for unsupervised domain adapta-

tion task and few-shot learning task briefly. Both solutions have a similar

approach. Because the quality and latency of feature extractor is criti-

cal in both unsupervised domain adaptation and few-shot learning, we

upgrade the feature extractor using ImageNet pre-trained models or su-

pervised contrastive learning to boost the accuracy. Then, we perform

co-optimization by evolutionary search or early stopping to reduce the

latency while maintaining the baseline accuracy. The solution for unsu-

pervised domain adaptation is applied in situations which we can use a

large (i.e., ImageNet) pre-trained model while the solution for few-shot

learning is applied in situations which we train the feature extractor from

scratch instead of ImageNet pre-trained models. Especially, both solu-

tions are effective in limited data regime.
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3.2.1 Co-optimization of Backbone Network and

Parameter Selection in Unsupervised Domain

Adaptation for Edge Device

We use highly optimized ImageNet pre-trained feature extractor, namely

EfficientNet [2] and Vision Transformer [3] for accuracy boosting and

once-for-all (OFA) [5] network which is designed for edge device. With

EfficientNet feature extractor, we report state-of-the-art 95.8% and 91.5%

accuracy on Office31 and Office-Home dataset, respectively. With OFA

feature extractor, we report 2.6% and 2% higher accuracy than base-

line ResNet on Office31 and Office-Home dataset, respectively. We use

the accuracy margin to reduce the latency of the total algorithm after-

ward. There are two representative ways to reduce the latency. One is to

change the feature extractor with less heavyweight network. The other

is to tune the SPL algorithm with smaller parameters. We conduct a co-

optimization problem using predictor-guided evolutionary search algo-

rithm to set the feature extractor and the SPL parameters. Considering

the fact that training predictors are expensive, we also experiment trans-

ferability between Office31 and Office-Home dataset where predictors

are trained on one dataset and testing is performed on the other dataset.

Lastly, pre-extraction of source feature is considered and we propose to

store features only for OFA networks instead of all the OFA specialized

networks. We report 5.99× and 9.06× latency reduction on Office31 and
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Office-Home dataset, respectively.

3.2.2 Augmenting Few-Shot Learning with Super-

vised Contrastive Learning

We use supervised contrastive learning [6] to augment the feature ex-

tractor following the few-shot learning base dataset training protocol.

After the feature extractor is trained on supervised contrastive learning,

5-epochs of fine-tuning process is followed. At the beginning of TIM [9]

algorithms, prototype estimation method [7, 8] determines initialization

points by combining support set examples and query set examples in-

stead of the simple mean of support set examples. We report state-of-the-

art results 78.83% (87.76%) for 1-shot (5-shot) few-shot learning tasks

on Mini-ImageNet dataset and 88.81% (93.11%) for 1-shot (5-shot) few-

shot learning tasks on CUB dataset. Note that the accuracy we obtain

on CUB dataset is higher than the accuracy that is domain-shifted by

a large dataset (i.e., Tiered-ImageNet) thereby removing the need for a

large base dataset. We observe that our methods with MobileNet sur-

passes the baseline ResNet by 2.6% (0.8%) for 1-shot (5-shot) classifi-

cation on Mini-ImageNet. We exploit the accuracy gain to be translated

to latency reduction by using early-stopping for TIM algorithm. By do-

ing so, we report 3.87× latency reduction for transductive 5-way 5-shot

learning scenarios.
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Chapter 4

Co-optimization of Backbone
Network and Parameter Selection
in Unsupervised Domain
Adaptation for Edge Device

Unsupervised domain adaptation deals with the absence of target domain

data label which incurs performance degradation with a simple transfer

method. Especially for edge device, little work was done to address how

various pre-trained ImageNet models influence the performance of algo-

rithms targeted to solve unsupervised domain adaptation. We propose a

model selection approach for unsupervised domain adaptation scenarios.

With the fact that the speed and accuracy of the feature extractor is a

critical factor in unsupervised domain adaptation, we select the feature

extractor with stronger pre-trained ImageNet models which are designed

to run efficiently for edge devices. Furthermore, we adjust the parame-

ters of unsupervised domain adaptation algorithm by co-optimization. At

first, we demonstrate that gradient-based approaches are insufficient for

unsupervised domain adaptation with small dataset because the feature
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extractor scaling is limited. Instead, we use a pseudo-labeling algorithm

with a large model to boost the performance and report the new state-

of-the-art accuracy for Office datasets. We also investigate the impact of

neural architecture search-based models with the pseudo-labeling algo-

rithm for higher runtime efficiency. In this case, NVIDIA Jetson TX2

platform is used to report the execution time of the algorithm.

4.1 Introduction

The recent success of deep neural networks is mainly supported by a

large labeled dataset such as ImageNet [10]. However, the labeled dataset

to train the deep model is often hard to archive because human labeling

is expensive and it raises a privacy concern. Unsupervised domain adap-

tation tries to relive the problem by reusing already existing labeled data

and models to label new data. The challenge is that when using the model

trained on one dataset to test another, domain shift problem occurs and

degrades the model’s accuracy. Therefore, the methods for unsupervised

domain adaptation are required to reduce the domain shift problem by

typically aligning marginal or conditional distribution of source and tar-

get domains.

The quality of feature extractor is crucial when building a better

model for classification. The recent improvement on ImageNet classi-

fication provides better feature extractors off-the-shelf. Therefore, it is
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natural to apply the state-of-the-art image classification model to un-

supervised domain adaptation context. However, some of the methods

are not adaptable because of the complex and unreproducible feature ex-

tractor training protocol. It is recommended to use unsupervised domain

adapatation methods without the need to fine-tune the feature extrac-

tor part when applying the heavyweight feature extractors. Inspired by

the existing work [1], which summarized the effect of various ImageNet

models on domain adaptation scenarios, we report the accuracy surpass-

ing the state-of-the-art by using the heavyweight EfficientNet [2] and

Vision Transformer [3] feature extractor and Selective Pseudo Labeling

(SPL) [4] algorithm.

Although the heavyweight feature extractor is sufficient to achieve

new state-of-the-art accuracy, the problem is raised when it is applied

to edge devices. Considering the fact that Office dataset, which is com-

monly used to evaluate the performance of unsupervised domain adap-

tation, is small compared to ImageNet, it is reasonable to implement the

entire pipeline of the algorithm on edge devices. We show that the cost of

feature extraction is dominant with the heavyweight feature extractors. If

an edge device is connected to server with high speed bandwidth, then all

the new data can be delivered to server for annotation and the edge device

merely performs a terminal. However, when an edge device is not con-

nected to server or data is not delivered due to the privacy concern, then

the entire pipeline of the algorithm is contained in the edge device and
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the efficiency of both the feature extractor and the back-end algorithm

becomes crucial.

For efficient feature extractor, neural architecture search is proposed

to build neural network models for edge devices. Conventional approach

is to design a neural network with hand-crafted sub-modules designed by

experts. The process of neural network design is indeed labor-intensive

and expensive. Neural architecture search automates the selection of deign

choices by mathematical formulation (e.g., minimizing loss function).

Therefore, it is possible to apply neural architecture search algorithm

on each of diverse hardware with small additional cost. Specifically, we

consider Once-for-All (OFA) [5] neural architecture search algorithm be-

cause the final models designed by OFA algorithm is highly efficient on

diverse hardware. Furthermore, OFA releases off-the-shelf neural net-

work models in various hardware and various latency target.

For efficient implementation of SPL algorithm, we consider adjust-

ing the parameters of the algorithm. There are main parameters that affect

model runtime significantly. The problem is to select which and how to

maximize the efficiency of the entire algorithm. Note that the feature ex-

tractor selection is also a critical factor for the accuracy and runtime of

the entire algorithm pipeline. We examine that applying OFA neural ar-

chitecture search to find a network model based on SPL accuracy instead

of ImageNet accuracy is based on fallacy. Rather, the use of pre-trained

ImageNet model from OFA is a reasonable design choice. Based on the
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observation, we propose an co-optimization method to jointly select the

feature extractor and the SPL parameters. The co-optimization algorithm

is based on the predictor-assisted evolutionary search to minimize the

search cost.

In recent years, unsupervised domain adaptation with a lack of access

to source data is proposed [27]. The algorithm trains the target-specific

feature extractor by information maximization and self-supervised pseudo-

labeling. Such source-free regime is also adaptable for the unsupervised

domain adaptation algorithms without fine-tuning the feature extractor.

Using the fact that the algorithms require source domain data features not

the source domain data itself, storing the source data features just beside

the feature extractor is sufficient. We name such scheme pre-extraction of

source feature. However, pre-extraction of source feature combined with

the neural architecture search is not straightforward because the neural

architecture search produces diverse set of specialized feature extractors

to support diverse hardware. Storing all the features from all the diverse

set of feature extractor is inefficient. We propose a simple practical ap-

proach to support the diverse set of specialized feature extractor (i.e.,

storing only one representative feature).

We also conduct more realistic scenario for edge device such as smaller

target domain data and object detection. Lastly, We conduct an experi-

ment to utilize intermediate domain data to reduce the algorithm latency

further.
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In our method, characteristics of edge device (e.g., memory band-

width and small neural processing unit) are not considered. Instead, we

report latency measured on working edge system (i.e., NVIDIA Jetson

TX2). More sophisticated method which considers edge device charac-

teristics is left for future work.

In summary, the contributions of our study are as follows:

• We propose the use of a heavyweight feature extractor with an un-

supervised domain adaptation algorithm without fine-tuning fea-

ture extractor to boost the classification accuracy on Office dataset.

• We show the implementation of neural architecture search algo-

rithm on unsupervised domain adaptation is not straightforward

and we propose evolutionary search based co-optimization approach

to jointly select the feature extractor and the algorithm parameters

on Office dataset.

• We propose to store only one representative feature from the OFA

network instead of storing all the features from diverse set of spe-

cialized networks to support diverse set of hardware.

• We show that our method is effective on more realistic scenario

which includes smaller target domain and object detection.

• We propose that our method can be faster by fitting a classifier

using intermediate domain data.
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4.2 Related Works

Unsupervised domain adaptation: To alleviate domain shift problem,

unsupervised domain adaptation methods are proposed. There are tradi-

tional approaches [28–31] and deep learning-based approaches [32–35]

in unsupervised domain adaptation.

Traditional approaches mainly utilize extracted features from data

images. Previously lower-level SURF features are widely used in do-

main adaptation [28]. After the emergence of deep neural networks, pre-

trained ImageNet models are used to extract features from data images

(Alexnet [36], Decaf [30], Resnet50 [37], Xception [31], Nasnetlarge

[1]). Note that the traditional approaches don’t fine-tune the deep neu-

ral networks (i.e., feature extractor part). Performance of the features

extracted from deep neural networks typically exceed that from SURF

features. Furthermore, it is reasonable to conclude that the ImageNet ac-

curacy of the deep neural network has some positive correlation with the

accuracy of unsupervised domain adaptation [1]. [38] proposes transfer

component analysis for domain adaptation and it learns transfer compo-

nents across domains in a reproducing kernel Hilbert space using maxi-

mum mean discrepancy. [39] presents kernel distribution embedding and

Hilbert-Schmidt independence criterion based method to reduce the di-

mensionality of the data while it preserves the structural information.

[40] introduces transfer joint matching approach to formulate a joint op-
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timization problem of feature matching and instance reweighting. [29]

proposes a kernelized local-global approach to consider the domain adap-

tation problem as a bi-object optimization problem via the kernel method.

[41] proposes a method to extract conditional transferable components

whose conditional distribution is invariant after proper location-scale trans-

formations. [42] presents a general cross-domain learning framework

which uses the intra-affinity of classes to perform intra-class knowledge

transfer. [43] introduces balanced distribution adaptation method that can

adaptively leverage the importance of the marginal and conditional dis-

tribution discrepancies and also proposes weighted balanced distribution

adaptation which tackles the class imbalance problem. [30] proposes a

manifold embedded distribution alignment approach to learn a domain-

invariant classifier in Grassmann manifold with structural risk minimiza-

tion. [44] presents structural correspondence learning to automatically

induce correspondences among features from different domains [40] in-

troduces a novel transfer joint matching approach to model both feature

matching and instance reweighting in a unified optimization problem to

reduce the domain difference by a principled dimensionality reduction

procedure. SPL [4] algorithm is proposed to tackle inaccurate pseudo-

labeling problem by selective pseudo-labeling strategy based on struc-

tured prediction.

In recent years, deep learning-based methods are used to build a more

effective feature representation by gradient updates. [33] proposes a Con-
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volutional Neural Network (CNN) architecture that introduces an adapta-

tion layer and an additional domain confusion loss. [34] presents a deep

adaptation network architecture that generalizes deep convolutional neu-

ral network to the domain adaptation scenarios by embedding hidden

representations of all task-specific layers. [45] introduces multi-task au-

toencoder which extends the standard denoising autoencoder framework

by substituting artificially induced corruption. [35] proposes a neural net-

work architectures which are trained on labeled data from the source

domain and unlabeled data from the target domain not to discriminate

between the source and target domains. [46] presents adversarial dis-

criminative domain adaptation which combines discriminative model-

ing, untied weight sharing, and a generative adversarial network [47]

loss. [48] introduces domain separation network that learns to extract im-

age representations which are private to each domain and shared across

domains inspired by private-shared component analysis. [49] proposes

Batch Spectral Penalization (BSP) which is a general approach for pe-

nalizing the largest singular values to enhance transferability.

ImageNet models: Many deep nerual network architectures are trained

for ImageNet classification task. [50] presents AlexNet that consists of

five convolutional layers followed by max-pooling layers and three fully

connected layers. [51] introduces a network architecture with very small

convolution filters and pushes the depth to 16-19 weight layers. [52] pro-

poses SqueezeNet, which is a small deep neural network architecture
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to achieve AlexNet [50] accuracy with 50 times fewer parameters. [53]

introduces GoogLeNet that consists of 22 layers and carefully crafted

design with increasing the depth and width of the network while keep-

ing the computational budget constant. [54] presents ShuffleNet, which

adapts pointwise group convolution and channel shuffle to reduce com-

putation cost while maintaining the accuracy for mobile devices. [18]

proposes residual learning framework to ease the training of deep net-

works with a depth of up to 152 layers by reformulating the layers as

learning residual functions. [19] introduces MobileNetV2 architecture

that consists of inverted residual structure and linear bottleneck layers

for mobile devices. [20] presents MobileNetV3 structure using a com-

bination of complementary search techniques based on hardware-aware

network architecture search complemented by the NetAdapt algorithm.

[21] proposes NASNet architecture using the design of a new search

space that enables transferability from CIFAR-10 dataset to ImageNet

dataset. [55] introduces DenseNet, which connects each layer to every

other layer in a feed-forward manner. [23] presents Xception architecture

that Inception modules are replaced with depthwise separable convolu-

tions. [22] proposes Inception-v4, which combines Inception architec-

tures with residual connections. [2] introduces EfficientNet using neural

architecture search to design a baseline network and adapting a novel

scaling method that scales the model with carefully balancing network

depth, width, and resolution. [56] presents RegNet using a network de-
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sign space that parametrizes populations of networks instead of focusing

on designing individual network instances. [3] proposes Vision Trans-

former, which deploys a pure transformer architecture applied directly to

sequences of image patches.

Neural architecture search: Neural architecture search automates

the deep neural network architecture design process [21, 57–60]. Initial

neural architecture search algorithms [21, 58, 61] find the network ar-

chitecture with a goal of maximum accuracy. Recent neural architecture

search algorithms [62–64] take hardware efficiency into consideration.

Furthermore, OFA [5] removes model retraining process to reduce GPU

hours, dollars, and CO2 emission. [57] proposes a method using a recur-

rent neural network (RNN) to generate the model descriptions of neural

networks and train this RNN with reinforcement learning. [58] presents

AmoebaNet using tournament selection evolutionary algorithm by in-

troducing an age property to favor the younger genotypes. [59] intro-

duces a framework toward efficient architecture search using reinforce-

ment learning by exploring the architecture space based on the current

network and reusing its weights. [60] proposes the continuous relaxation

of the architecture representation allowing efficient search of the archi-

tecture using gradient descent. [61] presents a function-preserving trans-

formation for efficient neural architecture search, which allows reusing

previously trained networks and existing architectures. [62] introduces

ProxylessNAS that can directly learn the architectures for large-scale tar-
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get tasks and target hardware platforms by addressing the high memory

consumption of differentiable neural architecture search. [63] proposes

MnasNet for mobile neural network search, which explicitly incorporate

model latency into the main objective. [64] presents FBNets family that

optimizes convolutional neural network architecture for mobile devices

with differentiable neural architecture search framework.

4.3 Methodology

This section presents the proposed idea in detail.

4.3.1 Examining an Unsupervised Domain Adap-

tation Method

In this study, we consider the selective pseudo labeling (SPL) unsuper-

vised domain adaptation algorithm [4]. The algorithm aligns the condi-

tional distribution of source domain and target domain using following

techniques.

Firstly, the algorithm performs dimensionality reduction using prin-

ciple component analysis (PCA) because of redundant information con-

tained in the high dimensional feature vector. the redundant information

incurs unnecessary computation. PCA is formulated as eigenvalue prob-

lem and solved by singular value decomposition (SVD) solver. Feature
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vectors from the source domain and target domain are concatenated as a

matrix [xS
1, ...,x

S
nS
,xT

1 , ...,x
T
nT
] and performs PCA to reduce dimnesional-

ity of the matrix. Additional L2 normalization is performed to encourage

samples of different domains to be distributed on the surface of the same

hyper-sphere. The L2 normalization has a empirical evidence that it leads

to better performance.

Second, the algorithm performs domain alignment using the super-

vised locality preserving projection (SLPP) [65] to learn a projection

matrix P which aligns samples from different domains to the same la-

tent subspace.

min
P ∑

i, j
||PT x̄i−PT x̄ j||22Mi j

where P ∈Rd1×d2 , d! ≤ d2 is the dimensionality of the learned space,

x̄i is the i-th column of the labeled data matrix and Mij is the similarity

matrix and defined as follows.

Mij =


1 yi = y j

0 otherwise.

The objective of the projection is that samples from the sample class

are projected adjacent to each other in the subspace. The problem is for-

mulates as generalized eigenvalue problem and solved by sparse eigen

solver.

Third, the algorithm performs pseudo-labeling. There are two meth-

ods of pseudo-labeling based on the distance definition. One is nearest
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class prototype (NCP). In NCP, the class prototype for each class is de-

fined as the mean of the samples with the same label. Then, the target

samples are classified as the label with minimum Euclidean distance to

the class prototype as the name nearest class prototype refers to. The

other is structured prediction (SP). SP aims to exploit intrinsic struc-

ture information of the target samples. Structured prediction employs K-

means clustering algorithm to generate clusters beforehand. The cluster

centers constitute class prototype for the target domain. Afterwards, the

algorithm assigns one-to-one match between the class prototypes from

the source domain and the cluster centers from the target domain. The

objective is to minimize the sum of all matched pairs. Therefore, the tar-

get domain samples are classified collectively following the clusters they

are involved in. The algorithm combines two methods by choosing max-

imum value of the probabilities which the target sample belongs to class

prototype from the source domain.

Fourth, the algorithm performs iterative learning strategy. Instead of

using full set of pseudo labels the algorithm generates, only pseudo la-

bels with probability greater than threshold are used. One drawback of

the iterative learning strategy is that it only selects labels from the spe-

cific class. Therefore, the algorithm implements the class-wise selection

strategy to assign each class from the target domain have the same im-

portance.

The time complexity of PCA is O(dn2 + d3) approximately and the
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time complexity of SLPP is O(T (2d1n2 +d3
1)).

4.3.2 Boosting Accuracy with Pre-Trained ImageNet

Models

We examine various ImageNet models for boosting unsupervised domain

adaptation algorithm. One of them is EfficientNet [2] which brings new

state-of-the-art result. EfficientNet proposes compound model scaling

which consists of depth, width and resolution scaling. Scaling up any di-

mension of the neural network improves accuracy, however the accuracy

gain saturates soon. Therefore, it is important to scale up three dimen-

sions carefully to maximize the accuracy gain. The compound scaling

method is defined as follows.

depth: d = α
φ

width: w = β
φ

resolution: r = γ
φ

s.t. α ·β 2 · γ2 ≈ 2

α ≥ 1,β ≥ 1,γ ≥ 1

where α,β ,γ are assigned by a grid search and φ is a coefficient user can

control to determine the amount of resources the neural network model

can use. EfficientNet architecture is a family of networks that first as-

sign a good baseline network and scales up with the compound scaling

method. The baseline network is generated by a multi-objective neural
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architecture search using the search space of [63] and use ACC(m)×

[FLOPS(m)/T ]w as the optimization objective and called EfficientNet-

B0. As the search space is the same with [63], the network is similar

to MnasNet while EfficientNet-B0 is slightly bigger. Building block of

the network is mobile inverted bottleneck and squeeze-and-excitation is

added.

The other ImageNet models that we use is Vision Transformer [3]

which outperforms convolutional neural networks with very different

network architecture. Transformer architecture is widely used for nat-

ural language processing tasks achieving new state-of-the-art accuracy

on various tasks. The Vision Transformer is a new adoption of the Trans-

former architecture for vision application. Sequences of image patches

are treated as tokens in natural language processing application and di-

rectly fed into the Vision Transformer model which consists of embed-

ding, Transformer encoder and multilayer perceptron head. Transformer

encoder is composed of multi-head attention, layer normalization and

multilayer perceptron which is same as the standard Transformer ar-

chitecture. Pure Transformer architecture scores the accuracy nearly the

same level of convolutional neural network counterparts.

Note that if latency of the algorithm doesn’t matter and server can

assist for feature extraction then using heavyweight feature extractor is

desirable. It provides high quality features and high accuracy by sacri-

ficing latency. However, we aim the scenario where latency matters and
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end-to-end algorithm is executed on the edge device thereby we cannot

use heavyweight feature extractor. Instead, we need to use light but effi-

cient feature extractor which is introduced in next subsection.

4.3.3 Boosting Accuracy for Edge Device

We need to use light but efficient feature extractor in the scenario where

the total latency of algorithm is important. In this study, we examine

once-for-all (OFA) [5] neural architecture search method because it shows

great success in many low-power computer vision challenges. Once-for-

all network is a combination of many sub-networks that share weights.

OFA proposes progressive shrinking (PS) process that supports different

depth, width, kernel size and resolution to reduce interference between

sub-networks. PS starts with the largest network and then progressively

samples smaller sub-network within the largest network and fine-tunes

it. After successfully trains the once-for-all network, the algorithm find

the proper sub-network for each hardware device. The search space is

approximately 2× 1019 and the search process is guided by predictor-

assisted evolutionary search. The latency predictor is built using look-

up table (LUT) and the accuracy predictor is built using neural network

trained on data from randomly sampled 16K sub-networks. The found

sub-network that is optimized for specific hardware is fine-tuned for 25

or 75 epoches with ImageNet training data.
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4.3.4 Co-optimization of Backbone Network and

Parameter Selection

For neural network deployment, efficient inference is crucial. However,

there are many knobs to control the accuracy/latency trade-off. For ex-

ample, the feature extractor can be downgraded to reduce the feature

extraction latency. As noted earlier, OFA network provides a variety of

ImageNet pre-trained network for various hardware platforms with vari-

ous ImageNet accuracy. We use specialized OFA networks for Samsung

Note10 because it provides the largest ImageNet accuracy range from

71.4 to 80.2. In fact, there are 8 specialized OFA networks for Sam-

sung Note10 off-the-shelf. Although we use specialized OFA networks

for Note10, we measure the latency on NVIDIA Jetson TX2 platform

which is a good representative for mobile GPU. Another examples for

reducing the algorithm’s execution time is to optimize the SPL hyper-

parameters. We control d, d1, and the number of iterations to optimize

the SPL algorithm’s execution time. Note that decreasing d and d1 pa-

rameters corresponds to reducing the execution time of SVD solver and

eigen solver because smaller matrix is injected to the solvers. Decreasing

the number of iterations incurs the execution time reduction because the

algorithm performs pseudo labeling for more instances. Therefore, the

execution time of end-to-end algorithm depends on the choice of both

the feature extractor and hyperparameters of SPL algorithm.
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As search space is about 106, enumerating all the possible combina-

tions is prohibitive. Instead, we implemented an accuracy predictor and

a latency predictor to perform evolutionary search, which is analogous to

OFA [5]. The accuracy predictor has an input of (feature extractor, SPL

parameters) pair to output the accuracy of unsupervised domain adapta-

tion accuracy on Office dataset. The latency predictor also has an input

of (feature extractor, SPL parameters) pair to output the latency of total

algorithm execution. And the evolutionary algorithm we use is [58]. In

our experiment for Office31 dataset, we collect 200 data points running

on NVIDIA Jetson TX2 by measuring average latency and average accu-

racy to generate train set and validation set with 0.3 test split ratio (i.e.,

140 data points for train and 60 data points for validation). We imple-

mented gradient boosting regressor for both accuracy and latency pre-

dictor because it shows excellent performance with manageable cost for

prediction. We conduct grid search with 5-fold cross validation to setup

hyperparameters of the gradient boosting regressors. We use max depth

3 and the number of estimators 300 for the gradient boosting regres-

sors. Accuracy performance is 0.33% RMSE for the accuracy predictor

and 4.3 seconds RMSE on Office31 dataset. We implement evolutionary

search algorithm with the following objective.

OBJ = ACCURACY − c ·LAT ENCY

where c is a coefficient to control accuracy/latency trade-off. If c is zero,
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then the algorithm seeks the most accurate model regardless of the algo-

rithm’s latency. If c is nonzero, then the algorithm finds a model under

latency constraints. Note that [62] uses similar strategy when combining

the multiple objectives into one while [64] uses multiplication to com-

bine the multiple objectives. For details about evolutionary search, the

number of elements in population is 200 with number of iterations 2000.

For each iteration, the algorithm randomly samples 20 elements within

the population and choose an element with the highest OBJ value. Then,

mutation process, which changes one of attribute randomly, is performed

to guarantee diversity in the population. Lastly, remove the oldest ele-

ment in the population and insert the mutated element into the popula-

tion. As the evolutionary search process is guided by two predictors, total

cost of the search algorithm is negligible compared to data collections.

4.4 Experiments

Datasets: We examined two unsupervised domain adaptation datasets,

namely Office31 and Office-Home. The Office31 dataset [11] is com-

posed of three domains (i.e., Amazon, Webcam and DSLR) and 31 com-

mon classes. The images within Amazon are from amazon.com and the

images within Webcam or DSLR are taken using a webcam and a dslr

camera, respectively. It has 2,817, 795 and 498 images for Amazon, We-

bcam and DSLR, respectively (i.e., 4,110 images in total). The Office-
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Home dataset [12] is composed of four domains (i.e., Artistic images,

Clipart, Product images and Real-World images) and 65 common classes.

The images within Art are from paintings, sketches or artistic depic-

tions and the images within Clipart are from clipart images and the im-

ages within Product are from images without background and the images

within Real-World are from regular images capture with a camera. It has

2,427, 4,365, 4,439 and 4,357 images for Art, Clipart, Product and Real-

World, respectively (i.e., 15,588 images in total).

Evaluations: We evaluate the algorithm’s score by comparing the pre-

dicted label of target domain with the ground truth label. For each un-

supervised domain adaptation scenario, one pair of domains are selected

iteratively to serve as a source domain and a target domain. Therefore,

there are 6 pairs for Office31 dataset and 12 pairs for Office-Home dataset.

Once source domain and target domain is determined, samples and labels

of the source domain and samples of the target domain are accessible by

the algorithm. After accuracy scores of all the pairs are evaluated, the

accuracy scores are also averaged to summarize the algorithm’s perfor-

mance.

Implementation details: We examined various backbone network mod-

els, namely ResNet [18], MobileNet [19, 20], NASNet [21], Inception

[22], Xception [23], EfficientNet [2], Vision Transformer [3] and OFA

[5] network models. We rewrite original Matlab code 1 to support Python

1https://github.com/hellowangqian/domain-adaptation-capls
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environment using NumPy [66], SciPy [67] and Scikit-learn [68]. The

functional correctness is verified by comparing a significant digits of

Python code with Matlab code when the backbone network is ResNet50.

We rewrite the constructW1 function by changing from a for loop to

an outer product of prime numbers because profiler indicates that the

function is a bottleneck. When extracting the features form the back-

bone networks using PyTorch [69], we follow the standard image pro-

cessing pipeline as described with the backbone networks. We manually

choose bilinear interpolation for the image size smaller or equal than 250

and choose bicubic interpolation otherwise. The interpolation method

marginally affect the accuracy of the model. When changing the back-

bone network, we also conduct additional hyperparameter tuning using

grid search to report the impact of the hyperparameter.

4.4.1 ImageNet and Unsupervised Domain Adap-
tation Accuracy

We evaluated the accuracy of SPL algorithm with various feature ex-

tractors on the Office31 and Office-Home datasets. First of all, the Of-

fice31 results are summarized in Table 4.1. The first row group describes

the verification of functional correctness. Accuracy numbers from the

Python code is almost the same with accuracy numbers from the re-

produced Matlab code and the paper. Therefore, we conclude that our

Python code is functionally correct. After that, we experiment various
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Table 4.1 Backbone networks and SPL on Office31

Model AW DW WD AD DA WA Avg

Resnet50 (paper) 92.7 98.7 99.8 93.0 76.4 76.8 89.6
Resnet50 (reproduced, Matlab) 92.7 98.7 99.8 93.0 76.4 76.7 89.6
Resnet50 (reproduced, Python) 92.7 98.7 99.8 93.0 76.4 76.7 89.6

Resnet50 (torchvision) 93.3 98.6 100 93.2 75.7 77.1 89.7

Mobilenetv3 large 100 93.8 98 99.8 91 77.4 77.4 89.6
Mobilenetv3 large 075 90.7 97.6 99.6 91.8 75.3 76.4 88.6

Mobilenetv3 large minimal 100 87.9 97 99.4 82.7 74.2 71.8 85.5
Mobilenetv3 small 100 80.3 97.9 99 84.7 71.1 64.6 82.9
Mobilenetv3 small 075 82 96.1 98.6 79.5 63.8 64.3 80.7

Mobilenetv3 small minimal 100 75.7 96.5 99.2 75.7 59.7 62.4 78.2
Mobilenetv3 large 100 88.3 99 100 79.1 75.7 75.2 86.2

Mobilenetv3 rw 92.6 98 99.8 93.4 76.4 76.5 89.4

Nasnetalarge 96.2 98.9 99.4 95.4 79.9 80.2 91.7
Inceptionresnetv2 95 99 100 95.2 80 79.3 91.4

Inceptionv4 90.4 98.6 99.4 95.6 76.7 78.9 89.9
Xception 92.2 98.9 100 93.2 76.9 77.8 89.8

Nasnetamobile 86.4 94.8 95.8 90 73.3 74.4 85.8
Mobilenetv2 83.4 97.1 99.6 93.2 73.4 73.2 86.6

Efficientnet l2 ns 99 100 100 99.4 84.7 87.6 95.1
Efficientnet l2 ns 475 98.1 99.2 100 99 85.3 85.3 94.5

Efficientnet b7 ns 98.7 99.1 100 98 84.8 85.6 94.4
Efficientnet b6 ns 97.7 99.1 100 98 82.6 83.5 93.5
Efficientnet b5 ns 98.6 99.1 100 97.8 84.6 86.6 94.5
Efficientnet b8 ap 97.2 99 100 97.8 83.6 83.1 93.5
Efficientnet b4 ns 95.8 98.9 99.8 96.4 82.1 83 92.7
Efficientnet b3 ns 96 98.9 100 97.8 81.3 82.5 92.7
Efficientnet b2 ns 95.2 98.2 100 94.8 81.2 79.6 91.5
Efficientnet lite4 94.8 98 99.8 92 77.2 76.7 89.8
Efficientnet b1 ns 95 98.7 99.8 96.6 79.8 80.3 91.7
Efficientnet lite3 94.8 98.9 99.6 96.6 77.5 77.3 90.8
Efficientnet lite2 88.9 98 99.4 92.6 78.5 76.4 88.9
Efficientnet lite1 91.4 98.2 99.2 92.6 74.4 75.6 88.6
Efficientnet lite0 88.4 97.9 99 82.5 75.4 73.1 86.1

Vit large patch16 384 99.9 99.2 100 99 88.3 88.4 95.8
Vit large patch16 224 98.4 99.2 100 98.4 87 87.5 95.1
Vit large patch32 384 96.1 98.7 100 96.8 85.7 85.2 93.8
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feature extractor with our Python code. The second row group indicates

the MobileNetV3 model family with SPL algorithm. Accuracy of the

MobileNetV3 is almost same with accuracy of the ResNet50 when the

large model is deployed. The third row group implements other feature

extractors. NASNet performs the best among them exceeding ResNet50

by about 2%. The fourth row group shows the performance of Efficient-

Net feature extractors. The largest EfficientNet-L2 scores the best among

them exceeding ResNet50 by a large margin. Specifically, the perfor-

mance of EfficientNet-L2 is over 99% for A → W, D → W, W → D

and A → D which means that the algorithm finds almost correct labels

for the target domain samples. The performance of EfficientNet-L2 is

slightly lower (i.e., over 80%) for D→ A and W→ A. Note that the im-

age counts of domain D and W are comparably smaller than the images

counts of domain A. Therefore, we conjecture that domain shift from a

small domain to a large domain is harder to solve than domain shift from

a large domain to a small domain or domain shift from a similar sized

domain. The fifth row group summarizes the accuracy of Vision Trans-

former feature extractor. Vision Transformer surpasses the accuracy of

other feature extractors, it shows 95.8% accuracy on Office31 dataset.

Table 4.2 shows the accuracy of SPL algorithm with various fea-

ture extractors on Office31 dataset with hyperparameter tuned using grid

search. We focused on d and d1 parameters as they are main parameters

to affect the accuracy of the algorithm. Note that the case of ResNet50
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Table 4.2 Backbone networks and SPL on Office31 (hyperparameter
tuned)

Model AW DW WD AD DA WA Avg diff

Resnet50 (torchvision) 95.1 98.7 100 94.8 76.1 78.6 90.6 +1.0

Mobilenetv3 large 100 92.7 98 99.8 92.6 77.6 77.1 89.6 +0
Mobilenetv3 large 075 90.7 97.6 99.6 91.8 75.3 76.4 88.6 +0

Mobilenetv3 large minimal 100 89.9 96.9 99.4 91 73.3 73.3 87.3 +1.8
Mobilenetv3 small 100 82.4 97.6 99 88 72.8 64.2 84 +1.1
Mobilenetv3 small 075 84 97.6 98.8 80.7 67.6 65.1 82.3 +1.6

Mobilenetv3 small minimal 100 76 96.5 99.2 77.7 60.2 61.4 78.5 +0.3
Mobilenetv3 large 100 91.6 98.5 99.4 93.4 75.2 72.7 88.5 +2.3

Mobilenetv3 rw 94.1 98.1 100 94.6 75.9 77.3 90 +0.6

Nasnetalarge 96.7 98.6 99.4 96.2 79.9 80.7 91.9 +0.2
Inceptionresnetv2 94.7 98.9 99.8 95.8 80.9 79.7 91.6 +0.2

Inceptionv4 92.8 98.4 99.6 95.6 76.6 79.5 90.4 +0.5
Xception 94.3 98.5 99.8 96.2 76.9 80.7 91.1 +1.3

Nasnetamobile 87.5 94.7 95.8 91 73.8 74.3 86.2 +0.4
Mobilenetv2 86.7 96.9 99.6 89.2 76.4 73.8 87.1 +0.5

Efficientnet l2 ns 99 100 100 99.4 85.2 87.5 95.2 +0.1
Efficientnet l2 ns 475 98.9 99.2 100 99 88.1 87.7 95.5 +1.0

Efficientnet b7 ns 98.9 99.1 100 99.4 86.2 85.7 94.9 +0.5
Efficientnet b6 ns 97.9 99.1 100 97.8 83.6 85.6 94 +0.5
Efficientnet b5 ns 98.5 99.1 100 98.2 86 86.3 94.7 +0.2
Efficientnet b8 ap 97.1 99 100 98.2 83.8 83.7 93.6 +0.1
Efficientnet b4 ns 95.8 98.9 99.8 96.4 82.3 83.6 92.8 +0.1
Efficientnet b3 ns 96.6 98.7 99.8 97 81.8 84 93 +0.3
Efficientnet b2 ns 95.6 97.9 100 96.4 80.2 80.8 91.8 +0.3
Efficientnet lite4 94.6 98 99.8 92.2 78.2 76.7 89.9 +0.1
Efficientnet b1 ns 95 98.7 99.8 96.6 79.9 80.3 91.7 +0
Efficientnet lite3 95.3 98.9 99.6 97.6 79 77.4 91.3 +0.5
Efficientnet lite2 93.3 98.1 99.4 94 78 76.1 89.8 +0.9
Efficientnet lite1 94.6 98.4 99.4 93.2 74.3 74.7 89.1 +0.5
Efficientnet lite0 91.7 97.7 99 87.3 74.9 72.7 87.2 +1.1

Vit large patch16 384 100 99.2 100 99.2 89.6 88.2 96 +0.2
Vit large patch16 224 98.7 99.2 100 99.2 88.5 88.7 95.7 +0.6
Vit large patch32 384 97.6 98.4 100 97.2 85.8 85.7 94.1 +0.3
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the accuracy increases about 1% while the improvement of MobileNetV3

is marginal. In the case of EfficientNet, EfficientNet-L2-475 surpasses

EfficientNet-L2 after the hyperparameter tuning. We conjecture that the

input image size of the EfficienNet-L2 is too big (i.e., 800× 800) for

Office31 dataset because the Office31 dataset typically has image size

of 250× 250 ∼ 1001× 1001. Note that we use bicubic interpolation for

feature extractor with input image size larger than 250× 250. Instead,

EfficientNet-L2-475 has the input image size of 475, which is more ap-

propriate for the Office31 dataset. Still, Vision Transformer surpasses all

the other feature extractors.

Table 4.3 and Table 4.4 presents the accuracy of SPL algorithm with

various feature extractors on Office-Home dataset without hyperparame-

ter tuning. Office-Home datset is more complex than Office31 dataset so

the accuracy of the algorithm on Office-Home is lower than that of Of-

fice31. The first row group of Table 4.3 shows the functional correctness

of our Python code. The accuracy reproduced by Matlab code is the same

with the accuracy reproduced by our Python code. The second row group

of Table 4.3 presents the accuracy of MobileNetV3 model family with

SPL algorithm. Unlike Office31 dataset, MobileNetV3 models underper-

form on Office-Home dataset compared to ResNet50 about 4%. This in-

dicates careful model selection is needed to guarantee ResNet50-level

performance on complex dataset (i.e., Office-Home). The second row

group of Table 4.3 shows the performance of other feature extractors. The
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Table 4.3 Backbone networks and SPL on Office-Home

Model AC AP AR CA CP CR
PA PC PR RA RC RP Avg

Resnet50 (paper) 54.5 77.8 81.9 65.1 78.0 81.1
66.0 53.1 82.8 69.9 55.3 86.0 71.0

Resnet50 (reproduced, Matlab) 54.5 77.8 81.9 65.1 78.0 81.1
66.0 53.1 82.8 69.9 55.3 86.0 71.0

Resnet50 (reproduced, Python) 54.1 77.8 81.8 65.1 78.2 81.1
66.0 53.1 82.8 69.9 55.5 86.0 71.0

Resnet50 (torchvision) 51.5 78.5 82.2 65.1 78 80.3
66.3 48.9 83 71.7 52.3 85.6 70.3

Mobilenetv3 large 100 52.3 76.8 79.1 58.3 72.7 75.6
61 49.7 80.4 66.9 52.3 80.2 67.1

Mobilenetv3 large 075 47.4 71.7 76.4 53.4 70.5 74.2
56.3 47.8 78.5 64.8 49.3 78.5 64.1

Mobilenetv3 large minimal 100 42.9 72.3 73.4 49.4 67.6 69.5
54.3 41.4 77.8 62.3 45.7 77 61.1

Mobilenetv3 small 100 41.8 67.2 68.6 44.3 62.9 65.3
47 40.2 71.6 55.6 45.6 73.7 57

Mobilenetv3 small 075 38.4 59.5 64.9 41.4 57.5 58.8
44.7 38 68 52 41.6 71.6 53

Mobilenetv3 small minimal 100 34.9 55 60.7 34.9 56.5 55.7
38.9 35.1 63.9 49 37 69.7 49.3

Mobilenetv3 large 100 53 73.6 78.8 56.7 70.1 74.5
60.7 50.7 81.1 69.5 54.8 80.8 67

Mobilenetv3 rw 51.2 75.9 79.4 55.7 72.8 76.2
60.9 49.5 80.5 68 54 80.2 67

Nasnetalarge 54.1 83.6 84.3 72.4 83.5 83.8
74 53.3 85.7 76.7 55.3 87.5 74.5

Inceptionresnetv2 54.2 81.9 84.7 72.4 82.6 83.8
74.2 54.2 85.8 76.8 58.9 87.2 74.7

Inceptionv4 52.5 81.4 82 70.7 79.4 80.6
74.4 52 84.2 76.1 52.6 85.6 72.6

Xception 53 81.3 82.5 70.9 77.8 80.8
73.4 52.8 83.9 75.7 54.4 85.2 72.6

Nasnetamobile 40.4 72.9 75.4 54.2 71.5 72.5
61.4 41 76.4 63.7 44.7 78 62.7

Mobilenetv2 44.4 71.9 75.1 56.1 70.7 74.4
56.3 44 78.8 65.2 45.9 81.7 63.7
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Table 4.4 Backbone networks and SPL on Office-Home (cont.)

Model AC AP AR CA CP CR
PA PC PR RA RC RP Avg

Efficientnet l2 ns 74 93.6 92 88.2 93.6 91.7
85.5 73.3 92.9 88.4 75.2 95.4 87

Efficientnet l2 ns 475 78.7 93.1 92.5 89.8 93.8 92.2
87.2 78 93.3 90.5 77.9 94.9 88.5

Efficientnet b7 ns 72.2 90 91.3 84.8 91.6 90
83.7 69.7 92 86.2 72.4 94.5 84.9

Efficientnet b6 ns 71.8 89.9 91 83.5 89.3 89.5
81.9 71.3 91 84.9 73.6 92.5 84.2

Efficientnet b5 ns 71.2 89.7 90.1 83 89.3 89.5
80.2 68 91.3 83 69.3 93.1 83.1

Efficientnet b8 ap 65.8 89.1 89.3 81.6 89.3 88.6
81.1 63 89.8 83.5 67.2 91.3 81.6

Efficientnet b4 ns 67.4 89.1 89.7 80.2 85.8 86.9
77.4 64.5 89.9 81.5 66.7 92 80.9

Efficientnet b3 ns 64.2 88.5 88.5 79.9 87.3 86.8
77.5 65.9 89.6 80.2 67.1 90 80.5

Efficientnet b2 ns 59.9 86 87.4 78.3 83.6 87.9
75.4 62.1 88.7 78 62.8 88.7 78.2

Efficientnet lite4 51.5 82.2 83.6 68.2 80.8 81.3
67.2 52.1 84.5 72.7 53 85 71.8

Efficientnet b1 ns 56.7 84.6 87.1 74.1 84.4 85
71.4 59.6 87.8 77.1 60 88.8 76.4

Efficientnet lite3 51.5 79 83.2 64.9 77 81.7
66.8 51.2 83.1 72.6 52.3 83.3 70.5

Efficientnet lite2 50.4 76 80.2 59.4 77.1 79
62.5 50.6 82.5 68.6 53.2 82.3 68.5

Efficientnet lite1 50.1 77 80 55.8 74.1 75.8
63.1 48.6 80.1 65.8 52.7 79.3 66.9

Efficientnet lite0 48.3 68.6 74.9 54 70.1 74
58.1 50.4 76 62.9 52.2 78.9 64

Vit large patch16 384 86.2 95.2 94 91.3 95.4 94.3
90.1 84.9 94.1 91 85.9 95.2 91.5

Vit large patch16 224 83.3 94.7 93.6 89.7 93.2 93
88.8 82.4 93.8 89.5 82.9 94.9 90

Vit large patch32 384 70.7 91.7 90 83.7 91.8 91.1
82.9 69.7 90.8 84.1 69.8 91.9 84
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accuracy of InceptionResNetV2 is the best among them. Table 4.4 imple-

ments EfficientNet model family and Vision Transformer as a feature ex-

tractor. Most of the network models from the EfficientNet outperform

ResNet50 except models with lite postfix (i.e., EfficientNet lite0, Ef-

ficientNet lite1, EfficientNet lite2 and EfficientNet lite3). Furthermore,

EfficientNet-L2-475 scores the accuracy of 88.5 exceeding ResNet50

more than 17% and Vision Transformer shows the accuracy of 91.5. In-

deed, this score is new state-of-the-art accuracy on Office-Home dataset.

We also observe that the accuracy of EfficienNet-L2 is inferior to EfficientNet-

L2-475 more than 1%. The Office-Home dataset has image sizes from

400×283 to 6500×4900. Still, the model with input image size of 475×

475 performs better than the model with input image size of 800×800.

We empirically conclude that EfficientNet-L2-475 is more suitable than

EfficientNet-L2 on the dataset which includes single object per image

like Office datasets.

Although there are some exceptions, we observe that accuracy of fea-

ture extractor on ImageNet is highly correlated with accuracy of SPL al-

gorithm on Office datasets. Therefore, we recommend to use better pre-

trained ImageNet model as a feature extractor for SPL algorithms.

Note that using heavyweight feature extractor is desirable in the work-

ing scenario where the latency of the algorithm doesn’t matter and server

can assist for feature extraction. However, we aim the scenario where the

total latency of the algorithm matters.
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Table 4.5 OFA backbone networks and SPL on Office31

Model AW DW WD AD DA WA Avg

Resnet50 (paper) 92.7 98.7 99.8 93.0 76.4 76.8 89.6

ofa D4 E6 K7 93.6 98.6 100 95 77.3 76.8 90.2
ofa D4 E6 K357 88.2 98.6 100 92.8 78.5 76.8 89.1
ofa D34 E6 K357 89.3 98.6 100 93.4 77.6 73.4 88.7

ofa D234 E6 K357 92.8 99.2 99.8 95 80.2 75.3 90.4
ofa D234 E46 K357 94.7 99.1 100 93.4 78.1 77 90.4

ofa mbv3 w1.0 89.7 99.1 99.8 93.4 78.6 77.2 89.6
ofa mbv3 w1.2 91.3 98.2 100 95.8 79.5 79.4 90.7

ofa proxyless w1.3 91.9 98.5 99.6 95.4 77 79.3 90.3

note10@80.2 94.6 98.9 100 97.4 81.2 81.2 92.2
note10@79.7 93.6 98.9 100 97 80.2 80.5 91.7
note10@79.3 92.8 98.9 100 95.6 80.4 81.2 91.5
note10@78.4 89.2 99 99.8 93.8 78.2 75.3 89.2
note10@76.6 92.7 99 100 92.6 77.7 75 89.5
note10@75.5 93.8 98.4 100 86.5 76.3 73.2 88
note10@73.6 87.4 99 100 88.6 72 73.1 86.7
note10@71.4 80.8 97.9 99.4 86.9 69.6 66.8 83.6

pixel1@76.9 93 98.7 100 91.6 76.6 73.6 88.9
note10@76.6 92.7 99 100 92.6 77.7 75 89.5
LG-G8@76.4 91.2 98.2 100 93.2 76 73 88.6
1080ti@76.4 93.6 99.1 99.8 92.4 76.2 75.7 89.5
s7edge@76.3 92.1 98.7 100 90.2 75.7 72.8 88.2
note8@76.1 89.2 98.4 100 91.6 76.4 73 88.1

v100 gpu64@76.1 94 98.5 99.8 96 75.9 76.2 90.1
pixel2@75.8 92.7 98.4 100 88 72.9 77.9 88.3

tx2 gpu16@75.8 91.6 98.5 100 93 73.9 77.9 89.1
cpu@75.7 94.8 99 99.8 92 75.9 75.2 89.5

note10@75.5 93.8 98.4 100 86.5 76.3 73.2 88
tx2 gpu16@75.4 90.7 99.1 100 87.1 76 74.4 87.9

1080ti gpu64@75.3 90.6 99 100 89.8 75.2 75.4 88.3
v100 gpu64@75.3 89.6 98.9 100 86.3 74.9 75.8 87.6
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4.4.2 Accuracy with Once-For-All Network

We evaluated the accuracy of SPL algorithm with various OFA feature

extractors for edge device on the Office31 and Office-Home datasets.

The Office31 results are summarized in Table 4.5. The first row group of

the table indicates ResNet50 baseline. The second row group of the ta-

ble shows the performance of specialized OFA networks. We also report

the performance of OFA network in the course of progressive shrink-

ing algorithm. For example, ofa D4 E6 K7 is an initial network without

progressive shrinking while ofa D4 E6 K357 is a network which sup-

ports elastic kernel. The progress of progressive shrinking affects the

SPL accuracy marginally. OFA networks after full progressive shrink-

ing are in the third row group of the table. The ofa mbv3 w1.2 network

already surpasses the ResNet50 baseline more than 1%. The fourth row

group of the table shows specialized OFA networks for Samsung Note10

smartphone in descending order of ImageNet accuracy. Again, ImageNet

accuracy is highly correlated with unsupervised domain adaptation ac-

curacy. The fifth row group of the table indicates specialized OFA net-

works for various hardware platforms that have similar ImageNet ac-

curacy with ResNet50 in descending order of ImageNet accuracy. The

ImageNet accuracy is correlated with unsupervised domain adaptation

accuracy, however, the correlation is lower than the specialized OFA net-

works for Note10 smartphone. For example, the specialized OFA net-

52



work for Google Pixel1 smartphone at ImageNet accuracy of 76.9 has

unsupervised domain adaptation accuracy of 88.9 while the specialized

OFA network for NVIDIA V100 GPU at ImageNet accuracy of 76.1 has

unsupervised domain adaptation accuracy of 90.1, that is, 0.8% lower

ImageNet accuracy incurs 1.2% higher unsupervised domain adaptation.

Therefore, ImageNet accuracy of specialized OFA networks is less corre-

lated with unsupervised domain adaptation accuracy when the difference

scale is fine-grained. We first assume that better subnetwork selection

can boost the unsupervised domain adaptation accuracy after observing

the fact and try to add unsupervised domain adaptation accuracy feed-

back into subnetwork selection process. However, we find that the try is

based on a fallacy. The progressive shrinking algorithm is performed on

ImageNet dataset. Therefore, subnetworks derived by OFA network are

guaranteed to perform predictably on ImageNet dataset. The accuracy

predictor of OFA subnetwork selection process has high prediction ac-

curacy on ImageNet dataset thereby enabling the selection algorithm to

find better subnetwork. However, when dealing with Office dataset, the

accuracy of the subnetwork depends on not only subnetwork selection

but also batch normalization statistics, which leads to unstable predic-

tion. One possible solution to solve the problem is to perform progres-

sive shrinking alogirhtm on Office dataset after ImageNet dataset, which

is not straightforward because the SPL algorithm is not implemented in

differentiable manner.
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Table 4.6 OFA backbone networks and SPL on Office31 (hyperparameter
tuned)

Model AW DW WD AD DA WA Avg diff

Resnet50 (torchvision) 95.1 98.7 100 94.8 76.1 78.6 90.6 +1.0

ofa D4 E6 K7 94 98.6 100 96.4 77.4 78.5 90.8 +0.6
ofa D4 E6 K357 93.8 99 100 95.4 78.8 78 90.8 +1.7

ofa D34 E6 K357 92.6 98.7 99.8 93.2 77.6 77.4 89.9 +1.2
ofa D234 E6 K357 92.5 99.2 99.8 95 80.2 76.6 90.6 +0.2
ofa D234 E46 K357 95 99 100 95.4 78 77.4 90.8 +0.4

ofa mbv3 w1.0 92.5 98.5 100 95 78 78.4 90.4 +0.8
ofa mbv3 w1.2 92.6 98.2 99.8 97 79.3 79.9 91.1 +0.4

ofa proxyless w1.3 95.3 98.7 99.6 96.2 79.2 79.8 91.5 +1.2

note10@80.2 95.1 99 100 98.4 80.4 81 92.3 +0.1
note10@79.7 94.3 98.9 100 96.6 80.9 80.4 91.9 +0.2
note10@79.3 93.3 99 99.8 96.2 81.3 80.5 91.7 +0.2
note10@78.4 90.7 98.7 99.8 95.2 80.2 78.9 90.6 +1.4
note10@76.6 91.6 99.1 100 93.4 78.1 77.4 89.9 +0.4
note10@75.5 92.7 99 99.8 90.2 77.7 77.8 89.5 +1.5
note10@73.6 89.3 98.4 99.6 88.4 77 76.3 88.2 +1.5
note10@71.4 88.7 97.1 99.2 86.1 74.4 73.2 86.5 +2.9

pixel1@76.9 92.8 99 100 95.8 76.8 76.1 90.1 +1.2
note10@76.6 91.6 99.1 100 93.4 78.1 77.4 89.9 +0.4
LG-G8@76.4 92.6 98.5 100 94.6 75.5 76.5 89.6 +1.0
1080ti@76.4 95.1 99 99.8 95.4 76.6 78.9 90.8 +1.3
s7edge@76.3 91.9 98.9 100 91.8 77.9 75.9 89.4 +1.2
note8@76.1 93.2 98.5 99.6 92.6 77.2 74.4 89.2 +1.1

v100 gpu64@76.1 94.7 98.7 100 96.4 78.1 76.8 90.8 +0.7
pixel2@75.8 93.1 98.7 99.8 90.8 78 75.9 89.4 +1.1

tx2 gpu16@75.8 93.7 98.6 99.8 94 76.2 77 89.9 +0.8
cpu@75.7 96.4 99 99.8 93 76.7 76.3 90.2 +0.7

note10@75.5 92.7 99 99.8 90.2 77.7 77.8 89.5 +1.5
tx2 gpu16@75.4 92.6 98.7 99.6 93.4 76.5 76.2 89.5 +1.6

1080ti gpu64@75.3 92.7 99 100 90.8 74.5 76.2 88.9 +0.6
v100 gpu64@75.3 91.3 99.1 99.8 93.8 74.1 76.5 89.1 +1.5
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Table 4.6 shows the accuracy of SPL algorithm with various OFA fea-

ture extractors on Office31 dataset with hyperparameter tuned using grid

search. Again, we focused on d and d1 parameters because the parame-

ters are the main parameters to affect the algorithm’s accuracy. We report

hyperparameter tuning results to quantify the impact of hyperparame-

ter tuning of SPL algorithm. Because the feature extractor is changed,

the SPL algorithm’s parameter is also changed. Note that the half of the

specialized OFA networks for Samsung Note10 surpass the ResNet accu-

racy, which leads us to the idea of co-optimization of OFA feature extrac-

tor and SPL algorithm. Most of the specialized OFA networks for various

hardware platforms that have similar ImageNet accuracy with ResNet50

underperform on Office31 dataset compared to ResNet50. We conjecture

that highly optimized networks like the specialized OFA network have

lower transferability than ResNet which includes high redundancy.

Table 4.7 and Table 4.8 shows the accuracy of SPL algorithm with

various OFA feature extractors on Office-Home dataset without hyper-

parameter tuning. The progressive shrinking algorithm marginally af-

fect the accuracy of the unsupervised domain adaptation as shown in

the second row group of Table 4.7. Again, the half of the specialized

OFA networks for Samsung Note10 surpass the accuracy of ResNet50

which leads us to perform co-optimization of OFA feature extractor and

SPL algorithm. The wider OFA networks surpass the ResNet accuracy

while the accuracy of shallower OFA network, namely ofa mbv3 w1.0,
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Table 4.7 OFA backbone networks and SPL on Office-Home

Model AC AP AR CA CP CR
PA PC PR RA RC RP Avg

Resnet50 (paper) 54.5 77.8 81.9 65.1 78.0 81.1
66.0 53.1 82.8 69.9 55.3 86.0 71.0

ofa D4 E6 K7 50 79.7 82.4 63 80.6 80.4
63.2 49.4 83.5 71.9 52.8 84.8 70.1

ofa D4 E6 K357 50.4 79.6 81.9 62.4 80.4 78.7
64.6 50.2 84.5 73.4 53.5 86.3 70.5

ofa D34 E6 K357 49.9 79.3 82.2 62.6 80.5 79.2
67.6 50.4 83.8 70.6 53.2 86.3 70.5

ofa D234 E6 K357 51.2 79.3 81.8 62.7 77.6 80.2
66 47.9 84.1 71.4 53.3 85.7 70.1

ofa D234 E46 K357 53.7 77.4 83.6 63.6 76.2 80.3
63.9 53.5 83.7 70.4 53.4 85.2 70.4

note10@80.2 53.6 80.6 84.3 67.5 82.5 83.4
69.6 51 85.9 75.9 54.7 87.4 73

note10@79.7 55.5 79.9 83.8 68.1 77.2 82.7
69.3 54.1 85.8 75 55.4 87.8 72.9

note10@79.3 54.2 80.3 83.5 67.7 79.4 83.1
68.7 53.6 85.7 73.8 55.5 87.7 72.8

note10@78.4 51.6 79.3 83.1 66.2 79.6 82.2
66.1 52.5 84.1 73.1 53.2 87.1 71.5

note10@76.6 50.3 76.7 81.7 56.4 74.7 78.2
62.4 48.8 82.6 71 50.7 82.1 68

note10@75.5 49.8 73.8 80.7 57.5 76 74.9
60.3 48.9 81.5 67.2 52.7 82.3 67.1

note10@73.6 45.7 72.4 78.5 51.7 67.8 73.6
55.4 42.9 79.2 64.1 50 81.2 63.5

note10@71.4 41.5 66.9 74.7 49.5 66.8 70.9
51.7 39.9 77 62.7 48.6 80.4 60.9
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Table 4.8 OFA backbone networks and SPL on Office-Home (cont.)

Model AC AP AR CA CP CR
PA PC PR RA RC RP Avg

ofa mbv3 w1.0 52.6 78.2 81.3 59.5 73.7 77.9
61.3 48.7 83.1 72 53.8 84.1 68.8

ofa mbv3 w1.2 52.8 80.5 84 67.1 80.2 81.3
68 52.4 85.4 74.9 56 86 72.4

ofa proxyless w1.3 51.2 79.5 82.8 64.7 74 82.9
68.3 50.9 84.5 73.8 54.5 85.6 71.1

pixel1@76.9 50.1 78 81.5 61 76.2 79.3
62.8 47.9 83.6 70.4 52.7 83 68.9

note10@76.6 50.3 76.7 81.7 56.4 74.7 78.2
62.4 48.8 82.6 71 50.7 82.1 68

LG-G8@76.4 47.8 75.9 81 57.8 76.7 77.6
62.6 46.8 81.7 69.8 52.1 83.9 67.8

1080ti@76.4 45.8 76.7 80.7 60.2 74.3 78.4
62.6 46.1 82.6 69.4 49.5 84.2 67.5

s7edge@76.3 50.3 76.7 80.8 61.1 75 75.8
63.4 50.1 82.7 69.4 54.4 82.2 68.5

note8@76.1 46.7 74.9 79.5 59.4 74.2 75.2
58.7 46.3 81.2 67.9 53.2 82.5 66.6

v100 gpu64@76.1 47.3 76.5 81.4 59.7 75.2 77.7
61.9 47.7 82.6 69.9 50.1 84 67.8

pixel2@75.8 50.3 74.7 80.5 59.7 75.5 75.6
60.4 47.9 81.9 67.8 51.3 82.4 67.3

tx2 gpu16@75.8 49.5 76.7 80.8 61.4 74.4 77.8
62.2 46.8 81.3 70.5 50.4 84 68

cpu@75.7 45.4 76.8 81 55.6 73.1 77.9
60.4 44.3 81.7 69.1 46.6 83.4 66.3

note10@75.5 49.8 73.8 80.7 57.5 76 74.9
60.3 48.9 81.5 67.2 52.7 82.3 67.1

tx2 gpu16@75.4 45.8 76.1 80.2 57.5 73.1 77.2
61.3 44.1 82.4 67.7 47.8 83.8 66.4

1080ti gpu64@75.3 45.2 75.4 80.1 57.4 73.1 77
60.9 45.1 82.1 68.2 49.4 83.7 66.5

v100 gpu64@75.3 45.6 75.9 80.5 56.7 72.2 78.3
59.8 45.6 81.9 67.8 46.9 83.8 66.2
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underperforms on Office-Home dataset compared to ResNet50 as shown

in the first row group of Table 4.8. Indeed, all of the specialized OFA

networks for various hardware platforms that have similar ImageNet ac-

curacy with ResNet50 underperform on Office-Home dataset compared

to ResNet50. Again, We agree that highly optimized networks like the

specialized OFA network have lower transferability than ResNet which

includes high redundancy.

Although there are some exceptions, the ImageNet accuracy of fea-

ture extractor is highly correlated with the Office accuracy of SPL al-

gorithm. And the latency of the feature extraction depends directly on

the the feature extractor. Therefore, the accuracy and the latency of fea-

ture extractor is crucial. Note that implementing progressive shrinking

algorithm for Office dataset is not straightforward as indicated above.

We recommend to use highly optimized ImageNet pre-trained network

model as feature extractor to boost the efficiency of algorithm execution.

4.4.3 Comparison with State-of-the-Art Results

We summarize the accuracy of our method along with state-of-the-art

methods in Table 4.9 and Table 4.10. Our method with EfficientNet and

Vision Transformer combined with SPL algorithm surpasses existing meth-

ods by a large margin, more than 2% on Office31 dataset. Considering

the fact that the accuracy of existing methods on Office31 dataset is al-

ready mature (i.e., higher than 92%), the 2% accuracy gain on Office31
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dataset is noticeable. Note that PRPL algorithm uses EfficientNet-B7 fea-

ture extractor, which has 7.5 times fewer parameters than EfficientNet-

L2 with 1.4% lower ImageNet accuracy. The accuracy gain stems from

using better feature extractor. Furthermore, our method with the special-

ized OFA network and SPL algorithm surpasses the existing methods

except PRPL algorithm which uses heavyweight feature extractor. The

note10@80.2 specialized OFA network has 8.4 times fewer parameters

and almost 50 times fewer MAC counts than EfficientNet-B7. It is not

reasonable to include the PRPL algorithm with other methods when we

consider mobile setting. For mobile setting, therefore, our method with

the specialized OFA network scores the best among existing state-of-the-

art methods with 0.8% accuracy gain on Office31 dataset. The accuracy

result for Office-Home dataset has similar trends. Our method with Ef-

ficienNet and Vision Transformre combined with SPL algorithm outper-

forms all the existing method by a substantial margin, more than 5% on

Office-Home dataset. Except PRPL algorithm, our method with the spe-

cialized OFA network and SPL algorithm surpasses existing methods on

Office-Home dataset.

4.4.4 Co-optimization for Edge Device

Figure 4.1 shows the example of evolutionary search process with var-

ious c coefficient. As shown in the c = 0 accuracy plot, the search al-

gorithm converges to better accuracy compared to initial points with the
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Table 4.9 Accuracy comparison with state-of-the-art on Office31

Model AW DW WD AD DA WA Avg

DM-ADA [70] 83.9 99.8 99.9 77.5 64.6 64 81.6
DANN [71] 82 96.9 99.1 79.7 68.2 67.4 82.2
HoMM [72] 90.8 99.3 100 87.9 69.3 69.5 86.1
MSTN* [73] 91.3 98.9 100 90.4 72.7 65.6 86.5

SAFN+ENT* [74] 90.3 98.7 100 92.1 73.4 71.2 87.6
rRevGrad+CAT [75] 94.4 98 100 90.8 72.2 70.2 87.6

CDAN+E [76] 94.1 98.6 100 92.9 71 69.3 87.7
DEV [77] 93.2 98.4 100 92.8 70.9 71.2 87.8

DMRL [78] 90.8 99 100 93.4 73 71.2 87.9
SymNets [79] 90.8 98.8 100 93.9 74.6 72.5 88.4

BSP+CDAN [49] 93.3 98.2 100 93 73.6 72.6 88.5
SHOT [27] 90.1 98.4 99.9 94 74.7 74.3 88.6
ALDA [80] 95.6 97.7 100 94 72.2 72.5 88.7
MDD [81] 94.5 98.4 100 93.5 74.6 72.2 88.9
DADA [82] 92.3 99.2 100 93.9 74.4 74.2 89
MCC [83] 95.4 98.6 100 95.6 72.6 73.9 89.4
SPL [4] 92.7 98.7 99.8 93.0 76.4 76.8 89.6

GSDA [84] 95.7 99.1 100 94.8 73.5 74.9 89.7
MDAIR [85] 94 96.9 99.2 92.6 78.7 77.6 89.8

CAN [86] 94.5 99.1 99.8 95 78 77 90.6
SRDC [87] 95.7 99.2 100 95.8 76.7 77.1 90.8

RSDA-MSTN [88] 96.1 99.3 100 95.8 77.4 78.9 91.1
FixBi [89] 96.1 99.3 100 95 78.7 79.4 91.4
PRPL [90] 95.9 97.1 99.2 97 83 82.4 92.4

Ours (Efficientnet l2 ns+SPL) 99 100 100 99.4 84.7 87.6 95.1
Ours (Vit large patch16 384+SPL) 99.9 99.2 100 99 88.3 88.4 95.8

Ours (note10@80.2+SPL) 94.6 98.9 100 97.4 81.2 81.2 92.2
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Table 4.10 Accuracy comparison with state-of-the-art on Office-Home

Model AC AP AR CA CP CR
PA PC PR RA RC RP Avg

DANN [71] 45.6 59.3 70.1 47 58.5 60.9
46.1 43.7 68.5 63.2 51.8 76.8 57.6

MSTN* [73] 49.8 70.3 76.3 60.4 68.5 69.6
61.4 48.9 75.7 70.9 55 81.1 65.7

CDAN+E [76] 50.7 70.6 76 57.6 70 70
57.4 50.9 77.3 70.9 56.7 81.6 65.8

BSP+CDAN [49] 52 68.6 76.1 58 70.3 70.2
58.6 50.2 77.6 72.2 59.3 81.9 66.3

ALDA [80] 53.7 70.1 76.4 60.2 72.6 71.5
56.8 51.9 77.1 70.2 56.3 82.1 66.6

SymNets [79] 47.7 72.9 78.5 64.2 71.3 74.2
64.2 48.8 79.5 74.5 52.6 82.7 67.6

MDD [81] 54.9 73.7 77.8 60 71.4 71.8
61.2 53.6 78.1 72.5 60.2 82.3 68.1

GSDA [84] 61.3 76.1 79.4 65.4 73.3 74.3
65 53.2 80 72.2 60.6 83.1 70.3

GVB-GD [91] 57 74.7 79.8 64.6 74.1 74.6
65.2 55.1 81 74.6 59.7 84.3 70.4

RSDA-MSTN [88] 53.2 77.7 81.3 66.4 74 76.5
67.9 53 82 75.8 57.8 85.4 70.9

SPL [4] 54.5 77.8 81.9 65.1 78 81.1
66 53.1 82.8 69.9 55.3 86.0 71.0

SRDC [87] 52.3 76.3 81 69.5 76.2 78
68.7 53.8 81.7 76.3 57.1 85 71.3

SHOT [27] 57.1 78.1 81.5 68 78.2 78.1
67.4 54.9 82.2 73.3 58.8 84.3 71.8

FixBi [89] 58.1 77.3 80.4 67.7 79.5 78.1
65.8 57.9 81.7 76.4 62.9 86.7 72.7

MDAIR [85] 55.6 80.4 81.6 70.2 80.7 80.8
71 55.6 82.5 73.5 57.7 83.9 72.8

PRPL [90] 67.6 84.5 89.4 79.8 85.7 86.3
79.2 69.1 88.7 83.8 68.9 91.5 81.2

Ours (Efficientnet l2 ns+SPL) 74 93.6 92 88.2 93.6 91.7
85.5 73.3 92.9 88.4 75.2 95.4 87

Ours (Vit large patch16 384+SPL) 86.2 95.2 94 91.3 95.4 94.3
90.1 84.9 94.1 91 85.9 95.2 91.5

Ours (note10@80.2+SPL) 53.6 80.6 84.3 67.5 82.5 83.4
69.6 51 85.9 75.9 54.7 87.4 73
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Figure 4.1 Progress of evolutionary search with various c coefficient
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diversity incurred by the mutation process. Similarly, the latency of c = 0

case also converges higher points without constraints as expected. With

c = 0.01, the accuracy converges slightly lower points while the latency

converges dramatically lower points due to the latency constraints. The

trend becomes more obvious with higher c coefficient (i.e., c = 0.15).

The accuracy of c = 0.15 converges lower points due to the latency con-

straints. We conclude that the evolutionary search algorithm works as

intended and it is controlled by the value of c coefficient.

Figure 4.2 presents the impact of various feature extractor and SPL

parameter selection on unsupervised domain adaptation accuracy of Of-

fice31 and Office-Home dataset. The number of data points are 200 and

280 for Office31 and Office-Home, respectively, and we collect the data

points by measuring average accuracy and average latency in grid search

manner. As expected, both feature extractor selection and SPL parame-

ter affects accuracy and latency significantly. The points with the same

color use the same feature extractor while the variation of SPL parame-

ters incur accuracy/latency difference. Note that the red point in the right

indicates the baseline which has ResNet feature extractor with baseline

SPL parameters. The other points use specialized OFA network for Sam-

sung Note10 with various latency constraints. There are many points that

have better accuracy and latency than the baseline. The problem is to find

the near Pareto optimal points without enumerating all the data points

and we use evolutionary search. The first characteristic of Pareto optimal
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Figure 4.2 Impact of various feature extractor and SPL parameter selec-
tion on Office datasets
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points is that the feature extractor selection is more important than SPL

parameters in the low latency regime. For low latency algorithm execu-

tion, specifically, the execution time of SPL algorithm is assigned to near

minimal values and the selection of feature extractor can control the algo-

rithm’s accuracy/latency. On the other hand, the SPL parameter is more

important than the feature extractor selection in the high latency regime

as we have no choice but to use the best feature extractor. In the mid-

dle latency range, both the feature extractor and SPL parameter selection

is important. The evolutionary search algorithm automatically set up the

process of feature extractor and SPL parameter selection controlled by c

coefficient.

Figure 4.3 shows the result generated by our evolutionary search

shown in red with various c coefficient on Office31 dataset. The data

points generated by grid search manner is shown in black. We experi-

ment 10 repetitive runs for each c coefficient value. If c value gets larger,

the algorithm searches lower latency regime. Although the evolutionary

search algorithm has intrinsic randomness, the algorithm outputs near

Pareto optimal points without exception. Indeed, some of them surpass

Pareto frontier which consist of data points in grid search manner.

Figure 4.4 shows the result generated by our evolutionary search

shown in red with various c coefficient on Office-Home dataset. Again,

we experiment 10 runs for each c coefficient value and the data points

generated by grid search manner is shown in black. Office-Home dataset
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Figure 4.3 The result generated by evolutionary search on Office31
dataset
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Figure 4.4 The result generated by evolutionary search on Office-Home
dataset
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has more complex structure than Office31 dataset and the accuracy dif-

ference between feature extractor selection on Office-Home dataset is

higher than that on Office31 dataset. Still, the evolutionary search algo-

rithm finds near Pareto optimal points without exception according to the

c coefficient value.

The last point to mention about co-optimization for edge device is

transferability between Office31 dataset and Office-Home dataset. Al-

though the evolutionary search algorithm proves effectiveness to find

Pareto optimal setting for Office dataset, the evolutionary search algo-

rithm cannot be implemented on the fly due to the large cost induced by

data collection. It is analogous to typical neural architecture search al-

gorithms which consumes a lot of computing resources to find optimal

architecture thereby it is assumed to be performed in the server. As we

are targeting edge device, all the resource intensive operations are as-

sumed to be implemented in the server and they include the evolutionary

search algorithm. As the evolutionary search algorithm requires realis-

tic training, we assume the predictors are trained using Office31 dataset

and the test is performed on Office-Home dataset thereby we measure

transferability between Office31 dataset and Office-Home dataset. It is

reasonable that all the resource intensive operations including evolution-

ary search are performed in the server and output the specific (feature

extractor, SPL parameter) pair on proxy dataset (i.e., Office31) for each

hardware platform. Then, an arbitrary edge device loop up off-the-shelf
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setting and perform unsupervised domain adaptation task on incoming

dataset (i.e., Office-Home). The fundamental assumption of this scenario

is that the distribution and characteristic of proxy dataset is similar to that

of incoming dataset.

Figure 4.5 shows the transferability result that predictors are trained

on Office31 dataset and the found setting is applied on Office-Home

dataset. We experiment 10 repetitive runs for each c case. Note that there

is large variation in c = 0 case, which indicates that the latency predic-

tor for Office31 dataset is not perfectly suited for Office-Home dataset.

Although there is dataset discrepancy, the algorithm finds near Pareto

optimal methods without exception.

Figure 4.6 shows the transferability result that predictors are trained

on Office-Home dataset and the found setting is applied on Office31

dataset. Again, we experiment 10 repetitive runs for each c case. In c = 0

case, we observe that the found settings for Office-Home dataset do not

fit entirely on Office31 because the settings for Office-Home dataset typ-

ically use higher d and d1 to get better accuracy. On the other hand, the

evolutionary search algorithm finds near Pareto optimal methods in c =

0.15 and c= 0.30 cases without difficulties. We conjecture that accuracy-

latency curve is similar between Office31 dataset and Office-Home dataset

in the middle and low latency regime.

Note that Office31 dataset has 2,817, 795 and 498 images for Ama-

zon, Webcam and DSLR, respectively while Office-Home dataset has
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Figure 4.5 Transferability result from Office31 to Office-Home dataset
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Figure 4.6 Transferability result from Office-Home to Office31 dataset
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2,427, 4,365, 4,439 and 4,357 images for Art, Clipart, Product and Real-

World, respectively. Although the number of images for Office-Home

dataset is about 4 times larger than the number of images for Office31

dataset, both dataset has a similar nature (i.e., classifying office objects

and some of domains are more difficult to classify than the others). It is

empirical that the average of accuracy for all domain pairs is transferable

between Office31 and Office-Home dataset.

4.4.5 Pre-extraction of Source Feature

In the previous work [27], SHOT aims to remove the access to source

domain data when adapting the model to target domain data. It is more

secure for decentralized private data. Following the setting proposed in

[27], we also consider the source-free setting which assumes absent of

source data when adapting the model. In this setting, we assume only the

source feature is available instead of source data. We assume that reveal-

ing the source feature instead of source data is secure because it is not

easy to recover source data from the source feature. So, we pre-extract

the source feature. It is straightforward to implement pre-extraction of

source feature because SPL algorithm requires only source feature in-

stead of source data. In this case, we assume the same network is used

to extract source feature and target feature. Storing source feature along

to each network which is used to extract source feature is one solution

to realize pre-extraction of source feature for unsupervised domain adap-
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Table 4.11 Pareto frontier methods on Office31 with pre-extraction of
source feature

source network target network d d1 iterations avg accuracy

note10@80.2 note10@80.2 512 128 11 92.2
ofa mbv3 w1.2 note10@80.2 512 128 11 91.2

note10@80.2 note10@80.2 256 64 11 92
ofa mbv3 w1.2 note10@80.2 256 64 11 91.6

note10@80.2 note10@80.2 512 128 9 91.9
ofa mbv3 w1.2 note10@80.2 512 128 9 91.3

note10@80.2 note10@80.2 256 128 9 91.5
ofa mbv3 w1.2 note10@80.2 256 128 9 91.8

note10@80.2 note10@80.2 256 64 5 91.6
ofa mbv3 w1.2 note10@80.2 256 64 5 90.9

note10@79.7 note10@79.7 256 128 7 91.4
ofa mbv3 w1.2 note10@79.7 256 128 7 91.2

note10@79.3 note10@79.3 256 128 11 91.4
ofa mbv3 w1.2 note10@79.3 256 128 11 90.8

note10@79.3 note10@79.3 256 128 7 91.2
ofa mbv3 w1.2 note10@79.3 256 128 7 90.7

note10@79.3 note10@79.3 128 64 7 90.7
ofa mbv3 w1.2 note10@79.3 128 64 7 89.4

tation. However, the problem is when we combine specialized OFA net-

work and pre-extraction of source feature for edge device. As there are

diverse specialized OFA networks for diverse hardware platforms, we

cannot store all the source feature for each specialized OFA networks.

If feature extractors for source and target domain data are different,

then the accuracy is near zero. However, we observe that features ex-

tracted by OFA networks or specialized OFA networks which share the

same OFA network are compatible to each other. We propose to store
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Table 4.12 Pareto frontier methods on Office31 with pre-extraction of
source feature (cont.)

source network target network d d1 iterations avg accuracy

note10@79.3 note10@79.3 256 128 5 90.9
ofa mbv3 w1.2 note10@79.3 256 128 5 90.4

note10@79.3 note10@79.3 128 64 5 90.8
ofa mbv3 w1.2 note10@79.3 128 64 5 89.6

note10@79.3 note10@79.3 128 64 3 90
ofa mbv3 w1.2 note10@79.3 128 64 3 89.1

note10@78.4 note10@78.4 128 64 5 89.4
ofa mbv3 w1.2 note10@78.4 128 64 5 88.2

note10@78.4 note10@78.4 128 64 3 89.3
ofa mbv3 w1.2 note10@78.4 128 64 3 88.4

note10@75.5 note10@75.5 128 64 3 89
ofa mbv3 w1.0 note10@75.5 128 64 3 88.4

note10@73.6 note10@73.6 128 64 3 86.6
ofa mbv3 w1.0 note10@73.6 128 64 3 88.1

note10@71.4 note10@71.4 128 64 3 85.3
ofa mbv3 w1.0 note10@71.4 128 64 3 85.2
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Table 4.13 Pareto frontier methods on Office-Home with pre-extraction
of source feature

source network target network d d1 iterations avg accuracy

note10@79.7 note10@79.7 256 64 3 73.3
ofa mbv3 w1.2 note10@79.7 256 64 3 72.7

note10@79.7 note10@79.7 256 64 5 73.5
ofa mbv3 w1.2 note10@79.7 256 64 5 73

note10@79.7 note10@79.7 512 64 5 73.4
ofa mbv3 w1.2 note10@79.7 512 64 5 72.9

note10@79.7 note10@79.7 256 64 7 73.5
ofa mbv3 w1.2 note10@79.7 256 64 7 72.9

note10@79.7 note10@79.7 512 64 7 73.6
ofa mbv3 w1.2 note10@79.7 512 64 7 72.9

note10@79.7 note10@79.7 512 64 11 73.6
ofa mbv3 w1.2 note10@79.7 512 64 11 73

note10@79.3 note10@79.3 128 64 3 72.3
ofa mbv3 w1.2 note10@79.3 128 64 3 72

note10@79.3 note10@79.3 256 64 3 73
ofa mbv3 w1.2 note10@79.3 256 64 3 72

note10@78.4 note10@78.4 128 64 3 71.6
ofa mbv3 w1.2 note10@78.4 128 64 3 70.9

note10@76.6 note10@76.6 128 64 3 67
ofa mbv3 w1.0 note10@76.6 128 64 3 67.1

note10@75.5 note10@75.5 128 64 3 66.2
ofa mbv3 w1.0 note10@75.5 128 64 3 66.2

note10@76.6 note10@71.4 128 64 3 60.3
ofa mbv3 w1.0 note10@71.4 128 64 3 60.2
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only one source feature for each OFA network. It is more efficient and

scalable because all the specialized OFA networks are derived by several

OFA networks. Therefore, we only store several source features.

Table 4.11 and Table 4.12 shows the accuracy of pre-extraction of

source feature for Pareto frontier methods on Office31 along with base-

line methods. We found Pareto frontier methods in grid search man-

ner. Specifically, we found 17 and 12 Pareto optimal points for Office31

and Office-Home, respectively. It is reasonable to mainly consider these

points as working points because the accuracy and latency of the meth-

ods are superior than the others. In the table, source network refers to the

network which is used to extract source domain data and target network

means it is used to extract target domain data. If source network and

target network is the same, then it assumes the baseline setting which

assumes the source feature is stored along to the network used or we

can access to the source domain data. If source network is OFA network

and target network is specialized OFA network, then we assume the pre-

extraction of source feature. Although there are some accuracy losses,

we observe that the accuracy of pre-extraction of source feature for each

specialized OFA network is similar to that of baseline setting. Therefore,

we can store source feature for several OFA networks instead of all the

specialized OFA networks to accomplish pre-extraction of source fea-

ture.

Table 4.13 shows the pre-extraction of source feature for Pareto fron-
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Table 4.14 Accuracy results on Office31 dataset for small target data sce-
nario

network d d1 iterations avg accuracy

Resnet50 512 128 11 82.6
note10@78.4 151 90 3 84.6

Figure 4.7 Latency results on Office31 dataset for small target data sce-
nario

tier methods on Office-Home dataset along with baseline methods. We

present 12 Pareto optimal points. There are only small accuracy losses

while the networks are compatible if they are derived from the same OFA

network. Therefore, we verify the effectiveness of our method.

4.4.6 Results for Small Target Data Scenario

Although labeling hundreds to thousands of target data images is stan-

dard for the Office datasets, it is not realistic to label such amount of

data on edge device in real use cases. We assume more realistic scenario
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which includes smaller target data. This is the scenario where latency of

algorithm is important. We randomly sampled 64 items from original tar-

get domain data while we keep the source domain data intact. Therefore,

the problem is to label 64 images instead of hundreds or thousands using

the information gained from source domain data. The seed for the ran-

dom number generator is fixed to certain number to make our sampling

strategy stable. In our observation, some of the target domain classes are

not sampled at all thereby it is not appropriate to use structured predic-

tion which includes clustering algorithm with initial points of the num-

ber of target domain classes. Therefore, we exclude the structured pre-

diction in the small target data scenario and achieve about 4% accuracy

gain. Table 4.14 shows the accuracy results for the scenario. Accuracy

is slightly degraded due to small size of target data information. Our ap-

proach scores 2% higher than the baseline method on Office31 dataset.

Figure 4.7 shows the latency results for the scenario. Our approach is

9.36 times faster than the baseline method by using lightweight backbone

network and smaller SPL algorithm parameter. In real use case, waiting

for more than a minute is not tolerable while our approach services a

query in about 10 seconds, which is more interactive.

4.4.7 Results for Object Detection

We assume object detection scenario, which is famous application for

edge device. We use Faster R-CNN [92] implementation from PyTorch
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Figure 4.8 Object Detection Results on PennFudan dataset

[69] for experiments. We use PennFudan dataset, which is consisted of

170 images with 375 labeled pedestrians. The goal of object detection al-

gorithm is to find bounding boxes of pedestrians in the input images. The

dataset is divided to form 120/25/25 images of training/validation/test

set. We conduct co-optimization of backbone network selection and ob-

ject detection algorithm parameter selection. The search space we con-

sider is 8 OFA backbone networks and an object detection algorithm pa-

rameter (i.e., 6 values) namely sampling ratio of multi scale ROI align

module. As the size of search space is 48, we conduct grid search based

on the accuracy using validation set. Figure 4.8 shows the latency and

accuracy of various backbone networks and object detection algorithm
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parameters. We averaged 5 runs to get stable latency and accuracy val-

ues. The red dot indicates MobileNet v2 baseline and ResNet baseline

which is clearly not in pareto optimal frontier. Instead of the baseline

method which uses ResNet-50 and the sampleing ratio of two, we use

note10@76.6 backbone network and the sampling ratio of one. The to-

tal latency is 2.43 times faster (i.e., from 1.40 seconds to 0.58 seconds)

while the COCO-style mAP is about 4 points higher (i.e., from 45.3 to

49.8) compared to the baseline method.

4.4.8 Results for Classifier Fitting Using Interme-
diate Domain

As the latency of SPL algorithm is a large portion in the total runtime,

it is desirable to fit a classifier instead of executing SPL algorithm from

scratch all the time. We conduct an experiment which has the scenario of

source domain, intermediate domain and target domain. The goal of the

algorithm is to label target domain data by using the information gained

from source domain and intermediate domain when the labels of inter-

mediate domain and target domain doesn’t exist. First of all, the algo-

rithm labels intermediate domain data using SPL algorithm with source

domain data. Second, the algorithm fits a classifier using the labels of

source domain data and intermediate data. After all, the algorithm la-

bels target domain data using a classifier without SPL algorithm. In this

scenario, labeling target domain data is fast as the latency of SPL algo-
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rithm diminishes. In our experiment, a classifier is consisted of a simple

fully-connected layer. If we fit a classifier after note10@78.4 backbone

network using Amazon domain data and tested on Webcam domain data,

then the accuracy is only 68.8% due to domain shift. If we use SPL algo-

rithm using Amazon domain data to label Webcam domain data, then the

accuracy is 90.8%. If we use SPL algorithm using Amazon domain data

to label DSLR domain data, then the accuracy is 95%. If we fit a classi-

fier using Amazon domain data and 95% corrected DSLR domain data to

test Webcam domain data, then the accuracy is 90.6%. Therefore, we get

90.6% accuracy instead of 90.8% accuracy using intermediate domain

information and we reduce the SPL algorithm latency by using classifier

fitting.

Note that the process of generating labels by SPL algorithm and per-

form classifier fitting is analogous to self-training. Implementing more

sophisticated algorithm for combining self-training and SPL algorithm

can provide both high accuracy and low latency for target domain. Fur-

thermore, choosing hyperparameter via proxy dataset can be altered by

self-training criteria. It is left for future work.

4.4.9 Summary

We integrate all the methods previously mentioned and show the sum-

mary of the results. For accuracy results on Office31 in Table 4.15, we

use the proxy dataset Office-Home to train accuracy and latency predic-
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Table 4.15 Summary accuracy results on Office31 dataset

source network target network d d1 iterations avg accuracy

Resnet50 Resnet50 512 128 11 89.6
ofa mbv3 w1.2 note10@78.4 151 90 3 89.6

Figure 4.9 Summary latency results on Office31 dataset

tors. Evolutionary search is performed on the proxy dataset and find the

suitable feature extractor and SPL setting.

Then we measure the unsupervised domain adaptation accuracy on

the Office31 dataset using the found setting and report the accuracy and

the latency on NVIDIA Jetson TX2. We also apply pre-extraction of

source feature which set source network to be OFA network instead of

specialized OFA network. Note that the accuracy is the same between the

baseline and the proposed method. The latency result is shown in Figure

4.9. Our approach can reduce the total latency by 5.99× without loss of

accuracy on Office31 dataset.
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Table 4.16 Summary accuracy results on Office-Home dataset

source network target network d d1 iterations avg accuracy

Resnet50 Resnet50 1024 128 11 71.0
ofa mbv3 w1.2 note10@78.4 171 110 3 71.1

Figure 4.10 Summary latency results on Office-Home dataset

Table 4.16 shows the accuracy results on Office-Home dataset. Dif-

ferently, we use the proxy dataset Office31 and the test dataset Office-

Home. The accuracy is almost the same between the baseline method

and our approach. The latency result is shown in Figure 4.10. We can

reduce the total latency by 9.06× on Office-Home compared to baseline

method.

Note that characteristics of edge device (e.g., memory bandwidth and

small neural processing unit) are not considered however we use latency

measured on working system for edge device (i.e., NVIDIA Jetson TX2).

More sophisticated method which considers edge device characteristics
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is left for future work.

4.5 Conclusion

We proposed applying pre-trained ImageNet model to feature extractor

of unsupervised domain adaptation for edge device. First, we report that

combining large feature extractors and the algorithm which doesn’t up-

date the feature extractor is an effective method to achieve state-of-the-

art accuracy on Office31 and Office-Home datasets. And we show that

highly optimized feature extractor is crucial to achieve state-of-the-art

efficiency for edge device. We use a predictor-guided evolutionary search

to explore accuracy-latency space of the proposed method. We show that

the evolutionary search algorithm is transferable between Office31 and

Office-Home datasets especially for middle and low latency regimes. We

observe that pre-extraction of source feature for edge device is viable

by storing source features along with OFA networks instead of storing

source features for all the specialized OFA networks. We report 5.99×

and 9.06× latency reduction on Office31 and Office-Home datasets, re-

spectively. Lastly, we experiment more realistic scenarios which include

small target domain data, object detection, and classifier fitting. We show

that our method is still effective on those scenarios.
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Chapter 5

Augmenting Few-Shot Learning
with Supervised Contrastive
Learning

This work was published on IEEE Access journal, Apr. 2021 [93]. Few-

shot learning deals with a small amount of data which incurs insufficient

performance with conventional cross-entropy loss. We propose a pre-

training approach for few-shot learning scenarios. That is, considering

that the feature extractor quality is a critical factor in few-shot learning,

we augment the feature extractor using a contrastive learning technique.

It is reported that supervised contrastive learning [6] applied to base class

training in transductive few-shot training pipeline leads to improved re-

sults, outperforming the state-of-the-art methods on Mini-ImageNet and

CUB. Furthermore, our experiment shows that a much larger dataset

is needed to retain few-shot classification accuracy when domain-shift

degradation exists, and if our method is applied, the need for a large

dataset is eliminated. The accuracy gain can be translated to a runtime

reduction of 3.87× in a resource-constrained environment.
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5.1 Introduction

The impressive results of deep learning-based methods are mainly achieved

using a large amount of labeled data [50,94]. However, massive image la-

beling is labor-intensive, and a balanced dataset is challenging to obtain.

By contrast, humans show excellent generalization performance from

only one or a few examples, bringing motivation to the field of few-shot

learning [16, 95–97]. Likewise, the aim of few-shot learning is to pre-

dict unlabeled data based on the observation of a few labeled data (e.g.,

one or five examples per class). Likewise, the aim of few-shot learning is

to predict unlabeled data based on the observation of a few labeled data

(e.g., one or five examples per class).

Compared with traditional inductive few-shot learning, two settings

are introduced to address the low data count. A semi-supervised few-

shot setting [17,98] assumes that the model can utilize information from

additional unlabeled data. Better accuracy can be obtained by increased

amount of unlabeled data. A transductive few-shot setting [99, 100] ac-

cords that the model can access all the test data at once instead of one

by one in the inference procedure. In the scope of this study is confined

to the transductive few-shot setting as it is simple, yet effective [101] to

achieve state-of-the-art result [9].

Conventional few-shot learning algorithms implement a two-stage

training pipeline. Base classes, which are used only in the first stage of
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training, are large, separate classes for training the feature extractor, usu-

ally with conventional cross-entropy loss. In the consecutive stage, novel

classes, which are a disjoint set of base classes, are learning targets with a

few training examples per class. The first training stage attempts to learn

general, transferable visual features from the base classes, whereas the

main few-shot algorithms are implemented in the second stage to predict

images from the novel classes.

As a feature extractor’s performance is empirically related to the fi-

nal classification accuracy, it is reasonable to use various augmentation

techniques during the first training stage. These techniques [24, 25, 102,

103] are motivated by large-scale image classification tasks, such as Im-

ageNet. Supervised contrastive learning [6] is proposed to replace cross-

entropy loss by applying self-supervised representation learning with la-

bel information. It is examined that supervised contrastive loss instead

of simple cross-entropy loss in the first training stage improves the final

classification accuracy by a large margin, especially when the dataset is

not large.

Assume that a few-shot learning task is running on an edge device,

considering the scale of the problem. However, as the cost of the step is

high—nearly a hundred epochs of training the entire dataset—the base

class training step is presumably processed by the server. The cost of su-

pervised contrastive learning is an additional pretraining step at the base

class training, which is amortized and processed efficiently by servers.
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With the accuracy gain obtained by the supervised contrastive learning,

one can optimize the runtime latency of the algorithm with a simple

method such as an early stopping.

Few-shot learning is associated with self-supervised representation

learning, as noted in [104]. Both approaches have a similar goal: train-

ing the model with few or no data labels. Self-supervised representation

learning is a method of unsupervised learning, which aims to learn from

a dataset with no annotation. Instead, it learns using pretext information,

such as the relative location of image patches or the rotation classification

of images. Contrastive learning is a form of self-supervised representa-

tion learning that trains the model to classify similar (positive) samples

and dissimilar (negative) samples in the embedding space. As supervised

contrastive learning is an extension of contrastive learning, it implies the

gain obtained in our experiment.

We observe that the feature extractor trained on a large, general dataset

(i.e., Tiered-ImageNet) performs better than the feature extractor trained

on a small, task-specific dataset (i.e., CUB) when evaluating a few-shot

learning task. In our experiment, supervised contrastive learning improves

the few-shot classification accuracy to the extent that even when trained

on a small, task-specific dataset, it performs better than the feature ex-

tractor trained on a large, general dataset. Therefore, it is data-efficient

and obtains superior performance without resort to a large dataset.

In summary, the contributions of our study are as follows:
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• We propose using supervised contrastive learning in the first stage

of few-shot learning to boost classification accuracy on the Mini-

ImageNet and CUB datasets. Our method is referred as SPTA fol-

lowing the name of combined methods.

• We study the domain-shift setting, in which the feature extractor is

trained on a different dataset, and the few-shot algorithm is eval-

uated on a fine-grained classification dataset, showing that a large

dataset (i.e., Tiered-ImageNet) is needed to overcome domain-shift

degradation. However, when supervised contrastive learning is ap-

plied to the CUB dataset, the case without a large dataset can score

higher than the case with a large dataset.

5.2 Related Works

Few-shot learning: There are many approaches to address few-shot learn-

ing tasks with less amount of data. Gradient descent-based approaches

[105–107] learn how to re-adjust a model with a few gradient descent it-

erations to deal with a few-shot learning task. The model-agnostic meta-

learning (MAML) [105] method trains the model with many tasks to gen-

eralize a new task efficiently. Reptile [106] is a first-order gradient-based

meta-learning algorithm that trains the initialization of model param-

eters. [107] proposed a long short-term memory (LSTM)-based meta-

learner whose states represent the update of the model parameter.
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Metric-learning-based approaches [16, 108–110] learn distance met-

rics between a support set (training data of the target task) and a query set

(test data of the target task) better by reforming feature embedding. [108]

introduced Siamese convolutional neural networks that learn generic vi-

sual features on the character recognition task. The matching network

[16] architecture is inspired by a memory-augmented neural network and

generates a weighted nearest neighbor classifier using the distance be-

tween samples. Prototypical networks [109] utilize episodic training and

assign each class to each prototype in the representation space to predict

new data based on the distance metric to each prototype. [110] proposed

using an additional data sample generator, which is trained with meta-

learning methods, to augment the model training.

Transductive few-shot methods [7–9, 100, 101, 111, 112] assume that

the model simultaneously accesses all the query set. A transductive episodic-

wise adaptive metric (TEAM) [100] defined the optimization process as

a standard semi-definite programming problem to train a generalizable

classifier. A distribution propagation graph network (DPGN) [111] pro-

posed utilizing both the distribution-level and instance-level relations by

designing a dual complete graph network consisting of a point graph and

a distribution graph. [101] proposed transductive fine-tuning, which pur-

sues outputs with a peaked posterior or low Shannon entropy, and a hard-

ness metric to deliver a standardized evaluation protocol. [7] proposed

the prototype rectification, which lowers the class prototype’s intra-class
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bias and cross-class bias and verifies the method theoretically. A syn-

thetic information bottleneck (SIB) [112] introduced an empirical Bayes

approach and a two-network architecture consisting of a synthetic gradi-

ent network and an initialization network to perform the synthetic gradi-

ent descent. LaplacianShot [8] implemented a constrained graph cluster-

ing method that attaches the query samples to the nearest prototype, and

a pairwise Laplacian term advocates similar samples to output the same

label. Transductive information maximization (TIM) [9] maximizes the

mutual information between the query features and the predicted query

label by minimizing the conditional entropy and maximizing the marginal

entropy, and the alternating direction optimizer enables faster conver-

gence than the typical gradient descent optimizer.

Contrastive learning: Contrastive learning [26, 113–117] is a self-

supervised learning method inspired by noise contrastive estimation [118,

119] or N-pair losses [120]. [113] proposed the use of a non-parametric

softmax classifier to increase the instance-level distance on a 128-dimensional

unit sphere after the CNN extracts a feature vector of the image. [114]

improved contrastive predictive coding to implement a pretraining stage

with a feature extractor and a context network to predict the spatial loca-

tion of the image patches. Deep InfoMax [115] proposed an approach for

training an encoder that maximizes the mutual information between the

input data and output features. [116] aimed to maximize the mutual infor-

mation between different views of the same image by pulling views of the
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same scene together and pushing views of different scenes apart. Time-

contrastive networks (TCN) [117] proposed learning from multi-view

video by pulling the anchor and positive images together while pushing

negative images apart. SimCLR [26] implemented two data augmenta-

tion paths and a learnable nonlinear transformation to train an encoder

with a large batch by pulling the feature embedding from the same im-

age. Supervised contrastive learning [6] is an extension of conventional

contrastive learning that has been modified for supervised classification.

5.3 Methodology

This section introduces the proposed idea in detail.

5.3.1 Examining A Few-shot Learning Method

In this study, we examine the transductive information maximization

(TIM) few-shot learning algorithm [9]. First, a feature extractor trans-

forms an input image into embedded features. TIM maximizes the modi-

fied mutual information between the query image’s feature and the query

label by updating the soft-classifier’s trainable weights. To maximize the

information, TIM minimizes the conditional entropy and maximizes the

marginal entropy. Minimizing conditional entropy aims to make con-

fident predictions by modeling the cluster assumption, which implies

that the classification criterion should not be present in the dense re-

gions of the unlabeled features. Maximizing marginal entropy pushes the
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marginal distribution of labels to be uniform, which attempts to avoid

the solution of outputting only one class. Together with the conventional

cross-entropy loss, the TIM loss is defined as follows:

Ltim =− λ

|S|∑i∈S

N

∑
n=1

yin log pin−I

I :=−
N

∑
n=1

p̂n log p̂n +
α

|Q| ∑i∈Q

N

∑
n=1

pin log pin

where pin is the posterior distribution over the labels given the fea-

tures and p̂n is the marginal distribution over the query labels.

Given the loss objective, two optimization methods are presented [9].

One is a conventional gradient descent (TIM-GD) method that mini-

mizes the loss objective through mini-batch sampling. Although TIM-

GD shows the best results, it is two orders of magnitude slower than

inductive methods, which leads to the second method called the alter-

nating direction method (TIM-ADM), which divides the problem into

two more manageable subproblems and optimizes them iteratively. TIM-

ADM shows competitive results compared to TIM-GD while being one

order of magnitude faster. In both methods, sufficiently large number of

iterations were required to converge to the best results. Typical values

for the number of iterations for TIM-GD and TIM-ADM were 1,000 and

150, respectively.
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5.3.2 Augmenting Few-shot Learning with Super-
vised Contrastive Learning

The quality of a feature extractor is one of the main challenges in im-

proving a few-shot learning algorithm because it is directly related to the

quality of the feature embeddings. Supervised contrastive learning [6]

is an extension of self-supervised representation learning; it has a simi-

lar two-stage training procedure, as shown in Figure 5.1. The first stage

prepares two copies of an input image and preprocesses them. An en-

coder network then transforms the images into normalized embedding,

and an additional projection network transforms the embedding into a

low-dimensional embedding. Supervised contrastive loss is computed on

the low-dimensional embedding by attracting positive samples, which

have the same class label or are from the same copied images, and by

repelling the negative samples. The supervised contrastive loss is defined

as follows:

Lsup =−∑
i∈I

1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑
a∈A(i)

exp(zi · za/τ)

where zl is the low-dimensional embedding, τ is a temperature parame-

ter, A(i) ≡ I \ {i}, i is an anchor index, and P(i) ≡ {p ∈ A(i) : ȳp = ȳi}

is the set of indices of all positives except the anchor. The inner product

operation on the embedding space measures the similarity between two

feature embeddings. The loss is minimized when an anchor’s feature em-

bedding is similar to all the positive’s feature embeddings and is different
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Figure 5.1 The proposed pretraining approach for few-shot learning con-
sists of a multi-stage training process.

from all the negative’s feature embeddings. The loss is generalized from

the conventional SimCLR [26] self-supervised contrastive loss to support

multiple positives in the multiviewed batch.

Notably, performing supervised contrastive learning in the first stage

of few-shot learning is proposed instead of performing the conventional

training with base classes and cross entropy. The second step of the train-

ing procedure is to discard the projection network and fine-tune the en-

coder network with a new classifier. As representation learning implies,

the encoder network becomes discriminative during the first step of the

training procedure; therefore, the fine-tuning process is relatively short

and is guided by a lower learning rate. Note that we fine-tuned the feature

extractor with the base class and cross-entropy, which was pre-trained in
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the first stage of supervised contrastive learning. The fine-tuning process

in supervised contrastive learning is optional; we can skip the process

that does not touch the feature extractor because we only use the fea-

ture extractor at the end. When we follow the linear evaluation proto-

col, we keep the feature extractor intact, which implies that we skip the

fine-tuning process. We chose to use the fine-tuning approach because it

produces better results than no fine-tuning as shown in Table 5.1. After

the supervised contrastive learning, optional fine-tuning follows. One-

shot and five-shot five-way classification accuracy on Mini-ImageNet is

reported. Our results are averaged over 10,000 episodes.

In addition, Figure 5.1 shows the details about proposed pretraining

approach. The first stage of supervised contrastive learning uses super-

vised contrastive loss and projection head with the base dataset to learn

visual representations. The second stage of supervised contrastive learn-

ing uses conventional cross-entropy loss with the base dataset to fine-tune

the feature extractor. This two-stage supervised contrastive learning com-

prises the first stage of few-shot learning. The second stage of few-shot

learning uses TIM [9] loss and the feature extractor fixed with the novel

dataset to perform TIM adaptation. If the supervised fine-tuning becomes

standard supervised training and the supervised contrastive pretraining is

skipped, then the entire pipeline is the same as in the baseline method [9]

In our experiment, we added a supervised contrastive learning ap-

proach as an additional pretraining step in the first few-shot training
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Table 5.1 Summary results for the fine-tuning setting.

fine-tune 1-shot 5-shot

3 78.83 87.76
7 75.94 86.16

stage. Furthermore, we fine-tuned the feature extractor with cross-entropy

loss using the base class dataset.

5.4 Experiments

An implementation of our SPTA is publicly available1.

Datasets: We examined three few-shot learning datasets, namely Mini-

ImageNet, Tiered-ImageNet, and CUB. The Mini-ImageNet dataset [16]

is composed of 100 classes from the ImageNet [10] dataset. It has 64/16/20

base/validation/novel classes, respectively, with 600 84× 84 sized im-

ages per class following the split proposed by [107]. The Tiered-ImageNet

[17] is composed of 608 classes from the ImageNet dataset. It has 351/97/160

base/validation/novel classes, respectively, with 779,165 84× 84 sized

images in total following the split proposed by [17]. Finally, the Caltech-

UCSD Birds 200-2011 [15] (CUB) dataset is composed of 200 classes

and 11,788 images in total. It has 100/50/50 base/validation/novel classes,

respectively, with 84× 84 sized images following the split proposed by

[121].

1https://github.com/taemin-lee/SPTA
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Evaluations: We evaluate the algorithm’s score by comparing the final

predicted label at the second stage with the ground truth label. For each

few-shot learning episode, N-way K-shot tasks with T queries per class

were randomly selected from the dataset of novel classes. We chose N =

5, T = 15, and K = 1 for 1-shot or K = 5 for 5-shot classification. We

followed the evaluation protocol in [9].

Implementation details: We examined mainly three different backbone

network models, namely ResNet-18, MobileNet, and WRN28-10, fol-

lowing the implementation of [9,122]. Note that the number after ResNet

indicates the depth of the network. Nevertheless, we report ResNet vari-

ants in one group following the convention of [8, 9]. We mainly inves-

tigated the alternating direction method (ADM) version of the TIM al-

gorithm, which is faster than the gradient descent (GD) version2. We

have added a prototype estimation technique [7, 8] to TIM. This fur-

ther improved the 1-shot classification accuracy. We used a PyTorch [69]

re-implementation of RandAugment3 on the preprocessing stage of su-

pervised contrastive learning4 with N = 3 and M = 20 to implement

modified stacked RandAugment. When pretraining, we used the train-

ing epochs of 1,000 for the supervised contrastive learning, and this was

followed by five epochs of fine-tuning. Our method is referred as SPTA

following the name of combined methods (i.e., supervised contrastive

2https://github.com/mboudiaf/TIM
3https://github.com/ildoonet/pytorch-randaugment
4https://github.com/HobbitLong/SupContrast
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learning, prototype estimation, and TIM-ADM).

5.4.1 Comparison to the State-of-the-Art

We evaluated the 5-way 1-shot and 5-shot classification accuracy of our

method on the Mini-ImageNet and CUB datasets. Our results were av-

eraged over 10,000 episodes following [9, 122] and are summarized in

Table 5.2. In the table, we present methods with 1-shot accuracy over

60% on Mini-ImageNet, and the methods are arranged in ascending or-

der. The results are categorized according to the backbone network the

algorithms use. The bold values are the best results within the algorithms

that use the same backbone network. We excluded results from a semi-

supervised setting because these methods require additional data at test

time. We observed that consistent accuracy gains over the existing meth-

ods, regardless of the backbone network models. For example, 1-shot ac-

curacy improved by more than 6% whereas 5-shot accuracy improved by

more than 5% with the MobileNet network backbone on Mini-ImageNet

surpassing all the existing methods with the ResNet network backbone

model on Mini-ImageNet. With the ResNet-18 network backbone model

on Mini-ImageNet, the 1-shot accuracy improved by almost 5% whereas

the 5-shot accuracy improved by more than 2% surpassing all the ex-

isting methods with the WRN28-10 network backbone model on Mini-

ImageNet. Therefore, the gain of our method is comparable to the se-

lection of a better network architecture on Mini-ImageNet in improving
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Table 5.2 Accuracy comparison to the state-of-the-art methods for five-
way classification on Mini-ImageNet and CUB.

Mini-ImageNet CUB

Method Backbone 1-shot 5-shot 1-shot 5-shot

SimpleShot [122] MobileNet 61.30 78.37 - -
LaplacianShot [8] MobileNet 70.27 80.10 - -

Ours-SPTA MobileNet 76.57 85.82 83.76 89.01

TEAM [100] ResNet-18 60.07 75.90 80.16 87.17
MTL [123] ResNet-12 61.2 75.5 - -
vFSL [124] ResNet-12 61.23 77.69 - -
Neg-cosine [125] ResNet-18 62.33 80.94 72.66 89.40
AFHN [126] ResNet-18 62.38 78.16 70.53 83.95
MetaOpt [127] ResNet-12 62.64 78.63 - -
SimpleShot [122] ResNet-18 62.85 80.02 - -
Distill [128] ResNet-12 64.82 82.14 - -
ConstellationNet [129] ResNet-12 64.89 79.95 - -
DeepEMD [130] ResNet-12 65.91 82.41 75.65 88.69
FEAT [131] ResNet-12 66.78 82.05 - -
IEPT [132] ResNet-12 67.05 82.90 - -
TRAML [133] ResNet-12 67.10 79.54 - -
CAN+T [134] ResNet-12 67.19 80.64 - -
MELR [135] ResNet-12 67.40 83.40 - -
DPGN [111] ResNet-12 67.77 84.60 75.71 91.48
SIB+IFSL [136] ResNet-10 68.85 80.32 - -
LaplacianShot [8] ResNet-18 72.11 82.31 80.96 88.68
TIM-GD [9] ResNet-18 73.9 85.0 82.2 90.8

Ours-SPTA ResNet-18 78.83 87.76 88.81 93.11

LEO [137] WRN28-10 61.76 77.59 - -
CC+rot [104] WRN28-10 62.93 79.87 - -
AWGIM [138] WRN28-10 63.12 78.40 - -
SimpleShot [122] WRN28-10 63.50 80.33 - -
FEAT [131] WRN28-10 65.10 81.11 - -
Transductive tuning [101] WRN28-10 65.73 78.40 - -
Logistic Regression with DC [139] WRN28-10 68.57 82.88 79.56 90.67
SIB [112] WRN28-10 70.0 79.2 - -
BD-CSPN [7] WRN28-10 70.31 81.89 - -
SIB+IFSL [136] WRN28-10 73.51 83.21 - -
LaplacianShot [8] WRN28-10 74.86 84.13 - -
TIM-GD [9] WRN28-10 77.8 87.4 - -

Ours-SPTA WRN28-10 80.32 88.76 - -
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Table 5.3 Accuracy comparison to the state-of-the-art methods for five-
way classification on Tiered-ImageNet.

Tiered-ImageNet
Method Backbone 1-shot 5-shot

SimpleShot [122] MobileNet 69.47 85.17
LaplacianShot [8] MobileNet 79.13 86.75

Ours-SPTA MobileNet 79.17 87.16

MetaOpt [127] ResNet-12 65.99 81.56
SimpleShot [122] ResNet-18 69.09 84.58
FEAT [131] ResNet-12 70.80 84.79
DeepEMD [130] ResNet-12 71.16 86.03
Distill [128] ResNet-12 71.52 86.03
MELR [135] ResNet-12 72.14 87.01
IEPT [132] ResNet-12 72.24 86.73
DPGN [111] ResNet-12 72.45 87.24
CAN+T [134] ResNet-12 73.21 84.93
SIB+IFSL [136] ResNet-10 78.03 85.43
LaplacianShot [8] ResNet-18 78.98 86.39
TIM-GD [9] ResNet-18 79.9 88.5

Ours-SPTA ResNet-18 81.16 88.43
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performance.

The results for the Tiered-ImageNet are presented in Table 5.3. The

results are categorized according to the backbone network the algorithms

use. The bold values are the best results within the algorithms that use

the same backbone network. Again, our results are averaged over 10,000

episodes, and our method scores competitive accuracy results compared

to the existing methods. By comparison, the score gain on the Tiered-

ImageNet is not as high as that of Mini-ImageNet and CUBs (i.e., less

than or approximately 1%). We assume that the Tiered-ImageNet is a

very large dataset compared to Mini-ImageNet and CUB, and thus the vi-

sual representation learned from the Tiered-ImageNet is sufficiently dis-

criminative with conventional cross-entropy loss. This implies that our

method is data-efficient in terms of the dataset size. Thus, it works par-

ticularly well with small datasets, reducing the cost of data preparation.

5.4.2 Ablation Study

We evaluated the influence of prototype estimation and supervised con-

trastive learning on the final accuracy of the method. Instead of the sim-

ple mean of support set examples, the prototype estimation technique

calculates better initialization points by combining support set examples

and query set examples. The results are reported in Table 5.4, and all

of them used ResNet-18 as a backbone network model. Note that proto

refers to prototype estimation and supcon refers to supervised contrastive
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Table 5.4 Ablation study on the influence of prototype estimation and
supervised contrastive learning.

Mini-ImageNet
Method Backbone proto supcon 1-shot 5-shot

TIM-ADM [9] ResNet-18 73.6 85.0
ResNet-18 3 74.86 84.95
ResNet-18 3 77.38 87.82

Ours-SPTA ResNet-18 3 3 78.83 87.76

Tiered-ImageNet
Method Backbone proto supcon 1-shot 5-shot

TIM-ADM [9] ResNet-18 80.0 88.5
ResNet-18 3 81.34 88.41
ResNet-18 3 80.22 88.49

Ours-SPTA ResNet-18 3 3 81.16 88.43

CUB
Method Backbone proto supcon 1-shot 5-shot

TIM-ADM [9] ResNet-18 81.9 90.7
ResNet-18 3 83.66 90.72
ResNet-18 3 87.63 93.08

Ours-SPTA ResNet-18 3 3 88.81 93.11

103



Table 5.5 Summary of domain-shift setting results.

Method domain Backbone 1-shot 5-shot

TIM-GD [9] CUB →CUB ResNet-18 82.2 90.8
Mini-ImageNet →CUB ResNet-18 53.04 71.04
Tiered-ImageNet →CUB ResNet-18 82.58 91.39

Ours-SPTA CUB →CUB ResNet-18 88.81 93.11
Mini-ImageNet →CUB ResNet-18 51.50 68.69
Tiered-ImageNet →CUB ResNet-18 82.80 90.70

learning. The bold values are the best results among the methods. Our

results are averaged over 10,000 episodes. From the TIM-ADM base-

line method, prototype estimation and supervised contrastive learning

were added one by one. We observe that most of the accuracy gain on

the Mini-ImageNet and CUB datasets is from the supervised contrastive

learning, and the prototype estimation improves 1-shot accuracy further,

while it has a marginal impact on 5-shot accuracy. For example, 1-shot

accuracy improved by almost 7%, whereas 5-shot accuracy improved by

more than 2% on the CUB dataset. Most of the gain in 1-shot accuracy on

the CUB dataset is from supervised contrastive learning (i.e., more than

5%), whereas the gain of the prototype estimation is less than 2%. Sim-

ilarly, most of the gain in 5-shot accuracy on the CUB dataset is from

supervised contrastive learning, whereas the gain of the prototype esti-

mation is negligible. We assume that a 5-shot setting provides sufficient

information to build a proper prototype for each class, even without the

prototype estimation method.
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5.4.3 Domain-Shift

We measure the impact of the domain-shift and report the results in Table

5.5. Note that no domain-shift and domain-shift from the larger dataset

are presented. The bold values are the best results among the domain set-

tings. All results used ResNet-18 as a backbone network model, and our

results were averaged over 10,000 episodes. Domain A →B implies that

the feature extractor is trained on dataset A, whereas the few-shot learn-

ing method is evaluated on dataset B, similar to the setting from [121].

Domain CUB →CUB is the baseline result without a domain-shift. Note

that the domain-shift from a slightly large-sized dataset to a smaller

one (i.e., Mini-ImageNet →CUB) drastically degrades the accuracy of

the few-shot learning method. The results show a drop in 1-shot accu-

racy of approximately 29% and 19% in 5-shot accuracy. By compari-

son, the domain-shift from a much larger dataset (i.e., Tiered-ImageNet

→CUB) is slightly better than the no domain-shift (i.e., CUB →CUB)

baseline setting. It improves 1-shot accuracy by approximately 1%. The

results show that the existing method requires a much larger dataset in

the source domain to build an effective feature extractor under a domain-

shift. By contrast, the proposed method provides better feature extraction

when using a smaller dataset. Indeed, with our data-efficient augmenta-

tion method, CUB →CUB accuracy increases by a large margin surpass-

ing that of Tiered-ImageNet →CUB setting. Our method improves 1-shot
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Table 5.6 Results on increasing the number of ways on Mini-ImageNet.

10-way 20-way
Method Backbone 1-shot 5-shot 1-shot 5-shot
baseline [121] ResNet-18 - 55.00 - 42.03
baseline++ [121] ResNet-18 - 63.40 - 50.85
TIM-ADM [9] ResNet-18 56.0 72.9 39.5 58.8
TIM-GD [9] ResNet-18 56.1 72.8 39.3 59.5
Ours-SPTA ResNet-18 61.15 77.12 43.29 64.23

accuracy by approximately 6%, and 5-shot accuracy by more than 2%.

Therefore, if our method is applied, it is possible to prepare a small base

class dataset, and it can still achieve superior accuracy without resorting

to the very large base class dataset. Note that our method suffers from

more degradation with domain-shift. We conjecture that our method is

highly dependent on the base dataset as discussed in Section 5.4.6.

5.4.4 Increasing the Number of Ways

We investigated the effect of increasing the number of ways on Mini-

ImageNet and report the results in Table 5.6. The bold values represent

the best results among the algorithms. All results used ResNet-18 as a

backbone network model, and our results were averaged over 10,000

episodes. These settings are more challenging than 5-way few-shot clas-

sification because there is a greater chance of misclassifying the input

image. Our method’s 10-way and 20-way few-shot classification accu-

racy scores are higher than those of existing methods by a large margin.

For example, it improves the 10-way 1-shot accuracy by approximately
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Table 5.7 Summary results for the runtime analysis.

Methods 1-shot 5-shot
ResNet-18 TIM-ADM baseline 73.6 85.0

MobileNet + ours 75.13 85.01

Figure 5.2 Runtime breakdown on NVIDIA Jetson TX2.

5%, 10-way 5-shot accuracy by more than 4%, 20-way 1-shot accuracy

by approximately 4%, and 20-way 5-shot accuracy by more than 4%

compared to the existing best method. This implies that our method im-

proves the overall generalization performance of the few-shot learning

method.

5.4.5 Runtime Analysis

The accuracy gain of our method can be utilized for runtime reduc-

tion in few-shot learning, which could be especially useful in resource-

constrained contexts such as mobile settings. We measured the latency
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of the methods on an NVIDIA Jetson TX2 to quantify the runtime im-

pacts. The evaluation protocol included 100 warm-up runs, followed by

100 execution runs, and we reported the average over the execution runs.

Figure 5.2 shows a breakdown of the algorithm runtime. Note that the

runtime of prototype estimation is negligible. The runtime is measured

in 5-shot classification (i.e., the feature extraction batch size is 100, and

the algorithm assumes 5-shot classification). The baseline method is the

TIM-ADM algorithm with the ResNet-18 backbone, which scores a 1-

shot accuracy of 73.6 and a 5-shot accuracy of 85.0 as reported in Table

5.7. Note that supervised contrastive learning and prototype estimation

are used to compensate for accuracy loss induced by the runtime reduc-

tion methods. Our accuracy results are averaged over 10,000 episodes.

Note that the feature extraction latency is larger than the TIM-ADM in-

ference runtime for target task training, which confirms the importance

of backbone network selection. We chose to use the MobileNet backbone

network with our method under early stopping (i.e., 10 TIM-ADM iter-

ations instead of 150 iterations) and obtained a 1-shot accuracy of 75.13

and a 5-shot accuracy of 85.01, which is still higher than the baseline.

Thus, the accuracy gain enabled by our method could be translated to a

runtime reduction of 3.87× without loss of accuracy.
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5.4.6 Limitations

In domain-shift experiment, we observed that the feature extractor trained

by our method did not improve the accuracy of the few-shot learning un-

der the domain-shift setting (i.e., the last two rows in Table 5.5). This

implies that our method is highly dependent on the base dataset as it con-

sumes a high number of epochs (i.e., 1,000 epochs for supervised con-

trastive learning) with the base dataset. Therefore, we suggest that our

method’s application is limited to scenarios only when a domain-shift is

not present. No domain-shift setting encourages a smaller base dataset in

real-world implementations.

The cost of supervised contrastive learning is another limitation. A

batch size larger than the number of classes in the base dataset is rec-

ommended to provide a sufficient number of positives in a single mul-

tiviewed batch. This implies many graphic processing units (GPUs) are

required to implement and hinder extensive experiments. Specifically, we

used two GTX 2080 Ti GPUs to six P100 GPUs to support a single run of

the appropriate batch size for supervised contrastive learning. Therefore,

we emphasize that a server with sufficient computing power is necessary

to implement the pretraining stage. Note that once the pretraining stage

and fine-tuning are completed, the remaining algorithm can be imple-

mented in a resource-constrained environment.

In summary, both limitations indicate that our method has insufficient
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scalability in terms of dataset size, and hence, it is effective in small-scale

applications (e.g., few-shot learning). Reducing the cost of supervised

contrastive learning is left for future work.

5.5 Conclusion

We proposed applying supervised contrastive learning for pretraining in

the first stage of few-shot learning. The feature extractor was trained us-

ing supervised contrastive loss followed by fine-tuning, whereas the clas-

sifier performed adaptation using TIM loss. We report that our method

is data-efficient (i.e., works well with a small dataset) while retaining

competitive accuracy performance with a large dataset. Our experiment

shows that we achieved new state-of-the-art results on Mini-ImageNet

and CUB datasets.
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Chapter 6

Conclusion

In this dissertation, two deep learning vision applications are considered,

namely unsupervised domain adaptation and few-shot learning. I present

1) co-optimization of backbone network and parameter selection in unsu-

pervised domain adaptation for edge device and 2) augmenting few-shot

learning with supervised contrastive learning. Both methods aim to ad-

dress low labeled data count in different settings.

The first method is to boost unsupervised domain adaptation by co-

optimization of backbone network and parameter selection for edge de-

vice. Combining a large feature extractor and the unsupervised domain

adaptation method that does not update the feature extractor at runtime,

we can achieve new state-of-the-art accuracy result. Furthermore, we

experiment using small pre-trained ImageNet models for edge device

Predictor-guided evolutionary search is implemented to optimize the to-

tal latency end-to-end. We show that our method is Transferable be-

tween Office datasets without large accuracy drop. We also present pre-

extraction of source feature by storing source features for several OFA
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networks not specialized OFA networks. We also conduct more realistic

scenario for edge device such as smaller target domain data and object

detection. Lastly, We conduct an experiment to utilize intermediate do-

main data to reduce the algorithm latency further. We report 5.99× and

9.06× latency reduction on Office31 and Office-Home dataset, respec-

tively.

The second method is to augment few-shot learning with supervised

contrastive learning. Following the few-shot learning protocol, we use

base dataset to train the feature extractor from scratch instead of using

pre-trained ImageNet model. We propose to augment the feature ex-

tractor using supervised contrastive learning. After the supervised con-

trastive learning, fine-tuning process follows to boost the accuracy. Su-

pervised contrastive learning with information maximization and proto-

type estimation methods achieves state-of-the-art accuracy result. After

that, the accuracy gain can be translated to total runtime reduction by us-

ing lightweight feature extractor and early stopping. We achieve 3.87×

latency reduction few-shot learning scenarios.

Our two stage approach which consists of accuracy boosting and la-

tency reduction achieves a goal toward fast adaptation of deep learning

vision applications with limited data for edge device. Note that the search

space and search technique we use can be improved by using more ad-

vanced network model and algorithm, which is left for future work.
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국문초록

딥 러닝 기반 방법의 놀라운 성공은 주로 많은 양의 분류된 데이터로

달성되었다.전통적인기계학습방법과비교해서딥러닝방법은아주

큰데이터셋으로부터좋은성능을가진모델을학습할수있다.하지만

고품질의 분류된 데이터는 만들기 어렵고 프라이버시 문제로 만들 수

없을때도있다.게다가사람은아주큰분류된데이터가없어도훌륭한

일반화능력을보여준다.

엣지 장비는 서버와 비교해서 제한적인 계산 능력을 가진다. 특히

학습과정을엣지장비에서수행하는것은매우어렵다.하지만,도메인

변화문제와프라이버시문제를고려했을때엣지장비에서학습과정

을 수행하는 것은 바람직하다. 본 논문에서는 계산능력이 작은 엣지

장비를위해적응과정을전통적인학습과정대신고려한다.

전통적인분류문제는학습데이터와테스트데이터가동일한분포

에서파생되었음과많은양의학습데이터를가정한다.비지도도메인

어댑테이션은테스트데이터가학습데이터와다른분포에서파생되는

상황을 가정하며 기존의 분류된 데이터와 학습된 모델을 이용해 새로

운데이터를분류하는문제이다.퓨샷학습은적은양의학습데이터를

가정하며 소수의 분류된 데이터만을 가지고 새로운 데이터를 분류하

는문제이다.엣지장비를위해이미지넷에서미리학습된모델을통해

비지도도메인어댑테이션성능을강화하는방법과지도컨트라스티브
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학습을통해퓨샷학습성능을강화하는방법을제안하였다.두방법은

모두 적은 분류된 데이터 문제를 다루며 다만 서로 다른 시나리오를

가정한다.

첫번째방법은엣지장비를위해네트워크모델과파라미터선택의

동시 최적화를 통해 비지도 도메인 어댑테이션 성능을 강화하는 방법

이다. 이미지넷에서 미리 학습된 모델은 Office 데이터셋과 같이 작은

데이터셋을 다룰때 매우 중요하다. 특징 추출기를 갱신하지 않는 비

지도 도메인 어댑테이션 알고리즘을 사용하고 아주 큰 이미지넷에서

미리 학습된 모델을 조합하는 방법으로 높은 정확도를 얻을 수 있다.

더 나아가 엣지 장비를 위해 작고 가벼운 이미지넷에서 미리 학습된

모델을실험하였다.지연시간을줄이기위해예측기를도입한진화알

고리즘으로 방법의 시작부터 끝까지 최적화하였다. 그리고 프라이버

시를 지키기 위한 비지도 도메인 어댑테이션 시나리오에 대해 고려하

였다.또한엣지장비에서좀더현실적인시나리오인작은데이터셋과

object detection에대해서도실험하였다.마지막으로연속적인데이터

가 입력될 때 중간 데이터를 활용하여 지연시간을 더 감소시키는 방

법을 실험하였다. Office31과 Office-Home 데이터셋에 대해 각각 5.99

배와 9.06배지연시간감소를달성하였다.

두 번째 방법은 지도 컨트라스티브 학습을 통해 퓨샷 학습 성능을

강화하는 방법이다. 퓨샷 학습 벤치마크에서는 베이스 데이터셋으로

특징 추출기를 학습하기 때문에 이미지넷에서 미리 학습된 모델을 사

용할 수 없다. 대신에, 지도 컨트라스티브 학습을 통해 특징 추출기를

강화한다. 지도 컨트라스티브 학습과 정보 최대화 그리고 프로토타입
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추정 방법을 조합하여 아주 높은 정확도를 얻을 수 있다. 특징 추출기

와미리끝내기를통해이렇게얻은정확도를수행시간감소로바꿀수

있다. 트랜스덕티브 5-웨이 5-샷 학습 시나리오에서 3.87배 지연시간

감소를달성하였다.

본방법은정확도를증가시킨후지연시간을감소시키는방법으로

요약할 수 있다. 먼저 이미지넷에서 미리 학습된 모델을 쓰거나 지도

컨트라스티브 학습을 통해 특징 추출기를 강화해서 높은 정확도를 얻

는다.그후진화알고리즘을통해시작부터끝까지최적화하거나미리

끝내기를 통해 지연시간을 줄인다. 정확도를 증가시킨 후 지연시간을

감소시키는두단계접근방식은엣지장비를위한한정된데이터를가

지는딥러닝비전어플리케이션의빠른적응을달성하는데충분하다.

주요어: 뉴럴네트워크, 엣지장비, 비지도 도메인 어댑테이션, 퓨샷 학

습,수도레이블링,컨트라스티브학습,정보최대화

학번: 2015-31052
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