

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master’s Thesis of Engineering

False Negative Distillation and Contrastive

Learning for Personalized Outfit

Recommendation

개인화 코디 추천을 위한 위음성 증류 및 대조 학습

February 2022

Graduate School of Engineering

Seoul National University

Department of Computer Science and Engineering

Seongjae Kim

False Negative Distillation and Contrastive

Learning for Personalized Outfit

Recommendation

개인화 코디 추천을 위한 위음성 증류 및 대조 학습

지도교수 이 상 구

이 논문을 공학석사 학위논문으로 제출함

2021년 11월

서울대학교 대학원

컴퓨터공학부

김 성 재

김성재의 공학석사 학위논문을 인준함

2021년 11월

위 원 장 문 봉 기 (인)

부 위 원 장 이 상 구 (인)

위 원 강 유 (인)

Abstract

Personalized outfit recommendation has recently been in the spotlight with the rapid

growth of the online fashion industry. However, recommending outfits has two sig-

nificant challenges that should be addressed. The first challenge is that outfit recom-

mendation often requires a complex and large model that utilizes visual information,

incurring huge memory and time costs. One natural way to mitigate this problem is

to compress such a cumbersome model with knowledge distillation (KD) techniques

that leverage knowledge from a pretrained teacher model. However, it is hard to

apply existing KD approaches in recommender systems (RS) to the outfit recom-

mendation because they require the ranking of all possible outfits while the number

of outfits grows exponentially to the number of consisting clothing items. Therefore,

we propose a new KD framework for outfit recommendation, called False Negative

Distillation (FND), which exploits false-negative information from the teacher model

while not requiring the ranking of all candidates. The second challenge is that the

explosive number of outfit candidates amplifying the data sparsity problem, often

leading to poor outfit representation. To tackle this issue, inspired by the recent

success of contrastive learning (CL), we introduce a CL framework for outfit rep-

resentation learning with two proposed data augmentation methods. Quantitative

and qualitative experiments on outfit recommendation datasets demonstrate the

effectiveness and soundness of our proposed methods.

Keywords: Personalized Outfit Recommendation, Knowledge Distillation, False

Negative Distillation, Contrastive Learning

Student Number: 2020-26909

i

Contents

Abstract i

Contents ii

List of Tables v

List of Figures vi

1 Introduction 1

2 Related Work 5

2.1 Outfit Recommendation . 5

2.2 Knowledge Distillation . 6

2.3 Contrastive Learning . 6

3 Approach 7

3.1 Background: Computing the Preference Score to an Outfit 8

3.1.1 Set Transformer . 9

3.1.2 Preference score prediction 10

3.2 False Negative Distillation . 10

3.2.1 Teacher model . 10

ii

3.2.2 Student model . 11

3.3 Contrastive Learning for Outfits . 13

3.3.1 Erase . 14

3.3.2 Replace . 14

3.4 Final Objective: FND-CL . 14

3.5 Profiling Cold Starters . 15

3.5.1 Average (avg) . 16

3.5.2 Weighted Average (w-avg) . 16

4 Experiment 17

4.1 Experimental Design . 17

4.1.1 Datasets . 17

4.1.2 Evaluation metrics . 18

4.1.3 Considered methods . 18

4.1.4 Implementation details . 19

4.2 Performance Comparison . 20

4.3 Performance on Cold Starters . 21

4.4 Performance on Hard Negative Outfits 22

4.5 Performance with Different α . 23

4.6 Performance with Different Augmentations 24

4.7 Performance with Different Model Sizes 25

4.8 Performance with Different Batch Sizes 27

4.9 Visualization of the User-Outfit Space 28

5 Conclusion 30

Bibliography 31

A Appendix 37

iii

A.1 Enhancing the Performance of a Teacher Model 37

A.1.1 Teacher-CL . 38

A.1.2 Employing Teacher-CL: FND-CL* 39

Abstract (In Korean) 40

iv

List of Tables

4.1 Dataset statistics . 17

4.2 Comparison of different methods on Polyvore datasets 20

4.3 Comparison of different methods on cold starters 21

4.4 Comparison of different methods on hard negative outfits 22

4.5 Model compactness and inference efficiency 26

v

List of Figures

1.1 The user-outfit space of the trained teacher model 2

1.2 Example of contrastive learning for outfit recommendation 3

3.1 A brief architecture of computing the preference score 8

4.1 Comparison of different α . 23

4.2 Comparison of different augmentation methods 24

4.3 Comparison of different model sizes 25

4.4 Comparison of different batch sizes 27

4.5 The t-SNE visualization result of the user-outfit space 28

A.1 Comparison between Teacher and Teacher-CL 38

A.2 Comparison between FND-CL and FND-CL* 39

vi

Chapter 1

Introduction

Personalized outfit recommendation is the task of determining the preference of a

user to an input outfit that consists of multiple clothing. It has recently attracted

attention with the rapid growth of the online fashion industry, and several related

studies [22, 24, 25] have been conducted. However, despite the success of exist-

ing works, outfit recommendation has two significant challenges that should be ad-

dressed. First, recommending outfits often requires a complex and large model that

involves the utilization of visual information (i.e., images) [24]. Such a large model

incurs high latency and memory costs during the inference phase, making it difficult

to apply to real-time services [14]. The second challenge is that outfit recommenda-

tion inevitably suffers from the data sparsity problem because the possible pool of

outfit data grows exponentially to the number of consisting clothing items [22]. The

sparsity problem often leads to poor learning of outfit representation, which hinders

achieving satisfactory recommendation performance [40].

1

Figure 1.1. The user-outfit space is a representation vector space of the trained

teacher model. We define the positive boundary as an average distance between a

user and its positive outfits. We treat negative outfits inside the positive boundary

as false-negative outfits.

To address the first challenge stemming from a large model, one can employ

knowledge distillation (KD) techniques that compress a model by transferring knowl-

edge from a large teacher model to a small student model. Accordingly, one may

try to apply existing studies [14, 18, 35] of KD available in recommender systems

(RS) to the outfit recommendation. However, existing methods leverage predicted

ranking of all possible outfits from the teacher model, so they are not applicable in

outfit recommendation tasks with explosively large pools. Therefore, we propose a

novel KD framework named False Negative Distillation (FND) that does not require

the ranking of all outfit candidates. Similar to most outfit recommendation studies

[22, 24, 25], FND utilizes a ranking loss that pulls observed (positive) outfits to a

user while pushing unobserved (negative) outfits. As illustrated in Fig. 1.1, FND

claims that unobserved is not the same as true-negative and assumes that negative

outfits close enough to the user are false-negative outfits. We show through various

experiments that FND is effective, and the assumption is reasonable.

2

Figure 1.2. Example of contrastive learning for outfit recommendation. We randomly

alter (erase/replace) one item from an outfit to generate two different views. In

the case of replace, it substitutes an item with a similar one using our pretrained

autoencoder model. In this example, the first and the second augmentations are

erase and replace, respectively. The left outfit erased the shoes and replaced the top.

The right outfit erased the bottom and replaced the bottom.

The approach for the second challenge is to deal with the problem of poor

outfit representation. As learning enhanced representation of entities is one of the

core components to achieve high performance in deep learning [2], numerous works

[3, 6, 8, 27] from diverse domains accomplished this with self-supervised learning

(SSL) techniques. There have been several studies [26, 41, 44] utilizing SSL tech-

niques in RS as well. Among them, more recent works [23, 40, 43] exploit contrastive

learning (CL), especially SimCLR [3], which learns meaningful representations by

3

pulling the differently augmented view of the same data while pushing the others in

the batch. Nevertheless, leveraging CL in outfit recommendation is relatively unex-

plored. Hence, as illustrated in Fig. 1.2, we introduce an approach to make use of

CL in outfit recommendation, along with two proposed data augmentation methods

(erase/replace).

To demonstrate the effectiveness of our proposed methods, we conduct extensive

experiments on outfit recommendation datasets. We compare our approaches with

state-of-the-art outfit recommendation methods with quantitative performance eval-

uations. In addition, we study the impact of hyper-parameters and the model size

with various experiments. We use visualization to show that the intuitive assumption

of our FND illustrated in Fig. 1.1 is sound. We also experiment on the cold-start

scenario where users have very few outfits interacted, and the trained model does

not have any knowledge of those users. To make appropriate recommendations to

cold starters, we introduce two practical strategies that do not require additional

training of the model.

Our main contributions can be summarized as follows:

• We propose a new knowledge distillation framework that can be utilized in out-

fit recommendation tasks without requiring the ranking of all outfit candidates

in the system.

• We propose two novel outfit data augmentation methods to leverage con-

trastive learning in outfit recommendation.

• We introduce two practical strategies to deal with the cold-start problem.

• We demonstrate the effectiveness and soundness of our approaches with com-

prehensive experiments on fashion outfit recommendation datasets.

4

Chapter 2

Related Work

2.1 Outfit Recommendation

Based on whether the individual preference is neglected or not, existing outfit rec-

ommendation studies can be classified into two categories: non-personalized [4, 10,

20, 32, 34, 37, 38, 42] and personalized [12, 19, 22, 24, 25] outfit recommendation. Lu

et al. [25] used pairwise scores, and they employed the weighted hashing technique

to tackle the efficiency problem. Lin et al. [22] utilized an attention mechanism to

estimate the preference score, weighting items in an outfit differently. Lu et al. [24]

exploited Set Transformer [17], the state-of-the-art model for set-input problems,

to capture the high-order interactions among fashion items. They also disentangled

each user into multiple anchors to accommodate the variety of preferences. Note

that methods based on graph neural networks [4, 19, 32] or predicting distribution

over whole clothing items [42] require the test items to be in the training set.

5

2.2 Knowledge Distillation

Knowledge distillation is a model-agnostic compression strategy for generating ef-

ficient models. Since the early success of KD in image recognition [11, 30], KD

has been widely accepted in other fields. In recommendation tasks, several works

[14, 18, 35] have employed KD. They rank all items with the teacher model and

utilize the items of high rank when training the student model. Tang et al. [35] con-

sidered top-K items as false-negatives and differentiated their relative importance

based on their rankings. Lee et al. [18] trained the student to mimic the predicted

probabilities of the teacher on the sampled items of high rank. Kang et al. [14]

achieved state-of-the-art performance by transferring both the prediction and latent

knowledge of the teacher.

2.3 Contrastive Learning

Contrastive learning is a framework for obtaining high-quality representations to

boost the performance of downstream tasks and was first introduced in computer

vision [3]. CL enhances representations by maximizing agreement between two dif-

ferently augmented views of the same data. A few works [23, 40, 43] applied CL

to RS, and they showed notable success. In sequential recommendation, Xie et al.

[40] used CL by applying three augmentation methods (crop/mask/reorder) to user

interaction history. Yao et al. [43] focused on large-scale item recommendations and

employed a two-stage augmentation consisting of masking and dropout. Liu et al.

[23] utilized CL for graph neural network based RS by randomly removing some

edges.

6

Chapter 3

Approach

We recommend outfits to users based on their preference score. To compute the

preference score, we use user embeddings and vector representations of outfits. Due

to the set-like nature of fashion outfits, the representation model requires two condi-

tions. First, the outfit representation should be invariant to the order of comprising

fashion items. Second, the model should be able to process input outfits of any size.

To this end, we borrow the architecture from LPAE [24] model, which uses Set

Transformer [17] module designed to address these set-input problems.

7

Figure 3.1. A brief architecture of computing the preference score of a user to an

outfit. First, images comprising the outfit are transformed into item features by

CNN with fully connected layers. After that, we get an outfit representation using

Set Transformer. Finally, the cosine similarity between a user embedding and the

outfit representation is the preference score of the user to the outfit.

3.1 Background: Computing the Preference Score to an

Outfit

As illustrated in Fig. 3.1, an outfit oj with n items is a tuple of fashion item im-

ages: oj = (xj1, xj2, · · · , xjn) ∈ In. Let f : I → Rd be a Convolutional Neural

Network (CNN) with fully connected layers that encodes xjk into an item feature

vector xjk = f(xjk), where d is a feature dimension. Through Set Transformer

T : Rn×d → Rd, we obtain an outfit representation oj = T (Xj) from item fea-

tures Xj = [xj1 xj2 · · · xjn]
⊤. Then, we compute the preference score with user

embedding ui ∈ Rd for each user ui.

8

3.1.1 Set Transformer

Having benefited from the attention mechanism, Set Transformer can effectively

reflect high-order interactions among items in an outfit. As Lee et al. [17] have

proved, Set Transformer is an order-free module that always produces the same

output regardless of the sequence order.

Attention is a map that gives the weighted sum of value vectors V ∈ Rnv×dv

with the weights being determined by each query vector of Q ∈ Rnq×dq and key

vectors K ∈ Rnv×dq :

Attention(Q,K,V) = Softmax(
QK⊤√

dq
)V. (3.1)

The multi-head attention utilizes multiple attentions through concatenation to bear

more potential relationships: for h attention maps,

Ai = Attention(QWQ
i ,KWK

i ,VWV
i), (3.2)

MultiHead(Q,K,V) = Concat(A1,A2, · · · ,Ah)W
M, (3.3)

where WQ
i ,W

K
i ∈ Rdq×dMq ,WV

i ∈ Rdv×dMv , and WM ∈ RhdMv ×dv . Following previous

works [17, 24], we use dMq = dq/h and dMv = dv/h.

To apply the attention mechanism to a set, Set Attention Block (SAB) uses

self-attention with residual terms: for item features Xj ,

H = LayerNorm(Xj +MultiHead(Xj ,Xj ,Xj)), (3.4)

SAB(Xj) = LayerNorm(H+ σ(H)), (3.5)

where σ is any row-wise feed-forward layer, and LayerNorm(·) is Layer Normalization

[1]. Multiple SABs can be stacked to encode higher-order interactions among the

items:

F = SAB(SAB(Xj)). (3.6)

9

The final outputs of the attention blocks are then aggregated by applying another

multi-head attention on a learnable seed vector s ∈ Rd as follows:

z = LayerNorm(s+MultiHead(s,F,F)), (3.7)

oj = LayerNorm(z+ σ(z)). (3.8)

The obtained oj ∈ Rd is a single compact vector representation of an outfit oj ,

holding compatibility relationships among consisting fashion items.

3.1.2 Preference score prediction

Given a user ui and an outfit oj , our model predicts the preference score of the user

to the outfit as follows:

rij = cos(ui,oj) =
u⊤
i oj

∥ui∥∥oj∥
. (3.9)

3.2 False Negative Distillation

Large models generally show relatively higher recommendation performance com-

pared to their smaller counterparts. However, employing a small-sized model is nec-

essary to reduce latency and memory costs during the inference phase. Therefore, we

propose a novel knowledge distillation framework named False Negative Distillation

(FND) that transfers false-negative information extracted from a well-trained large

teacher model to a small student model. As illustrated in Fig. 1.1, in the user-outfit

space of a trained teacher model, we assume that negative (i.e., unobserved) outfits

close enough to the user are false-negative outfits.

3.2.1 Teacher model

Deep learning based recommendation models adopt learning to rank framework via

deep metric learning in general. The goal is to maximize the ranking of positive

10

outfits given a predicted preference score. Many existing works [22, 25, 34], including

LPAE [24], use triplet loss [31] or Bayesian personalized ranking (BPR) [29] as an

optimization objective. However, they often suffer from poor local optima, partially

because the loss function employs only one negative outfit in each update [33]. To

address this problem, our model utilizes N -pair loss [33]. Aided by the temperature-

scaled cross-entropy, N -pair loss can take multiple negative outfits into account per

positive outfit. Let the batch B, size of N , be a set of pairs (ui, oj), indicating that

the user ui prefers the outfit oj . Each pair in the batch has a set of negative outfits

{ojk}Nk=1, sampled in the training step. Note that the negative set mainly contains

randomly generated outfits and even can include positive outfits of other users. Our

objective for the teacher model is as follows:

LN -pair = − 1

N

∑
(ui,oj)∈B

log
exp(rij/τFND)

exp(rij/τFND) +

N∑
k=1

exp(rijk/τFND)

, (3.10)

where τFND > 0 is a temperature hyper-parameter.

3.2.2 Student model

Once the teacher model is trained, we optimize our student model with the help of

additional false-negative information. The ordinary N -pair loss can be interpreted

as “pulling” positive outfits to a user while “pushing” the negatives, similar to

triplet loss with user-anchor. Whenever a given negative outfit is determined as a

false-negative, we wish to pull it rather than pushing it. Concretely, we determine

the false-negativeness dijk based on the difference between the preference score of

a negative outfit and the average score of the positives: with J+
i a set of indices of

positive outfits for a user ui,

r̂i =
1

|J+
i |

∑
j+∈J+

i

r̂ij+ , (3.11)

11

dijk = α(r̂i − r̂ijk), (3.12)

where α > 0 is a distillation scaling hyper-parameter and r̂ij denotes the predicted

score from the teacher. Note that from the teacher model, FND requires not all

possible outfits but only positive outfits. The sign of dijk determines whether the

given negative outfit is false-negative or not, and the magnitude presents how much

the negative should be pushed or pulled. The student model is trained through our

proposed FND loss LFND as follows:

ℓFND(i, j) = − log
exp(rij/τFND)

exp(rij/τFND) +
N∑
k=1

exp(dijkrijk/τFND)

, (3.13)

LFND =
1

N

∑
(ui,oj)∈B

ℓFND(i, j). (3.14)

Since the teacher model is frozen when training the student, dijk stays constant

for each i and jk. Note that we use different validation sets when training the teacher

model and the student model. Otherwise, the student model might learn information

about the validation set via the teacher, which leads to overfitting.

By examining the gradient of LFND, it can be shown that our objective function

pulls negative outfits to the user whenever they are determined as false-negatives by

dijk . Suppose ojk′ is an element of the set of negative outfits {ojk}Nk=1 for (ui, oj) in

the training step. The gradient of ℓFND w.r.t the preference score of ui to ojk′ is as

follows:

p(rijk′) =
exp

(
dijk′ rijk′/τFND

)
exp(rij/τFND) +

N∑
k=1

exp(dijkrijk/τFND)

, (3.15)

∂ℓFND(i, j)

∂rijk′
=

dijk′
τFND

p(rijk′). (3.16)

The sign of the gradient is the same as dijk′ since τFND > 0 and p(rijk′) > 0 hold.

Hence, negative outfits closer than the average of positive outfits are pulled toward

the user rather than pushed.

12

3.3 Contrastive Learning for Outfits

To obtain more enhanced outfit representations, we propose a novel approach to

leverage SimCLR [3] framework in outfit recommendation. Specifically, we suggest

two data augmentation methods for outfits.

SimCLR learns representations by maximizing the agreement between differently

augmented views of the same outfit while pushing the others in the batch. Given

the batch B = {(ui(n) , oj(n))}Nn=1, each outfit oj(n) is augmented twice to create two

different views (oj(2n−1) , oj(2n)), generating 2N augmented outfits {oj(n)}2Nn=1 in total.

The agreement is measured by cosine similarity between each outfit representation:

sn,m = cos
(
g(oj(n)), g(oj(m))

)
, where g(·) is a non-linear projection layer. The ob-

jective of contrastive learning is as follows:

ℓCL(n,m) = − log
exp(sn,m/τCL)∑2N

t=1 1[t̸=n] exp(sn,t/τCL)
, (3.17)

LCL =
1

2N

N∑
n=1

[ℓCL(2n− 1, 2n) + ℓCL(2n, 2n− 1)], (3.18)

where τCL > 0 is a temperature hyper-parameter.

To exploit the objective in Eq. 3.18, we must define appropriate data augmen-

tation methods which produce semantically similar outfits with an input outfit. As

illustrated in Fig. 1.2, we suggest two augmentation methods suitable for outfit rec-

ommendation: erase and replace. Both augmentations randomly alter comprising

items from an outfit while preserving the semantic context. We treat the augmen-

tation set as a hyper-parameter and fix them at the beginning of the training. Note

that if two identical augmentations are applied, we alter different items from the

input outfit to obtain distinct views.

13

3.3.1 Erase

Randomly erasing components from the input is a common data augmentation

method in diverse domains. In sequential recommendation, for example, Xie et al.

[40] randomly crop items from user interaction history. In natural language pro-

cessing, Wu et al. [39] erase or replace randomly selected words in a sentence. In

computer vision, DeVries et al. [7] cut out contiguous sections of an input image,

inspired by the object occlusion problem. When it comes to outfit recommenda-

tion, a subset of an outfit may imply or even determine the semantic information.

Motivated by this, we randomly remove one item from the outfit to generate an

augmented view.

3.3.2 Replace

Our proposed model computes preference scores based solely on visual information

(i.e., images), and this assumption is helpful if access to other metadata is limited. In

this situation, the semantic information of an outfit is derived from the appearance

of consisting items. Accordingly, we claim that the visual similarity of consisting

items leads to the semantic similarity of an outfit. Based on the claim, we generate

an augmented view by randomly replacing one item from the outfit with a visually

similar item from the same category. To this end, we train a CNN autoencoder model

and retrieve similar items through their latent features.

3.4 Final Objective: FND-CL

The proposed losses LFND and LCL can be used independently; hence we can take

advantage of both methods. Therefore, our final objective is to minimize the weighted

sum of both losses as follows:

LFND-CL = LFND + λLCL, (3.19)

14

where λ is a loss weight hyper-parameter.

3.5 Profiling Cold Starters

In application services with recommender systems, new users can join the service

even after the model is trained and deployed. Such users, or cold starters, have

relatively few interactions in general, and the deployed model does not have any

prior knowledge of those users. In practice, fine-tuning the model for them is a time-

consuming process; thus, cold starters might starve for the recommendation until the

next iteration of deployment. Therefore, it is necessary to have an alternative rec-

ommendation method that exploits the already deployed model with no additional

training. In personalized outfit recommendation, only a few works [24] handled the

cold-start problem without fine-tuning the model. Here, we introduce two strategies

to compute preference scores of cold starters, analogous to memory-based collabo-

rative filtering.

Given a cold starter uc, we define a neighborhood Nc from the set of non-cold

users U as follows: with a set of indices of positive outfits J+
c for uc,

sci =
1

|J+
c |

∑
j+∈J+

c

rij+ , (3.20)

Nc = {ui ∈ U | sci > δ ∨ i = i∗c}, (3.21)

where sci represents the asymmetric similarity from uc to ui. δ is a similarity thresh-

old, and i∗c = argmaxisci denotes the index of the most similar user, which ensures

at least one neighbor for each uc. To compute the preference score rcoldcj of the cold

starter uc to a given outfit oj , we aggregate the preference scores of neighbors to the

outfit. Here we use two aggregation strategies: Average and Weighted Average.

15

3.5.1 Average (avg)

A basic aggregation strategy is simply averaging the preference scores:

rcoldcj :=
1

|Nc|
∑

ui∈Nc

rij . (3.22)

3.5.2 Weighted Average (w-avg)

We further utilize the similarity between the cold starter and its neighbors as ag-

gregation weights using cross-entropy with temperature:

sci =
exp(sci/τw-avg)∑

ui′∈Nc
exp(sci′/τw-avg)

, (3.23)

rcoldcj :=
∑

ui∈Nc

scirij , (3.24)

where τw-avg > 0 is a temperature hyper-parameter, and note that
∑

ui∈Nc
sci = 1

holds. We considered other methods for deriving the aggregation weights sci from

sci; however, the suggested method empirically showed the best and stable results,

especially in terms of robustness to hyper-parameters.

16

Chapter 4

Experiment

4.1 Experimental Design

Table 4.1. Dataset statistics.

Dataset # Outfits # Items

Polyvore-630 162,945 199,537

Polyvore-519 106,806 178,481

Polyvore-53 13,707 26,727

Polyvore-32 6,565 18,656

4.1.1 Datasets

We use datasets collected from the Polyvore website: Polyvore-U [25], where U ∈

{630, 519, 53, 32} denotes the number of users. Polyvore-U contains outfits posted

by users, each consisting of three categories: top, bottom, shoes. Outfits in Polyvore-

{630, 53} have a fixed number of items: one item for each category. Polyvore-{519,

17

32} include outfits with a variable number of items (i.e., some outfits may have

two tops). We use Polyvore-{630, 519} for most of the experiments and Polyvore-

{53, 32} for cold starter tasks. Statistics of the datasets are provided in Table 4.1.

Following previous works [24, 25], we define user-posted outfits as positive outfits for

each user and category-wise random mixtures of items as negative outfits. We also

discuss the results of hard negative outfits (i.e., random samples of positive outfits of

other users) separately in Sec. 4.4. In the evaluation phase, we set the ratio between

positive and negative outfits to 1:10 for each user. We split training, validation, and

test sets to 9:2:2, and we further split the validation set into two halves, one for the

teacher model and the other for the student model. As [25] affirmed, there are no

duplicate items between the training and the test sets for each user.

4.1.2 Evaluation metrics

We evaluate the ranking performance via Area Under the ROC curve (AUC) and

Normalized Discounted Cumulative Gain (NDCG), similar to previous works [24,

25]. For each user, we rank the test outfits by the predicted preference score of the

model. We report the performance averaged over all users.

4.1.3 Considered methods

We compare our methods with the following state-of-the-art non-personalized [10,

34, 37] and personalized [22, 24, 25] outfit recommendation models. Type-Aware [37]

projects pairs of items onto the type-specific subspaces. Compatibility is then mea-

sured in these subspaces and learned through the triplet loss. SCE-Net [34] learns

conditional embeddings and their weights using an attention mechanism. Each con-

ditional embedding is implicitly encouraged to encode different semantic subspaces

via the triplet loss. Bi-LSTM [10] considers an outfit as a sequence of items and uses

a bidirectional LSTM to learn the compatibility. The model is trained by predicting

18

the next and previous items in the sequence through cross-entropy loss. OutfitNet

[22] consists of two stages to capture both general compatibility and personal taste.

The objective of both stages is to maximize the difference between positive and

negative scores, similar to BPR. FHN [25] uses pairwise scores to compute out-

fit compatibility and personal preference simultaneously. We train FHN with BPR

without the binarization step, following the previous work [24]. LPAE [24] includes

two models LPAE-u and LPAE-g, which mainly handles the cold-start problem us-

ing multiple anchors for each user. Both models utilize BPR loss, and LPAE-g has

additional general anchors to model non-personalized compatibility. For a more fair

comparison, we apply temperature scaling when using BPR or cross-entropy loss.

4.1.4 Implementation details

Similar to the previous work [25], we use AlexNet [16] pretrained on ImageNet [5]

as a backbone CNN. We define two versions of AlexNet to experiment the knowl-

edge distillation. One is AlexNet-large, which is the original AlexNet. The other is

AlexNet-small, a downsized version of AlexNet that all fully-connected layers are

removed and with a global average pooling at the end [21]. Only the teacher model

uses AlexNet-large, and the others use AlexNet-small. We set the feature dimension

d = 128 for all methods. For simplicity, we set δ to zero, the median of the possible

range of cosine similarity. We use τFND = τCL = 0.1, τw-avg = 0.2, λ = 0.2, and the

number of heads h = 8. We set α to 1.25 for Polyvore-630 and 1.5 for Polyvore-519.

When it comes to CL, the pair of augmentations are (erase, replace) for Polyvore-

630 and (erase, erase) for Polyvore-519. SGD with momentum [28] is used to train

all methods, and the batch size is set to 32. For each method, we report the test

performance with their optimal hyper-parameters searched via the validation set

unless otherwise specified.

19

Table 4.2. Performance comparison of different methods on Polyvore datasets.

Polyvore-630 Polyvore-519

Method AUC NDCG AUC NDCG

Type-Aware [37] 75.87 57.06 78.03 60.33

SCE-Net [34] 77.76 59.83 78.86 61.37

Bi-LSTM [10] 78.30 62.30 80.25 65.54

OutfitNet [22] 85.03 72.87 85.04 71.96

FHN [25] 87.15 76.33 87.89 77.07

LPAE-u [24] 87.82 77.49 89.19 79.23

LPAE-g [24] 87.05 76.33 89.59 81.05

FND 89.91 82.18 91.86 84.74

FND-CL 90.28 82.47 92.30 85.51

4.2 Performance Comparison

As shown in Table 4.2, our proposed FND outperforms baseline methods under all

datasets and metrics. Furthermore, the performance of FND-CL shows the effective-

ness of the outfit CL framework.

Recall that LPAE-u adopts multiple anchors for representing each user, and

LPAE-g further leverages non-personalized compatibility. Comparison with LPAE

models shows that FND can effectively achieve improved performance without aux-

iliary parameters and structures.

20

Table 4.3. Comparison of different methods on cold starters. For our FND and FND-

CL, w/o and w/ “(w)” represent the avg and w-avg strategies, respectively. We use

AUC as an evaluation metric.

Polyvore-53 Polyvore-32

Outfits 1 5 1 5

Type-Aware [37] 72.79 72.79 77.44 77.44

SCE-Net [34] 76.55 76.55 78.97 78.97

Bi-LSTM [10] 78.61 78.61 81.69 81.69

LPAE-u [24] 77.58 77.92 80.72 80.97

LPAE-g [24] 77.65 77.35 82.62 82.53

FND 78.68 79.42 83.84 84.10

FND (w) 79.72 80.98 84.53 85.31

FND-CL 79.59 80.09 85.26 85.43

FND-CL (w) 80.33 81.56 85.51 86.41

4.3 Performance on Cold Starters

We evaluate the ranking performance of recommending to the cold starters. Con-

cretely, we test a scenario where a model is trained in Polyvore-{630, 519}, and

cold starters in Polyvore-{53, 32} desire recommendations. Following the previous

work [24], we experiment on the circumstances that each cold starter has only 1

or only 5 interacted outfits. We compare our methods with non-personalized and

LPAE methods, which do not require additional training of the model. For LPAE

methods, we use the anchor-search [24], which is known to be the most effective strat-

egy in the cold-start case. In FND and FND-CL, we evaluate both avg and w-avg

21

strategies. We conduct experiments 10 times and report the average results in Table

4.3. The results show that our approaches consistently outperform baseline methods

even though the primary purpose of LPAE methods is to deal with the cold-start

problem. The w-avg strategy is more effective than the avg strategy in both FND

and FND-CL, implying the importance of considering neighbors differently based

on similarity rather than treating them equally.

Table 4.4. Comparison of different methods on hard negative outfits.

Polyvore-630-H Polyvore-519-H

Method AUC NDCG AUC NDCG

OutfitNet [22] 79.19 60.40 79.83 60.77

FHN [25] 79.67 60.61 80.15 60.20

LPAE-u [24] 81.69 65.26 82.17 65.79

LPAE-g [24] 80.88 63.99 80.53 62.35

FND 83.55 68.74 83.90 69.11

FND-CL 84.24 69.99 84.76 70.50

4.4 Performance on Hard Negative Outfits

We test a more challenging case where negative outfits in evaluation are composed

of positive outfits of other users (i.e., hard negatives). We only compare with person-

alized methods since non-personalized methods cannot distinguish users. Following

the previous work [25], we set half of the negative outfits to hard negative out-

fits when training the model. We report the results in Table 4.4. The results show

that LPAE-g, which additionally considers non-personalized compatibility, performs

poorly in this task compared to LPAE-u. We can see that our FND and FND-CL

22

outperform the baseline methods. Note that the effectiveness of the CL framework

is more apparent on hard negative outfits than the results in Table 4.2. We believe

that the functionality of CL to distinguish outfits enables the model to capture more

meaningful outfit representations, especially in the hard negative setting.

Figure 4.1. Comparison of different α.

4.5 Performance with Different α

We evaluate the performance of FND under various α (see Eq. 3.12). The results are

reported in Fig. 4.1, and we also show the performance of N -pair and BPR in the

same figure. As mentioned in Sec. 3.2.1, N -pair overcomes the partial shortcoming

of BPR by considering multiple negative outfits in each update and thus clearly

outperforms BPR. Different datasets tend to have different optimal α, but given

adequate value, FND can surpass the performance of a strong N -pair.

23

Figure 4.2. Comparison of different augmentation methods. Augmentation pair XY

represents that the first and the second augmentations are X and Y. We also

include the identity function as an augmentation method. I/E/R indicates iden-

tity/erase/replace augmentations.

4.6 Performance with Different Augmentations

To test the performance of FND-CL for all possible augmentation methods, we put

the identity function into the set of augmentations. The results are shown in Fig.

4.2, and we also report the performance of FND in the same figure. Note that we did

not experiment on the (identity, identity) augmentation pair because two augmented

views should be different. Regardless of which augmentation pair we use, FND-CL

outperforms FND in almost all cases, and the optimal augmentation pair is different

for each dataset. Concretely, replace and erase augmentation methods tend to be

more effective at Polyvore-630 and Polyvore-519, respectively. Therefore, we can see

that both erase and replace are meaningful augmentation methods and that the CL

framework is effective in outfit recommendation.

24

Figure 4.3. Comparison of different model sizes.

4.7 Performance with Different Model Sizes

We study the impact of model size on performance, especially in the case of the

student model. We consider student models with three different sizes (i.e., XS, S,

M) and the teacher model. XS uses AlexNet-small, and S and M use a downsized

version of AlexNet that output dimensions of all fully-connected layers are reduced

to 1/4 and 1/2, respectively. Fig. 4.3 shows the results. It is clear that the larger

the size, the higher the performance. Moreover, the fact that FND-CL outperforms

FND and FND outperforms N -pair is consistent regardless of the size of the model,

supporting that our approaches are meaningful.

The performance gap between FND and N -pair appears to shrink with the in-

creasing size of the student model. Such a tendency implies that the effectiveness of

FND depends on the performance gap between the teacher and the student model,

which implicitly emphasizes the importance of utilizing the superior teacher model.

On the other hand, we can see that the effectiveness of the CL framework is hardly

affected by the size of the model, as expected.

25

Table 4.5. Model compactness and inference efficiency. “Time” denotes model infer-

ence time for making recommendations to every user in each dataset, and we report

the mean and standard deviation of 10 runs. “Memory” represents GPU memory

usage. “Ratio” indicates the relative parameter size of the student model compared

to the teacher model.

Dataset Model Time Memory # Params Ratio

Polyvore-630

Teacher 80.5s±1.7 2.89GB 65.99M -

XS 74.1s±1.7 2.64GB 2.85M 4.3%

S 75.2s±2.9 2.68GB 13.88M 21.0%

M 76.3s±3.3 2.75GB 28.10M 42.6%

Polyvore-519

Teacher 65.4s±2.7 3.05GB 65.97M -

XS 58.3s±3.0 2.80GB 2.83M 4.3%

S 61.6s±2.7 2.84GB 13.86M 21.0%

M 64.4s±1.9 2.91GB 28.09M 42.6%

Detailed information on inference efficiency is measured for each model of dif-

ferent sizes and reported in Table 4.5. We conduct experiments using FND for the

student model and N -pair for the teacher model. Since FND affects only the training

step, FND and N -pair share the same inference efficiency. Note that if CL is added,

only the number of parameters increases by about 0.03M. In all inference tests, we

use PyTorch with CUDA from Tesla P100 SXM2 GPU and Xeon E5-2690 v4 CPU.

From the results, we can see that as the size of the model increases, all metrics that

indicate inefficiency (i.e., Time, Memory, # Params) also increase.

26

Figure 4.4. Comparison of different batch sizes.

4.8 Performance with Different Batch Sizes

To study the impact of the batch size, we test the performance of FND-CL with

different batch sizes. Note that we use a linear scaling of the learning rate when

training with different batch sizes [9, 15]. Fig. 4.4 shows the results of the experiment.

The performance tends to be improved as the batch size increases and appears to

converge when the batch size exceeds a certain threshold. We believe that the number

of negative samples (i.e., outfits and augmented views) proportional to the batch size

is the primary factor of this tendency. Note that except for the number of negative

samples, we do not use any other factors significantly influenced by the batch size,

such as batch normalization [13]. Therefore, we can see from the results in Fig. 4.4

as well as Fig. 4.1 that it is important to exploit a sufficient number of negative

samples per each update when using the ranking loss.

27

Figure 4.5. The t-SNE visualization result of the user-outfit space. The “X” symbol

denotes a user embedding vector distinguished by different colors. Each rectangle is

an outfit representation vector. A rectangle with a black border indicates a negative

outfit. For rectangles with a colored border, they represent the positive outfits of the

user corresponding to each color. Among colored rectangles, a dashed border shows

a false-negative outfit found in the test set.

4.9 Visualization of the User-Outfit Space

We visualize the user-outfit space of the teacher model to support the intuition of

FND (see Fig. 1.1). The visualization uses t-SNE [36] and shows three users and

their positive and negative outfits from the training set. We focus on the training

phase since the approach of FND is to distill knowledge from the teacher model

when training the student model. The results are shown in Fig. 4.5. Recall that

28

negative outfits are randomly generated, and thus a positive outfit from the test set

can appear as a negative sample by pure chance in the training step. With the help

of the teacher model, the student model can treat such samples as false-negatives,

denoted as a dash-bordered rectangle in the figure. Moreover, other negative outfits

close to a user share a similar style with positive outfits, showing the possibility of

being false-negatives. Hence, we can conclude that the approach of FND that utilizes

false-negative information from the teacher model is reasonable.

29

Chapter 5

Conclusion

In this paper, we study how to leverage knowledge distillation (KD) and contrastive

learning (CL) framework for personalized outfit recommendation. We propose a

new KD framework named False Negative Distillation (FND) that does not require

the ranking of all possible outfits. We also propose two novel data augmentation

methods to make use of the CL framework in outfit recommendation. Quantitative

experiments show that our FND and CL achieve notable success in outfit recom-

mendation tasks with a small-sized model. In detail, FND outperforms the state-

of-the-art methods under fair conditions and achieves improved performance than

without using FND in the same model. The outfit CL framework also contributes

to the recommendation performance by allowing the model to obtain a more mean-

ingful outfit representation. We support the soundness of our FND by visualizing

the user-outfit space of the teacher model. One interesting future work is to apply

a contrastive learning framework in a supervised manner by treating each user as a

class.

30

Bibliography

[1] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv

preprint arXiv:1607.06450 (2016).

[2] Bengio, Y., Courville, A., and Vincent, P. Representation learning:

A review and new perspectives. IEEE transactions on pattern analysis and

machine intelligence 35, 8 (2013), 1798–1828.

[3] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A simple frame-

work for contrastive learning of visual representations. In International confer-

ence on machine learning (2020), PMLR, pp. 1597–1607.

[4] Cucurull, G., Taslakian, P., and Vazquez, D. Context-aware visual com-

patibility prediction. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (2019), pp. 12617–12626.

[5] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.

Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference

on computer vision and pattern recognition (2009), Ieee, pp. 248–255.

[6] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805 (2018).

31

[7] DeVries, T., and Taylor, G. W. Improved regularization of convolutional

neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017).

[8] Gidaris, S., Singh, P., and Komodakis, N. Unsupervised representa-

tion learning by predicting image rotations. arXiv preprint arXiv:1803.07728

(2018).

[9] Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L.,

Kyrola, A., Tulloch, A., Jia, Y., and He, K. Accurate, large minibatch

sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017).

[10] Han, X., Wu, Z., Jiang, Y.-G., and Davis, L. S. Learning fashion compat-

ibility with bidirectional lstms. In Proceedings of the 25th ACM international

conference on Multimedia (2017), pp. 1078–1086.

[11] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 (2015).

[12] Hu, Y., Yi, X., and Davis, L. S. Collaborative fashion recommendation:

A functional tensor factorization approach. In Proceedings of the 23rd ACM

international conference on Multimedia (2015), pp. 129–138.

[13] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International conference on

machine learning (2015), PMLR, pp. 448–456.

[14] Kang, S., Hwang, J., Kweon, W., and Yu, H. De-rrd: A knowledge dis-

tillation framework for recommender system. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management (2020),

pp. 605–614.

32

[15] Krizhevsky, A. One weird trick for parallelizing convolutional neural net-

works, 2014.

[16] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifica-

tion with deep convolutional neural networks. Advances in neural information

processing systems 25 (2012), 1097–1105.

[17] Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W.

Set transformer: A framework for attention-based permutation-invariant neural

networks. In International Conference on Machine Learning (2019), PMLR,

pp. 3744–3753.

[18] Lee, J.-w., Choi, M., Lee, J., and Shim, H. Collaborative distillation for

top-n recommendation. In 2019 IEEE International Conference on Data Mining

(ICDM) (2019), IEEE, pp. 369–378.

[19] Li, X., Wang, X., He, X., Chen, L., Xiao, J., and Chua, T.-S. Hi-

erarchical fashion graph network for personalized outfit recommendation. In

Proceedings of the 43rd International ACM SIGIR Conference on Research and

Development in Information Retrieval (2020), pp. 159–168.

[20] Li, Y., Cao, L., Zhu, J., and Luo, J. Mining fashion outfit composition

using an end-to-end deep learning approach on set data. IEEE Transactions

on Multimedia 19, 8 (2017), 1946–1955.

[21] Lin, M., Chen, Q., and Yan, S. Network in network. arXiv preprint

arXiv:1312.4400 (2013).

[22] Lin, Y., Moosaei, M., and Yang, H. Outfitnet: Fashion outfit recommen-

dation with attention-based multiple instance learning. In Proceedings of The

Web Conference 2020 (New York, NY, USA, 2020), WWW ’20, Association for

Computing Machinery, p. 77–87.

33

[23] Liu, Z., Ma, Y., Ouyang, Y., and Xiong, Z. Contrastive learning for

recommender system. arXiv preprint arXiv:2101.01317 (2021).

[24] Lu, Z., Hu, Y., Chen, Y., and Zeng, B. Personalized outfit recommendation

with learnable anchors. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR) (June 2021), pp. 12722–12731.

[25] Lu, Z., Hu, Y., Jiang, Y., Chen, Y., and Zeng, B. Learning binary code

for personalized fashion recommendation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) (June 2019).

[26] Ma, J., Zhou, C., Yang, H., Cui, P., Wang, X., and Zhu, W. Disentangled

self-supervision in sequential recommenders. In Proceedings of the 26th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining

(2020), pp. 483–491.

[27] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).

[28] Qian, N. On the momentum term in gradient descent learning algorithms.

Neural networks 12, 1 (1999), 145–151.

[29] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L.

Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the

Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (Arlington,

Virginia, USA, 2009), UAI ’09, AUAI Press, p. 452–461.

[30] Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and

Bengio, Y. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550

(2014).

34

[31] Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A unified em-

bedding for face recognition and clustering. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition (2015), pp. 815–823.

[32] Singhal, A., Chopra, A., Ayush, K., Govind, U. P., and Krishna-

murthy, B. Towards a unified framework for visual compatibility prediction.

In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-

puter Vision (2020), pp. 3607–3616.

[33] Sohn, K. Improved deep metric learning with multi-class n-pair loss objective.

In Proceedings of the 30th International Conference on Neural Information Pro-

cessing Systems (2016), pp. 1857–1865.

[34] Tan, R., Vasileva, M. I., Saenko, K., and Plummer, B. A. Learning sim-

ilarity conditions without explicit supervision. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV) (October 2019).

[35] Tang, J., and Wang, K. Ranking distillation: Learning compact ranking

models with high performance for recommender system. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining (2018), pp. 2289–2298.

[36] Van der Maaten, L., and Hinton, G. Visualizing data using t-sne. Journal

of machine learning research 9, 11 (2008).

[37] Vasileva, M. I., Plummer, B. A., Dusad, K., Rajpal, S., Kumar, R.,

and Forsyth, D. Learning type-aware embeddings for fashion compatibil-

ity. In Proceedings of the European Conference on Computer Vision (ECCV)

(September 2018).

[38] Veit, A., Kovacs, B., Bell, S., McAuley, J., Bala, K., and Belongie,

S. Learning visual clothing style with heterogeneous dyadic co-occurrences. In

35

Proceedings of the IEEE International Conference on Computer Vision (2015),

pp. 4642–4650.

[39] Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., and Ma, H. Clear: Con-

trastive learning for sentence representation. arXiv preprint arXiv:2012.15466

(2020).

[40] Xie, X., Sun, F., Liu, Z., Wu, S., Gao, J., Ding, B., and Cui,

B. Contrastive learning for sequential recommendation. arXiv preprint

arXiv:2010.14395 (2020).

[41] Xin, X., Karatzoglou, A., Arapakis, I., and Jose, J. M. Self-supervised

reinforcement learning for recommender systems. In Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Infor-

mation Retrieval (2020), pp. 931–940.

[42] Yang, X., Xie, D., Wang, X., Yuan, J., Ding, W., and Yan, P. Learning

tuple compatibility for conditional outfit recommendation. In Proceedings of

the 28th ACM International Conference on Multimedia (2020), pp. 2636–2644.

[43] Yao, T., Yi, X., Cheng, D. Z., Yu, F., Chen, T., Menon, A., Hong,

L., Chi, E. H., Tjoa, S., Kang, J., et al. Self-supervised learning for

large-scale item recommendations. arXiv preprint arXiv:2007.12865 (2020).

[44] Zhou, K., Wang, H., Zhao, W. X., Zhu, Y., Wang, S., Zhang, F., Wang,

Z., and Wen, J.-R. S3-rec: Self-supervised learning for sequential recommen-

dation with mutual information maximization. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management (2020),

pp. 1893–1902.

36

Chapter A

Appendix

A.1 Enhancing the Performance of a Teacher Model

We believe that the higher the performance of a teacher model, the more helpful

false-negative information is transferred to a student model. Sec. 4.7 also supports

the importance of utilizing the superior teacher model in improving the performance

of the student model. Therefore, the objective of this section is to enhance the

performance of the teacher model to obtain a more effective student model.

37

Figure A.1. Comparison between Teacher and Teacher-CL.

A.1.1 Teacher-CL

We can apply the outfit CL framework to the teacher model as well as to the student

model. Note that the teacher model used in Chapter 4 utilizes only N -pair loss. To

further consider the CL framework, we modify the objective function of the teacher

model as follows:

LN -pair + λLCL, (A.1)

where λ is a loss weight hyper-parameter used in Eq. 3.19. The teacher models w/o

and w/ “LCL” are named Teacher and Teacher-CL, respectively.

We evaluate the performance of Teacher and Teacher-CL, and the results are

reported in Fig. A.1. The results show that Teacher-CL achieves enhanced per-

formance than Teacher, supporting that the CL framework is also effective in the

teacher model, as expected.

38

Figure A.2. Comparison between FND-CL and FND-CL*.

A.1.2 Employing Teacher-CL: FND-CL*

To study the impact of the performance of the teacher model, we evaluate the

performance of FND-CL with different teacher models. For more reliability, we con-

sider student models with three different sizes (i.e., XS, S, M) used in Sec. 4.7.

Fig. A.2 shows the results. Note that FND-CL and FND-CL* employ Teacher and

Teacher-CL, respectively. We can see that FND-CL* consistently outperforms FND-

CL regardless of the size of the student model. Therefore, we can conclude that our

proposed CL framework is effective in improving the performance of the student

model, both directly and indirectly.

39

초록

최근온라인패션산업이급성장하면서개인화코디추천이각광받고있다.그러나코디

추천은 해결해야 할 두 가지 중요한 챌린지가 있다. 첫 번째 챌린지는 코디 추천이 주로

시각 정보를 활용하는 복잡하고 큰 모델을 필요로 하기 때문에 상당한 시간과 메모리

비용이 발생한다는 것이다. 이 문제를 완화하는 한 가지 자연스러운 방법은 사전 훈

련된 교사 모델의 지식을 활용하는 지식 증류 기술을 이용하여 이러한 성가신 모델을

압축하는 것이다. 그러나 추천 시스템의 기존 지식 증류 접근법은 가능한 모든 코디의

순위를 필요로 하며, 코디의 수는 구성되는 의상의 수에 따라 기하급수적으로 증가하기

때문에 코디 추천에 기존 지식 증류 접근법을 적용하는 것은 상당히 까다로운 작업이

다. 따라서 우리는 모든 후보 코디의 순위를 요구하지 않으면서 교사 모델의 위음성

정보를 활용하는 위음성 증류라는 새로운 지식 증류 프레임워크를 제안한다. 두 번째

챌린지는 코디 후보의 폭발적인 수로 인해 데이터 희소성 문제가 증폭되어 종종 코디

표현(representation)이 좋지 않다는 것이다. 이 문제를 해결하기 위해 최근 대조 학습

의 성공에 영감을 받아 새로운 두 가지 데이터 증강 기법을 사용하는 코디 표현 학습을

위한 대조 학습 프레임워크를 제안한다. 우리는 코디 추천 데이터 세트에 대한 양적 및

질적 실험을 통해 제안된 방법의 효과와 타당성을 보인다.

주요어: 개인화 코디 추천, 지식 증류, 위음성 증류, 대조 학습

학번: 2020-26909

40

	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Related Work
	2.1 Outfit Recommendation
	2.2 Knowledge Distillation
	2.3 Contrastive Learning

	3 Approach
	3.1 Background: Computing the Preference Score to an Outfit
	3.1.1 Set Transformer
	3.1.2 Preference score prediction

	3.2 False Negative Distillation
	3.2.1 Teacher model
	3.2.2 Student model

	3.3 Contrastive Learning for Outfits
	3.3.1 Erase
	3.3.2 Replace

	3.4 Final Objective: FND-CL
	3.5 Profiling Cold Starters
	3.5.1 Average (avg)
	3.5.2 Weighted Average (w-avg)

	4 Experiment
	4.1 Experimental Design
	4.1.1 Datasets
	4.1.2 Evaluation metrics
	4.1.3 Considered methods
	4.1.4 Implementation details

	4.2 Performance Comparison
	4.3 Performance on Cold Starters
	4.4 Performance on Hard Negative Outfits
	4.5 Performance with Different α
	4.6 Performance with Different Augmentations
	4.7 Performance with Different Model Sizes
	4.8 Performance with Different Batch Sizes
	4.9 Visualization of the User-Outfit Space

	5 Conclusion
	Bibliography
	A Appendix
	A.1 Enhancing the Performance of a Teacher Model
	A.1.1 Teacher-CL
	A.1.2 Employing Teacher-CL: FND-CL*

	Abstract (In Korean)

<startpage>10
Abstract i
Contents ii
List of Tables v
List of Figures vi
1 Introduction 1
2 Related Work 5
 2.1 Outfit Recommendation 5
 2.2 Knowledge Distillation 6
 2.3 Contrastive Learning 6
3 Approach 7
 3.1 Background: Computing the Preference Score to an Outfit 8
 3.1.1 Set Transformer 9
 3.1.2 Preference score prediction 10
 3.2 False Negative Distillation 10
 3.2.1 Teacher model 10
 3.2.2 Student model 11
 3.3 Contrastive Learning for Outfits 13
 3.3.1 Erase 14
 3.3.2 Replace 14
 3.4 Final Objective: FND-CL 14
 3.5 Profiling Cold Starters 15
 3.5.1 Average (avg) 16
 3.5.2 Weighted Average (w-avg) 16
4 Experiment 17
 4.1 Experimental Design 17
 4.1.1 Datasets 17
 4.1.2 Evaluation metrics 18
 4.1.3 Considered methods 18
 4.1.4 Implementation details 19
 4.2 Performance Comparison 20
 4.3 Performance on Cold Starters 21
 4.4 Performance on Hard Negative Outfits 22
 4.5 Performance with Different α 23
 4.6 Performance with Different Augmentations 24
 4.7 Performance with Different Model Sizes 25
 4.8 Performance with Different Batch Sizes 27
 4.9 Visualization of the User-Outfit Space 28
5 Conclusion 30
Bibliography 31
A Appendix 37
 A.1 Enhancing the Performance of a Teacher Model 37
 A.1.1 Teacher-CL 38
 A.1.2 Employing Teacher-CL: FND-CL* 39
Abstract (In Korean) 40
</body>

