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Abstract

As the world enters a super-aged society, fall accidents of elderly people are

significantly increasing. These fall accidents, if not detected in time, may

lead to serious consequences such as death in the worst cases. Therefore,

when a fall accident occurs, it is necessary to establish a system for im-

mediately detection. Among various methods for detecting falls, a device

that is easy to wear and can be applied indoors and outdoors is devised.

This study aims to develop a model that measures people movement using

wearable-based accelerometer sensors and gyro sensors, analyzes acceler-

ation and angular velocity, and classifies whether a fall occurs. In order to

obtain data, an experiment was conducted in which 12 ADL movements

and 4 Fall movements were repeatedly performed while the subjects were

wearing a wearable device. ADL movements include sitting, standing, and

walking, and the Fall movement consisting of falling forward and falling

backward. In order to detect falls and non-falling, LSTM model of the Re-

current Neural Network (RNN) is used. The model was advanced through

a data preprocessing and fine-tuning method applied to the input value of

the LSTM model that determines whether to fall or not. In the experimental

environment, the fall detection accuracy of the model is 99.91%, which is

intended to determine the validity of fall detection from the perspective of
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deep learning.
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Chapter 1

Introduction

1.1 Research Background and Objective

The average life span around the world is rapidly increasing due to the

advancement in medical technology and the benefits of pharmaceutical in-

dustry. Korea’s pace of population aging is faster than ever with the recent

decline in fertility rates. This aging phenomenon is a social change that is

evident mainly in developed countries rather than in underdeveloped coun-

tries.

The World Health Organization classifies a society as an aging soci-

ety if the elderly population aged 65 or older accounts for more than 7% of

the total population, an aged society if it accounts for more than 14%, and

a super-aged society if it exceeds 20%. According to the National Statisti-

cal Office, Korea has already become an aging society as of 2018 with the

elderly aged 65 or older accounting for 14.3% of the total population, and

predicts to enter a super-aged society by 2025 with the elderly accounting

for 20.3% of the total population.

An aging society does not simply mean an increase in a specific ag-

ing population, but implies that various social problems related to aging are

occurring. The most representative social problem is social welfare issues

related to treatment and care of increasing geriatric diseases and deteriora-
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tion of health. According to the Health Insurance Major Statistics 2020 data

published by the National Health Insurance Service of Korea, the total cost

of health insurance in 2020 was 86.9 trillion won, of which 43% were the

medical expenses for elderly aged 65 or older. Thus, maintaining the health

of the elderly and extending their healthy life years are important tasks for

the nation.

Fall is one of the main health problems in modern society with an ag-

ing demographic structure. Fall accidents are particularly problematic for

the elderly as it takes a long time to recover from physical damage and

dysfunction due to falls compared to young people, and decreased physi-

cal activity leads to rapid deterioration of health. Fall accidents can occur

anytime, anywhere in everyday life, and, if not detected in time, secondary

diseases may occur causing serious consequences such as death in the worst

case. According to the World Health Organization, about 646,000 incidents

of fatal falls occur every year worldwide, mainly in the elderly aged 65 or

older [1].

Fall is an accident caused by a combination of various factors, so it

is very difficult to prevent falls in advance. Therefore, in order to prevent

injuries from exacerbating, the key to coping with fall accidents is to im-

mediately detect them and promptly alert caregivers or institutions that can

take emergency measures.

Previously studied fall detection methods can be generally divided into

video-based posture classification methods and methods based on wearable

devices with accelerometer sensors and angular velocity sensors. In the case

of video-based fall detection methods, there is a spatial limitation because
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falls can only be detected in an environment where cameras installed in-

doors, and there is a risk of personal information exposure from videos. To

overcome these limitations, this study aims to study a fall detection method

using a deep learning LSTM model based on a small wearable device with

high portability and activity.

1.2 Research Scope and Structure of Paper

In this study, various fall and activities of daily living(ADL)1 are de-

fined as 16 movements to detect fall accidents. To develop a model that

determines the occurrence of fall, acceleration and angular velocity values

of each movement are collected via a wearable device that includes an ac-

celerometer sensor and a gyro sensor. The collected data is data with time

series characteristics. We then use a binary classification model that classi-

fies fall and non-fall, specifically the LSTM deep learning model from the

research field of artificial intelligence. We tested the performance and results

of LSTM using a confusion matrix.

This project report consists of five chapters. Chapter one introduces the

background, purpose, and scope of the study. Chapter two deals with related

works and deep learning models on the causes of falls and fall detection

methods. In chapter three on the development of a fall detection model,

we introduce experimental methods on data collection, modeling methods,

and theoretical contents on model evaluation. In chapter four, we describe

1Activities of Daily Living (ADL) are physical movements that are repeated everyday
to live independently, refers to movements such as feeding, dressing, communicating with
others, and transportation.
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model optimization methods including data preprocessing and fine tuning

of the model. Finally, chapter five summarizes the results of the study and

provides future research directions considering necessary matters.
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Chapter 2

Background Knowledge and Related
Research

2.1 Falls

A fall is defined as the unintentional movement of the body from a

height of standing or lower to the floor or bottom surface, due to various

causes such as an accident, fainting, convulsions, and paralysis [2]. Falls

can generally occur in all ages but if it occurs in the elderly aged 65 or

older, it may cause aftereffects that lead to death in severe cases.

Fall movements need to be divided into types based on the state of

falling or posture. This is because falls can occur in various situations and

positions such as while walking, standing, or sitting in a chair. El-Bendary

(2013) classified falls into forward, lateral, and backward [3]. Other studies

divided falls into a wider range, where the fall direction was also divided

into front, side, and rear but the final movement when completely fallen

was divided into lying down and sitting down. Physical damage and injuries

areas due to falls are considered clinically different depending on the type

and direction of falls. For example, a lateral fall has a high probability of

femur cervical fracture, which greatly affects the quality of life as it is a

body part that requires long-term rehabilitation [4].

Falls can occur from a combination of internal and external factors [4].
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The intrinsic factors influencing fall accidents are age, disease, past fall ex-

perience, medication, cognitive impairment, emotional impairment, vision

impairment, muscle weakness, balance impairment, and gait impairment. In

addition, the external factors include slippery carpets, wet floors, and wet

bathroom floors [5].

A study that surveyed 325 elderly people aged 60 or older who expe-

rienced falls reported that falls occurred due to a combination of multiple

factors rather than a single factor [6]. As such, it is very difficult to pre-

dict falls in advance because falls are a kind of accident caused by complex

causes. Thus, it is critical to promptly inform someone who can provide

help such as immediately calling a caregiver or emergency service after the

accident occurs.

2.2 Fall Detection Techniques

There are two main ways to detect falls. One is a method of detection

by analyzing video information captured by the subject and the other is a

method of detection by discriminating the movement using a sensor worn

by the subject.

The former method of extracting a target object from recorded video

and analyzing movement has a very high accuracy of 93% [7]. This method

processes image data of a video using a signal processing technique. There-

fore, the video-based fall detection is limited in that it can only detect falls

that occur within the shooting range of the subject. In addition, the video

must constantly monitor the subject leading to a possibility of infringement
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of personal information, and has the disadvantage of being vulnerable when

it is difficult to secure a view, such as at night. Recently, a method of iden-

tifying human motion based on skeletal data is used in fall detection tech-

niques [8]. These skeleton data are temporal and spatial data that change

over time, and the authors studied a fall detection method that estimates the

acceleration of changes in the positions of the head and shoulders based on

human skeleton keypoints information extracted from PoseNet.

Figure 2.1: Posture detection using PoseNet.
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Accelerometer sensors and gyroscope sensors are commonly used when

utilizing sensors. The acceleration and angular velocity information of the

subject wearing the sensors are analyzed to determine the occurrence of

fall. Compared to the video-based fall detection method, the fall detection

method with sensors has the less risk of infringement of personal informa-

tion and has the advantage of being able to detect falls regardless of where

they occur [2].

There is a method of using smartphones with built-in accelerometer

sensors. This method analyzes thresholds of signal vector magnitude or sig-

nal magnitude area through acceleration information to determine fall oc-

currences [9].

2.3 Machine Learning

Machine learning is a research field in which statistics, artificial intel-

ligence, and computer science are intertwined, and is also referred to as pre-

dictive machine learning. Depending on how it learns, it is divided into su-

pervised learning, unsupervised learning, and reinforcement learning [10].

Ensemble is a technique that combines several learning algorithms to

create a stronger model. The types of ensemble techniques are voting, bag-

ging, boosting, and stacking. Bagging replicates several samples of training

data, configures them slightly differently, creates a weak model with a weak

learner for each replica of training data, and then combines models into one.

Random Forest is the most effective and widely used model among

bagging-based learning algorithms. Random forest used a modified tree

8



learning algorithm to randomly select partial data for the feature at each

segmentation step and inspect it, to eliminate the correlation of the tree. If

several features have a decisive effect on the target, the samples are divided

into several trees based on these features. Then, trees with high correlation

form a forest. Random forests are effective because multiple samples of the

original dataset can be used to reduce the variance of the final model.

2.4 Recurrent Neural Networks and LSTM

The recurrent neural network (RNN) is a deep learning model mainly

used to process data reflecting sequential attributes. Data of sequential at-

tributes means that objects in the dataset have an order. Examples of se-

quential data include voice, sentence, seismic waves, DNA sequence, and

time-series data. RNN can analyze these sequential data because of its re-

cursive structure that determines the output value of the current input value

through the previous input value.

Figure 2.2: Structure of RNN.

The recurrent neural network (RNN) is a deep learning model mainly

used to process data reflecting sequential attributes. Data of sequential at-
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tributes means that objects in the dataset have an order. Examples of se-

quential data include voice, sentence, seismic waves, DNA sequence, and

time-series data. RNN can analyze these sequential data because of its re-

cursive structure that determines the output value of the current input value

through the previous input value.

Due to the structure of RNN models, if the interval between input

and output data is prolonged, the long-term dependency problem limits the

model from optimizing. That is, when the RNN model learns based on the

gradient descent method, a vanishing gradient problem or exploding gradi-

ent problem occurs resulting in poor learning performance [11].

Figure 2.3: Structure of LSTM.
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Long Short-Term Memory (LSTM) networks are designed to deal with

the long-term dependence problem of RNN. LSTMs are characteristic in

that it exists based on a cell state including the input gate, forget gate, and

output gate [12].

Figure 2.4: Structure of LSTM cell.

The cell state Ct is a factor that serves to transfer past information and

is determined by the current cell state information that is determined by in-

formation transmitted from the previous cell state Ct−1 and the gate. The

current cell gate, cell state, and output operations consist of a linear combi-

nation of the weights, bias, and connection of the previous cell output and
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the current input [ht−1,xt ], which is then passed through the gate and the

activation function. This can be expressed as equations 2.1 2.6 below. As

for the activation function, hyperbolic tangent or soft sign functions may be

used as expressed by equations 2.7 and 2.8. A hyperbolic tangent was used

in this study.

it = σ(Wi [ht−1,xt ]+bi) (2.1)

ft = σ(Wf [ht−1,xt ]+b f ) (2.2)

ot = σ(Wo [ht−1,xt ]+bo) (2.3)

C̃t = activation(Wc [ht−1,xt ]+bc) (2.4)

Ct = ft ×Ct−1 + it ×C̃t (2.5)

ht = ot × activation(Ct) (2.6)

tanh(x) = sinh(x)
cosh(x) =

ex−e−x

ex+e−x (2.7)

softsign(x) = x
1+|x|

(2.8)
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Chapter 3

Methods

3.1 Measurement Methods and Devices

In this study, subjects wear a wearable device that measures accelera-

tion and angular velocity data for determining actions and movements. The

wearable device consists of STM32L MCU (ST Microelectronics) which al-

lows operation on low power, and six-degree BMI 160 IMU sensor (Bosch)

which can measure three-axis acceleration and three-axis angular velocity.

The device has a Li-polymer type battery so that it could be used without a

separate power supply, and the size and weight of the device is manufactured

at a comfortable level for subjects. The sampling rate is set to 33Hz to mea-

sure acceleration (m/s2) and angular velocity (deg/s) every .0303 seconds.

The collected data is used to analyze movements and determine fall.

Item Type Specifications
Processor MCU STM32L, Arm 32-bit, Cortex-M4
Memory Flash Memory RAM Serial Flash, 8Mb

Location Determination GPS, GLONASS
Sensor Accelerometer & Gyroscope(6-Axis) BMI160, BOSCH

Power
Operating Voltage 3.3 ∼ 4.3V

Rating Voltage 3.8V
Battery Li-Polymer 500mAh

Operating Temperature -20 ∼ 50 ◦C

Exterior
Size 52mm * 75.5mm * 20.4mm

Weight 56g

Table 3.1: Wearable Sensor Specification.
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(a) Front

(b) Back

Figure 3.1: Wearable device.
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Figure 3.2: Wearable device PCB.

3.2 Definition of Falls and Daily Living Activities

We predefine activities of daily living and fall movements with refer-

ences to previous work on ‘Mobiact & Mobifall’ and ‘Smartfall’ [13, 14].

Activities of daily living are divided into 12 movements including stand-

ing, walking, jogging, jumping, stairs up, stairs down, stand to sit, sitting on

chair, sit to stand, car step in, car step out, and lying. Fall movements consist

of four movements including forward lying, front knees lying, back sitting

chair, and sideward lying.

15



No. Class Case

1

ADL

Standing

2 Walking

3 Jogging

4 Jumping

5 Stairs up

6 Stairs down

7 Stand to sit

8 Sitting on chair

9 Sit to stand

10 Car-step in

11 Car-step out

12 Lying

13

Fall

Forward-Lying

14 Front-Knees-Lying

15 Back-Sitting-Chair

16 Sideward-Lying

Table 3.2: Definition of fall movements and ADL.
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Figure 3.3: ADL movements.
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Figure 3.4: Fall movements.
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3.3 Development of Fall Detection Model

To detect falls, we collect time-series data on acceleration and angu-

lar velocity of the subject’s movements and develop a fall detection model

trained on the dataset with LSTM among deep learning models. Figure 3.5

illustrates the structure of the fall detection system. Subject data are col-

lected with accelerometer and gyroscope sensors which includes time, ac-

celeration tri-axial, and angular velocity trial-axial information. Data is pre-

processed and divided into train and test sets. Finally, a model classifying

fall and non-fall movements is completed.

19



Figure 3.5: Structure of fall detection system using LSTM.
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3.4 Performance Evaluation Metrics

We used a confusion matrix of model predictions and actual data values

to evaluate the performance of the binary classification model classifying

fall and non-fall.

Accuracy is a commonly used metric that assesses how correct the

model is in classifying input data. However, it is limited in evaluating the

overall performance of the model when true positives and true negatives

are imbalanced. In this case, precision and recall are used to complement

the accuracy metric. Precision is the ratio of actual cases that are correctly

classified over positively classified cases. Recall is the ratio of actual cases

that are correctly classified over all actual cases. F1 score is the harmonic

average of precision and recall.

Fall accidents in elderly may result in critical physical damage, the

model should minimize cases classifying fall as non-fall (false negatives).

Thus, this study includes accuracy, precision, recall, and F1 score as perfor-

mance metrics.

Actual Class

Positive(Fall) Negative(ADL)

Predicted Class
Positive(Fall) True Positive(TP) False Positive(FP)

Negative(ADL) False Negative(FN) True Negative(TN)

Table 3.3: Confusion Matrix.

21



Accuracy =
T P+T N

T P+T N +FP+FN
(3.1)

Precision =
T P

T P+FP
(3.2)

Recall =
T P

T P+FN
(3.3)

F1 Score = 2× Precision × Recall
Precision + Recall

(3.4)
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Chapter 4

Results

4.1 Data Collection

Two subjects are required to perform fall movements and daily living

activities while wearing the wearable device. Subjects are physically healthy

male adults with low risk of injuries from the experiment, and fall move-

ments are performed on a mattress to prevent injuries. Before the experi-

ment, subjects are notified of possible risk of injuries from the experiment.

Figure 4.1: Environment of fall experiment.
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Figure 4.2: Example of wearing the wearable device.

As in Figure 4.2, a wearable device for data collection is attached to

the subject’s waist. The device is connected to a computer with USB cables

to transmit and save data onto the computer. For reliability of data, data is

simultaneously collected from two wearable devices with equal specifica-

tions.

Data on time (in seconds), three-axis acceleration, and three-axis an-

gular velocity is collected 33 times per second and transmitted to a USB-

connected computer through Tera Term2 in a serial communication method.

In addition, we record videos of subjects performing ADL and fall move-

ments in order to annotate movements in the data preprocessing stage.

2Tera Term is an open-source free terminal emulator program developed by Takashi
Teranishi in Japan and is used for serial communication purposes.
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Item Unit

Time stamp sec

3-axis Acceleration (Acc x, Acc y, Acc z) m/s2

3-axis Angular velocity (Gyro x, Gyro y, Gyro z) deg/s

Table 4.1: Data collection items and units.

The lying movement of ADL is measured using data collected during

timepoints after a fall movement.

Class Case Subject(People) Device(EA) Trials Duration(sec)

ADL

Standing 2 2 2 400

Walking 2 2 2 400

Jogging 2 2 1 240

Jumping 2 2 1 240

Stairs up 2 2 15 10

Stairs down 2 2 15 10

Stand to sit 2 2 15 10

Sitting on chair 2 2 1 240

Sit to stand 2 2 15 10

Car-step in 2 2 15 10

Car-step out 2 2 15 10

Lying 2 2 32

Fall

Forward-Lying 2 2 8 10

Front-Knees-Lying 2 2 8 10

Back-Sitting-Chair 2 2 8 10

Sideward-Lying 2 2 8 10

Table 4.2: Experimental history.

25



4.2 Data Preprocessing

Figures 4.3 to 4.6 are four types of fall graphs visualizing character-

istics of fall data. We identify instantaneous changes in acceleration and

angular velocity when falls occur.

(a) Acceleration

(b) Angular velocity

Figure 4.3: Graph of FOL (Forward-Lying) fall.
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(a) Acceleration

(b) Angular velocity

Figure 4.4: Graph of FKL (Front-Knees-Lying) fall.

27



(a) Acceleration

(b) Angular velocity

Figure 4.5: Graph of BSC (Back-Sitting-Chair) fall.
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(a) Acceleration

(b) Angular velocity

Figure 4.6: Graph of SDL (Sideward-Lying) fall.

Before and after the actual fall motion include standing and lying move-

ments in which acceleration and angular velocity converge to 0 as there are

no movements during these periods. Of the ten seconds of a FOL (Forward-
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Lying) movement, only two seconds are actual timepoints of a FOL fall

movement data. Thus, we label data to distinguish start and end timepoints

of STD (Standing), FOL (Forward-Lying), and Lying (LYI) fall movements.

The data annotation was performed by comparing the collected data to video

frames of subjects conducting the movements during the experiment, and la-

beling start and end timepoints.

30



(a) Video frames with graphs
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(b) Raw data and annotation forms

Figure 4.7: Annotation of fall movements based on comparison with video
frames.
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Figure 4.8: Under-sampling method.

As the amount of ADL data and fall data are imbalanced, the model

could train on biased data resulting in low performance [15]. Thus, we use

under-sampling matching the larger ADL data to fall data to balance the

data.
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Number of Data
Class Case

Before Sampling After Sampling

ADL

Standing 121,357 2,065

Walking 107,732 2,065

Jogging 33,191 2,065

Jumping 32,196 2,065

Stairs up 30,065 2,065

Stairs down 30,846 2,065

Stand to sit 19,450 2,065

Sitting on chair 32,266 2,065

Sit to stand 19,363 2,065

Car-step in 20,300 2,065

Car-step out 20,098 2,065

Lying 19,814 2,065

Fall

Forward-Lying 2,065 2,065

Front-Knees-Lying 3,121 2,065

Back-Sitting-Chair 3,051 2,065

Sideward-Lying 2,644 2,065

Table 4.3: Number of data pre and post sampling.

4.3 Model Fine-Tuning

As parameters for fine tuning the LSTM model, we use window size,

learning rate, and number of epochs. First, window size should be an ap-
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propriate size in which the repeated periods and characteristic values of the

pattern of the time series data are included. Thus, we compare performance

of models with window size of 1/3 secs, 2/3 secs, 1 secs, 2 secs, and 3 secs.

Window Size Accuracy

1/3 sec 0.9055

2/3 sec 0.9558

1 sec 0.9899

2 sec 0.9943

3 sec 0.9422

Table 4.4: Accuracy depending on window size.

If the learning rate is too big, the model may not train. If the learning is

too small, training will take too long and may find the local minima instead

of the global minima. In this study, we compare learning rates of .0001,

.001, and .01.

Learning Rate Accuracy

0.0001 0.9573

0.001 0.9991

0.01 0.9945

Table 4.5: Accuracy depending on learning rate.

Lastly, epochs refer to the exhaustive training iterations on the dataset

which is set to 10 for this LSTM model. To sum up, optimized parameter

values via fine-tuning are window size of 2 secs, learning rate of .001, and

epoch of 10.
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Item Value

Window Size 2 sec

Learning Rate 0.001

Epoch 10

Table 4.6: Optimization of LSTM model.

4.4 Performance and Results Analysis

The fall detection LSTM model showed an evaluation index accuracy

of .9991, recall of .9981, precision of .9983, and F1 score of .9982. Accuracy

reached .999 at epochs of three, and thereafter, the performance of the model

saturated to 99.9% without significant improvements depending on epochs.

Figure 4.9: LSTM accuracy depending on epochs.
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Figure 4.10: Confusion Matrix of LSTM Model.

The fall detection LSTM model using wearable device-based accelerom-

eter and angular velocity sensor could determine the occurrence of falls with

high accuracy. In particular, it showed the best performance when the win-

dow size was 2 seconds after fine-tuning the model. Therefore, the appro-

priate length of the cycle of patterns that include singularities of each ADL

and fall movements was identified to be 2 seconds on average.

Model F1 Score Precision Recall Accuracy

LSTM 0.9982 0.9983 0.9981 0.9991

Decision tree 0.7388 0.7328 0.7448 0.8689

Random Forest 0.8368 0.8124 0.8627 0.9162

K-NN 0.7958 0.8007 0.7910 0.8990

Table 4.7: Experimental Results.

37



Lastly, the LSTM’s performance reached F1 score of 99.82%, preci-

sion of 99.83%, recall of 99.81%, and accuracy of 99.91%. This demon-

strated that the LSTM model shows higher performance than machine learning-

based decision trees, random forest, and K-NN models, and that utilizing the

LSTM model as a fall detection method is an excellent strategy.
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Chapter 5

Conclusion

5.1 Discussion

This study examined a fall detection model of deep learning LSTM

using data collected from accelerometers and gyro sensors. We developed

a wearable device to collect training data and performed fall and activities

of daily life(ADL) movement experiments on two subjects. The collected

fall data include a standing state and a lying state before and after a purely

falling motion. Therefore, in the preprocessing stage, we labeled timepoints

when falls started and ended through comparing to videos that recorded the

experiment. Data consisted of 70% train dataset for learning and 30% test

dataset for validation. The LSTM model, which has strengths in analyzing

time series data, was trained to learn features of falls, and we verified its

performance of classifying falls versus non-falls. As a result, fall classifica-

tion performance had an accuracy of 99% indicating that this approach was

effective as a model for fall detection.

5.2 Limitations

There are several limitations in applying the contents of this study as

an actual fall detection system. First, in addition to the movements defined

as falls and ADL in this experiment, various movements that may occur
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in real life should be included. In the case of fall movements, slipping or

tripping over objects frequently happen in reality. Thus, it is necessary to

additionally conduct experiments and collect data on ADL movements as

well as various fall movements.

5.3 Future Works

To implement falls and non-falls more accurately, we plan to further

define and experiment various movements that may occur in addition to the

12 ADL movements and the four fall movements. It is important to accu-

mulate abundant data for the model to learn, focusing on falls and non-fall

movements that occur frequently in life.

Additionally, to develop the results of this study into a service that

can be applied in real life, a series of systems should be developed which

consists of sensing, communication, a fall detection process, and a user ap-

plication program.

Figure 5.1: Model of the fall detection system.

When a fall occurs indoors, BLE 3 communication can be used to con-

nect the sensed data to the beacon and determine the location of the fall.
3BTE (Bluetooth Low Energy) is a short-range communication method that consumes

less power and is applied to smart bands and smart phones.
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When a fall occurs outdoors, data can be transmitted using LTE4 communi-

cation network. The calculation of fall occurrence through acceleration and

angular velocity information can be analyzed through embedded systems of

the wearable device itself, or through a cloud server for more accurate cal-

culations. Finally, creating a user-centered scenario is considered the most

important factor for commercializing products and services based on this

study. In fact, the Samsung Electronic’s Galaxy Watch and Apple’s Apple

Watch, which are currently sold with fall detection functions, detect fall ac-

cidents based on data collected through accelerometers and gyro sensors and

on algorithms within smart watches. These products consist of scenarios in

which the user can directly enter whether a fall has occurred for about one

minute when detected as a fall, as a way to prevent false detection in order

to provide a satisfactory fall detection function to the user. To improve us-

ability, the quality of service can be improved with appropriate scenarios for

the user, as well as enhancing the accuracy of the fall detection model.

One of the weaknesses of wearable devices is batteries. The wearable

device used for fall detection is operated on battery in an environment where

constant power supply is not possible. Therefore, the speed at which the

battery of the wearable device is consumed must be considered. The factors

that greatly exhaust batteries are the communication process for transmit-

ting data and the sampling rate for collecting data. Thus, it is necessary to

optimize the appropriate sampling cycle of sensors for fall detection and the

appropriate cycle in the process of data transmission to the cloud server for

4LTE (Long Term Evolution) is a 4G broadband wireless communication technology
developed by the 3GPP consortium. Standards such as Cat.M1 have been commercialized as
IoT dedicated networks focused on small-scale data transmission.

41



fall verification. In addition, it is important to develop models based on GRU

model or machine learning which lightens the LSTM to allow fall detection

algorithm to be applied embedded in the device.
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국문초록

딥러닝기반가속도및자이로센서

데이터활용낙상감지방법

이해성

서울대학교공학전문대학원

응용공학과응용공학전공

전세계가초고령화사회로진입함에따라노인낙상사고가크게증가하

고있다.이러한낙상사고는제때감지되지않을경우최악의경우사망까

지이르는심각한결과를초래한다.따라서낙상이발생했을때,즉시낙상

을감지할수있는시스템구축이필요하다.낙상을발견하기위한다양한

방법중에서착용이쉽고실내외에서적용이가능한웨어러블(Wearable)

장치의 형태를 고안한다. 본 연구는 웨어러블 기반 가속도 센서와 자이

로센서를활용하여착용자의움직임을측정하고,가속도및각속도값을

분석하여 낙상 발생 여부를 분류하는 모델을 개발하고자 한다. 데이터를

획득하기 위하여 피실험자에게 웨어러블 장치를 착용한 상태로 12가지

일상생활동작과 4가지 낙상동작을 반복적으로 실시하는 실험을 수행하

였다. 일상생활동작은 앉기, 서있기, 걷기 등이 있고, 낙상동작은 앞으로

넘어지는동작,뒤로넘어지는동작등으로구성된데이터를확보하였다.

낙상과비낙상여부를검출하기위하여딥러닝알고리즘모델중순환신

경망(Recurrent Neural Network, RNN) 계열의 LSTM을 활용한다. 낙상
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여부를판단하는 LSTM모델의입력값에적용되는데이터전처리및미

세조정(Fine-Tuning)방법을통해서모델을고도화하였다.실험환경에서

모델의낙상감지정확도(Accuracy)는 99.91%로심층학습관점에서낙상

검출의타당성을판단하고자한다.

주요어 : 낙상; 6축센서;딥러닝;시계열데이터; LSTM.

학번 : 2020-20356
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