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ABSTRACT OF DISSERTATION 

 

 

Estimation of Net Retention Time of Solute in Storage Zones for  

Mixing Analysis in Streams 

 

by 
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Professor Il Won Seo, Advisor 

 

The solute propagation along stream flow cannot be interpreted only by 

hydrodynamic properties of surface flow due to the influence from surrounding 

storage zones of the stream. To analyze this unidentified storage effect, various 

transient storage models have been proposed for recent decades. The time dependent 

behavior of solute within the storage zone was often modeled a conceptualized 

retention time function added to conventional advection-dispersion equation. The 

validity of these models has been predominantly demonstrated with tracer 

breakthrough curves measured in surface flow. However, the storage effect is less 

responsible for the breakthrough curve behavior than in-stream flow dynamics. For 



 

 

model validation purpose, tracer behavior only within storage zones should be 

investigated. The present study is aimed at quantifying the time-dependent storage 

effect, herein termed the net retention time distribution (NRTD), from tracer 

measurements at the flow zone using a deconvolution technique with filtering in the 

Fourier domain. The results showed that the deconvolved NRTDs successively 

represented the temporal behavior of the tracer in the storage zones without 

significant distortion in the observed breakthrough curves. Using the estimates of 

NRTD, we evaluated the validity of first-order mass transfer and its parameters of 

the transient storage model (TSM), which is the most widely-used storage zone 

model. The simulation results of the parameter-optimized TSM underestimated the 

inherent storage effect by as much as an average 44 %. It is also noteworthy that the 

larger net retention time scale the channel has, the larger discrepancy the TSM’s 

exponential retention time function could yield. 

 

Keywords: solute transport, non-Fickian transport, transient storage model, net 

retention time function, tracer test, biodegradation  
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CHAPTER I 

INTRODUCTION 

 

1.1 Motivation 

 Worldwide industrialization has caused a dramatic rise in chemical usage in 

industrial complexes, which has in turn led to spill accidents of harmful contaminant. 

In November 2014, a truck overturned and spilled 2,000 L of sulfuric acid into 

Nakdong River, the longest river in South Korea, and it resulted in severe damage to 

the aquatic ecosystem and water quality. Another 9 of the spill accidents occurred 

during last 30 years in Nakdong River. Such unpredictable accidents in rivers are 

especially serious since most water supply in South Korea is dependent on surface 

waters, such as rivers and reservoirs. Having recognized the problem, many engineers 

and researchers have required to understand contaminant behavior along with the 

stream flow, which is high-dimensional, multiscale, and nonlinear system. Hence, 

there have been a need for interpretable and generalizable solute transport models. 

 Such contaminant spilt into a stream is diluted along with its propagation 

downstream by molecular or turbulent diffusion or shear effect. However, the time and 

distance scale that it takes for complete dilution is extremely large. In 1991, the 70,000 

L of metam sodium spilt in Sacramento River, California, was detected up to 55 km 

downstream for 26 days. In 2005, the 41,000 L of sodium hydroxide spillage spilt into 

Cheakamus River, Vancouver, killed 500,000 fishes in an 18 km section. In 2008, the 
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phenol split into Nakdong River, South Korea, was detected up to 78 km downstream. 

Due to the computational cost and input data requirement, and reliability in calibration, 

more than one dimensional models cannot be employed for such lone-distance 

propagation. Therefore, models for one-dimensional analysis have been used and 

developed despite significant uncertainties from their idealizations and assumptions. 

 Early understanding of solute mixing in flowing water is that it is dominated 

by two mechanisms: When a source of solute introduced into a stream, the peak point 

of solute cloud is transported by mean flow velocity and its cloud shape isotopically 

spreads. However, actual solute propagation is not that simple. Due to morphological 

influences such as pools, eddies, rocks, vegetations, bed materials or banks, low-

velocity or stagnate regions are formed in streams and they transiently trap the solute 

and released after some retention time. Such in-stream structure is referred to as 

“storage zone” regardless of its shape, size, retention scale. The storage effect skews 

the contaminant cloud with long tails. In two- or three-dimensional simulation, such 

skewness can be reproduced by boundary shear effect of bottom or banks. While, in 

one-dimensional model, such skewness cannot be generated only by advection and 

diffusion. Hence, various one-dimensional models that can reproduce the storage 

effect have been developed for recent decades. However, it still remains challenging 

due to complexity and heterogeneity of in-stream storage zones. Therefore, intensive 

researches continues for deeper understanding of the storage effect. 

 In addition, since the rate of trapping from flow zone into storage zone is 
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much faster than that of releasing back to flow zone, various dissolved and suspended 

materials are concentrated in the storage zones. Likewise, the storage zones are 

habitable for microbes, so these zones are in turn a “hot spots” for biogeochemical 

activity. Therefore, knowing the storage mechanism is important to analysis of hosting 

chemical reaction, carbon stores, interaction with biofilms, algae blooming, and 

vegetation.  

1.2 Problem Statement 

The storage mechanism is typically considered and embedded into the 

conventional advection-diffusion model, and the anomalous storage effect is 

characterized with several parameters. The parameter-calibrated model yields the 

time-concentration curve, hereafter called the breakthrough curve (BTC), in the flow 

zone. Such storage-incorporated models have been validated by comparing the 

simulation result with the calibrated data to see how accurately it was fitted (see Table 

1). However, there is a considerable problem with this method. Compared to the effects 

of advection and diffusion, the storage effect is less sensitive to forming breakthrough 

curves. In this respect, the inaccuracy of storage zone modeling may not be revealed 

in the breakthrough curves. Therefore, present study is arguing that the validity of the 

storage unit modeling should be demonstrated from the measurements that can 

represent the storage effect itself. However, it is difficult to identify the storage effect 

in streams due to the variability in forms and characteristics. This study aims to acquire 
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such data that can only represent the storage effect by excluding the effects of 

advection and diffusion from the tracer behavior observed in flow zone (see Fig. 1).  

 

 

Figure 1. Typical way of storage mechanism modeling and validation 
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Table 1. Validation methods of existing storage zone modeling 

Model Study Validation with Observed at Accuracy 

TSM 

Bencala and Walters, 

1983 
whole BTC Surface flow - 

Runkel and Broshears, 

1991 
whole BTC Surface flow - 

Runkel, 1998 whole BTC Surface flow - 

Gooseff et al, 2005 whole BTC Surface flow - 

APM 
Elliott and Brooks, 

1997 
whole BTC Surface flow 

relative 

error 

Log-normal 

RTD 
Worman et al., 2002 BTC tail Surface flow 

relative 

error 

Power-law 

RTD 
Haggerty et al., 2002 BTC tail Surface flow 

absolute 

error 

TAD model Meerschaert et al., 2008 BTC tail Surface flow - 

F-ADE Deng et al., 2004, 2006 whole BTC Surface flow - 

CTRW Boano et al., 2007 BTC tail Surface flow - 

STIR 

Marion and Zaramella, 

2005 
BTC tail Surface flow MSE 

Marion et al., 2008 BTC tail Surface flow RMSE 

Bottacin-Busolin et al., 

2011 
BTC tail Surface flow RMSE 

Zaramella et al., 2016 whole BTC Surface flow RMSE 

TSZM Kerr et al., 2013 whole BTC Surface flow - 

Complex 

sorption 

kinetics 

Liao et al., 2013 BTC tail Surface flow RMSE 

EAM model Bottacin-Busolin, 2019 BTC tail Surface flow RMSE 

* BTC is breakthrough curve of tracer concentration. 

 

  



6 

 

There have been previous studies that attempt to experimentally observed the 

tracer behavior in storage zones. Mignot et al. (2017) and Weitbrecht et al. (2008) 

investigated the tracer behavior within the artificial storage zone in laboratory scale. 

Gooseff et al. (2011), Jackson et al. (2012), and Sandoval et al. (2019) investigated the 

storage effect of the surface storage zones such as recirculation zones in side pockets 

in natural streams. However, these studies configured the storage zones to a specific 

shape and size, so their research results are somewhat localized, and it is difficult to 

expand and apply to those of natural streams due to the variability and heterogeneity 

of storage zones. Also, as shown in Fig. 2 and 3, the spatial-temporal scale of storage 

effect were much larger. Therefore, this study investigated the field-scale storage effect 

incorporating various types of storage zones. 

 

 

Figure 2. Parameter scales of existing studies and this study 
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Figure 3 Spatial and temporal scaling of hyporheic flow (Boano et al., 2014) 
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CHAPTER II 

THEORETICAL BACKGROUNDS 

 

2.1 One-dimensional solute transport modeling 

 Models of any kind are of necessity idealized representations. Such 

idealization tend to concentrate on the dominant processes and the important features 

of the environment. As mentioned, passive scalar transport in flowing water body is 

commonly explained by two mechanisms: It is transport by main current, termed 

advection, and it spreads out by Brownian random motion of water, termed diffusion. 

This can be mathematically written as 

 

𝐪 = 𝐪𝒂 + 𝐪𝒅 (1) 

 

where 𝐪, 𝐪𝒂, 𝐪𝒅 are the vector of the total mass flux, the advective mass flux, and 

the diffusive mass flux, respectively. A classical way to model the diffusion mechanism 

is to follow the Fick’s law: It says that the diffusive flux of solute mass in a direction 

is proportional to the gradient of solute concentration along that direction. Fick’s law 

can be written in vector notation as 

 

𝐪𝒅 = −𝐷∇𝐶 (2) 
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where 𝐷 is the proportionality coefficient in dimension of (length)2/time, called the 

diffusion coefficient, and 𝐶 is the solute concentration defined as 𝐶 = lim
∆→0

∆𝑀 ∆𝑉⁄ , 

in which ∆𝑀 is the solute mass in elemental volume ∆𝑉. The advective mass flux 

is dependent on the current velocity, 𝐪𝒂 = 𝐮𝐶  in which 𝐮  is the mean flow 

velocity vector with components (𝑢, 𝑣, 𝑤), so that the equation (1) becomes 

 

𝐪 = 𝐮𝐶 + (−𝐷∇𝐶) (3) 

 

To satisfy conservation of mass, the mass flux of inflow and outflow in a volume 

must be equal the rate of mass change in the volume, 𝜕𝐶 𝜕𝑡⁄ = −∇ ∙ 𝐪. Then, the 

equation (3) becomes 

 

𝜕𝐶

𝜕𝑡
+ ∇ ∙ (𝐶𝐮) = 𝐷∇2𝐶 (4) 

 

or, making use of the incompressible fluid assumption 

𝜕𝐶

𝜕𝑡
+ 𝐮 ∙ ∇(𝐶) = 𝐷∇2𝐶 (5) 

 

The equation (5) are known as the advection-diffusion equation. Eq. (5) can be 

expanded in Cartesian coordinates as 
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𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷 (

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2) (6) 

 

As mentioned, the 𝐷 was referred to as the diffusion coefficient and it represents 

the rate of isotropic separation of cloud. Among the various causes, the shear effect 

from advective velocity gradient will greatly exceed that caused by molecular or 

turbulent motion (Day, 1975; Fischer et al., 1979; Taylor, 1954). Hence, the 

separation rate can be represented by the shear flow dispersion and the 𝐷 will be 

hereafter termed the dispersion coefficient. It must be note that the shear dispersion 

in streams cannot be isotropic anymore because the velocity profiles in 𝑥-, 𝑦-, and 

z-direction are considerably different. Due to the boundary effects, the velocity 

variations in vertical and transverse direction are more dramatic than that in 

longitudinal direction. As shown in Figure 4, given enough time, the cross-sectional 

mixing will be complete sooner than the longitudinal mixing. Therefore, in the far 

field mixing analysis, 𝜕𝐶 𝜕𝑦⁄  and 𝜕𝐶 𝜕𝑧⁄  in Eq. (6) can be deemed to be zero, and 

the one-dimensional advection-dispersion equation (1D ADE) is derived with a 

cross-sectional averaged longitudinal velocity 𝑈 as below. 

 

𝜕𝐶

𝜕𝑡
+ 𝑈

𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑥2
 (7) 
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Figure 4. Mixing patterns and changes in concentration distribution (Kilpatrick & 

Wilson, 1989) 

 

 The premises for the dimensionality reduction are sometimes unacceptable 

because, in a reach-scale channel, such cross-sectional complete mixing may not 

happen, and many secondary details are omitted in the process. This margin of error 

could seem considerable. Even so, for the sake of the efficiency in numerical 

computation, applicability with the lack of available information, adaptability for 

relevant engineers, order-of-magnitude analysis, such approximation is worth much 

more than no answers. 

 Among the secondary factors in a streamflow, most considerable one is the 

morphological complexity. Solute transport is dominated not only by flow dynamics, 
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but also by interactions with surrounding storage zones of the stream. The role of 

storage zones in solute mixing is to impede its transport by trapping some solute 

particles, and after some retention time, releasing them back into the flow zone. 

Consequently, solute cloud is skewed with long tails as shown in Figure 5. Such 

skewness cannot be captured by Gaussian approximation of 1D ADE. Therefore, for 

recent decades, there have been many researches chasing the appropriate modelling 

incorporating the anomalous storage mechanism. 

 

 

Figure 5. Tracer cloud behavior along Gam Creek, 2019. 
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2.2 Conceptualization of storage mechanism 

 Natural streams contain various types of storage zones in their form, size, and 

retention scale (see Figure 6), and such diversity makes the storage effect irregular and 

heterogeneous, resulting in difficult characterization in modeling. In three-dimensional 

analysis, such storage effect can be considered with the boundary effect of given 

bathymetric data and its dynamical interaction with flow, but it cannot in one-

dimensional analysis. Rather the heterogeneous storage effect is predominantly 

idealized and parameterized with several parameters (see Table 2). Classical method 

is to add the additional sink-source term Γ(𝑡) into the 1D ADE as 

 

𝜕𝐶

𝜕𝑡
= −𝑈

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2
+ Γ(𝑡) (8) 

 

 

 

Figure 6. Typical storage zones in a natural stream 
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Table 2. General governing equations for transport of solutes in streams 

incorporating storage system 

Model Papers 

Description of 

Storage 

Process 

Calibration 

Parameters 
Governing Equation 

Advection-

Dispersion 

Equation 

(ADE) 

Taylor, 

1954; 

Elder, 

1959 

None 2 [𝑈,  𝐷] 
𝜕𝐶

𝜕𝑡
= −𝑈

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2
 

Fractional 

Advection 

Dispersion 

Equation 

(FADE) 

Metzler 

and 

Klafter, 

2000 

Heavy-tailed 

power law 

residence time 

distribution 

3 (S-FADE 

[𝑈,  𝐷𝛼 ,  𝛼], 

T-FADE 

[𝑈,  𝐷, 𝛾]) 

4 (ST-FADE 

[𝑈,  𝐷𝛼 ,  𝛼,  𝛾]) 

𝜕𝛾𝐶

𝜕𝛾𝑡
= −𝑈

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕𝛼𝐶

𝜕𝑥𝛼
 

Transient 

Storage 

Model 

(TSM) 

Bencala 

and Walter, 

1983 

Finite volume, 

well-mixed 

storage zones 

4[𝑈,  𝐷,  𝛼,  𝐴/
𝐴𝑆] 

𝜕𝐶

𝜕𝑡
= −𝑈

𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2

+ 𝛼(𝐶
− 𝐶𝑠) 

Multi-Rate 

Mass 

Transfer 

(MRMT) 

Haggerty 

et al., 2000 

Any memory 

function or 

residence time 

distribution 

Varies 

depending on 

memory 

function 

𝜕𝐶

𝜕𝑡

= −𝑈
𝜕𝐶

𝜕𝑥
+ 𝐷

𝜕2𝐶

𝜕𝑥2

+ ∫
𝜕𝐶

𝜕𝜏

𝑡

0

𝑔(𝜏)𝑑𝜏 

Continuous 

Time 

Random 

Walk 

(CTRW) 

Boano et 

al., 2007 

Any memory 

function or 

residence time 

distribution 

Varies 

depending on 

Residence 

time 

distribution 

𝜕𝐶

𝜕𝑡

= ∫ (−𝑈
𝜕𝐶

𝜕𝑥

𝑡

0

+ 𝐷
𝜕2𝐶

𝜕𝑥2
) 𝑀(𝜏)𝑑𝜏 

Solute 

Transport 

In River 

(STIR) 

Marion 

and 

Zaramella, 

2005; 2008 

Any memory 

function or 

residence time 

distribution 

Varies 

depending on 

how zones are 

specified 

𝐶(𝑡) = ∫ 𝐶AD(𝑡)
𝑡

0

𝑟𝑠(𝜏)𝑑𝜏 
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Due to simplicity and many existing relevant studies, Transient Storage 

Model (TSM) is most extensively used model since it can accurately simulate the 

skewness of breakthrough curve (BTC) (Bencala and Walters, 1983; Knapp and 

Kelleher, 2020). In words of Knapp and Kelleher (2020), hydrologists, 

biogeochemists, and ecologists continue to leverage increasingly sophisticated field 

techniques to explore the storage and release of water, nutrients, and other solutes. 

But one thing has not changed: the ubiquitous use of one of the simplest and most 

straightforward conceptualizations of in‐ and near‐stream transport, the transient 

storage model. The TSM adopted the simple conceptualization that the retention 

mechanism can be described as equivalent to a first-order mass transfer. The model 

states that such mass transfer between surface flow zone and storage zone is induced 

by the concentration discrepancy between two domain and thus its governing 

equations were given by 

 

𝜕𝐶

𝜕𝑡
=

𝜕

𝜕𝑥
(−𝑈𝐶 + 𝐷

𝜕𝐶

𝜕𝑥
) + 𝛼(𝐶 − 𝐶𝑠) (9a) 

𝐶𝑠 =
𝛼

𝜖
(𝐶𝑠 − 𝐶) (9b) 

 

where 𝐶𝑠(𝑔 𝑚−3)  is solute concentration within storage zone, 𝜖 is the relative 

volumetric size of the storage zone to the flow zone, and 𝛼(s−1)  is the mass 

exchange rate. Eq. (3) is a partial differential equation (PDE) due to the special-
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temporal derivatives of the concentration. For the implicit equations, OTIS was 

proposed as a numerical solution (Runkel and Broshears, 1991; Runkel and Chapra, 

1993; Runkel, 1998, Gooseff et al, 2005). The numerical analysis employed Finite 

Difference Method (FDM) which is a common method of resolving PDEs is to 

approximate the spatial derivatives, 𝜕 𝜕𝑥⁄  . The temporal derivative term was 

evaluated using Crank-Nikolson method with a centered difference approximation 

between both the current time and the future time. One of the advantages of the 

Crank-Nikolson method is that the one-dimensional model results in the formation 

of a tridiagonal coefficient matrix that can be efficiently solved using the Thomas 

Algorithm (Runkel and Broshears, 1991; Runkel and Chapra, 1993; Runkel, 1998). 

Another method for the PDE solution is to derive the analytical solution in 

Laplace domain as the works of Kazezyılmaz-Alhan (2007) or Kim et al. (2021). 

Within the governing equations, once the time variable is converted to the Laplace 

variable, 𝑠, the Laplace transformed concentration in the storage zone (notated as 

𝐶𝑆
̅̅ ̅) have a linear relationship with respect to the transformed flow zone concentration, 

𝐶̅ as Eq. (5). 

 

𝐾
𝜕2𝐶̅

𝜕𝑥2
− 𝑈

𝜕𝐶̅

𝜕𝑥
+ 𝛼𝐶𝑆

̅̅ ̅ − 𝛼𝐶̅ − 𝐶(𝑡 = 0) = 0 (10) 

𝐶𝑆
̅̅ ̅ =

𝛼
𝜖

𝛼
𝜖 + 𝑠

𝐶̅ (11) 
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in which 

𝐶̅(𝑥, 𝑠) = ℒ[𝐶(𝑥, 𝑡)] = ∫ 𝑒−𝑠𝑡𝐶𝑑𝑡
∞

0

 (12) 

 

Substituting Eq. (5) into Eq. (4), the governing equation for the flow zone becomes 

a form of homogeneous ordinary differential equation (ODE), as: 

 

𝐷𝐿

𝑑2𝐶̅

𝑑𝑥2
− 𝑢

𝑑𝐶̅

𝑑𝑥
+ (

𝛼 𝜖⁄

𝛼 𝜖⁄ + 𝑠
𝐶̅ − 𝛼 + −𝑠)𝐶̅ = 0 (13) 

 

Following the work of Kazezyılmaz-Alhan (2007), the general solution of the ODE 

was obtained, as: 

 

𝐶̅(𝑥, 𝑠) = 𝐶̅(0, 𝑠) exp

[
 
 
 

(

 
𝑢 − √𝑢2 − 4𝐷𝐿 (

𝛼 𝜖⁄
𝛼 𝜖⁄ + 𝑠

− 𝛼 − 𝑠)

2𝐷𝐿

)

 𝑥

]
 
 
 

  (14) 

 

The boundary condition was set as the Laplace transformed Heaviside function, 

signifying that the contaminant is introduced from time 𝑡1  to 𝑡2  with 

concentration of 𝐶𝑖𝑛𝑖. 
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𝐶̅(0, 𝑠) =
𝐶𝑖𝑛𝑖

𝑠
[exp(−𝑡1𝑠) − exp(−𝑡2𝑠)] (15) 

 

For inversion of the Laplace transform, the approximation polynomials, which are 

precalculated, are normally listed in tables. However, because we are unable to easily 

increase the order of the polynomials, the numerical inversion method based on the 

Bromwich integral was employed in this study to analyze the Laplace transform of 

the solution (Valsa and Brančik, 1998).  

Kim et al. (2021a) showed the comparison of simulated BTC from the 

numerical model and the analytical solution with synthetic data. As input conditions, 

𝑄, 𝐷𝐿, 𝐴, 𝐴𝑠, and 𝛼 were assumed to be 10 cms, 10 m2 s-1, 20 m2, 5 m2, and 10-5 

sec-1, respectively. 1 ppm of conservative solute were released at the inlet for 30 

seconds, and simulated BTCs were compared at sections 500 m, 1,000 m, and 1,500 

m downstream of the inlet (notated as S1, S2, and S3, respectively). The results 

revealed that both solutions yielded nearly identical results with a determination 

coefficient (R2) of over 0.99 at all sections, as plotted in Figure 7. 
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Figure 7. Comparison of simulation results of the numerical model and the 

analytical (Kim et al., 2021a).  

 

As an relevant approach, time-dependent storage effect is often 

mathematically represented by the concept of residence time distribution (Haggerty 

et al., 2000), hereafter referred to as “retention time distribution”, to differentiate it 

from that of the flow zone. The retention time indicates the time it takes for solute 

particles trapped in a storage zone to be released. Including Haggerty et al. (2000), 

several studies presented a model structure to characterize the storage mechanism in 

which the retention time distribution was defined as a memory function, and 

summarized the various memory function formulae (Boano et al., 2007; Drummond 

et al., 2012; Haggerty et al., 2002; Meerschaert et al., 2008). Afterwards, analogous 

conceptualizations were proposed, such as STIR (Bottacin-Busolin et al., 2011, 2021; 

Marion et al., 2008; Marion & Zaramella, 2005), or CTRW (Boano et al., 2007). The 
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transient storage model (TSM) is a retention time-based model in which an 

exponential memory function is embedded (Gooseff et al., 2011; Haggerty et al., 

2000; Marion et al., 2008). Due to its structural simplicity and low computational 

cost, the TSM has many existing relevant studies and is the most established one-

dimensional solute transport model. However, recent studies have argued that such 

exponential retention time distribution assumed by TSM framework is suitable for 

storage zones where the mass exchange rate is relatively fast, such as surface dead 

zone or thin surface layer of the hyporheic zone (Hart, 1995; Marion et al., 2008; 

Marion & Zaramella, 2005), and in turn poorly approximates the tailing behavior of 

tracer cloud in natural streams (Marion et al., 2008; Gooseff et al., 2003; Haggerty 

et al., 2002; Kim et al., 2021; Knapp & Kelleher, 2020) (see Figure 8. Simulation 

results from previous studies (a) Haggerty et al. (2002) (b) Gooseff et al. 

(2003) (c) Marion et al. (2008)). It is because, in storage zones of natural streams, 

the retention time scale could be much larger. It could range from seconds to tens of 

years in a hyporheic zone depending on bed materials and hyporheic dimension 

(Boano et al., 2014). Hence, the TSM formulation may underestimate the inherent 

storage effect of natural streams. This discrepancy also leads to difficulty in 

determining its parameters, which still relies on optimization techniques (Kim et al., 

2021; Marion et al., 2002). 
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Figure 8. Simulation results from previous studies (a) Haggerty et al. (2002) (b) Gooseff et al. (2003) (c) Marion et al. (2008)
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In this respect, several parametric equations for the retention time 

distribution have been proposed with particular mathematical forms, such as 

lognormal, power law, or gamma function (Cardenas, 2007; Drummond et al., 2017; 

Haggerty et al., 2002; Stonedahl et al., 2012; Wörman et al., 2002; Wörman and 

Wachniew, 2007). Elliott & Brooks (1997) and Elliott et al. (1997) studied the 

physical process of mass exchange with the hyporheic zone, and suggested the 

formula of retention time function with hyporheic properties. Marion & Zaramella 

(2005) and Marion et al. (2008) presented the combination of the exponential 

behavior of TMS and the function by Elliott & Brooks (1997) to improve simulation 

accuracy. Although those models employed different approaches, their objectives 

were to find the optimal mathematical formula of the retention time distribution, and 

to validate the accuracy by comparing its simulation result to BTCs curves measured 

at the flow zone. 

However, since the storage effect is less responsible for solute mixing than 

flow dynamics, errors of retention time modeling may not be revealed through the 

BTCs obtained in the surface flow zone. Hence the retention time function modeling 

should be validated with the actual solute behavior within storage zones. For this 

reason, several studies (Gooseff et al., 2011; Jackson et al., 2012; Mignot et al., 2017; 

Sandoval et al., 2019; Weitbrecht et al., 2008) implemented in-storage zone 

measurements under the restricted experimental conditions, or in a few visible 

surface storage zones of streams, due to the diversity, invisibility, and unclear 

boundary of natural storage zones. Unfortunately, those studies were very limited in 
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terms of spatial scale to represent the overall heterogeneous storage zones of natural 

rivers. 

 

2.3 Determination of TSM parameters 

Modeling of solute mixing cannot be based on fixed parameters, but must 

provide for a simulation over representative time and length scale of simulation 

including spatio-temporally varying parameters. The 1D solute transport models 

roughly characterize the complex streamflow and heterogeneous topography of the 

river with only several parameters. For example, the simulation of the 1D ADE 

requires determination of river velocity and longitudinal dispersion coefficient. The 

TSM characterizes the storage effect with two additional parameters: relative size of 

storage zone and mass exchange rate between the storage zone and the main flow zone. 

The methods for TSM parameter determination are classified in Figure 9. 

Unfortunately, even for decades of TSM, there have not been clear understanding of 

meaningful approximation of the parameters for physical process. They are not 

additive across increasing distance (Gooseff et al., 2013) and it has no pattern with 

discharge (Ward et al., 2013; Zarnetske et al., 2007). Even though several theoretical 

and empirical estimates for these parameters have been proposed for recent decades 

(Cheong et al., 2007; Cheong and Seo, 2003; Femeena et al., 2019; Noh et al., 2021; 

Pederson, 1977; Rowiński et al., 2005; Rowiński and Piotrowski, 2008; Sahay, 2012; 

Thackston and Schnelle, 1970), it has been reported that the theoretical estimates 
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still have an inaccuracy due to their assumptions while the empirical estimates still 

have data dependence. Accordingly, the parameter determination still predominantly 

relies on optimization techniques. Such optimized parameters, however, are products 

of various uncertainties from the over-simplification of the 1D approach, numerical 

setting for optimization such as grid size or objective function (Noh et al., 2021, 

2019; Wallis and Manson, 2019), equifinality problem (Choi et al 2020), and 

measured data itself. Consequently, the 1D models has poor applicability due to the 

difficulty in determining representable parameters which is yet to clearly resolved. 

Now, we cast doubt on if the processes estimated from conceptualization of TSM are 

actually interpretable. 
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Figure 9. Classification of determination of TSM parameters. 
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2.4 Summary of literature review 

 From “Theoretical Background”, it is remarkable that even for last decades 

of TSM conceptualization, we still lack of clear understanding of physical 

interpretation of TSM parameters, in turn the parameter determination still relies on 

the inverse modeling from observation. Then, the validity of TSM simulation is highly 

dependent on the reliability of the observation. Unfortunately, the storage effect of 

irregular and heterogeneous streams is difficult to be observed and quantified. 

Consequently, the BTCs observed at surface flow are still used for the validation of 

TSM and other conceptual models. However, the BTCs are less sensitive on the storage 

effect than the flow dynamics. Therefore, there is a need of the reliable data that can 

independently represent the in-stream storage effect. 

 Hence, the goal of this research are to develop and verify an method capable 

of quantitatively estimating the effect of the storage zone from BTC observations at 

flow zone. The detailed objectives are: 

1. Developing an explicit equation to distinguish the effects of flow dynamics and 

storage zones, and estimating the storage effect of streams using signal deconvolution 

in Fourier domain. (50%) 

2. Evaluating the accuracy of TSM simulation and corresponding parameters 

comparing to the storage effect estimation. (30%) 

3. Predicting biodegradation rate of organic chemicals flowing along a stream using 

the estimated retention time. (20%)  
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CHAPTER III 

MATERIALS AND METHODS 

3.1 Tracer experiments in a stream 

3.1.1 Site description 

The spatial–temporal concentration variation of tracer in a stream involves 

the information of both flow dynamics and complex storage effects of the stream. To 

acquire such information, the tracer test was carried out at the 4.85 km reach of Gam 

Creek, South Korea, in October 2019. The testbed of Gam Creek is a sand-bed braided 

stream, and has potential storage zones, such as shoals, dunes, side pockets, and natural 

banks (see Figure 10 & 11). The well-known tracer material, Rhodamine WT (RWT), 

was used due to its visibility and detectability. Runkel (2015) stressed the significance 

of considerable sorbability of RWT, especially for groundwater & hyporheic tracer 

studies. Based on his arguments, its application in this study is justified for two reasons: 

First, this study is designed to kinematically investigate residence time regardless of 

mass or concentration. Payn et al. (2008) and Aubeneau et al. (2015) revealed that 

sorption reactions hardly change the fundamental shape of breakthrough curves; hence 

the sorbability of the RWT may not affect the residence time distribution. Second, even 

though the storage effect plays a significant role in forming breakthrough curve tails, 

the NRTF is determined by not only the tail, but also the bulk of the tracer profile. 

Portions of the breakthrough curve prior to the tail represent the tracer that has been 

transported by the advective flow, and thus less affected by sorption (Runkel, 2015). 
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As a result, neglecting the RWT sorbability to investigate the residence time in streams 

is acceptable. 

The first measurement station (S1) should be located far enough from the 

injection point (IP), in that the tracer should be completely mixed in the transversal 

and vertical directions for one-dimensional analysis. The required distance can be 

estimated using equation (12) (Kilpatrick & Wilson, 1989): 

 

𝐿0 = 0.1 (
1

𝑛
)
2 𝑈𝑊

𝐸𝑧
 (16) 

 

where 𝐿0 is the distance required for complete mixing, n is the number of injection 

points, W is a mean top width, and 𝐸𝑧  is a lateral mixing coefficient, which is 

estimated by 𝐸𝑧 𝐻𝑢∗ = 0.15⁄  (Fischer et al., 1979). In this testbed, the estimated 𝐿0 

was 411.61 m which was smaller than the distance of S1 from the injection point of 

820 m. 
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Figure 10. Site map and locations of in-stream measurement stations for the tracer 

tests conducted at the Gam Creek, South Korea 

 

 

 

Figure 11. Braided flow shape in S3-S4 section, Gam Creek in 2019 
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3.1.2 Tracer Measurement 

The concentration of RWT was measured using YSI-600OMS fluorometer 

at measurement stations downstream. The fluorometers were calibrated beforehand 

in the range of 0 to 200 ppb with a standard RWT solution. The measurement error 

range of the fluorometer was ±5 % of the reading values or 1 ppb, and the sampling 

rate was 0.25 Hz. Three or four fluorometers were uniformly installed at the 

measurement stations equally spaced and collinear in transverse direction at each 

measurement station (S1–S4 in Figure 10) for cross-sectional average concentration. 

Table 3 summarizes the hydraulic and geometric properties of the test reach of the 

Gam Creek. The discharge and velocity profiles were measured by acoustic Doppler 

current profiler (ADCP RiverSurveyor S5). The reach length, mean depth, mean 

width, and channel slope were measured by Real-Time Kinematic-Global 

Positioning System (RTK-GPS Sokkia GRX1). In addition, the tracer cloud was 

monitored by an RGB camera mounted on a drone (DJI Mavic 2). This bifurcated 

tracer cloud shape was observed in the measured breakthrough curve, as well as in 

the moving tracer cloud. 
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Table 3. The hydraulic and geometric conditions of the tracer test. 

 𝑄 𝑅𝐿 𝐻 𝑊 𝑈 𝑆(1) 𝑆𝑛
(2)

 
Sub-Reach (𝑚3𝑠−1) (𝑚) (𝑚) (𝑚) (𝑚𝑠−1) (−) (−) 

Reach 1 

(S1-S2) 
12.82 1,200 0.361 57.4 0.668 0.000825 1.07 

Reach 2 

(S2-S3) 
12.91 830 0.358 58.9 0.665 0.000825 1.03 

Reach 3 

(S3-S4) 
12.84 2,000 0.431 53.0 0.681 0.000825 1.08 

(1)Mean bed slope (2)Sinuosity which is a ratio of the curvilinear length to the straight-line 

length between the ends of the sub-reach 

 

 

3.1.3 Preprocessing for Breakthrough Curves 

The tracer test is a long-standing technique to indirectly identify the streamflow 

dynamics. Early tracer tests were able to provide only a few of concentration data by 

sampling to form a BTC due to lack of measurement technique (measuring once in 

minutes, hours, or even days) (Cox et al., 2003; De Smedt et al., 2005; Drummond 

et al., 2017, 2014; Gooseff et al., 2013; Piotrowski et al., 2007; Runkel, 1998). As 

the tracer measurement technique have been advanced recently, it is possible to 

acquire numerous data for a single BTC (measuring once in seconds) (Baek et al., 

2019; Bottacin-Busolin et al., 2011; Kim et al., 2021b; Shin et al., 2020). This 

advancement enables us to investigate smaller time-scale behavior of tracer transport 

along a river, but unfortunately it accompanies undesired noise as well. Due to the 

irregularity and randomness of nature, such as turbulence or morphological 

irregularity, the scale of such noise from rivers is much larger than common noise of 

digital signal. Therefore, the tracer BTC from rivers require more intensive denoising 
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techniques to clarify its mean behavior. However, the denoising process always 

distort the original information of primary data so that care must be taken. 

Before BTC denoising, truncation of background concentration has to 

precede on raw data. It is challenging to separate the BTC range from background 

concentration without information loss, especially in the tail part due to the error 

range of the fluorometer. The improper tail truncation could negatively affect mass-

related or storage zone-related analysis (Drummond et al., 2012). From experimental 

studies, several researches found that the late-time behavior of BTCs has a power-

law residence time distribution (RTD) in storage zone (Gooseff et al., 2005; Haggerty 

et al., 2002; Schumer et al., 2003). This tendency in BTC tail can lead the criteria of 

truncation point. Therefore, in this study, based on the power-law RTD assumption, 

the BTCs were plotted in log-log space, and the tailing part was truncated at the point 

where the linear relationship ends. The total mass of truncated BTCs was then 

recovered using the known injected mass of RWT to supplement the conservative 

tracer assumption. As argued in previous studies, the mass recovery rate of RWT is 

relatively low due to its sorbability (Runkel, 2015). However, Payn et al. (2008) and 

Aubeneau et al. (2015) have reported that sorption process do not change the 

fundamental shape of BTC. In this study, the average mass recovery rate of all 

experiments in this study was estimated as 84%, which is relatively higher than those 

that were summarized in Runkel (2015). 

3.2 Development of algorithm for storage effect quantification 
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3.2.1 Concept of residence time distribution 

When a number 𝑁 of solute particles was instantaneously introduced into 

a reactor, they may not release out simultaneously. The residence time within the 

reactor is different in different particles. The number of particles of the 𝑁 released 

within a time interval is the probability of the particles’ residence time in the time 

interval. Accordingly, the residence time distribution can be plotted as probability 

density function (PDF). This concept can not be only applied for the number of 

particles, but also for mass or concentration. 

The one-dimensional solute transport modeling is founded on the tracer test 

data. However, the downstream breakthrough curve from tracer test cannot 

frequently preserve the initial mass at the upstream boundary. Thus, the mass is often 

artificially recovered or the loss is lumpedly represented by first-order decay term. 

This in turn, indicates that the concentration data is not reliable. Therefore, in this 

study, the observed breakthrough curves are converted to the residence time 

distribution to kinematically analyze the temporal behavior of tracer regardless of 

mass 
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3.2.2 Convolutional Decomposition Equation (CDE) 

The propagation of solute released into a riverine system is referred as to 

non-Fickian transport because it is not only dominated by Fickian behavior but also 

by surrounded storage zones. To identify the effect that causes non-Fickian transport, 

we decomposed the Fickian behavior in surface flow and retention effect of storage 

zones. 

A time it takes particles travel in streams 𝑇 can be divided into two: a time 

that particles move 𝑇𝑚 and a time that particle be stopped 𝑇𝑠 (𝑇 = 𝑇𝑚 + 𝑇𝑠). The 

flowing surface water induces the particles to move downstream whereas inherent 

storage zones of channel restrict their mobility. Accordingly, the measured temporal 

data at surface water is a result from such combined system. The time variables for 

surface flow indicate how much time particles travels along the surface flow, and 

thus it is referred as to the residence time. Since the probability of certain residence 

time interval for a distance can be expressed as the portion of solute travels the 

distance for that time interval, the probability density function of residence time (also 

referred as to residence time distribution) can be easily related from the 

concentration data: 

 

𝑟(𝑡; 𝑥) =
𝐶(𝑡; 𝑥)

∫𝐶(𝑡; 𝑥)𝑑𝑡
=

𝑀

𝑄(𝑡)
𝐶(𝑡; 𝑥) (17) 
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where 𝑟 is the residence time distribution, 𝐶 is the time-concentration data at a 

streamwise distance 𝑥 , 𝑄  is a flow discharge, and 𝑀  is a total mass of solute 

introduced in a stream. 

The solute behavior in a surface flow without channel-morphological 

consideration is commonly interpreted as the Brownian motion with drift. However, 

this ideal behavior has a discrepancy in actual system due to the storage effects. The 

residence time distribution for this non-Fickian transport can be expressed with 

convolution operation with those for Fickian transport and storage effect. 

 

𝑟𝑛𝐹(𝑡; 𝑥) = 𝑟𝐹(𝑡; 𝑥) ∗ Φ(𝑡) = ∫ 𝑟𝐹(𝜏; 𝑥)Φ(𝜏 − 𝑡)𝑑𝜏
𝑡

0

 (18) 

 

where the asterisk symbol denotes the convolution operator, 𝑟𝐹  and 𝑟𝑛𝐹  is the 

residence time distribution for Fickian transport and non-Fickian transport, 

respectively, Φ is the Net Retention Time Function (NRTF), and the 𝜏 is dummy 

time variable. If there is no affection of the storage effect in riverine domain (in rare 

cases), the Φ has a form of the Dirac delta function as 

 

Φ(𝑡) = {
1, 𝑎𝑡 𝑡 = 0
0, 𝑎𝑡 𝑡 > 0

 (19) 
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It must be noted that the 𝑟(𝑡) is on the Eulerian time domain that focuses on specific 

time range. Whereas, the Φ is on the Lagrangian time domain that 𝑡 = 0 indicates 

that particles does not stay in a storage zone. 

The ADE is a classical model for the Fickian transport of a particle in 

streams. As previously mentioned, the shapes of residence time distribution in 

surface flow is equivalent to those of concentration-time curve in the same domain. 

Accordingly, the relevant residence time distribution can be inferred from the 

governing equation of the ADE. 

 

𝜕𝑟𝐹(𝑡; 𝑥)

𝜕𝑡
+ 𝑢

𝜕𝑟𝐹(𝑡; 𝑥)

𝜕𝑥
= 𝐷𝐿

𝜕𝑟𝐹(𝑡; 𝑥)

𝜕𝑥
 (20) 

 

where 𝑢(𝑚/𝑠𝑒𝑐)  is a reach-averaged flow velocity, and 𝐷𝐿(𝑚
2/𝑠𝑒𝑐)  is a 

longitudinal dispersion coefficient. When a mass pulse is instantaneously released at 

the upstream boundary, and 𝐶(𝑥 → ∞, 𝑡) = 𝐶(𝑥, 𝑡 = 0) = 0, the solution of Eq. (20) 

can be inferred from the analytical solution of the ADE. 

 

𝑟𝑛𝐹(𝑡; 𝑥) = ∫ [
𝑥

√4𝜋𝐷𝐿𝜏
3
exp {−

(𝑥 − 𝑢𝜏)2

4𝐷𝐿𝜏
}]Φ(𝜏 − 𝑡)𝑑𝜏

𝑡

0

 (21) 
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Eq. (16) is advantageous for fast computation and less risk of error due to 

the deterministic calculation, but it has the shortage from the limited configuration 

of the upstream boundary condition. Such instantaneous injection, as shown in 

Figure 12a, is experimentally difficult to fulfil, and even if the multi-point injection 

(or line injection) were performed, the tracer may appear to be a three-dimensional 

behavior. It should be noted that the one-dimensional analysis is only allowed after 

when the transversal and vertical mixing of solute along the stream is completed. 

The location of the upstream boundary should be far enough from the injection, more 

than the Taylor’s initial period, so that the transversal and vertical mixing is complete, 

as shown in Figure 12b. Thus, the mass pulse injection is not experimentally feasible. 

Alternatively, the analytical solution in which the shape-free breakthrough 

curve can be applied as an upstream boundary condition were developed using the 

concept of routing procedure (Fischer, 1966; Fischer, 1968; Baek and Seo, 2010; 

Baek and Seo, 2020; Baek, 2021). The routing procedure was initially developed in 

order to estimate the dispersion coefficient from two concentration-time curves 

measured at different stations. In other words, we can expect a downstream curve if 

a upstream curve and a dispersion coefficient are known. This 1D routing model 

requires the underlying assumption that no dispersion occurs during the solute cloud 

passes the measuring point, referred as to the frozen cloud approximation. Using the 

routing model, the analytical solution for Eq. (15) can be yielded as 
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𝑟𝑛𝐹(𝑡; 𝑥) = ∫
∫ [

𝑟𝑛𝐹(𝜏1; 0)𝑢

√4𝜋𝐷𝐿𝑇𝑐

exp {
{𝑥 − (𝜏2 − 𝜏1)𝑈}2

4𝐷𝐿𝑇𝑐
}]

𝜏2

0

Φ(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2

𝑡

0

 (22) 

 

 

 

Figure 12. Schematics of difference of upstream boundary conditions (a) 

Instantaneous mass pulse (Dirac delta function) (b) Concentration-time distribution 
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3.2.3 Deconvolution technique with BTCs 

In this study, a breakthrough curve was deemed an impulse-response signal, 

and we applied the deconvolution technique to estimated the Φ  from tracer 

breakthrough curves. Deconvolution is a useful technique in various fields to identify 

submerged information within a measured data by subtracting known components. 

For example, in digital image processing, the deconvolution technique is often used 

to restore the original sharp image from a blurred image (Krishnan and Fergus, 2009; 

Kundur and Hatzinakos, 1996). Such deconvolution, also known as inverse 

calculation, has also been used a few times with breakthrough curves from streams. 

Payn et al. (2008) calculated the non-parametric residence time distribution of solute 

at the reach scale using concentration curves measured at up- and downstream 

boundaries. They described the difficulty of deconvolution in the frequency domain 

because of the high frequency variability, and applied an alternative method, 

Geostatistical inversion. Another approach, maximum entropy deconvolution, was 

also used to investigate solute transport (Guymer & Stovin, 2011; Hart et al., 2016; 

Sonnenwald et al., 2011, 2014, 2015). Gooseff et al. (2011) attempted to estimate 

the memory function and proposed the validity of the Wiener filtering method for 

high-frequency noise cancellation. However, undesired oscillating distortion was 

seen in their results, which is known as the Gibbs phenomenon (Gibbs, 1898). This 

physically irrelevant phenomenon can often be observed in the filtering process and 

reduces the reliability of the results. To overcome such difficulties in the 

deconvolution process, we proposed the data stabilization method as below. 
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Breakthrough curves from nature contain considerable unexpected noise, 

which might be noise from Brownian motion, or fluctuations due to intricate 

unknowns, such as turbulence. So far, existing macroscopic studies for breakthrough 

curve have not required the investigation of these small time-scale variabilities. 

However, the deconvolution technique is a mathematical operation of the 

breakthrough curve in the Fourier domain, and thus such instability can induce 

serious computational errors.  

The convolution operator of equation (2) is converted to the multiplication 

in the Fourier domain as below: 

 

𝑟𝑛𝐹̃(𝑖𝜔; 𝑥) = 𝑟𝐹̃(𝑖𝜔; 𝑥) × Φ̃(𝑖𝜔) (23) 

 

where, upper tilde denotes a function converted from the time domain into the 

frequency domain by the Fast Fourier Transform (FFT). This was performed via an 

algorithm in Python language. For temporally equally spaced finite discrete series of 

both the experimental concentration data and simulation results, the discrete 

approximation of the FFT was derived as below (Bendat and Piersol, 2000): 

 

𝑥̃(𝜔) ≜ ∑ 𝑥𝑛𝑒−𝑖2𝜋𝜔𝑛∆𝑡

𝑁−1

𝑛=0

 (24) 
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where 𝑥𝑛 is the 𝑛th data among what is sampled at 𝑁 equally spaced points an 

interval ∆𝑡 apart, 𝑖 is the imaginary number √−1, and 𝜔 is the discrete frequency 

defined as 𝜔 = 𝑘 (𝑁∆𝑡)⁄  (𝑘 = 1, 2, … ,𝑁 − 1).  

In equation (15), Φ  can be obtained by dividing 𝑟𝑛𝐹̃  by 𝑟𝐹̃ , and then 

inversely converting to the temporal domain. In such deconvolution process, care 

must be taken due to the noise amplification problem. Figure 8a shows the raw data 

of 𝑟𝑛𝐹̃ measured at S2 of the tracer test, and the corresponding simulation result of 

𝑟𝐹̃ by the Routing model plotted in the frequency domain.  These two show periodic 

distributions, with different amplitude and similar wavelength in the low-frequency 

band. In this region, the deconvolution can function as an operator of dividing the 

amplitude values. However, above a certain frequency, ~0.005 Hz in Figure 13, 

wavelengths of 𝑟𝑛𝐹̃  and 𝑟𝐹̃  are likely to be significantly different. If at any 

frequency the numerator 𝑟𝑛𝐹̃ increases and the denominator 𝑟𝐹̃ decreases close to 

zero, Φ̃  increases to infinity, and vice versa. These phenomenon in the 

deconvolution process are known as poles and zeros. If a function has at least one 

pole, then the system is unstable (Bendat and Piersol, 2000). From the deconvolution 

in Reach 1 of the tracer test, the poles grow to the order of 1014 in the higher band, 

as shown in Figure 13b, and this unstable data cannot shape any ordered distribution 

in the time domain. Payn et al. (2008) also stated that the high-frequency variability 

makes the time domain distribution impossible to interpret. 
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Figure 13. Components of equation (15) in the frequency domain estimated from 

measurements at S2 of the tracer test in which the NRTF was calculated by Φ̃ =

𝑟̃𝑛𝐹 𝑟̃𝐹⁄  (real part only). (a) Semilog plot bounded by |Re[Φ̃]| < 1 and 10−4 <

𝜔 < 10−2  (b) Log-log plot bounded by Re[Φ̃] > 0  and 10−4 < 𝜔 < 0.125, in 

which the 0.125 Hz is the Nyquist frequency of the dataset. 
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3.2.4 Data stabilization for deconvolution 

Since the aim of the deconvolution in this study is to identify the significant 

range of the net retention time, such high-frequency variability is not in consideration. 

Accordingly, we applied a low-pass filter to restrain the divergence. In the filtering 

process, two strict conditions must be satisfied: First, as the purpose of filtering, the 

filter kernel should be able to effectively block the high-frequency contributions, so 

that the temporal data sequence should disclose its mean behavior. Second, the 

filtering process always distorts the primary data, and thus it must be ensured that 

the degree of distortion is acceptable. A common approach for the filtering is to 

design a Frequency Response Function (FRF), which is the ratio of the amplitudes 

of the modified data sequence to those of the given data sequence (Duchon, 1979). 

Among the FRFs, that of the ideal low-pass filter preserves the prior band of cutoff 

frequency, and completely rejects the latter band; its frequency response is a 

rectangular function (see Fig. 14). This was realized mathematically by multiplying 

a signal by the rectangular function in the frequency domain. However, a modified 

data sequence with such steep roll-off would exhibit undesirable oscillating artifacts, 

called the Gibbs phenomenon (Duchon, 1979). The Gibbs phenomenon is frequently 

manifested by such simple truncation, and in turn negatively affects the convergency 

of the Fourier transform and computation speed (Chen and Sivan, 2021). 

Accordingly, restraint of the Gibbs phenomenon is the additional required condition 

for filtering. The Butterworth filter was employed as an alternative for piecewise 

smooth transition, and its FRF is given by 
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|𝐻(𝑖𝜔)| =
1

1 + (
𝜔
𝜔𝑐

)
2𝑁 

(25) 

 

where |𝐻(𝑖𝜔)| denotes the FRF of the Butterworth filter, and 𝑁 denotes a filtering 

order that configures the transition smoothness. In this problem, the contribution of 

the high band is too high not to be sufficiently blocked with a smoothed transition. 

Therefore, we designed the filter in which the lower band than the cutoff frequency 

was smoothed by the Butterworth filter, and higher band than the cutoff frequency 

was completely stopped, as shown in Figure 14. 

 

 

Figure 14. Transition shapes of the ideal filter and the Butterworth filter by varying 
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filtering order. 

 

The key to the filtering is to determine the parameters: the filtering order, 

and the cutoff frequency. As the filtering order increases, the Gibbs phenomenon can 

be reduced, while the modified data sequence in the time domain tends to be 

scattered. Such tendency violates the first condition previously mentioned. As the 

order decreases, certain shapes of distribution in the time domain can be revealed, 

but undesired oscillation could be evident as well, as was seen in the results of 

Gooseff et al. (2011). To effectively eliminate the poles, the cutoff frequency should 

be low enough. However, if it is too low, the information of the primary data can be 

distorted, and the original residence time distribution may collapse. The most 

vulnerable part to the collapse is the peak value, and Figure 15 plots the peak collapse 

rate according to the cutoff frequency at each case of the tracer test. Based on the 

acceptable peak collapsed rate, the proper cutoff frequency was determined by 

equation (18): 

 

𝜔𝑐 = argmin
𝜔𝑐∈[0,𝜔𝑁]

||
max
𝑡∈𝑇

𝑟𝑜𝑏𝑠. − max
𝑡∈𝑇

F(𝑟𝑟𝑎𝑤;𝑁, 𝜔𝑐)

max
𝑡∈𝑇

𝑟𝑜𝑏𝑠.
| − 𝜀𝑎| (26) 

 

where F(∙) denote the filtering operator with the order, 𝑁, and the filter cutoff 

frequency, 𝜔𝑐(Hz), 𝜔𝑁 is the Nyquist frequency that is one-half of the sampling 
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rate, and 𝜀𝑎 is the allowed error rate configured as 0.01 in this study, indicating 99 % 

of the peak information is preserved. 

 

 

 

Figure 15. Peak collapse aspect according to cutoff frequency (a) breakthrough 

curve variation in Reach 1 (N=3) (b) Relative errors in peak values  
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3.2.5 Parameter estimation 

The 𝑟𝐹  contains two unknown parameters; mean flow velocity and 

longitudinal dispersion coefficient, which represents flow properties of surface flow. 

The method is twofold to determine the mean velocity for each sub-reach: One is to 

use arithmetic mean of the measured velocity data at the ends of the sub-reach, and 

the other is to use the measured concentration data. During the tracer tests, the 

measured velocity was cross-sectional averaged, not reach-averaged. The velocity-

based method thus requires an additional assumption that the flow velocity varies 

linearly in streamwise direction. Whereas the concentration-based method is to use 

concentration change which is affected by actual flow characteristics of sub-reach, 

including flow irregularities such as turbulence. Therefore, due to the better 

representability, the concentration-based method was applied in this study. 

The longitudinal dispersion coefficient is a key of solute transport modeling 

because it is directly connected to dilution mechanism and is difficult to be 

accurately estimated. The determination methods for the dispersion coefficient can 

be divided into two; theoretical models and empirical models, and inverse modeling. 

The theoretical models are relatively early models considering dispersion induced 

by special velocity gradient and corresponding shear flow (Elder, 1959; Fischer, 

1975, Fischer et al., 1975). However, since solute mixing in streams is not only from 

the shear flow, but also from other complicated factors, such theoretical approach 

has yielded practically poor accuracy. On that account, the various empirical 
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estimates have been proposed which treat the dispersion coefficient as a function of 

measurable data such as hydraulic flow properties and channel morphology based 

on the intensive indoor and field experiments; resultingly they have shown better 

accuracy. 

However, the goal of the CDE model is to decompose the mixing processes 

in the surface flow and the storage zone. Accordingly, the longitudinal dispersion 

coefficient unaffected by the storage effect is required in the model, and thus we 

brought back the theoretical models. Marion et al. (2008) demonstrated the relevance 

of the Fischer’s formula (Fischer, 1975, Fischer et al., 1975). 

 

𝐷𝐿 = 0.011
𝑢2𝑊2

𝑢∗ℎ
 (27) 

 

However, since the equation is a semi-empirical due to the constant value 

determined based on relatively small-scale experimental data and the 𝐷𝐿  is a 

function of the width to the power of 2, the 𝐷𝐿 can be over-estimated when the 

width of subject channel is large. Considering the average width of 56.43 m in case 

of the GC2019, the Fischer’s formula cannot be applied. Therefore, we employed 

the Elder’s equation which is for mixing in-plane boundary layer flow with infinite 

width. 
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𝐷𝐿 = 5.93ℎ𝑢∗ (28) 

 

The parameters 𝑇ℎ and 𝛼ℎ included in the 𝑟𝑟 were estimated from the 

measured concentration data. The parameters of which yielded minimum errors in 

comparision between the simulation concentration and the observed concentration. 

As an objective function for the comparision, the Route Mean Squared Error (RMSE) 

is used, defined as 

 

RMSE = √∑
(𝑟𝑜𝑏𝑠

𝑗
− 𝑟𝑠𝑖𝑚

𝑗
)
2

𝑁𝑜𝑏𝑠

𝑁𝑜𝑏𝑠

𝑗=1

 (29) 

 

where the 𝐶𝑜𝑏𝑠
𝑗

 is the observed residence time data at 𝑗th time step, the 𝐶𝑠𝑖𝑚
𝑗

 is the 

simulated residence time data at 𝑗 th time step, and the 𝑁𝑜𝑏𝑠  is the number of 

observation data.  

For such optimization technique, we should beware the failure of finding 

the global optima. In parameterization of nature system, there are often a single 

global optimum and multiple local optima with multiple parameter combinations. In 

such non-convex problem, the optimized parameters easily sink into the local optima, 

and may be differently obtained in different initial guess or bounds. In this case, the 

global optimization techniques are required which are computationally costlier. 
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This being so, we evaluated the convexity of the model structure by plotting 

the minimum RSME variation depending on varying 𝑇ℎ and 𝛼. As seen in Fig 14, 

for all the sub-reaches, the overall RSME gradients seem to be convex. Even though 

Figure 14 shows a small plateau near the 0.001 sec-1 of 𝛼 and Figure 16 is likely to 

shows multiple optima, they are induced by the fluctuation of the measured 

concentration data and their RSME differences are minor. On this basis, to solve the 

error minimization problem, we used the SLSQP (Sequential Least Squares 

Programming) which is a simple optimization scheme using the quasi-Newton 

method (Kraft, 1988). 
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Figure 16. 2D Contour plots from 3 lists: 𝑇ℎ(𝜖 𝛼⁄ ), 𝛼, and resulting RSME 
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3.3 Net retention time distribution in TSM 

If solute with a time-concentration curve 𝐶 in surface flow was transiently 

trapped once in a lump into a storage zone and released back to surface flow after a 

retention time distribution 𝜑, its primary 𝐶 is lagged affected by the storage zone as 

much as the 𝜑  and turns to 𝐶 ∗ 𝜑 . Accordingly, the 𝜑  represents the inherent 

storage effect of the stream and it may different in different streams. Non-Fickian 

models often includes a sink-source term into the ADE. As well as the TSM, the 

sink-source rate is proportional to the concentration difference. Using the defined 𝜑, 

the non-Fickian model can be expressed as below. 

 

𝜕𝐶

𝜕𝑡
= (−𝑢 + 𝐷𝐿

𝜕

𝜕𝑥
)
𝜕𝐶

𝜕𝑥
+ 𝛼(𝐶 − 𝐶 ∗ 𝜑) (30) 

 

where 𝑢(𝑚 𝑠−1)  is mean flow velocity, 𝐷𝐿(𝑚
2 𝑠)  is longitudinal dispersion 

coefficient, and 𝛼(𝑠−1)  is mass exchange rate. Eq. (18) can be written in the 

Laplace domain as 

 

[𝑠 + 𝛼(1 − 𝜑̅(𝑠))]𝐶̅(𝑠; 𝑥) + 𝑈
𝜕

𝜕𝑥
𝐶̅(𝑠; 𝑥) − 𝐷𝐿

𝜕2

𝜕𝑥2
𝐶̅(𝑠; 𝑥) = 𝐶̅(𝑡 = 0) (31) 
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where the upper bar denotes variables in Laplace domain, and 𝑠 denotes a Laplace 

variable. Meanwhile, the governing equation of the TSM were given as 

 

[𝑠 + 𝛼 (1 −

𝛼
𝜖

𝛼
𝜖 + 𝑠

)]𝐶̅(𝑠; 𝑥) + 𝑈
𝜕

𝜕𝑥
𝐶̅(𝑠; 𝑥) − 𝐷𝐿

𝜕2

𝜕𝑥2
𝐶̅(𝑠; 𝑥)

= 𝐶̅(𝑡 = 0) 

(32) 

 

where 𝜖 is the relative volumetric size of the storage zone to the flow zone. 

As a result, substituting the exponential distribution with the parameter 𝛼 𝜖⁄  into 

the 𝜑, Eq. (19) becomes equivalent to the governing equation of the TSM. Two 

different solutions were compared in Table 4. 

Under the assumption that the storage zones are homogeneous and 

uniformly distributed along the reach (see Fig. 17), Marion et al. (2008) proposed 

the exact solution for Φ(t) with a stochastic approach. Following their derivation, 

the defined NRTF can be expressed as below: 

 

Φ(t) = ∑ {
(𝛼𝑇𝑐)

𝑛𝑒−𝛼𝑇𝑐

𝑛!
}

∞

𝑛=0

{𝜑(𝑡 − 𝜏)}∗𝑛 (33) 
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where 𝑇𝑐  is characteristic time defined as 𝑥 𝑢⁄ . To sum, the NRTF can be 

mathematically defined with the mass exchange rate 𝛼  and the retention time 

distribution 𝜑 . Furthermore, the NRTF for the TSM can be inferred using the 

exponential form of the 𝜑. 

 

 

Figure 17. Phased assumptions for TSM modeling 

 

 

Table 4. Comparison between TSM parameters and NRTD in storage effect 

quantification  

 In storage effect quantification 

TSM parameters NRTD 

Parameter 2 parameters (𝛼,  𝜖) 
Non-parametric 

distribution 

Assumption 

Linear storage effect 

Ideal storage zones 

Exponential memory function 

Linear storage effect 
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Estimation Optimization Deconvolution 

Pros 

Simplicity & Applicability 

Low computational cost 

Existing relevant studies 

Closer to actual storage effect 

Cons 
Over-simplification 

Equivocal physical meaning 

Difficulty in estimation due to 

high-frequency variability of data 

 

Additionally, we compared the simulation results of the TSM and the CED 

with exponential memory function to demonstrate their equavalence. The common 

parameters; 𝑄, 𝑈, 𝐷𝐿 ,𝜖, 𝛼, were set as 3 cms, 0.5 m/s, 0.1 m2/s, 0.1, and 10-

3 s-1. Grid size was set as 10 m and the concenrtration was computed every 10 

sec for 20,000 sec. The simulation results were compared at 1, 2, 3, 5 km 

dowmstream from the upstream boundary (see Figure 18). The simulation 

results showed nearly identical breakthrough curves. As Figure 19 shows, te 

minor differences is attributed to the grid depencency of the numerical model 

of the TSM in that the CDE does not discretize the spatial distance.  

 

Figure 18. Comparison results of simulations from TSM and CDE. 
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Figure 19. Grid dependency test 

 

 

3.4 Biodegradation of chemicals in streams 

 Even though many solute transport analyses have been conducted in recent 

decades, few of these studies attempted to analyze reactive transport of chemicals as it 

is difficult to use toxic chemicals in a field test due to safety concerns. Most chemicals 

are inherently reactive in water. For example, methyl isocyanate is extremely toxic, 

but cannot be subjected to study since half of them is consumed in few minutes in 

excess water (Castro et al., 1985). Some hydrogen compounds dissociate or ionize 

almost completely in water. Some compounds with high vapor pressure or high 

Henry’s law constant may lose their mass when flowing downstream in a river due to 

their volatility. Therefore, the models need to consider these reaction characteristics to 

accurately predict the behavior of chemicals in rivers. In order to meet these needs, the 

OTIS-P (Runkel and Broshears, 1991; Runkel and Chapra, 1993; Runkel, 1998; 
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Gooseff et al., 2005) includes a sorption algorithm and first-order decay terms on the 

governing equation of the Transient Storage Model (TSM). The TSM is the most 

prominent and popular model because it can accurately simulate the skewness of a 

breakthrough curve (BTC) (Bencala and Walters, 1983). Afterwards Gooseff et al. 

(2005) referred to the expanded model of TSM as the Reactive Solute Transport Model 

(RSTM). In their study, Gooseff et al. (2005) estimated the first-order decay 

parameters using an optimization method with experimental data on nitrogen dioxide 

from a tracer test in Green Creek, Antarctica. The sorption parameter was set to an 

arbitrary value. Likewise, O’Connor et al. (2010) employed the improved inverse 

model to estimate the decay parameters. Haggerty et al. (2009) used resazurin as a 

smart tracer to provide additional biochemical information in streams. These efforts to 

estimate the reaction parameters that yield the best-fitting output have confirmed the 

validity of the first-order decay terms. However, the methods of parameter estimation 

have a practical limitation in that the parameters optimized for one chemical cannot be 

applied to another type of chemical. To address the above limitation, the current study 

attempts to present practical methods for reaction analysis of chemicals in rivers. The 

governing equations of the RSTM were manipulated. The numerical model was 

constructed using the Finite Difference Method (FDM) and Crank-Nicolson method. 

In addition, an analytical solution of the manipulated governing equations was devised 

in order to verify the numerical model. To determine the reactivity parameters, the 

inherent properties of chemicals were conjugated based on the appropriate theoretical 

and empirical methods. Since an estimation of conservative transport parameters 
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should precede reactive transport parameter estimation (Wagner and Harvey, 1999), 

tracer tests using Rhodamin WT were conducted at Gam Creek, South Korea in 2019 

and 2020. The test bed was also subjected to the reactive transport simulations. By 

extension, the simulation results were used for the sensitivity analysis of the model 

with respect to the decay parameters. A flow chart of model development and 

validation is shown in Fig. 1. 

 Organic chemicals in natural rivers commonly lose mass due to biochemical 

reactions, and the remaining chemical concentration can be plotted logarithmically 

with respect to time by first-order kinetics. This first-order kinetics is also referred to 

as a half-life kinetics because the half-life represents the elapsed time for a chemical 

to halve (Alexander, 1999). The biodegradation half-life has a relation with the first-

order biodegradation rate, 𝜆𝑏. 

 The EPI Suite from the US EPA offers several biodegradation models, in 

which an indication of biodegradation rate is provided in relative terms of time range, 

such as hours, days, and so on (Boethling et al., 1994). One of the models, BIOHCWIN, 

can estimate the biodegradation half-life using hydrocarbon content (Howard et al., 

2005). The provided half-life value was converted to the biodegradation rate using Eq. 

(13). 
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

4.1 Tracer behavior in a stream 

 As seen in Figure 13, the shape of tracer cloud was highly skewed with tails 

along the banks. Considering the bed materials and channel morphology of the 

testbed, it is attributed to the storage zones of shallow areas and hyporheic zones. 

The tailing effects also can be observed in the measured concentration-time curves 

in Figure 20. To demonstrate the limitation in accuracy of Gaussian approximation, 

the observed concentration-time curves were compared to ADE and TSM 

simulations. The model parameters were determined that yield best-fit curves to 

observations, and summarized in Table 5. It is noticeable that the longitudinal 

dispersion coefficients of ADE are much larger than those of TSM. It is because the 

ADE cannot distinguish the dispersion effect from shear flow and storage effect, so 

that the dispersion coefficients of ADE contains the dispersion effect by storage 

zones as well. Likewise, the mean velocities of the ADE were slower that those of 

TSM. In sum, the storage term and parameters of TSM partially play a role of 

delaying the tracer transport and spreading its cloud. 
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Table 5. Optimized parameters of ADE and TSM 

 ADE TSM 

 𝐷𝐿  

(m2/s) 

𝑈 

(m/s) 

𝐷𝐿  

(m2/s) 

𝑈 

(m/s) 

𝜖 

(-) 

𝛼 

(/sec) 

Reach 1 9.420 0.556 0.564 0.605 0.227 0.00038 

Reach 2 4.508 0.611 0.591 0.644 0.157 0.00029 

Reach 3 23.41 0.293 4.885 0.355 0.337 0.00015 

 

 

Figure 20. View of tracer behavior propagating upon dune-bedded river 

morphology (a) Transport of tracer cloud; (b) Tailing due to storage zone (c) Dune-

shape streambed composed of sand substrate with little vegetation.
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Such limitation of the ADE can be seen in the concentration curve 

simulation (see Figure 21 & 22). By incorporating the storage effect into the ADE, 

the simulation accuracy was improved. Quantitative accuracy comparison of 

simulation of the ADE and TSM were summarized in Table 6. 

 

Figure 21. Concentration-time curves observed at tracer test and simulated with 

ADE and TSM. 

 

 

Table 6. Accuracy comparison between the simulations of ADE and TSM 
 ADE TSM 
 R2 RMSE R2 RMSE 

S2 0.893 0.893 0.959 0.209 

S3 0.860 0.860 0.967 0.177 

S4 0.888 0.888 0.963 0.145 
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Figure 22. Concentration values along the falling limbs 
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On this tracer behavior, we applied the Convolutional Decomposition 

Equation delineated in section 3.2. Figure 23 showed how equation (6) functions 

combining with equation (13) by applying to the tracer observations. When 

simulated with the Fickian approximation of 𝑟𝑓  delineated in section 2.2, 0.406, 

0.954, 0.188 of R2 were estimated at S2, S3, and S4, respectively. This results 

indicated that the Elder’s shear dispersion underestimated the actual tracer cloud 

separation in the Gam Creek. This study attributed such additional separation to the 

storage effect. When this results were convolved by Φ with exponential 𝜑 (𝛼 and 

𝜖  were optimized), they became closer to the tracer behavior with 0.909, 0.996, 

0.959 of R2, respectively, indicating that Φ  can represent the time-dependent 

storage effect if the storage system is linear. 
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Figure 23. Tracer observations and simulation results of equation (6) at S2, S3, and S4. 
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Also, we should note that the width of the testbed could be too large to 

apply the one-dimensional analysis, resulting the breakthrough curve variation in 

transverse direction (see Figure 24) shows. In this case the cross-sectional averaged 

concentration cannot represent the concentration of the cross-section. However, 

since this study is interested in the travel time only, not concentration, the mass or 

concentration value of the curves were normalized. Therefore, such discrepancy with 

the conceptual model may not affect the results of this study. 

 

 

Figure 24. Breakthrough curve variation in transverse direction 
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4.2 Net retention time distribution 

Figure 25 shows the deconvolved NRTFs from the tracer test data in varying 

filtering order. These figures consistently show that the filtering with 𝑁 = 1 was 

not sufficiently able to block the high-frequency contributions, and thus the resulting 

NRTFs did not form clear distributions. Meanwhile, the ideal filter, which is the 

higher order filter, yielded continuously distributed shapes, but they oscillated. As a 

result, the filtering with 𝑁 = 3 yielded the least distorted and thus most reliable 

NRTFs. Although the filtered Φ  has negative values, since the NRTF is a 

probability density function, those negative values do not deeply affect evaluation of 

the temporal expectation. In comparison of the results, the NRTF of Reach 2 was 

distributed in a relatively low range of retention time. In particular, it peaked at zero, 

and as the retention time increased, gradually attenuated. This revealed that Reach 2 

had the lowest possibility of trapping tracer particles, which has links to the lowest 

potential storage effect among the sub-reaches. In contrast, that of Reach 3 was 

relatively shifted towards large retention time range, and peaked at ~1,000 s, 

indicating that Reach 3 had more storage effect-inducing environments than the 

others. 
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Figure 25. Estimated NRTFs from tracer test data in varying transition smoothness. 
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The estimated NRTFs were so artificially manipulated that the original 

distribution of observations could be distorted. To estimate the degree of distortion 

and demonstrate the validity of the deconvolved NRTFs, the original 𝑟𝑛𝐹̃ values 

were re-calculated from the filtered NRTFs by equation (2). Figure 10 was plotted 

in logarithmic scale of y-axis to see the late-time behavior of 𝑟𝑛𝐹̃. The result showed 

that the filtered data were well-fitted to the original data, except the tail part of S4. 

At each section, the determination coefficients (R2) were estimated as 0.999, 0.997, 

and 0.996, respectively, as plotted in Fig. 26. Therefore, the estimated NRTFs 

preserved the unmarred information of the original observations, and at the same 

time successively represented the temporal behavior of the tracer within the storage 

zones. 
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Figure 26. Validation of the deconvolved NRTFs by comparison with the 

observations. 
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CHAPTER V 

APPLICATION 

5.1 Evaluation of TSM simulation 

Based on the underlying reliability of the Fickian transport simulation with 

the Routing model, the NRTF estimation does not require any premise, such as the 

uniformity and homogeneity of the storage zones along the stream. In this study, the 

TSM’s conceptualization for the storage system and transient storage parameters 

were evaluated using the estimated NRTFs. There were two cases of TSM 

simulations: The first case (Case 1) was that the four parameters; 𝑈, 𝐷𝐿, 𝜖, and 𝛼 

defined in section 2.3, were determined that yielded the best-fitted breakthrough 

curve to observations using the optimization scheme of Noh et al. (2019, 2021), 

which is the classical technique for transient storage parameter determination (Choi 

et al., 2020; Femeena et al., 2020; Jackson et al., 2013; Kim et al., 2021a; Kim et al., 

2021b; Rana et al., 2017; Rivord et al., 2014; Rowiński & Piotrowski, 2008; 

Zaramella et al., 2016). Although high simulation accuracy can be expected from the 

first case, such roughly determined parameters cannot play each primary role that 

they were defined to represent. In particular, since the dispersion coefficient, 𝐷𝐿, 

and transient storage parameters, 𝜖  and 𝛼 , have similar roles in forming 

breakthrough curves, of lowering the peak value and increasing the temporal 

variance, they should thus be separately estimated. In this respect, the second case 

(Case 2) was that the 𝑈 was estimated from the advection velocity of the tracer 
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cloud front, the 𝐷𝐿 from Elder’s velocity profile-based equation. The remaining two 

transient storage parameters, 𝜖  and 𝛼 , were optimized. Table 7 summarizes the 

results of those two cases. The comparison results between the sub-reaches in section 

5.1 were also revealed in the parameters: In both cases, the largest retention time in 

Reach 3 and the shortest retention time in Reach 2 were also reflected in their 𝜖. In 

contrast to the similar 𝑈 of two cases at each sub-reach, noticeable differences in  

𝐷𝐿 were found. We attributed the larger 𝐷𝐿 to the lumped parameter estimation of 

Case 1, resulting in the storage effect-included 𝐷𝐿. In particular, the largest 𝐷𝐿 of 

Reach 3, Case 1, could be attributed to the largest storage effect, as seen in Figure 

25c. On the other hand, due to the uniform channel dimensions, Case 2 showed 

relatively uniform 𝐷𝐿  values of the sub-reaches. Instead, larger 𝜖  values were 

estimated than those of Case 1, especially that of Reach 3, representing that 

spreading of the tracer cloud beyond the Elder’s shear dispersion was characterized 

as storage effect. 

 

Table 7. Estimated transient storage parameters and corresponding R2. 

Case Sub-reach 

𝑈 

(m s−1) 
𝐷𝐿 

(m2 s−1) 

𝜖 

(-) 
𝛼 

(10−3𝑠−1) 
R2 

(-) 

Case 1 Reach 1 0.605 0.568 0.227 0.376 0.996 

 Reach 2 0.644 0.591 0.157 0.292 0.996 

 Reach 3 0.355 4.889 0.337 0.154 0.988 

Case 2 Reach 1 0.659 0.105 0.250 1.398 0.909 

 Reach 2 0.642 0.107 0.142 0.541 0.996 

 Reach 3 0.436 0.125 0.491 0.598 0.959 
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Figure 27 & 28 plot the simulation results of the two cases. For quantitative 

comparison of the deconvolved and simulated NRTFs, the expectation of net 

retention time 〈Φ〉 values were computed as 808, 430, and 3,135 s, respectively, as 

listed in Table 8. From these results, we provided several discussions. As expected, 

the first case simulations revealed more accurate results in the breakthrough curves. 

However, their expectation values of the net retention times were underestimated by 

as much as an average 44.3 %. This was because for Case 1, the longitudinal 

dispersion coefficients were overestimated much larger than the expected values 

induced by shear dispersion of Case 2. Therefore, the estimated 𝜖 and 𝛼 were not 

likely to accurately represent the inherent storage characteristics of the 

corresponding sub-reach. 
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Figure 27. Comparison of residence time distributions of the observations and TSM 

simulation 
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Figure 28. Comparison of the NRTFs of deconvolved observations and TSM 

simulations. 
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Table 8. Estimated net retention time expectations at each reach for the three cases. 

 Expectation (〈Φ〉, sec) 

 Observation 
Case 1 

(Accuracy1) 

Case 2 

(Accuracy1) 

Reach 1 808 
451 

(0.558) 

487 

(0.603) 

Reach 2 430 
198 

(0.460) 

361 

(0.840) 

Reach 3 3,135 
971 

(0.310) 

2,243 

(0.715) 
1Accuracy was calculated by 〈Φ〉𝑠𝑖𝑚. 〈Φ〉𝑂𝑏𝑠.⁄  

 

From the NRTF simulation results for Case 2 (Figure 15), it is clearly seen 

that the TSM still cannot accurately reproduce the natural storage effect. Although 

the transient storage parameters were optimized to the deconvolved NRTFs, poorer 

accuracies than Case 1 were obtained with an average 0.95 of R2 in the breakthrough 

curves. As with Case 1, the net retention time expectations were still underestimated 

by as much as an average 71.9 %. Since we have already demonstrated that the 

deconvoluted NRTF can produce the reliable 𝑟𝑛𝐹  without significant distortion, 

such NRTF discrepancy in Figure 15 was directly related to the 𝑟𝑛𝐹 discrepancy. 

Even so, since the estimated 𝜖 and 𝛼 were determined with the best-fitted NRTFs, 

it can be said that such discrepancy is not from the parameters, but from the structural 

defect of the TSM. In other words, the exponential 𝜑 that the TSM has could be a 

source of the errors, and thus it can be expected that such structural error can be 

reduced by defining appropriate function of 𝜑 in equation (13). Specifically, the 

NRTF of the equation (13) is a weighted superposition of the multi-convolution of 

negative exponential function 𝜑 that the TSM has. Hence the resulting NRTF would 
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similarily distributes, attenuating from 𝑡  = 0 which is hard to approximate the 

NRTF with large retention time scale. It was validated in range of 𝜖 from 10-3 to 100 

and 𝛼 from 10-5 to 10-3 when 𝑇𝑐 <1,000 sec (see Figure 29). This result supports 

the existing argument of the appropriateness of TSM for the fast exchange storage 

zones. 
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Figure 29. NRTD behavior in varying TSM parameters and increasing retention scale.
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5.2 Prediction of biodegradation of chemicals 

Based on the deconvolved NRTFs of the tracer, the biodegradation process 

inside the storage zone was investigated, as recent studies including Gooseff et al. 

(2011) maintain that the storage zones in streams are potential “hot spots” for 

biogeochemical activity. The general and acceptable assumption is that the degree 

of biochemical reaction of organic chemicals in an microbial environment is 

proportional to its concentration and elapsed time (Aubeneau et al., 2015). In this 

study, following the work of Kim et al. (2021), the loss rate by biochemical reaction, 

henceforth termed biodegradation, was inferred from the half-life kinetics that 

represents the ratio of elapsed time for a chemical staying in a microbial system to 

its concentration loss (see Figure 30).  

 

Figure 30. A conceptual model for nutrient retention in stream ecosystems (Valett 

et al., 1996) 

 



79 

 

To acquire the biodegradation half-lives of various compounds, Howard et 

al. (2005) developed the BIOHCWIN model, which is currently employed by the 

U.S. Environmental Protection Agency (US EPA). This is an estimator of the 

biodegradation half-lives for chemical compounds using their hydrocarbon structure 

when no reliable experimental data in environmental media are available. Using the 

biochemical half-lives of chemicals and the estimated NRTSs, we stochastically 

predicted how much biodegradation will be incurred within a given fluvial system at 

varying confidence intervals. Four chemical compounds: toluene, benzene, biphenyl, 

and naphthalene, were subject to the application. We assumed them to be neutrally 

buoyant, though such lower-molecular-weight petroleum (aromatic) hydrocarbons 

generally have lower density than water. Table 9 summarizes their biochemical half-

lives and corresponding loss rates, and Figure 31 illustrates them. As a result, it was 

predicted that the biphenyl of Reach 3 lost its mass more than the subject chemicals 

of the other reaches, despite its longest half-life. This is because Reach 3 has the 

longest retention time. Likewise, toluene, which has the fastest reactivity among the 

chemicals, could be less degraded in Reach 2 than benzene or naphthalene in the 

other reaches, because it would stay in the storage zones of Reach 2 for a shorter 

time than the others. 
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Figure 31. Stochastic estimations of biodegradation loss for toluene, benzene, 

biphenyl, and naphthalene. 
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Table 9. Estimations of biodegradation loss for toluene, benzene, biphenyl, and 

naphthalene in each reach. 

Compounds 

Biochemical 

half-life 

(days) 

Confidence 

interval 

Biodegradation (%) 

RC1 RC2 RC3 

Toluene 4.4937 Maximum 0.035 0.005 0.1807 

  Expectation 0.1419 0.0312 0.5576 

  50% 0.006 to 0.066 0 to 0.035 0.034 to 0.383 

  70% 0 to 0.171 0 to 0.055 0 to 0.627 

  90% 0 to 0.367 0 to 0.104 0 to 1.413 

Benzene 4.5467 Maximum 0.0346 0.0049 0.178 

  Expectation 0.1402 0.0309 0.5708 

  50% 0.006 to 0.066 0 to 0.035 0.034 to 0.378 

  70% 0 to 0.169 0 to 0.054 0 to 0.620 

  90% 0 to 0.363 0 to 0.102 0 to 1.397 

Biphenyl 31.0027 Maximum 0.0051 0 0.0262 

  Expectation 0.0206 0.0045 0.0837 

  50% 0.001 to 0.010 0 to 0.005 0.005 to 0.056 

  70% 0 to 0.025 0 to 0.008 0 to 0.091 

  90% 0 to 0.053 0 to 0.015 0 to 0.205 

Naphthalene 5.5603 Maximum 0.0283 0.004 0.146 

  Expectation 0.1146 0.0253 0.4668 

  50% 0.005 to 0.054 0 to 0.028 0.028 to 0.309 

  70% 0 to 0.138 0 to 0.044 0 to 0.507 

  90% 0 to 0.297 0 to 0.084 0 to 1.142 
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CHAPTER IV 

CONCLUSIONS 

Since the NRTF defined in this study represents the inherent storage 

characteristics of natural streams without assumptions in the form of storage zones, it 

is valuable for understanding and quantifying the time-dependent storage effect. The 

present study aimed at estimating the least-distorted NRTF from tracer test data. As a 

result, the NRTFs were successfully estimated using the signal deconvolution 

technique with the Butterworth filter. In addition, in-depth analyses were conducted 

on the (1) evaluation of storage mechanism modeling of TSM, and (2) stochastic 

prediction of biodegradation in a stream for various organic chemicals. 

From the current study, four key conclusions were derived. First, the NRTF 

of the stream was successfully estimated from tracer test data. The problematic high-

frequency variability of the observed data was controlled using low-pass filter, and the 

undesired Gibbs phenomenon was restrained by smoothing the response of the filter 

transition. The key to deconvolution was the appropriate determination of the filtering 

order and the cutoff frequency. In this study, the filtering order of 3 yielded the least-

distorted NRTFs. However, since the global applicability of the filtering parameters 

has yet to be proved, rigorous care should be taken in the filter parameter determination, 

depending on the data. 

Second, over the last few decades, many studies have demonstrated the 

simulation accuracy of the TSM with breakthrough curve optimization techniques 
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(Gooseff et al., 2005; Rivord et al., 2014; Kim et al., 2021). However, this study 

quantitatively revealed that such TSM simulation underestimated the inherent storage 

effect of the reach that was not seen in the breakthrough curves. That is, the accurate 

breakthrough curve simulation does not directly indicate the TSM’s accuracy. In this 

respect, the NRTFs can be valuable tools for evaluation of the one-dimensional storage 

system modeling. 

Third, as the retention time scale of the channel increases, the distribution of 

NRTFs will be shifted toward large time scale. Accordingly, due to the exponential 

function of φ embedded in the TSM, it will become harder to fit the large time scale 

NRTFs of natural streams with the TSM simulation. In other words, the longer the 

retention time scale that the channel has, the poorer the simulation results that the TSM 

is likely to yield. Thus, this result well demonstrated the limitation of the TSM stated 

by Marion et al. (2008). Such evaluation of storage system modeling using the 

deconvolved NRTFs can be applied to other existing models. 

Fourth, once how much time organic chemicals were trapped in the storage 

zone is identified, we can quantify the chemicals’ activity occurring within the storage 

zone. In this study, using the chemicals’ inherent loss rate by biogeochemical activity, 

biodegradation was estimated. As expected, if the chemical has a short biochemical 

half-life, or the retention time of the channel was long, high biodegradation was 

estimated. In addition, since the NRTF is a pdf with respect to retention time, the 

biodegradation can also be estimated in the pdf, and thus we can estimate the loss rate 
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with confidence interval that has less uncertainty. Such application could have errors 

by variation of temperature, pH, microbial populations, and so forth. Although such 

chemical uncertainty still remains, the probabilistic estimation of net retention time in 

this study could reduces the uncertainty in anomalous transport of chemicals in streams. 

The reliability of the estimated NRTFs was closely related to the accepted 

current velocity and dispersion coefficient. Such flow parameters should be 

representable for what they were physically supposed to be: 𝑈 is the mean advective 

velocity by river current, and 𝐷𝐿 is the longitudinal dispersion coefficient by shear 

dispersion. We estimated both parameters in this respect, and thus the effects beyond 

them (defined as the storage effect) are included in the deconvolved NRTFs and the 

transient storage parameters. This being so, if the transient storage parameters cannot 

accurately shape the estimated NRTF, the difference is attributed to structural error of 

the model. Moreover, the existing mathematical formulae for storage mechanism can 

be evaluated with the deconvolved NRTFs, as we have done with TSM. This NRTF 

would better represent the storage system than the breakthrough curve tails due to the 

successful exclusion of flow dynamics.  
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국문초록 

자연하천에서 물질 혼합해석을 위한 저장대에서의  

정체시간분포 산정 

 

서울대학교 대학원 

건설환경공학부 

김병욱 

 

자연하천에서 용존물질의 거동은 하천의 지형학적인 요인으로 형성된 

저장대의 영향에 의해 흐름 영역의 특성만으로 해석될 수 없다. 이러한 저장대 

효과를 분석하기 위해 지난 수십년동안 다양한 구조의 저장대 모형이 제시되어 

왔다. 용존물질의 하류이송을 지체시키는 이러한 저장대의 영향을 고려하기 

위해, 기존의 1 차원 이송-분산 방정식을 바탕으로 다양한 형태의 저장대 

모형이 개념적으로 제시되어 왔다. 이러한 모형의 타당성은 대부분 

흐름영역에서 측정한 추적자의 농도-시간 곡선의 실측값으로부터 증명되어 

왔다. 하지만, 흐름영역에서의 추적자 거동은 저장대의 영향보다 이송과 분산의 

영향에 더욱 민감하기 때문에, 이는 저장대의 영향을 대표하기 어려우며, 

저장대 모델링은 저장대의 영향의 실측값으로부터 검증되어야 한다. 하지만, 

자연하천의 저장대는 그 형태가 다양하며 경계가 모호하기 때문에 실측값을 

얻기 힘든 한계가 있다. 
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따라서, 본 연구에서는 이송, 분산의 영향과 저장대의 영향을 

명시적으로 구분할 수 있는 모형을 제시하고, 역합성곱 기법을 적용하여 

흐름영역에서 측정한 추적자의 거동으로부터 이송과 분산의 영향을 제외하여 

저장대의 영향만을 측정할 수 있는 방법을 제시하였다. 측정한 저장대의 영향은 

가장 대표적인 1 차원 저장대 모형인 Transient Storage Model (TSM)의 모의 

결과와 결정된 매개변수의 타당성을 검증하는데 활용되었다. 그 결과 TSM 의 

모의는 실제 하천의 저장대의 영향을 44%까지 과소평가하는 결과를 보였다. 

또한, 자연하천에서 저장대가 수계 생물화학적 반응의 주요 영역이라는 점을 

고려하여, 평가된 정체시간분포를 이용하여 여러 유기화학물질별 생화학적 

반응에 의한 감쇠정도를 평가하는데 활용되었다. 

 

주요어: 하천혼합, 저장대모형, 정체시간분포, 추적자 실험, 생화학적반응 

학번: 2020-22143 
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