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Abstract
Efficient Linear Contextual Bandit Algorithms with

Improved Regret Bounds

Wonyoung Kim

The Department of Statistics

The Graduate School

Seoul National University

This thesis contains two proposed efficient algorithms: (i) Doubly Robust

Thompson Sampling (DRTS) and (ii) Hybridization by Randomization (HyRan).

DRTS employs the doubly-robust method used in missing data literature to

Thompson Sampling with contexts (LinTS). A challenging aspect of the bandit

problem is that a stochastic reward is observed only for the chosen arm and

the rewards of other arms remain missing. The dependence of the arm choice

on the past context and reward pairs compounds the complexity of regret

analysis. Different from previous works relying on missing data techniques

[Dimakopoulou et al., 2019, Kim and Paik, 2019], the proposed algorithm is

designed to allow a novel additive regret decomposition leading to an improved

regret bound with the order of Õ(ϕ−2
√
T ), where ϕ2 is the minimum eigenvalue

of the covariance matrix of contexts and T is the time horizon. This is the

first regret bound of LinTS using ϕ2 without the dimension of the context, d

and the regret bound of the proposed algorithm is Õ(d
√
T ) in many practical

scenarios, improving the bound of LinTS by a factor of
√
d. A benefit of the

proposed method is that it utilizes all the context data, chosen or not chosen,

thus allowing to circumvent the technical definition of unsaturated arms used

in theoretical analysis of LinTS. Empirical studies show the advantage of the

proposed algorithm over LinTS.

HyRan is a novel bandit algorithm and show that our proposed algorithm

establish the regret bound of Õ(
√
dT ), which is optimal up to the logarithmic
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factors. The novelty comes from the two modifications where the first is to

utilize all contexts, both selected and unselected, and the second is to ran-

domize the contribution to the estimator. These modifications render a novel

decomposition of the cumulative regret into two main additive terms whose

bounds can be derived by employing the structure of the compounding esti-

mator. While previous algorithms such as SupLinUCB [Chu et al., 2011] have

shown Õ(
√
dT ) regret, exploiting independence via a phased algorithm, HyRan

is the first to achieve Õ(
√
dT ) regret keeping the practical advantage without

resorting to generating independent samples. The numerical experiments show

that the practical performance of our proposed algorithm is in line with the

theoretical guarantees.

Keywords: Efficient linear contextual bandit algorithms, Improved regret

bounds, Missing data, Randomization, Hybridization

Student Number : 2016-20263
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Chapter 1

Doubly Robust Thompson

Sampling with Linear Payoffs

1.1 Introduction

Contextual bandit has been popular in sequential decision tasks such as news

article recommendation systems. In bandit problems, the learner sequentially

pulls one arm among multiple arms and receives random rewards on each

round of time. While not knowing the compensation mechanisms of rewards,

the learner should make his/her decision to maximize the cumulative sum of

rewards. In the course of gaining information about the compensation mecha-

nisms through feedback, the learner should carefully balance between exploita-

tion, pulling the best arm based on information accumulated so far, and explo-

ration, pulling the arm that will assist in future choices, although it does not

seem to be the best option at the moment. Therefore in the bandit problem,

estimation or learning is an important element besides decision making.

A challenging aspect of estimation in the bandit problem is that a stochastic

reward is observed only for the chosen arm. Consequently, only the context and

reward pair of the chosen arm is used for estimation, which causes dependency
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of the context data at the round on the past contexts and rewards. To handle

this difficulty, I view bandit problems as missing data problems. The first

step in handling missing data is to define full, observed, and missing data. In

bandit settings, full data consist of rewards and contexts of all arms; observed

data consist of full contexts for all arms and the reward for the chosen arm;

missing data consist of the rewards for the arms that are not chosen. Typical

estimation procedures require both rewards and contexts pairs to be observed,

and the observed contexts from the unselected are discarded (see Table 1.1).

The analysis based on the completely observed pairs only is called complete

record analysis. Most stochastic bandit algorithms utilize estimates based on

complete record analysis. Estimators from complete record analysis are known

to be inefficient. In bandit setting, using the observed data whose probability of

observation depends on previous rewards requires special theoretical treatment.

There are two main approaches to missing data: imputation and inverse

probability weighting (IPW). Imputation is to fill in the predicted value of

missing data from a specified model, and IPW is to use the observed records

only but weight them by the inverse of the observation probability. The dou-

bly robust (DR) method [Robins et al., 1994, Bang and Robins, 2005] is a

combination of imputation and IPW tools. A review of missing data and DR

methods is provided in Section 1.7.5. The robustness against model misspec-

ification in missing data settings is insignificant in the bandit setting since

the probability of observation or allocation to an arm is known. The merit of

the DR method in the bandit setting is its ability to employ all the contexts

including unselected arms.

We propose a novel multi-armed contextual bandit algorithm called Doubly

Robust Thompson Sampling (DRTS) that applies the DR technique used in

missing data literature to Thompson Sampling with linear contextual bandits

(LinTS). The main thrust of DRTS is to utilize contexts information for all

arms, not just chosen arms. By using the unselected, yet observed contexts,

2



Table 1.1: The shaded data are used in complete record analysis (left) and DR
method (right) under multi-armed contextual bandit settings. The contexts,
rewards and DR imputing values are denoted by X, Y , and Y DR, respectively.
The question mark refers to the missing reward of unchosen arms.

t = 1 t = 2

Arm 1 X1,1 ? X1,2 ?

Arm 2 X2,1 ? Xa2(2) Ya2(2)

Arm 3 Xa1(1) Ya1(1) X3,2 ?

Arm 4 X4,1 ? X4,2 ?

t = 1 t = 2

Arm 1 X1,1 Y DR
1 (1) X1,2 Y DR

1 (2)

Arm 2 X2,1 Y DR
2 (1) Xa2(2) Y DR

a2
(2)

Arm 3 Xa1(1) Y DR
a1

(1) X3,2 Y DR
3 (2)

Arm 4 X4,1 Y DR
4 (1) X4,2 Y DR

4 (2)

along with a novel algorithmic device, the proposed algorithm renders a unique

regret decomposition which leads to a novel regret bound without resorting to

the technical definition of unsaturated arms used by Agrawal and Goyal [2013].

Since categorizing the arms into saturated vs. unsaturated plays a critical role

in costing extra
√
d, by circumventing it, we prove a Õ(d

√
T ) bound of the

cumulative regret in many practical occasions compared to Õ(d3/2
√
T ) shown

in Agrawal and Goyal [2013].

The main contributions of this part of the thesis are as follows.

• We propose a novel contextual bandit algorithm that improves the cu-

mulative regret bound of LinTS by a factor of
√
d (Theorem 1.1) in many

practical scenarios (Section 1.4.1). This improvement is attained mainly

by defining a novel set called super-unsaturated arms, that is utilizable

due to the proposed estimator and resampling technique adopted in the

algorithm.

• We provide a novel estimation error bound of the proposed estimator

(Theorem 1.3) which depends on the minimum eigenvalue of the covari-

ance matrix of the contexts from all arms without d.

• We develop a novel dimension-free concentration inequality for sub-Gaussian

3



vector martingale (Lemma 1.4) and use it in deriving the regret bound

in place of the self-normalized theorem by Abbasi-Yadkori et al. [2011].

• We develop a novel concentration inequality for the bounded matrix mar-

tingale (Lemma 1.6) which improves the existing result (Proposition 1.5)

by removing the dependency on d in the bound. Lemma 1.6 also al-

lows eliminating the forced sampling phases required in some bandit al-

gorithms relying on Proposition 1.5 [Amani et al., 2019, Bastani and

Bayati, 2020].

All missing proofs are in Section 1.7.3.

1.2 Related Works

Thompson Sampling [Thompson, 1933] has been extensively studied and shown

solid performances in many applications (e.g. Chapelle and Li [2011]). Agrawal

and Goyal [2013] is the first to prove theoretical bounds for LinTS and an

alternative proof is given by Abeille et al. [2017]. Both papers show Õ(d3/2
√
T )

regret bound, which is known as the best regret bound for LinTS. Recently,

Hamidi and Bayati [2020] points out that Õ(d3/2
√
T ) could be the best possible

one can get when the estimator used by LinTS is employed. In this thesis, I

improve this regret bound by a factor of
√
d in many practical scenarios through

a novel definition of super-unsaturated arms, which becomes utilizable due to

the proposed estimator and resampling device implemented in the algorithm.

This work assumes the independence of the contexts from all arms across

time rounds. Some notable works have used the assumption that the contexts

are independently identically distributed (IID). Leveraging the IID assump-

tion with a margin condition, Goldenshluger and Zeevi [2013] derives a two-

armed linear contextual bandit algorithm with a regret upper bound of order

O(d3logT ). Bastani and Bayati [2020] has extended this algorithm to any num-

4



ber of arms and improves the regret bound to O(d2log
3
2d · logT ). The margin

condition states that the gap between the expected rewards of the optimal arm

and the next best arm is nonzero with some constant probability. This condi-

tion is crucial in achieving a O(logT ) regret bound instead of Õ(
√
T ). In this

thesis, we do not assume this margin condition, and focus on the dependence

on the dimension of contexts d.

From a missing data point of view, most stochastic contextual bandit algo-

rithms use the estimator from complete record analysis except Dimakopoulou

et al. [2019] and Kim and Paik [2019]. Dimakopoulou et al. [2019] employs an

IPW estimator that is based on the selected contexts alone. Dimakopoulou

et al. [2019] proves a Õ(d
√
ϵ−1T 1+ϵN) regret bound for their algorithm which

depends on the number of arms, N . Kim and Paik [2019] considers the high-

dimensional settings with sparsity, utilizes a DR technique, and improves the

regret bound in terms of the sparse dimension instead of the actual dimension

of the context, d. Kim and Paik [2019] is different from the proposed algo-

rithm in several aspects: the mode of exploration (ϵ-greedy vs. Thompson

Sampling), the mode of regularization (Lasso vs. ridge regression); and the

form of the estimator. A sharp distinction between the two estimators lies

in that Kim and Paik [2019] aggregates contexts and rewards over the arms

although they employ all the contexts. If we apply this aggregating estimator

and DR-Lasso bandit algorithm to the low-dimensional setting, we obtain a

regret bound of order O(Nd
ϕ2

√
T ) when the contexts from the arms are indepen-

dent. This bound is bigger than the novel bound by a factor of d and N . It is

because the aggregated form of the estimator does not permit the novel regret

decomposition derived in Section 1.4.2. The proposed estimator coupled with

a novel algorithmic device renders the additive regret decomposition which in

turn improves the order of the regret bound.

5



1.3 Proposed Estimator and Algorithm

1.3.1 Settings and Assumptions

We denote a d-dimensional context for the ith arm at round t by Xi,t ∈ Rd,

and the corresponding random reward by Yi,t for i = 1, . . . , N . We assume

E [Yi,t|Xi,t] = XT
i,tβ for some unknown parameter β ∈ Rd. At round t, the

arm that the learner chooses is denoted by at ∈ {1, . . . , N}, and the optimal

arm by a∗t := argmaxi=1,...,N

{
XT

i,tβ
}

. Let regret(t) be the difference between

the expected reward of the chosen arm and the optimal arm at round t, i.e.,

regret(t) := XT
a∗t ,t

β −XT
at,tβ. The goal is to minimize the sum of regrets over

T rounds, R(T ) :=
∑T

t=1 regret(t). The total round T is finite but possibly

unknown. We also make the following assumptions.

Assumption 1. Boundedness for scale-free regrets. For all i =

1, . . . , N and t = 1, . . . , T , we have ∥Xi,t∥2 ≤ 1 and ∥β∥2 ≤ 1.

Assumption 2. Sub-Gaussian error. Let

Ht :=
t−1⋃
τ=1

[
{Xi,τ}Ni=1 ∪ {aτ} ∪ {Yaτ ,τ}

]
∪ {Xi,t}Ni=1,

be the set of observed data at round t. For each t and i, the error ηi,t :=

Yi,t − XT
i,tβ is conditionally zero-mean σ-sub-Gaussian for a fixed constant

σ ≥ 0, i.e, E [ηi,t|Ht] = 0 and E [ exp (ληi,t)|Ht] ≤ exp(λ2σ2/2), for all λ ∈ R.

Furthermore, the distribution of ηi,t does not depend on the choice at round t,

i.e. at.

Assumption 3. Independently distributed contexts. The stacked

contexts vectors {Xi,1}Ni=1, . . . , {Xi,T }Ni=1 ∈ RdN are independently distributed.

Assumption 4. Positive minimum eigenvalue of the average of

covariance matrices. For each t, there exists a constant ϕ2 > 0 such that

λmin

(
E
[

1
N

∑N
i=1Xi,tX

T
i,t

])
≥ ϕ2.

Assumptions 1 and 2 are standard in stochastic bandit literature Agrawal

6



and Goyal [2013]. We point out that given round t, Assumption 3 allows that

the contexts among different arms, X1,t, . . . , XN,t are correlated to each other.

Assumption 3 is weaker than the assumption of IID, and the IID condition is

considered by Goldenshluger and Zeevi [2013] and Bastani and Bayati [2020].

As Bastani and Bayati [2020] points out, the IID assumption is reasonable

in some practical settings, including clinical trials, where health outcomes of

patients are independent of those of other patients. Both Goldenshluger and

Zeevi [2013] and Bastani and Bayati [2020] address the problem where the

contexts are equal across all arms, i.e. X(t) = X1,t = . . . = XN,t, while this

thesis admits different contexts over all arms. Assumption 4 guarantees that

the average of covariance matrices of contexts over the arms is well-behaved

so that the inverse of the sample covariance matrix is bounded by the spectral

norm. This assumption helps controlling the estimation error of β in linear

regression models. Similar assumptions are adopted in existing works in the

bandit setting [Goldenshluger and Zeevi, 2013, Li et al., 2017, Amani et al.,

2019, Bastani and Bayati, 2020].

1.3.2 Doubly Robust Estimator

To describe the contextual bandit DR estimator, let πi(t) := P (at = i|Ht) > 0

be the probability of selecting arm i at round t. We define a DR pseudo-reward

as

Y DR
i (t) =

{
1− I (i = at)

πi,t

}
XT

i,tβ̆t +
I (i = at)

πi,t
Yat,t, (1.1)

for some β̆t depending on Ht. Background of missing data methods and deriva-

tion of the DR pseudo-reward is provided in Section 1.7.5. Now, we propose a

new estimator β̂t with a regularization parameter λt as below:

β̂t =

(
t∑

τ=1

N∑
i=1

Xi,τX
T
i,τ + λtI

)−1( t∑
τ=1

N∑
i=1

Xi,τY
DR
i (τ)

)
. (1.2)

7



Harnessing the pseudo-rewards defined in (1.1), we can make use of all contexts

rather than just selected contexts. The DR estimator by Kim and Paik [2019]

utilizes all contexts but has a different form from (1.2). While Kim and Paik

[2019] uses Lasso estimator with pseudo-rewards aggregated over all arms, we

use ridge regression estimator with pseudo-rewards in (1.1) which are defined

separately for each i = 1, . . . , N . This seemingly small but important difference

in forms paves a way in rendering the novel regret decomposition and improving

the regret bound.

1.3.3 Algorithm

In this subsection, we describe the proposed algorithm, DRTS which adapts

DR technique to LinTS. The DRTS is presented in Algorithm 1.1. Distinctive

features of DRTS compared to LinTS include the novel estimator and the re-

sampling technique. At each round t ≥ 1, the algorithm samples β̃i(t) from the

distribution N(β̂t−1, v
2V −1

t−1) for each i independently. Let Ỹi(t) := XT
i,tβ̃i(t)

and mt := argmaxi Ỹi(t). We set mt as a candidate action and compute

π̃mt(t) := P(Ỹmt(t) = maxi Ỹi(t)|Ht). 1 If π̃mt(t) > γ, then the arm mt is

selected, i.e., at = mt. Otherwise, the algorithm resamples β̃i(t) until it finds

another arm satisfying π̃i(t) > γ up to a predetermined fixed value Mt. Section

1.7.1 describes issues related to Mt including a suitable choice of Mt.

The resampling step is incorporated to avoid small values of the probability

of selection so that the pseudo-reward in (1.1) is numerically stable. A naive

remedy to stabilize the pseudo-reward is to use max{πi,t, γ}, which fails to

leading to Õ(d
√
T ) regret bound since it induces bias and also cannot guar-

antee that the selected arm is in the super-unsaturated arms defined in (1.5)

with high probability (For details, see Section 1.4.2). The resampling step
1This computation is known to be challenging but employing the independence among

β̃1(t), . . . , β̃N (t), we derive an explicit form approximating π̃mt(t) in supplementary materials
Section 1.7.4
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Algorithm 1.1 Doubly Robust Thompson Sampling for Linear Contextual
Bandits (DRTS)

Input: Exploration parameter v > 0, Regularization parameter λ > 0,
Selection probability threshold γ ∈ [1/(N + 1), 1/N), Imputation estimator
β̆u = f({X(τ), Yaτ ,τ}u−1

τ=1), Number of maximum possible resampling Mt.
Set F0 = 0, W0 = 0, β̂0 = 0 and V0 = λI
for t = 1 to T do

Observe contexts {Xi,t}Ni=1.
Sample β̃1(t), . . . , β̃N (t) from N(β̂t−1, v

2V −1
t−1) independently. Compute

Ỹi(t) = XT
i,tβ̃i(t)

Observe a candidate action mt := argmaxi Ỹi(t).
Compute π̃mt(t) := P

(
maxi Ỹi(t) = Ỹmt(t)

∣∣∣Ht

)
.

for l = 1 to Mt do
if π̃mt(t) ≤ γ then

Sample another β̃1(t), . . . , β̃N (t), observe another mt, and update
π̃mt(t).

else
Break.

end if
end for
Set at = mt, and play arm at.
Observe reward Yat,t and compute Y DR

i (t)

Ft = Ft−1+
∑N

i=1Xi,tY
DR
i (t); Wt = Wt−1+

∑N
i=1Xi,tX

T
i,t; Vt = Wt+λ

√
tI

β̂t = V −1
t Ft

Update β̆t+1 for next round.
end for

implemented in the proposed algorithm is designed to solve these problems.

1.4 Theoretical Results

The theoretical results are organized as follows. In Section 1.4.1, we provide

the main result, the cumulative regret bound of Õ(ϕ−2
√
T ) of DRTS. The main

thrust of deriving the regret bound is to define super-unsaturated arms. In

Section 1.4.2 we introduce the definition of super-unsaturated arms and show

how it admits a novel decomposition of the regret into two additive terms as in

9



(1.6). In Section 1.4.3 we bound each term of the decomposed regret bounds

(1.6). The first term is the estimation error, and Theorem 1.3 finds its bound.

In the course of proving Theorem 1.3, we need Lemma 1.4, which plays a

similar role to the self-normalized theorem of Abbasi-Yadkori et al. [2011]. We

conclude the section by presenting Lemma 1.6 and bound the second term of

(1.6).

1.4.1 An Improved Regret Bound

Theorem 1.1 provides the regret bound of DRTS in terms of the minimum

eigenvalue without d.

Theorem 1.1. Suppose that Assumptions 1-4 hold. If β̆t in Algorithm 1.1

satisfies ∥β̆t − β∥2 ≤ b for a constant b > 0, for all t = 1, . . . , T , then with

probability 1−2δ, the cumulative regret by time T for DRTS algorithm is bounded

by

R(T ) ≤ 2 +
4Cb,σ

ϕ2

√
T log

12T 2

δ
+

2
√
2T

ϕ
√
N

, (1.3)

where Cb,σ is a constant which depends only on b and σ.

The bound (1.3) has a rate of O(ϕ−2
√
T ). The relationship between the

dimension d and the minimum eigenvalue ϕ2 can be shown by

dϕ2 =
d

N
λmin

(
E

N∑
i=1

Xi,tX
T
i,t

)
≤ 1

N
E

N∑
i=1

Tr
(
Xi,tX

T
i,t

)
=

1

N
E

N∑
i=1

∥Xi,t∥22 ≤ 1.

This implies ϕ−2 ≥ d, 2 but there are many practical scenarios such that

ϕ−2 = O(d) holds. Bastani et al. [2021] identifies such examples including the

uniform distribution and truncated multivariate normal distributions. When

the context has uniform distribution on the unit ball, ϕ−2 = d+ 2. When the
2Some previous works assume ϕ−2 = O(1) even when ∥Xi,t∥2 ≤ 1 (e.g. Li et al. [2017]).

As pointed out by Ding et al. [2021], this assumption is unrealistic and the reported regret
bound should be multiplied by O(d).

10



context has truncated multivariate normal distribution with mean 0 and co-

variance Σ, we can set ϕ−2 = (d+2) exp( 1
2λmin(Σ)). For more examples, we refer

to Bastani et al. [2021]. Furthermore, regardless of distributions, ϕ−2 = O(d)

holds when the correlation structure has the row sum of off-diagonals indepen-

dent of the dimension, for example, AR(1), tri-diagonal, block-diagonal matri-

ces. In these scenarios, the regret bound in (1.3) becomes Õ(d
√
T ). Compared

to the previous bound of LinTS [Agrawal and Goyal, 2014, Abeille et al., 2017],

we obtain a better regret bound by the factor of
√
d for identified practical

cases.

As for the imputation estimator β̌t, we assume that ∥β̌t−β∥2 ≤ b, where b is

an absolute constant. We suggest two cases which guarantee this assumption.

First, if a biased estimator is used, we can rescale the estimator so that its

l2-norm is bounded by some constant C > 0. Then, ∥β̌t − β∥2 ≤ ∥β̌t∥2 +

∥β∥2 ≤ C + 1 and b = C + 1. Second, consistent estimators such as ridge

estimator or the least squared estimator satisfy the condition since ∥β̌t−β∥2 =

O(d
√

log t/t). The term d is canceled out when t ≥ td, where td is the minimum

integer that satisfies log t/t ≤ d−2. In these two cases, we can find a constant

b which satisfies the assumption on the imputation estimator β̌t.

1.4.2 Super-unsaturated Arms and a Novel Regret Decompo-

sition

The key element in deriving (1.3) is to decompose the regret into two additive

terms as in (1.6). To allow such decomposition to be utilizable, we need to

define a novel set of arms called super-unsaturated arms, which replaces the

role of unsaturated arms in Agrawal and Goyal [2014]. The super-unsaturated

arms are formulated so that the chosen arm is included in this set with high

probability. For each i and t, let ∆i(t) := XT
a∗t ,t

β − XT
i,tβ. Define At :=∑t

τ=1Xaτ ,τX
T
aτ ,τ + λI and Vt :=

∑t
τ=1

∑N
i=1Xi,τX

T
i,τ + λtI. For the sake of

11



contrast, recall the definition of unsaturated arms by Agrawal and Goyal [2014]

as

Ut :=
{
i : ∆i(t) ≤ gt ∥Xi,t∥A−1

t−1

}
, (1.4)

where gt := C
√
d log(t/δ)min{

√
d,
√
logN} for some constant C > 0. This

gt is constructed to ensure that there exists a positive lower bound for the

probability that the selected arm is unsaturated. In place of (1.4), we define a

set of super-unsaturated arms for each round t by

Nt :=

{
i : ∆i(t) ≤ 2

∥∥∥β̂t−1 − β
∥∥∥
2
+

√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xi,t∥2V −1
t−1

}
. (1.5)

While gt ∥Xi,t∥A−1
t−1

in (1.4) is normalized with only selected contexts, the

second term in the right hand side of (1.5) is normalized with all contexts

including Xa∗t ,t
, the contexts of the optimal arm. This bound of ∆i(t) plays a

crucial role in bounding the regret with a novel decomposition as in (1.6). The

following Lemma shows a lower bound of the probability that the candidate

arm is super-unsaturated.

Lemma 1.2. For each t, let mt := argmaxi Ỹi(t) and let Nt be the super-

unsaturated arms defined in (1.5). For any given γ ∈ [1/(N + 1), 1/N), set

v = (2 log (N/(1− γN)))−1/2. Then, P (mt ∈ Nt|Ht) ≥ 1− γ.

Lemma 1.2 directly contributes to the reduction of
√
d in the hyperparame-

ter v. In Agrawal and Goyal [2014], to prove a lower bound of P (at ∈ Ut|Ht),

it is required to set v =
√
9d log(t/δ), with the order of

√
d. In contrast,

Lemma 1.2 shows that v does not need to depend on d due to the definition

of super-unsaturated arms in (1.5). In this way, we obtain a lower bound of

P (mt ∈ Nt|Ht) without costing extra
√
d.

Using the lower bound, we can show that the resampling scheme allows the

algorithm to choose the super-unsaturated arms with high probability. For all

12



i /∈ Nt,

π̃i(t) := P (mt = i|Ht) ≤ P
(
∪j /∈Nt

{mt = j}
∣∣Ht

)
= P (mt /∈ Nt|Ht) ≤ γ,

where the last inequality holds due to Lemma 1.2. Thus, in turn, if π̃i(t) > γ,

then i ∈ Nt. This means that {i : π̃i(t) > γ} is a subset of Nt and

{at ∈ {i : π̃i(t) > γ}} ⊂ {at ∈ Nt}.

Hence, the probability of the event {at ∈ Nt} is greater than the probability

of sampling any arm which satisfies π̃i(t) > γ. Therefore, with resampling, the

event {at ∈ Nt} occurs with high probability. (See Section 1.7.1 for details.)

When the algorithm chooses the arm from the super-unsaturated set, i.e.,

when at ∈ Nt happens, (1.5) implies

∆at(t) ≤ 2
∥∥∥β̂t−1 − β

∥∥∥
2
+

√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xat,t∥
2
V −1
t−1

. (1.6)

By definition, ∆at(t) = regret(t) and the regret at round t can be expressed

as the two additive terms, which presents a stark contrast with multiplicative

decomposition of the regret in Agrawal and Goyal [2014]. In section 1.4.3 we

show how each term can be bounded with separate rate.

1.4.3 Bounds for the Cumulative Regret

We first bound the leading term of (1.6) and introduce a novel estimation error

bound free of d for the contextual bandit DR estimator.

Theorem 1.3. (A dimension-free estimation error bound for the contextual

bandit DR estimator.) Suppose Assumptions 1-4 hold. For each t = 1, . . . , T ,

let β̆t be any Ht-measurable estimator satisfying ∥β̆t − β∥2 ≤ b, for some

constant b > 0. For each i and t, assume that πi,t > 0 and that there ex-
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ists γ ∈ [1/(N + 1), 1/N) such that πat,t > γ. Given any δ ∈ (0, 1), set

λt = 4
√
2N
√

t log 12τ2

δ . Then with probability at least 1 − δ, the estimator β̂t

in (1.2) satisfies ∥∥∥β̂t − β
∥∥∥
2
≤

Cb,σ

ϕ2
√
t

√
log

12t2

δ
, (1.7)

for all t = 1, . . . , T , where the constant Cb,σ which depends only on b and σ.

In bandit literature, estimation error bounds typically include a term in-

volving d which emerges from using the following two Lemmas: (i) the self-

normalized bound for vector-valued martingales [Abbasi-Yadkori et al., 2011,

Theorem 1] , and (ii) the concentration inequality for the covariance matrix

[Tropp, 2015, Corollary 5.2]. Instead of using (i) and (ii), we develop the two

dimension-free bounds in Lemmas 1.4 and 1.6, to replace (i) and (ii), respec-

tively. With the two Lemmas, we eliminate the dependence on d and express

the estimation error bound with ϕ2 alone.

Lemma 1.4. (A dimension-free bound for vector-valued martingales.) Let

{Fτ}tτ=1 be a filtration and {η(τ)}tτ=1 be a real-valued stochastic process such

that η(τ) is Fτ -measurable. Let {X(τ)}tτ=1 be an Rd-valued stochastic process

where X(τ) is Fτ−1-measurable and ∥X(τ)∥2 ≤ 1. Assume that {η(τ)}tτ=1 are

σ-sub-Gaussian as in Assumption 2. Then with probability at least 1 − δ/t2,

there exists an absolute constant C > 0 such that∥∥∥∥∥
t∑

τ=1

η(τ)X(τ)

∥∥∥∥∥
2

≤ Cσ
√
t

√
log

4t2

δ
. (1.8)

Compared to Theorem 1 of Abbasi-Yadkori et al. [2011], the bound (1.8)

does not involve d, yielding a dimension-free bound for vector-valued martin-

gales. However, the bound (1.8) has
√
t term which comes from using ∥·∥2

instead of the self-normalized norm ∥·∥V −1
t

.

14



To complete the proof of Theorem 1.3, we need the following condition,

λmin (Vt) ≥ ct, (1.9)

for some constant c > 0. Li et al. [2017] points out that satisfying (1.9) is

challenging. To overcome this difficulty, Amani et al. [2019] and Bastani and

Bayati [2020] use an assumption on the covariance matrix of contexts and a

concentration inequality for matrix to prove (1.9), described as follows.

Proposition 1.5. Tropp [2015, Theorem 5.1.1] Let P (1), . . . , P (t) ∈ Rd×d

be the symmetric matrices such that λmin(P (τ)) ≥ 0, λmax(P (τ)) ≤ L and

λmin(E[P (τ)]) ≥ ϕ2, for all τ = 1, 2, . . . , t. Then,

P

(
λmin

(
t∑

τ=1

P (τ)

)
≤ tϕ2

2

)
≤ d exp

(
− tϕ2

8L

)
. (1.10)

To prove (1.9) using (1.10) with probability at least 1− δ, for δ ∈ (0, 1), it

requires t ≥ 8L
ϕ2 log d

δ . Thus, one can use (1.10) only after O(ϕ−2 log d) rounds.

Due to this requirement, Bastani and Bayati [2020] implements the forced sam-

pling techniques for O
(
N2d4(log d)2

)
rounds, and Amani et al. [2019] forces to

select arms randomly for O
(
ϕ−2 log d

)
rounds. These mandatory exploration

phase empirically prevents the algorithm choosing the optimal arm. An alter-

native form of matrix Chernoff inequality for adapted sequences is Theorem 3

in Tropp [2011], but the bound also has a multiplicative factor of d. Instead

of applying Proposition 1.5 to prove (1.9), we utilize a novel dimension-free

concentration inequality stated in the following Lemma.

Lemma 1.6. (A dimension-free concentration bound for symmetric bounded

matrices.) Let ∥A∥F be a Frobenious norm of a matrix A. Let {P (τ)}tτ=1 ∈

Rd×d be the symmetric matrices adapted to a filtration {Fτ}tτ=1. For each τ =

1, . . . , t, suppose that ∥P (τ)∥F ≤ c, for some c > 0 and λmin (E [P (τ)| Fτ−1]) ≥

ϕ2 > 0, almost surely. For given any δ ∈ (0, 1), set λt ≥ 4
√
2c
√
t
√
log 4t2

δ .
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Then with probability at least 1− δ/t2,

λmin

(
t∑

τ=1

P (τ) + λtI

)
≥ ϕ2t. (1.11)

Lemma 1.6 shows that setting λt with
√
t rate guarantees (1.9) for all t ≥ 1.

We incorporate λt stated in Lemma 1.6 in the estimator (1.2), and show in

Section 1.5 that the DR estimator regularized with λt outperforms estimators

from other contextual bandit algorithms in early rounds.

We obtain the bounds free of d in Lemmas 1.4 and 1.6 mainly by applying

Lemma 2.3 in Lee et al. [2016] which states that any Hilbert space martingale

can be reduced to R2. Thus, we can project the vector-valued (or the matrix)

martingales to R2-martingales, and reduce the dimension from d (or d2) to 2.

Then we apply Azuma-Hoeffding inequality just twice, instead of d times. In

this way, Lemma 1.6 provides a novel dimension-free bound for the covariance

matrix.

Lemmas 1.4 and 1.6 can be applied to other works to improve the existing

bounds. For example, using these Lemmas, the estimation error bound of

Bastani and Bayati [2020] can be improved by a factor of log d. Proposition

EC.1 of Bastani and Bayati [2020] provides an estimation error bound for

the ordinary least square estimator by using Proposition 1.5 and bounding all

values of d coordinates. By applying Lemmas 1.4 and 1.6, one does not have

to deal with each coordinate and eliminate dependence on d.

Using Lemma 1.6, we can bound the second term of the regret in (1.6) as

follows. For j = 1, . . . , N

∥Xj,t∥V −1
t−1

≤ ∥Xj,t∥2
√∥∥V −1

t−1

∥∥
2
≤ λmin (Vt−1)

−1/2 ≤ 1√
ϕ2N(t− 1)

. (1.12)

Finally, we are ready to bound regret(t) in (1.6).

Lemma 1.7. Suppose the assumptions in Theorem 1.1 hold. Then with prob-
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ability at least 1− 2δ,

regret(t) ≤
2Cb,σ

ϕ2
√
t− 1

√
log

12t2

δ
+

√
2

ϕ
√
N(t− 1)

, (1.13)

for all t = 2, . . . , T .

Proof. Since at is shown to be super-unsaturated with high probability, we can

use (1.6) to have regret(t) ≤ 2∥β̂t−1 − β∥2 +
√
∥Xa∗t ,t

∥2
V −1
t−1

+ ∥Xat,t∥2V −1
t−1

, for

all t = 2, . . . , T . We see that the first term is bounded by Theorem 1.3, and the

second term by (1.12). Note that to prove Theorem 1, Lemma 1.6 is invoked,

and the event (1.11) of Lemma 1.6 is a subset of that in (1.7). Therefore (1.13)

holds with probability at least 1 − 2δ instead of 1 − 3δ. Details are given in

Section 1.7.3.

Lemma 1.7 shows that the regret at round t does not exceed a O(ϕ−2t−1/2)

bound when at ∈ Nt, which is guaranteed in the algorithm via resampling with

high probability. This concludes the proof of Theorem 1.1.

1.5 Simulation Studies

In this section, we compare the performances of the three algorithms: (i)

LinTS [Agrawal and Goyal, 2013], (ii) BLTS [Dimakopoulou et al., 2019], and

(iii) the proposed DRTS. We use simulated data described as follows. The

number of arms N is set to 10 or 20, and the dimension of contexts d is

set to 20 or 30. For each element of the contexts j = 1, · · · , d, we generate

[X1j(t), · · · , XNj(t)] from a normal distribution N (µN , VN ) with mean µ10 =

[−10,−8, · · · ,−2, 2, · · · , 8, 10]T , or µ20 = [−20,−18, · · · ,−2, 2, · · · , 18, 20]T ,

and the covariance matrix VN ∈ RN×N has VN (i, i) = 1 for every i and

VN (i, k) = ρ for every i ̸= k. We set ρ = 0.5 and truncate the sampled

contexts to satisfy ∥Xi(t)∥2 ≤ 1. To generate the stochastic rewards, we sam-
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ple ηi(t) independently from N (0, 1). Each element of β follows a uniform

distribution, U(−1/
√
d, 1/

√
d).

All three algorithms have v as an input parameter which controls the vari-

ance of β̃i(t). BLTS and DRTS require a positive threshold γ which truncates

the selection probability. We consider v ∈ {0.001, 0.01, 0.1, 1} in all three

algorithms, γ ∈ {0.01, 0.05, 0.1} for BLTS, and set γ = 1/(N + 1) in DRTS.

Then we report the minimum regrets among all combinations. The regular-

ization parameter is λt =
√
t in DRTS and λt = 1 in both LinTS and BLTS. To

obtain an imputation estimator β̌t required in DRTS, we use ridge regression

with {Xaτ ,τ , Yaτ ,τ}t−1
τ=1, for each round t. Other implementation details are in

Section 1.7.4.

Figure 1.1 shows the average of the cumulative regrets and the estimation

error ∥β̂t − β∥2 of the three algorithms based on 10 replications. The figures

in the two left columns show the average cumulative regret according to the

number of rounds with the best set of hyperparameters for each algorithm.

The total rounds are T = 20000. The figures in the third columns show the

average of the estimation error ∥β̂t − β∥2. In the early stage, the estimation

errors of LinTS and BLTS increase rapidly, while that of DRTS is stable. The

stability of the DR estimator follows possibly by using full contexts and the

regularization parameter λt =
√
t. This yields a large margin of estimation

error among LinTS, BLTS and DRTS, especially when the dimension is large.

1.6 Conclusion

In this part of the thesis, we propose a novel algorithm for stochastic contex-

tual linear bandits. Viewing the bandit problem as a missing data problem, we

use the DR technique to employ all contexts including those that are not cho-

sen. With the definition of super-unsaturated arms, we show a regret bound

which only depends on the minimum eigenvalue of the sample covariance ma-
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Figure 1.1: A Comparison of cumulative regrets and estimation errors of
LinTS, BLTS and DRTS. Each line shows the averaged cumulative regrets (esti-
mation errors, resp.) and the shaded area in the right two figures represents
the standard deviations over 10 repeated experiments.
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trices. This new bound has Õ(d
√
T ) rate in many practical scenarios, which

is improved by a factor of
√
d compared to the previous LinTS regret bounds.

Simulation studies show that the proposed algorithm performs better than

other LinTS algorithms in a large dimension.

1.7 Appendix

1.7.1 Detailed Analysis of the Resampling

In this subsection, we give details about the issues which can be raised from

the resampling in Algorithm 1.1.

1.7.1.1 Precise Definition of Action Selection

We give precise definition of the action at round t, at. For each round t ≥ 2,

given Ht, let a
(1)
t , a

(2)
t , . . . , a

(Mt)
t to be maximum possible sequence of actions

to be resampled. These actions are IID, with P
(
a
(1)
t = i

∣∣∣Ht

)
= π̃i(t) for

i = 1, . . . , N . Define a subset of arms Γ̃t := {i : π̃i(t) > γ} and a stopping

time

T := inf{m ≥ 1 : a
(m)
t ∈ Γ̃t} (1.14)

with respect to the filtration Fm := Ht ∪ {a(1)t , . . . , a
(m)
t }. Since the algorithm

stops resampling when the candidate action is in Γ̃t, the stopping time T is

the actual number of resampling in algorithm. Thus we can write the action

after resampling as at := a
(min{T ,Mt})
t .

1.7.1.2 Computing the Probability of Selection

The probability of selection πi,t := P (at = i|Ht) is not the same as π̃i(t) due to

resampling. This might cause the problem of computing πi,t which is essential

to compute Y DR
i (t). However, with the precise definition of at, we can derive

a closed form for πi,t.
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First, we consider two cases separately: (i) the case when the resampling

succeeds and (ii) the case when the resampling fails and the maximum possible

number of resampling runs out. In case (i), at ∈ Γ̃t, and for any i ∈ Γ̃t, we

have

P (at = i|Ht) =P
(
T ≤ Mt, a

(T )
t = i

∣∣∣Ht

)
=

Mt∑
m=1

P
(
T = m, a

(m)
t = i

∣∣∣Ht

)

=

Mt∑
m=1

P
(
a
(m)
t = i

∣∣∣Ht

)m−1∏
j=0

P
(
a
(j)
t /∈ Γ̃t

∣∣∣Ht

)
=π̃i(t)

Mt∑
m=1

1−
∑
i∈Γ̃t

π̃i(t)

m−1

=π̃i(t)
1−

(
1−

∑
i∈Γ̃t

π̃i(t)
)Mt∑

i∈Γ̃t
π̃i(t)

.

(1.15)

Now, for the case (ii) at /∈ Γ̃t, and for any i /∈ Γ̃t, we have

P (at = i|Ht) = P
(
T > Mt, a

(Mt)
t = i

∣∣∣Ht

)
= P

(
Mt−1⋂
m=1

{
a
(m)
t /∈ Γ̃t

}
, a

(Mt)
t = i

∣∣∣∣∣Ht

)

=

1−
∑
i∈Γ̃t

π̃i(t)

Mt−1

π̃i(t).

(1.16)

With (1.15) and (1.16), we can compute πi,t for all i = 1, . . . , N .

1.7.1.3 The Number of Maximum Possible Resampling

The proposed algorithm attempts resampling up to Mt times to find an arm

in {i : π̃i(t) > γ}. The main point in selecting Mt is to bound the probability

that the resampling fails in finding an arm whose selection probability exceeds
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γ for some δ, i.e.,

P(at /∈ {i : π̃i(t) > γ}) ≤ δ/t2. (1.17)

Intuitively, as Mt increases, we have more opportunities for resampling and the

probability that the resampling fails in finding arms in {i : π̃i(t) > γ} decreases.

Since γ < 1/N , there exists j such that π̃j(t) > γ, and the probability that

the resampling fails is less than 1− γ in each resampling trial.

Specifically, we can achieve (1.17) by choosing Mt as a minimum integer

that exceeds log t2

δ / log
1

1−γ . For any given δ ∈ (0, 1), the event {at ∈ Γ̃t}

occurs with probability at least 1− δ/t2. By (1.14), we have

P
(
at /∈ Γ̃t

∣∣∣Ht

)
=P (T > Mt|Ht) = P

(
Mt⋂
m=1

{
a
(m)
t /∈ Γ̃t

}∣∣∣∣∣Ht

)

=

1−
∑
i∈Γ̃t

π̃i(t)

Mt

.

Since γ < 1/N , there exists at least one arm in Γ̃t, and thus

P
(
at /∈ Γ̃t

∣∣∣Ht

)
≤ (1− γ)Mt .

If we set Mt as a minimum integer that exceeds
(
log t2

δ

)(
log 1

1−γ

)−1
then

(1.17) holds. Thus, by choosing Mt for each round that satisfies (1.17), the

algorithm finds an arm j such that π̃j(t) > γ in all rounds with high probability.

Selecting an arm from the set {i : π̃i(t) > γ} with high probability is

crucial in achieving the regret bound of order Õ(ϕ−2
√
T ) for two reasons.

First, it guarantees that the arm is super-unsaturated and the novel regret

decomposition (1.6) holds to achieve the novel regret bound. Let Nt be the set

of super-unsaturated arm defined in (1.5). With Lemma 1.2, we prove that if
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π̃i(t) > γ then i ∈ Nt, which implies Γ̃t ⊆ Nt, and thus

P (at ∈ Nt|Ht) ≥ P
(
at ∈ Γ̃t

∣∣∣Ht

)
.

Thus we can conclude that at is super-unsaturated with probability at least

1 − δ/t2 with Mt defined in Section 1.7.1. Second, the inverse probability,

πat(t)
−1 is bounded by γ−1 which appears in Y DR

i (t) and the proof of Theorem

1.3. From (1.15) we can deduce πat(t) ≥ π̃at(t) > γ, for at ∈ Γ̃t. This shows

that the assumptions regarding πat,t in Theorem 1.3 hold.

1.7.2 Technical Lemmas

Lemma 1.8. [Wainwright, 2019, Theorem 2.19] (Bernstein Concentration)

Let {Dk,Sk}∞k=1 be a martingale difference sequence and suppose Dk is σ-sub-

Gaussian in an adapted sense, i.e. for all λ ∈ R, E
[
eλDk

∣∣Sk−1

]
≤ eλ

2σ2/2

almost surely. Then for all x ≥ 0,

P

(∣∣∣∣∣
n∑

k=1

Dk

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
− x2

2nσ2

)
.

Lemma 1.9. [Azuma, 1967] (Azuma-Hoeffding inequality) If a super-martingale

(Yt; t ≥ 0) corresponding to filtration Ft, satisfies |Yt − Yt−1| ≤ ct for some

constant ct, for all t = 1, . . . , T , then for any a ≥ 0,

P (YT − Y0 ≥ a) ≤ e
− a2

2
∑T

t=1 c2t .

Lemma 1.10. [Lee et al., 2016, Lemma 2.3] Let {Nt} be a martingale on a

Hilbert space (H, ∥·∥H). Then there exists a R2-valued martingale {Pt} such

that for any time t ≥ 0, ∥Pt∥2 = ∥Nt∥H and ∥Pt+1 − Pt∥2 = ∥Nt+1 −Nt∥H.

Lemma 1.11. [Chung and Lu, 2006, Lemma 1, Theorem 32] For a filtration

F0 ⊂ F1 ⊂ · · · ⊂ FT , suppose each random variable Xt is Ft-measurable
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martingale, for 0 ≤ t ≤ T . Let Bt denote the bad set associated with the

following admissible condition:

|Xt −Xt−1| ≤ ct,

for 1 ≤ t ≤ T , where c1, . . . , cn are non-negative numbers. Then there ex-

ists a collection of random variables Y0, . . . , YT such that Yt is Ft-measurable

martingale such that

|Yt − Yt−1| ≤ ct,

and {ω : Yt(ω) ̸= Xt(ω)} ⊂ Bt, for 0 ≤ t ≤ T .

Lemma 1.12. Suppose a random variable X satisfies E[X] = 0, and let η

be an σ-sub-Gaussian random variable. If |X| ≤ |η| almost surely, then X is

Cσ-sub-Gaussian for some absolute constant C > 0.

Proof. By Proposition 2.5.2 in Vershynin [2018], there exists an absolute con-

stant C1 > 0 such that

E exp
(
λ2η2

)
≤ exp

(
λ2C2

1σ
2

2

)
, ∀λ ∈

[
−

√
2

C1σ
,

√
2

C1σ

]
.

Since |X| ≤ |η| almost surely,

E exp
(
λ2X2

)
≤ exp

(
λ2C2

1σ
2

2

)
, ∀λ ∈

[
−

√
2

C1σ
,

√
2

C1σ

]
.

Since E[X] = 0, by Proposition 2.5.2 in Vershynin [2018], there exists an

absolute constant C2 > 0 such that

E exp (λX) ≤ exp

(
λ2C2

1C
2
2σ

2

2

)
, ∀λ ∈ R.

Setting C = C1C2 completes the proof.
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1.7.3 Proofs of Theoretical Results

1.7.3.1 Proof Theorem 1.1

In subsection 1.7.1, we prove that at ∈ Γ̃t with probability at least 1 − δ/t2,

for all t ≥ 2. Thus, for any x > 0,

P (R(T ) > x) ≤P

(
R(T ) > x,

T⋂
t=2

{
at ∈ Γ̃t

})
+ P

(
T⋃
t=2

{
at /∈ Γ̃t

})

≤P

(
R(T ) > x,

T⋂
t=2

{
at ∈ Γ̃t

})
+ δ

≤P

(
2 +

T∑
t=2

regret(t) > x,

T⋂
t=2

{
at ∈ Γ̃t

})
+ δ

The last inequality holds by Assumption 1. Since Γ̃t is a subset of Nt and by

(1.6),

P (R(T ) > x)

≤ P

(
2 +

T∑
t=2

{
2
∥∥∥β̂t−1 − β

∥∥∥
2
+

√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xat,t∥
2
V −1
t−1

}
> x,

T⋂
t=2

{
at ∈ Γ̃t

})
+ δ.

(1.18)

To bound the term
∥∥∥β̂t − β

∥∥∥
2

for all t = 1, . . . , T − 1, we use Theorem 1.3.

Before that, we need to verify whether the two assumptions on πi,t in Theorem

1.3 hold.

First, we show that πat,t > γ. When t = 1, we have π̃i(1) = 1/N for all i.

Since γ < 1/N , we do not need resampling and thus πi,t = π̃i(t) > γ. When

t ≥ 2, at ∈ Γ̃t is already concerned in (1.18), and thus π̃at(t) > γ. From (1.15),

we can deduce that πi,t > π̃i(t) for all i ∈ Γ̃t, and thus πat,t > γ.

Now, we prove that πi,t > 0 for all i and t. The case of t = 1 is already

25



proved above. When t ≥ 2, from (1.15), we have

πi,t := P (at = i|Ht) = π̃i(t)

Mt∑
m=1

1−
∑
i∈Γ̃t

π̃i(t)

m−1

> π̃i(t) > γ,

for all i ∈ Γ̃t. If there exists an arm i /∈ Γ̃t, from (1.16),

πi,t =

1−
∑
i∈Γ̃t

π̃i(t)

Mt−1

π̃i(t).

The first term is positive since there exists an arm i /∈ Γ̃t. The second term is

also positive since the distribution of β̃i(t) has support Rd, which implies that

π̃i(t) := P
(
XT

i,tβ̃i(t) = max
j

XT
j,tβ̃j(t)

∣∣∣∣Ht

)
> 0,

for all i. Thus, πi,t > 0 for all i and t. This implies that the two assumptions

on πi,t in Theorem 1.3 hold.

Now we can use Theorem 1.3 and Lemma 1.6 to have

∥∥∥β̂t−1 − β
∥∥∥
2
≤

Cb,σ

ϕ2
√
t− 1

√
log

12(t− 1)2

δ
,√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xat,t∥
2
V −1
t−1

≤ 1

ϕ
√
N(t− 1)

,

for all t = 2, . . . , T with probability at least 1− δ. Thus, setting

x = 2 +
4Cb,σ

ϕ2

√
T log

12T 2

δ
+

2
√
T

ϕ
√
N

in (1.18) proves the result.
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1.7.3.2 Proof of Lemma 1.2

Proof. First, we bring attention to the fact that the optimal arm a∗t is in Nt

by definition. Suppose that the estimated reward of the optimal arm, Ỹa∗t (t) is

greater than Ỹj(t) for all j /∈ Nt. In this case, any arm j /∈ Nt cannot be the

mt := argmaxi Ỹi(t). Then we have

P (mt ∈ Nt|Ht) ≥ P
(
Ỹa∗t (t) > Ỹj(t),∀j /∈ Nt

∣∣∣Ht

)
= P

(
Zj(t) > {Xj,t −Xa∗t ,t

}T β̂t−1,∀j /∈ Nt

∣∣∣Ht

)
,

where Zj(t) := Ỹa∗t (t)− Ỹj(t)−{Xa∗t ,t
−Xj,t}T β̂t−1. Note that Zj(t) is a Gaus-

sian random variable with mean 0 and variance v2(∥Xa∗t ,t
∥2
V −1
t−1

+ ∥Xj,t∥2V −1
t−1

)

given Ht. For all j /∈ Nt,

{Xj,t −Xa∗t ,t
}T β̂t−1 = {Xj,t −Xa∗t ,t

}T {β̂t−1 − β} −∆j(t)

≤ 2
∥∥∥β̂t − β

∥∥∥
2
−∆j(t) ≤ −

√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xj,t∥2V −1
t−1

.

The last inequality is due to j /∈ Nt. Thus, we can conclude that

P (mt ∈ Nt|Ht) ≥P

 Zj(t)

v

√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xj,t∥2V −1
t−1

> −1

v
,∀j /∈ Nt

∣∣∣∣∣∣∣∣Ht


:=P

(
Yj > −v−1,∀j ̸= Nt

∣∣Ht

)
.

Using the fact that

Yj :=
Zj(t)

v

√∥∥Xa∗t ,t

∥∥2
V −1
t−1

+ ∥Xj,t∥2V −1
t−1
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is a standard Gaussian random variable given Ht, we have

P
(
Yj ≤ −v−1

∣∣Ht

)
≤ exp

(
− 1

2v2

)
.

Setting v = {2 log(N/(1− γN))}−1/2 gives

P
(
Yj ≤ −v−1

∣∣Ht

)
= exp (− log (N/(1− γN))) =

1− γN

N
.

Thus,

P (mt ∈ Nt|Ht) ≥1− P
(
Yj ≤ −v−1,∃j ̸= Nt

∣∣Ht

)
≥1−

∑
j ̸=Nt

P
(
Yj < −v−1

∣∣Ht

)
≥1− (1− γN)

=γN

≥1− γ.

The last inequality holds due to γ ≥ 1/(N + 1).

1.7.3.3 Proof of Theorem 1.3

Proof. Fix t = 1, . . . , T and let Vt :=
∑t

τ=1

∑N
i=1Xi,τX

T
i,τ + λtI. For each i

and τ , let η̂DR
i,τ = Y DR

i (τ)−XT
i,τβ. Then

β̂t = β + V −1
t

(
−λtβ +

t∑
τ=1

N∑
i=1

η̂DR
i,τ Xi,τ

)
.
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To bound
∥∥∥β̂t − β

∥∥∥
2
,

∥∥∥β̂t − β
∥∥∥
2
=

∥∥∥∥∥V −1
t

(
−λtβ +

t∑
τ=1

N∑
i=1

η̂DR
i,τ Xi,τ

)∥∥∥∥∥
2

≤
∥∥V −1

t

∥∥
2

∥∥∥∥∥
(
−λtβ +

t∑
τ=1

N∑
i=1

η̂DR
i,τ Xi,τ

)∥∥∥∥∥
2

= {λmin (Vt)}−1

∥∥∥∥∥
(
−λtβ +

t∑
τ=1

N∑
i=1

η̂DR
i,τ Xi,τ

)∥∥∥∥∥
2

.

By Assumption 1, ∥β∥2 ≤ 1. Using triangle inequality,

∥∥∥β̂t − β
∥∥∥
2
≤ {λmin (Vt)}−1 λt + {λmin (Vt)}−1

∥∥∥∥∥
t∑

τ=1

N∑
i=1

η̂DR
i,τ Xi,τ

∥∥∥∥∥
2

. (1.19)

We will bound the first term in (1.19). Let Tr(A) be the trace of a matrix A.

By the definition of the Frobenious norm, for τ = 1, . . . , t, and for i = 1, . . . , N ,∥∥∥∥∥
N∑
i=1

Xi,τX
T
i,τ

∥∥∥∥∥
F

≤
N∑
i=1

√
Tr
(
Xi,τXT

i,τXi,τXT
i,τ

)
≤ N.

By Assumptions 3 and 4,
{∑N

i=1Xi,τX
T
i,τ

}t

τ=1
are independent random

variables such that E
[∑N

i=1Xi,τX
T
i,τ

]
≥ Nϕ2 > 0. Let δ ∈ (0, 1) be given. By

Lemma 1.6, if we set λt = 4
√
2N
√

t log 12t2

δ ,

{λmin (Vt)}−1 <
1

ϕ2Nt
,

holds with probability at least 1−δ/(3t2). Thus, the first term can be bounded

by

{λmin (Vt)}−1 λt ≤
4
√
log 12t2

δ√
tϕ2

. (1.20)

Now we will bound the second term in (1.19). Let Ui(τ) := Xi,τX
T
i,τ (β̆τ−β).
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Then we can decompose η̂DR
i,τ Xi,τ as,

η̂DR
i,τ Xi,τ =Ui(τ) +

I (aτ = i)

πi,τ

(
Yi,τ −XT

i,τ β̆τ

)
Xi,τ

=

(
1− I (aτ = i)

πi,τ

)
Ui(τ) +

I (aτ = i)

πi,τ
ηi,τXi,τ

:=Di(τ) + Ei(τ).

(1.21)

Let Dτ :=
∑N

i=1Di(τ). Since Ui(τ) is Hτ -measurable, the conditional

expectation of Dτ is

E [Dτ |Hτ ] = E

[
N∑
i=1

Di(τ)

∣∣∣∣∣Hτ

]
=

N∑
i=1

E
[(

1− I (aτ = i)

πi,τ

)∣∣∣∣Hτ

]
Ui(τ)

=
N∑
i=1

(
1− πi,τ

πi,τ

)
Ui(τ) = 0

Thus, {
∑τ

u=1Dτ}tτ=1 is a martingale sequence on
(
Rd, ∥·∥2

)
with respect to

Hτ , with

∥Dτ∥2 ≤
N∑
i=1

∣∣∣∣1− I (aτ = i)

πi,τ

∣∣∣∣ ∥Ui(τ)∥2

≤
N∑
i=1

∣∣∣∣1− I (aτ = i)

πi,τ

∣∣∣∣ ∥∥∥β̆τ − β
∥∥∥
2

≤
(
N + π−1

aτ ,τ

)
b.

By Lemma 1.10, since
(
Rd, ∥·∥2

)
is a Hilbert space, there exists a martingale

sequence {Pτ}tτ=1 =

{(
P

(1)
τ , P

(2)
τ

)T}t

τ=1

on R2 such that

∥∥∥∥∥
τ∑

u=1

Du

∥∥∥∥∥
2

= ∥Pτ∥2 , ∥Dτ∥2 = ∥Pτ − Pτ−1∥2 (1.22)
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and P0 = 0, for any τ = 1, . . . , t. Since
∥∥∥β̆τ − β

∥∥∥
2
≤ b, for r = 1, 2

∣∣∣P (r)
τ − P

(r)
τ−1

∣∣∣ ≤ ∥Pτ − Pτ−1∥2 = ∥Dτ∥2 ≤
(
N + π−1

aτ ,τ

)
b.

By Lemma 1.11, there exists a martingale sequence
{
N

(r)
τ

}t

τ=1
such that∣∣∣N (r)

τ −N
(r)
τ−1

∣∣∣ ≤ (N + γ−1)b, for all τ = 1, . . . , t and

{
N

(r)
t ̸= P

(r)
t

}
⊂

t⋃
τ=1

{∣∣∣P (r)
τ − P

(r)
τ−1

∣∣∣ > (N + γ−1)b
}
⊂

t⋃
τ=1

{πaτ ,τ ≤ γ} .

(1.23)

Thus, by (1.22) and (1.23), for any x > 0,

P

(∥∥∥∥∥
t∑

u=1

Du

∥∥∥∥∥
2

> x,
T⋂

τ=1

{πaτ ,τ > γ}

)
=P

(
∥Pt∥2 ≥ x,

T⋂
τ=1

{πaτ ,τ > γ}

)

≤P

(
2∑

r=1

∣∣∣P (r)
t

∣∣∣ ≥ x,
t⋂

τ=1

{πaτ ,τ > γ}

)

≤
2∑

r=1

P

(∣∣∣P (r)
t

∣∣∣ ≥ x

2
,

t⋂
τ=1

{πaτ ,τ > γ}

)

≤
2∑

r=1

P
(∣∣∣P (r)

t

∣∣∣ ≥ x

2
, N

(r)
t = P

(r)
t

)
≤

2∑
r=1

P
(∣∣∣N (r)

t

∣∣∣ ≥ x

2

)
.

Since N
(r)
τ has bounded differences, we can apply Lemma 1.9 to have

2∑
r=1

P
(∣∣∣N (r)

t

∣∣∣ ≥ x

2

)
≤ 4 exp

(
− x2

8tb2 (N + γ−1)2

)
.
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Thus, with probability at least 1− δ/(3t2),∥∥∥∥∥
t∑

τ=1

Dτ

∥∥∥∥∥
2

≤ 2
√
2b(N + γ−1)

√
log

12t2

δ
(1.24)

holds with the event
⋂T

t=1{πat,t > γ}.

Now we will bound the Ei(τ) term in (1.21). Under the event
⋂T

t=1{πat,t >

γ}, we have

t∑
τ=1

N∑
i=1

Ei(τ) =
t∑

τ=1

ηaτ ,τ
πaτ ,τ

Xaτ ,τ =
t∑

τ=1

I (πat,t > γ) ηaτ ,τ
πaτ ,τ

Xaτ ,τ

For each τ ≥ 1, define a filtration Fτ−1 := Hτ ∪ {aτ}. Then Xaτ ,τ is Fτ−1-

measurable. By Assumption 2, for any λ ∈ R,

E
[
exp

(
λ
I (πat,t > γ) ηaτ ,τ

πaτ ,τ

)∣∣∣∣Fτ−1

]
≤ exp

(
λ2I (πat,t > γ)σ2

2π2
aτ ,τ

)
≤ exp

(
λ2σ2

2γ2

)
,

almost surely. Since ∥Xaτ ,τ∥2 ≤ 1, by Lemma 1.4, there exists an absolute

constant C > 0 such that, with probability at least 1− δ/(3t2),

∥∥∥∥∥
t∑

τ=1

N∑
i=1

Ei(τ)

∥∥∥∥∥
2

≤ 2Cσγ−1
√
t

√
log

12t2

δ
. (1.25)

Thus, with (1.20), (1.24), and (1.25), under the event
⋂T

t=1 {πat,t > γ}, we
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have

∥∥∥β̂t − β
∥∥∥
2
≤
4
√
log 12t2

δ√
tϕ2

+
1

ϕ2Nt

(
4
(
N + γ−1

)
b
√
t

√
log

12t2

δ
+ 2Cσγ−1

√
t

√
log

12t2

δ

)

≤4 + 4b+ γ−1N−1 (4b+ 2Cσ)

ϕ2
√
t

√
log

12t2

δ

≤4 + 4b+ 2 (4b+ 2Cσ)

ϕ2
√
t

√
log

12t2

δ

:=
Cb,σ

ϕ2
√
t

√
log

12t2

δ
,

(1.26)

with probability at least 1− δ/t2. Since (1.26) holds for all t = 1, . . . , T ,

≤ P

(
T⋃
t=1

{∥∥∥β̂t − β
∥∥∥
2
>

Cb,σ

ϕ2
√
t

√
log

12t2

δ

}
,

T⋂
t=1

{πat,t > γ}

)

≤ P

(
T⋃
t=1

{∥∥∥β̂t − β
∥∥∥
2
>

Cb,σ

ϕ2
√
t

√
log

12t2

δ

}
,

T⋂
t=1

{πat,t > γ}

)

≤
T∑
t=1

P

(∥∥∥β̂t − β
∥∥∥
2
>

Cb,σ

ϕ2
√
t

√
log

12t2

δ
,

T⋂
t=1

{πat,t > γ}

)
≤ δ.

1.7.3.4 Proof of Lemma 1.4

Proof. Fix a t ≥ 1. Since for each τ = 1, . . . , t, E [η(τ)| Fτ−1] = 0 and X(τ) is

Fτ−1-measurable, the stochastic process,

{
u∑

τ=1

η(τ)X(τ)

}t

u=1

(1.27)
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is a Rd-martingale. Since (Rd, ∥·∥2) is a Hilbert space, by Lemma 1.10, there

exists a R2-martingale {Mu}tu=1 such that∥∥∥∥∥
u∑

τ=1

η(τ)X(τ)

∥∥∥∥∥
2

= ∥Mu∥2 , ∥η(u)X(u)∥2 = ∥Mu −Mu−1∥2 , (1.28)

and M0 = 0. Set Mu = (M1(u),M2(u))
T . Then for each i = 1, 2, and u ≥ 2,

by the assumption ∥X(u)∥2 ≤ 1,

|Mi(u)−Mi(u− 1)| ≤ ∥Mu −Mu−1∥2

= ∥η(u)X(u)∥2

≤ |η(u)| .

By Lemma 1.12, Mi(u) − Mi(u − 1) is Cσ-sub-Gaussian for some constant

C > 0. By Lemma 1.9, for x > 0,

P (|Mi(t)| > x) =P

(∣∣∣∣∣
t∑

u=1

Mi(u)−Mi(u− 1)

∣∣∣∣∣ > x

)

≤2 exp

(
− x2

2tC2σ2

)
,

for each i = 1, 2. Thus, with probability 1− δ/(2t2),

Mi(t)
2 ≤ 2tC2σ2 log

4t2

δ
.

In summary, with probability at least 1− δ/t2,∥∥∥∥∥
t∑

τ=1

η(τ)X(τ)

∥∥∥∥∥
2

=
√

M1(t)2 +M2(t)2 ≤ 2Cσ
√
t

√
log

4t2

δ
.
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1.7.3.5 Proof of Lemma 1.6

Proof. For each τ = 1, . . . , t, let Στ = E [P (τ)| Fτ−1]. Since P (τ) and Στ are

symmetric matrices,

λmin

(
t∑

τ=1

P (τ) + λtI

)
=λmin

(
t∑

τ=1

P (τ)

)
+ λt

=λmin

(
t∑

τ=1

{P (τ)− Στ}+
t∑

τ=1

Στ

)
+ λt

≥λmin

(
t∑

τ=1

{P (τ)− Στ}

)
+

t∑
τ=1

λmin (Στ ) + λt

≥λmin

(
t∑

τ=1

{P (τ)− Στ}

)
+ ϕ2t+ λt.

The last inequality uses the fact that λmin (Στ ) ≥ ϕ2 for all τ .

P

(
λmin

(
t∑

τ=1

P (τ) + λtI

)
≤ ϕ2t

)
≤P

(
λmin

(
t∑

τ=1

{P (τ)− Στ}

)
+ λt ≤ 0

)

=P

(
λmax

(
t∑

τ=1

{Στ − P (τ)}

)
≥ λt

)

≤P

(∥∥∥∥∥
t∑

τ=1

{Στ − P (τ)}

∥∥∥∥∥
F

≥ λt

)
.

(1.29)

Set Su =
∑u

τ=1 {Στ − P (τ)}. Then {Su}tu=1 can be regarded as a martin-

gale sequence on Rd×d with respect to {P (τ)}tτ=1. Note that
(
Rd×d, ∥·∥F

)
is a

Hilbert space. By Lemma 1.10, there exists a martingale sequence
{
Du = (D1(u), D2(u))

T
}t
u=1

on R2 such that

∥Su∥F =
√

D1(u)2 +D2(u)2, ∥Mu − Σu∥F = ∥Du −Du−1∥2 , (1.30)
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for any u ≥ 1, and D0 = 0. Then, for any i = 1, 2,

|Di(u)−Di(u− 1)|2 ≤ ∥Du −Du−1∥22 = ∥P (u)− Σu∥2F

Since ∥P (u)− Σu∥F ≤ 2c, we can apply Lemma 1.9 for D1(τ), and D2(τ),

respectively. For any i = 1, 2, and for any x > 0,

P (|Di(t)| ≥ x) ≤ 2 exp

(
− x2

8c2t

)
.

From (1.29) and (1.30),

P

(
λmin

(
t∑

τ=1

P (τ) + λtI

)
≤ ϕ2t

)
≤ P (∥St∥F ≥ λt)

= P
(√

D1(t)2 +D2(t)2 ≥ λt

)
≤ P (|D1(t)|+ |D2(t)| ≥ λt)

≤ P
(
|D1(t)| ≥

λt

2

)
+ P

(
|D2(t)| ≥

λt

2

)
≤ 4 exp

(
− λ2

t

32c2t

)
.

Thus, for any δ ∈ (0, 1), if λt ≥ 4
√
2c
√
t
√
log 4t2

δ , then with probability at

least 1− δ,

λmin

(
t∑

τ=1

P (τ) + λtI

)
> ϕ2t.

1.7.4 Implementation Details

1.7.4.1 Efficient Calculation of the Sampling Probability

In the proposed algorithm, we use quasi-Monte Carlo estimation to calculate

the sampling probability, π̃i(t). At round t, for each i = 1, . . . , N , define
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Zi =
XT

i,t(β̃i(t)−β̂t−1)
v∥Xi,t∥V −1

t

. Then, Z1, . . . , ZN are IID standard Gaussian random

variables. For each i = 1, . . . , N ,

π̃i(t) =P
(
XT

i,tβ̃i(t) ≥ XT
j,tβ̃j(t), ∀j ̸= i

∣∣∣Ht

)
=P

(
∥Xi,t∥V −1

t

∥Xj,t∥V −1
t

Zi ≥ Zj +
(Xj,t −Xi,t)

T β̂t−1

v ∥Xj,t∥V −1
t

, ∀j ̸= i

∣∣∣∣∣Ht

)

let f and F be the density and the distribution function of the standard Gaus-

sian random variables, respectively. Since Zi, and {Zj}j ̸=i are independent,

the selection probability can be written as,

π̃i(t) =

∫ ∏
j ̸=i

F

(
∥Xi,t∥V −1

t

∥Xj,t∥V −1
t

z +
(Xi,t −Xj,t)

T β̂t−1

v ∥Xj,t∥V −1
t

)
f(z)dz.

This can be estimated by,

1

M

M∑
m=1

F
∏
j ̸=i

(
∥Xi,t∥V −1

t

∥Xj,t∥V −1
t

Z(m) +
(Xi,t −Xj,t)

T β̂t−1

v ∥Xj,t∥V −1
t

)
, (1.31)

where Z(m) is the standard Gaussian random variables.

In this way, we can compute π̃i(t) without sampling β̃i(t) M × N times

from N(β̂t−1, vtI). The error of the quasi Monte Carlo method is bounded by

O
(
(logM)s

M

)
, where s is the dimension of the domain of function to integrate.

If we sample β̃i(t) M × N times, it gives O
(
(logM)N−1

M

)
error. In contrast,

using (1.31) reduces the error to O
(
logM
M

)
.

In simulation studies, we use sobol_seq module in Python 3 to generate

the quasi-Monte Carlo samples. The number of samples is M = 200 in BLTS

and DRTS. We plot the estimator of π̃i(t) using m = 1, . . . , 200 quasi-Monte

Carlo samples, and observe that it converges within the small errors.
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1.7.5 A Review of Approaches to Missing Data and Doubly-

robust Method

In this section, we review approaches to missing data and the doubly-robust

method used in the proposed method. First, we provide the approaches from

a purely missing data point of view and how the doubly-robust method is

motivated. In the second section, we show the procedures applying the doubly-

robust method in bandit settings.

1.7.5.1 Doubly-robust Method in Missing Data

There are two main approaches to missing data: imputation and inverse prob-

ability weighting (IPW). Imputation is to fill in the predicted value of missing

data from a specified model, and IPW is to use the observed records only but

weight them by the inverse of the observation probability. The doubly-robust

method can be viewed as a combination of the two.

For illustrative purposes, consider the problem of estimating the marginal

mean of Y ∈ R, E(Y ) =: µ. Denoting (Yi − µ) by Ui(µ), when all data are

observed,

U(µ) =

n∑
i=1

Ui(µ) =

n∑
i=1

(Yi − µ) = 0,

gives an unbiased estimator of µ,
∑n

i=1 Yi/n, and U(µ) is called an unbiased

estimating function since E[U(µ)] = 0. Let δi be the observation indicator

which takes value 1 if Yi is observed, 0, otherwise. Suppose there are auxiliary

variables, Xi ∈ Rd, and Xi’s are observed for all i. Also denote the probability

of observation by P (δi = 1|Xi) =: πi. We assume P (δi = 1|Yi, Xi) = P (δi =

1|Xi), that is, the observation indicator is independent of Yi. This is called

missing at random mechanism. This assumption is required for the doubly

robust method to be valid. Using the observed values only, the estimating

38



equation for the observed data

Uo(µ) =
n∑

i=1

δiUi(µ) =
n∑

i=1

δi(Yi − µ) = 0,

gives
∑n

i=1 δiYi∑n
i=1 δi

as an estimator for µ. This estimator may be biased since

EUo(µ) ̸= 0.

The two main approaches modify the observed estimating function em-

ploying two new quantities, E(Yi|Xi) and πi. These two quantities are usually

unknown and we need to specify models. Therefore the two approaches require

assumptions for auxiliary models: the imputation model, E(Yi|Xi;β), and the

model for observation probability, πi(ϕ). The validity of each approach depends

on the correct specification of the auxiliary model assumptions. The qualifier

‘auxiliary’ comes from the fact that these models are not needed when there

is no missing data. In IPW, one constructs an unbiased estimating equation

by amplifying the observed record according to the inverse of the observation

probability as follows:

n∑
i=1

δi
πi(ϕ)

Ui(µ) =

n∑
i=1

δi
πi(ϕ)

(Yi − µ).

If π(ϕ) is correctly specified, i.e., π = π(ϕ), E(
∑n

i=1
δi

πi(ϕ)
Ui(µ)) = 0, hence the

resulting IPW estimator is valid. In the imputation method, we replace missing

Yi with E(Yi|Xi;β) and the estimator is the solution of U IMP (µ, β) = 0 where

U IMP (µ, β) =

n∑
i=1

[δiUi(µ) + (1− δi)E(Ui(µ)|Xi;β)]

=

n∑
i=1

[E(Yi|Xi;β) + δi{Yi − E(Yi|Xi;β)} − µ] .

The doubly robust (DR) method [Robins et al., 1994, Bang and Robins,

2005] was initially motivated by attempting to improve the efficiency of the
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IPW method. Note that we can construct an auxiliary unbiased estimating

function ( δi
πi(ϕ)

− 1). Geometrically we can reduce the norm of the estimating

function δi
πi(ϕ)

Ui(µ) by subtracting the projection on to the nuisance tangent

space formed from ( δi
πi(ϕ)

− 1). The nuisance tangent space is the closed linear

span of B( δi
πi(ϕ)

− 1) for some B ∈ Rd, and the projection onto the nuisance

tangent space is
n∑

i=1

δi − πi(ϕ)

πi(ϕ)
E(Ui|Xi;β).

After subtraction, the DR estimating function has a form

UDR(µ, β, ϕ) =
n∑

i=1

[
δi

πi(ϕ)
Ui(µ) + (1− δi

πi(ϕ)
)E(Ui|Xi;β)

]

=
n∑

i=1

[
E(Ui|Xi;β) +

δi
πi(ϕ)

{Ui(µ)− E(Ui(µ)|Xi;β)}
]
.

Note that when you replace δi in U IMP (µ) with δi
πi(ϕ)

, you obtain UDR(µ). The

DR method requires both auxiliary models. However, its validity is guaranteed

when either of the models is correct. To verify, if the imputation model is

correctly specified, i.e., E[Ui(µ)− E(Ui(µ)|Xi;β)|Xi] = 0, we have

E{UDR(µ, β, ϕ)} =E
n∑

i=1

[
E(Ui|Xi)−

δi
πi(ϕ)

{Ui(µ)− E(Ui(µ)|Xi)}
]

=

n∑
i=1

EE(Ui|Xi) = 0,

even if the π model is misspecified, i.e., πi(ϕ) ̸= πi. If the observation model

40



is correctly specified, πi(ϕ) = πi, then E(1− δi
πi
|Xi) = 0, and

E{UDR(µ, β, ϕ)} =
n∑

i=1

E
[
δi
πi
Ui(µ) +

{
(1− δi

πi
)E(Ui|Xi;β)

}]

=
n∑

i=1

E
[
δi
πi
Ui(µ)

]
= 0,

even if the imputation model is misspecified, i.e., E[Ui(µ)|Xi] ̸= E[Ui(µ)|Xi;β)].

Therefore when either of the models is correct, UDR(µ) is unbiased and with

other technical conditions, the estimator can be shown to be consistent. That

is why the qualifier doubly robust is adopted. The construction of the DR esti-

mating function is possible because we have two unbiased estimating functions.

1.7.5.2 Application to Bandit Settings

In bandit settings, the missingness is controlled since the learner selects the

arm. Therefore, the probability of observation or selection is known and the

DR estimator is guaranteed to be valid although the imputation model for

missing reward is incorrectly specified. The merit of the DR estimator in the

bandit setting is that we can utilize the observed contexts from selected or

unselected arms. Below we describe the DR method in the contextual bandit

setting.

Let πi(t) := P(at = i|Ht) be the probability of selecting arm i at round t.

As defined in the manuscript, the DR pseudo-reward is

Y DR
i (t) =

{
1− I (i = at)

πi,t

}
XT

i,tβ̆t +
I (i = at)

πi,t
Yat,t, (1.32)

for some β̆t depending on Ht. The pseudo-reward (1.32) comes from the fol-

lowing procedures. First we construct an unbiased estimating function also
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known as the IPW score,

t∑
τ=1

N∑
i=1

I (i = aτ )

πi,τ
Xi,τ

(
Yi,τ −XT

i,τβ
)
, (1.33)

where only the pairs (Xi,t, Yi,t) from the selected arms are contributed accord-

ing the weight of the inverse of πi,t. Setting this score equal to 0 and solving

β gives the estimator used in Dimakopoulou et al. [2019]. Now we can sub-

tract the projection on the nuisance tangent space from (1.33). The nuisance

tangent space is the closed linear span of B( I(i=a(t)
πi(t)

− 1) for some B ∈ Rd, and

the projection onto the nuisance tangent space is

t∑
τ=1

N∑
i=1

I (i = aτ )− πi,τ
πi,τ

Xi,τ

(
E(Yi(τ)|Hτ )−XT

i,τβ
)
.

When the projection is subtracted from the (1.33) after replacing E(Yi(t)|Ht)

with XT
i,tβ̆t, the IPW score becomes the efficient score,

t∑
τ=1

N∑
i=1

Xi,τ

(
Y DR
i (τ)−XT

i,τβ
)
. (1.34)

Any β̆t that depends on Ht serves the purpose of imputation. Due to the

doubly robustness property, XT
i,tβ̆t does not have to be an unbiased estimator

of E(Yi(t)|Ht). We recommend setting β̆t as the ridge regression estimator

based on the selected arms only. The expression (1.34) resembles the score

when the rewards for all arms were observed, if Yi,t is replaced with Y DR
i (t).

The proposed estimator β̂t is a solution of (1.34) with a regularization

parameter λt:

β̂t =

(
t∑

τ=1

N∑
i=1

Xi,τX
T
i,τ + λtI

)−1( t∑
τ=1

N∑
i=1

Xi,τY
DR
i (τ)

)
.

Harnessing the pseudo-rewards defined in (1.32), we can make use of all con-
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texts rather than just selected contexts. The use of all contexts instead of Xat,t

induces the improvement in the regret bound of the proposed algorithm. Kim

and Paik [2019] also suggests DR estimator, but it uses Lasso estimator from

the following pseudo-reward

Y DR
i (t) = X̄(t)T β̂(t− 1) +

1

N

Ya(t)(t)− ba(t)(t)
T β̂(t− 1)

πa(t)(t)
,

where X̄(t) = 1
N

∑N
i=1Xi(t). This estimator is of an aggregated form. As

described in the text, the estimator using the aggregated pseudo-reward does

not permit the regret decomposition as equation (1.6) in the thesis.
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Chapter 2

Near-optimal Algorithm for

Linear Contextual Bandits with

Compounding Estimator

2.1 Introduction

The multi-armed bandit (MAB) is a sequential decision making problem where

a learner repeatedly chooses an arm and receives a reward as partial feedback

associated with the only selected arm. The goal of the learner is to maximize

cumulative rewards over a horizon of length T by suitably balancing exploita-

tion and exploration. The Linear contextual bandit is a general version of

the MAB problem, where d-dimensional context vectors are given for each of

the arms and the expected rewards for each arm is a linear function of the

corresponding context vector.

There are a family of algorithms that utilize the principle of optimism in

the face of uncertainty (OFU) [Lai and Robbins, 1985]. These algorithms for

the linear contextual bandit have been widely used in practice (e.g., news rec-

ommendation in Li et al. [2010]) and extensively analyzed [Auer, 2002, Dani
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et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Chu et al., 2011, Abbasi-

Yadkori et al., 2011]. Some of the most widely used algorithms in this family

are LinUCB Li et al. [2010] and OFUL Abbasi-Yadkori et al. [2011] due to their

practicality and performance guarantees. The best known regret bound for

these algorithms is Õ(d
√
T ), where Õ stands for big-O notation up to loga-

rithmic factors.

The improved regret bound of Õ(
√
dT ) has been shown for SupLinUCB Chu

et al. [2011] with a matching lower bound Ω(
√
dT ), hence provably optimal up

to logarithmic factors. SupLinUCB and its variants (e.g., Li et al., 2017) im-

proved the regret bound by
√
d factor exploiting independence of samples via a

phased bandit technique proposed by Auer [2002]. Despite their provable opti-

mality, SupLinUCB and other algorithms based on the framework of Auer [2002]

have been known to be impractical due to the lack of adaptiveness, resulting in

performing excessive random sampling, and computational inefficiency. Fur-

thermore, the regret bound of SupLinUCB has (logN)3/2 dependence, where N

is the total number of arms. Therefore, if N is exponentially large in d (which

often arises in practice, e.g., large-scale recommender systems), then the regret

bound would be sub-optimal. Hence, whether N -independent Õ(
√
dT ) regret

is achievable has been an open problem. Moreover, the question of whether

Õ(
√
dT ) regret is attainable by a more practical algorithm than the algorithms

based on the framework of Auer [2002] has remained open.

A tighter upper bound of SupLinUCB than that of LinUCB (and OFUL) stems

from utilizing phases by handling computation separately for each phase. In

phased algorithms, the arms in the same phase are chosen without making

use of the rewards in the same phase. This independence of samples allows to

apply a tight confidence bound, improving the regret bound by
√
d factor. On

the other hand, this operation should be handled for each arm, which costs

polylogarithmic dependence on N by invoking the union bound over the arms

at the expense of improving
√
d. In UCB algorithms, the estimate is adaptive
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in a sense that the update is made in every round, and the independence

argument cannot be utilized. Instead, self-normalized theorem Abbasi-Yadkori

et al. [2011] helps avoid the dependence on N .

We propose a novel bandit algorithm. The proposed algorithm achieves

Õ(
√
dT ) as in SupLinUCB, yet without resorting to independence and without

dependence on N . The proposed algorithm has two notable features: the

first is to utilize the contexts of all arms both selected and unselected for

parameter estimation, and the second is to randomly perturb the contribution

to the estimator. Intuitively, new randomization on the estimator elevates the

level of exploration, but more importantly, this randomness creates nuisance

tangent space (See Section 2.4.1) essential to form the compounding estimator

that uses all contexts. These two features allow a novel additive decomposition

of the regret which can be bounded using the self-normalized norm of the

compounding estimator.

The main contributions are as follows:

• We propose a novel algorithm, Hybridization by Randomization algo-

rithm (HyRan), for a linear contextual bandit. The proposed algorithm

adopts the compounding estimator utilizing contexts from all arms both

selected and unselected and the random perturbation of the principle of

optimism in the face of uncertainty for arm selection.

• We establish that HyRan achieves Õ(
√
dT ) regret upper bound without

any dependence on N . To the best of my knowledge, this is the first N -

independent Õ(
√
dT ) regret bound for the linear contextual bandit. For

the analysis, we utilize a novel decomposition of the cumulative regret

into two main additive terms whose bounds can be derived by employing

the structure of the compound estimator. This allows us to establish the

faster rate of Õ(
√
dT ) regret without incurring dependence on N .

• We show the estimation error bound for the self-normalized compound
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estimator (Theorem 1.3), which may be of independent interest.

• We evaluate HyRan on numerical experiments and show that the practical

performance of the proposed algorithm is in line with the theoretical

guarantees.

All missing proofs are in supplementary materials.

2.2 Related Works

The linear contextual bandit problem was first introduced by Abe and Long

[1999]. UCB algorithms for the linear contextual bandit have been proposed

and analyzed by [Auer, 2002, Dani et al., 2008, Rusmevichientong and Tsit-

siklis, 2010, Chu et al., 2011, Abbasi-Yadkori et al., 2011] and their follow-up

works. To our knowledge, the best regret upper-bound is Õ(
√
dT ) established

for SupLinUCB, an UCB-based algorithm proposed by Chu et al. [2011] adapt-

ing the IID sample generation technique in Auer [2002].

The rewards for the unselected arms are not observed, hence, missing.

Recently some bandit literature has framed the bandit setting as a missing

data problem, and employed missing data methodologies [Dimakopoulou et al.,

2019, Kim and Paik, 2019, Kim et al., 2021]. Dimakopoulou et al. [2019] em-

ploys an inverse probability weighting (IPW) estimator using the selected con-

texts alone and proves a Õ(d
√
ϵ−1T 1+ϵN) regret bound for Thompson sam-

pling which depends on the number of arms, N . The doubly robust (DR)

method [Robins et al., 1994, Bang and Robins, 2005] is adopted in Kim and

Paik [2019] with Lasso penalty for high-dimensional settings with sparsity and

the regret bound is shown to be improved in terms of the sparse dimension

instead of d. Recently in Kim et al. [2021], a modified Thompson Sampling

employing the DR method is proposed and provided Õ(d
√
T ) bound. The au-

thors improve the bound by using contexts of all arms including the unselected
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ones which paves a way to circumvent the technical definition of unsaturated

arms.However, using contexts of all arms by the DR method requires non-zero

probability of selection for all arms, which limits the application to Thompson

Sampling with Gaussian prior. In this thesis, we provide another way of using

contexts of all arms which can be applied to the algorithm where there is an

arm whose selection probability is zero. By using all contexts we circumvent

the inequalities which induces additional
√
d or logN by developing a novel

decomposition of the regret.

2.3 Linear Contextual Bandit Problem

In each round t ∈ [T ] := {1, . . . , T}, the learner observes a set of arms [N ] :=

{1, ..., N} with their corresponding context vectors {Xi,t ∈ Rd | i ∈ [N ]}.

Then, the learner chooses an arm at ∈ [N ] and receives a random reward

Yt,: = Yat,t for the chosen arm. For all t ∈ [T ] and i ∈ [N ], we assume the

linear reward model, i.e.,

Yi,t = XT
i,tβ + ηi,t,

where β ∈ Rd is an unknown parameter and ηi,t ∈ R is an independent noise.

Let Ht be the history at round t that contains contexts {Xi,τ}N,t
i=1,τ=1, chosen

arms {aτ}t−1
τ=1 and the corresponding rewards {Yτ,aτ }t−1

τ=1. For each t and i, the

noise ηi,t is zero-mean conditioned on Ht, i.e, E [ηi,t|Ht] = 0. The optimal

arm at round t is defined as a∗t := argmaxi∈[N ]

{
XT

i,tβ
}

. Let regret(t) be the

difference between the expected rewards of the chosen arm and the optimal

arm at round t.

regret(t) := XT
a∗t ,t

β −XT
at,tβ.

The goal is to minimize the sum of regrets over T rounds, R(T ) :=
∑T

t=1 regret(t).

The time horizon T is finite but possibly unknown.
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2.4 Proposed methods

2.4.1 Compounding Estimator

We introduce the novel estimator with simple randomization technique. For

each round t ∈ [T ] and given p ∈ (0, 1), we define ãt as a random variable

sampled from [N ] with probability

πat,t := P ( ãt = at| Ft) = p,

πj,t := P ( ãt = j| Ft) =
1− p

N − 1
,∀j ̸= at,

(2.1)

where Ft := Ht∪{at}∪{ã1, . . . , ãt−1}. Since this ãt is random given Ft, we can

construct a random variable I (ãt = i) /πi,t whose conditional mean given Ft

is one. Using these random variables we can construct the inverse probability

weighting estimating equation,

t∑
τ=1

N∑
i=1

I (ãτ = i)

πi,τ
Xi,τ

(
Yi,t −XT

i,τβ
)
= 0. (2.2)

The semi-parametric theory Bickel et al. [1993] suggests subtracting the pro-

jection onto the nuisance tangent space from (2.2) to improve efficiency. Using

the fact that the conditional mean of (I (at = i) − πi,t) given Ft is zero, we

can define a nuisance tangent space by the closed linear span of B(I (ãt = 1)−

π1,t}, . . . , I (ãt = N) − πN,t})T for some B ∈ Rd×N . Now the projection onto

the nuisance tangent space is

t∑
τ=1

N∑
i=1

I (ãt = i)− πi,τ
πi,τ

Xi,τ

(
E [Yi,τ | Fτ ]−XT

i,τβ
)
,

where we replace E [Yi,τ | Fτ ] with XT
i,τ β̆τ for some estimator β̆τ . Subtracting

the projection from the IPW score and rearranging it, we obtain the efficient
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score,
t∑

τ=1

N∑
i=1

Xi,τ

(
Ỹi,τ −XT

i,τβ
)
, (2.3)

where the pseudo reward Ỹi,τ is defined as

Ỹi,τ =

{
1− I (ãτ = i)

πi,τ

}
XT

i,τ β̆τ +
I (ãτ = i)

πi,τ
Yãt,t. (2.4)

The equation (2.3) uses Ỹi,τ instead of Yi,τ in the original score to estimate β

as if all rewards were observed. Using the pseudo rewards (2.4), we can use

all contexts rather than just selected contexts. However, we cannot compute

(2.4) since Yãτ ,τ is missing when ãτ ̸= at. To handle this problem, we use the

efficient score (2.3) not in all rounds [t] but in some subset of rounds Ψt ⊆ [t],

where Yãτ ,τ is observed and (2.4) is computable. With this subsample set of

rounds Ψt we can define the compound score equation

∑
τ∈Ψt

N∑
i=1

Xi,τ

(
Ỹi,τ −XT

i,τβ
)

+
∑
τ /∈Ψt

Xaτ ,τ

(
Yaτ ,τ −XT

aτ ,τβ
)
= 0.

(2.5)

The proposed estimator is the solution of (2.5) which can be written as

β̂t :=

∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ+

∑
τ /∈Ψt

Xaτ ,τX
T
aτ ,τ+λtI

−1

∑
τ∈Ψt

N∑
i=1

Xi,τ Ỹi,τ +
∑
τ /∈Ψt

Xaτ ,τYτ,aτ

 .

(2.6)

This is a hybrid form of using all contexts and using selected contexts, and

the contribution is set by the random variable ãτ . This contribution of using

contexts of all arms is crucial in achieving the regret bound of Õ(
√
dT ) for the
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proposed algorithm.

2.4.2 HyRan Algorithm

The proposed algorithm, HyRan, is presented in Algorithm 2.1. At each round t,

the algorithm computes XT
i,tβ̂t−1 for each arm i ∈ [N ] based on (1.2) and finds

the arm with the maximum value, at. After pulling an arm at and observing

the reward for the selected arm, HyRan samples ãt and determine whether the

round t is included in the subset Ψt. When ãt is equal to at, we can observe

the reward Yãt,t and compute (2.4). Therefore we include the round t in Ψt.

Using this subset Ψt, HyRan updates β̂t as in (1.2). In order to compute β̂t, the

imputation estimator β̆t needs to be specified to determine the pseudo reward

in (2.4). We recommend the following form

β̆t :=

∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ+

∑
τ /∈Ψt

Xaτ ,τX
T
aτ ,τ+γtI

−1

{∑
τ∈Ψt

N∑
i=1

Xi,τ

({
1− I (ãτ = i)

πi,τ

}
XT

i,τ β̂
ridge
t−1 +

I (ãτ = i)

πi,τ
Yãt,t

)

+
∑
τ /∈Ψt

Xaτ ,τYτ,aτ

 , (2.7)

for some γt > 0 and β̂ridge
t is a ridge estimator using pairs of selected contexts

and corresponding rewards until round t. We can also use another estimator

such that
∥∥∥β̆t − β

∥∥∥
2
≤ N−1 holds after some explorations. Examples are the

ridge estimator β̂ridge
t−1 , and the estimator used in round t − 1, β̂t−1. Since β̆t

is multiplied with mean zero random variable in (2.4) the unbiasedness of the

estimator (1.2) does not depend on the choice of β̆t.
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Algorithm 2.1 Hybridization by Randomization Algorithm for Linear Con-
textual Bandits (HyRan)

INPUT: A regularization parameter λt > 0, a sub-sampling parameter
p ∈ (0, 1).
Initialize V0 = Id, f0 = 0.
for t = 1 to T do

Observe contexts {Xi,t}Ni=1.
Estimate β̂t−1 = (Vt−1 + λtId)

−1 ft−1.
Play at = argmaxiX

T
i,tβ̂t−1, and observe reward Yt,at .

Set πat,t := p and πj,t :=
1−p
N−1 for j ̸= at.

Sample ãt from the categorical distribution with probability πi,t.
if ãt = at then

Update Vt = Vt−1 +
∑N

i=1Xi,tX
T
i,t

Update β̆t and ft = ft−1 +
∑N

i=1Xi,tỸi,τ
else

Update Vt = Vt−1 +Xat,tX
T
at,t.

Update ft = ft−1 +Xat,tYat,t.
end if

end for

2.5 Main Results

In this section, we present the main theoretical results: the regret bound for

HyRan (Theorem 2.1) and the estimation error bound of the proposed com-

pounding estimator (Theorem 2.4). We first provide the assumptions used

throughout the analysis.

Assumption 1 [Boundedness] For all i ∈ [N ] and t ∈ [T ], ∥Xi,t∥2 ≤ 1 and

∥β∥2 ≤ 1.

Assumption 2 [Sub-Gaussian noise] For each t and i, the noise ηi,t is

conditionally σ-sub-Gaussian for a fixed constant σ ≥ 0, i.e, E [ηi,t|Ht] = 0

and E [ exp (ληi,t)|Ht] ≤ exp(λ2σ2/2), for all λ ∈ R.

Assumption 3 [Context sets IID across rounds] The context sets

{Xi,1}Ni=1, {Xi,2}Ni=1, . . . , {Xi,T }Ni=1
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are distributed independently from some unknown distribution PX supported

on Rd×N .

Assumption 4 [Positive definiteness of the covariance of the contexts] For

all t ∈ [T ], there exists a constant ϕ2 > 0 such that

λmin

(
E

[
1

N

N∑
i=1

Xi,tXi,t

])
≥ ϕ2

.

Discussion of the assumptions. Assumptions 1 and 2 are standard in the

stochastic contextual bandit literature (see e.g. Agrawal and Goyal [2013]). As

for Assumptions 3, we emphasize that the IID assumption is on a context set

across the time horizon, not on the individual context vectors. Hence, we allow

context vectors to be correlated in a given round. Similar IID assumptions on

context sets are used in the contextual bandit literature [Goldenshluger and

Zeevi, 2013, Li et al., 2017, Kim and Paik, 2019, Bastani and Bayati, 2020].

Assumption 4 is essential to efficiently solve the linear regression problem.

Previous literature imposes this assumption on the eigenvalue of the covariance

matrix [Goldenshluger and Zeevi, 2013, Li et al., 2017].

2.5.1 Regret Bound of HyRan

Under the assumptions above, we present the following regret bound for the

HyRan algorithm.

Theorem 2.1. Suppose Assumptions 1-4 hold and

T ≥ E = max

{
1

p
log

T

δ
, Cp,σN

2ϕ−4 log
2T

δ

}
,

where Cp,σ is a constant depending only on p and σ. Set λt := d log 4t2

δ . Then
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the total regret by time T for HyRan is bounded by

R(T ) ≤ 2E+4Dp,σ

√
2T log

1

δ
+3δDp,σ+

(
16
√
2 + 8

)
Dp,σ√

p

√
dT log

2T

δ
, (2.8)

with probability at least 1− 8δ, where Dp,σ := 1 + Cp,σ.

There are other works [Dani et al., 2008, Rusmevichientong and Tsitsik-

lis, 2010, Lattimore and Szepesvári, 2020] which proves the lower bound of

Ω(d
√
T ). However, those bounds assumes that N is infinity and the contexts

does not follows the Assumption 3 or Assumption 4. In Section 2.5.3 we provide

the lower bound under the Assumptions 1-4.

2.5.2 Regret Decomposition

In the analysis of LinUCB and OFUL, an instantaneous regret is controlled by

using

at, β̂ucb = arg max
i∈[N ],β̂∈Ct

XT
i,tβ̂

where Ct is a high-probability confidence ellipsoid. Then, regret(t) is typically

decomposed as

regret(t) ≤
∥∥∥β̂ucb − β

∥∥∥
Zt

∥Xat,t∥Z−1
t

, (2.9)

where Zt :=
∑t

τ=1Xaτ ,τX
T
aτ ,τ + λI. Each of two terms on the right hand side

in (2.9) has a
√
d factor. In particular,

√
d factor in the first term comes from

the radius of Ct. Hence, this results in O(d) regret when combined.

In contrast, we decompose the regret into additive terms using the definition

of max-residual given in Lemma 2.2. This new decomposition allows for non-

OFU based analysis, hence exploration parameter γ need not be the radius

of Ct.
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Lemma 2.2. Define a max-residual function as

∆
β̂
(x) := max

i∈[N ]

∣∣∣xTi (β̂ − β
)∣∣∣ , (2.10)

where x = (x1, . . . , xN ) ∈ Rd×N . For each t ∈ [T ], let Xt := (X1,t, . . . , XN,t)

and define a filtration Gt :=
⋃t

τ=1

{
Xτ , β̂τ

}
. Then for t ≥ 1,

regret(t+ 1) ≤ 2
{
∆

β̂t
(Xt+1)− E

[
∆

β̂t
(Xt+1)

∣∣∣Gt

]}
+ 2

{
E
[
∆

β̂t
(Xt+1)

∣∣∣Gt

]
− 1

|Ψt|
∑
τ∈Ψt

∆
β̂t
(Xτ )

}

+
2√
|Ψt|

∥∥∥β̂t − β
∥∥∥
Vt

,

(2.11)

where

Vt :=
∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ +

∑
τ /∈Ψt

Xaτ ,τX
T
aτ ,τ + λtI.

A proof sketch is given below. The decomposition of the expected regret

given in (2.11) is insightful in that the regret from suboptimal arm selections is

incurred due to poor estimate, thus can be bounded by the quantities involving

the maximum residual. Many bandit algorithms that induces Õ(
√
dT ) regret

bound (e.g. SuplinUCB) bounds the maximum residual with the union of N×T

probability inequalities, and this gives logN term in the regret bound. But

in Lemma 2.2, we use the fact that the maximum is bounded by a sum, the

sum of residual can be shown to be bounded by the self-normalized bound for

the estimator (1.2). In this way we can use only T probability inequalities

and eliminate the N independence on the main term of the regret bound. We

emphasize that the decomposition yields the self-normalized bound for the

estimator, not any other estimator, and the estimator is self-normalized using

all contexts of both selected and unselected arms.
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Proof. By the definition of at, we have

regret(t+ 1) =
(
Xa∗t+1,t+1 −Xat+1,t+1

)T (
β − β̂t

)
+
(
Xa∗t+1,t+1 −Xat+1,t+1

)T
β̂t

≤
(
Xa∗t+1,t+1 −Xat+1,t+1

)T (
β − β̂t

)
≤2max

i∈[N ]

∣∣∣XT
i,t+1

(
β̂t − β

)∣∣∣ ,
which concludes regret(t+ 1) ≤ 2∆

β̂t
(Xt+1). Now to prove (2.11), we need

1

|Ψt|
∑
τ∈Ψt

∆
β̂t
(Xτ ) ≤

1√
|Ψt|

∥∥∥β̂t − β
∥∥∥
Vt

,

which is proved by using the Cauchy-Schwartz inequality as

∑
τ∈Ψt

∆
β̂t
(Xτ ) ≤

√
|Ψt|

√∑
τ∈Ψt

{
∆

β̂t
(Xτ )

}2

=
√
|Ψt|

√∑
τ∈Ψt

max
i∈[N ]

{
XT

i,τ

(
β̂t − β

)}2

≤
√

|Ψt|

√√√√∑
τ∈Ψt

N∑
i=1

{
XT

i,τ

(
β̂t − β

)}2

≤
√
|Ψt|

√(
β̂t−β

)T
Vt

(
β̂t−β

)
,

where the last inequality holds using the fact that Vt ⪰
∑

τ∈Ψt

∑N
i=1Xi,τX

T
i,τ .

The first term in (2.11) can be bounded using with Azuma’s inequality

(Lemma 1.9). Now, we bound the second and third terms in (2.11) using

Lemma 2.3 and Theorem 2.4, respectively. Lemma 2.3 adopts the empirical

theories on the distribution of the contexts.

Lemma 2.3. Suppose Assumptions 1-4 hold. For each t ∈ [T ], and L > 0,
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conditioned on Ψt, with probability at least 1− δ/T ,

sup
∥β1−β∥≤L

∣∣∣∣∣E [∆β1 (Xt+1)| Gt]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xτ )

∣∣∣∣∣
≤ 3Lδ

2T
+ 4L

√
1

|Ψt|

√
d log

2T

δ
.

In the following theorem, we present the self-normalized bound for the

compound estimator which allows us to bound the last term in (2.11).

Theorem 2.4. Suppose Assumptions 1-4 hold. Let β̂t be the estimator defined

in (1.2), and let p ∈ (0, 1) be a constant used in (2.1). For all t ∈ [T ], let Ψt

be a subset of [t] determined by Algorithm 2.1. Then with probability at least

1− 6δ, ∥∥∥β̂t − β
∥∥∥
Vt

≤
√

λt +

(
4
√
2

1− p
+

σ

p

)√
d log

4t2

δ
, (2.12)

for all t ≥ max
{

1
p log

T
δ , Cp,σN

2ϕ−4 log 2T
δ

}
, where Cp,σ > 0 is a constant

depending only on p and σ.

Theorem 2.4 is a self-normalized bound for the compound estimator, which

is a crucial element in the regret analysis. Compared to the widely-used self-

normalization bound (Theorem 2 in Abbasi-Yadkori et al. [2011]) in the con-

textual bandit literature, the estimation error bound (2.12) is self-normalized

by the covariance matrix constructed by the contexts of all arms, not just

selected contexts. This difference enables us to take advantage of the new

decomposition of the regret in (2.11), which derives a Õ(
√
dT ) regret bound.

To use the bound (2.12), we need an estimator for β̆t whose estimation error

is smaller than N−1. This estimator can be obtained by using data from at

least O(N2ϕ−4 log T ) number of rounds, which is tolerable for the exploration.

The last concern regarding the regret bound is the size of Ψt. To obtain the

O(
√
dT log T ) regret bound, we need to make sure that the number of rounds
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in Ψt = Ω(t). In the following Lemma, we show that the size of the selected

subset Ψt is Ω(t) with high probability.

Lemma 2.5. Let Ψt be a subset of [t] determined by the Algorithm 2.1 at round

t. For any ϵ ∈ (0, 1), with probability at least 1− δ,

|Ψt| ≥ ϵpt, (2.13)

for all t ≥ 1
2p(1−ϵ) log

T
δ .

The proof is based on lower Chernoff bounds. With (2.13), we guarantee

the rate of the regret bound is sub-linear with respect to the total round T .

2.5.3 A Matching Lower Bound

Theorem 2.6. Assume 2 ≤ d ≤ N < ∞ and T ≥ d/4. Then there exists a

distribution of contexts, PX , a distribution of noise, ηi,t and β, which satisfies

Assumptions 1-4 and for any bandit algorithms that selects at,

EβR(T ) ≥ 1

8

√
dT . (2.14)

The lower bound (2.14) matches with that of the upper bound (2.8) up to

the logarithm factor. Chu et al. [2011] prove a lower bound Ω(
√
dT ) for the

linear contextual bandits with finite number of arms. But the contexts in the

bound does not hold Assumptions 3 and 4, and cannot be directly applied. We

call for proving a novel lower bound which can be applied to the setting with

Assumptions 1-4.

2.6 Numerical Experiments

In this section, we compare the performances of the four linear contextual

bandit algorithms: SuplinUCB [Chu et al., 2011], LinUCB [Li et al., 2010], LinTS
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[Agrawal and Goyal, 2013], and the proposed method, HyRan. For simulation,

the number of arms N is set to 10 or 20, and the dimension of contexts d is

set to 5, 10 and 20. Let X(1)
i,t , . . . , X

(d)
i,t be the d elements of a context Xi,t. For

j = 1, . . . , d − 1, we independently generate (X
(j)
1,t , · · · , X

(j)
N,t) from a normal

distribution N (µN , VN ) with mean µ10 = (−10,−8, · · · ,−2, 2, · · · 8,−10)T , or

µ20 = (−20,−18, · · · ,−2, 2, · · · , 18, 20)T . To impose correlation among each

arms the covariance matrix VN ∈ RN×N is set as V (i, i) = 1 for every i

and V (i, k) = 0.5 for every i ̸= k. Then, for each arm i ∈ [N ], we select

a generated element X
(j)
i,t randomly and append it to the last element, i.e.

X
(d)
i,t is the same as one of X(1)

i,t , . . . , X
(d−1)
i,t This setting is to impose a severe

multicollinearity on each contexts. Finally, we truncated the sampled contexts

to satisfy ∥Xi,t∥2 ≤ 1. To generate the stochastic rewards, we sample ηi,t

independently from N (0, 1). Each element of β is sampled from a uniform

distribution, U(−1/
√
d, 1/

√
d) at the beginning of each instance and stays fixed

during a single instance of the experiments. About the set of hyperparameters,

LinTS and LinUCB v and α {0.001, 0.01, 0.1, 1}, respectively. In HyRan we set

λt := d log(t+ 1)2 to be consistent with the theoretical results and p to be in

{0.5, 0.65, 0.8, 0.95}. We optimize over these hyperparameters and report the

best performance for each algorithm.

Figure ?? shows the average of the cumulative regrets over the horizon

length T = 30000 with 10 repeated experiments. The experimental results

demonstrate that HyRan performs better than the benchmarks in all of the

cases and show more evident superior performances as the context dimension

increases. To our knowledge, HyRan is the first algorithm with Õ(
√
dT ) re-

gret that has competitive empirical performances. The previously known algo-

rithms with Õ(
√
dT ) regret (e.g., SupLinUCB in Chu et al. 2011 and SupCB-GLM

in Li et al. 2017) tend to be impractical. Hence, HyRan is a provably efficient

and practical method.
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Figure 2.1: A Comparison of cumulative regrets of SuplinUCB, TS, LinUCB
and HyRan. Each line shows the averaged cumulative regrets over 10 repeated
experiments. The scale of the axis of cumulative regrets is fixed for comparison
as d increases.
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2.7 Appendix

2.7.1 Technical Lemmas

Lemma 2.7. Lee et al. [2016, Lemma 2.3] Let {Nt} be a martingale on a

Hilbert space (H, ∥·∥H). Then there exists a R2-valued martingale {Mt} such

that for any time t ≥ 0, ∥Mt∥2 = ∥Nt∥H and ∥Mt+1 −Mt∥2 = ∥Nt+1 −Nt∥H.

Lemma 2.8. (Azuma-Hoeffding) If a super-martingale (Yt; t ≥ 0) correspond-

ing to filtration Ft, satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all

t = 1, . . . , T , then for any a ≥ 0,

P (YT − Y0 ≥ a) ≤ e
− a2

2
∑T

t=1 c2t .

2.7.2 Proof of Theorem 2.1

Proof. For each t ∈ [T ], define the event

At :=

{
|Ψt| >

1

2
pt

}
,

Bt :=

{∥∥∥β̂t − β
∥∥∥
Vt

≤
√

λt +

(
4
√
2

1− p
+

σ

p

)√
d log

4t2

δ

}
,

Ct :=

{∥∥∥β̂t − β
∥∥∥
2
≤ 1 +

4
√
2

1− p
+

σ

p
:= Dp,σ

}
.

Set E := max
{

1
p log

T
δ , Cp,σN

2ϕ−4 log 2T
δ

}
, where Cp,σ is defined in (2.25).

While proving Theorem 2.4, Lemma 2.5 and 2.9 is used and the event Bt
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requires At. Under the event Bt, setting λt = d log 4t2

δ gives

∥∥∥β̂t − β
∥∥∥
2
≤
√(

β̂t − β
)T

V
1
2
t V −1

t V
1
2
t

(
β̂t − β

)
≤
√

λmax

(
V −1
t

) ∥∥∥β̂t − β
∥∥∥
Vt

≤λ
− 1

2
t

(√
λt +

(
4
√
2

1− p
+

σ

p

)√
d log

4t2

δ

)
≤Dp,σ,

which implies Ct. Thus by Theorem 2.4 we have

P

⋂
t≥E

{At ∩Bt ∩ Ct}

 ≥ 1− 6δ. (2.15)

By Lemma 2.2, for each t ≥ E ,

regret(t) ≤ 2
{
∆

β̂t−1
(Xt)− E

[
∆

β̂t−1
(Xt)

∣∣∣Gt−1

]}
+ 2

E
[
∆

β̂t−1
(Xt)

∣∣∣Gt−1

]
− 1

|Ψt−1|
∑

τ∈Ψt−1

∆
β̂t−1

(Xτ )


+

2√
|Ψt−1|

∥∥∥β − β̂t−1

∥∥∥
Vt−1

.

Let

R1(t) :=2
{
∆

β̂t−1
(Xt)− E

[
∆

β̂t−1
(Xt)

∣∣∣Gt−1

]}
,

R2(t) :=2

E
[
∆

β̂t−1
(Xt)

∣∣∣Gt−1

]
− 1

|Ψt−1|
∑

τ∈Ψt−1

∆
β̂t−1

(Xτ )

 ,

R3(t) :=
2√

|Ψt−1|

∥∥∥β − β̂t−1

∥∥∥
Vt−1

. (2.16)
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Let us bound R1(t). Since the event Ct is Gt-measurable for all t ∈ [T ], we

have

R1(t)I (Ct−1) = 2
{
∆

β̂t−1
(Xt) I (Ct−1)− E

[
∆

β̂t−1
(Xt) I (Ct−1)

∣∣∣Gt−1

]}
.

By Assumption 1,

∆
β̂t−1

(Xt) I (Ct−1) :=max
i∈[N ]

∣∣∣XT
i,t

(
β̂t−1 − β

)∣∣∣ I (Ct−1)

≤max
i∈[N ]

∥Xi,t∥2
∥∥∥β̂t−1 − β

∥∥∥
2
I (Ct−1)

≤
∥∥∥β̂t−1 − β

∥∥∥
2
I (Ct−1)

≤Dp,σ.

Thus, |R1(t)I (Ct−1)| ≤ 4Dp,σ. Since R1(t)I (Ct−1) is Gt-measurable and

E [R1(t)I (Ct−1)| Gt−1] = 0,

we can use Lemma 2.8 to have

∑
t>E

R1(t)I (Ct−1) ≤ 4Dp,σ

√
2T log

1

δ
, (2.17)

with probability at least 1− δ.
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Now we bound R2(t). By Lemma 2.3 with probability at least 1− δ/T ,

R2(t)I (At−1 ∩ Ct−1)

≤ 2I (At−1) sup
∥β1−β∥2≤Dp,σ

∣∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt−1|
∑

τ∈Ψt−1

∆β1 (Xτ )

∣∣∣∣∣∣
≤

(
3δDp,σ

T
+ 8Dp,σ

√
1

|Ψt−1|

√
d log

2T

δ

)
I (At−1)

≤ 3δDp,σ

T
+ 8Dp,σ

√
2

pt

√
d log

2T

δ
.

Thus, with probability at least 1− δ,

∑
t>E

R2(t)I (At−1 ∩ Ct−1) ≤ 3δDp,σ +
16
√
2Dp,σ√
p

√
dT log

2T

δ
. (2.18)

To bound R3(t),

R3(t)I (At−1 ∩Bt−1) ≤
2
√
2√
pt

(
1 +

4C

1− p
+

σ

p

)√
d log

4t2

δ

=
2
√
2√
pt

Dp,σ

√
d log

4t2

δ
.

and

∑
t>E

R3(t)I (At−1 ∩Bt−1) ≤
8Dp,σ√

p

√
dT log

2T

δ
. (2.19)
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Now for any x > 2E ,

P (R(T ) > x)

≤ P

(
2E +

∑
t>E

regret(t) > x

)

= P

(
2E +

∑
t>E

R1(t) +R2(t) +R3(t) > x

)

≤ P

(
2E +

∑
t>E

R1(t)I (Ct−1) +R2(t)I (At−1 ∩ Ct−1) +R3(t)I (At−1 ∩Bt−1) > x

)

+ P

⋃
t≥E

{Ac
t ∪Bc

t ∪ Cc
t }


≤ P

(
2E +

∑
t>E

R1(t)I (Ct−1) +R2(t)I (At−1 ∩ Ct−1) +R3(t)I (At−1 ∩Bt−1) > x

)

+ 6δ.

Setting

x = 2E+4Dp,σ

√
2T log

1

δ
+3δDp,σ+

16
√
2Dp,σ√
p

√
dT log

2T

δ
+
8Dp,σ√

p

√
dT log

2T

δ
,

gives

P (R(T ) > x) ≤6δ + P

(∑
t>E

R1(t)I (Ct−1) > 4Dp,σ

√
2T log

1

δ

)

+ P

(∑
t>E

R2(t)I (At−1 ∩ Ct−1) > 3δDp,σ +
16
√
2Dp,σ√
p

√
dT log

2T

δ

)

+ P

(∑
t>E

R3(t)I (At−1 ∩ Ct−1) >
8Dp,σ√

p

√
dT log

2T

δ

)

≤8δ,

where the inequality holds due to (2.16), (2.17), (2.18) and (2.19).
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2.7.3 Proof of Lemma 2.3

Proof. Let us fix t ∈ [T ] and Ψt ⊆ [t]. By Assumption 3, Xt is independent

with Gt−1. Thus,

E [∆β1 (Xt)| Gt−1] = EX [∆β1 (X)] ,

where X ∈ Rd×N arises from PX (Assumption 3). For any x > 0 and θ > 0,

P

(
sup

∥β1−β∥2≤L

∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xt)

∣∣∣∣∣ > x

∣∣∣∣∣Ψt

)

≤ exp (−θx)E

[
exp

(
θ sup
∥β1−β∥2≤L

∣∣∣∣∣EX [∆β1 (Xt)]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xt)

∣∣∣∣∣
)∣∣∣∣∣Ψt

]
.

Let τ1 ≤ τ2, . . . ≤ τ|Ψt| be an ordered round in Ψt. Then by Assumption 3,

Xτ1 , . . . ,Xτ|Ψt|
are IID random variables and we can use the symmetrization

Lemma [van der Vaart and Wellner, 1996, Lemma 2.3.1] to have

E

[
exp

(
θ sup
∥β1−β∥2≤L

∣∣∣∣∣EX [∆β1 (Xt)]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xt)

∣∣∣∣∣
)]

≤ E

exp
2θ sup

∥β1−β∥2≤L

∣∣∣∣∣∣ 1

|Ψt|

|Ψt|∑
n=1

ξn∆β1 (Xτn)

∣∣∣∣∣∣
 ,

(2.20)

where ξ1, . . . , ξ|Ψt| are independent Rademacher random variables. For any ϵ >

0 let β̃1, . . . , β̃Θ(ϵ) be the ϵ-cover of B :=
{
β1 ∈ Rd : ∥β1 − β∥2 ≤ L

}
. By the

definition of ϵ-cover, for each β1 ∈ B, there exists β̃j such that
∥∥∥β̃j − β1

∥∥∥
2
≤ ϵ.

Thus,∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β1 (Xτn)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
|Ψt|∑
n=1

ξn

{
∆β1 (Xτn)−∆β̃j

(Xτn)
}∣∣∣∣∣∣+

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣
≤

|Ψt|∑
n=1

∣∣∣∆β1 (Xτn)−∆β̃j
(Xτn)

∣∣∣+
∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣ .
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By the definition of ∆β1 (Xτn) and Assumption 1,

∣∣∣∆β1 (Xτn)−∆β̃j
(Xτn)

∣∣∣ = ∣∣∣∣max
i

∣∣XT
i,τn (β − β1)

∣∣−max
i

∣∣∣XT
i,τn

(
β − β̃j

)∣∣∣∣∣∣∣
≤max

i

∣∣∣∣∣XT
i,τn (β − β1)

∣∣− ∣∣∣XT
i,τn

(
β − β̃j

)∣∣∣∣∣∣
≤max

i

∣∣∣XT
i,τn

(
β1 − β̃j

)∣∣∣
≤max

i
∥Xi,τn∥2

∥∥∥β1 − β̃j

∥∥∥
2

≤ϵ.

Thus,

sup
∥β1−β∥2≤L

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β1 (Xτn)

∣∣∣∣∣∣ ≤ |Ψt| ϵ+ sup
j=1,...,Θ(ϵ)

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣ .
Plugging in (2.20) gives

P

(
sup

∥β1−β∥2≤L

∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xτ )

∣∣∣∣∣ > x

∣∣∣∣∣Ψt

)

≤ exp (−θx+ θϵ)E

exp
 2θ

|Ψt|
sup

j=1,...,Θ(ϵ)

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣
∣∣∣∣∣∣Ψt


≤ exp (−θx+ θϵ)

Θ(ϵ)∑
j=1

E

exp
 2θ

|Ψt|

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣
∣∣∣∣∣∣Ψt

 .

Since for each j = 1, . . . ,Θ(ϵ),

∣∣∣∆β̃j
(Xτn)

∣∣∣ ≤ max
i

∥Xi,τn∥2
∥∥∥β − β̃j

∥∥∥
2
≤ L,
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holds, by Hoeffding’s Lemma,

E

exp
 2θ

|Ψt|

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣
∣∣∣∣∣∣Ψt


= EE

exp
 2θ

|Ψt|

∣∣∣∣∣∣
|Ψt|∑
n=1

ξn∆β̃j
(Xτn)

∣∣∣∣∣∣
∣∣∣∣∣∣ {X(τn)}|Ψt|

n=1 ,Ψt


= E

|Ψt|∏
n=1

E
[
exp

(
2θ

|Ψt|
ξn∆β̃j

(Xτn)

)∣∣∣∣ {X(τn)}|Ψt|
n=1 ,Ψt

]
≤ exp

(
2θ2L2

|Ψt|

)
.

Thus,

P

(
sup

∥β1−β∥2≤L

∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xτ )

∣∣∣∣∣ > x

∣∣∣∣∣Ψt

)

≤ exp (−θx+ θϵ) 2Θ(ϵ) exp

(
2θ2L2

|Ψt|

)
= 2Θ(ϵ) exp

{
−θ (x− ϵ) +

2θ2L2

|Ψt|

}
.

Minimizing with respect to θ > 0 gives,

P

(
sup

∥β1−β∥2≤L

∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xτ )

∣∣∣∣∣ > x

∣∣∣∣∣Ψt

)

≤ 2Θ(ϵ) exp

{
−|Ψt| (x− ϵ)2

8L2

}
.
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The covering number of B is bounded by Θ(ϵ) ≤ (3Lϵ )d. Thus, with probability

at least 1− δ/T ,

sup
∥β1−β∥2≤L

∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xτ )

∣∣∣∣∣
≤ ϵ+ L

√
8

|Ψt|

√
log

2Θ(ϵ)T

δ

≤ ϵ+ L

√
8

|Ψt|

√
d log

3L

ϵ
+ log

2T

δ
.

Setting ϵ = 3Lδ/(2T ) gives,

sup
∥β1−β∥2≤L

∣∣∣∣∣E [∆β1 (Xt)| Gt−1]−
1

|Ψt|
∑
τ∈Ψt

∆β1 (Xτ )

∣∣∣∣∣
≤ 3Lδ

2T
+ L

√
8

|Ψt|

√
d log

2T

δ
+ log

2T

δ

≤ 3Lδ

2T
+ 4L

√
1

|Ψt|

√
d log

2T

δ
.

2.7.4 Proof of Theorem 1.3

To prove Theorem 1.3, we need to prove the following bound for the imputation

estimator β̆t which is used in Ỹi,t and β̂t.

Lemma 2.9. Suppose the Assumptions 1-4 hold. Then for β̆t computed in

Algorithm 2.1, with probability at least 1− δ,

∥∥∥β̆t − β
∥∥∥
2
≤ 1

N
, (2.21)

holds for t ≥ max
{

1
p log

4T
δ , Cp,σN

2ϕ−4 log 8T
δ

}
.
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Proof. Fix t and set γt := 4
√
2N
√
|Ψt| log 4t2

δ , and Wt :=
∑

τ∈Ψt

∑N
i=1Xi,τX

T
i,τ+∑

τ /∈Ψt
Xaτ ,τXaτ ,τ + γtI. Then by definition of β̆t, we have

∥∥∥β̆t − β
∥∥∥
2
=

∥∥∥∥∥∥W−1
t

∑
τ∈Ψt

N∑
i=1

Xi,τ Ỹi,τ +
∑
τ /∈Ψt

Xaτ ,τYi,τ −Wtβ

∥∥∥∥∥∥
2

≤
∥∥W−1

t

∥∥
2


∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

Xi,τ

(
Ỹi,τ −XT

i,τβ
)
+
∑
τ /∈Ψt

Xaτ ,τηaτ ,τ

∥∥∥∥∥∥
2

+ γt ∥β∥2


≤λmin (Wt)

−1


∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

Xi,τ

(
Ỹi,τ −XT

i,τβ
)
+
∑
τ /∈Ψt

Xaτ ,τηaτ ,τ

∥∥∥∥∥∥
2

+ γt

 .

(2.22)

For the minimum eigenvalue term, we have

λmin (Wt) ≥ λmin

(∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ + γtId

)
.

Let τ1 < τ2 < · · · < τ|Ψt| be the ordered rounds in Ψt. Since
∥∥∥∑N

i=1Xi,τX
T
i,τ

∥∥∥
F
≤

N and

λmin

(
E

[
N∑
i=1

Xi,τkX
T
i,τk

∣∣∣∣∣Xτ1 , . . . ,Xτk−1

])
= λmin

(
E

[
N∑
i=1

Xi,τkX
T
i,τk

])
≥ Nϕ2,

we can use Lemma 1.6 to have

λmin (Wt) ≥ λmin

(∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ + γtId

)
≥ |Ψt|Nϕ2, (2.23)
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with probability at least 1− δ
t2

. By definition of Ỹi,τ , we have

∑
τ∈Ψt

N∑
i=1

Xi,τ

(
Ỹi,τ −XT

i,τβ
)
=
∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τX

T
i,τ

(
β̂ridge
t−1 − β

)

+
∑
τ∈Ψt

N∑
i=1

I (ãτ = i)

πi,τ
ηi,τ

=
∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ

(
β̂ridge
t−1 − β

)
+
∑
τ∈Ψt

ηãτ ,τ
πãτ ,τ

Xãτ ,τ ,

where Xi,τ = Xi,τX
T
i,τ . Plugging this and (2.23) in (2.22) gives,

∥∥∥β̆t − β
∥∥∥
2
≤ 1

|Ψt|Nϕ2

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ

(
β̂ridge
t−1 − β

)∥∥∥∥∥
2

+
1

|Ψt|Nϕ2

∥∥∥∥∥∥
∑
τ∈Ψt

ηãτ ,τ
πãτ ,τ

Xãτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
2

+
4
√
2 log 4t2

δ

ϕ2
√

|Ψt|
.

(2.24)

For the first term,∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ

(
β̂ridge
t−1 − β

)∥∥∥∥∥
2

≤

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ

∥∥∥∥∥
2

∥∥∥β̂ridge
t−1 − β

∥∥∥
2

≤ 2

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ

∥∥∥∥∥
F

.

Define the filtration as G0 = Ψt and Gτ = Gτ−1 ∪ {Xτ , ãτ , aτ} for τ ∈ [t].

This filtration refers to the case where the subset of rounds for using contexts

from all arms is observed first and ã1, . . . , ãt is observed later. In Algorithm
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2.1, ã1, . . . , ãt is observed first to determine Ψt. But in theoretical analysis,

we define a novel filtration G0, . . . ,Gt to obtain a suitable bound by using the

martingale method [Kontorovich and Ramanan, 2008]. Set

M :=
∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ ,

and define Mτ = E [M | Gτ ]. Then {Mτ}tτ=0 is a Rd×d-valued martingale se-

quence since

E [Mτ | Gτ−1] = E [E [M | Gτ ]| Gτ−1] = E [M | Gτ−1] = Mτ−1.

By Lemma 2.7, we can find a R2-valued martingale sequence {Nτ}tτ=0 such

that N0 = (0, 0)T and

∥Mτ∥F = ∥Nτ∥2 , ∥Mτ −Mτ−1∥F = ∥Nτ −Nτ−1∥2 ,

for all τ ∈ [t]. Set Nτ = (N
(1)
τ , N

(2)
τ )T . Then for each r = 1, 2 and τ ∈ [t],∣∣∣N (r)

τ −N
(r)
τ−1

∣∣∣ ≤∥Nτ −Nτ−1∥2

= ∥Mτ −Mτ−1∥F

= ∥E [M | Gτ ]− E [M | Gτ−1]∥F

=


∥∥∥∑N

i=1

(
1− I(ãτ=i)

πi,τ

)
Xi,τ

∥∥∥
F

τ ∈ Ψt

0 τ /∈ Ψt

≤


∥∥∥∑N

i=1Xi,τ

∥∥∥
F
+
∥∥∥ 1
πãτ ,τ

Xi,τ

∥∥∥
F

τ ∈ Ψt

0 τ /∈ Ψt

≤

N
(
2−p
1−p

)
τ ∈ Ψt

0 τ /∈ Ψt

,
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holds almost surely. The third equality holds since for any τ ∈ [t],

E

[
N∑
i=1

(
1− I (ãu = i)

πi,u

)
Xi,u

∣∣∣∣∣Gτ

]
= 0, ∀u > τ,

E [M | Gτ ] =
∑

u∈Ψt,u≤τ

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ .

Using Lemma 2.8, for x > 0 and r = 1, 2,

P
(∣∣∣N (r)

τ

∣∣∣ > x
∣∣∣G0

)
≤ 2 exp

− x2

2N2 |Ψt|
(
2−p
1−p

)2
 ,

which implies that

P

(∣∣∣N (r)
τ

∣∣∣ > N

(
2− p

1− p

)√
2 |Ψt| log

4t2

δ

∣∣∣∣∣G0

)
≤ δ

2t2
.

Since

∥M∥F = ∥Mt∥F = ∥Nt∥2 ≤
∣∣∣N (1)

t

∣∣∣+ ∣∣∣N (2)
t

∣∣∣ ,
we have

P

(
∥M∥F > 2N

(
2− p

1− p

)√
2 |Ψt| log

4t2

δ

∣∣∣∣∣Ψt

)
≤ δ

t2
,

for any subset Ψt ⊆ [t]. Thus, we conclude that

P

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ

(
β̆t−1 − β

)∥∥∥∥∥
2

> 4N

(
2− p

1− p

)√
2 |Ψt| log

4t2

δ


≤P

(
2 ∥M∥F > 4N

(
2− p

1− p

)√
2 |Ψt| log

4t2

δ

)

≤EP

(
2 ∥M∥F > 4N

(
2− p

1− p

)√
2 |Ψt| log

4t2

δ

∣∣∣∣∣Ψt

)

≤ δ

t2
.
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Now for the second term in (2.24), we have for any x > 0,

P

∥∥∥∥∥∥
∑
τ∈Ψt

ηãτ ,τ
πãτ ,τ

Xãτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
2

> x


≤P


∥∥∥∥∥∥
∑
τ∈Ψt

ηãτ ,τ
πãτ ,τ

Xãτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
2

> x

⋂
{ ⋂

τ∈Ψt

{ãτ = aτ}

}
+ P

( ⋃
τ∈Ψt

{ãτ ̸= aτ}

)

≤P

∥∥∥∥∥∥
∑
τ∈Ψt

ηaτ ,τ
πaτ ,τ

Xaτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
2

> x

 .

Since πaτ ,τ = p, we observe that ηaτ ,τ

πaτ ,τ
and ηaτ ,τ are σ

p -sub-Gaussian. Using

Lemma 1.4, we have

P

∥∥∥∥∥∥
∑
τ∈Ψt

ηaτ ,τ
πaτ ,τ

Xaτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
2

>
Cσ

p

√
t

√
log

4t2

δ

 ≤ δ

t2
,

for some absolute constant C > 0.

Now from (2.24), with probability 1− 3δ
t2

, we have

∥∥∥β̆t − β
∥∥∥
2
≤ 1

|Ψt|Nϕ2

{
4N

(
2− p

1− p

)√
2 |Ψt| log

4t2

δ
+

Cσ

p

√
t

√
log

4t2

δ

}
+
4
√
2 log 4t2

δ

ϕ2
√
|Ψt|

.

By Lemma (2.5), |Ψt| ≥ p
2 t for all t ≥ 1

p log
T
δ , with probability at least 1− δ.

Then we have

∥∥∥β̆t − β
∥∥∥
2
≤ 1

ϕ2
√
t

{
8(2− p)

(1− p)
√
p
+

√
2Cσ

p2N
+

8
√
p

}√
2 log

4t2

δ

≤ 2

ϕ2
√
t

{
8(2− p)

(1− p)
√
p
+

√
2Cσ

p2
+

8
√
p

}√
log

2T

δ
.
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Set

Cp,σ :=
8(2− p)

(1− p)
√
p
+

√
2Cσ

p2
+

8
√
p
. (2.25)

Then for all t ≥ max
{

1
p log

T
δ , Cp,σN

2ϕ−4 log 2T
δ

}
, we have

∥∥∥β̆t − β
∥∥∥
2
≤ 1

N
,

with probability at least 1− 4δ.

Now we are ready to prove Theorem 2.4.

Proof. By the definition of β̂t in (1.2),

∥∥∥β̂t − β
∥∥∥
Vt

=

∥∥∥∥∥∥V −1
t

∑
τ∈Ψt

N∑
i=1

Xi,τ Ỹi,τ +
∑
τ /∈Ψt

Xaτ ,τYaτ ,τVtβ

∥∥∥∥∥∥
Vt

=

∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

Xi,τ Ỹi,τ +
∑
τ /∈Ψt

Xaτ ,τYaτ ,τVtβ

∥∥∥∥∥∥
V −1
t

=

∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

Xi,τ

(
Ỹi,τ −XT

i,τβ
)
+
∑
τ /∈Ψt

Xaτ ,τ

(
Yaτ ,τ −XT

aτ ,τβ
)
− λtβ

∥∥∥∥∥∥
V −1
t

.

Set η̃i,τ := Ỹi,τ −XT
i,τβ. Since Yaτ ,τ = XT

aτ ,τβ + ηaτ ,τ , we have

∥∥∥β̂t − β
∥∥∥
Vt

=

∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

η̃i,τXi,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ − λtβ

∥∥∥∥∥∥
V −1
t

≤

∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

η̃i,τXi,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

+ ∥λtβ∥V −1
t

. (2.26)

For the last term, we have

∥λtβ∥V −1
t

≤
√

λmax

(
V −1
t

)
∥λtβ∥2 ≤

√
λt ∥β∥2 ≤

√
λt, (2.27)
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where the last inequality holds due to Assumption 1. For the first term, we

use the decomposition,

∑
τ∈Ψt

N∑
i=1

η̃i,τXi,τ =
∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τX

T
i,τ (β̆t − β)

+
∑
τ∈Ψt

N∑
i=1

I (ãτ = i)

πi,τ
ηi,τXi,τ ,

to have ∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

η̃i,τXi,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

≤

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τX

T
i,τ (β̆t − β)

∥∥∥∥∥
V −1
t

+

∥∥∥∥∥∥
∑
τ∈Ψt

N∑
i=1

I (ãτ = i)

πi,τ
ηi,τXi,τ +

∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

. (2.28)

Let Xi,τ := Xi,τX
T
i,τ . For the first term, we can use Lemma 2.9 to have

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
Xi,τ (β̆t − β)

∥∥∥∥∥
V −1
t

=

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
V

− 1
2

t Xi,τ (β̆t − β)

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
V

− 1
2

t Xi,τ

∥∥∥∥∥
2

∥∥∥β̆t − β
∥∥∥
2

≤ 1

N

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
V

− 1
2

t Xi,τ

∥∥∥∥∥
F

.

With similar technique in the proof of Lemma 2.9, define the filtration as
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G0 = Ψt ∪ {X1, . . . ,Xt} and Gτ = Gτ−1 ∪ {ãτ , aτ} for τ ∈ [t]. Set

M :=
∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
V

− 1
2

t Xi,τ ,

and define Mτ = E [M | Gτ ]. Then {Mτ}tτ=0 is a Rd×d-valued martingale se-

quence. Since for any τ ∈ [t], the contexts Xτ+1, . . . ,Xt are independent of ãτ

and

E

[
N∑
i=1

(
1− I (ãu = i)

πi,u

)
V

− 1
2

t Xi,u

∣∣∣∣∣Gτ

]
=V

− 1
2

t

N∑
i=1

E
[
1− I (ãu = i)

πi,u

∣∣∣∣Gτ

]
Xi,u

=0,

for all u > τ . This leads to

E [M | Gτ ] =
∑

u∈Ψt,u≤τ

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
V

− 1
2

t Xi,τ .

By Lemma 2.7, we can find a R2-valued martingale sequence {Nτ}tτ=0 such

that N0 = (0, 0)T and

∥Mτ∥F = ∥Nτ∥2 , ∥Mτ −Mτ−1∥F = ∥Nτ −Nτ−1∥2 ,
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for all τ ∈ [t]. Set Nτ = (N
(1)
τ , N

(2)
τ )T . Then for each r = 1, 2 and τ ∈ [t],∣∣∣N (r)

τ −N
(r)
τ−1

∣∣∣ ≤∥Nτ −Nτ−1∥2

= ∥Mτ −Mτ−1∥F

= ∥E [M | Gτ ]− E [M | Gτ−1]∥F

=


∥∥∥∥∑N

i=1

(
1− I(ãτ=i)

πi,τ

)
V

− 1
2

t Xi,τ

∥∥∥∥
F

τ ∈ Ψt

0 τ /∈ Ψt

≤


√∑N

i=1

(
1− I(ãτ=i)

πi,τ

)2√∑N
i=1

∥∥∥∥V − 1
2

t Xi,τ

∥∥∥∥2
F

τ ∈ Ψt

0 τ /∈ Ψt

≤

2 N
1−p

√∑N
i=1 ∥Xi,τ∥2V −1

t
τ ∈ Ψt

0 τ /∈ Ψt

,

holds almost surely. The last inequality holds due to

∥∥∥V −1/2
t Xi,τ

∥∥∥2
F
=Tr

(
XT

i,τV
−1
t Xi,τ

)
=XT

i,τV
−1
t Xi,τTr

(
Xi,τX

T
i,τ

)
= ∥Xi,τ∥2V −1

t
∥Xi,τ∥2

≤∥Xi,τ∥2V −1
t

.

Using Lemma 2.8, for x > 0 and r = 1, 2,

P
(∣∣∣N (r)

τ

∣∣∣ > x
∣∣∣G0

)
≤ 2 exp

− x2

2
(

2N
1−p

)2∑
τ∈Ψt

∑N
i=1 ∥Xi,τ∥2V −1

t


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which implies that

P

∣∣∣N (r)
τ

∣∣∣ > 2N

1− p

√√√√2

(∑
τ∈Ψt

N∑
i=1

∥Xi,τ∥2V −1
t

)
log

4t2

δ

∣∣∣∣∣∣G0

 ≤ δ

2t2
.

Since

∥M∥F = ∥Mt∥F = ∥Nt∥2 ≤
∣∣∣N (1)

t

∣∣∣+ ∣∣∣N (2)
t

∣∣∣ ,
we have

P

∥M∥F >
4N

1− p

√√√√2

(∑
τ∈Ψt

N∑
i=1

∥Xi,τ∥2V −1
t

)
log

4t2

δ

∣∣∣∣∣∣Ψt

 ≤ δ

t2
,

for any subset Ψt ⊆ [t]. Let Ut :=
∑

τ∈Ψt

∑N
i=1Xi,τX

T
i,τ + λtI. Since Vt ⪰ Ut,

we have
∥∥∥Xi,τ (u)

∥∥∥2
V −1
t

≤
∥∥∥Xi,τ (u)

∥∥∥2
U−1
t

. By the definition of the Frobenous norm

and Xi,τ , we have

∑
τ∈Ψt

N∑
i=1

∥∥∥Xi,τ (u)

∥∥∥2
U−1
t

=
∑
τ∈Ψt

N∑
i=1

XT
i,τU

−1
t Xi,τ

=
∑
τ∈Ψt

N∑
i=1

Tr
(
XT

i,τU
−1
t Xi,τ

)
=
∑
τ∈Ψt

N∑
i=1

Tr
(
Xi,τX

T
i,τU

−1
t

)
=Tr

((∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ

)
U−1
t

)

≤Tr

((∑
τ∈Ψt

N∑
i=1

Xi,τX
T
i,τ + λtI

)
U−1
t

)

=Tr (Id) = d.
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Thus, we have

P

(
∥M∥F >

4N

1− p

√
2d log

4t2

δ

∣∣∣∣∣Ψt

)
≤ δ

t2
,

and

P

∥∥∥∥∥∑
τ∈Ψt

N∑
i=1

(
1− I (ãτ = i)

πi,τ

)
V

− 1
2

t Xi,τ

(
β̆t − β

)∥∥∥∥∥
2

>
4

1− p

√
2d log

4t2

δ


≤P

(
1

N
∥M∥F >

4

1− p

√
2d log

4t2

δ

)

≤EP

(
∥M∥F >

4N

1− p

√
2d log

4t2

δ

∣∣∣∣∣Ψt

)

≤ δ

t2
. (2.29)

Now for the second term in (2.28), we have for any x > 0,

P


∥∥∥∥∥∥
∑
τ∈Ψt

ηãτ ,τ
πãτ ,τ

Xãτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

> x


≤P



∥∥∥∥∥∥
∑
τ∈Ψt

ηãτ ,τ
πãτ ,τ

Xãτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

> x


⋂{ ⋂

τ∈Ψt

{ãτ = aτ}

}
+ P

( ⋃
τ∈Ψt

{ãτ ̸= aτ}

)

≤P


∥∥∥∥∥∥
∑
τ∈Ψt

ηaτ ,τ
πaτ ,τ

Xaτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

> x

 .

Since πaτ ,τ = p, we observe that ηaτ ,τ

πaτ ,τ
and ηaτ ,τ are σ

p -sub-Gaussian. Define
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Wt :=
∑t

τ=1Xaτ ,τX
T
aτ ,τ + λtI. Since Vt ⪰ Wt, we have

∥∥∥∥∥∥
∑
τ∈Ψt

ηaτ ,τ
πaτ ,τ

Xaτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
V −1
t

≤

∥∥∥∥∥∥
∑
τ∈Ψt

ηaτ ,τ
πaτ ,τ

Xaτ ,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
W−1

t

.

By assumption 2, ηaτ ,τ is a σ-sub-Gaussian random variable given Hτ , and

Hτ+1-measurable. Since Xaτ ,τ is Hτ -measurable, we can use Lemma 9 in

Abbasi-Yadkori et al. [2011] to have

∥∥∥∥∥∥
∑
τ∈Ψt

ηaτ ,τ
p

Xat,τ +
∑
τ /∈Ψt

ηaτ ,τXaτ ,τ

∥∥∥∥∥∥
2

W−1
t

≤ σ2

p2
d log

(
t

δ

)
, (2.30)

for all t ≥ 0 with probability at least 1 − δ. Now with (2.26)-(2.30), we can

conclude that

∥∥∥β̂t − β
∥∥∥
Vt

≤ 4

1− p

√
2d log

4t2

δ
+

σ

p

√
d log

(
t

δ

)
+
√

λt

≤

(
4
√
2

1− p
+

σ

p

)√
d log

4t2

δ
+
√

λt,

with probability at least 1− 6δ.

2.7.5 Proof of Lemma 2.5

Proof. The proof follows from Chernoff’s lower bound. In Algorithm 2.1, Ψt

is constructed as Ψt = {τ ∈ [t] : ãτ = aτ}. Thus we have

|Ψt| =
t∑

τ=1

I (ãτ = aτ ) .
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Then for any ϵ ∈ (0, 1) and s < 0,

P (|Ψt| ≤ ϵpt) =P

(
s

t∑
τ=1

I (ãτ = aτ ) ≥ sϵpt

)

≤ exp (−sϵpt)E

[
exp

(
s

t∑
τ=1

I (ãτ = aτ )

)]
.

Let Gτ = Fτ ∪ {ã1, . . . , ãτ−1}. Then E [I (ãτ = aτ )| Gτ ] = p, for all τ ∈ [t] and

E

[
exp

(
s

t∑
τ=1

I (ãτ = aτ )

)]

=EE

[
exp

(
s

t∑
τ=1

I (ãτ = aτ )

)∣∣∣∣∣Gt

]

=E

[
exp

(
s

t−1∑
τ=1

I (ãτ = aτ )

)
E [ exp {sI (ãt = at)}| Gt]

]

= {(1− p) + pes}E

[
exp

(
s

t−1∑
τ=1

I (ãτ = aτ )

)]

=
...

= {(1− p) + pes}t

≤{exp (−p+ pes)}t .

The last inequality holds due to 1 + x ≤ ex for all x ∈ R. Thus, we have

P (|Ψt| ≤ ϵpt) ≤ exp {(es − sϵ− 1) pt} .

The right hand side is minimized when s = log ϵ. Setting s = log ϵ gives

P (|Ψt| ≤ ϵpt) ≤ exp {(ϵ− ϵ log ϵ− 1) pt} ≤ exp {−2 (1− ϵ) pt} ,
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where the last inequality holds due to log x ≥ 1 − x−1 for all x > 0. Setting

the right hand side smaller than δ/T gives

t ≥ 1

2p (1− ϵ)
log

T

δ
. (2.31)

For t that satisfies (2.31), P (|Ψt| ≤ ϵpt) ≤ δ
T holds.

2.7.6 Proof of Theorem 2.6

Proof. The proof is inspired by that of Theorem 5.1 in Auer et al. [2002], and

that of Theorem 24.2 in Lattimore and Szepesvári [2020]. Define the context

distribution PX sampled from



1

0
...

0

0
...

0


, . . . ,



0

0
...

0

0
...

1


,



0

0
...

0

0
...

0




∈
(
Rd
)N

.

Here, the covariance matrix E
[
N−1

∑N
i=1Xi,tXi,t

]
is positive definite. Let ηi,t

be a random variable sampled from the normal distribution N (0, 12), inde-

pendently. Then the reward distribution is Gaussian with mean XT
i,tβ, and

variance 12. For each i ∈ [d] let βi = (0, . . . 0,∆, 0 . . . , 0) where ∆ > 0 is in

i-th component only. Then we have

Eβi

[
T∑
t=1

XT
a∗t ,t

β

]
= ∆T. (2.32)
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For each i ∈ [d], we have

Eβi

[
T∑
t=1

XT
at,tβi

]
= ∆Eβi

[
T∑
t=1

I (at = i)

]
.

Now set β0 = 0. Let Pβi
and Pβ0 be the laws of

∑T
t=1 I (at = i) with respect

to the bandit/learner interaction measure induced by βi and β0 respectively.

Then by the result in Exercise 14.4 in Lattimore and Szepesvári [2020],

Eβi

[
T∑
t=1

I (at = i)

]
≤ Eβ0

[
T∑
t=1

I (at = i)

]
+ T

√
1

2
D (Pβ0 ,Pβi

),

where D(·, ·) is the relative entropy between two probability measures. Set

Xt := (X1,t, . . . , XN,t). By the chain rule for the relative entropy,

D (Pβ0 ,Pβi
)

=
T∑
t=1

D
(
Pβ0

(
Yat,|Ya1,, . . . , Yat−1,,X1, . . . ,Xt

)
,Pβi

(
Yat,|Ya1,, . . . , Yat−1,,X1, . . . ,Xt

))
+

T∑
t=1

D
(
Pβ0

(
Xt|Ya1,, . . . , Yat−1,,X1, . . . ,Xt−1

)
,Pβi

(
Xt|Ya1,, . . . , Yat−1,,X1, . . . ,Xt−1

))
=

T∑
t=1

Eβ0

{
XT

at,t (βi − β0)
}2

2

=
∆2

2
Eβ0

[
T∑
t=1

I (at = i)

]
,
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where the second equality holds since the distribution of Xt is fixed, and

D
(
Pβ0

(
Yat,|Ya1,, . . . , Yat−1,,X1, . . . ,Xt

)
,Pβi

(
Yat,|Ya1,, . . . , Yat−1,,X1, . . . ,Xt

))
=

∫ ∫
log

dPβi
(y|at)

dPβ0(y|at)
dPβ0(y|at)dPβ0 (at)

=

∫ {
XT

at,t (βi − β0)
}2

2
dPβ0 (at)

= Eβ0

{
XT

at,t (βi − β0)
}2

2
.

Thus we have

Eβi

[
T∑
t=1

XT
at,tβi

]
≤ ∆Eβ0

[
T∑
t=1

I (at = i)

]
+

∆2T

2

√√√√Eβ0

[
T∑
t=1

I (at = i)

]
.

With (2.32),

Eβi
[R(T )] ≥ ∆T −∆Eβ0

[
T∑
t=1

I (at = i)

]
− ∆2T

2

√√√√Eβ0

[
T∑
t=1

I (at = i)

]
.

Taking average over i ∈ [d] gives

1

d

d∑
i=1

Eβi
[R(T )] ≥ ∆T − ∆

d

d∑
i=1

Eβ0

[
T∑
t=1

I (at = i)

]
− ∆2T

2d

d∑
i=1

√√√√Eβ0

[
T∑
t=1

I (at = i)

]

≥ ∆T − ∆T

d
− ∆2T

√
d

2d

√√√√ d∑
i=1

Eβ0

[
T∑
t=1

I (at = i)

]

≥ ∆T

2
− ∆2T

√
T

2
√
d

.

Setting ∆ = 1
2

√
d
T gives

1

d

d∑
i=1

Eβi
[R(T )] ≥ 1

8

√
dT .
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Thus, there exists βi such that Eβi
[R(T )] ≥ 1

8

√
dT .
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국 문 초 록 

 

본 학위논문은 순차적 결정 문제(Sequential decision making problem)를 

위한 효율적인 선형 다중 슬롯 머신 알고리즘(Linear Contextual Bandit 

Algorithm)을 제안한다. 선형 다중 슬롯 머신 알고리즘은 유한 개의 

선택지(Arm)가 주어진 특정 환경 안에서 학습자가 그 선택지의 

내용(Context)을 관찰하고 이들 중 보상 (Reward)을 최대화하는 행동을 

파악하고 선택하는 방법론이다. 보상은 선택지의 내용과 선형 관계를 

가지고 있다. 현재까지 제안된 선형 다중 슬롯 머신 알고리즘은 내용과 

보상의 관계를 추정할 때, 선택된 내용과 보상으로만 추정하고 있다. 

이는 선택되지 않은 내용들을 관찰만 하고 추정에는 사용할 수 없는 

비효율성을 유발한다. 이로 인해 다중 슬롯 머신이 활용되는 뉴스 기사 

배치 알고리즘이나 광고 추천 알고리즘이나 모바일 건강관리 시스템 

등에서 선택받지 못한 기사, 광고, 건강관리법과 같은 내용이 추정에 

사용될 수 없는 비효율성이 발생한다.  

본 학위논문에서는 선택받지 못한 내용들도 추정에 활용할 수 있는 

새로운 선형 다중 슬롯 머신 알고리즘 두 가지를 제안하였다. 첫째는 

결측자료 분석법 중 이중 강건법(Doubly Robust)을 적용하여 관측하지 

못한 보상을 유사 보상(Pseudo-reward)으로 대체하면서 선택되지 못한 

내용도 추정에 활용할 수 있도록 하였고, 이를 통해 내용의 차원의 

제곱근만큼 후회 상한 (Regret bound)를 개선하였다. 둘째는 간단한 

랜덤화(Randomization)를 적용하여 선택받지 못한 내용을 활용하는 

방법과 선택한 내용만 사용하는 방법을 혼합하여 만든 혼합 

추정량(Compound Estimator)을 정의하고, 이 알고리즘이 최적(Optimal 

rate)의 후회 상한을 가졌음을 증명하였다. 본 학위논문이 제안하는 새 

알고리즘은 선택받지 못한 내용을 활용하면서 이론적으로 성능이 

개선되었음이 증명되었고, 시뮬레이션 데이터에 적용한 결과를 통해서도 

기존 알고리즘보다 성능이 개선되었음을 확인하였다. 

 

주요어 : 다중 슬롯 머신, 효율적인, 성능개선, 결측자료, 랜덤화 

학   번 : 2016-20263 
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