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Abstract
Efficient Linear Contextual Bandit Algorithms with
Improved Regret Bounds

Wonyoung Kim
The Department of Statistics
The Graduate School

Seoul National University

This thesis contains two proposed efficient algorithms: (i) Doubly Robust
Thompson Sampling (DRTS) and (ii) Hybridization by Randomization (HyRan).

DRTS employs the doubly-robust method used in missing data literature to
Thompson Sampling with contexts (LinTS). A challenging aspect of the bandit
problem is that a stochastic reward is observed only for the chosen arm and
the rewards of other arms remain missing. The dependence of the arm choice
on the past context and reward pairs compounds the complexity of regret
analysis. Different from previous works relying on missing data techniques
[Dimakopoulou et al., 2019, Kim and Paik, 2019|, the proposed algorithm is
designed to allow a novel additive regret decomposition leading to an improved
regret bound with the order of O(QS_Z\/T ), where ¢? is the minimum eigenvalue
of the covariance matrix of contexts and T is the time horizon. This is the
first regret bound of LinTS using ¢? without the dimension of the context, d
and the regret bound of the proposed algorithm is O(dﬁ) in many practical
scenarios, improving the bound of LinTS by a factor of v/d. A benefit of the
proposed method is that it utilizes all the context data, chosen or not chosen,
thus allowing to circumvent the technical definition of unsaturated arms used
in theoretical analysis of LinTS. Empirical studies show the advantage of the
proposed algorithm over LinTS.

HyRan is a novel bandit algorithm and show that our proposed algorithm

establish the regret bound of O(\/ dT'), which is optimal up to the logarithmic



factors. The novelty comes from the two modifications where the first is to
utilize all contexts, both selected and unselected, and the second is to ran-
domize the contribution to the estimator. These modifications render a novel
decomposition of the cumulative regret into two main additive terms whose
bounds can be derived by employing the structure of the compounding esti-
mator. While previous algorithms such as SupLinUCB [Chu et al., 2011] have
shown O(\/diT ) regret, exploiting independence via a phased algorithm, HyRan
is the first to achieve O(\/diT ) regret keeping the practical advantage without
resorting to generating independent samples. The numerical experiments show
that the practical performance of our proposed algorithm is in line with the

theoretical guarantees.
Keywords: Efficient linear contextual bandit algorithms, Improved regret

bounds, Missing data, Randomization, Hybridization

Student Number : 2016-20263
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Chapter 1

Doubly Robust Thompson
Sampling with Linear Payoffs

1.1 Introduction

Contextual bandit has been popular in sequential decision tasks such as news
article recommendation systems. In bandit problems, the learner sequentially
pulls one arm among multiple arms and receives random rewards on each
round of time. While not knowing the compensation mechanisms of rewards,
the learner should make his/her decision to maximize the cumulative sum of
rewards. In the course of gaining information about the compensation mecha-
nisms through feedback, the learner should carefully balance between exploita-
tion, pulling the best arm based on information accumulated so far, and explo-
ration, pulling the arm that will assist in future choices, although it does not
seem to be the best option at the moment. Therefore in the bandit problem,
estimation or learning is an important element besides decision making.

A challenging aspect of estimation in the bandit problem is that a stochastic
reward is observed only for the chosen arm. Consequently, only the context and

reward pair of the chosen arm is used for estimation, which causes dependency



of the context data at the round on the past contexts and rewards. To handle
this difficulty, I view bandit problems as missing data problems. The first
step in handling missing data is to define full, observed, and missing data. In
bandit settings, full data consist of rewards and contexts of all arms; observed
data consist of full contexts for all arms and the reward for the chosen arm;
missing data consist of the rewards for the arms that are not chosen. Typical
estimation procedures require both rewards and contexts pairs to be observed,
and the observed contexts from the unselected are discarded (see Table 1.1).
The analysis based on the completely observed pairs only is called complete
record analysis. Most stochastic bandit algorithms utilize estimates based on
complete record analysis. Estimators from complete record analysis are known
to be inefficient. In bandit setting, using the observed data whose probability of
observation depends on previous rewards requires special theoretical treatment.

There are two main approaches to missing data: imputation and inverse
probability weighting (IPW). Imputation is to fill in the predicted value of
missing data from a specified model, and IPW is to use the observed records
only but weight them by the inverse of the observation probability. The dou-
bly robust (DR) method [Robins et al., 1994, Bang and Robins, 2005] is a
combination of imputation and IPW tools. A review of missing data and DR
methods is provided in Section 1.7.5. The robustness against model misspec-
ification in missing data settings is insignificant in the bandit setting since
the probability of observation or allocation to an arm is known. The merit of
the DR method in the bandit setting is its ability to employ all the contexts
including unselected arms.

We propose a novel multi-armed contextual bandit algorithm called Doubly
Robust Thompson Sampling (DRTS) that applies the DR technique used in
missing data literature to Thompson Sampling with linear contextual bandits
(LinTS). The main thrust of DRTS is to utilize contexts information for all

arms, not just chosen arms. By using the unselected, yet observed contexts,



Table 1.1: The shaded data are used in complete record analysis (left) and DR
method (right) under multi-armed contextual bandit settings. The contexts,
rewards and DR imputing values are denoted by X, Y, and Y P, respectively.
The question mark refers to the missing reward of unchosen arms.

t=1 t=2 t=1 t=2

Arm1 X, ? X1 ? Am1  Xi1  YPEQ) X1 YPE(Q)
Arm 2 Xa. 7 Xap(2) Yaa(2) Am2  Xan  YPE(1) Xo,(2) Y2R(2)
Arm 3 Xo (1) Yo, (1) Xso ? Arm 3 X, (1) YDR(1) Xso  YPR(2)
Arm4 Xy, ? X4 ? Arm4 X411  YPEQ) X YPE(Q)

along with a novel algorithmic device, the proposed algorithm renders a unique
regret decomposition which leads to a novel regret bound without resorting to
the technical definition of unsaturated arms used by Agrawal and Goyal [2013].
Since categorizing the arms into saturated vs. unsaturated plays a critical role
in costing extra v/d, by circumventing it, we prove a O(d\/T) bound of the
cumulative regret in many practical occasions compared to O(d®?+/T) shown
in Agrawal and Goyal [2013].

The main contributions of this part of the thesis are as follows.

e We propose a novel contextual bandit algorithm that improves the cu-
mulative regret bound of LinTS by a factor of v/d (Theorem 1.1) in many
practical scenarios (Section 1.4.1). This improvement is attained mainly
by defining a novel set called super-unsaturated arms, that is utilizable
due to the proposed estimator and resampling technique adopted in the

algorithm.

e We provide a novel estimation error bound of the proposed estimator
(Theorem 1.3) which depends on the minimum eigenvalue of the covari-

ance matrix of the contexts from all arms without d.

e We develop a novel dimension-free concentration inequality for sub-Gaussian



vector martingale (Lemma 1.4) and use it in deriving the regret bound

in place of the self-normalized theorem by Abbasi-Yadkori et al. [2011].

o We develop a novel concentration inequality for the bounded matrix mar-
tingale (Lemma 1.6) which improves the existing result (Proposition 1.5)
by removing the dependency on d in the bound. Lemma 1.6 also al-
lows eliminating the forced sampling phases required in some bandit al-
gorithms relying on Proposition 1.5 [Amani et al., 2019, Bastani and

Bayati, 2020].

All missing proofs are in Section 1.7.3.

1.2 Related Works

Thompson Sampling [Thompson, 1933| has been extensively studied and shown
solid performances in many applications (e.g. Chapelle and Li [2011]). Agrawal
and Goyal [2013] is the first to prove theoretical bounds for LinTS and an
alternative proof is given by Abeille et al. [2017]. Both papers show O(d*/2/T)
regret bound, which is known as the best regret bound for LinTS. Recently,
Hamidi and Bayati [2020] points out that O(d*/?v/T) could be the best possible
one can get when the estimator used by LinTS is employed. In this thesis, I
improve this regret bound by a factor of v/d in many practical scenarios through
a novel definition of super-unsaturated arms, which becomes utilizable due to
the proposed estimator and resampling device implemented in the algorithm.

This work assumes the independence of the contexts from all arms across
time rounds. Some notable works have used the assumption that the contexts
are independently identically distributed (IID). Leveraging the IID assump-
tion with a margin condition, Goldenshluger and Zeevi [2013] derives a two-
armed linear contextual bandit algorithm with a regret upper bound of order

O(d®logT). Bastani and Bayati [2020] has extended this algorithm to any num-



ber of arms and improves the regret bound to O(dQIOg%d -logT'). The margin
condition states that the gap between the expected rewards of the optimal arm
and the next best arm is nonzero with some constant probability. This condi-
tion is crucial in achieving a O(logT) regret bound instead of O(v/T). In this
thesis, we do not assume this margin condition, and focus on the dependence
on the dimension of contexts d.

From a missing data point of view, most stochastic contextual bandit algo-
rithms use the estimator from complete record analysis except Dimakopoulou
et al. [2019] and Kim and Paik [2019]. Dimakopoulou et al. [2019] employs an
IPW estimator that is based on the selected contexts alone. Dimakopoulou
et al. [2019] proves a O(dvVe 1T1H¢N) regret bound for their algorithm which
depends on the number of arms, N. Kim and Paik [2019] considers the high-
dimensional settings with sparsity, utilizes a DR technique, and improves the
regret bound in terms of the sparse dimension instead of the actual dimension
of the context, d. Kim and Paik [2019] is different from the proposed algo-
rithm in several aspects: the mode of exploration (e-greedy vs. Thompson
Sampling), the mode of regularization (Lasso vs. ridge regression); and the
form of the estimator. A sharp distinction between the two estimators lies
in that Kim and Paik [2019] aggregates contexts and rewards over the arms
although they employ all the contexts. If we apply this aggregating estimator
and DR-Lasso bandit algorithm to the low-dimensional setting, we obtain a
regret bound of order O(% T') when the contexts from the arms are indepen-
dent. This bound is bigger than the novel bound by a factor of d and N. It is
because the aggregated form of the estimator does not permit the novel regret
decomposition derived in Section 1.4.2. The proposed estimator coupled with
a novel algorithmic device renders the additive regret decomposition which in

turn improves the order of the regret bound.



1.3 Proposed Estimator and Algorithm

1.3.1 Settings and Assumptions

We denote a d-dimensional context for the i’ arm at round ¢ by X;; € R,
and the corresponding random reward by Y;; for i = 1,..., N. We assume
EYit| Xit = XZ»TiB for some unknown parameter 8 € R At round ¢, the
arm that the learner chooses is denoted by a; € {1,..., N}, and the optimal
arm by af := arg max;—,. N {X,Ttﬁ} Let regret(t) be the difference between
the expected reward of the chosen arm and the optimal arm at round ¢, i.e.,
regret(t) := X:‘g’tﬁ — Xg;tﬁ. The goal is to minimize the sum of regrets over
T rounds, R(T) := Zthl regret(t). The total round T is finite but possibly
unknown. We also make the following assumptions.

Assumption 1. Boundedness for scale-free regrets. For all i =
I,...,Nandt=1,...,T, we have || X;|l, <1and |3, < 1.

Assumption 2. Sub-Gaussian error. Let

t—1

Hy = U [{Xi,T}i]il U{a-}tu {YaT,T}] U {Xi,t}gvzlv
=1

be the set of observed data at round ¢. For each t and i, the error n;; :=
Yii — XZ»TJB is conditionally zero-mean o-sub-Gaussian for a fixed constant
o >0, ie, E[n;: He] =0 and E [exp (An;¢)| He] < exp(A202/2), for all X € R.
Furthermore, the distribution of 7; ; does not depend on the choice at round ¢,
i.e. a;.

Assumption 3. Independently distributed contexts. The stacked
contexts vectors {X; 1}V 1, ..., {X;r}Y, € R¥ are independently distributed.

Assumption 4. Positive minimum eigenvalue of the average of
covariance matrices. For each ¢, there exists a constant ¢? > 0 such that
Amin (B [ & 2N, X3 X5]) = 62

Assumptions 1 and 2 are standard in stochastic bandit literature Agrawal



and Goyal [2013]. We point out that given round ¢, Assumption 3 allows that
the contexts among different arms, X1 4,..., Xy are correlated to each other.
Assumption 3 is weaker than the assumption of IID, and the IID condition is
considered by Goldenshluger and Zeevi [2013] and Bastani and Bayati [2020].
As Bastani and Bayati [2020] points out, the IID assumption is reasonable
in some practical settings, including clinical trials, where health outcomes of
patients are independent of those of other patients. Both Goldenshluger and
Zeevi |2013| and Bastani and Bayati [2020] address the problem where the
contexts are equal across all arms, i.e. X(t) = X1; = ... = Xn4, while this
thesis admits different contexts over all arms. Assumption 4 guarantees that
the average of covariance matrices of contexts over the arms is well-behaved
so that the inverse of the sample covariance matrix is bounded by the spectral
norm. This assumption helps controlling the estimation error of £ in linear
regression models. Similar assumptions are adopted in existing works in the
bandit setting [Goldenshluger and Zeevi, 2013, Li et al., 2017, Amani et al.,
2019, Bastani and Bayati, 2020].

1.3.2 Doubly Robust Estimator

To describe the contextual bandit DR estimator, let m;(¢) := P (a; = i| Hs) > 0
be the probability of selecting arm ¢ at round ¢t. We define a DR, pseudo-reward

as

]I 'L =a v ]I Z = qQ
YiDR(t) — {1 - (th)} thﬂt + gy%t’ (1.1)
2y

T4t

for some Bt depending on H;. Background of missing data methods and deriva-
tion of the DR pseudo-reward is provided in Section 1.7.5. Now, we propose a

new estimator fB; with a regularization parameter \; as below:

t N 1L/ N
@=<ZZX@TXZT+M> (ZZXMD%)). (12)

=1 i=1 r=1i=1



Harnessing the pseudo-rewards defined in (1.1), we can make use of all contexts
rather than just selected contexts. The DR estimator by Kim and Paik [2019]
utilizes all contexts but has a different form from (1.2). While Kim and Paik
[2019] uses Lasso estimator with pseudo-rewards aggregated over all arms, we
use ridge regression estimator with pseudo-rewards in (1.1) which are defined
separately for each i = 1,..., N. This seemingly small but important difference
in forms paves a way in rendering the novel regret decomposition and improving

the regret bound.

1.3.3 Algorithm

In this subsection, we describe the proposed algorithm, DRTS which adapts
DR technique to LinTS. The DRTS is presented in Algorithm 1.1. Distinctive
features of DRTS compared to LinTS include the novel estimator and the re-
sampling technique. At each round t > 1, the algorithm samples Bz(t) from the
distribution N(B\t_l,UQth) for each i independently. Let Yj(t) := Xg:t 3(t)
and m; = arg maxif/i(t). We set my; as a candidate action and compute
Ty (1) = P(Ypn, (t) = max; Y;(t)|Hs). ' If 7, (t) > v, then the arm my is
selected, i.e., a; = m;. Otherwise, the algorithm resamples Bl(t) until it finds
another arm satisfying 7;(¢) > v up to a predetermined fixed value M;. Section
1.7.1 describes issues related to M; including a suitable choice of M.

The resampling step is incorporated to avoid small values of the probability
of selection so that the pseudo-reward in (1.1) is numerically stable. A naive
remedy to stabilize the pseudo-reward is to use max{m;, v}, which fails to
leading to O(d\/T ) regret bound since it induces bias and also cannot guar-
antee that the selected arm is in the super-unsaturated arms defined in (1.5)

with high probability (For details, see Section 1.4.2). The resampling step

~ ! This computation is known to be challenging but employing the independence among
Bi(t), ..., Bn(t), we derive an explicit form approximating 7, (¢) in supplementary materials
Section 1.7.4



Algorithm 1.1 Doubly Robust Thompson Sampling for Linear Contextual
Bandits (DRTS)

Input: Exploration parameter v > 0, Regularization parameter A > 0,
Selection probability threshold v € [1/(N +1),1/N), Imputation estimator
Bu = f{X(7), Yo, »}“=1), Number of maximum possible resampling M;.
Set Fy =0, Wy =0, By =0 and Vy = I
fort=1to T do
Observe contexts {X;}Y ;.
Sample 5 (t),... ,ﬁNN(t) from N(B\t_l,UQV;:ll) independently. Compute
Yi(t) = X[, Bi(t)
Observe a candidate action m; := arg max; Yl(t)
Compute 7, (t) ;=P <maxi Yi(t) = Yo, (t)‘ Ht).
for [ =1 to M; do
if 7, (t) <~ then
Sample another ﬁl(t),...,BN(t), observe another my, and update
Tomy ().
else
Break.
end if
end for

Set a; = my, and play arm a;.
Observe reward Yy, ; and compute Y;PZ(¢)
Fy=Fa+ 300 X VPR W = W+ 300 Xi g X0 Vi = Witk WAL
b=V, 'F
Update B;41 for next round.
end for

implemented in the proposed algorithm is designed to solve these problems.

1.4 Theoretical Results

The theoretical results are organized as follows. In Section 1.4.1, we provide
the main result, the cumulative regret bound of O(¢~2v/T) of DRTS. The main
thrust of deriving the regret bound is to define super-unsaturated arms. In
Section 1.4.2 we introduce the definition of super-unsaturated arms and show

how it admits a novel decomposition of the regret into two additive terms as in



(1.6). In Section 1.4.3 we bound each term of the decomposed regret bounds
(1.6). The first term is the estimation error, and Theorem 1.3 finds its bound.
In the course of proving Theorem 1.3, we need Lemma 1.4, which plays a
similar role to the self-normalized theorem of Abbasi-Yadkori et al. [2011]. We
conclude the section by presenting Lemma 1.6 and bound the second term of

(1.6).

1.4.1 An Improved Regret Bound

Theorem 1.1 provides the regret bound of DRTS in terms of the minimum

eigenvalue without d.

Theorem 1.1. Suppose that Assumptions 1-4 hold. If Bt in Algorithm 1.1
satisfies HBt — Bll2 < b for a constant b > 0, for allt = 1,...,T, then with

probability 1—20, the cumulative regret by time T for DRTS algorithm is bounded

by

4Ch » 1272 22T
R(T) <2+ —224/T1lo + 2=

where Cy, , is a constant which depends only on b and o.

(1.3)

The bound (1.3) has a rate of O(¢~2v/T). The relationship between the

dimension d and the minimum eigenvalue ¢? can be shown by

N N N
d 1 1
d¢? = 7 Amin (EZXMXZt) < NIEZTr (Xi e XE) = NEZ 1 X2 < 1.

i=1 i=1 i=1
This implies ¢~2 > d, ? but there are many practical scenarios such that
¢»~2 = O(d) holds. Bastani et al. [2021] identifies such examples including the
uniform distribution and truncated multivariate normal distributions. When

the context has uniform distribution on the unit ball, $~2 = d + 2. When the

2Some previous works assume ¢~ 2 = O(1) even when || X; |2 < 1 (e.g. Li et al. [2017]).
As pointed out by Ding et al. [2021], this assumption is unrealistic and the reported regret
bound should be multiplied by O(d).

10



context has truncated multivariate normal distribution with mean 0 and co-
1

variance ¥, we can set ¢~ 2 = (d+2) exp(m). For more examples, we refer
to Bastani et al. [2021]. Furthermore, regardless of distributions, ¢~2 = O(d)
holds when the correlation structure has the row sum of off-diagonals indepen-
dent of the dimension, for example, AR(1), tri-diagonal, block-diagonal matri-
ces. In these scenarios, the regret bound in (1.3) becomes O(dv/T). Compared
to the previous bound of LinTS [Agrawal and Goyal, 2014, Abeille et al., 2017],
we obtain a better regret bound by the factor of v/d for identified practical
cases.

As for the imputation estimator B;, we assume that || 3;— 3|2 < b, where b is
an absolute constant. We suggest two cases which guarantee this assumption.
First, if a biased estimator is used, we can rescale the estimator so that its
lo-norm is bounded by some constant C' > 0. Then, ||3; — B2 < ||Bt]l2 +
I8l < C 4+ 1 and b = C + 1. Second, consistent estimators such as ridge
estimator or the least squared estimator satisfy the condition since ||f; — ]2 =
O(dy/logt/t). The term d is canceled out when ¢ > ¢4, where ¢, is the minimum

integer that satisfies logt/t < d~2. In these two cases, we can find a constant

b which satisfies the assumption on the imputation estimator f;.

1.4.2 Super-unsaturated Arms and a Novel Regret Decompo-
sition
The key element in deriving (1.3) is to decompose the regret into two additive
terms as in (1.6). To allow such decomposition to be utilizable, we need to
define a novel set of arms called super-unsaturated arms, which replaces the
role of unsaturated arms in Agrawal and Goyal [2014]. The super-unsaturated
arms are formulated so that the chosen arm is included in this set with high
probability. For each i and t, let A;(t) := ng"tﬁ — XZEB Define A; :=
Zizl XaT’TX;FﬁT + A and V; = 23:1 Zfil Xi;rXZ; + A¢I. For the sake of

11 '



contrast, recall the definition of unsaturated arms by Agrawal and Goyal [2014]

as

Uri={i: 8i(t) < gt 1 Xeallar, | (1.4)

where g; := C4/dlog(t/d) min{/d, /log N} for some constant C' > 0. This
gt is constructed to ensure that there exists a positive lower bound for the
probability that the selected arm is unsaturated. In place of (1.4), we define a

set of super-unsaturated arms for each round ¢ by

N, = {z L A1) <2 HBH - 5”2 + \/HXa;,t|

2
Vt:11 + HXZ}t

PVt_ll}. (1.5)

While g || X 4| A7l 0 (1.4) is normalized with only selected contexts, the
second term in the right hand side of (1.5) is normalized with all contexts
including Xgz ¢, the contexts of the optimal arm. This bound of A;(t) plays a
crucial role in bounding the regret with a novel decomposition as in (1.6). The
following Lemma shows a lower bound of the probability that the candidate

arm is super-unsaturated.

Lemma 1.2. For each t, let m; := argmaxif/i(t) and let Ny be the super-
unsaturated arms defined in (1.5). For any given v € [1/(N + 1),1/N), set
v=(2log (N/(1—~N)))"Y2. Then, P(m; € Ny|H;) > 1 — .

Lemma 1.2 directly contributes to the reduction of v/d in the hyperparame-
ter v. In Agrawal and Goyal [2014], to prove a lower bound of P (a; € U;| Hz),
it is required to set v = \/m, with the order of v/d. In contrast,
Lemma 1.2 shows that v does not need to depend on d due to the definition
of super-unsaturated arms in (1.5). In this way, we obtain a lower bound of
P (m; € N¢| H;) without costing extra v/d.

Using the lower bound, we can show that the resampling scheme allows the

algorithm to choose the super-unsaturated arms with high probability. For all

12



i ¢ Ny,
7~T,L(t) = P(mt = ’L|Ht) § P(Uj¢Nt{mt :]H’Ht) = P(mt ¢ Nt|Ht) § Y,

where the last inequality holds due to Lemma 1.2. Thus, in turn, if 7;(t) > 7,
then ¢ € Ny. This means that {i : 7;(¢t) > v} is a subset of N; and

{ar € {i : T (t) > v}} C {ar € N}

Hence, the probability of the event {a; € N;} is greater than the probability

of sampling any arm which satisfies 7;(t) > ~. Therefore, with resampling, the

event {a; € N} occurs with high probability. (See Section 1.7.1 for details.)
When the algorithm chooses the arm from the super-unsaturated set, i.e.,

when a; € N; happens, (1.5) implies

Ag,(t) <2 Hgtfl - BHz + \/HXaj;,t

2 2
‘Vt:ll + HXat,tHv;;ll' (1'6)

By definition, A, (t) = regret(t) and the regret at round ¢ can be expressed
as the two additive terms, which presents a stark contrast with multiplicative
decomposition of the regret in Agrawal and Goyal [2014]. In section 1.4.3 we

show how each term can be bounded with separate rate.

1.4.3 Bounds for the Cumulative Regret

We first bound the leading term of (1.6) and introduce a novel estimation error

bound free of d for the contextual bandit DR estimator.

Theorem 1.3. (A dimension-free estimation error bound for the contextual
bandit DR estimator.) Suppose Assumptions 1-4 hold. For eacht =1,...,T,
let B; be any Hy-measurable estimator satisfying ||Bt — Bll2 < b, for some

constant b > 0. For each i and t, assume that m;; > 0 and that there ex-
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ists v € [1/(N 4+ 1),1/N) such that 74, > 7. Given any § € (0,1), set
At = 42N /tlog 125T2. Then with probability at least 1 — &, the estimator Bt
in (1.2) satisfies

Ch,o log it?
PVt

forallt=1,...,T, where the constant Cy, which depends only on b and o.

1B 5|, < (L.7)

In bandit literature, estimation error bounds typically include a term in-
volving d which emerges from using the following two Lemmas: (i) the self-
normalized bound for vector-valued martingales [Abbasi-Yadkori et al., 2011,
Theorem 1] , and (ii) the concentration inequality for the covariance matrix
[Tropp, 2015, Corollary 5.2]. Instead of using (i) and (ii), we develop the two
dimension-free bounds in Lemmas 1.4 and 1.6, to replace (i) and (ii), respec-
tively. With the two Lemmas, we eliminate the dependence on d and express

the estimation error bound with ¢? alone.

Lemma 1.4. (A dimension-free bound for vector-valued martingales.) Let
{F}L_, be a filtration and {n(7)}L_, be a real-valued stochastic process such
that 1(t) is Fr-measurable. Let {X(1)}._, be an R%-valued stochastic process
where X (1) is Fr—1-measurable and || X (7)||y < 1. Assume that {n(7)}._, are
o-sub-Gaussian as in Assumption 2. Then with probability at least 1 — § /12,

there exists an absolute constant C' > 0 such that

t

ZU(T)X(T)

T=1

< Cov't log 5 (1.8)

Compared to Theorem 1 of Abbasi-Yadkori et al. [2011], the bound (1.8)
does not involve d, yielding a dimension-free bound for vector-valued martin-
gales. However, the bound (1.8) has v/t term which comes from using |||,

instead of the self-normalized norm ||-||Vt_1.
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To complete the proof of Theorem 1.3, we need the following condition,
Amin (V) > ct, (1.9)

for some constant ¢ > 0. Li et al. [2017] points out that satisfying (1.9) is
challenging. To overcome this difficulty, Amani et al. [2019] and Bastani and
Bayati [2020] use an assumption on the covariance matrix of contexts and a

concentration inequality for matrix to prove (1.9), described as follows.

Proposition 1.5. Tropp [2015, Theorem 5.1.1] Let P(1), ..., P(t) € Rd*d
be the symmetric matrices such that Amin(P(7)) > 0, Amax(P(7)) < L and
Amin (E[P(7)]) > ¢2, for all T =1,2,...,t. Then,

P ()\min (Z P(T)) < wj) < dexp <—t;f> ) (1.10)

To prove (1.9) using (1.10) with probability at least 1 — 4, for 6 € (0, 1), it
requires ¢ > % log %. Thus, one can use (1.10) only after O(¢~2log d) rounds.
Due to this requirement, Bastani and Bayati [2020] implements the forced sam-
pling techniques for O (N2d*(log d)?) rounds, and Amani et al. [2019] forces to
select arms randomly for O (¢_2 log d) rounds. These mandatory exploration
phase empirically prevents the algorithm choosing the optimal arm. An alter-
native form of matrix Chernoff inequality for adapted sequences is Theorem 3
in Tropp [2011], but the bound also has a multiplicative factor of d. Instead
of applying Proposition 1.5 to prove (1.9), we utilize a novel dimension-free

concentration inequality stated in the following Lemma.

Lemma 1.6. (A dimension-free concentration bound for symmetric bounded
matrices.) Let | Al be a Frobenious norm of a matriz A. Let {P(1)}!_, €
R4 be the symmetric matrices adapted to a filtration {F:}_,. For each =
1,...,t, suppose that | P(T)||p < ¢, for some c > 0 and Ain (E[P(7)| Fr-1]) >
$? > 0, almost surely. For given any 6 € (0,1), set Ay > 4v/2c\/ty/log %.
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Then with probability at least 1 — §/t2,

Amin (Zl P(1) + /\tI> > @2t (1.11)

Lemma 1.6 shows that setting \; with /¢ rate guarantees (1.9) for all t > 1.
We incorporate \; stated in Lemma 1.6 in the estimator (1.2), and show in
Section 1.5 that the DR estimator regularized with A\; outperforms estimators
from other contextual bandit algorithms in early rounds.

We obtain the bounds free of d in Lemmas 1.4 and 1.6 mainly by applying
Lemma 2.3 in Lee et al. [2016] which states that any Hilbert space martingale
can be reduced to R2. Thus, we can project the vector-valued (or the matrix)
martingales to RZ-martingales, and reduce the dimension from d (or d?) to 2.
Then we apply Azuma-Hoeffding inequality just twice, instead of d times. In
this way, Lemma 1.6 provides a novel dimension-free bound for the covariance
matrix.

Lemmas 1.4 and 1.6 can be applied to other works to improve the existing
bounds. For example, using these Lemmas, the estimation error bound of
Bastani and Bayati [2020] can be improved by a factor of logd. Proposition
EC.1 of Bastani and Bayati [2020] provides an estimation error bound for
the ordinary least square estimator by using Proposition 1.5 and bounding all
values of d coordinates. By applying Lemmas 1.4 and 1.6, one does not have
to deal with each coordinate and eliminate dependence on d.

Using Lemma 1.6, we can bound the second term of the regret in (1.6) as

follows. For j=1,..., N
—1/2 1
S >\min (‘/t—I) <

- T VNt —-1)

Finally, we are ready to bound regret(t) in (1.6).

IXGely-1 < 1 XGella \/ViZL (1.12)

Lemma 1.7. Suppose the assumptions in Theorem 1.1 hold. Then with prob-
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ability at least 1 — 20,

2C 12¢2 V2

StV NG

regret(t) < (1.13)

forallt=2,...,T.

Proof. Since a; is shown to be super-unsaturated with high probability, we can
use (1.6) to have regret(t) < 2||8i—1 — B2 + \/HXQNH -1 + ||Xat,t||v 1, for
allt =2,...,T. We see that the first term is bounded by Theorem 1.3, and the

second term by (1.12). Note that to prove Theorem 1, Lemma 1.6 is invoked,
and the event (1.11) of Lemma 1.6 is a subset of that in (1.7). Therefore (1.13)
holds with probability at least 1 — 2§ instead of 1 — 34. Details are given in
Section 1.7.3. O

Lemma 1.7 shows that the regret at round ¢ does not exceed a O(¢p—2t~1/2)
bound when a; € Ny, which is guaranteed in the algorithm via resampling with

high probability. This concludes the proof of Theorem 1.1.

1.5 Simulation Studies

In this section, we compare the performances of the three algorithms: (i)
LinTS [Agrawal and Goyal, 2013], (ii) BLTS [Dimakopoulou et al., 2019], and
(iii) the proposed DRTS. We use simulated data described as follows. The
number of arms N is set to 10 or 20, and the dimension of contexts d is
set to 20 or 30. For each element of the contexts j = 1,---,d, we generate
[X1;(t), -, Xn;(t)] from a normal distribution N (uy, Viy) with mean 19 =
[~10,—8,---,—2,2,---,8,10]7, or usy = [~20,—18,---,—2,2,---,18,20]7,
and the covariance matrix Viy € RN¥*N has Vy(i,i) = 1 for every i and
Vn(i,k) = p for every i # k. We set p = 0.5 and truncate the sampled

contexts to satisfy || X;(t)|2 < 1. To generate the stochastic rewards, we sam-
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ple n;(t) independently from A(0,1). Each element of 8 follows a uniform
distribution, U(—1/vd, 1/V/d).

All three algorithms have v as an input parameter which controls the vari-
ance of Bz(t) BLTS and DRTS require a positive threshold + which truncates
the selection probability. We consider v € {0.001,0.01,0.1,1} in all three
algorithms, v € {0.01,0.05,0.1} for BLTS, and set v = 1/(N + 1) in DRTS.
Then we report the minimum regrets among all combinations. The regular-
ization parameter is A\ = v/t in DRTS and \; = 1 in both LinTS and BLTS. To
obtain an imputation estimator Bt required in DRTS, we use ridge regression
with {X,, 7, Y, + tT_:ll, for each round ¢. Other implementation details are in
Section 1.7.4.

Figure 1.1 shows the average of the cumulative regrets and the estimation
error ||§t — |2 of the three algorithms based on 10 replications. The figures
in the two left columns show the average cumulative regret according to the
number of rounds with the best set of hyperparameters for each algorithm.
The total rounds are T" = 20000. The figures in the third columns show the
average of the estimation error || B — B l2. In the early stage, the estimation
errors of LinTS and BLTS increase rapidly, while that of DRTS is stable. The
stability of the DR estimator follows possibly by using full contexts and the
regularization parameter \; = v/t. This yields a large margin of estimation

error among LinTS, BLTS and DRTS, especially when the dimension is large.

1.6 Conclusion

In this part of the thesis, we propose a novel algorithm for stochastic contex-
tual linear bandits. Viewing the bandit problem as a missing data problem, we
use the DR technique to employ all contexts including those that are not cho-
sen. With the definition of super-unsaturated arms, we show a regret bound

which only depends on the minimum eigenvalue of the sample covariance ma-

18 .



200 4 2504
150 2001
2 2
© @ 150
o i o
g 100 2
100 -
50
501
01 0+
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
t: Number of Rounds t: Number of Rounds
2501 N= = - _ _ -
N=20, d=20 s 3004 N=20, d=30 -
..... LinTs - “e- LinTS PPtige
2004~ BLTS T e 2504 "7 BUS e
—— DRTS ST e —— DRTS T e
o 1501 ’
i
o
j7)
& 100 4
50
0
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
t: Number of Rounds t: Number of Rounds
71 N=10, d=20 N=10, d=30
----- LinTS 8 ween LiNTS
61 -—- BITS -—- BITS
l' —— DRTS —— DRTS
51 i1 6
Iy
-~ " o
&4\ &
] 1 |
1 4
2341} a4
R
1
1 :/\ I\-‘\.,____
21 Snn
14 &l i L
041 T T T T T T T T 01 T r T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
t: Number of Rounds t: Number of Rounds

Figure 1.1: A Comparison of cumulative regrets and estimation errors of
LinTS, BLTS and DRTS. Each line shows the averaged cumulative regrets (esti-
mation errors, resp.) and the shaded area in the right two figures represents
the standard deviations over 10 repeated experiments.
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trices. This new bound has O(d\/f ) rate in many practical scenarios, which
is improved by a factor of v/d compared to the previous LinTS regret bounds.
Simulation studies show that the proposed algorithm performs better than

other LinT$S algorithms in a large dimension.

1.7 Appendix

1.7.1 Detailed Analysis of the Resampling

In this subsection, we give details about the issues which can be raised from

the resampling in Algorithm 1.1.

1.7.1.1 Precise Definition of Action Selection

We give precise definition of the action at round ¢, a;. For each round ¢ > 2,
given Hy, let agl), aEZ), e aEMt) to be maximum possible sequence of actions
to be resampled. These actions are IID, with P (agl) = Z‘ Ht) = T7;(t) for
i =1,...,N. Define a subset of arms I'; := {i : 7;(t) > v} and a stopping
time

T =inf{m >1:a™ €T} (1.14)

with respect to the filtration F,, := H; U {agl), . ,agm)}. Since the algorithm
stops resampling when the candidate action is in T, the stopping time 7 is
the actual number of resampling in algorithm. Thus we can write the action

after resampling as a; := agmin{T’Mt}).

1.7.1.2 Computing the Probability of Selection

The probability of selection 7; ; := P (a; = 7| H;) is not the same as 7;(t) due to
resampling. This might cause the problem of computing 7; ; which is essential
to compute YiD R(t). However, with the precise definition of a;, we can derive

a closed form for m; ;.
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First, we consider two cases separately: (i) the case when the resampling
succeeds and (ii) the case when the resampling fails and the maximum possible
number of resampling runs out. In case (i), a; € I'y, and for any i € Iy, we

have

_ o™ _ . o) A H,
2\ ) jl;[op( ¢ 1) (1.15)
M, m—1
—ﬁz(t) Z 1- Z ﬁz(t)
m=1 int

Now, for the case (i) a; ¢ Ty, and for any i ¢ I';, we have
P(ay =i|Hy) =P ('T > Mt,aEMt) = z‘ ”Ht)

Mi—1
=P ( ﬂ {agm) ¢ f‘t} ,a,EMt) =1

m=1

(1.16)

Mi—1

= 1= @) | ).

ieft

With (1.15) and (1.16), we can compute m;; for all i =1,..., N.

1.7.1.3 The Number of Maximum Possible Resampling

The proposed algorithm attempts resampling up to M; times to find an arm
in {i: m(t) > ~}. The main point in selecting M, is to bound the probability

that the resampling fails in finding an arm whose selection probability exceeds
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~ for some 4, i.e.,

Plas ¢ {i: 7i(t) > ~}) < 6/t2. (1.17)

Intuitively, as M; increases, we have more opportunities for resampling and the
probability that the resampling fails in finding arms in {7 : 7;(t) > v} decreases.
Since v < 1/N, there exists j such that 7;(t) > 7, and the probability that
the resampling fails is less than 1 — « in each resampling trial.

Specifically, we can achieve (1.17) by choosing M; as a minimum integer
that exceeds log %/log ﬁ For any given § € (0,1), the event {a; € T}
occurs with probability at least 1 — 6/t2. By (1.14), we have

a ¢ T = = A al™ ¢ T )
P(tgél“t”ﬂt) P (T > M| Hy) P(pl{t gél“t} H,
M
= 1_27@@)
i€l

Since v < 1/N, there exists at least one arm in Iy, and thus
P (at ¢ f‘t) Ht) S (1 *’)/)Mt .

If we set M; as a minimum integer that exceeds (log %) (log ﬁ)il then
(1.17) holds. Thus, by choosing M; for each round that satisfies (1.17), the
algorithm finds an arm j such that 7;(¢) > v in all rounds with high probability.

Selecting an arm from the set {¢ : 7;(t) > ~} with high probability is
crucial in achieving the regret bound of order O(¢—2v/T) for two reasons.
First, it guarantees that the arm is super-unsaturated and the novel regret
decomposition (1.6) holds to achieve the novel regret bound. Let IV; be the set

of super-unsaturated arm defined in (1.5). With Lemma 1.2, we prove that if
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7i(t) > ~ then i € N, which implies Ty C Ny, and thus
P(at S Nt|Ht) >P (at S f‘t‘ Ht> .

Thus we can conclude that a; is super-unsaturated with probability at least
1 — §/t* with M, defined in Section 1.7.1. Second, the inverse probability,
7a, ()71 is bounded by v~ which appears in Y;”#(t) and the proof of Theorem
1.3. From (1.15) we can deduce 7, (t) > 7,4, (t) > 7, for a; € I';. This shows

that the assumptions regarding m,, ; in Theorem 1.3 hold.

1.7.2 Technical Lemmas

Lemma 1.8. [Wainwright, 2019, Theorem 2.19] (Bernstein Concentration)
Let {Dy, 8}32, be a martingale difference sequence and suppose Dy, is o-sub-
Gaussian in an adapted sense, i.e. for all A € R, E [e’\Dk‘ Gk—l] < N2

almost surely. Then for all x > 0,

22
P > §2exp<—2 2).
no

n
> D
k=1
Lemma 1.9. [Azuma, 1967] (Azuma-Hoeffding inequality) If a super-martingale

(Yy;t > 0) corresponding to filtration Fy, satisfies |Yy — Yi—1| < ¢ for some
constant ¢¢, for allt =1,...,T, then for any a > 0,
n.2

P(Yr—Yy>a)<e 2Si1ci,

Lemma 1.10. [Lee et al., 2016, Lemma 2.3] Let {N;} be a martingale on a
Hilbert space (H,|-|l;). Then there exists a R*-valued martingale {P;} such
that for any time t > 0, | Py = | Nilly and [[Peas — Pylly = [ News — Nilly.

Lemma 1.11. /Chung and Lu, 2006, Lemma 1, Theorem 32 For a filtration

Fo C F1 C --- C Fr, suppose each random wvariable Xy is Fi-measurable
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martingale, for 0 < t < T. Let By denote the bad set associated with the

following admissible condition:

| Xy — Xia| <,
for 1 <t < T, where c1,...,c, are non-negative numbers. Then there ex-
ists a collection of random wvariables Yy, ..., YT such that Y; is Fi-measurable
martingale such that

D/;f - }/t—l| S Ct,

and {w : Yi(w) # X¢(w)} C By, for 0 <t <T.

Lemma 1.12. Suppose a random variable X satisfies E[X]| = 0, and let n
be an o-sub-Gaussian random variable. If | X| < |n| almost surely, then X is

Co-sub-Gaussian for some absolute constant C' > 0.

Proof. By Proposition 2.5.2 in Vershynin [2018], there exists an absolute con-
stant C'1 > 0 such that

22

2 2 V2
Eexp ()\2772) < exp (210> , VAe V2 V2

Cio’ Cio

Since | X| < |n| almost surely,

V2 V2
010’7 010'

22 2
Eexp ()\2X2) < exp <)\ 0210 > , Ve

Since E[X] = 0, by Proposition 2.5.2 in Vershynin [2018|, there exists an
absolute constant Cy > 0 such that

A2C2C202

Eexp (AX) <exp < 5

>, VA eR.

Setting C' = C1Cs completes the proof. O
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1.7.3 Proofs of Theoretical Results
1.7.3.1 Proof Theorem 1.1

In subsection 1.7.1, we prove that a; € I'; with probability at least 1 — § /2,
for all t > 2. Thus, for any = > 0,

’1!

P (R(T) > z) <P ( ) >

< (ncr) >

T
P (2 + Z regret(t) > x

t=2

e (G
) o
, é{ateft}> +4

The last inequality holds by Assumption 1. Since T is a subset of N; and by
(1.6),

Qe
o fos

P(R(T) > z)
<r (243 {2 -l el ity oo () o)
t=2 t=2
+ 9.

(1.18)

To bound the term H@ — 5”2 forall t =1,...,T — 1, we use Theorem 1.3.
Before that, we need to verify whether the two assumptions on 7;; in Theorem
1.3 hold.

First, we show that 74, ; > . When t = 1, we have 7;(1) = 1/N for all 7.
Since v < 1/N, we do not need resampling and thus m;; = 7;(t) > v. When
t > 2, a; € Ty is already concerned in (1.18), and thus 7, (£) > . From (1.15),
we can deduce that m;; > 7;(t) for all i € T, and thus Tagt > V-

Now, we prove that m;; > 0 for all ¢ and ¢. The case of t = 1 is already
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proved above. When ¢ > 2, from (1.15), we have

m—1
My
mig =P oy =i He) =7(t) Y | 1= ) #i(t) > mi(t) > 7,
m=1 ieft

for all i € T';. If there exists an arm 4 ¢ I, from (1.16),

My—1
mae= (1= #l(t) 7i(t).
ieft
The first term is positive since there exists an arm i ¢ ft. The second term is

also positive since the distribution of 3; (t) has support R, which implies that

(0 = P ( XE0) = max XLy (o) 1) >0

for all <. Thus, m;; > 0 for all ¢ and ¢. This implies that the two assumptions
on ;¢ in Theorem 1.3 hold.

Now we can use Theorem 1.3 and Lemma 1.6 to have

12(t — 1)2
H@l_d‘ &¢FT’1 5
2 9 1
\/HXa;‘,t| v + HXat,tHVt:11 Sma

for all t = 2,...,T with probability at least 1 — §. Thus, setting

2
4Gy, Tlog 12T N 2T
®? g VN

T=2+

in (1.18) proves the result.
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1.7.3.2 Proof of Lemma 1.2

Proof. First, we bring attention to the fact that the optimal arm a; is in Ny
by definition. Suppose that the estimated reward of the optimal arm, }7&; (t) is
greater than ffj(t) for all j ¢ N;. In this case, any arm j ¢ N; cannot be the
my := argmax; }N/Z(t) Then we have

P (my € Ni Ho) > P (Vs (t) > Yi(1), V) ¢ Nt‘ )

=P (Zj(t) > {X; — Xa;‘,t}T/B\t—lvvj ¢ Nt‘ %t) :

where Z;(t) := ffa; (t)—Y;(t) - {Xaz —Xj,t}TEt,l. Note that Z;(t) is a Gaus-

sian random variable with mean 0 and variance v?([| Xas ([|7,—1 + [| X}
t—1

given H;. For all j ¢ Ny,

‘QV;;II)

{Xj:— Xag,t}TBt—l ={X;:— Xa;,t}T{Bt—l — B} = Aj(1)

<2 Hgt - /BHQ —A(t) < —\/HXa;,t

2 2
ot Il
The last inequality is due to j ¢ N;. Thus, we can conclude that

Zj(t)

1
P(mt S Nt|Ht) >P > ——Vj ¢ Ny | Hy

v\/HXaz:t

=P (Y; > —v Vi # N[ Hy)

2 2
‘Vtzll + ||X.7,t||vt—711

Using the fact that

Y, Zj(t)

2 2
‘Vtzll + ||X.7,t||vt—711

v\/HXa:nf
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is a standard Gaussian random variable given H;, we have
P(Y; < —v | H) < L
i v t) S exp 2’[}2 .

Setting v = {2log(N/(1 — yN))}~ /2 gives

_ 1—~yN
P(ng—v 1|Ht):exp(—log(N/(l—yN))): N
Thus,
P(my € Ne| He) 21 =P (Y; < —v ', 3 # Ny Hy)
>1- > P(Y; < —v ! H)
J#N:
>1—(1—~N)
>1 -7
The last inequality holds due to v > 1/(N + 1). O

1.7.3.3 Proof of Theorem 1.3

Proof. Fix t = 1,...,T and let V; := Zf—:l Zfil X@TX;"FT + M\I. For each i
and 7, let ﬁfTR =YPE(r) - XgTﬁ. Then

t N
bo=5+V" (—w +>.> ﬁETRXi,T> :

7=11i=1
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To bound HBt —

-], = (szm y
=1i=1 2
<[Vl ( I )
=1 i=1 2
:{)\min (‘/t)}_l ( )\tB‘FZZADRX )
T=11=1 2
By Assumption 1, ||3]|, < 1. Using triangle inequality,
t N
1B = 5|, < Oumin (1 A+ Do (1)) B DI S
T=1i=1 2

We will bound the first term in (1.19). Let Tr(A) be the trace of a matrix A.
By the definition of the Frobenious norm, for r =1,...,¢f,and fori =1,..., N,

©,T

N
S \/ Tr (X, X7, Xir X ) < N,
F =1

t
By Assumptions 3 and 4, {Zf\il XZ-,TXZ-TT} . are independent random
b T=

variables such that E [Zf\il Xi,TXgT} > N¢? > 0. Let § € (0,1) be given. By

Lemma 1.6, if we set \; = 4@]\“/@’

Oumin (V1)) < -

< 2Nt

holds with probability at least 1—4/(3t?). Thus, the first term can be bounded
by

IOg 12¢2

xf tg?
Now we will bound the second term in (1.19). Let U;(7) := Xi,‘er‘:,F‘r (B-—B).

{min (V1)) < (1.20)
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Then we can decompose ﬁiDTRXM as,

N I(a, =1 o
UETRXZ',T :UZ(T) + M (Yvi,T - XZ;rﬁT) Xi,T

_ (1 _ H(“T—Z)> Ui+ N =0 2

i,

)

:=D;(7) + Ei(T).

Let D, := Zf\il D;(7). Since U;(7) is Hr-measurable, the conditional

expectation of D, is

N N _y
(D] E[Z;Di(f) M, —EE[(l—“;M ))M Uir)
N
= <1 - ::) Ui(r) =0

Thus, {>,_; DT}f;:1 is a martingale sequence on (R?, ||-|[,) with respect to
H,, with

=2

1D7[ly < i)l

zn

)

B - 4|

2

IN

aTyT) :

By Lemma 1.10, since (]Rd, H||2) is a Hilbert space, there exists a martingale

T t
sequence {PT}tT:1 = {(PT(I), PT(2)> } on R? such that

T=1

T

> n,

u=1

= 1Prlly, 1Dzl = [[Pr = Preally (1.22)
2
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and Py =0, for any 7 =1,...,¢. Since ‘BT

—5H2 <b forr=1,2

PP <

— Proally =ID- |y < (N‘HT )b

t
By Lemma 1.11, there exists a martingale sequence {NT(T)} such that

‘Ni’”’ ~ N < (N 4y, forall T =1, ¢ and

(M # P} O{(P P> () € Ut <
r—1 =1

(1.23)
Thus, by (1.22) and (1.23), for any = > 0,

'

t

>0,

u=1

T T
>, () {7a,r > v}) =P (HPtHQ >, () {7a,r > 7}>
2 =1

=1

2, () {Farr > 7})

r=1 =1
sgP(\P(’" > 2, (j ww>7}>
Sgp(‘a@) > 2 N0 < p0)
S (]2

Since NT(T) has bounded differences, we can apply Lemma 1.9 to have

ZIP’(‘NT)

1'2
) <4dexp 5 1z )
8th (N +~71)
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Thus, with probability at least 1 — &/(3t2),

t

>0,

=1

B 12¢2
< 2v/2b(N + 1)y /log 5
2

(1.24)

holds with the event (), {ma, + > 7}.
Now we will bound the E;(7) term in (1.21). Under the event (\_, {ma,; >

v}, we have

t

t t
T I > T
IPDLIOED D D) (Mot > Vlocr e,
=1

ar,T Tar,T

T=11=1 = T=1

For each 7 > 1, define a filtration F,_; := H, U {a,}. Then X, , is Fr_i-
measurable. By Assumption 2, for any A € R,

2 (m, 2 A252
E {exp <)\]I(7T%t > ) na7,7>'}_7_1] < exp <)\ I(7gt > 7)o > < exp ( o > 7

Tar v 2m2 2~2

ar,T

almost surely. Since || X, -, < 1, by Lemma 1.4, there exists an absolute

constant C' > 0 such that, with probability at least 1 — §/(3t?),

12¢2
S 200"7_1\/{& log T

2

(1.25)

t N
> 2 B
=1 1=1

Thus, with (1.20), (1.24), and (1.25), under the event ﬂtT:l {Ta,t > 7}, we
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have

IOg 12¢2

-, =

12¢2 12¢2
+ (4 (N + 7_1) bVt\/log 5 +2Coy 'Vt /log 5)

1
#°Nt

444 “IN-1(4p 4+ 20 12¢2
< +4b+ (4b + 2C0) log

P2Vt 0

2 (4b +2 122
<4+4b+ (4b+2C0) log t

SN 5
Cho 12t2
NG

(1.26)

with probability at least 1 — §/t2. Since (1.26) holds for all t = 1,...,T,

B8, > e frog 22 ﬂ{wmw}
27 P

T
gp<tl{H@—,@HQ o mz} ﬂ{wat,tw})

T
< ;P (HBt ﬂHz ¢2\[\/ 12t2 ﬂ {Tant > 7}>

<.

1.7.3.4 Proof of Lemma 1.4

Proof. Fix at > 1. Since for each 7 = 1,...,t, E[n(7)| Fr—1] = 0 and X (7) is

Fr_1-measurable, the stochastic process,

{Z n(T)X(T)} (1.27)
T=1

u=1
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is a R%-martingale. Since (R%,|-||,) is a Hilbert space, by Lemma 1.10, there

exists a R%-martingale {M,}!_; such that

= [[Mully; lIn(w) X (w)lly = [|My = Myl
2

> n(n)X(r)
T=1

(1.28)

and My = 0. Set M, = (M;(u), Ma(u))T. Then for each i = 1,2, and u > 2,

by the assumption || X (u)|]2 <1,

[ Mi(u) = Mi(u = 1)] <[[My — Myl
= [[n(u) X ()],

<In(u)l.

By Lemma 1.12, M;(u) — M;(u — 1) is Co-sub-Gaussian for some constant

C > 0. By Lemma 1.9, for z > 0,
P(Mi(t)| > @) =P<

.TQ
SZexp <‘m%z> )

for each i = 1,2. Thus, with probability 1 — §/(2t?),

> Mi(u) — Mi(u—1)
u=1

>x>

2 2 2 4t2

In summary, with probability at least 1 — & /2,

t

> n(r)X(r)

T=1

4 -
’ "jr‘“-'! =

= /M (t)2 + My(t)2 < 2CoVty/log —.
2



1.7.3.5 Proof of Lemma 1.6

Proof. For each 7 =1,...,t, let ¥, = E[P(7)| Fr_1]. Since P(7) and X, are

symmetric matrices,

Amin (zt: P(7) + )\tI) Amin (ip ) + X

mm<§t:{P 2}+Zz>+xt
(Zt: {P(r) - T}> + Z Amin (57) + Ay

> Amin (il {P(r) - ZT}> + %t + A

The last inequality uses the fact that Apin (X,) > ¢? for all 7.

P (Amin <Zt: P(7) + M) < ¢2t> <P ()\min (zt: {P(r) - &}) A< 0)
=1 T=1
=P ()\max (zt: (=, - P(T)}> > )\t>
=1
t > )\t> .
F

<P ( > {5 - P(r)}
T=1
Set S, = > ¢ {%; — P(7)}. Then {S,},_; can be regarded as a martin-
gale sequence on R¥¢ with respect to {P(7)}._,. Note that (R™4, |-||) is a

(1.29)

Hilbert space. By Lemma 1.10, there exists a martingale sequence { Dy, = (D1 (u), Da(u T}u L
on R? such that

I1Sullp = VD1(w)? + Da(uw)?, My~ Bullp = |Du— Du-all;,  (1.30)
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for any u > 1, and Dg = 0. Then, for any ¢ = 1, 2,
|Di(w) = Di(w = 1) < | Dy = Ducil = [|P(w) = Sull7

Since ||P(u) — ¥u||p < 2¢, we can apply Lemma 1.9 for Di(7), and Da(7),

respectively. For any ¢ = 1,2, and for any = > 0,

P(Di(0)] > 2) < 2exp (—;“t) |

From (1.29) and (1.30),

P (Amm (Z P(r) + AJ) < ¢2t> <P(ISelp = Ao)
T=1

P (\/Dl(t)Q + Dy()2 > /\t)

S P(ID1(B)] + [D2(8)] = M)

op <|D1(t), > A2t> +P <|D2(t)! > A;)

Thus, for any § € (0,1), if Ay > 4v/2cv/t4/log %, then with probability at
least 1 — 6,

t
Amin (Z P(1) + M) > ¢t
T=1

1.7.4 Implementation Details
1.7.4.1 Efficient Calculation of the Sampling Probability

In the proposed algorithm, we use quasi-Monte Carlo estimation to calculate

the sampling probability, 7;(t). At round ¢, for each i = 1,..., N, define

36 1



T A A
Z; = W Then, Zi,...,Zn are 1ID standard Gaussian random
itlly, —

variables. For each i =1,... IV,

#i(t) =P (XZ;BNi(t) > XJ,0i(1), V] # Z‘ Ht)

([ Xt lly -1 (X0 — X;)T B
Pl —— 7 > 7. Jit it o QAR
(IIXj,tHVt—l 5 N Ak

)

let f and F' be the density and the distribution function of the standard Gaus-

sian random variables, respectively. Since Z;, and {Zj}j 2 are independent,

the selection probability can be written as,

[ Xielly-r (X0 — X;07 B
) t 1, 75t t—1

dz.
/H <X< Z+ UHX-¢ : f(z)z

LGl

This can be estimated by,

M . T
- Xit—Xj1)" Bi—1
= 72(7”) + (Xiz gt 7 1.31
M Z 11 (H VT Xally 31

where Z(™) is the standard Gaussian random variables.

In this way, we can compute 7;(t) without sampling Bz(t) M x N times
from N(ﬁt,l, vel). The error of the quasi Monte Carlo method is bounded by
(0] (%), where s is the dimension of the domain of function to integrate.

~ N—
If we sample §;(t) M x N times, it gives O (%) error. In contrast,

using (1.31) reduces the error to O (lO%/[M)

In simulation studies, we use sobol seq module in Python 3 to generate
the quasi-Monte Carlo samples. The number of samples is M = 200 in BLTS
and DRTS. We plot the estimator of 7;(t) using m = 1,...,200 quasi-Monte

Carlo samples, and observe that it converges within the small errors.
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1.7.5 A Review of Approaches to Missing Data and Doubly-
robust Method

In this section, we review approaches to missing data and the doubly-robust
method used in the proposed method. First, we provide the approaches from
a purely missing data point of view and how the doubly-robust method is
motivated. In the second section, we show the procedures applying the doubly-

robust method in bandit settings.

1.7.5.1 Doubly-robust Method in Missing Data

There are two main approaches to missing data: imputation and inverse prob-
ability weighting (IPW). Imputation is to fill in the predicted value of missing
data from a specified model, and IPW is to use the observed records only but
weight them by the inverse of the observation probability. The doubly-robust
method can be viewed as a combination of the two.

For illustrative purposes, consider the problem of estimating the marginal
mean of Y € R, E(Y) =: p. Denoting (Y; — ) by U;(n), when all data are

observed,
n

Up) =) Us(p) = _(Yi—p) =0,
=1

i=1
gives an unbiased estimator of y, > | Y;/n, and U(u) is called an unbiased
estimating function since E[U(u)] = 0. Let ¢; be the observation indicator
which takes value 1 if Y; is observed, 0, otherwise. Suppose there are auxiliary
variables, X; € R%, and X;’s are observed for all i. Also denote the probability
of observation by P(d; = 1|X;) =: m;. We assume P(5; = 1|Y;, X;) = P(6; =
11X;), that is, the observation indicator is independent of Y;. This is called
missing at random mechanism. This assumption is required for the doubly

robust method to be valid. Using the observed values only, the estimating
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equation for the observed data

= 5Ui(p) = >  6:(Yi — p) =0,
=1 ;

n

i=1 6z)/z
T N
i=1 61

Uo(p) # 0.

The two main approaches modify the observed estimating function em-

gives as an estimator for u. This estimator may be biased since

ploying two new quantities, E(Y;|X;) and 7;. These two quantities are usually
unknown and we need to specify models. Therefore the two approaches require
assumptions for auxiliary models: the imputation model, E(Y;| X;; ), and the
model for observation probability, 7;(¢). The validity of each approach depends
on the correct specification of the auxiliary model assumptions. The qualifier
‘auxiliary’ comes from the fact that these models are not needed when there
is no missing data. In IPW, one constructs an unbiased estimating equation
by amplifying the observed record according to the inverse of the observation

probability as follows:

i—1 7"2(¢ 1 771(¢

1=

If w(¢) is correctly specified, i.e., m = w(¢), EQ 7, %Ul(u)) = 0, hence the

resulting IPW estimator is valid. In the imputation method, we replace missing

Y; with E(Y;|X;; 8) and the estimator is the solution of U™ (1, 3) = 0 where
U™MP (, 8) =Y [0:Ui(p) + (1 = 6)E(Us(w)| X5 8)]

i=1

_Z (Y3 Xi; B) + 6V —E(Yi|Xi; 8)} — ] -

The doubly robust (DR) method [Robins et al., 1994, Bang and Robins,
2005| was initially motivated by attempting to improve the efficiency of the
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IPW method. Note that we can construct an auxiliary unbiased estimating

function (#Z@ —1). Geometrically we can reduce the norm of the estimating
function %Ui(u) by subtracting the projection on to the nuisance tangent

space formed from (ﬂ%) —1). The nuisance tangent space is the closed linear

span of B(W%) — 1) for some B € R?, and the projection onto the nuisance

tangent space is

O =M@
; me) Wil X B).

After subtraction, the DR estimating function has a form

DR [y _ 9 \Rx
v (u,ﬁ,qﬁ)—;[mw)Uz(uH(l B )

5.
=3 [B0018) + L5000 - B ).

Note that when you replace &; in UM (1) with %, you obtain UPE (). The
DR method requires both auxiliary models. However, its validity is guaranteed

when either of the models is correct. To verify, if the imputation model is

correctly specified, i.e., E[U;(n) — E(U; ()| Xi; 8)|Xi] = 0, we have

E{UR (1, 3, 6)) EZ[ VX - —%(Ui) - B ()| X0))

0;
i)
= Z EE(U;|X;) = 0,

=1

even if the m model is misspecified, i.e., m;(¢) # m;. If the observation model
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is correctly specified, 7;(¢) = 7;, then E(1 — %|Xz) =0, and

E(UPR(11.5.6)) —gE v+ {0 - Lipwixas) ||

-3 E v =o.

%
i=1

even if the imputation model is misspecified, i.e., E[U;(p)| X;] # E[U;(p)| X5; 5)]-

Therefore when either of the models is correct, UPF(y) is unbiased and with
other technical conditions, the estimator can be shown to be consistent. That
is why the qualifier doubly robust is adopted. The construction of the DR esti-

mating function is possible because we have two unbiased estimating functions.

1.7.5.2 Application to Bandit Settings

In bandit settings, the missingness is controlled since the learner selects the
arm. Therefore, the probability of observation or selection is known and the
DR estimator is guaranteed to be valid although the imputation model for
missing reward is incorrectly specified. The merit of the DR estimator in the
bandit setting is that we can utilize the observed contexts from selected or
unselected arms. Below we describe the DR method in the contextual bandit
setting.

Let m;(t) := P(a; = i|H¢) be the probability of selecting arm ¢ at round t.
As defined in the manuscript, the DR pseudo-reward is

MYW, (1.32)

Tt

YPR(t) = {1 - H(_)}XTB N
it ’

for some f; depending on H;. The pseudo-reward (1.32) comes from the fol-

lowing procedures. First we construct an unbiased estimating function also
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known as the IPW score,

LN T3 = a)
>0 X (Yir - X[ B), (1.33)

where only the pairs (X ¢, Y; ) from the selected arms are contributed accord-
ing the weight of the inverse of 7; ;. Setting this score equal to 0 and solving
B gives the estimator used in Dimakopoulou et al. [2019]. Now we can sub-

tract the projection on the nuisance tangent space from (1.33). The nuisance

tangent space is the closed linear span of B( 1G (igt) —1) for some B € R?, and

the projection onto the nuisance tangent space is

N .
Sy =S SRy (BIH) - XL6).

When the projection is subtracted from the (1.33) after replacing E(Y;(t)|H;)
with X; tﬁt, the IPW score becomes the efficient score,

t N
SN Xir (VPR - XT8) . (1.34)

=1 i=1
Any th that depends on H; serves the purpose of imputation. Due to the
doubly robustness property, Xﬂﬁut does not have to be an unbiased estimator
of E(Y;(t)|H;). We recommend setting f; as the ridge regression estimator
based on the selected arms only. The expression (1.34) resembles the score
when the rewards for all arms were observed, if Y ; is replaced with YZ-D R(t).
The proposed estimator Bt is a solution of (1.34) with a regularization

parameter A;:
R t N L/ N
i (S et ) (LX),
=1 =1 =1 i=1
Harnessing the pseudo-rewards defined in (1.32), we can make use of all con-
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texts rather than just selected contexts. The use of all contexts instead of X,
induces the improvement in the regret bound of the proposed algorithm. Kim
and Paik [2019] also suggests DR estimator, but it uses Lasso estimator from
the following pseudo-reward

1 Yoy (8) = bagy ()T B(E— 1)

DR/ — (T A
YPR(t) = X(TB(t - 1) + G ,

where X (t) = + Zf\;l Xi(t). This estimator is of an aggregated form. As

described in the text, the estimator using the aggregated pseudo-reward does

not permit the regret decomposition as equation (1.6) in the thesis.
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Chapter 2

Near-optimal Algorithm for
Linear Contextual Bandits with

Compounding Estimator

2.1 Introduction

The multi-armed bandit (MAB) is a sequential decision making problem where
a learner repeatedly chooses an arm and receives a reward as partial feedback
associated with the only selected arm. The goal of the learner is to maximize
cumulative rewards over a horizon of length T by suitably balancing exploita-
tion and exploration. The Linear contextual bandit is a general version of
the MAB problem, where d-dimensional context vectors are given for each of
the arms and the expected rewards for each arm is a linear function of the
corresponding context vector.

There are a family of algorithms that utilize the principle of optimism in
the face of uncertainty (OFU) [Lai and Robbins, 1985]. These algorithms for
the linear contextual bandit have been widely used in practice (e.g., news rec-

ommendation in Li et al. [2010]) and extensively analyzed [Auer, 2002, Dani
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et al., 2008, Rusmevichientong and Tsitsiklis, 2010, Chu et al., 2011, Abbasi-
Yadkori et al., 2011]. Some of the most widely used algorithms in this family
are LinUCB Li et al. [2010] and OFUL Abbasi-Yadkori et al. [2011] due to their
practicality and performance guarantees. The best known regret bound for
these algorithms is O(dv/T), where O stands for big-O notation up to loga-
rithmic factors.

The improved regret bound of O(v/dT) has been shown for SupLinUCB Chu
et al. [2011] with a matching lower bound Q(v/dT), hence provably optimal up
to logarithmic factors. SupLinUCB and its variants (e.g., Li et al., 2017) im-
proved the regret bound by v/d factor exploiting independence of samples via a
phased bandit technique proposed by Auer [2002]. Despite their provable opti-
mality, SupLinUCB and other algorithms based on the framework of Auer [2002]
have been known to be impractical due to the lack of adaptiveness, resulting in
performing excessive random sampling, and computational inefficiency. Fur-
thermore, the regret bound of SupLinUCB has (log NV )3/ 2 dependence, where N
is the total number of arms. Therefore, if N is exponentially large in d (which
often arises in practice, e.g., large-scale recommender systems), then the regret
bound would be sub-optimal. Hence, whether N-independent O(\/ﬁ ) regret
is achievable has been an open problem. Moreover, the question of whether
O(ﬁ) regret is attainable by a more practical algorithm than the algorithms
based on the framework of Auer [2002] has remained open.

A tighter upper bound of SupLinUCB than that of LinUCB (and OFUL) stems
from utilizing phases by handling computation separately for each phase. In
phased algorithms, the arms in the same phase are chosen without making
use of the rewards in the same phase. This independence of samples allows to
apply a tight confidence bound, improving the regret bound by v/d factor. On
the other hand, this operation should be handled for each arm, which costs
polylogarithmic dependence on N by invoking the union bound over the arms

at the expense of improving v/d. In UCB algorithms, the estimate is adaptive
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in a sense that the update is made in every round, and the independence
argument cannot be utilized. Instead, self-normalized theorem Abbasi-Yadkori
et al. [2011] helps avoid the dependence on N.

We propose a novel bandit algorithm. The proposed algorithm achieves
O(VdT) as in SupLinUCB, yet without resorting to independence and without
dependence on N. The proposed algorithm has two notable features: the
first is to utilize the contexts of all arms both selected and unselected for
parameter estimation, and the second is to randomly perturb the contribution
to the estimator. Intuitively, new randomization on the estimator elevates the
level of exploration, but more importantly, this randomness creates nuisance
tangent space (See Section 2.4.1) essential to form the compounding estimator
that uses all contexts. These two features allow a novel additive decomposition
of the regret which can be bounded using the self-normalized norm of the
compounding estimator.

The main contributions are as follows:

e We propose a novel algorithm, Hybridization by Randomization algo-
rithm (HyRan), for a linear contextual bandit. The proposed algorithm
adopts the compounding estimator utilizing contexts from all arms both
selected and unselected and the random perturbation of the principle of

optimism in the face of uncertainty for arm selection.

e We establish that HyRan achieves O(v/dT) regret upper bound without
any dependence on N. To the best of my knowledge, this is the first N-
independent O(v/dT) regret bound for the linear contextual bandit. For
the analysis, we utilize a novel decomposition of the cumulative regret
into two main additive terms whose bounds can be derived by employing
the structure of the compound estimator. This allows us to establish the

faster rate of O(\/ dT) regret without incurring dependence on N.

e We show the estimation error bound for the self-normalized compound
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estimator (Theorem 1.3), which may be of independent interest.

e We evaluate HyRan on numerical experiments and show that the practical
performance of the proposed algorithm is in line with the theoretical

guarantees.

All missing proofs are in supplementary materials.

2.2 Related Works

The linear contextual bandit problem was first introduced by Abe and Long
[1999|. UCB algorithms for the linear contextual bandit have been proposed
and analyzed by [Auer, 2002, Dani et al., 2008, Rusmevichientong and Tsit-
siklis, 2010, Chu et al., 2011, Abbasi-Yadkori et al., 2011] and their follow-up
works. To our knowledge, the best regret upper-bound is O(\/ﬁ ) established
for SupLinUCB, an UCB-based algorithm proposed by Chu et al. [2011] adapt-
ing the IID sample generation technique in Auer [2002].

The rewards for the unselected arms are not observed, hence, missing.
Recently some bandit literature has framed the bandit setting as a missing
data problem, and employed missing data methodologies [Dimakopoulou et al.,
2019, Kim and Paik, 2019, Kim et al., 2021]. Dimakopoulou et al. [2019] em-
ploys an inverse probability weighting (IPW) estimator using the selected con-
texts alone and proves a O(d\/e—lTTeN ) regret bound for Thompson sam-
pling which depends on the number of arms, N. The doubly robust (DR)
method [Robins et al., 1994, Bang and Robins, 2005] is adopted in Kim and
Paik [2019] with Lasso penalty for high-dimensional settings with sparsity and
the regret bound is shown to be improved in terms of the sparse dimension
instead of d. Recently in Kim et al. [2021], a modified Thompson Sampling
employing the DR method is proposed and provided O(dﬁ ) bound. The au-

thors improve the bound by using contexts of all arms including the unselected
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ones which paves a way to circumvent the technical definition of unsaturated
arms.However, using contexts of all arms by the DR method requires non-zero
probability of selection for all arms, which limits the application to Thompson
Sampling with Gaussian prior. In this thesis, we provide another way of using
contexts of all arms which can be applied to the algorithm where there is an
arm whose selection probability is zero. By using all contexts we circumvent
the inequalities which induces additional v/d or log N by developing a novel

decomposition of the regret.

2.3 Linear Contextual Bandit Problem

In each round t € [T] := {1,...,T}, the learner observes a set of arms [N] :=
{1,..., N} with their corresponding context vectors {X;; € R? | i € [N]}.
Then, the learner chooses an arm a; € [N] and receives a random reward
Y;. =Yg, for the chosen arm. For all ¢t € [T] and ¢ € [N], we assume the
linear reward model, i.e.,

Yie= X118+ i,

where 8 € R? is an unknown parameter and N+ € R is an independent noise.
N,

Let H; be the history at round ¢ that contains contexts {Xiﬁ}z‘:i;:l’ chosen
arms {a, }'~} and the corresponding rewards {Y;,.}:Z}. For each ¢ and i, the
noise 7 is zero-mean conditioned on Hy, i.e, E[n;4|H; = 0. The optimal
arm at round ¢ is defined as a; := arg max;¢[n {XZ;B} Let regret(t) be the
difference between the expected rewards of the chosen arm and the optimal
arm at round .

regret(t) := ngf’tﬂ -xT .5

at,

The goal is to minimize the sum of regrets over T rounds, R(T') := Z?zl regret(t).

The time horizon T is finite but possibly unknown.
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2.4 Proposed methods

2.4.1 Compounding Estimator

We introduce the novel estimator with simple randomization technique. For
each round t € [T and given p € (0,1), we define a; as a random variable

sampled from [N] with probability

7Tat,t = P(&t = CLt|]:t) =p,

_ . l—-p . (2.1)
mig =P (a=jlF) = 57—,V # a,
where F; := H¢U{a;}U{a1,...,a;—1}. Since this a; is random given F;, we can

construct a random variable I (a; = i) /m;; whose conditional mean given F;
is one. Using these random variables we can construct the inverse probability
weighting estimating equation,
L N1 (@, =) -
0,7

e

T=1 i=1

The semi-parametric theory Bickel et al. [1993] suggests subtracting the pro-
jection onto the nuisance tangent space from (2.2) to improve efficiency. Using
the fact that the conditional mean of (I(a; =) — m;;) given F; is zero, we
can define a nuisance tangent space by the closed linear span of B(I (a; = 1) —
Tieh - 1(@ = N) —mn})T for some B € RN, Now the projection onto

the nuisance tangent space is

t ~ .
I(a; =1) — m;
§ ( ! 7_‘_') ZyTXi,‘r (]E [}/;,T| ‘F‘I‘] - XZ;—ﬁ) )
1, T

=1 i=1

where we replace E[Y] -| F;] with XgTﬁvT for some estimator 3. Subtracting

the projection from the IPW score and rearranging it, we obtain the efficient
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score,
t N

>o> Xir (Vir - X128). (2.3)

r=1i=1
where the pseudo reward f/w is defined as

Vi = {1 - H(a:”} X7 B+ H(“f;”nht. (2.4)
i\t i\t
The equation (2.3) uses }71',7 instead of Y ; in the original score to estimate /3
as if all rewards were observed. Using the pseudo rewards (2.4), we can use
all contexts rather than just selected contexts. However, we cannot compute
(2.4) since Yz, - is missing when @, # a;. To handle this problem, we use the
efficient score (2.3) not in all rounds [t] but in some subset of rounds ¥; C [¢],
where Y; - is observed and (2.4) is computable. With this subsample set of

rounds ¥; we can define the compound score equation

N ~
Z Z Xi,‘r (Yi,T - XZ;B)
TEW; 1=1 (25)
+ Z Xa,r (Yo, r — XL .B) =0.
TEU

The proposed estimator is the solution of (2.5) which can be written as

-1

N
Be= S X XE A4S Xop o XTI 4N

TeEW; 1=1 TEWU,

N
Z ZXi,T?i,T + Z XGT,TYT,GT

TEV; i=1 TEWU,

This is a hybrid form of using all contexts and using selected contexts, and
the contribution is set by the random variable @,. This contribution of using

contexts of all arms is crucial in achieving the regret bound of O(v/dT') for the

20



proposed algorithm.

2.4.2 HyRan Algorithm

The proposed algorithm, HyRan, is presented in Algorithm 2.1. At each round ¢,
the algorithm computes thgt,l for each arm ¢ € [N] based on (1.2) and finds
the arm with the maximum value, a;. After pulling an arm a; and observing
the reward for the selected arm, HyRan samples a; and determine whether the
round t is included in the subset ¥;. When a; is equal to a;, we can observe
the reward Yj, ; and compute (2.4). Therefore we include the round ¢ in W;.
Using this subset W;, HyRan updates Bt as in (1.2). In order to compute Bt, the
imputation estimator Bt needs to be specified to determine the pseudo reward

n (2.4). We recommend the following form

-1

N
Bt = Z ZXZ’TXZT+Z XaT,TXg:_,T+'YtI

TeW, =1 T¢U,
ol I(a, =) vidve L(ar = 1)
(55 (fo- 20 o =0 )
reU, i1 4,1 T, 1
+ )Xo, Yra, (2.7)
T¢‘I’t

-~

for some ¢ > 0 and B”dge is a ridge estimator using pairs of selected contexts
and corresponding rewards until round ¢. We can also use another estimator

such that HBt - B

< N~! holds after some explorations. Examples are the
2

ridge estimator B:ﬁge, and the estimator used in round ¢ — 1, B;_1. Since 3

is multiplied with mean zero random variable in (2.4) the unbiasedness of the

estimator (1.2) does not depend on the choice of 5;.
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Algorithm 2.1 Hybridization by Randomization Algorithm for Linear Con-
textual Bandits (HyRan)

INPUT: A regularization parameter A; > 0, a sub-sampling parameter
p € (0,1).
Initialize Vi = Iy, fo = 0.
fort=1to T do
Observe contexts {X; }Y ;.
Estimate B; 1 = (Vi1 + Mla) " fio1.
Play a; = arg max; Xﬁgt_l, and observe reward Y 4, .

Set g, ¢ :=p and ;4 = % for j # a;.
Sample a; from the categorical distribution with probability m; ;.
if ELt = Q¢ then
Update V; = Vi1 + 30 X, X],
Update G and f; = fio1 + > 1oy XitYir
else
Update V; = V1 + X(lmth;t'
Update f; = fi—1 + Xa, tYa -
end if
end for

2.5 Main Results

In this section, we present the main theoretical results: the regret bound for
HyRan (Theorem 2.1) and the estimation error bound of the proposed com-
pounding estimator (Theorem 2.4). We first provide the assumptions used
throughout the analysis.

Assumption 1 [Boundedness| For all ¢ € [N] and ¢ € [T], || X;[|, < 1 and
18]l < 1.

Assumption 2 [Sub-Gaussian noise| For each t and ¢, the noise ;¢ is
conditionally o-sub-Gaussian for a fixed constant o > 0, i.e, E[n;+|Hs] = 0
and E [exp (M\;+)| Ht] < exp(A202/2), for all X € R.

Assumption 3 [Context sets IID across rounds| The context sets

(X W AKX
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are distributed independently from some unknown distribution Px supported
on RN
Assumption 4 [Positive definiteness of the covariance of the contexts| For

all t € [T, there exists a constant ¢? > 0 such that

N
1
Amin (E [N Z; Xi,tXi,t] ) > ¢?

Discussion of the assumptions. Assumptions 1 and 2 are standard in the
stochastic contextual bandit literature (see e.g. Agrawal and Goyal [2013]). As
for Assumptions 3, we emphasize that the IID assumption is on a context set
across the time horizon, not on the individual context vectors. Hence, we allow
context vectors to be correlated in a given round. Similar IID assumptions on
context sets are used in the contextual bandit literature |Goldenshluger and
Zeevi, 2013, Li et al., 2017, Kim and Paik, 2019, Bastani and Bayati, 2020].
Assumption 4 is essential to efficiently solve the linear regression problem.
Previous literature imposes this assumption on the eigenvalue of the covariance

matrix [Goldenshluger and Zeevi, 2013, Li et al., 2017].

2.5.1 Regret Bound of HyRan

Under the assumptions above, we present the following regret bound for the

HyRan algorithm.
Theorem 2.1. Suppose Assumptions 1-4 hold and

1 T 2T
T > & = max flog—,CpUNng_lllog— ,
P 1) ’ 1)

where Cp 5 15 a constant depending only on p and o. Set \; := dlog %. Then
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the total regret by time T for HyRan is bounded by

1 16v2 + 8) Do 2T
R(T) < 2€ 44Dy, | 2T log < 435D ,a+( f\/ﬁ) 27\ [dTlog =, (2.8)

with probability at least 1 — 80, where Dy 5 :=1+ Cp 5.

There are other works [Dani et al., 2008, Rusmevichientong and Tsitsik-
lis, 2010, Lattimore and Szepesvari, 2020] which proves the lower bound of
Q(dv/T). However, those bounds assumes that N is infinity and the contexts
does not follows the Assumption 3 or Assumption 4. In Section 2.5.3 we provide

the lower bound under the Assumptions 1-4.

2.5.2 Regret Decomposition

In the analysis of LinUCB and OFUL, an instantaneous regret is controlled by
using

~ 5
ag, ﬁucb = arg max Xi,tﬁ
i€[N],BEC:

where C; is a high-probability confidence ellipsoid. Then, regret(t) is typically
decomposed as

regret(t) < ‘

B\ucb - BH HXat,tHZfl 5 (29)
Z t

where Z; 1= 23:1 XaﬁTX;{ﬁT + AI. Each of two terms on the right hand side
in (2.9) has a Vd factor. In particular, V/d factor in the first term comes from
the radius of C;. Hence, this results in O(d) regret when combined.

In contrast, we decompose the regret into additive terms using the definition
of max-residual given in Lemma 2.2. This new decomposition allows for non-

OFU based analysis, hence exploration parameter v need not be the radius

of Ct.
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Lemma 2.2. Define a maz-residual function as

=f (B-8)|;

where © = (x1,...,xn) € RN, For each t € [T], let X; = (X1t XNp)
and define a filtration G; := Uizl {XT,BT}. Then fort >1,

Az (x) = ng[a]m\)ﬁ

regret(t+ 1) < 2 {Agt (Xiy1) —E {Agt (Xt—irl)) gt]}

-I-Q{E [A (Xit1) ‘ } - ]\I" Z 5t } (2.11)

TEW,

-

2
il
N\
where

Vi :ZZX X5+ Xao X0+ NI

e, i=1 ¢,

A proof sketch is given below. The decomposition of the expected regret
given in (2.11) is insightful in that the regret from suboptimal arm selections is
incurred due to poor estimate, thus can be bounded by the quantities involving
the maximum residual. Many bandit algorithms that induces O(V/dT') regret
bound (e.g. SuplinUCB) bounds the maximum residual with the union of N xT
probability inequalities, and this gives log N term in the regret bound. But
in Lemma 2.2, we use the fact that the maximum is bounded by a sum, the
sum of residual can be shown to be bounded by the self-normalized bound for
the estimator (1.2). In this way we can use only T probability inequalities
and eliminate the N independence on the main term of the regret bound. We
emphasize that the decomposition yields the self-normalized bound for the
estimator, not any other estimator, and the estimator is self-normalized using

all contexts of both selected and unselected arms.
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Proof. By the definition of a;, we have

regret(t+1) = (Xa;+l,t+1 - Xat+1,t+1>T (5 - Bt)
+ (Xa;+l,t+1 - Xat+1,t+1>T Bi

< (Xa;+1,t+1 - Xat+1,t+1>T (5 - //B\t)

Xl (B\t - 5)

<2 max

1€[N] ’

which concludes regret(t+ 1) < 245 (X+1). Now to prove (2.11), we need

v, )

1 1 ~
= As (X)) < —— _
|| ng Bt () < f‘l’t’ Hﬁt B

which is proved by using the Cauchy-Schwartz inequality as

> 85 () < VIE, |3 {85 @)

TEV, TEW:

= VI, | 3 ma (X2, (B—)}
TEW,

< VT Y SR (5 6))

TEW; i=1

< VT (3-5) Wi (=),

where the last inequality holds using the fact that V; > ZTE% vaz 1 XLTXET.
d

The first term in (2.11) can be bounded using with Azuma’s inequality
(Lemma 1.9). Now, we bound the second and third terms in (2.11) using
Lemma 2.3 and Theorem 2.4, respectively. Lemma 2.3 adopts the empirical

theories on the distribution of the contexts.

Lemma 2.3. Suppose Assumptions 1-4 hold. For each t € [T], and L > 0,
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conditioned on Wy, with probability at least 1 — §/T,

sup
181 -BlI<L

_3L8 oT
AL [d1
=T y\pt R

In the following theorem, we present the self-normalized bound for the

E[Ap (Xi41)]Gi] = |\I,| > A (X))

TE\I/t

compound estimator which allows us to bound the last term in (2.11).

Theorem 2.4. Suppose Assumptions 1-4 hold. Let Bt be the estimator defined
in (1.2), and let p € (0,1) be a constant used in (2.1). For all t € [T], let U,
be a subset of [t| determined by Algorithm 2.1. Then with probability at least
1—69,

|5: -

42 At
<h+ N2 o dlog ——, (2.12)
Vi 1—-p »p 0

for all t > max{%log %,(}’p’(,Nqu*4 log %}, where Cp o > 0 is a constant

depending only on p and o.

Theorem 2.4 is a self-normalized bound for the compound estimator, which
is a crucial element in the regret analysis. Compared to the widely-used self-
normalization bound (Theorem 2 in Abbasi-Yadkori et al. [2011]) in the con-
textual bandit literature, the estimation error bound (2.12) is self-normalized
by the covariance matrix constructed by the contexts of all arms, not just
selected contexts. This difference enables us to take advantage of the new
decomposition of the regret in (2.11), which derives a O(v/dT) regret bound.

To use the bound (2.12), we need an estimator for 3, whose estimation error
is smaller than N~!'. This estimator can be obtained by using data from at
least O(N2¢~*log T') number of rounds, which is tolerable for the exploration.

The last concern regarding the regret bound is the size of ¥;. To obtain the

O(v/dT logT) regret bound, we need to make sure that the number of rounds
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in ¥; = Q(t). In the following Lemma, we show that the size of the selected
subset W, is Q(¢) with high probability.

Lemma 2.5. Let VU, be a subset of [t| determined by the Algorithm 2.1 at round
t. For any € € (0,1), with probability at least 1 — 0,

|| > ept, (2.13)

for all t > 2p(11_6) log %

The proof is based on lower Chernoff bounds. With (2.13), we guarantee

the rate of the regret bound is sub-linear with respect to the total round T'.

2.5.3 A Matching Lower Bound

Theorem 2.6. Assume 2 < d < N < oo and T > d/4. Then there exists a
distribution of contexts, Px, a distribution of noise, n;+ and [3, which satisfies

Assumptions 1-4 and for any bandit algorithms that selects a,
1
EgR(T) > gvdT. (2.14)

The lower bound (2.14) matches with that of the upper bound (2.8) up to
the logarithm factor. Chu et al. [2011] prove a lower bound Q(v/dT) for the
linear contextual bandits with finite number of arms. But the contexts in the
bound does not hold Assumptions 3 and 4, and cannot be directly applied. We
call for proving a novel lower bound which can be applied to the setting with

Assumptions 1-4.

2.6 Numerical Experiments

In this section, we compare the performances of the four linear contextual

bandit algorithms: SuplinUCB [Chu et al., 2011], LinUCB |Li et al., 2010, LinTS
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[Agrawal and Goyal, 2013], and the proposed method, HyRan. For simulation,
the number of arms NN is set to 10 or 20, and the dimension of contexts d is
set to 5, 10 and 20. Let Xi(i), .. ,Xi(ftl) be the d elements of a context X; ;. For
j=1,...,d — 1, we independently generate (Xl(Jt), e ,X](\%)t) from a normal
distribution N (ux, Vy) with mean py9=(—10,-8,---,—2,2,---8,—10)T, or
pog = (—20,—18,---,—2,2,---,18,20)7. To impose correlation among each

arms the covariance matrix Vy € RN*N

is set as V(i,i) = 1 for every i
and V (i, k) = 0.5 for every ¢ # k. Then, for each arm i € [N], we select
a generated element Xi(’]l;) randomly and append it to the last element, i.e.
Xi(j) is the same as one of Xﬁ) e ,Xﬁ_l) This setting is to impose a severe
multicollinearity on each contexts. Finally, we truncated the sampled contexts
to satisfy || X2 < 1. To generate the stochastic rewards, we sample 7,
independently from N(0,1). Each element of 8 is sampled from a uniform
distribution, U(—1/v/d, 1/+/d) at the beginning of each instance and stays fixed
during a single instance of the experiments. About the set of hyperparameters,
LinTS and LinUCB v and « {0.001,0.01,0.1, 1}, respectively. In HyRan we set
A\¢ = dlog(t + 1)? to be consistent with the theoretical results and p to be in
{0.5,0.65,0.8,0.95}. We optimize over these hyperparameters and report the
best performance for each algorithm.

Figure 7?7 shows the average of the cumulative regrets over the horizon
length T = 30000 with 10 repeated experiments. The experimental results
demonstrate that HyRan performs better than the benchmarks in all of the
cases and show more evident superior performances as the context dimension
increases. To our knowledge, HyRan is the first algorithm with O(vVdT') re-
gret that has competitive empirical performances. The previously known algo-
rithms with O(v/dT) regret (e.g., SupLinUCB in Chu et al. 2011 and SupCB-GLM
in Li et al. 2017) tend to be impractical. Hence, HyRan is a provably efficient

and practical method.
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2.7 Appendix

2.7.1 Technical Lemmas

Lemma 2.7. Lee et al. [2016, Lemma 2.3] Let {N;} be a martingale on a
Hilbert space (H, ||-||;). Then there exists a R*-valued martingale {M;} such
that for any time t > 0, || M|l = |[Nellyy and |[Mys1 — Milly = [[Negr — Nillyy-

Lemma 2.8. (Azuma-Hoeffding) If a super-martingale (Yi;t > 0) correspond-
ing to filtration Fy, satisfies |Yy — Yi—1| < ¢ for some constant ci, for all
t=1,...,T, then for any a > 0,

a2

P(Yr—Yy>a) <e 2Timacd

2.7.2 Proof of Theorem 2.1

Proof. For each t € [T], define the event

{w > g}

mo {5 o], < v (222) o)
t:{H@_ﬁugwff};::Dw}.

Set £ := max{%log %,C’;,,,ONQQY4 log %}, where Cp, is defined in (2.25).

While proving Theorem 2.4, Lemma 2.5 and 2.9 is used and the event B,
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requires A;. Under the event By, setting Ay = dlog % gives

5.8, <y/ (3. 8) vitvi Vit (B )
<\ Amax (Vi) |13 - 8 y
(\/Yt+ (14\_/3) + ;) dlog 4?)

N

<N

<Dp,0'?

which implies Cy. Thus by Theorem 2.4 we have

P (ﬂ {A,NB N Ct}) > 1 — 66. (2.15)

t>E

By Lemma 2.2, for each t > £,
regret(l) < 2 {ABH (%) —E [ABH (xt)‘ gt_l] }

+2 {E [Aﬁtq (Xt)’ th} - \\I/t1_1| Z Az, (Xr)}

S/

8B

Vi1

2
S,
W1

Let
Rt =2{a; () -E[A; | (%)]6a]},

Ry(t) :==2 {E [Agtﬂ (Xt)’ gt—l} - \\Iltl_l\ Z Az, (XT>} ;

TeW;: 1

R |8 Bis

. 2.16
. (2.16)

(6)i=———
T V]
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Let us bound R;(t). Since the event Cy is Gi-measurable for all ¢ € [T], we

have

RyOL(Cr1) = 2{ A5 | (W)T(Cot) ~E A5 (X)T(Co1)|Gia] } -

By Assumption 1,
. T (72
A5y (G0T(Cinn) = T (s = 9)[ 100
<~
—{Q%H tllo |[Be=1 — B ) (Ci1)

<||Bis - 8] 1(Ce-)

<Dps.
Thus, |R1(t)I(C¢-1)| < 4D, . Since Ry (t)I(Cy—1) is Gi-measurable and
E[Ri(O)I(Ci1)| Gra] =

we can use Lemma 2.8 to have

1
> Ri(t)I(Ciy <4Dpﬂ/2Tlog6 (2.17)

t>&

with probability at least 1 — 4.
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Now we bound Ry (t). By Lemma 2.3 with probability at least 1 — /T,
Ro()I (A1 N Ci—1)

<2l(A;1)  sup E[Ag (X)]Gi—1] Z Apy (¥r)
||:81_BH2§D17,0 - TG\Ift 1

36D 1 /2T
< | =22 +8Dp oy | =1/ dlog — | T (A
—< T e\ Ogé) (A1)
30Dy 2 [, 2T
——P% 4+ 8Dp gy | 1/ dlog —.

T + 8L, pt %75

Thus, with probability at least 1 — 4,

IN

162D, 2T
> Ryt (A1 N Cyq) < 36Dy, + 16v2Dy, dT log = (2.18)

t>& \/ﬁ

To bound R3(t),

22 o 4¢2
NBy) <Y Y 17 (dlog 22
R3 ()1 (Ai—1 N By 1)_\/p—t( +1—p+p> dlog —
2v2 4¢2
=——D, ,1\/dlog —.
\/ﬁDp’ %875
and
8Dp s 2T
> Rs(®) (A1 1 Bo) =274 [dTlog = (2.19)
>¢ VP
O
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Now for any x > 2&,

<P 25—|—Zregret t) > )

1>

P(Qg—l-ZRl —I—Rz +R3() >

t>€

IN

P <25 + ZRI Ct 1 + Rz( ) (At—l N Ct—l) + Rg(t)ﬂ (At—l N Bt—l) > .%')

1>

+P (U {AguBgucg})

t>€

<P[2&+ ZRl Ct 1 + RQ( )]I (At—l N Ct—l) + Rg(t)ﬂ (At—l N Bt—l) > x)
t>€

Setting
16v2D, , 2T
x = 26+4D, ;1 /2T log 5+35D ot———2 G\f T /dT log p’ \/dT log
gives
1
P(R(T) > z) <66 + P (Z Ri(t)I(Cy—1) > 4Dy 51/ 2T log 5)
t>€
16v2D, » 2T
+P Z Rg(t)]l (At—l N Ct—l) > 3(5Dp70 + & dTl'log —
=% VP o

8D 2T
+ P ( E R3(t)]1 (At—l N Ct—l) > —P7 dT log )
s VP 0

<8,

where the inequality holds due to (2.16), (2.17), (2.18) and (2.19).
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2.7.3 Proof of Lemma 2.3

Proof. Let us fix t € [T] and ¥; C [¢]. By Assumption 3, A; is independent
with G;_1. Thus,
E[Ag, (X)|Gra] = Ex [Ag, (X)],

where X € R arises from Px (Assumption 3). For any = > 0 and 6 > 0,

“)

Ex [Aﬁl (Xt ’\I’ ‘ Z A/31 Xt)
TEV:

>

E [Af31 (Xt)| gt—l] ‘ | Z A,Bl Xt)

TEW:

P sup
1B1=Bll,<L

<exp(—bx)E U,

exp| 0 sup
181 =8|, <L

)

Let 1 < 73,... < 7)y,| be an ordered round in W;. Then by Assumption 3,
Xryoo o) &

TIwy|

Lemma |van der Vaart and Wellner, 1996, Lemma 2.3.1| to have

are IID random variables and we can use the symmetrization

Elexp|6 sup |Ex[Ag (X)] Ag, (X))
( 1818, <L 1 I‘If | Tg '
[Pyl (2'20)
<E |exp |20 sup LZ@‘ Ag, (X))
- n 1 Tn ’
11-Bl,<L | ¥el £
where &1, . .. ,§|\1, .| are independent Rademacher random variables. For any € >

0 let By, .. .,B@(E) be the e-cover of B := {51 eR?: ||By — Blly < L}. By the
definition of e-cover, for each 8, € B, there exists Bj such that HBJ — B H2 <e.
Thus,

[ D] [ W] [Ty
Z gnA/Bl Tn Z fn {Aﬂl Tn } Z gn Tn
[ W] [0y

<Z ‘Aﬁl )

Zgn X.)
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By the definition of Ag, (X7,) and Assumption 1,

Ag, (%)~ A5 (Xr)

'max\ r ﬁ—ﬁl)l—maX)Xfm (5—BJ>M
<max| X5, (8- 60| - |XE (85
<max| X7 (81~ 3,)|
<max || Xi -, Hﬁl - Bsz

<e.

Thus,

[Ty [Py

sup Z an,Bl Tn < "I/t’ € + Su Z fn Tn

1B1=Bl.<L | =1 =

Plugging in (2.20) gives

P sup
1B1=Bllo<L

[
<exp(—bx+0c)E |:exp (\212 ~ sup anABj (Xr,) ) \I/t]
]:

E[Agp, ()] Gia] - MZAﬁI )

TeEW:

O(e) 90 |1l
< exp (—0x + O¢) ZIE exp T z_jlgnABj (X)) ||y

7=1

Since for each j =1,...,0(e),

X,

25, (%)

B; ( < max 1 Xl Hﬁ o BjH2 =L
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holds, by Hoeffding’s Lemma,

[ (2

[T
=EE | exp I\Ift D &A 5 (
n=1

||

Zgn (X,

)|
) (X ()10}, 0 ]

()| X v

Thus,

>

B (A (0] Gemt] = g 30 A ()

TEW,

“)

P sup
1B1—Bll,<L

272
< exp (—0z + 0¢) 20(€) exp <20 L )

||
292L2}
[Tl J

Minimizing with respect to 8 > 0 gives,

= 20(e) exp {—9 (x —e)+

>

E[Ap, (X)) Gra] = ‘\I,| Z Ap, (A7)

W] (@ — o)’ } |

“)

P sup
1B1—Bll,<L

< 20(e) exp {— Y
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The covering number of B is bounded by ©(e) < (TL) . Thus, with probability
at least 1 —0/T,

sup
|1B1—8ll,<L

[ 8 [ 20(e)T
< Ly —==1/1
< e+ 0] og 5
[ 8 2T
< L dl 1
€+ |\Ilt \/ og — —|— og — 5

Setting € = 3LJ/(2T") gives,

[A/Bl (Xt)|gt 1] ‘\I/ ‘ Z A/Bl T)

TEW,

sup  |[E[Ag, (X)|Gi—1] — Ag, (&7)
11— Bll, <L 1 & |T§ 1

3L3 8 2 oT
S0 L=l 1
=57t \\I/t|\/dog5 los =5
_ 3L 1 9T
O ALy dlog 2.
= a1 T dlog =5

2.7.4 Proof of Theorem 1.3

To prove Theorem 1.3, we need to prove the following bound for the imputation

estimator Bt which is used in fﬁyt and Bt.

Lemma 2.9. Suppose the Assumptions 1-4 hold. Then for Bt computed in
Algorithm 2.1, with probability at least 1 — ¢,

H@—B‘L < % (2.21)

holds for t > max {% log %’ Cp,UN2¢—4 log %}'

69



Proof. Fixtand set v, := 4v/2N/|¥;|log %, and W; := 276% Zfil Xir X
ZT@,t X, 7Xa. + + 1. Then by definition of Bt, we have

N
HBIS - ﬂHQ = Wtil Z ZXLTY/Z',T + Z Xa-,—,T}/i,T - Wtﬁ

TEW, =1 T¢\Ijt 9
N ~
S HWt_lHQ Z ZXivT (1/;:77— - 17' ) Z XGT,TTIQT,T + Vi ”6”2
TEW,; i=1 TEY, 2

S)\min (Wt)il Z ZXZT ( 4,7 XZ;B) + Z Xar,Tnar,T + 7

TeW; i=1 Té\I/t 2
(2.22)

For the minimum eigenvalue term, we have

)\mln (Wt mln < Z Z Xz TX@ T + ’ytLi)

TeW; =1

<

Let 7 <7 <--- < 7y, be the ordered rounds in ¥;. Since Hsz\il XZ-JXZ-TT
i
N and

m1n< Tl?"'7XTk1]> = m1n< [ZXsz ZTk]) ZN(bQ’

we can use Lemma 1.6 to have

Xin X7

1,Tk

N
)\min (Wt) Z Amin <Z ZXi,TXgT + ’Yt[d) Z ‘\I/t‘ N¢2, (223)

TeW; 1=1
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with probability at least 1 — %. By definition of Y; .+, we have

>3- (i3 )zz@-dxf(Ww>

TeWs 1=1 TV 1=1
N ~
I(a, =1)
DD D
TEW, i=1 b
N ~ .
I (a’T = Z) oridge
-3y (-1 =) X, (3 - )
TeW; 1=1 nT
narﬂ'
E &T,Ta
Tar,r

TEW

where X; » = XMXET. Plugging this and (2.23) in (2.22) gives,

al I (a‘T = Z) aridge
S (1- M=) x, (5 - )
¢ i=1 )

» 1
_ < -
Hﬁt 5H2 TIW [N || &

2
4\/210gg

,'7047'77— 0
T + n T T / .

’qjt’N¢2 Z a T Z a ll T ¢2 ‘\I}t|
(2.24

+ -
Mar,r TEW, 9
)
For the first term,
N iy — i) .
>y (- M=) x (- 6)
TEY: 1=1 9
N iy = i)
: Z(l 1) x| [t -,
TE\I’t =1 nT 2
N - .
> (-1 =) x,
TeW; 1=1 F

Define the filtration as Gy = ¥y and G, = G,—1 U {AX;,dr,a.} for 7 € [t].
This filtration refers to the case where the subset of rounds for using contexts

from all arms is observed first and ay, ..., a; is observed later. In Algorithm
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2.1, ay,...,as is observed first to determine W;. But in theoretical analysis,
we define a novel filtration Gy, ..., G; to obtain a suitable bound by using the

martingale method [Kontorovich and Ramanan, 2008|. Set

TeW 1=1

and define M, = E[M|G,]. Then {M,}!_, is a R¥“valued martingale se-

quence since
E [MT’ gT—l] =E [E [M’ gT” g’T—l] =E [M’ gT—l] = MT—I-

By Lemma 2.7, we can find a R?-valued martingale sequence {N;}!_, such

that Ny = (0,0)” and
HMTHF = HNTH27 [ M- — MT—IHF = [|N- — N'r—1H2 J
for all 7 € [t]. Set N, = (NT(U, NT(2))T. Then for each r = 1,2 and 7 € [t],

N - N©

T T

< ||N‘r - N771H2

=||M7 — Mr_1lp

=|[E[M|Gr] —E[M|Gr]lr

[Imn (-5 x e

0 TEY,
- HZi\;l Xir 7t Waii i TEe Y,
o T ¢,
< N(32) rew

9

0 Tgé\pt

- e e
sﬂ-EJJyﬂ



holds almost surely. The third equality holds since for any 7 € [¢],
N ~ .
>, (1 M=) Z)) Xiu
: T u
=1 ’
al I(a, =)
E[M|G;] = 1-— U X,r
aigl= 3 3 (1-7= =) x,

wel, u<lr i=1 T

E

QT] =0,Vu>r,

Using Lemma 2.8, for z > 0 and r =1, 2,

2

]P’(‘NT(T) >x‘go>§2exp — x 5 |
22|y ($22)
P
which implies that
2—p 412 5
P}N(” N(ZZ2) (200 log =[Gy | < -2
(- C22) ) o
Since
1 2
1Ml = [0l = Nl < [NE7] + | N2
we have

2—p 412
Pl ||M 2N | —— 2|0, log —
(n I > 28 (322 ) 2wl 10g

for any subset ¥; C [t]. Thus, we conclude that

(|Z 5 - % (e

TE\Ift i=1

2—p 4t2
<P (2 M| p > 4N <1—p> \/ 2| log 5)
92— 412
<EP <2 M|y > AN <1p> V21 log —
—p

<5

2

)
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Now for the second term in (2.24), we have for any = > 0,

P Z naT,T aT,T + Z 77(1,-,7 ar,T >

aq—,T

TE\I} T¢‘1’f 2
<P Z na-r,T aT,T + Z 77a7—,7' ar,T >x ﬂ{ ﬂ {ELT = aT}}
TEV, T, TEW, 9 ey,
+P ( U far #m)
TG\I/t
<p (Y lars x4 S e Xayr| >
rew, "anT T, )

Since m,, » = p, we observe that Z“L and 7, , are %-sub—Gaussian. Using
ar,T

Lemma 1.4, we have

Co 4¢2 1)
P Z naT?T Xa, 7+ Z NayrXar 7| > ?\/E log — 5 < 127

t
TE\I/ 617—77' T¢\Ilt 2

for some absolute constant C' > 0.

Now from (2.24), with probability 1 — 23, we have

t27

442 Af2 4\ /2log =5 42
Hﬂt 5” e 4N< >\/2|\I/t|log+\[ log — b
"I’t\Nﬁb -p ) J VAR

By Lemma (2.5), [¥;| > 5t for all ¢t > %log %, with probability at least 1 — 4.

Then we have

Hﬁt 5“ 82 -p) +\/§CU+ 8} 210g4—t2

¢2\/{( PP PPN D
2 8(2—p) V200 8 2T
<¢M{< N A Wﬁ} o
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Set

8(2 — 2C 8
¢ . 82n) Vo 8

(I-pyp  p° VP

Then for all ¢ > max {% log %, Cp,(,NQ(ﬁ*4 log %}, we have

HBt _/8H2 = %’
with probability at least 1 — 46.
Now we are ready to prove Theorem 2.4.
Proof. By the definition of Bt in (1.2),

N
= ‘/t_l Z ZXZ',TY/Z',T + Z Xa-,—,TYa-,-,T‘/t/B

TeWY; i=1 T¢U;

N
=)D XiYir+ Y XaprYa, Vi3

TEW i=1 T¢\I/t Vfl
t

N
= Y Xir (Vir = XEB) + 3 X (Yarr — X2,

TeW; 1=1 TEWU,

|- 5

Vi
Vi

Set 7+ = 571-77 — XgT,B. Since Yy, » = XTI B34+ Na. 7, We have

ar,T

N
Hﬁt - B v = Z Zﬁi,TXi,T + Z naT,TXaT,T - )\tIB
TEW,; =1 TEY, vt
N
< Z Zﬁi,rXi,T + Z UaT,TXaT,T + H)\tﬁHVt—l .
TEW,; i=1 TEW v,

For the last term, we have

MBIy < 3/ Amax (Vi) IINeBllo < VABl, < VA,
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(2.25)

B) — \if3

thl

(2.26)



where the last inequality holds due to Assumption 1. For the first term, we

use the decomposition,

IR IE I fj(l—‘“:)> X, XT (3 )

TEW, i=1 i=1 nT
N
I(a, =1)
+ E 7727 0Ty
TeW, i=1

to have

N
Z Zﬁi,TXi,T + Z 77aT7TXaT’T

TEW: i=1 TEY, thl
<z z<1—>)xwx (- 8)
TeW; 1=1 Vt_l
(ar = 1)
+11>. Z TS, (N W G | (2.28)
TEW; i=1 TEW, V;l

Let X; ; := XWXZT. For the first term, we can use Lemma 2.9 to have

> Z (1 - )> X, (B — B)

TeEW 1=1 V[l
- = i)
= 22(1 )v 2 X+ (B — B)
TeEW; 1=1 2
N ) _1 o
2 z<1—>w x| -,
TEV,; i=1 2

1
< —
- N

N — 1
Z (1 _ CLT_)) V, 2 X,
TeEW: i=1 uT

F

With similar technique in the proof of Lemma 2.9, define the filtration as
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Go =V, U{X,...., X} and G, = G,_1 U{ar,a;} for 7 € [t]. Set

N ~ .
we X ()

TeW; 1=1

and define M, = E[M|G,]. Then {M,}!_, is a R™%valued martingale se-

quence. Since for any 7 € [t], the contexts Xr41,...,X; are independent of a,
and
T(a, =1)) . -1 1 Y T (ay = 1)
E <1—)‘/;5 2Xi’u g'r —‘/;5 ZZE[I_ gT:| Xi,u
i=1 Tiu i=1 bu
:()7

for all w > 7. This leads to

al I(a, =)\ 2
sG] = ST 35 (1- M0
ueV,ulr =1 )
By Lemma 2.7, we can find a R?-valued martingale sequence {N;}!_, such

that Ny = (0,0)” and

HMTHF = HNTH27 ”MT - M'r—lHF = ||NT - NT—1H2 )

7

M E ) 8k o
I . I "



for all 7 € [t]. Set N, = (NT(I), NT(Z))T. Then for each r = 1,2 and 7 € [t],

NO — NO| <INy — Nyl
:”MT _MTfIHF
=|E[M|G.] — E[M|G1]|p
sz 1 a:TZ))Vt 2X’L’T Te W,
= F
0 TE Y,
( 2
\/Zivl ?T::l ZZ 1 Z T T € \Ilt
= F
‘0 T ¢ Uy
N 2
< 2%\/21‘:1 HXi,THVt—l Tev, |
MO T ¢ Uy

holds almost surely. The last inequality holds due to

2
[ x|, =1 (X x0)

=XI VX T (X X

2
= [ Xirlly-1 (1 Xirlly
2
< X2
Using Lemma 2.8, for z > 0 and r =1, 2,
2

P

‘go) <2exp{ — 5
N N 2
2( ) Crew, T 1Kl

8 I 1 O
J’—'! = 1__]| ol



which implies that

2N » 5
\NT(” 2| ) ZHXHHV_ 1og G| <2
1-p p TeW, i=1 2t
Since
1 2
8115 = 18l = [Nl < |NP] + [N
we have

1)

P ||M||F>7 (Z ZHX”HV 1)10g 5 U, StQ’
TEW: 1=1

for any subset \Ift [t]. Let Uy := ETe\I/t il Xi X+ NI Since V; = Uy,

we have HXZ () HXZ o

.- By the definition of the Frobenous norm

and X’L,T; we have

Z Z HXz 7(w) Z Z LU 1er

TG\I’t =1 TE‘Ift i=1
=2 ZTr U7 X0

TeW; i=1
= ZTr (X XTU

TEW,: 1=1

(5 ) o)
w{(mxe o))

—TI' d)
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Thus, we have

(WHF > 2 fadiog 2w ) =
and
T;;;( )>‘/t Ix X (Bt_5>H2>14p 2d10g4§2
<P (;7 1] > 7= /2dlog 4?)
SE]P(HMHF > 1 2diog 2 w)
0 (2.29)

<a

Now for the second term in (2.28), we have for any = > 0,

P Z naT’T (l-,—,T + Z 770,7—,7- ar,T >

TeW; R, T¢W -1
¢ t Vt

<P Z Nar,r X&T,T + Z 77a7-,'r ar,T >x ﬂ{ ﬂ {d'r — a'r}}
-

TG\I’ aT’ T¢\I/t V—l TG\I}t
t
P < U {a- # aT}>
TE\I/t

<P Z 77a7,'r aTT_'_ Z naT,T ar,T >

rew, o7 r¢v, V-1
t

= p, we observe that Z“i and 7, , are %—sub—Gaussian. Define

ar,T

Since g, -
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= Zizl XaT’TXg;T + M. Since V; = Wy, we have

TICLT,T 7707'77
Z Xa,r+ Z Nar,rXay,r Z Xap o+ Z NayrXay r

TEY, Tar,T T¢U —1 TeV Tar,7 T¢U —1
¢, v, Al W,

By assumption 2, 7,  is a o-sub-Gaussian random variable given H,, and
H,41-measurable. Since X, . is H,-measurable, we can use Lemma 9 in

Abbasi-Yadkori et al. [2011] to have

2

P D S <% dlog (2) (2.30)

TEW, TEW, w-t
t

’B

for all ¢ > 0 with probability at least 1 — ¢. Now with (2.26)-(2.30), we can

conclude that

Hﬁt S \/leog— +fﬂdlog
(1 )x/d1g+ﬁ,
with probability at least 1 — 66. O

2.7.5 Proof of Lemma 2.5

Proof. The proof follows from Chernoff’s lower bound. In Algorithm 2.1, ¥,

is constructed as U, = {7 € [t] : @; = a,}. Thus we have

t
W = T(ar = ar).
T=1
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Then for any € € (0,1) and s <0,
P (|0 < ept) = ( ZH ) > sept)

o [exp (x|
Let G, = F; U{ay,...,dr_1}. Then E[I(d; = a,)|G,] = p, for all 7 € [t] and
S )
(ém )]

exp (s Z I(a ) [exp {sl (a; = a;)}| gt]]
t—1
exp (sZ]I (ar = aﬁ)]

=EE

=E

={(1—p) +pe’} E

={(1 - p) +pe}’

< {exp (—p +pe*)}'.

The last inequality holds due to 1 + x < e” for all z € R. Thus, we have
P (|0 < ept) <exp{(e®—se—1)pt}.
The right hand side is minimized when s = loge. Setting s = log e gives

P (| <ept) <exp{(e—eloge—1)pt} <exp{—2(1—¢€)pt},
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where the last inequality holds due to logz > 1 — z~! for all z > 0. Setting
the right hand side smaller than §/T" gives

1 T
t>——log ~. 2.31
2 50— %85 (2.31)
For ¢ that satisfies (2.31), P (|¥;| < ept) < & holds. O

2.7.6 Proof of Theorem 2.6

Proof. The proof is inspired by that of Theorem 5.1 in Auer et al. [2002], and
that of Theorem 24.2 in Lattimore and Szepesvari [2020]. Define the context

distribution Px sampled from

1 ol o

0 ol o

: A .
ol ..., lo|. o G(Rd) .
0 ol o

0 1l |o

Here, the covariance matrix E | N ™! Zfil Xi’tXi,t] is positive definite. Let 7,
be a random variable sampled from the normal distribution A(0,12), inde-
pendently. Then the reward distribution is Gaussian with mean thﬁ, and
variance 12. For each i € [d] let 8; = (0,...0,A,0...,0) where A > 0 is in

i-th component only. Then we have

Eg,

T
> XZ%’tB] = AT. (2.32)
t=1
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For each i € [d], we have

ZXatt

= AEﬁi

T
S (o - z’)] .
t=1

Now set Sy = 0. Let Pg, and Pg, be the laws of Zthl I (a; = i) with respect
to the bandit/learner interaction measure induced by S; and [y respectively.

Then by the result in Exercise 14.4 in Lattimore and Szepesvéari [2020],

T

> T(ar =)

t=1

1
< Eg, +T §D(P507P5¢)a

T
g I(a; =1)
t=1

where D(-,-) is the relative entropy between two probability measures. Set

X = (Xi4,...,XnN¢). By the chain rule for the relative entropy,

D (Pg,, Pg,)
T

=" D (Pay (Yo Yar, > Yar X1, ) Ps, (Yo Yar, - Yo X0, X))

t=1

T
+Y D (Ps, (Xi|Yay, - Yo, X1, Xecn) P, (Kl Yay, o Yo, Xy, X))
t=1

—ZE at, B 50)}

AZ
:7E50

T
Zﬂ(at:i)],

t=1
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where the second equality holds since the distribution of A} is fixed, and

D (Pg, (Y, Yat 1,,2(1,...,2@) Pg, (Ya, Y Yo, 1, X1, ..., X))

t| at,, *

= [ o0 I s e o
:/{Xat,t 5¢—ﬁo)}

tl A1,y * 0

dPﬁo (at)

{‘Xat7 (ﬁ 50)} .

= EﬁO 2
Thus we have
T AQT T
ZX tt@] < ARg, [ZH(at =i)| + —5— | Esy [ZH(at :z)]
t=1 t=1
With (2.32),
T A2T T
t=1 t=1

Taking average over i € [d] gives

Setting A = % % gives

x] 21| &



Thus, there exists 3; such that Eg, [R(T)] > 1vdT.
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