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Abstract

DRAM-based Processing-in-Memory

Microarchitectures for

Memory-intensive Machine Learning

Applications

Byeongho Kim

Intelligence Systems

Department of Transdisciplinary Studies

The Graduate School

Seoul National University

Recently, as research on neural networks has gained significant traction, a

number of memory-intensive neural network models such as recurrent neural

network (RNN) models and recommendation models are introduced to pro-

cess various tasks. RNN models and recommendation models spend most of

their execution time processing matrix-vector multiplication (MV-mul) and

processing embedding layers, respectively. A fundamental primitive of em-

bedding layers, tensor gather-and-reduction (GnR), gathers embedding vec-

tors and then reduces them to a new embedding vector. Because the matri-

ces in RNNs and the embedding tables in recommendation models have poor
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reusability and the ever-increasing sizes of the matrices and the embedding ta-

bles become too large to fit in the on-chip storage of devices, the performance

and energy efficiency of MV-mul and GnR are determined by those of main-

memory DRAM. Therefore, computing these operations within DRAM draws

significant attention.

In this dissertation, we first propose a main-memory architecture called

MViD, which performs MV-mul by placing MAC units inside DRAM banks.

For higher computational efficiency, we use a sparse matrix format and exploit

quantization. Because of the limited power budget for DRAM devices, we im-

plement the MAC units only on a portion of the DRAM banks. We architect

MViD to slow down or pause MV-mul for concurrently processing memory

requests from processors while satisfying the limited power budget. Our results

show that MViD provides 7.2× higher throughput compared to the baseline

system with four DRAM ranks (performing MV-mul in a chip-multiprocessor)

while running inference of Deep Speech 2 with a memory-intensive workload.

Then we propose TRiM, an NDP architecture for accelerating recommen-

dation systems. Based on the observation that the DRAM datapath has a

hierarchical tree structure, TRiM augments the DRAM datapath with ”in-

DRAM” reduction units at the DDR4/5 rank/bank-group/bank level. We

modify the interface of DRAM to provide commands effectively to multiple

reduction units running in parallel. We also propose a host-side architecture

with hot embedding-vector replication to alleviate the load imbalance that arises

across the reduction units. An optimal TRiM design based on DDR5 achieves

up to a 7.7× and 3.9× speedup and reduces by 55% and 50% the energy con-
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sumption of the embedding vector gather and reduction over the baseline and

the state-of-the-art NDP architecture with minimal area overhead equivalent

to 2.66% of DRAM chips.

keywords: Processing-in-Memory architecture, Near-data processing, In-

DRAM processing, Memory microarchitecture, Memory-intensive

student number: 2017-22676
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Chapter 1

Introduction

Deep neural networks (DNNs) are widely used due to their significant im-

pact [36]. A wide range of tasks can be handled by DNNs, from image classifi-

cation [47] and speech recognition [8] to personalized recommendations [123]

and graph processing [70]. To handle these tasks, various DNNmodels are used,

such as convolutional neural network (CNN) [71], recurrent neural network

(RNN) [19], transformer-based models [114], and recommendation models

(RMs) [90].

The computational characteristic of a neural network model is determined

by that of the layers composing the model. Convolutional (CONV) layer and

attention layer from transformer have high reuse of data which is stored in on-

chip storage of a system [15,53]. These layers show compute-intensive property

with high operational intensity, which represents a large amount of computa-

tion compared to the number of off-chip accesses. By contrast, the activa-

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,

Wonkyung Jung, Sunjung Lee, Jaewan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung
Ho Ahn, ”MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Re-
current Neural Networks,” IEEE Transactions on Computers, April 2020.
”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”

©2021 by Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed
under CC BY 4.0. https://doi.org/10.1145/3466752.3480080.
”TRiM: Tensor Reduction in Memory” ©2020 by Jaehyun Park, Byeongho Kim, Sung-

min Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed under CC BY 4.0.
https://doi.org/10.1109/LCA.2020.3042805.
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tion layer (e.g., ReLU), batch normalization layer, and embedding layer show

memory-intensive property with low data locality, exhibiting low operational

intensity [61,63].

The computational characteristic of a layer may vary depending on the use

case of the network model. For example, when models composed of RNN

layers or FC layers are running with a small batch size for real-time infer-

ence, the layers show memory-intensive behavior as weight matrices are hardly

reused. However, when a large batch is used for training, the layers exhibit

compute-intensive characteristics as input data and weight matrices are highly

reused [33].

Due to the memory wall problem [119], the increase in main-memory

bandwidth is relatively low compared to that in the computational power of

the microprocessor within the same period [85]. Therefore, the performance

improvement of the memory-intensive layers is lower than that of the compute-

intensive layers, which necessitates the solution for accelerating the memory-

intensive layers.

In this dissertation, we propose two processing-in-memory architectures

to accelerate memory-intensive layers and models. By locating the process-

ing elements near the DRAM datapath, processing elements can operate inde-

pendently. Thus the PIM architectures can utilize expanded internal memory

bandwidth the same as the channel bandwidth multiplied by the number of

processing elements. With the ample internal bandwidth provided by the PIM

architectures, memory-intensive layers can be accelerated. To further accelerate

the PIM architectures, we apply optimizations that exploit the characteristics of

models’ use cases and their workloads.

2



1.1 Accelerating RNNs on Edge

On edge devices such as mobile or IoT devices, Neural Networks (NNs) are

frequently used for applications interacting with users. For example, Natu-

ral Language Processing (NLP) is widely used for devices such as Siri, Google

Assistant, and Amazon Echo, and expected to become a key application in mo-

bile in the near future. RNN [107] is crucial for NLP [8, 38]. Currently, edge

devices typically rely on datacenters in performing a majority of RNN infer-

ence [33,60,124]. However, due to latency and energy burdens in transferring

raw data for RNN inference over the networks, there is significant merit to

perform RNN inference within the edge devices.

RNNs have many variants (e.g., LSTM [48] and GRU [20]), all of which

spend most of the execution time for matrix-vector multiplication (MV-mul).

A characteristic ofMV-mul is that matrix elements, which correspond to weights

in RNN, are used only once per vector, resulting in a limited degree of data reuse.

The on-chip storage of edge devices, sized up to several megabytes (MB) [43], is

typically too small to store all the weights whose sizes are reaching tens to hun-

dreds of MB. Therefore, for each MV-mul, the matrix elements of RNN must

be read from the main-memory DRAM. This is in sharp contrast to the char-

acteristics of CNN, which has a high degree of data reuse for an input feature

map while processing numerous weight channels [16].

When a matrix does not fit in on-chip memory, its MV-mul performance

depends on DRAM bandwidth [33,45,60], which is much lower than the on-

chip storage bandwidth of a processor. Also, in energy efficiency, the data

transfer energy between a DRAMdevice and a processor dominates that of other
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operation types (e.g., multiply-accumulate (MAC) operations) [49]. Thus, the

performance and energy efficiency of RNN inference is determined by the band-

width and energy efficiency (J/b) of main-memory DRAM.

To solve the memory bottleneck and reduce J/b of DRAM accesses, there

have been many near-data processing studies [11, 30, 34, 50, 63, 68, 78, 110].

They reduced off-chip memory traffic by adding operation units or accelerators

near main memory, either within a DRAM die or a logic layer of a 3D-stacked

memory. However, they do not fully utilize the internal DRAM bandwidth or

do not consider the power constraint of DRAM. Also, they cannot perform

acceleration operations and other memory requests from processors simultane-

ously, so they hardly function as the main memory.

In this paper, we propose the MViD (MV-mul in DRAM) architecture,

which can handle both MV-mul operations and memory requests from pro-

cessors (processor requests) under the maximum power budget of DRAM de-

vices which is determined by normal DRAM operations. MViD places MAC

units near the datapath I/O within DRAM banks to improve the performance

of MV-mul by utilizing abundant DRAM internal bandwidth. In particular, we

analyze the operational limit due to the DRAM power constraint and confirm

that MAC units can be added only to half of the banks for the current mobile

DRAM standard, LPDDR4 [76].

To further reduce the total amount of computation, MViD performs a sparse

MV-mul operation exploiting sparsity and quantization. Processing sparse

MV-mul is actively studied in various ways depending on the characteristics

of the matrix [45,46,104,122], and its effectiveness depends on finding an ap-

propriate sparse data format by understanding the characteristics of the matrix.
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To find the optimum data format for MViD, we explore its design space by

adjusting sparsity and quantization bits [45] of RNN weight matrices with-

out accuracy loss. Also, we explore possible mappings of a weight matrix to a

DRAM page.

MViD can act as the main memory by allowing other memory requests from

a processor to be processed during MV-mul. MViD resolves the power and

row-buffer conflicts that occur when MV-mul and processor-side requests

are processed simultaneously by controlling the pace of MV-mul operation.

For this, we implement MV-bank (bank performing MV-mul) control logic,

which can slow down or pause the MV-mul operation. Also, MViD minimizes

command/address path utilization overhead by leveraging the existing DRAM

interface. MViD further improves the performance of MV-mul by placing the

non-MV-mul workload data of the processor to the DRAM banks that do not

perform MV-mul.

1.2 Accelerating Recommendation Model

Personalized recommendation systems aim to provide the content preferred by

users based on their experience. Companies such as Facebook [42], YouTube [21],

and Alibaba [115] are applying deep learning to their recommendation systems

to maximize the accuracy of selecting user-preferred content. Recommendation

systems based on deep learning (RecSys) have recently gained significant atten-

tion within the research community due to their industrial importance. For

instance, Facebook states that recommendation systems (e.g., the Deep Learn-

ing Recommendation Model (DLRM) [42]) account for 80% of the AI inference
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cycles in their datacenters.

A RecSys model utilizes the features of the target user and item to predict

the click-through-rate (CTR), which indicates the probability of the user click-

ing the item (Figure 1.1). The input features consist of both sparse, categorical

features and dense, continuous features. A dense feature is a vector whose ele-

ments are floating-point numbers. The vector is passed through bottom fully-

connected (FC) layers and is collectively translated to one intermediate vector.

A sparse feature is represented as a sequence of indices. A number of vectors

are fetched from an embedding table using the indices of a sparse feature, which

are subsequently reduced to one intermediate vector using element-wise oper-

ations (henceforth referred to as tensor gather-and-reduction (GnR)). These

intermediate vectors produced by GnR operations are combined through fea-

ture interaction, which is conducted by a batched matrix multiplication, and

passed through top FC layers to produce a CTR.

Prior work [42] has shown that both FC layers and GnR take up a significant

fraction of the end-to-end inference time of RecSys. While there have been

Embedding Table

Feature 

Interaction

Top FC

FC FC
CTR

Reduction
Sparse 

Feature

GnR

Reduction
Sparse 

Feature

Bottom

FC
FC FC

Dense 

Feature

Figure 1.1: Simplified architecture of a RecSys model. We mainly target accel-
erating GnR (gather-and-reduction), which gathers embedding vectors from
embedding tables and reduces them to produce one vector per table. FC and
CTR stand for fully connected layer and click-through-rate.
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numerous studies focusing on accelerating FC layers, only a handful of prior

works have explored the acceleration of GnR, whose characteristics significantly

differ from those of FC layers.

Because the embedding table used in RecSys requires a large memory capac-

ity, the embedding table must be stored in main memory. The performance of

the GnR operation is constrained by the main-memory bandwidth as the vectors

for the GnR operation are fetched from main memory. Increasing the mem-

ory bandwidth in a memory channel accompanies an increase in the number

of pins or the frequency of the pins, both of which are highly costly. Conse-

quently, TensorDIMM [73] and RecNMP [63] are two recent studies that ex-

plored the efficacy of near-data processing (NDP) for accelerating GnR. These

architectures accelerate the GnR operation by placing processing elements (PEs)

dedicated to each rank (adopting rank-level parallelism) in the buffer chip of

DRAM, thereby utilizing the internal bandwidth which is equal to the channel

bandwidth multiplied by the number of ranks in the channel. However, we

observe that rank-level parallelism does not fully reap the maximum potential

of NDP acceleration, leaving significant performance left on the table.

We propose an NDP-based GnR accelerator called the TRiM (Tensor Re-

duction in Memory) architecture, which is based on DDR4/5 DRAM. Our key

approach is to utilize the hierarchical, tree topology of the DRAM datapath

structure [23] to seamlessly extract additional internal bandwidth compared to

rank-level-parallelism-based NDPs, improving the GnR performance. Com-

pared to prior approaches, a key contribution of our study is the identification of

effective embedding table mapping schemes when using multiple ranks/bank-

groups/banks. In our work, we compare the internal bandwidth utilization
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and energy efficiency in various mapping schemes. As with the existing DRAM

interface, if command/address (C/A) signals are transferred only through the

C/A path, we cannot fully utilize all PEs placed in/near the main-memory ar-

chitecture. Therefore, we propose and analyze multiple C/A transfer schemes

that can amplify the C/A signal bandwidth without significantly modifying the

conventional DRAM interface. Among the embodiments of TRiM architec-

tures, we find the optimal design that can effectively process GnR according to

the workload characteristics.

Another important contribution is a detailed analysis of the load-imbalance

issue that occurs when multiple ranks/bank-groups/banks process different

numbers of lookups per GnR operation, a key limitation of NDP architectures

including our design and RecNMP. To address this problem, we propose hot-

entry replication by utilizing the workload characteristic according to which

the number of accesses is skewed to a small fraction of entries in the embedding

table in RecSys. This scheme improves load balancing without any additional

modifications to the DRAM interface. We also develop a novel data reliability

solution for TRiM architectures that cannot exploit the conventional rank-level

error correction code (ECC). Because GnR accesses the embedding tables in a

read-only manner, we repurpose the existing on-die ECC [57] to only detect

but not correct errors during GnR.

1.3 Research Contributions

In this dissertation, we make the following contributions:

• We proposeMViD, which addsMAC units inside DRAM to solve the memory

8



bottleneck of RNN inference in edge devices and to improve energy efficiency.

• MViD deploys MAC units by carefully considering various constraints (inter-

nal bandwidth, power limit, and off-chip bandwidth) that could occur when

adding MAC units in the current mobile DRAM standard. For the first time

to the best of our knowledge, MViD can perform processor requests simul-

taneously with MV-mul; therefore, MViD functions as the main memory.

• Through sparse matrix formatting, quantization, and bank partitioning, MViD

improves the throughput of inference in Deep Speech 2, up to 7.2× compared

to the baseline system without MViD. MViD also guarantees that MV-mul

operations do not hoist processor requests.

• We conduct a quantitative analysis of existing NDP solutions aimed at accel-

erating the GnR operation.

• We propose TRiM, an NDP architecture that accelerates the GnR operation

by utilizing the features of the DRAM data/control path structure without

causing significant changes in the conventional DRAM interface.

• We propose hot-entry replication utilizing the characteristics of the RecSys

workload to alleviate the load imbalance problem that occurs in TRiM.

• The optimized TRiM architecture based on DDR4/5 DRAM improved the

performance of GnR by up to 7.7× and 3.9×, respectively, compared to the

baseline and state-of-the-art architectures.
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1.4 Outline

The organization of this disseration is as follows. Chapter 2 describes the char-

acteristics of memory-intensive machine learning operations and the organiza-

tion and operation of our target memory device for PIM architecture, DRAM. In

Chapter 3 and 4, we propose processing-in-memory architectures, MViD and

TRiM, that accelerates mobile inference of RNNs and recommendation mod-

els. Chapter 5 describes a discussion about applying PIM microarchitectures to

accelerate various memory-intensive applications. Related works are presented

in Chapter 6. Conclusions and future works are presented in Chapter 7.
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Chapter 2

Background

2.1 Memory-intensive Machine Learning Applications

Machine learning applications are used to handle various tasks such as com-

puter vision, natural language processing, and personalized recommendation.

Because these applications require a large amount of computation to process

large datasets, they require a lot of computational and memory resources.

Machine learning applications consist of various arithmetic operations such

as convolutional (CONV) layers, fully-connected (FC) layers, activation func-

tions (e.g., ReLU), and embedding layers. The computational characteristics

of these applications are determined by those of the operations constituting the

applications.

The roofline performance model [117] shows the computational character-

istics of the operation in computer systems. The X-axis of a roofline graph rep-

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,

Wonkyung Jung, Sunjung Lee, Jaewan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung
Ho Ahn, ”MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Re-
current Neural Networks,” IEEE Transactions on Computers, April 2020.
”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”

©2021 by Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed
under CC BY 4.0. https://doi.org/10.1145/3466752.3480080.
”TRiM: Tensor Reduction in Memory” ©2020 by Jaehyun Park, Byeongho Kim, Sung-

min Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed under CC BY 4.0.
https://doi.org/10.1109/LCA.2020.3042805.

11



resents the arithmetic intensity, the number of arithmetic operations per memory

access. The Y-axis represents the number of arithmetic operations per second.

The performance of the operation on the region under a diagonal line is limited

by memory bandwidth, where the slope of the diagonal line means the memory

bandwidth. The performance of the operation on the region under a horizontal

line is limited by the peak arithmetic performance of the processor.

Through the roofline analysis as shown in Figure 2.1, it is possible to iden-

tify the performance bottleneck of the operation for machine learning. Oper-

ations such as a CONV operation and its base operation, MatMul (GEMM),

have high arithmetic intensity, and execution time is affected by the computing

power of the underlying system. These operations are called compute-intensive

operations. Conversely, matrix-vector multiplication (GEMV) and embedding

operation (Embedding) have low arithmetic intensity, and the execution time of
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Figure 2.1: Roofline model for four arithmetic operations, where the perfor-
mance ceiling is based on Intel Xeon Gold 6138 [27] with six memory channels,
each with DDR4-2400 modules achieving up to 115.2GB/s. The performance
of the memory-intensive operation improves if the memory bandwidth of the
system increases.
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those operations is affected by memory bandwidth. These operations are called

memory-intensive operations.

Various companies emphasized that there is a high demand for accelerating

memory-intensive operations when running machine learning applications on

edge devices [13] and datacenters [33, 60]. Facebook [9, 24] reported that the

server usage for the recommendation model, which is mainly composed of the

embedding operations, accounts for more than 70% of the total machine learn-

ing inference server usage and has increased about four times in two years. Also,

Facebook emphasized the acceleration of the recommendation model through

many studies [24,29,63,64,100,109,116]. Google [13] highlights the need for

accelerating matrix-vector multiplication on edge devices running RNNmodels

and Transducer models.

As shown in Figure 2.1, increasing the memory bandwidth of the system

improves the performance of memory-intensive operations. However, due to

the memory wall problem [119], where the memory bandwidth improvement

is much lower than the computing power improvement, a solution that simply

increases memory bandwidth of the system is costly, and the computer system is

bottlenecked by the memory subsystem. To overcome the memory wall prob-

lem, we introduce Processing-in-Memory (PIM) microarchitectures that can

additionally utilize memory bandwidth.

2.2 DRAM Organization and Operations

It is necessary to understand how a DRAM device is organized and operates to

analyze its power constraint and further improve the performance by leveraging
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the internal data transfer bandwidth.

The datapath of popular main-memory systems such as DDR4/5 DRAM [54,

57] takes a hierarchical tree structure (see Figure 2.2(a)), i.e., a memory chan-

nel as a root node (depth-0) consisting of a primary host memory controller

(MC) and multiple, secondary DRAM ranks (depth-1) connected through a

depth-1 data bus. Each rank consists of several DRAM chips, all receiving

the same command/address information by broadcasting and transferring the

corresponding data accordingly. The datapath entering the rank is physically
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divided and connected to each DRAM chip (see Figure 2.2(b)). To maxi-

mize memory-level parallelism, several ranks can physically be housed within

a DIMM module.

In DDR5 DRAM, a rank consists of eight bank-groups (depth-2), each

packed with four banks (depth-3). Similar to the depth-1 data bus, the depth-

2 data bus and the depth-3 data bus are shared between one rank and eight

bank-groups, and between one bank-group and four banks, respectively. Each

bank consists of a 2D array of DRAM cells; each DRAMpage (often called row)

is controlled by a wordline (WL), and each column is connected to local bitlines

(BLs). The sequence of a DRAM read is as follows. 1) Activation (ACT): the cells

of a selected DRAM page in a bank driven through a WL share charges with the

corresponding BLs, and bitline sense amplifiers (BLSAs) detect the small voltage

difference of BLs due to charge sharing and amplify it. 2) Read (RD): a portion

of column bits of data latched in the BLSA are transferred to GIO SAs through

the global I/O. The data is amplified again in the GIO SA and transferred to

the I/O multiplexer (mux) through inter-bank datalines and leaves the DRAM

die. Reading the data in another column of an activated page needs only RD.

To access data at a page other than the currently activated page in a bank, we

should precharge BLs and BLSAs (PRE) prior to ACT and RD. The minimum time

interval from ACT to PRE is tRAS, the time to restore data to the cells.

All of the banks in a DRAM chip operate independently, albeit only one

bank can occupy depth-1/2/3 data buses at any given time. Therefore, RD can

be issued at a minimum tCCD (column to column delay) interval to prevent a

conflict in the data buses (often called inter-bank datalines). The time interval

between two ACTs within a channel is limited to tRRD (row to row activation
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delay). ACT can be performed simultaneously on multiple banks, but only four

ACTs within tFAW (four activation window) can be issued due to the power

limit.

The notion of a bank-group did not exist until DDR4. DDR4/5 DRAM

started adopting such a concept to retain the frequency of DRAM banks at a

low level while increasing the data transfer rate and hence the bandwidth. Be-

cause the frequency inside a bank-group bus is lower than that outside a bank-

group, the consecutive read delay within a bank-group (tCCD_L) is greater than

that between the bank-groups (tCCD_S). The bank-group organizes a level of

the hierarchy between the ranks and banks, connecting hierarchical multi-drop

buses among them.

DDR5 DRAM allows one DIMM to be connected to two channels, giving it

a physically different configuration from previous DDR generations where one

DIMM is connected to one channel. However, as the two channels operate

independently, it can be seen that they have separate data/control paths.

The control path of the main-memory systems is structured similarly. An

MC sends command and address (C/A) signals to all connected DRAM ranks

through a C/A bus in a broadcast manner. Each rank drops the signals if it

is not the right destination. A buffer chip or chipset connects an MC and the

ranks in a module to alleviate signal integrity issues [56].

Processing-in-Memory (PIM) architecture is an architecture that processes

operations near the DRAM cell with the higher internal bandwidth by utilizing

the characteristics of the DRAM datapath. Because DRAM banks can oper-

ate independently, if the processing elements (PEs) are located near the DRAM

datapath and these PEs do not share the datapath, PEs can operate indepen-
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dently. Thus, the operations can be processed utilizing the bandwidth the same

as the channel bandwidth multiplied by the number of PEs, and we suggest PIM

microarchitectures to accelerate bandwidth-hungry operations.

As the baseline memory for Section 3, we used an LPDDR4 DRAM de-

vice [55] which is composed of two memory channels. Multiple LPDDR4

dies can be connected (e.g., through die stacking) to form a multi-rank pack-

age with two channels. For the baseline memory used in Section 4, we as-

sume a data/control path dedicated to each rank in the buffer chip as in MCN

DIMM [7], which is also assumed in the previous studies [63,73] (Figure 2.2(b)).
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Chapter 3

MViD: Sparse Matrix-Vector Multiplication in Mo-

bile DRAM for Accelerating Recurrent Neural Net-

works

3.1 Background and Motivation

3.1.1 Energy-efficient RNN Mobile Inference

RNN inference is mostly performed in datacenters yet [33, 60]; however, to

reduce the latency and improve the energy efficiency of serving RNNs, there is

a strong demand for conducting RNN inference closer to service requests, such

as in mobile and IoT devices. These devices typically do not have large on-chip

memory due to power and cost issues.

RNNs have several variants, such as LSTM (long short-term memory) and

GRU (gated recurrent unit), depending on the existence of certain gate types.

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,

Wonkyung Jung, Sunjung Lee, Jaewan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung
Ho Ahn, ”MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Re-
current Neural Networks,” IEEE Transactions on Computers, April 2020.
”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”

©2021 by Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed
under CC BY 4.0. https://doi.org/10.1145/3466752.3480080.
”TRiM: Tensor Reduction in Memory” ©2020 by Jaehyun Park, Byeongho Kim, Sung-

min Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed under CC BY 4.0.
https://doi.org/10.1109/LCA.2020.3042805.
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RNN operation consists mainly of matrix-vector multiplication (MV-mul),

element-wise sum/multiply, and activation function such as tanh or sigmoid,

but MV-mul dominates the execution time. For example, a typical config-

uration of Deep Speech 2 (DS2) [8], a popular RNN benchmark performing

end-to-end speech recognition, is composed of two convolutional layers and

five GRU layers where the size of most GRU weight matrices is 1600×1600.

When running on an Intel Skylake-based server [27], the FLOP and execu-

tion time of MV-mul take 86.8% and 88.6% of the total (see Figure 3.1). The

profiling results in the latest GPUs [32] are also similar.

Single GRU layer has six matrices (three for processing an input vector and

the other three for processing the vector computed in the previous time step),

0% 20% 40% 60% 80% 100%

Exec. Time

FLOP

MV-mul Conv Activation Etc.

Figure 3.1: The FLOP and execution time breakdown of Deep Speech 2 [8] in
an Intel Skylake-based server [27].
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and the size of each matrix is mostly 1600×1600 with DS2. Assuming that the

size of each element is 16 bits [45], the size of a GRU layer is 30.7 MB. When

we perform whole RNN inference, it executes five GRU layers and needs 145

MB (the size of three matrices of the first GRU layer is slightly smaller than

the other ones) of storage for weight matrices, which is too large to fit in the

on-chip memory (mostly up to several MBs) of mobile/IoT devices. In MV-

mul, each vector element is reused by the number of rows within the weight

matrix, whereas each weight element is used only once. The on-chip memory

size of processors grows over time, but the aggregate size of weight matrices

increases as well for better recognition quality (see Figure 3.2). Therefore, the

weight elements, which cannot be reused for RNN inference, must be fetched

from main-memory DRAM devices.1

From an energy efficiency perspective (i.e., J/b), reading data (several to

dozens of bits) from a DRAM device requires orders of magnitude more energy

than performing a multiply-accumulate (MAC) operation or reading the same

amount of data from an SRAM with few KBs of capacity [16, 49]. From a

performance perspective, the bandwidth of off-chip DRAM devices is much

lower than that of on-chip memory in a processor, making the execution time

of MV-mul limited by off-chip DRAM bandwidth. Therefore, it is critical to

reduce the energy consumption and increase the bandwidth of main-memory

DRAM accesses in improving the energy efficiency and performance of RNN

inference.

1We can reuse weight elements if we perform RNN inference over a batch of input or a group
of time steps. However, mobile/IoT devices typically process one or few time steps of a request
at a time to reduce service latency, limiting the degree of this reuse. We interchange the terms of
a DRAM device and a DRAM die.
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3.1.2 How to Improve the Energy Efficiency and Bandwidth of DRAM

Accesses in MV-mul

The best way to improve the energy efficiency of multiplying a large matrix (lo-

cated at main-memory DRAM) with a vector is to perform all or most of MV-

mul within DRAM dies. If a processor performs MV-mul by fetching weight

elements from a separate main-memory DRAM device, inter-die communi-

cation consumes most of operating cost (data transfer energy) and capital cost

(large silicon/packaging area, such as pins, pads, and TSVs) regardless of the

ways interconnecting processor and DRAM dies, such as conventional pack-

age, silicon interposer (2.5D [58]), and face-to-face die stacking (3D) using

TSVs [96].

If we performMV-mul within a DRAM device but close to its inter-die I/O,

we can save inter-die communication energy. However, this does not provide

any performance gain unless we utilize multiple DRAM dies within a memory

rank [11]. A way to achieve an additional performance benefit in MV-mul

is to exploit a structural unit within a DRAM device, bank. A DRAM die has

several to few dozens of banks, where each bank can operate independently and

concurrently. Therefore, by conductingMV-mul in the edge of bank’s datapath

I/O, we can improve both performance (multiplied by the number of banks) and

energy efficiency (by not dissipating energy for moving weight matrices across

banks, which is a significant portion of DRAM read energy according to [95]).

Performing MV-mul on each DRAM bank saves the data transfer energy of

weight elements; but, if the vector elements are from a processor, they should

traverse farther through inter-die I/O and inter-bank datapath to reach the

DRAM bank. Hence, one might regard that performing MV-mul on a bank
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provides no energy saving. However, as described in Section 3.1.1, 1) vector

elements are reused by the number of matrix rows and 2) a vector is much

smaller than a weight matrix (by the number of matrix rows), so we can save

most of the energy for fetching a vector by providing a small storage per bank

to store the vector elements.

Still, there exists an important feasibility issue in performing MV-mul at all

the banks of a DRAM device. DRAM banks can operate in parallel; how-

ever, as mentioned in Section 2.2, their operations are limited by various timing

constraints. This limitation is because all banks share one or few inter-die I/O

paths (called channels), which determine the maximum rate of meaningful ac-

tivity (related to the data store, retrieval, and retention, which are the primary

purposes of DRAM as main memory). Therefore, a DRAM die has a power

limitation, which determines the design of its power delivery networks, such as

the number of power and ground pins and the density of on-chip power/ground

wires.

The cost of DRAM is very sensitive to this power limitation because a

DRAM device uses few (typically two to three) metal layers, and hence populat-

ing more power/ground wires and pins would significantly increase fabrication

cost and die size. If all the DRAM banks perform bursty data read operations

for MV-mul, a DRAM device can dissipate power exceeding the aforemen-

tioned power limit. For example, on the mobile LPDDR4 DRAM device we use

as a baseline, concurrently reading data from all DRAM banks to their global-

I/O (GIO) sense amplifiers (SAs) would dissipate 1.7× of its power limitation.

As an edge device executes applications other than RNNs as well, it is a huge

waste of precious DRAM resources to design a DRAM device with a higher

22



power budget only for MV-mul. Therefore, it is desired to perform MV-mul

under the maximum power budget determined by normal DRAM operations.

As explained in Section 2.2, DRAM reaches its peak power consumption

level when each channel of DRAM performs four ACTs in tFAW and multiple RDs

at tCCD interval. If we perform a DRAM read but omit inter-bank and inter-

die datapath by supporting the data to the MAC units next to GIO SAs, we can

save energy. According to the detailed analysis later explained in Section 3.3.1,

we can conduct up to four RDs simultaneously when performingMV-mul within

DRAM banks without exceeding the peak power consumption level.

3.2 MV-mul in DRAM

3.2.1 Exploiting Quantization and Sparsity in RNN’s Matrix Elements

Under this DRAM power constraint, to further reduce the total amount of com-

putation, we exploit a characteristic of RNN that a significant portion of its

weight elements is redundant. As mentioned in [45], even if we turn a majority

of the weight elements of an RNN into zeros, the impact of this pruning on

the RNN inference is negligible. We verify this by conducting an experiment on

DS2 [8], whose network model size is specified in Section 3.1.1 with LibriSpeech

dataset [98], following the pruning strategy explained in [89]. [89] prunes down

the values below certain thresholds into zeros, after every few training epochs.

From the experiment, we observed no significant surge in word/character er-

ror rates with the sparsity (the portion of zero values within a matrix) of the

matrices being 25%, 50%, and 75%.

When we compare a sparse matrix format (specifying non-zero elements
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(NZs) with their positions) with a dense matrix format (listing all the matrix

elements), if sparsity is higher than (position bits) / (data bits + position bits),

the sparse matrix format represents a matrix with fewer bits. Because reading

weight matrices dominates the energy and the execution time of MV-mul, it
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is beneficial to exploit the sparse matrix formats for matrices whose sparsity

values are above this threshold. There are several formats for representing a

sparse matrix, exemplified by Compressed Sparse Row/Column (CSR/CSC),

Coordinate (COO), and Diagonal (DIA) [12].

The distribution of NZs in a matrix determines the size efficiency (bytes per

NZ) of a specific format. For RNN applications such as DS2, the NZs of the

weight matrices are relatively uniform-randomly distributed (see Figure 3.3). In

this case, there is no significant difference in the bytes per NZ between sparse

formats except for the formats favoring special distributions. In this paper, we

propose delta encoding, a variant of CSR.

CSR stores the absolute column indices of NZs and the number of NZs per

row, together with the NZ values. By contrast, our delta encoding stores the

column distance from the previous NZ as an index to represent the matrix with

fewer index bits in storing (data, index) pairs (see Figure 3.4). Also, instead of

storing the number of NZs per row, we reserve the maximum value which can be

represented by an index to specify the end of a row. When the index indicates

the end of a row, the corresponding data field stores the absolute address of

the row. For example, if we dedicate four bits per index, we define 0xf (the

maximum distance) as the end of a row and use the values from 0x0 to 0xe as

the distance between two NZs. If the distance is greater than 0xe, we place one

or more dummies (whose data value in the (data, index) pair is zero).

In addition to exploiting sparsity through pruning, we also apply quantiza-

tion for a further reduction in size representing the matrix. When we applied

both pruning and quantization to DS2, we observed that reducing the precision

of data till 12 bits incurs no noticeable degradation in inference accuracy, which
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is consistent with the results reported in [45].

In our sparse matrix format, the frequency of dummy values added depends

on the size of index bits and the sparsity of a matrix. We study an optimal index

bit minimizing the total size of a matrix that is formatted at each sparsity value

using the GRU layers of DS2. The experiment shows that using (12 bits, 4 bits)
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for (data, index) pairs is optimal for the sparsity range of 65% to 80%, where

the portion of dummy pairs is less than 5% (see Figure 3.5). As a result, we

assume that a (data, index) pair is (12 bits, 4 bits), and matrices are 1600×1600

with a sparsity of 75% by default in this paper.

To verify the effectiveness of our delta encoding format on the sparse ma-

trices, we compared the size of sparse matrices encoded with various sparse

formats. From the experiment, the delta encoding format reduces the size of

matrices by 32.7% compared to the CSR format for the DS2 dataset with the

sparsity of 75% (see Figure 3.6).

By applying quantization and sparse formatting, the total size of weight ma-

trices in the DS2 decreases, but it is still 36 MB, which would not fit on-chip

caches of the mobile devices. Therefore, it is effective to perform MV-mul in

DRAM; even if the size of matrices and the (data, index) pairs would vary as

ASR applications evolve, we believe that the qualitative observation and analysis

of our proposed MV-mul accelerator would stay unchanged.

3.2.2 The Operation Sequence of MV-mul in DRAM

To perform MV-mul within DRAM banks, we should locate a weight matrix

and an input vector within banks capable of MV-mul, called MV-banks. As

we can conduct four RDs simultaneously within banks due to the power con-

straint, each channel in a DRAM device has four MV-banks. So the weight

matrix is divided into four sub-matrices and distributed to the MV-banks. As

the input vector is reused and much smaller than the matrix, we duplicate the

input vector to each MV-bank equipped with a dedicated SRAM (iv-SRAM).

An alternative is to use another DRAM bank or another row in the same DRAM
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bank for storing the input vector. However, when processing sparse matrix-

vector multiplication, accesses to the input vector are not sequential (consec-

utive). Therefore, it is required to access a larger size of DRAM data than is

needed for SRAM because the granularity of a DRAM read (256 bits) is much

coarser than that of an SRAM read (12 bits); it is not efficient in terms of

throughput and energy.

The power and area overheads of iv-SRAM depend on the number of entries

and the size of each entry. The input vector is stored in a dense format, making

iv-SRAM sized to hold 1,600 entries, each storing 12-bit value. Its area is

equivalent to 2.07MB of DRAM cells (1.61% of a 128MB DRAM bank), and

it dissipates just 1.9% of the total power for MV-mul. A more detailed power,

area, and timing analysis is described in Section 3.3.1. Each MV-bank also has

a separate SRAM to hold an output vector (ov-SRAM), where each element is

24-bit long. In our case of ov-SRAM with 400 entries, the area corresponds

to 0.3 MB DRAM cells, and its power consumption is negligible because ov-

SRAM has low utilization.

The main operation sequence of MV-mul is to 1) write an input vector

to the iv-SRAM in MV-banks, 2) perform MV-mul in each MV-bank by

sequentially performing the inner-product computation, and 3) read the gen-

erated output vector from the ov-SRAMs. We assume that the matrix elements

are already stored in each MV-bank in the form of our sparse matrix format.

The detailed operation sequence is as follows. First, writing the input vector

is processed through broadcasting, because all iv-SRAMs in a DRAM device

need the same input vector. The input vector from the processor is sent to each

bank and stored in iv-SRAM simultaneously.

28



The core inner-product computation sequence in each MV-bank is as fol-

lows. Data reading reads data from an activated DRAM page. An LPDDR4

device stores 256 bits in GIO SAs in one read. For the size of a weight element

being 16 bits, there are 16 elements per DRAM RD. Index decoding process

is required as the weight element is encoded using a sparse format. The in-

dex refers to the relative column distance from the previous NZ location minus

one. Therefore, we can find the absolute address needed for fetching a proper

input vector element by accumulating the index values. The index of the first

element represents the index of the first NZ data. Moreover, a 4-bit compare

logic is required to identify the row end index (index value 0xf). Input vector

fetching is performed using the absolute addresses, each pointing to one of the

16 weight elements. iv-SRAM serves 16 weight elements for decoded addresses

within tCCD. MAC executing process conducts inner product through MAC

units populated within an MV-bank. Because 16 weight elements and vector

elements are fetched every tCCD, 16 MAC operations must be performed. We

designed and compared various MAC units with different numbers of pipeline

stages (more details in Section 3.3.1). We identified that populating 16 MAC

units having a cycle time of tCCD is better than populating fewer MAC units

with a shorter cycle time (through aggressive pipelining) in power and area

perspectives. Therefore, we place 16 MAC units next to the GIO SAs of an

MV-bank. Output storing process stores the result of the MAC operation in

the ov-SRAM only when the row end index exists at the decoded index through

the index decoder. The output store method depends on how the matrix ele-

ments are mapped to DRAM pages, as described below.

When MV-mul is finished in all the participating MV-banks, the results in
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ov-SRAM are transferred to the processor. The activation function is done by

the processor; because the output vector is small in size, it gives little benefit of

implementing the function within a DRAM die.

There are multiple ways to map a weight matrix represented with our delta

encoding format to DRAM pages. As mapping changes, organization and op-

eration sequence change accordingly. Considering that, we choose a mapping

that we call Single-Row per Read (SR), where elements from a single DRAM

read (256 bits) belong to one matrix row (see Figure 3.7).

The elements fetched on GIO SAs belong to one matrix row so that index

decoding can be done sequentially using one accumulator or through parallel

prefix sum. It is not possible to sequentially decode 16 indices within tCCD

using one accumulator, so we use a 6-level parallel prefix sum unit. The column

indices from the parallel prefix sum unit are used to fetch the input vector values

from the iv-SRAM. EachMAC unit accumulates the product of an input vector

element and a weight element until the DRAM read includes the end of a matrix

row. If the current DRAM read includes the end of a row, the partial sums

stored in all the MAC units of an MV-bank are accumulated through an adder

tree, which takes 5 ns (same as tCCD).

SR is inefficient in that on average a half of weight elements in a DRAM
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read (8 for LPDDR4) are padded with zero values per matrix row (performance

degradation about 2% compared to an ideal configuration where MAC units are

fully occupied in a 1,600×1,600 matrix). So we may consider other mapping

types where the elements from a single DRAM read might belong to differ-

ent matrix rows. However, from the perspective of implementation, the latter

mapping types require higher hardware complexity. Hence, we choose SR as a

mapping of our delta encoding format.

In utilizing this MViD architecture, we should consider how a processor

controls MViD. For a DS2 matrix we use for evaluation, 1.25 MB of matrix

data distributed in each bank must be read and multiplied with an input vector.

If all the DRAM RD commands for operations are transferred from the memory

controller (MC), it will cause a huge CA bus utilization overhead. Therefore,

a single MV-mul command, including the size of the initial address and the

weight matrix is passed to the MV-bank to perform all MV-mul operations.

MV-banks process MV-mul through taking commands that write/read

the vector to/from the input/output SRAM (WR-iv, RD-ov). To define these

two commands, we used the reserved-for-future-use (RFU) commands in the

LPDDR4 specification [55]. WR-iv command broadcasts the same input vector

to all MV-banks. The input vector broadcasted through inter-bank datalines is

simultaneously written to the iv-SRAMs in the MV-banks. Once the broadcast

is over, MV-mul can be started. Therefore, there is no separate DRAM com-

mand for startingMV-mul. RD-ov should be processed after the entireMV-mul

operation is completed. Because conventional DRAM interfaces do not have a

mechanism to notify the end of a specific operation to MC, the primary device

in the bus interface, the MC periodically sends RD-ov to check if MV-mul is
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completed (polling). This requires the MV-bank control unit (MCU) checking

the status of the MV-bank; MCU is located close to the inter-die I/O within a

DRAM device. If MV-mul is over, MCU returns a predefined value for RD-ov.

Then, the MC issues RD-ov against to retrieve the output vector values.

3.2.3 Concurrently Serving Requests from Processors and Performing

MV-mul in DRAM

A computer system that performs RNN inference can simultaneously run other

applications. Therefore, the performance of the other applications can be dras-

tically reduced if MV-mul operations within DRAM block the other memory

requests. For example, in a system stacking four LPDDR-3200 dies each with

eight MV-banks, the minimum time required to read 1.25MB of data and per-

formMV-mul is 6.125 µs if all MAC units are used for oneMV-mul. If DRAM

devices do not accept another memory request during the MV-mul operation,

the processor would wait for the main memory response at least for 6.125 µs.

Therefore, a DRAM device with MV-banks must provide a mechanism to ser-

vice other memory requests while performing MV-mul.

Careful coordination is required for DRAM to serve both MV-mul and

memory requests from a processor (processor requests) concurrently. Because

performingMV-mul inMV-banks dissipates the maximumDRAMpower, this

power limit must be considered to serve processor requests. Moreover, row-

buffer conflicts, which occur due to a request to DRAM row different from the

active row, must be considered if a processor request heads to an MV-bank

that is actively performing MV-mul.

Method for achieving concurrency: We achieve the coordination by sending a
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single MV-mul command (composed of WR-iv and RD-ov explained in Sec-

tion 3.2.2) to the DRAM and by controlling the progress of MV-mul inside the

DRAM. This coordination requires control generator units (CGUs) to convert

a single MV-mul command into a sequence of fine-grained sub-commands.

A CGU is located at each MV-bank and generates DRAM ACT, PRE, and RD

commands to read weight elements, compute vector indices, and perform MAC

operations, obeying DRAM’s timing constraints.

CGUs must slow down or pause the progress of MV-mul withinMV-banks

to serve processor requests. When a processor request reaches a non-MV-

bank, the DRAM device should secure enough power budget. This can be

achieved by slowing down the progress of MV-banks. According to our anal-

ysis (whose methodology explained in Section 3.3.1), slowing down all MV-

banks into half of their original rate provides a sufficient power budget to pro-

cess the processor requests with half of the rate a DRAM device can serve the

requests. It can be achieved by increasing both tCCD and tRRD twice of their

original values. By contrast, when a processor request reaches an MV-bank,

we need to slow down all MV-banks and also pause the target MV-bank to

deal with the row-buffer conflict.

Implementing commands for slow-down and pause: If a MC sends separate

slow-down and pause commands prior to all memory requests, this would cause

a huge CA bus utilization overhead. We alleviate this overhead by embedding

the slow-down and pause information in existing DRAM commands.

First, the transmission of any normal DRAM command (i.e., RD, WR, ACT,

and PRE) can be a signal to notify slow-down to MV-banks as all MV-banks

must be slowed down to process normal DRAM commands to non-MV-banks.
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Therefore, if MV-banks are not in a slow-down state when MCU receives any

normal DRAM command, it broadcasts the slow-down command (SD) to the

CGUs of all MV-banks and then sends the original DRAM command to the

target bank. The timing of the original DRAM command should be increased by

3 tCK due to command decoding (1 tCK) and SD broadcast (2 tCK). This timing

adjustment is only needed when none of the MV-banks are in a slow-down or

pause state.

Second, PRE can be augmented to notify the target MV-bank to pause. To

process a request from a processor on an MV-bank actively processing MV-

mul, we must precharge the currently active DRAM row to resolve this row-

buffer conflict. Therefore, we define a pause PRE command (p-PRE) by modi-

fying PRE and use it to pause an MV-bank prior to PRE. The timing (latency) of

p-PRE should be different from that of PRE (tRP) because a MC does not exactly

know what operation is being performed in the MV-bank when it sends p-PRE.

For example, if p-PRE is sent while the target MV-bank is activating a row

for MV-mul, the precharge operation must be delayed by up to tRAS because

the MV-bank must restore the row being activated. Therefore, in order not to

violate the internal DRAM timing constraints, the timing of p-PRE must be at

least tRAS+tRP (= tRC).

The worst case for p-PRE is when the target MV-bank just started PRE for

MV-mul. There are two options for CGU in this case: one is to stop MV-mul

and to directly enter the pause state when PRE is finished, and the other is to

perform the planned ACT followed by RD for MV-mul and then PRE for pause.

The former favors a processor request as the time of p-PRE can be tRC. The

latter favors the progress of MV-mul, at the cost of a higher timing value of
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p-PRE being tRC+tRP. We prefer the progress of MV-mul and set the timing

of p-PRE to tRC+tRP, leaving the quantitative comparison of these two options

as future work.

After all processor requests are processed, MV-banks must resume or return

to the original processing throughput (speed-up). Because PRE is issued at the

end of serving requests from a processor, we leverage PRE once again to notify

speed-up (s-PRE) and resume (r-PRE). MC checks the state of each MV-bank

and sends s-PRE or r-PRE command to MCU when speed-up or resume is

needed. When MCU receives s-PRE, it sends the speed-up signal to the CGUs

of all MV-banks and then sends PRE to the target bank. When MCU receives

r-PRE, it is passed to the CGU of the target MV-bank, and the CGU resumes

MV-mul after precharge. In LPDDR4, PRE has three unused CA bits; we use

these to distinguish PRE from p-PRE, s-PRE, and r-PRE.

Policies for slow-down and pause: If we slow down or pause MV-banks every

time MC receives a request, the throughput of MV-mul would be deteriorated

significantly. To prevent such a throughput drop, MC checks the memory re-

quest queue at every time interval (tIV). When the aggregate number of pend-

ing requests over multiple tIVs surpasses a certain threshold (nTH), MV-mul

is slowed down or paused. In determining whether to slow down or pause,

MC checks the following metrics: an aggregated number of memory requests

to normal banks (num_req_nonMV), and an aggregated number of memory

requests to each MV-bank (num_req_MV[n]). The policy that we propose is:

• num_req_nonMV ≧ nTH → slow down all MV-banks.

• num_req_MV[n] ≧ nTH → pause the n-th MV-bank and slow down the
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other MV-banks.

When a pause happens, we also slow down all MV-banks that are not paused

due to the power budget (check a detailed analysis in Section 3.3.1). Also, once

an MV-bank enters pause or slow-down state, MV-mul resumes or speeds

up after the MV-bank processes all requests that can be processed in that state.

Thus, processor requests heading to theMV-banks that are already paused have

no additional delay due to the p-PRE command.

We use the same nTH for both slow-downs and pauses, making pauses less

frequent than slow-downs when memory requests are evenly distributed among

banks (which are common cases). This design choice is reasonable as a pause

is more costly than a slow-down as a sequence of PRE and ACT should follow a

pause to resolve a row-buffer conflict.

We accumulate num_req_nonMV and num_req_MV[n] over multiple tIVs,

not resetting them at the end of every tIV. This accumulation prevents a MC

from waiting until MV-mul is finished when few requests (less than nTH) from

a processor form dependency on future requests (forming a deadlock). The

frequency of slow-down and pause can be controlled by changing nTH and

tIV. Large nTH and tIV help MV-mul finish earlier at the cost of a longer tail

latency for requests from a processor, and vice versa for small nTH and tIV. We

can adaptively control both nTH and tIV values to either favor MV-mul over

processor requests or vice versa.

3.2.4 Put It All Together: MViD Architecture

Putting it all together, we proposeMViD architecture, as illustrated in Figure 3.8,

whose design decisions are made through a series of design space exploration

36



made in the previous sections. We populate an MCU close to the inter-die I/O

within a DRAM device, which orchestrates the whole MV-mul process. 16

MAC units are placed near GIO SAs in four banks, as only up to four concurrent

RD operations are permitted under the power constraint of the baseline LPDDR4

DRAM. Each of these MV-banks has a CGU, which takes commands and

addresses that come to the MV-bank from the MCU and converts them to the

fine-grained sub-commands. An iv-SRAM and an ov-SRAM are placed per

MV-bank to store the input/output vectors. We used a parallel prefix sum logic

for index decoding, and an adder tree to aggregate the output from the 16 MAC

units.

The core inner-product computation part of MViD consists of five pipeline

stages: data reading, index decoding, input data fetching, MAC executing, and

output storing. First, 256-bit data are read from the DRAM bank and latched

to GIO SAs, followed by the index decoding stage, which comes with parallel

prefix sum and fetching stage, which loads 16 input elements from iv-SRAM.

Then, MAC operations are executed, and the results are added up by an adder

tree per weight matrix row, forming an output value, which is stored into an ov-

SRAM. MCU and CGU deal with requests from a processor through slowing

down or pausing MV-mul.
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We augment LPDDR4 DRAM commands with p-PRE, s-PRE, r-PRE, WR-iv,

and RD-ov to slow down or pause MV-banks, to upload an input vector fol-

lowed by starting an MV-mul operation, and to check if MV-mul is over and

then retrieve the output vector from ov-SRAMs. A CGU generates a repeated

sequence of ACT, multiple RDs, and PRE for the aforementioned core computa-

tion. By contrast, an MCU manages slow-down and pause of MV-banks.

Because MV-mul operates within DRAM devices, not on a processor, the

data transfers of the input/output vectors are controlled in a similar way to

DMA between the processor and MViD. Data can be transferred to MViD by

giving start address, data length, and operation type to the register allocated

for MViD. The MC uses the commands described above to transfer the vector

to multiple MV-banks and gather the output vector. When MV-mul is over,

the MC sends an interrupt to the processor to indicate the end of MV-mul and

transfers data to the processor. Besides, there is a cache coherence issue between

the processor and MViD. We can deal with this by either 1) flushing cache lines

that hold weight matrices prior to every MV-mul or 2) marking that memory

region as uncacheable, which was also proposed by [30].

3.2.5 Additional Optimization Schemes

MViD architecture can be augmented with a bank partitioning scheme to en-

hance performance further. The progress ofMV-mul is delayed by slow-downs

and pauses of the MV-banks, and pauses are caused by the necessity of serving

processor requests to the specific MV-banks. By exploiting the bank parti-

tioning method [75], it is possible to store data of the non-MV-mul workloads

from a processor in non-MV-banks, thereby preventingMV-banks from serv-
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Table 3.1: Energy/area/timing of MViD components.

Component Energy (pJ)Area (µm2)Cycle time (ns)

DRAM RD (to GIO SA) 2.54 pJ/b 5.00
MAC 1.31 pJ/op 6,318 5.00
Input vector SRAM 1.17 pJ/acc 30,048 1.25
Output vector SRAM 0.53 pJ/acc 3,931 2.50
Input decoder (SR) 1.23 pJ/op 5,067 5.00
Adder tree (SR) 1.39 pJ/op 6,071 5.00

ing processor requests. Because no MV-bank is paused, MV-mul and proces-

sor requests can be served only experiencing slow-downs, leading to additional

performance enhancement. In the perspective of memory capacity, only non-

MV-banks can be used as storage by applying bank partitioning.

3.3 Evaluation

3.3.1 Power/Area/Timing Analysis

We analyzed the power, area, and timing for each major component of MViD

(LPDDR4-3200 DRAM device, MAC unit, input decoder, adder tree, and iv-

/ov-SRAM). We calculated the power and energy of DRAM based on the IDD

specification of LPDDR4-3200.2 We designed a MAC unit, input decoder, and

adder tree as Verilog, and synthesized them with 20nm DRAM process.3 We

added 100% area redundancy to the result considering PnR (place and route).

We set the cycle time constraint of MAC unit and SR components to 5 ns (200

2Because IDD values of LPDDR4 is not publicly available, we refer to [76] and use the
projection values from LPDDR3 values considering voltage, transfer rate, and fabrication process
scaling.

3We synthesized based on FreePDK45 [91] and calculated power, area, and timing by mul-
tiplying scale factor considering transistor size and process characteristics as there is no public
20nm DRAM library.
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MHz) so that it can operate within tCCD. We used CACTI [113] to model iv-

SRAM with 1,600 of 12-bit entries and ov-SRAM with 400 of 24-bit entries.

Power and energy: We define the maximum power of one DRAM channel

as the power when bursty data reads occur consecutively with the maximum

number (four) of ACTs every tFAW. The calculated maximum power is higher

than the power of IDD5 (all bank refresh) and IDD7 (ACT-RD burst), which

are the power-hungry IDD values in the LPDDR4 specification. We calculated

the power of DRAM read for MV-mul (read only up to GIO SA) by referring

to FGDRAM [95], and scaled it considering DRAM page size, the number of

banks, and data path length. Within the maximum power, we can perform

MV-mul simultaneously up to four banks per channel (see Figure 3.9). Most

of the MV-mul power of MViD is consumed for internal bank RD, and the

power consumption of MAC, SRAM, and other components account for 2.7%,

1.9%, and 0.4% of the total power for MV-mul operation.

We cannot process DRAM requests from a processor with original DRAM

timing values because there is a limited power budget for normal DRAM com-
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mands even if MV-banks are slowed down or partially paused. When four

MV-banks are slowed down to half the frequency, four MV-banks consume

300.8 mW, so that the available power budget is 337.0 mW. By doubling tCCD

and tRRD, the maximum power required for normal DRAM commands is 326.2

mW, which is operable within the given power budget. When two MV-banks

are paused, and the other two MV-banks are slowed down to half the fre-

quency, these four MV-banks consume 163.4 mW, resulting in a power budget

of 474.4 mW. When tRRD is set to double, the maximum power required for

normal DRAM commands is 441.7 mW, which is also operable within a given

power budget.

The energy for DRAM RD is the largest among the energy required for each

component to perform MV-mul in MViD, as summarized in Table 3.1. The

energy required for internal bank RD is 2.54 pJ/b, so 650.24 pJ is required for

256-bit read operation. The energy perMAC operation is 1.31 pJ/op, and 20.98

pJ is required for every DRAM RD because 16MACs operate for processing 256-

bit data. EachMAC operation requires access to an iv-SRAM, 1.17 pJ/acc× 16

acc = 18.72 pJ being required for 256-bit data. The input decoder is activated

once for each DRAM RD, so 1.23 pJ/read is used. Moreover, the ov-SRAM and

the adder tree require 0.53 pJ/acc and 1.39 pJ/op, respectively, which occupies

a small fraction of the total energy because only one write is required per matrix

row.

Area and timing: The area of a MAC is 6,318 µm2, and the area of an iv-

SRAM and an ov-SRAM is 30,048 and 3,931 µm2, respectively. The areas of

the input decoder and the adder tree are 5,067 and 6,071 µm2. In the 8Gb

LPDDR4 die, the area overhead of the MViD components required for half of
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Table 3.2: Default simulation parameters.

Resource Value

Number of cores, MCs 4 cores, 2 MCs
Per core:

Frequency 2.4 GHz
Issue policy Out-of-Order
L1 I/D $ type/size/associativity Private/16KB/4
L2 $ type/size/associativity Private/512KB/16
Hardware (linear) prefetch On

Per memory controller (MC):
# of channels, Request queue size 2 Ch, 32 entries
Memory standard LPDDR4-3200
Scheduling/DRAM page policy PAR-BS [88]/Open

the entire bank is equivalent to 3.69% of the die size. MAC and SR components

can operate once per tCCD (5 ns). Doubling the frequency of a MAC (400

MHz) can reduce the number of MACs by half, but it is not used because the

area increases by more than twice in the synthesis result. Due to DRAM internal

frequency constraints, we use iv-SRAM4 with 1.25 ns of cycle time to access

16 times within tCCD. Also, the cycle time of ov-SRAM is 2.5 ns because it

requires only one access within tCCD.

3.3.2 Performance/Energy Evaluation

We simulated a chip-multiprocessor system to evaluate the performance of

MViD. We modified McSimA+ [5] with the default parameters summarized

in Table 3.2 for simulation. We measured the performance of DS2 by applying

the effect of MViD on MV-mul based on DS2 data in Figure 3.1 measured on

a real machine. MViD can perform MV-mul in four MV-banks per rank.5

4We configure iv-SRAM as two 2-port SRAM to allow four accesses in one cycle time.
5We assume that maximum power and the number of MV-banks increase in proportion to

the number of ranks.

42



In our evaluation, we used the SPEC CPU2017 [81] benchmark suite for

multi-programmed workloads running with MV-mul of DS2. Although SPEC

CPU2017 is not a representative mobile workload, it is good enough to un-

derstand how MViD is affected by the memory intensity of host workloads.

Using Simpoint [108], we extracted a representative simulation point of each

application, consisting of 100M instructions. Each multi-programmed work-

load consists of two applications, mix-high (mcf, lbm) composed of memory-

intensive applications, mix-low (exchange2, imagick) composed of memory

non-intensive applications, and mix-med (xz, xalancbmk) composed of ap-

plications in-between.

We quantified the performance and energy efficiency of MViD by comparing

it with the baseline configuration equipped with LPDDR4 DRAM in various

conditions, through which we made the following key observations.

First, MViD provides a significant benefit in both performance (speed-up)

and energy efficiency (energy-delay product (EDP)) across a wide range of ma-

trix sparsity in MV-mul. Figure 3.10 shows the speed-up and relative EDP of a

single-rank MViD when only DS2 is performed in the evaluated system. MV-

mul of DS2 is performed in either a processor (Base) or MV-banks (MViD)

using the dense (-Dense) or sparse (-Sparse) format. We used matrices from a

pre-trained model of DS2 [2]. The size of a matrix is independent of sparsity in

Dense, and so of the performance. By contrast, as sparsity increases, the size of

the matrix of Sparse decreases leading to better speed-up. Sparse outperforms

Dense for a sparsity higher than 25%. Executing DS2 inMViD performs about

2.4× on average better than DS2 in Base across a wide range of sparsity because

the performance of MV-mul is mostly proportional to memory access band-
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width. Considering energy efficiency, even if the power consumption of MViD

is larger than that of Base, EDP on DS2 is improved about 6.5× on average

better than Base as the execution time of MV-mul is reduced significantly.

Second, MViD still provides a substantial performance gain even when ap-

plications from non-MV-mul workloads are executed concurrently. Figure 3.11

(a) shows the relative DS2 throughput and the relative aggregate IPC of non-

MV-mul workloads while changing the number (1, 2, and 4) of ranks. The

RNN weight matrix of DS2 has a sparsity of 75%. We set nTH and tIV to 4 and

4 tCK, respectively. For each workload, we set the result of Base with one-rank

as the baseline.
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When using one DRAM rank,MViD performs 2.7×, 2.4×, and 2.2× better

than Base in DS2 throughput when running with mix-low, mix-med, and mix-

high. DS2 performs slower because MV-banks are slowed down or paused due

to the requests from a processor. When running with memory non-intensive

workloads, MV-banks do not experience frequent disturbance by the requests

from a processor, and hence provide the performance gain similar to the case

of running DS2 only. As memory intensity of the non-MV-mul workloads

increases, the throughput of DS2 inMViD drops; however it is still higher than
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Figure 3.11: The impacts of MViD when DS2 is running solely or with non-
MV-mul workloads (mix-low, mix-med, and mix-high). MV-mul of DS2 is
performed in either a host processor (Base) or MV-banks (MViD). For each
workload setup, we measure the relative throughput of DS2 and the relative IPC
of the non-MV-mul workload, normalized to the throughput of DS2 and the
non-MV-mul workload each running alone on the processor with one rank.
(a) We change the number of ranks (1R, 2R, 4R) and (b) we change nTH while
running DS and mix-high on an one-rank MViD.
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Base where both MV-mul in DS2 and non-MV-mul workloads compete the

same limited off-chip DRAMbandwidth. MViD performs similar or better than

Base for the non-MV-mul workloads. On mix-high, mix-med, and mix-low,

the aggregate IPC of MViD is 32%, 13%, and 4% higher than that of Base. The

increase in the aggregate IPC is different because compared to Base because it

takes longer for the aggregate number of pending requests in a MC to exceed

nTH.

As we populate more DRAM ranks, DS2 throughput of MViD increases

significantly, whereas that of Base stays largely unchanged. This is because the

aggregate bandwidth on MV-banks of MViD is proportional to the number of

ranks, but the off-chip bandwidth of Base is not changed. For example, DS2

throughput of MViD is 5.7× higher than that of Base while running with mix-

med. DS2 throughput of Base increases slightly as more ranks are populated

because more banks lead to lower row-buffer conflict rates [75]. This reduction

in row-buffer conflict rates makes a large impact on the aggregate IPC of the

non-MV-mul workloads for Base. ForMViD, populating more DRAM banks

also increases the aggregate IPC of the non-MV-mul workloads, but not as

sensitive as for Base. As the number of banks increases, the memory requests

are distributed across the banks. Therefore, it takes longer for a specific MV-

bank to have at least nTH requests because fewer requests reach a specific MV-

bank for the same time interval. It makes a longer tail latency of non-MV-mul

workloads compared to that with fewer DRAM banks.

Third, adjusting nTH is effective in trading MV-mul throughput with the

performance of non-MV-mul workloads. Figure 3.11 (b) shows the relative

throughput of DS2 and the relative aggregate IPC of a non-MV-mul workload
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(mix-high) as we change nTH on one-rank MViD. We set tIV as 4 tCK be-

cause tIV works in a way similar to nTH. When nTH is 1, any memory request

heading to MV-banks that are not paused is delayed by tRC+tRP because a

p-PRE command should be issued. Still, the aggregate IPC of the non-MV-

mul workload of MViD is 35% better than that of Base because non-MV-mul

workloads can utilize more aggregate off-chip memory bandwidth when MV-

mul is performed on MViD instead of a processor.

As nTH increases, the aggregate IPC of the non-MV-mul workload is de-

creased. More requests must be queued up in MC to pause an MV-bank; even

if an MV-bank is paused less frequently, the increased queuing delay leads to a

longer tail latency in serving requests from the host processor. By contrast, the

throughput of MV-mul is increased because MV-banks experience interference

less often.

Fourth, bank partitioning (MViD-P) improves the performance of both

MV-mul and non-MV-mul workloads. Bank partitioning eliminates row-

buffer conflicts for MV-banks, so MV-mul operation is only slowed down but
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with non-MV-mul workloads (mix-high). The configuration is the same as in
Figure 3.11 (a).
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not paused. Even if the non-MV-mul workloads experience slightly more fre-

quent row-buffer conflicts as they use fewer DRAM banks (lower bank-level

parallelism), the cost of row-buffer conflicts to a non-MV-bank is not as high

as that to an MV-bank as the latter often leads to a pause experiencing the de-

lay of p-PRE (tRC+tRP). Therefore, DS2 throughput increases by 34% and the

aggregate IPC of the non-MV-mul workloads (mix-high) increases by 9.5%

on the one-rank MViD-P, respectively (see Figure 3.12). With MViD-P on

the four-rank, the aggregate IPC of mix-high on MViD exceeds that of Base

whereas MViD provides 7.2× higher DS2 throughput compared to Base.

3.4 Discussion

Workload variation: MViD is robust to changes in the matrix size of the work-

load. Our proposed MViD is optimized for the 1600×1600 matrices used by

a representative end-to-end ASR application. As the model evolves, the size

of the matrix used by the RNN may change, and hence, it is desired for MViD

to maintain its performance benefit across a wide range of matrix sizes. We

experimented with how the performance of MV-mul changes according to the

matrix size (see Figure 3.13). Even if the matrix size is reduced to 1/4 (when

the number of rows and columns is halved each), the performance of MV-mul

is 3.2 times higher than that of Base (only 5% less than the peak speedup of

MV-mul). When the size of the matrix is larger than 1600×1600, the matrix is

processed after being divided into sub-matrices, and a decrease in performance

is no more than 5% as compared with the maximum speedup.

Load balancing: The progress of MV-mul differs between MV-banks because
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each MV-bank experiences a different number of pauses due to interference

by processor requests, whose distribution is both application and memory-

address-mapping specific. This is a critical issue because MV-mul from all

MV-banks should finish before the next phase (possibly another MV-mul)

starts (forming a strong dependency). Inter-MV-bank load balancing could

alleviate this problem. For this, there are two factors to consider, the NZ

distribution between MV-banks and the pauses caused by processor requests.

However, when we analyzed the weight matrices of various RNN models, the

difference in the number of NZ values across MV-banks was within 2%. Also,

the memory address mapping makes the processor requests quite evenly dis-

tributed over DRAM banks, resulting in the difference between the number of

pauses of each MV-bank within 1%. Therefore, we did not devise a particular

inter-MV-bank load balancing scheme.

Power budget and the number of processing elements: In a PIM architecture,

if multiple processing units are placed in a DRAM module to utilize the inter-

nal aggregate bandwidth, there is an issue about exceeding the power budget

as more operations are performed within the same duration. In the case of
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Figure 3.13: The impacts of one-rank MViD on MV-mul by changing the size
of the weight matrix. We set the result of Base with one-rank as the baseline.
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Samsung’s HBM-PIM [77], the number of processing units is half of the total

number of banks due to power limitation. [121] emphasizes the importance

of the power managing technique by pointing out that high internal aggregate

bandwidth causes more power consumption. Different generations of DRAM

modules have different power budgets and energy consumption for operation.

As UPMEM [35] places processing units for each bank, more processing units

can be placed within the DRAM module if the power limitation of the device is

not severe.
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Chapter 4

TRiM: Enhancing Processor-Memory Interfaces with

Scalable Tensor Reduction in Memory

4.1 Prior NDP architectures for accelerating Tensor Gather-

and-Reduction

4.1.1 Tensor Gather-and-Reduction in RecSys

Tensor gather-and-reduction (GnR) performs a simple reduction operation

(e.g., an element-wise sum for SparseLengthsSum (SLS) in Caffe2 [1]) of em-

bedding vectors collected frommultiple embedding table lookups. In DLRM [90],

a representative RecSys model, one GnR operation performs generally between

20 and 80 lookups. An embedding table takes the form of a matrix (rank-2

tensor) in which each row holds one embedding vector (rank-1 tensor). The

number of elements in a row (hereafter referred to as the vector length, vlen)

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,

Wonkyung Jung, Sunjung Lee, Jaewan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung
Ho Ahn, ”MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Re-
current Neural Networks,” IEEE Transactions on Computers, April 2020.
”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”

©2021 by Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed
under CC BY 4.0. https://doi.org/10.1145/3466752.3480080.
”TRiM: Tensor Reduction in Memory” ©2020 by Jaehyun Park, Byeongho Kim, Sung-

min Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed under CC BY 4.0.
https://doi.org/10.1109/LCA.2020.3042805.
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typically ranges from 32 to 256 [103]. The on-chip storage of a processor is

too small to store all of the embedding tables of RecSys, the size of which can

exceed hundreds of GBs. Therefore, embedding vectors are mostly read from

the main-memory DRAM.

As the compute to memory access ratio of GnR is extremely low with little

locality (i.e., several KBs to MBs of DRAM reads over several tens to hundreds

of GBs of embedding tables), GnR is highly memory intensive. This prop-

erty renders GnR a prime candidate for acceleration using near-data process-

ing (NDP [4,11,30]) at the processor-memory interface. The NDP architecture

places processing elements (PEs) near the DRAM datapath I/O; thus, data read

from the DRAM chip are processed within or near the DRAM chip. By fully

utilizing the characteristics of the DRAM data/control path, the NDP architec-

ture can achieve high performance.

Because the datapath of DRAM has a hierarchical (tree-like) bus structure,

the bus between the MC and the rank can only be utilized by one rank at a time.

However, if a processing unit for GnR is placed within the buffer chip, the data-

path between the MC and the buffer chip is not utilized during GnR. Therefore,

all ranks can simultaneously transfer data to the corresponding processing units

in the connected buffer chips. We exploit this characteristic to accelerate GnR

with a higher internal bandwidth.

4.1.2 Prior NDP accelerators for GnR

Figure 4.1 explains how the baseline system (Base) and prior NDP accelera-

tors handle GnR. In Base using a conventional module-based DDR5 DRAM,

only one rank can occupy the bus and transfer data in a channel at a time be-
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Figure 4.1: Exemplar GnR in the baseline (Base) and the evaluated NDP ar-
chitectures. Each diagram on the left simplifies conceptual DRAM modules,
where each has one DRAM rank consisting of two bank-groups, each packed
with two banks, showing how embedding vectors are mapped to the DRAM
chips. The timing diagram on the right shows the states of bank-groups and
buses while transferring data or conducting partial GnR near/in DRAM.
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cause all ranks in the channel share the depth-1 bus. TensorDIMM [73] and

RecNMP [63], two recently proposed NDP accelerators for GnR, employ one

processing element (PE) per rank, locating them inside the buffer chips. Each

PE performs GnR for (a portion of) an embedding vector in parallel. As the

depth-1 bus is not utilized during GnR in each module, each PE in a rank can

receive data independently. Therefore, PEs in different ranks can receive data in

parallel, and the aggregated bandwidth for GnR can be as high as the channel

bandwidth multiplied by the number of ranks in a channel (rank-level paral-

lelism). Furthermore, as the embedding vectors for GnR are transferred to the

buffer chips but not through the depth-1 bus, data transfer energy is saved.

Only the reduced vectors are transferred through the depth-1 bus.

A key factor that differentiates Base from prior NDP accelerators for GnR

is the manner in which the embedding tables are mapped across the memory

subsystem. In Base, the elements in an embedding vector exist at consecutive
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addresses in a single DRAM row. Therefore, the embedding vector elements

are sequentially transferred to the host MC after activating the DRAM row that

contains the target vector.

TensorDIMM and RecNMP adopt different embedding table mapping and

reduction strategies. TensorDIMM splits the embedding table vertically so that

each partition only has a portion of the embedding vector, each of which is

mapped to different ranks (vertical partitioning, vP). Because the PE dedicated

to each rank produces a portion of a reduced vector from GnR, the reduced

vector in each PE is concatenated with the other portions at the host. In con-

trast, RecNMP evenly distributes the entries of an embedding table to each rank

(horizontal partitioning, hP). After performing the reduction of vectors in the

PEs, each PE sends a partial sum of the vectors to the host, and the host reduces

the partial sums. Because the vector is reduced by an element-wise operation,

the elements that arrive at the buffer chip first can be reduced and transferred

to the host before the entire vector arrives at the buffer chip. Moreover, data

transfer to the host can be overlapped by the subsequent reduction of vectors

by another GnR in the PEs.

While the performance benefits of employing NDP for GnR acceleration are

clear, we observe several important design overheads that the prior works do not

address appropriately. An NDP architecture adopting vP (VER) distributes one

vector to multiple ranks evenly such that the number of row activations (ACTs)

for a GnR operation becomes proportionally larger as a function of how many

ranks are used to (vertically) partition the embedding table (e.g., Figure 4.1(b)

incurs 2× more ACTs compared to Figure 4.1(a, c)). Consequently, a key lim-

itation of VER is that it consumes significantly more energy in ACTs for GnR
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than Base and HOR (NDP architecture adopting hP). Moreover, if the par-

titioned vector size in VER is smaller than the DRAM access size, the internal

data read/write bandwidth is wasted due to redundant data reads.

With regard to the hP strategy, HOR must transfer different C/A signals to

each rank because each PE processes embedding lookups of different entries.

Therefore, HOR requires a higher C/A bandwidth than VER, which broad-

casts C/A signals to all ranks that process the different elements of the same

embedding vector. RecNMP mitigates this high C/A bandwidth pressure by

compressing a pair of activate/precharge (ACT/PRE) commands and several

read (RD) commands to one custom instruction because all elements in an em-

bedding vector exist in one DRAM row. However, the load-imbalance issue

also becomes problematic in HOR as each rank may receive a different number

of embedding lookups for GnR.

4.1.3 Quantitative Analysis

To quantify the pros and cons of VER and HOR in GnR, we compare the

performance and DRAM energy consumption of VER and HOR against Base

without caching recently accessed embeddings when sweeping the values of vlen

from 32 to 256 (see Figure 4.2). The performance of VER and HOR is signif-

icantly improved because both can utilize the abundant internal bandwidth of

the DRAM. VER shows up to 4.3× higher performance (similar to the number

of ranks per channel, Nrank) when vlen is 256, but the achieved speedup from

VER becomes only 1.6× when vlen is 32. For a vlen value of 64, each rank is

assigned with 16-length partitioned vector elements, which correspond to 64B,

identical to the single DRAM access size. Because there is little spatial local-
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ity when accessing the embedding table, vectors are mostly read from different

DRAM rows. Therefore, in most cases, a separate instance of row activation is

required for every vector read operation within a given rank. However, when

vlen is 32 where the partitioned embedding vector size of VER is smaller than

the minimum DRAM access granularity of 64B, half of the DRAM bandwidth

is wasted, resulting in the achievement of only half of the performance benefit

of vlen of 64. HOR overcomes the aforementioned limitation of VER when the

GnR’s memory access stream can sufficiently utilize the internal bandwidth of

all ranks, even when vlen is 32. However, the performance of HOR decreases

by about 10% to 20% compared to VER due to the load-balancing issue.

HOR is more energy-efficient than VER because the ACT energy of VER is

four times larger than that of Base and HOR (equivalent to Nrank). In particu-

lar, when vlen is 32 and 64, VER consumes more DRAM energy than Base and

HOR because the ACT energy accounts for a large portion of the total DRAM

energy consumption. As vlen increases, the ACT energy is amortized over the

off-chip I/O energy, the DRAM read energy, and the DRAM static energy.

When vlen is 256, off-chip data transfers from a buffer chip to a host MC are

significantly reduced in VER and HOR compared to those in Base. Also, the

DRAM static energy in NDP architectures is reduced due to the speedup in GnR.

Thus, the energy consumption of VER and HOR decreases by 42% and 43%

over Base, respectively. Owing to the wasted internal bandwidth, as mentioned

above, for VER when vlen is 32, there is no significant difference in the energy

consumption between the two vlen values of 32 and 64. The C/A signaling and

reduction operation slightly affects the total energy consumption.
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4.1.4 Additional Schemes for Accelerating GnR

RecNMP applied additional optimizations to improve GnR performance. First,

it implements a cache (RankCache) inside the buffer chip to store entries with

high access rate. RecNMP improves the GnR performance by taking advantage

of the temporal locality of access to the embedding table in RecSys workloads.

Second, to alleviate the load imbalance problem that occurs in HOR, RecNMP

puts GnR operations together in a single GnR batch to process several GnR

operations at a time. When processing a single GnR operation (when the num-

ber of GnR operations per batch, NGnR, is 1), the number of lookups (Nlookup)

handled by each rank is highly uneven, resulting in a significant performance

drop due to the load-imbalance issue. However, if multiple GnR operations

(when NGnR > 1) are processed at once, the total number of lookups in the

batch increases, which relieves the load-imbalance problem.

4.2 Tensor Reduction in Memory

Although TensorDIMM and RecNMP achieve decent speedups, we observe that

there are substantial untapped, further performance improvement opportunities

to be gained by leveraging the internal data transfer bandwidth at the DRAM

datapath. Because the datapath of DRAM is organized as a tree structure, if

there are PEs dedicated to memory nodes (e.g., ranks, bank-groups, and banks)

above a certain depth in an NDP architecture, embedding vectors can be hierar-

chically reduced from the depth. As Nrank (up to several) is much smaller than

Nlookup (dozens) for GnR, the GnR speedup achievable when utilizing rank-

level parallelism is fundamentally limited; there is room for further performance
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improvements by exploiting finer-grained memory-level parallelism.

4.2.1 Basic Concept for TRiM

We present TRiM (Tensor Reduction in Memory), a DRAM-based NDP ar-

chitecture tailored to the GnR operation. Our proposal is based on the key ob-

servation that the datapath constituting any given ranks/bank-groups/banks

exhibits a tree-like interconnect topology. TRiM opens up opportunities to

conduct the GnR operation hierarchically by employing the NDP-based PE unit

per memory node (e.g., a bank, bank-group, or rank). In TRiM, each memory

node can perform the GnR operation independently without using the bus closer

to the root node (MC). Therefore, TRiM can utilize internal bandwidth equal

to the channel bandwidth multiplied by the number of memory nodes (Nnode).

By adopting finer-grained memory-level parallelism, Nnode increases, and the

internal bandwidth increases accordingly.

Embodiments of the DDR4/5-based TRiM architecture include TRiM-

R/G/B, corresponding to the depth Rank/bank-Group/Bank to which a PE

is allocated. Figure 4.3 shows the simplified architecture of TRiM-G/B. In

TRiM-G, there is a PE per bank-group. The PEs are located inside the DRAM

MC
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Bank 
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Bank 
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Figure 4.3: High-level overview of TRiM-G/B (left/right). Red/Green/Blue
squares correspondingly denote PE located near the DRAM datapath dedicated
per Rank/bank-Group/Bank.
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chip so that the bus between the bank-group and the rank is not used for re-

duction within bank-groups. Similar to TRiM-G, TRiM-B has a PE for each

bank, and the PEs are also located inside the DRAM chip.

To utilize the internal bandwidth provided by TRiM fully, an effective em-

bedding table mapping scheme is needed. As discussed in Section 4.1.2, different

mapping schemes (vP or hP) present different tradeoffs. When TRiM adopts vP,

Nnode rows must be activated to read a vector. Accordingly, the ACT energy in-

creases. Moreover, the internal bandwidth is wasted when the partitioned vector

size is smaller than the minimum DRAM read granularity (64B for DDR4/5).

In contrast, when TRiM adopts hP, the C/A bandwidth requirement increases

proportionally to Nnode, and load-imbalance issue arises. One can also imag-

ine a hybrid of vP and hP (vP-hP) when Nnode is large enough; for example,

vP is applied between memory nodes in different ranks, whereas hP is applied

between memory nodes in different bank-groups. Unfortunately, such a design

point inherits the shortcomings of both hP and vP as the ACT energy increases

proportionally to Nrank and the C/A bandwidth usage increases proportion-

ally to the number of bank-groups. Moreover, the load imbalance and internal

bandwidth waste issues still exist.

Because adopting vP or vP-hP deteriorates the performance and energy ef-

ficiency of TRiM, we employ hP as the mapping scheme for the TRiM architec-

ture. Given that RecNMP also employs an hP mapping scheme, we henceforth

refer to RecNMPwithout RankCacahe as TRiM-R. Then, the increase in Nnode

entails a proportional increase in the C/A bandwidth demand. We address the

issues of the C/A bandwidth shortage and the load-imbalance under TRiM-

R/G/B using our novel two-stage C-instr transfer and hot-entry replication
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scheme, the details of which are discussed later in this section.

Figure 4.1(d) highlights the key benefits of TRiM against prior NDP pro-

posals for RecSys (see Section 4.2.4 for more details on the TRiM architecture).

First, in-memory-node PE for Reduction (IPR) dedicated to each memory node

gathers a series of embedding vectors from the corresponding DRAM banks

within its local memory node, generating the final (partially) reduced vector in

an accelerated manner. Multiples of IPR-reduced vectors are collected by the

near-memory-node PE for Reduction (NPR) in the aggregate for the next level

of reduction at the parent memory node. The final output reduced from NPR

is eventually transferred back to the host MC, and then reduced at the host.

Transferring the reduced vectors of a GnR batch and performing the element-

wise GnR operations of the subsequent GnR batch can be done in parallel with-

out sharing the datapath of DRAM and hence becoming overlapped.

By conducting the entire in-memory-node reduction operation within the

shared tree datapath, our proposed NDP architecture reaps the abundant mem-

ory bandwidth (i.e., channel bandwidth × Nnode) unlocked with in-memory

processing, achieving superior performance. Also, TRiM significantly improves

the energy efficiency as the data that reaches the NPR of the parent memory

node is already partially reduced using our proposed IPR units, reducing the

power requirement. Maximally unlocking the potential of in-memory pro-

cessing requires TRiM to have the ability to supply GnR commands sufficiently

to the NDP units. In the following section, we discuss our proposal for ampli-

fying the C/A bandwidth to help realize the maximum degree of memory-level

parallelism.
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4.2.2 How to Provision C/A Bandwidth

C/A signals for GnRmust be sufficiently supplied to all memory nodes in TRiM.

We leverage a scheme proposed in RecNMP [63], which compresses ACT, se-

quential RDs, and PRE into a C-instr. One C-instr consists of 85 bits and

takes charge of one embedding vector lookup. A C-instr is decoded to con-

ventional DRAM commands in the command decoder located in each memory

node, which is then transferred to the corresponding bank.

To avoid performance bottlenecks from an insufficient C/A bandwidth, MC

must supply Nnode C-instrs within the minimum time for a memory node to start

processing consecutive C-instrs (referred to as tC-instr). Assuming that TRiM

fully utilizes the internal bandwidth, tC-instr is identical to the time to read the

vector from a memory node, which is proportional to vlen and the read cycle.

When transferring C-instrs through C/A pins (see Figure 4.4(a)), the following

condition must be met to provide C-instr sufficiently to all memory nodes:

tC-instr ≥ Nnode ·
C-instr bits

C/A bandwidth
(4.1)

(b)

1st stage

C/A + DQ

2nd stage

C/A

MC

(a)

MC

C/A

(c)

MC
1st stage

C/A + DQ

2nd stage

C/A + DQ

Figure 4.4: Various methods for transferring C-instr, the C/A signal to process
the GnR operation, to the memory node in the TRiM architecture. (a) Using
only C/A pins, adopting a two-stage C-instr transfer scheme and (b) only using
C/A pins, or (c) C/A and DQ pins together at the second stage.
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The right side of Eqn. (4.1) is the time taken to deliver C-instr to all mem-

ory nodes, which is (time to transfer one C-instr)×Nnode. In DDR5, the C/A

bandwidth is 14 bits/cycle, meaning that C-instr can be sufficiently supplied

up to five memory nodes when vlen is 64. Consequently, only utilizing C/A

pins cannot provide sufficient bandwidth to TRiM-G/B with multiple ranks.

C-instrs can be transferred with a much higher bandwidth by using DQ pins

(data pins) in addition to C/A pins. If a C-instr passes through the buffer chip

and is transferred into a DRAM chip directly, inefficiency arises because only a

portion of the DQ pins from the buffer chip are connected to each DRAM chip.

Our key approach is to transfer C-instr only to the buffer chip instead (not to

the DRAM chip) using the DQ pins because all DQ pins from the MC are con-

nected to the buffer chip, which helps to amplify the effective C/A bandwidth

as follows:

tC-instr ≥ Nnode ·
C-instr bits

(DQMC + C/A) bandwidth
(4.2)

When the C-instr is transferred from the MC to the buffer chip using DQ pins

and C/A pins together in DDR5, 5.6× more bandwidth (624-bit / 8 cycle) can

be utilized than when transferring a C-instr using C/A pins only.

We propose a two-stage C-instr transfer scheme that delivers a C-instr

through a path from the MC to the buffer chip, using another path from the

buffer chip to the DRAM chip. In the first stage, a C-instr is transferred using

C/A pins and DQ pins together. In the second stage, we consider two design

points (see Figures 4.4 (b) and (c)), to use only C/A pins (Eqn. (4.3)), or to use

C/A pins and DQ pins together (Eqn. (4.4)). These two stages can be pipelined

as they do not share a datapath. That is, all buffer chips, which have dedicated
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data/control paths connecting the ranks, can independently transfer C-instrs to

the DRAM chip. Thus the aggregate C/A bandwidth of the second stage grows

proportionally to Nrank.

tC-instr ≥
Nnode

Nrank
· C-instr bits

C/A bandwidth
(4.3)

tC-instr ≥
Nnode

Nrank
· C-instr bits

(DQchip + C/A) bandwidth
(4.4)

When sending a C-instr, using both C/A and DQ pins can utilize more band-

width than using only C/A pins. However, if C/A and DQ pins are used to-

gether, there may be a conflict between the transfer of a partially reduced vector

from the IPR to the NPR and the transfer of C-instr. This can also cause an

additional delay due to the bus turnaround of the datapath. Thus, if Eqn. (4.3)

is satisfied, it is better to use only C/A pins in the second stage.

When two DDR5 ranks are populated per memory channel, we measure

the C/A bandwidth requirement in TRiM-R/G/B by changing vlen from 32

to 256 and the bandwidth provision according to the C-instr supply method
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Figure 4.5: C/A bandwidth requirement to utilize all memory nodes for each
TRiM architecture and bandwidth provision for each method of transferring C-
instr. In TRiM-G/B, the required bandwidth for C-instr is significantly reduced
due to DRAM timing constraints compared to that without these constraints.
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used (see Figure 4.5). The light bar graph in Figure 4.5 is the C/A bandwidth

requirement without any constraint when the DRAM access size and read cycle

are set to (64B, 8), and the dark bar graph is the C/A bandwidth requirement

when considering the various timing constraints (e.g., tRRD and tFAW). The red

dotted lines represent the bandwidth provision according to the C-instr supply

method: using 1) only C/A pins as in a conventional DRAM (C/A only), 2)

C/A and DQ pins to a buffer chip (1st stage C/A+DQ) but only C/A pins from

the buffer chip (2nd stage C/A), and 3) C/A and DQ pins from the buffer chip

(2nd stage C/A+DQ).

The larger the vlen, the longer it takes to process one C-instr; thus, the C/A

bandwidth requirement decreases. When the DRAM timing constraints are not

considered, the bandwidth requirement inversely decreases proportionally to

vlen. In TRiM-G/B, the required C/A bandwidth for a C-instr is significantly

reduced by the DRAM constraints especially those limiting frequent activations

within the rank, which consequently limit the multiple memory nodes in the

same rank from operating in parallel.

The two-stage C-instr transfer scheme is compelling for increasing the ef-

fective bandwidth for C-instr (more than 2× compared to when using C/A

pins only). We choose to use only C/A pins in the second stage because the C/A

bandwidth provision of this approach is sufficient to fully supply C-instrs for

TRiM-R/G/B with vlen from 32 to 256.

4.2.3 Exploring NDP Unit Placement

The optimal TRiM design point varies depending on the characteristics of the

GnR workload. Allocating the PE for a certain memory depth allows GnR to
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exploit the internal bandwidth up to the channel bandwidth multiplied by Nnode

in a memory channel. However, if the load is not sufficiently distributed to the

PE or the time to read an embedding vector is relatively short, TRiM could

suffer from low utilization of the internal DRAM data transfer bandwidth.

In Figure 4.6, we measure the throughput of GnR compared to Base accord-

ing to Nnode while varying Nlookup and vlen, assuming 2/4-rank DDR5-4800.

In the TRiM architecture, the performance of GnR improves as Nnode increases

because the available aggregate bandwidth increases proportionally to Nnode as

each memory node can utilize a dedicated datapath. Therefore, the rightmost

end of the heatmaps with the largest number of memory nodes performs best.

However, the speedup saturates when adopting excessive parallelism. When

multiple banks share a datapath, one bank can occupy the datapath by reading

data while the other banks are preparing data, meaning that the data prepara-

tion time can be hidden and the internal bandwidth can be highly utilized. Using
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finer-grained parallelism reduces the number of banks in one memory node and

thus reduces the number of banks sharing the datapath. In this case, the data

preparation time might not be completely hidden and the utilization rate dete-

riorates. This demerit is pronounced when vlen is low, where the ratio of the

data preparation time is relatively high, as shown in the bottom right of Fig-

ure 4.6(b). Also, limiting the frequency of activation in DRAM chips saturates

the performance improvement as Nnode increases.

To utilize the aggregate bandwidth obtained by increasing Nnode fully, Nlookup

should be sufficiently large. When this is the case, the time to perform a re-

duction in the memory node overlaps with the time for transferring the partially

reduced vector to the PE at the parent memory node. Then, the speedup is

eventually bounded by the ratio of the internal aggregate bandwidth in TRiM

over the channel bandwidth. In contrast, if Nlookup is too small, the time to un-

dertake reduction in the memory node is completely overlapped by the time for

the transfer of the partially reduced vector to the PE at the parent node, limiting

the speedup (see the lower right part in Figure 4.6(a)).

Considering the results in Figure 4.6, TRiM-G is most efficient, in common

RecSys models with vlen of 20-80 and Nnode of 32-256. Although TRiM-B

shows better performance at some points, it incurs over 4× more area overhead

than TRiM-G as the NDP unit is employed per bank, not per bank-group. As

this area overhead can also lead to greater energy overhead to keep the DRAM

read/write latency unchanged [94,112], we consider TRiM-G as a better option

compared to TRiM-B.

We set TRiM-G with 16 memory nodes as the default configuration. When

Nlookup is 80, TRiM-G with 32 memory nodes (2 DIMMs × 2 ranks) performs
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better than TRiM-G with 16 memory nodes (1 DIMM × 2 ranks). However,

if the lookups are evenly distributed across the memory nodes, we observe that

there is no significant difference in performance between these two TRiM-G

configurations. The load-imbalance issue is mitigated by applying hot-entry

replication, which will be described later. Then, in DDR5, an embedding table

is stored only in 1 DIMM × 2 ranks × 8 bank-groups, allowing multiple em-

bedding tables to be looked up concurrently where performance improvements

can be multiplied by the number of DIMMs.

Designing TRiM “in-memory” (rather than “near-memory” at the buffer

chip) allows the utilization of the abundant internal DRAM bandwidth while

consuming much less energy thanks to the shorter datapath. The trade-off lies

in the higher area overhead of the “in-memory” approaches; DRAM processes

with fewer metal layers require more area for designing logic elements, and the

power and timing constraints of a DRAM chip hinder the maximal use of its

internal bandwidth.

4.2.4 TRiM-G Organization and Operations

Based on our design space exploration, this section presents our TRiM-G ar-

chitecture (see Figure 4.7), where an NDP unit tailored for GnR is employed per

bank-group as well as per rank. IPR for TRiM-G is located between the bank-

group I/O multiplexer (MUX) and the global I/O MUX. NPR for TRiM-G is

placed on the buffer chip. IPR consists of 32-bit floating-point multiply-add

(add for NPR) units (MACs) for vector reduction and includes registers to store

the partial reduction of the vectors. Each buffer chip has a queue for the tem-

porary storage of the C-instrs transferred from MC. The C-instr decoder is
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located in the IPR to decode a C-instr to DRAM commands (ACT, RD, and

PRE) and to send internal DRAM commands to each bank considering bank

interleaving.

One 85-bit C-instr consists of target-address (34-bit), weight (32-bit),

nRD (5-bit), batch-tag (4-bit), opcode (3-bit), skewed-cycle (6-bit), and

vector-transfer (1-bit). The target-address is the starting address of a vector.

The weight contains 32-bit floating-point data for supporting the weighted-

sum operation. The nRD is the number of DRAM read commands per vector,

which also indicates the size of the vector to be processed per C-instr. The

batch-tag identifies the C-instr belonging to the same GnR operation in a GnR

batch. The opcode determines the type of element-wise reduction operation

(e.g., sum or weighted sum). The skewed-cycle indicates when the current C-

instr starts operation at the memory node after arrival, and the vector-transfer

instructs each memory node to transfer a partially reduced vector to the parent
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memory node. The vector-transfer bit is set to 1 for the last C-instr in the

batch.

TRiM-G operates as follows. At the first stage of the two-stage C-instr

transfer, up to 7 C-instrs enter the C-instr queue of the NPR in the buffer chip

for every eight cycles exploiting C/A and DQ paths. In the C-instr queue of the

NPR, a C-instr is transferred to the C-instr queue of the IPR in the target bank-

group through the C/A path in order (the second stage). For each C-instr in the

queue, the decoder in the IPR starts sending DRAM commands (i.e., ACT, PRE,

and RDs) into the internal DRAM after the skewed-cycle. Whenever a RD is

sent, the MAC units in the IPR accumulate data after a delay of tCL (access

time). If the C-instr with the vector-transfer bit set enters the NPR queue, the

NPR alternately sends commands to each IPR to transfer a partially reduced

vector to the NPR by occupying the depth-2 data bus. After the first of these

commands is sent, the adders in the NPR accumulate the partial sum of each

IPR for every tCCD. The command for transferring a partially reduced vector

is defined using reserved-for-use (RFU) commands. When accumulation for

each rank is completed, other adders in the NPR combine the partial sums of

the ranks. Finally, the MC reads the partial sums of the DIMMs.

4.2.5 Host-side Architecture for TRiM

Hot-entry Replication for Balancing Loads: Figure 4.8 shows the distribu-

tion of the maximum loads (the number of lookups) across the memory nodes

per GnR, normalized to a perfectly balanced load. The performance of TRiM is

bound to the memory node that has the largest number of lookups. As Nnode in-

creases, the number of lookups for a single memory node decreases, but the load
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imbalance becomes more severe. RecNMP alleviates this problem by batching

GnR operations, processing multiple GnR operations at one time. Batching in-

curs an area overhead that is proportional to NGnR because dedicated registers

are required to hold a partial reduction of vectors. Applying a batch of 8 GnR

operations to TRiM-G causes an additional 2.5% of DRAM chip overhead.

We tackle the load-imbalance challenges with our novel hot-entry repli-

cation scheme, which copies frequently accessed (hot) entries to each memory

node; this scheme is motivated by the replication method often used in data-

centers [92]. We observe that a few entries occupy a large portion of the lookup
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requests (more details about the dataset are given in Section 4.3). Load bal-

ancing is done by distributing the lookup request, which corresponds to the

C-instr. Only hot requests, ones that head toward hot entries, are redirected

to the replicated entries at the nodes with lower loads. Hot entries are stat-

ically determined by profiling embedding table access traces, after which they

are replicated and stored at the same address (bank, row, column for TRiM-G)

in each memory node.

Figure 4.9 illustrates the execution flow for the distribution of lookup re-

quests. There is a list of replicated entries (RpList), where the replicated entries

exist at the same relative locations across all memory nodes. All lookup requests

in a GnR batch are classified based on whether the target index of the request

is on the RpList. Lookup requests other than hot requests are put in the request

queue dedicated to each memory node. Then, hot requests are distributed to

the queue of the memory node with the minimal load.

There is a trade-off between the number of hot entries (Nhot) and the speedup

because the load balance improves as Nhot increases, but the capacity overhead

rises (proportional to Nnode). Because both hot-entry replication and batch-

ing mitigate the load-imbalance issue, Nhot and NGnR should be configured

considering the area and memory capacity overheads.

Storing hot-entries in the host cache can improve the performance of GnR

operations, but hot-entry replication is preferred for the following reasons.

First, the degree of performance improvement by the host cache is limited be-

cause only a small portion of entries can be stored in the cache. The embedding

table corresponding to a size of hundreds of GBs can be stored in the main mem-

ory, whereas the size of the host cache is few tens of MBs; only about a hun-
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dredth of a percent of the embedding table can be stored in the cache. Second,

even if the performance is improved by the method described above, it could

degrade the performance of other operations. As found in earlier work [63],

if hot entries are stored in the cache, data such as the weights of the FC layer

required for the RecSys model can be evicted. Consequently, this not only re-

duces the performance of other operations, but also increases the latency. With

TRiM, this effect is even greater because FC takes up most of the time.

RecNMP uses the cache in the buffer chips to exploit the temporal locality

of hot entries. However, using the cache on the DRAM side breaks the con-

ventional interface by which the DRAM access latency is deterministic, making

it unsuitable for TRiM. Also, transferring signals for cache hits from DRAM to

MC is expensive as polling is required and an additional scheduler should exist

per memory node.

Programming, Memory Model, and Data Placement: TRiM leverages the pro-

gramming and memory models in previous NDP architectures [11,30,63]. The

host runs a RecSys application and offloads a portion of the GnR operation

to TRiM, similar to CUDA [84]. By ensuring that the contiguous virtual ad-
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dress range for an embedding table is mapped to a contiguous physical address

range, the physical address of each embedding vector index can be identified

from the starting address of the embedding table stored in a TRiM-specific

driver. When placing the embedding table in DRAM, the TRiM-specific driver

evenly distributes the embedding table to the memory nodes exploiting DRAM

address mapping. The host and TRiM have their own independent memory

region within one physical memory space to avoid memory consistency issues.

Following [11,30], we address cache coherence issues by marking the memory

region for TRiM as uncacheable and shuffle data in an embedding table entry

to place a consecutive 32-bit floating-point value into a DRAM chip for the

IPR.

Execution Flow on the Host side: Figure 4.10 shows how lookup requests are

processed on the host side prior to being transferred to TRiM. As Nhot is con-

figurable, the RpList can be enlarged according to the embedding table size and

the replication rate of hot-entry replication (phot), representing a burden to put

the RpList on the MC. Accordingly, we assign a run-time driver tailored for

TRiM to distribute hot requests. It receives lookup requests and undertakes

the distribution of the hot requests. The lookup requests are transferred to the

MC with the TRiM extension, and the C-instr encoder encodes the requests

to C-instrs. Then, the C-instr scheduler reorders the C-instrs for each GnR

batch considering that multiple memory nodes operate simultaneously. After

the completion of a scheduling task for a GnR batch, the DRAM timing con-

troller sets the skewed cycle in the C-instrs. The C-instrs are then transferred

to the DRAM, obeying the DRAM timing constraints.
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4.2.6 Schemes for Improving Reliability

In TRiM-G/B, the GnR operation is performed inside the DRAM chip and

hence the conventional rank-level error correction code (ECC) cannot be ap-

plied for error detection and correction, necessitating a different way to ensure

reliability when reading data for GnR inside a DRAM chip. Modern DRAM

chips have started to adopt on-die ECC, which operates inside the DRAM chip

(die) to improve data integrity further [14,93,97,101,111]. In particular, DDR5

uses single-bit error correction (SEC) codes for the on-die ECC [57]. However,

the reliability of DRAM only with conventional on-die ECC (SEC) is lower than

that with rank-level ECC (typically supporting SECDED, SEC with double-bit

error detection (DED)) and on-die ECC together.

To improve the reliability of data being read during GnR to a level equiva-

lent to DED, we propose to repurpose the on-die SEC code to detect double-bit

errors. This is possible because the embedding tables are read-only while per-

forming GnR and the hamming code used for SEC has a minimal hamming

distance of 3, which can be used to detect double-bit errors if correction is not

needed [102]. During GnR, the parity bits are calculated for the embedding

table entry being read, similar to a normal DRAM write, and those calculated

are compared to the stored parity bits. If a mismatch is identified, an error is

reported, and the table entry should be reloaded from storage. The overhead of

supporting DED for TRiM is minimal as most of the ECC logic is reused; only

a simple comparator is added to detect a mismatch between the parity bits.
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Table 4.1: Timing/energy parameters of 16Gb DDR5-4800 ×8 DRAM chips
and NDP units.

Parameters Values

Clock frequency (1/tCK) 2,400MHz
Cycle time (tRC) 48.64ns
ACT to RD, Access, PRE time (tRCD, tCL, tRP) 16.64ns
Read to read between different bank-groups (tCCD_S) 8 tCK
Read to read to the same bank-group (tCCD_L) 12 tCK
Four activate window (tFAW) 13.31ns
ACT energy 2.02nJ
On-chip read/write energy 4.25pJ/b
Read energy to bank-group (BG) I/O MUX 2.45pJ/b
Off-chip I/O energy 4.06pJ/b
MAC unit energy in IPR 3.23pJ/Op
Adder energy in NPR 0.90pJ/Op

4.3 Experimental Setup

Simulation framework: We modified Ramulator [69] to evaluate the perfor-

mance and energy consumption of TRiM compared to those of the baseline

system (Base) and two state-of-the-art NDP architectures, RecNMP and Ten-

sorDIMM. The C-instr generator, decoder, and hot-entry replication module

are implemented inside our Ramulator-based simulation framework. We set

Base and the NDP architectures to use commodity DRAM modules, DDR5-

4800, 1 DIMM with 2 ranks per memory channel (see Table 4.1). Base was

simulated in the CPU trace-driven mode with 32MB of last-level cache, which

is large enough to saturate the performance improvement due to the temporal

locality in our synthetic traces.

Benchmarks: We utilize representative RecSys models published in prior work [42].

The vector reduction operation of GnR utilizes an element-wise sum operator

(SLS) and Nlookup is set to 80 with 32-bit floating-point elements. Follow-

ing [118], we vary vlen from 32 to 256 in our experiments. Because the real
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trace used in prior works [42, 63] is not publicly available, we generate a syn-

thetic embedding table access trace with the algorithm discussed in [90] using

the publicly available Criteo dataset [22,103]. Our synthetic trace shows tem-

poral locality similar to the traces presented in [29, 63]. We set NGnR to 4 and

the default phot rate to 0.05%.

Power and area: To analyze the power and area for the NDP architectures in-

cluding TRiM, we estimate the power consumption of DDR5 DRAM with the

DDR4 datasheets from industry [87,105] and the off-chip I/Owith CACTI [59].

We calculated the power of the DRAM read for the IPR (read-only up to bank-

group I/O) by referring to FGDRAM [95] and scaled it properly considering the

DRAM page size, the number of banks, and the datapath length. We first syn-

thesized both the IPR and NPR units using the Synopsys Design Compiler with

40nmCMOS technology at frequencies of 200MHz (for IPR) and 300MHz (for

NPR) respectively, which is demonstrated to operate in the other recent NDP

architecture implemented in the real DRAM devices [77]. Then, we scaled the

result of the IPR to a 20nm DRAM process assuming that a DRAM process

is 10× less dense compared to an ASIC process of an equivalent feature size

considering fewer metal layers and slower transistors, referring to [25,110].

4.4 Evaluation

This section initially evaluates the effect of TRiM’s various design optimizations

by incrementally applying them on top of Base. We then quantify the per-

formance and energy-efficiency benefits of TRiM-G over TensorDIMM and

RecNMP. We also analyze the speedup of TRiM over various phot values and
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evaluate the effects of replication and batching together.
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Figure 4.11: The GnR speedup of the TRiM architectures when applying the
TRiM-R, TRiM-G-naive (rank-/bank-group-level parallelism), C-instr (in-
struction compression), 2-stage (2-stage C-instr transfer), Batching (GnR op-
eration batching), and (hot-entry) Replication schemes.
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4.4.1 Performance and Energy Efficiency

Figure 4.11 shows the speedup in six scenarios of TRiMwhen gradually applying

the modified design of the C/A signals and optimizations at various values of

vlen. The first two scenarios are TRiM-R and TRiM-G-naive, each corresponding

to the TRiM architecture with rank or bank-group level parallelism without any

change in the C/A interface. The next two scenarios are C-instr and 2-stage,

each applying the instruction compression scheme (proposed in [63]) and the

two-stage C-instr transfer scheme to increase the effective C/A bandwidth. The

last two scenarios are Batching and Replication, batching GnR operations

(proposed in [63]) and a hot-entry replication scheme to alleviate the load-

imbalance issue. In later experiments, 2-stage and Replication correspond to

TRiM-G and TRiM-G-rep, respectively.

In general, the effectiveness of our proposal is clearly demonstrated by the

gradually increasing performance as additional optimizations are incrementally

applied, but with varying degrees of effectiveness under different vlen values.

TRiM-R improves the performance by up to 1.46× over Base. TRiM-R can uti-

lize up to twice (Nrank) as much internal bandwidth relative to that by Base.

However, TRiM-R cannot benefit from the cache in the host; thus, its speedup

is less than the increase in the internal bandwidth. TRiM-G-naive also uses

8× more memory nodes and 8× more internal bandwidth than TRiM-R, but its

performance is only slightly higher than that by TRiM-R. This occurs because

TRiM-G-naive is more strictly affected by the C/A bandwidth limitation and

DRAM constraints than TRiM-R.

C-instr achieves up to 45% higher performance than TRiM-G- naive with

various values of vlen because more DRAM commands can actually be trans-
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ferred by exploiting the instruction compression scheme. However, if vlen is

32 or 64, the performance of C-instr is degraded because the number of cy-

cles sending one lookup request by ACT-RDs-PRE is smaller than that by

C-instr. 2-stage improves the performance by 50% and 24% when vlen is 32

and 64, respectively, as it can amplify the bandwidth for the C-instr transfer,

which is limited when vlen is low. Compared to TRiM-G-naive, the schemes

for increasing the effective C/A bandwidth achieve a speedup of 1.2× on av-

erage. There is an additional speedup of 67% on average via batching GnR

operations (Batching) and hot-entry replication (Replication), mitigating the

load-imbalance issue. In conclusion, TRiM-G applying all of the optimizations

achieves speedups of up to 7.7× over Base and up to 5.3× over TRiM-R.

TRiM-G improves the performance over TensorDIMM and RecNMP ow-

ing to the increased internal bandwidth realized by exploiting finer bank-group-

level parallelism. Figure 4.12 shows the speedup and relative DRAM energy

consumption for Base, TensorDIMM, RecNMP, and TRiM-G when varying

vlen. We linearly scale the speedup and static energy from RankCache in a pre-

vious study [63] to the results here. TRiM-G achieves a speedup of up to 5.7×

over Base, and up to 3.7× and 2.9× over TensorDIMM and RecNMP, respec-

tively (see Figure 4.12(a)). Despite the fact that Nnode of TRiM-G is 8× larger

than that of TensorDIMM and RecNMP, the speedup of TRiM-G is lower than

8× because the frequency inside a bank-group bus is lower than that outside

a bank-group, which reduces the peak bandwidth by 33%, and the load im-

balance becomes worse due to the increase in Nnode. When vlen is 32 and 64,

the speedup is relatively low due to the limitation of the ACT frequency, while

TRiM-G demands more frequent ACTs for higher bandwidth utilization. If
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vlen exceeds 128, the speedup is nearly saturated by the internal bandwidth.

As shown in Figure 4.12(b), TRiM-G consumes up to 55%, 54%, and

50% lower DRAM energy than Base, TensorDIMM, and RecNMP, respec-

tively. Figure 4.12(c) shows the energy consumption breakdown when vlen is

128. TRiM-G dissipates 7% less on-chip read energy than Base with the host-

side cache. Compared to RecNMP, TRiM-G consumes 30% less on-chip read

energy and 79% less off-chip I/O energy due to the decreased data transfers

from the IPR to the NPR, and 63% less static energy due to the reduced ex-

ecution time. The energy consumption by the NPR and IPR for TRiM-G is

negligible, accounting for 0.24% and 2.47%, respectively.

Hot-entry replication can improve the performance by up to 36% by al-

leviating the load imbalance. TRiM-G with hot-entry replication achieves a

speedup of up to 7.7× over Base, and up to 5.0× and 3.9× correspondingly

over TensorDIMM and RecNMP (see Figure 4.12(a)). The impact of hot-entry

replication on the energy efficiency is negligible because this scheme does not
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change the total number of lookups in GnR (see Figure 4.12(b)).

4.4.2 Sensitivity Study of Hot-entry Replication

Increasing phot can improve the performance, as the load balancing improves. In

Figure 4.13, the heatmap shows the speedup of TRiM-G over Base according

to NGnR and phot, averaged over the speedups while vlen ranges from 32 to

256. The bar graph shows the ratio of hot requests to all requests according to

phot. As more requests are distributed to memory nodes with lower loads as phot

increases, the load imbalance is alleviated. With phot set to 0.05% and with a

hot request rate of 42%, the speedup is nearly saturated, being 0.2% lower than

that for a perfectly balanced workload and 25% higher than TRiM-G without

hot-entry replication when NGnR is set to 4.

Because increasing NGnR (batching) and phot (hot-entry replication) causes

area and memory capacity overhead, both should be carefully selected in con-

sideration of the diminishing return of speedup. If NGnR exceeds 8 without

replication, the speedup is saturated to around 5.0. With a small phot of hot-

entry replication, the speedup surpasses 5.0 when NGnR is 4. Thus, we set

NGnR to 4 considering that larger values return a low-performance gain with

a large register file requirement, which degrades the DRAM access latency fur-

ther. Also, we set phot to 0.05% such that it saturates the speedup and incurs

only 0.8% of the memory capacity overhead.

4.4.3 Design Overhead

The total area overhead of IPR is 2.03mm2 per 16Gb DDR5 DRAM die [67],

which corresponds to 2.66%, assuming that each chip has a ×8 data I/O bit-
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width and (vlen, NGnR) is (256, 4). Each IPR, one per bank-group, includes

four MACs and two 1KB register files considering double buffering. Because

adding an IPR incurs a small amount of overhead, increasing the driver strength

of the inter-bank datapath by a small degree keeps the DRAM access latency

unchanged with a minimal increase in the read/write energy [112]. The area of

the NPR is 0.361mm2, similar to the area of RecNMP without RankCache.

4.5 Discussion

Applying TRiM to DLRM training: During DLRM training, the gradient of

the reduced vector is required to update the embedding table for the backward

pass of the embedding layer. There is a gradient vector with the same shape

as the embedding vector per batch. For the TRiM architecture with horizontal

partitioning, all memory nodes require gradient vectors to update the embedding

table. By using the datapath inside the TRiM architecture, gradient vectors can

be transferred to all memory nodes. Therefore, the TRiM architecture can utilize

the ample internal aggregate bandwidth during DLRM training. Because the

update of the embedding table is conducted through the element-wise operation

between a target embedding vector and a gradient vector, DLRM training can be

handled by adding an array of ALU units and registers to the existing processing

unit of the TRiM architecture.

Processing multiple embedding tables: Because the size of a single embedding

table does not match the size of the DIMM module with the TRiM architecture

(called a TRiM module), a processing method should be devised when locating

several embedding tables into the TRiM module. Embedding tables are mapped
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in the address space for TRiM. During a GnR operation, the identification of the

embedding table and the embedding vector index are translated into the phys-

ical address by the TRiM driver of the host system. Therefore, the processing

method of the GnR operation is independent of the number of embedding tables

in the TRiM module.

Sensitivity of hot-entry replication scheme to highly skewed dataset: The dataset

used in the industry also has a characteristic that the number of accesses is

skewed to a small number of entries [3]. However, the skewness of the in-

dustry dataset may be different from that of the publicly available dataset. As

the access frequency distribution becomes more skewed, load imbalance is suffi-

ciently mitigated by copying a small number of hot-entries to all memory nodes.

Thus, the capacity overhead due to replication is further reduced. However, if

hot-entries are not evenly distributed among the banks in the memory node

(e.g., bank-group), the number of memory accesses may be concentrated to a

small number of banks. This can lead to memory bandwidth underutilization.

Sensitivity of TRiM design selection according to the DRAM configuration:

The DRAM configuration varies according to the DRAM generation, which

affects the selection of the optimal TRiM design. The number of DRAM banks

is the most important factor in the design selection. DDR3/DDR4/HBM2 have

8/16/16 DRAM banks per rank, respectively. If the embedding vector length

of the model used is sufficiently long and the number of embedding vectors

required per GnR operation is large enough, that the performance of TRiM

can be improved linearly with the number of memory nodes. However, if a PE

is placed in every bank, data preparation time cannot be hidden at all. This

causes low internal bandwidth utilization so that the speedup is much worse
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than the expected performance improvement the degree of which is the same

as the number of banks. The optimal performance can be obtained when each

memory node has at least 4 banks thus fully utilizing the bandwidth, and it is

expected that TRiM achieves a speedup by a factor of about the number of the

quarter of the total banks.
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Chapter 5

Discussion

Applying PIM architectures to various memory-intensive applications: We found

a use case in demand for memory-intensive machine learning applications,

and we accelerated these applications through the proposed NDP architectures

(MViD and TRiM). However, machine learning applications that provide op-

timal performance and accuracy when processing specific tasks evolve rapidly,

so there is a possibility that applications that are mainly used now will not be

used within a few years. Therefore, in order for PIM architectures to be ex-

ploited generally, it is necessary to accelerate not only specific applications but

also primitive operations that are widely used in various applications.

Commonly usedmemory-intensive operations include GEMV, sparse matrix-

vector multiplication (SpMV), and sparse matrix-matrix multiplication (SpMM).

GEMV operation is a primitive operation widely used in machine learning,

including FC layers of the neural network models [77]. SpMV and SpMM

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,

Wonkyung Jung, Sunjung Lee, Jaewan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung
Ho Ahn, ”MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Re-
current Neural Networks,” IEEE Transactions on Computers, April 2020.
”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”

©2021 by Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed
under CC BY 4.0. https://doi.org/10.1145/3466752.3480080.
”TRiM: Tensor Reduction in Memory” ©2020 by Jaehyun Park, Byeongho Kim, Sung-

min Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed under CC BY 4.0.
https://doi.org/10.1109/LCA.2020.3042805.
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are mainly used for matrix multiplication or matrix-vector multiplication that

receives a matrix or vector with a sparse format as input. Moreover, those

operations are often used in graph processing (e.g., graph convolutional net-

work [70]), as the method of representing graph relationships in graph analysis

tasks is generally expressed in a matrix with the sparse format.

TRiM can be applied to accelerate GEMV operations. TRiM can store the

weight matrices in DRAM cells and receive the input vectors from the host,

temporarily storing them in the buffer. The register files for storing the partial

sums of vectors in IPR can be used as the buffer for temporarily storing the

input/output vectors for the GEMV operation in each memory node. With

proper support from the software stack, TRiM can accelerate the memory-

bound GEMV by fully exploiting the internal aggregate bandwidth of DRAM

devices.

SpMM operations (especially, sparse-matrix dense-matrix multiplication)

can also be accelerated by TRiM architecture. By processing an SpMM oper-

ation in the same way as a GnR operation, SpMM can be performed in a way

that utilizes output stationary dataflow [15]. The dense matrix is stored in the

DRAM cell similar to the way the embedding table is stored. Position and value

information of non-zero elements in a single row of the sparse matrix is trans-

ferred to the TRiM architecture the same way as the indices of a GnR operation

are sent to the TRiM architecture. This allows SpMM operations to be handled

the same way as GnR operations.

MViD is an architecture to accelerate SpMV, but if matrix elements are

processed without decoding for the sparse format, GEMV operations can also

be accelerated. The degree of GEMV performance improvement is expected to
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be about four times, which is half of the total number of banks on a single-rank

configuration.
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Chapter 6

Related work

Near-Data Processing: A large body of prior work has sought to place the

processing logic closer to the memory. Similar to MViD and TRiM, recent

works proposed DRAM or DIMM module-based near-data processing archi-

tectures [6,7,30,50,79,80,83]. Chameleon [11] proposed an NDP architecture

based on Load-Reduced DIMM. Adding logic to stacked memory solutions

was also explored in prior works [28, 31, 39, 68, 78, 82]. TETRIS [34] adds a

simple data accumulator near the DRAM banks to accelerate the CNNs, but

the proposed architecture cannot fully utilize the internal DRAM bandwidth.

McDRAM [110] is closest to MViD in that it placed 2,048 MAC units within

a DRAM die for accelerating MLPs and RNNs. However, McDRAM did not

consider the sparsity of the matrices, the power constraints of the DRAM de-

vices, and concurrency in accessing DRAM from processors while performing

MV-mul. CHoNDA [18] considered concurrent host access during near-data

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,

Wonkyung Jung, Sunjung Lee, Jaewan Choi, Jaehyun Park, Minbok Wi, Sukhan Lee, and Jung
Ho Ahn, ”MViD: Sparse Matrix-Vector Multiplication in Mobile DRAM for Accelerating Re-
current Neural Networks,” IEEE Transactions on Computers, April 2020.
”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”

©2021 by Byeongho Kim, Jaehyun Park, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed
under CC BY 4.0. https://doi.org/10.1145/3466752.3480080.
”TRiM: Tensor Reduction in Memory” ©2020 by Jaehyun Park, Byeongho Kim, Sung-

min Yun, Eojin Lee, Minsoo Rhu, and Jung Ho Ahn is licensed under CC BY 4.0.
https://doi.org/10.1109/LCA.2020.3042805.
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processing. However, CHoNDA lacked a detailed analysis of the power gener-

ated by processing data within the DRAM. [72] presents an HBM processing-

in-memory chip that exploits bank-level parallelism. However, this architec-

ture is inefficient when used to perform reduction operations because it neither

organizes PEs hierarchically nor allows PEs to access non-local memory. [64]

presents a real near-data processing architecture that locates FPGA chip in the

buffer chip of DRAM and exploits rank-level parallelism. But as the DRAM

chip is not modified, this architecture cannot exploit finer-grained parallelism.

Computational optimization of RNN: Persistent RNN [26] alleviated the mem-

ory bandwidth bottleneck of LSTM by storing a portion of weight elements of

an LSTM layer in GPU’s on-chip memory. Sparse Persistent RNN [125] ex-

tended [26], covering sparse matrices as well. It compresses a sparse matrix into

a densely packed matrix. However, both are difficult to apply to mobile envi-

ronments with limited on-chip memory capacity. Zhang et al. [124] reduced

the amount of off-chip memory transfers by exploiting inter- and intra-cell

parallelism of LSTM in a mobile GPU with limited on-chip memory, which is

orthogonal to MViD.

NN accelerators: Fowers et al. [33] exploited pipeline parallelism to utilize

processing units effectively and to reduce the service latency of few batches by

distributing RNN weights across on-chip memory of FPGAs. However, they

assumed all data can fit in on-chip and did not consider the sparsity of the

weight matrices. EIE [46] proposed a hardware model capable of sparse matrix-

vector multiplication exploiting data pruning forMLP and fully-connected lay-

ers. ESE [45] proposed an optimized architecture for FPGA by applying pruning

and quantization for LSTM models. Cambricon-X [122] suggested an accel-
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erator architecture for a wide range of DNN models by supporting both pruned

sparse matrices and dense matrices. Although EIE, ESE, and Cambricon-X are

similar to MViD in that they accelerate sparse matrices, they suffer from the

off-chip memory bandwidth bottleneck when MLP/RNN models do not fit in

on-chip memory with limited capacity.

Accelerating RecSys: The computer systems community has recently seen grow-

ing interest in accelerating RecSys [40–42,51,52,62–64,73,116]. FAFNIR [10]

exploits a tree structure to perform all reductions in rank-level parallel NDP

units, reducing the off-chip data movement and the number of connections

between the cores and the NDP units. However, FAFNIR requires a separate

chip outside of the DRAM module and is not compatible with the memory

controller on the conventional processor die. Tensor Casting [74] proposed a

rank-level parallelism NDP architecture for training RecSys models. In addition

to the method of accelerating embedding layers, [109] exploited complementary

partitions that reduced the number of embedding vectors while preserving the

uniqueness of the embedding, and [120] proposed a low-precision embedding

table with a high-precision cache.
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Chapter 7

Conclusion

The demand for memory-intensive operations is increasing as interest in vari-

ous deep neural network models is growing. Because it is costly to increase the

main-memory bandwidth of the system, the Processing-in-Memory architec-

tures that implement the processing unit in/near the main-memory to supply

higher aggregate internal bandwidth have been proposed. In this dissertation,

we propose two PIM architectures that accelerate memory-intensive operations

used in various neural network models.

We have proposed MViD, a near-data processing architecture that acceler-

ates matrix-vector multiplication (MV-mul) in RNNs by performing MV-mul

with multiply-accumulate (MAC) units inside main-memory DRAM. MViD

maximizes computational and energy efficiency by using a sparse matrix for-

mat and reducing weight precision through quantization. MViD populates the

MAC units only on a portion of the DRAM banks considering the limited power

budget of DRAM. We proposed an optimized sparse matrix format for MViD

This chapter is based on [65,66,99].
©2020 IEEE. Reprinted, with permission, from Byeongho Kim, Jongwook Chung, Eojin Lee,
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”TRiM: Enhancing Processor-Memory Interfaces with Scalable Tensor Reduction inMemory”
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called delta encoding. To process requests from a processor concurrently with

MV-mul, we allow MViD to slow-down or pause the progress of MV-mul.

Furthermore, we solve the performance overhead caused by a pause in MV-

mul through bank partitioning. Our evaluation shows that MViD improves the

throughput of Deep Speech 2, an MV-mul dominant application, by up to 4.9×

and 7.2× compared to the baseline systemwith four DRAM ranks when running

Deep Speech 2 alone and with memory-intensive applications, respectively.

Also We have proposed TRiM, a near-data processing (NDP) architecture

for accelerating tensor gather-and-reduction (GnR) operations in recommen-

dation systems. First, we identified the challenges of state-of-the-art NDP ar-

chitectures for accelerating GnR and the potential for further energy-efficiency

improvements by unlocking the inherent bandwidth amplification opportunities

within the DRAM chip’s tree-topology-based datapath by populating pro-

cessing elements for a reduction at the datapath. We proposed a two-stage in-

struction transfer scheme to amplify the control bandwidth by splitting the data

path into two stages and pipelining them. The hot-entry replication scheme

alleviates the load imbalance problem. We also improve the data reliability of

TRiM by repurposing the existing on-die ECC to only detect and not correct

errors during GnR as it accesses the embedding tables in a read-only manner.

TRiM improves the performance of GnR by up to 7.7× and 3.9× compared to

the DDR5-based baseline system and the state-of-the-art NDP architecture,

respectively.
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국문초록

최근 많은 신경망 연구들이 관심을 받으면서, RNN 모델 혹은 추천 시스템

모델과 같은 메모리 집약적 신경망 모델들이 다양한 작업을 처리하기 위해서 등장

하고있다. RNN 모델과 추천 시스템 모델은 대부분의 실행 시간 동안 각각 행렬-

벡터 곱을 연산하고 임베딩 레이어를 처리한다. 임베딩 레이어의 기본 연산인

GnR 연산은 여러개의 임베딩 벡터를 모은 다음 이들을 합치는 동작을 한다. RNN

처리시필요한행렬과추천시스템모델처리시필요한임베딩테이블은재사용성이

낮고 이들의 크기는 계속 증가하여 온칩 스토리지에 저장될 수 없기 때문에 행렬-

벡터 곱 및 GnR 연산의 성능 및 에너지 효율성은 주 메모리 DRAM의 성능 및

에너지 효율성에 의해 결정된다. 따라서 DRAM 내에서 이러한 연산을 처리하는

방식이 관심을 끌고있다.

본 논문에서는 먼저 DRAM 뱅크 내부에 MAC 유닛을 배치하여 행렬-벡터

곱을 수행하는 MViD라는 주 메모리 구조를 제안한다. 그리고 더 높은 계산 효율

성을 위해 희소 행렬 형식을 사용하고 양자화를 활용한다. DRAM 장치가 사용할

수 있는 제한된 전력 때문에 DRAM 뱅크의 일부에만 MAC 장치를 구현한다.

전력 제한 조건을 충족하면서 프로세서의 메모리 요청을 동시에 처리하기 위해

행렬-벡터곱을 늦추거나 일시 중지하도록 MViD를 설계한다. 그 결과로 MViD

가 메모리 집약적 워크로드로 Deep Speech 2의 추론을 실행하면서 4개의 DRAM
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랭크를 사용하는 프로세서에서 행렬-벡터곱을 처리하는 기준 시스템에 비해 7.2

배 더 높은 처리량을 제공한다는 것을 보여준다.

그리고 우리는 추천 시스템을 가속하기 위한 메모리 근처 처리 구조인 TRiM을

제안한다. DRAM 데이터 경로가 계층적 트리 구조를 갖는다는 사실을 기반으로

TRiM은 DDR4/5 랭크/뱅크그룹/뱅크 수준에서 DRAM 내부 벡터 감소 장치로

DRAM 데이터 경로를 강화한다. 병렬로 실행되는 여러 벡터 감소 장치에 명령을

효과적으로 제공하기 위해 DRAM의 인터페이스를 수정한다. 또한 벡터 감소

장치에서 발생하는 부하 불균형을 완화하기 위해 호스트 측 구조에 핫 임베딩

벡터 복제를 제안한다. DDR5를 기반으로 하는 최적의 TRiM 설계는 DRAM

칩의 2.66%에 해당하는 크기 오버헤드만으로 최대 7.7배 및 3.9배의 속도 향상을

달성하고 임베딩 벡터 수집의 에너지 소비를 55% 및 50% 줄인다.

주요어: 프로세싱-인-메모리, 메모리 근처 처리, DRAM 내부 처리, 메모리

집약적, 메모리 세부구조

학번: 2017-22676
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