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Non-genetic signatures from liquid biopsy samples are emerging as 

feasible markers of cancer because plasma cell-free DNA (cfDNA) is 

representative of the patient's systemic state. Non-genetic signatures include 

cfDNA methylation, topology of cfDNA, and cfDNA fragmentomics. DNA 

methylation has somatic tissue specific patterns, and DNA fragment size is 

one of the most representative characteristics of cfDNA. In particular, cfDNA 

from the plasma of cancer patients, which contains circulating tumor DNA 

(ctDNA), can be representative of the status of both the primary tumor and 

minimal residual disease. For this reason, the tissue of origin (TOO) could be 

determined from ctDNA methylation patterns. Fragment size of ctDNA could 

also be a useful marker for cancer patients. However, studies on the 

comprehensive applications of non-genetic signatures for cancer diagnosis, 

monitoring, and predicted prognosis are still needed to define and validate 

the role of non-genetic markers in clinical practice. 

Here, I show 1) an accurate prediction model that was developed using 

a machine learning algorithm for the comprehensive analysis of multiple CpG 

sites. Although many DNA methylation markers have been reported, 

previously reported markers were based on a single marker and a western 

population. My prediction model includes 305 CpG sites and was built by a 

machine learning algorithm based on tissue samples from Korean colorectal 

cancer patients. The prediction model showed high performance not only in 

databases of pan-cancer tissue samples but also those based on plasma from 

cancer patients. In addition, the prognosis of colorectal cancer patients was 

accurately predicted with a subset of the 305 CpG sites.  
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Next, I showed that 2) the fragmentation ratio of specific lengths of 

DNA could be a valuable prognostic marker for colorectal cancer patients. 

Many recent studies have shown ctDNA fragment size is shorter than that of 

cfDNA derived from healthy tissue and have attempted to apply this to cancer 

diagnosis; however, the data are limited, and the only application has been 

for cancer diagnosis. In order to fill this gap, cfDNA fragment size was 

analyzed using targeted deep sequencing from paired ends. I demonstrated 

that ctDNA fragment length was related to variant allele frequency, and the 

prognosis of colorectal cancer patients could be predicted by the 

fragmentation ratio at a specific sampling time in longitudinal samples.  

In summary, blood based non-genetic signatures are significantly 

associated with the status of colorectal cancer and can be used to predict 

patient prognosis. 

 

Keyword : Colorectal cancer (CRC), Epigenetics, circulating tumor 

DNA (ctDNA), Diagnosis, Prognosis, Next generation sequencing (NGS) 
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ABSTRACT 

DNA methylation is a key epigenetic regulator in mammalian 

development. Furthermore, DNA methylation is well known to play an 

important role in carcinogenesis. Pattern of DNA methylation vary in somatic 

cancer tissues and among subjects of different races. Although numerous 

cancer-related DNA methylation markers have been reported, they were 

based on single marker studies performed in Western populations. In this 

study, we investigated discovering comprehensive markers and validating the 

potential as diagnosis and prognosis for colorectal cancer. Patients with 

various stage of colorectal cancer were eligible for the current study, mainly 

stage III. We generated genome-wide methylation data from 379 colorectal 

cancer (CRC) tissues and 330 available paired adjacent normal mucosa tissues 

from Korean patients by Illumina EPIC Human Methylation microarray 

targeting 860,000~ CpG sites. A machine learning algorithm was used to build 

an optimized prediction model and select the tumor specific markers based 

on through theses CpG sites. Then, the risk score was devised for prognosis 

using this marker set. Finally, in order to validate the rule of CpG sites, the 

genomic location and pathway enrichment analysis was performed by 

CHROMHMM and Metascape. A total of 305 methylation markers that showed 

statistically significant differences between normal and cancer tissues were 

selected. Our model could accurately identify CRC (areas under the curve for 

the training and validation cohorts: 0.968 and 0.984, respectively). Using our 

prediction model, the colorectal cancer patients were predicted as colorectal 
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cancer accurately in the methylation data from TCGA (COREAD; colorectal 

cancer tissue DNA) and GEO dataset (plasma cfDNA from colorectal cancer 

patients). The risk score comprising the subset of 305 methylation markers 

was calculated, and poor prognosis was predicted in the high-risk score 

group (overall survival P = 0.073, progression-free survival P = 0.0026). 

Gene ontology (GO) enrichment analysis showed that the 305 CpG sites were 

enriched in transcription regulatory regions (160/305, 52.5%) and were 

associated with developmental process and carcinogenesis (GO: 0032502, 

log10P = -4.28; C4721208, log10P = -3.80). In summary, the performance of 

our prediction model with these 305 CpG sites was highly accurate for CRC 

diagnosis, and the optimized risk score could predict the prognosis of Korean 

CRC patients. 

Key words : Colorectal cancer (CRC), DNA methylation, Diagnosis, Prognosis, 

Machine learning, Risk score 

Student Number : 2018-37966 
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INTRODUCTION 

Colorectal cancer (CRC) is a leading cause of death worldwide, 

accounting for 9.0 age-standardized deaths per 100,000 people in 2020 (1). 

According to GLOBCAN 2018 data, the cumulative risk of CRC development 

in Korea was ranked in the top two (2). Regardless of sex, the incidence of 

the CRC in Korea has been increasing steadily (3). The incidence rate 

increases in an age-dependent manner (15–34 years, 3.6%; 35–64 years, 

10.3%; ≥65 years, 13.4%). However, CRC is curable when detected early, 

with survival rates >89.2% at 5 years for patients diagnosed with stage I 

disease. In contrast, patients with regional spread (stage IIIC) have a worse 

prognosis, with approximately 43.2% surviving at 5 years. Therefore, early 

diagnosis of CRC is important. Conventional screening methods include 

colonoscopy or fecal occult blood testing. Although screening programs are 

heterogeneous worldwide, introduction of a screening program seems to be 

followed by reduced CRC mortality. 

DNA methylation is well known to play an important role in 

carcinogenesis. For example, it was reported that either the cis-regulatory 

elements of tumor suppressor genes were hypermethylated or the cis-

regulatory elements of oncogenes were hypomethylated in tumor cells 

compared to normal cells (4). These aberrantly methylated regions have been 

considered as diagnostic or prognostic markers for cancer. Luo et al. reported 

the use of DNA methylation markers for diagnosing, prognosing, and 

subtyping CRC based on machine learning, but the reproducibility of these 
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markers is unclear (5). DNA methylation has somatic cancer-specific patterns, 

which Liu et al. used to develop a prediction model for both cancer diagnosis 

and tissue of origin (TOO) (6). However, DNA methylation patterns are highly 

race dependent (7). A comprehensive analysis of DNA methylation using East 

Asian population data is still needed. 

Machine learning and other computational resources are increasingly 

used to discover epigenetic markers (8, 9). Here, I describe the identification 

of epigenetic markers for cancer diagnosis using a large-scale Korean CRC 

patient dataset. A comprehensive analysis based on machine learning was 

carried out to identify genome-wide methylation patterns from databases, and 

the utility of diagnostic markers and prognostic risk score was determined 

with statistical methods. 
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EXPERIMENTAL DESIGN 

1. Extraction genomic DNA from Colorectal tissue 

Genomic DNA (gDNA) of 379 tumor tissue and 330 adjacent normal 

colon tissues were extracted by following kit. Genomic DNA was isolated 

from each sample using a Qiagen DNA FFPE Tissue Kit (Qiagen, Hilden, 

Germany) for FFPE samples and a QIAamp DNA Mini Kit (Qiagen) for fresh-

frozen tissues. After isolation, the concentrations and purities of genomic 

DNA were measured using a spectrophotometer (ND1000; Nanodrop 

Technologies, Thermo Fisher Scientific, MA, USA). 

 

2. Illumina Infinium MethylationEPIC array BeadChip (850K) and Whole 

transcriptome sequencing 

Genome-wide methylation data was generated by Infinium 

Methylation EPIC array (850K array). The signals were normalized by ‘SWAN’ 

method in R package ‘minfi’ (10). Through this, the 𝛃 value of ~850,000 CpG 

sites were calculated as representing the level of DNA methylation. Whole 

transcriptome sequencing was performed and the quantification by gene 

symbol and gene iso-form were calculated. 

 

3. Monte-carlo simulation 

Theoretically, 6,000 dGE(diploid genome equivalent; ~40ng) can be 

isolated from 4ml of plasma which is 40% of the 10ml whole blood (11). 

Detection rate 0.01 % means the platform detect 1 anomalous signal out of 
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12,000 copies. In order to simulating this theoretic situation, I performed 

monte-carlo simulation. As Diploid genomes, 15,000 is the expected copy 

number in 100 ng cfDNA. I created 15,150 simulated genomes with from 1 to 

10,000 independent loci with from 0.01 to 10% cancer-specific DMRs in 

tenfold increments. Next, I performed simulation with depending on the 

number of epi-mutations to detect. The process was repeated 1,000 times 

for each combination of parameters. 

 

4. Building the prediction model and selecting significant CpG sites 

Setting cohort for machine learning: Using R package ‘caret’, 

colorectal cohort was divided into training cohort and validation cohort (8:2) 

keeping the ratio (0.87:1) which is the ratio of sample size between adjacent 

normal tissue and colorectal cancer tissue. For cross validation, the training 

cohort was divided into sub-training set and test set (8:2) keeping the ratio 

(0.87:1), additionally. Selection markers for machine learning: With sub-

training set, differentially methylated regions (DMRs) and each p value 

between tumor tissue and normal tissue were calculated by student t-test. 

After that, Benjamini-Hochberg correction were performed for calculating 

FDR. Out of 850,000 probes, TOP 1,000 probes (500 DMRs for hyper-

methylated in tumor & 500 DMRs for hypo-methylated in tumor) were 

selected by the criteria which is FDR under 0.05 and 𝚫𝛃 value (mean of 𝛃 

tumor tissues - mean of 𝛃 normal tissues). This step was repeated 5 times 

for inner cross-validation. Selection best machine learning model: With TOP 

1,000 probes, the performance was compared among 5 suitable classification 
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model (Linear Discriminant Analysis; LDA, Decision Tree; CART, K Nearest 

Neighbours; KNN, Random Forest; RF, Support Vector Machines; SVM). 

Machine learning was performed by inner cross validation (inner CV; n=10). 

Accuracy and Kappa value were calculated in every repeat. Through this, 

TOP 2 accurate models were selected. Selection probe set: With TOP 2 

models, importance score for each probe was calculated. In order to select 

the probe set, inflection point analysis was performed based on importance 

score sorted in descending order. Then, the set of probes intersecting 

between the TOP 2 models was selected. Building prediction model & 

Calculating performance of prediction: the prediction model was built by the 

set of probes and TOP 1 classification model among 5 models. Area under 

curve (AUC) with both sub-training set and test set was calculated by R 

package ‘pROC’. Outer cross validation: The methods up to this point were 

repeated a total of 5 times. Building final prediction model with the final set 

of probes: the final classification model which is called 3 more times out of 5 

outer CV was selected. With 305 final probes, the prediction model for cancer 

diagnosis was built. Final validation & visualization: With validation cohort, 

the AUC was calculated. And heatmap with 305 probes set were visualized 

by R package ‘pheatmap’. 

 

5. Processing 450k methylome data of TCGA, EWAS, GEO database 

Using FireBrowse database (http://firebrowse.org/), methylome data 

(Infinium HumanMethylation450 BeadChip array) of pan-cancer level tissues 

was collected (tumor and available matched normal tissue from 33 types of 
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cancer) (12). From EWAS database, methylome data (Infinium 

HumanMethylation450 BeadChip array) of 31 type of somatic tissues was 

collected (13). In GEO database, large cohort of normal PBMC methylome 

data (GSE40279; Infinium HumanMethylation450 BeadChip) and methylome 

data of plasma cfDNA from various disease included colorectal cancer 

(GSE122126; Infinium HumanMethylation450 BeadChip) were collected. 

Either ‘NA’ or probes in sex chromosome were excluded for analysis.  

 

6. Deconvolution and clustering  

With R package ‘Rtsne’, the deconvolution of large-scale database 

was performed (dims = 2, max_iter = 500, perplexity = 5). Using prcomp 

method in R package ‘ggfortify’, PCA analysis was performed. 

 

7. Permutation test 

With TCGA and EWAS data set (n=15,646), the intersected probes 

were collected. Then, random forest algorithm applied to predict the tissue 

of origin (ntree = 500). This step repeated 1,000 times and error rate were 

calculated for each number of sampled probes. 

 

8. ChromHMM status and GO analysis 

 Using bedtools (v.2.28.0), the 305 probes were annotated by 

ChromHMM status (14). In addition, the coordinate of 305 probe were 

annotated by Homer ‘annotatepeak.pl’ (15) . Then, GO analysis was 

performed with probes which were located in either transcription starting stie 
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(TSS) or gene promoter (16) . 

 

9. Risk score 

Using coxph method in R package ‘survival’, cox proportional-

Harzards model analysis was performed with each probe. The prognostic 

markers which were statistically fulfilled for overall survival (OS) and 

progression free survival (PFS) were selected (Log-rank test; p-value < 

0.05). 20 and 133 probes were selected as prognostic markers for OS and 

PFS, each. The risk score was determined based on coefficients for each 

probe from cox regression analysis. The formula is as follows: 

 

 

10. Survival analysis 

Using R package ‘survminer’, the survival rate for OS and PFS were 

calculated. And Kaplan-Meier plot were visualized and p value were 

calculated by Log-rank test. 
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RESULTS 

1. Clinicopathological Information of the COPM Dataset 

All patients provided written informed consent before any study-

specific procedures. The protocol of this study was reviewed and approved 

by the Institutional Review Board (IRB) of SNUH (IRB number: 1708-031-

875) and was conducted in accordance with the Declaration of Helsinki in 

biomedical research involving human subjects. Clinicopathological 

information was collected from 367 of 379 patients (Table 1). The median age 

of the cohort was 62 (23–88), and the percentages of males and females were 

60.9% and 35.9%, respectively. The most common disease stage was III 

(61.2%), followed by II (19.5%), IV (11.9%), and I (4.2%). The anatomical sites 

of the primary tumor were right colon (25.5%), left colon (68.9%), and other 

(3.2%). The pathological subtypes were adenocarcinoma (91.3%), mucinous 

adenocarcinoma (4.2%), and other (1.3%). Microsatellite instability status was 

high (7.1%), low (4.7%), and stable (83.1%). Genome-wide methylation data 

and processed methylation data were generated for each patient. 
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Table 1. Clinicopathological information of the COPM cohort. 

 

 

 

 

 

 

 

 

 

 

Categories
(n = 379)

Number of 
patients (%)

Age at diagnosis, median (range) 62 (23 – 88)

Sex
Male 231 (60.9 %)

Female 136 (35.9 %)

Stage

I 16 (4.2%)

II 74 (19.5%)

III 232 (61.2%)

IV 45 (11.9%)

Primary tumor site

Right colon 95 (25.15%)

Left colon 260 (68.9%)

Other 12 (3.2%)

Pathology

Adenocarcinoma 346 (91.3%)

Mucinous adenocarcinoma 16 (4.2%)

Other 5 (1.3%)

Microsatellite instability

MSS 315 (83.1%)

MSI-L 18 (4.7%)

MSI-H 27 (7.1%)

Not available 7 (1.8%)

not available patients; n = 12
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2. Prediction Model Performance Based on Machine Learning 

Through Monte Carlo simulation, screening more than eight epi-

mutations could detect cancer containing 0.1% tumor content with an 

accuracy of 100% (Figure 1). To precisely differentiate between tumor and 

normal tissue, more than eight markers needed to be comprehensively 

analyzed (Figure 2). DNA methylome data was used to determine which 

machine learning algorithm was best fitted. To avoid overfitting, 10-fold inner 

CV and 5-fold outer CV was performed. This generated the prediction model 

with the KNN algorithm and 305 cancer-specific markers. Using PCA, PC1 

could separate tumor and normal tissues with all probes (17.8%) or 305 

markers (85.31%), but the samples were more distinguishable using 

calculation with the 305 probe set (Figures 3 and 4). Overall, 292 of 304 

tumors and 74 out of 75 tumors were predicted as CRC in the training cohort 

(n = 568; 304T/264N) and validation (n = 141; 75T/66N) cohorts, respectively 

(Figure 5A, C), with corresponding AUCs of 0.968 and 0.984 (Figure 5B, D). 

In summary, prediction model performance was highly accurate and could 

precisely distinguish CRC from normal tissue. 
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FIGURE 1. In silico simulation for setting the optimal number of DMRs. 

The probabilities of detection were plotted along with fraction of tumor. The 

number of DMRs are annotated by color. 
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FIGURE 2. Pipeline for building the prediction model and discovering cancer-

specific markers. 

The outer CV for assessing model performance of the model is shown on the 

left box. The inner CV for building every model is shown on the right side. 
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FIGURE 3. Statistical differences according to tissue type.  

(A) PC 1 and 2 were calculated with the methylation level measured at 

~850,000 CpG sites using the Illumina EPIC array. Standard deviation (B), 

mean (C), and relative standard deviation (D) were calculated as the basic 

statistical values. Tumor tissues (n = 379) are in red, and adjacent normal 

mucosa tissues (n = 330) are in green. 
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FIGURE 4. Statistical differences according to tissue type.  

(A) PC1 and 2 were calculated with the methylation level measured at 305 

CpG sites using Illumina EPIC arrays. Standard deviation (B), mean (C), and 

relative standard deviation (D) were calculated as the basic statistical values. 

Tumor tissues (n = 379) are in red, and adjacent normal mucosa tissues (n = 

330) are in green. 

 

 

 

 

 

 

 

A B

C D
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FIGURE 5. Prediction model performance using 305 DNA methylation 

markers for cancer diagnosis. 

Unsupervised hierarchical clustering of markers differentially methylated 

between CRC and normal tissue DNA in the training (n=568) (A) and validation 

(n=141) (C) cohorts. The AUCs were calculated by ROC analysis in the 

training (B) and validation (D) cohorts (0, normal colon tissue; 1, colorectal 

cancer tissue) 
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3. Prediction Model Application 

 To validate prediction model performance, methylome data from 

various sources were collected and processed. First, t-distributed stochastic 

neighbor embedding (tSNE) analysis was performed with TCGA, EWAS, and 

GSE40279 datasets. Through this step, somatic tissues with tissue-specific 

methylation patterns and normal tissues and tumor tissues were clustered 

separately (Figure 6). The TOO error rate was calculated as <5% when more 

than 100 probes were used (Figure 7). Although TCGA and COPM were 

different from the platform, the intersected probes were selected, and the 

prediction model was re-built (Figure 8). The performance of the re-built 

prediction model was highly accurate (training cohort, 0.997; validation 

cohort, 0.976; TCGA, 1.0) (Figure 9). The re-built prediction model could 

accurately distinguish tumor samples from matched normal samples in almost 

all types of cancer except glioblastoma, kidney chromophobe, 

pheochromocytoma and paraganglioma, sarcoma, low-grade glioma, thyroid 

carcinoma, thymoma, and uveal melanoma (Figure 10A). In particular, normal 

PBMC methylome data (GEO40279) could accurately be predicted as not 

cancer. Furthermore, plasma cfDNA methylome data (GEO122126) from CRC 

patients could be predicted as CRC (100%; 3/3) (Figure 10B). The results 

showed that our prediction model could predict cancer based on plasma 

cfDNA, as well as gDNA. 
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FIGURE 6. tSNE analysis with CpG methylation level. 

tSNE analysis was performed using TCGA (A) and EWAS (C) datasets. 

Samples are annotated with tissue type-specific colors (B). (ACC, 

adrenocortical carcinoma; BLCA, bladder carcinoma; BRCA, basal breast 

invasive carcinoma; CESC, cervix squamous cell carcinoma; CHOL, 

Cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, Lymphoid 

Neoplasm Diffuse Large B-cell Lymphoma; READ, rectum carcinoma; ESCA, 

esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck 

squamous cell carcinoma; KICH, kidney chromophobe carcinoma; KIRC, 

kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; 

LGG, low grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung 

adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, Mesothelioma; 

A B

C
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OV, ovarian carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, 

Pheochromocytoma and Paraganglioma; PRAD, prostate adenocarcinoma; 

SARC, Sarcoma; STAD, stomach adenocarcinoma; SKCM, skin cutaneous 

melanoma; TGCT, Testicular Germ Cell Tumors; THCA, thyroid papillary 

carcinoma; THYM, Thymoma; UCEC, uterine corpus endometrial carcinoma; 

UCS, uterine carcinosarcoma; UVM, Uveal Melanoma; PBMC_Norm, PBMC 

from healthy individual) 
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FIGURE 7. Permutation test for error rate of TOO (n = 1,000) 

The error rate was calculated for sampled probes in every random forest test. 

The two datasets are annotated by specific colors (TCGA, n = 10,321; EWAS, 

n = 5,325). 
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FIGURE 8. The PCA (A, C) and tSNE (B, D) analyses were performed for data 

and sample types. Using the intersected probes (n=76), the methylation 

values were used for this analysis. The data and sample types are annotated 

by specific colors. 
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FIGURE 9. Prediction model performance using intersected 76 DNA 

methylation markers for cancer diagnosis. 

Unsupervised hierarchical clustering of methylation markers differentially 

methylated between CRC and normal DNA in the training (n=568) (A), 

validation (n=141) (C), and TCGA COREAD (n=423) (E) cohorts. The AUCs 

were calculated by ROC analysis in the training (B), validation (D), and TCGA 

COREAD (F) cohorts. COREAD, colorectal adenocarcinoma. (0, normal colon 

tissue; 1, colorectal cancer tissue) 
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FIGURE 10. Re-constructed prediction model performance for other cancer 

and sample types. 

TCGA database with the normal PBMC cohort (GSE40279) and plasma cfDNA 

database were estimated by the prediction model. (A) Primary tumor and 

normal tissues were predicted and plotted in TCGA dataset with GSE40279. 

(B) In the GSE122126 dataset, plasma cfDNA and gDNA derived from various 

disease types or healthy individuals were predicted and plotted.  
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4. Biological Rules of the Final Probe Set and Risk Score 

As an important gene expression regulator, DNA methylation in cis-

regulatory elements could be crucial to either carcinogenesis or disease 

progression (17). The 305 probes were annotated using ChromHMM and 

subjected to pathway analysis with Metascape (16). Overall, 160 of 305 

(52.5%) probes were annotated in regions related to gene regulation (Figure 

11). Pathway enrichment analysis showed that the gene set containing probes 

in the promoter regions were enriched in developmental processes and 

carcinogenesis (GO: 0032502, log10 P = -4.28; C4721208, log10 P = -3.80) 

(Figure 12). In addition, 9 of the 25 probes annotated in either promoter 

regions or coding sequence (CDS) regions were correlated with mRNA 

expression (Figure 13). The risk scores for OS (20 probes) and PFS (133 

probes) were also determined. Poor prognosis could be predicted in high-risk 

score group (OS, P = 0.073; PFS, P = 0.0026) (Figure 14). These results were 

more statistically significant than when all probes were used (OS, P = 0.14; 

PFS, P = 0.015) (Figure 15). Although the risk score was not correlated with 

age or sex, the risk score for OS was statistically higher in the late-stage 

group (P < 0.05, t-test) (Figures 16, 17, 18). In conclusion, the probe set was 

associated with the cancer-related pathway, and the risk score could be a 

potential prognostic marker. 
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FIGURE 11. Chromatin status correlated with the probe set (ChromHMM). 

The genomic regions of CpG sites were annotated using the ChromHMM 

database. The proportion of the total probe set (A), the probe set for OS risk 

score (B), and the probe set for PFS risk score (C) were calculated. 
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FIGURE 12. Pathway analysis using various databases through Metascape. 

Pathway analysis (A), the gene-related disease (B), and the regulator of gene 

list (C) were analyzed and bar plotted with P values transformed by -log10 
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FIGURE 13. Correlation between methylation level and gene expression. 

mRNA expressions were matched with the methylation levels of the gene-

related regions. (A) FPKM values of gene lists related with the target probe 

set were plotted. (B) Beta values for CpG sites matched with gene list were 

plotted. 
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FIGURE 14. The risk score using the subset of 305 probe set as prognostic 

marker. 

The high-risk score group for OS had poor prognosis compared to the low-

risk score group for (A) OS (log-rank test, P = 0.073) and (B) PFS (log-rank 

test, P = 0.0026).  
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FIGURE 15. Risk score using the total of 305 probe sets as prognostic 

markers. 

The high-risk score group for OS had poor prognosis compared to the low-

risk score group for (A) OS (log-rank test, P = 0.14) and (B) PFS (log-rank 

test, P = 0.0026).  
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FIGURE 16. The association risk score with cancer patient age. 

Risk scores for OS (A) and PFS (B) were plotted. 
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FIGURE 17. The association risk score with cancer patient sex. 

Risk scores for OS (A) and PFS (B) were plotted. 
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FIGURE 18. The association risk score with cancer stage. 

Risk scores for OS (A) and PFS (B) were plotted. P values were calculated 

with Student’s t-tests (OS, P = 0.05; PFS, P = N.S.). Early-stage group 

included the stage I and II and late-stage group included the stage III and IV. 
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DISCUSSION 

An accurate prediction model and diagnostic markers were developed 

for Korean patients with CRC. To our knowledge, ours is the first description 

of CRC-specific methylation markers to build a prediction model using data 

from the largest Korean CRC cohort (COPM dataset; 330 adjacent normal 

mucosa tissues and 379 CRC tissues). Furthermore, risk scores based on final 

diagnostic marker subset could predict CRC patient prognosis.  

The analysis was based on a machine learning algorithm with the goals 

of identifying the best model for predicting CRC and selecting an optimal 

probe set using genome-wide methylation data. Due to the nature of machine 

learning, the number of patients in the cohort is an important feature. To 

effectively utilize this feature, the cohort was separated prior to analysis. 

Comprehensive analysis is needed for the properties of DNA methylation. In 

a previous report, cancer tissue-specific methylation pattern was discovered 

by machine learning and could predict the TOO (6, 18). Although this model 

was built for CRC, predicting TOO would be possible by adding other types 

of cancer. The model accurately predicted CRC patients in TCGA and GEO 

datasets (n = 9,660 tissues and 59 plasma cfDNA) as having CRC. The 

prediction model probes were 305 CpG sites in the human genome. Therefore, 

the prediction model can analyze not only 850K array-based methylation 

values but also other platform-based methylation values. Targeted 

sequencing is one of the representative methods for this approach and liquid 

biopsy, where the amount of cell-free DNA is very low, so a platform based 
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on bisulfite conversion would be not applicable (19, 20). To overcome these 

issues, methylation levels can be detected using bisulfite-free methods based 

on enrichment using methylated CpG sites with specific antibodies and 

enzymatic C to T conversion (21) (22). The use of these methods would make 

the prediction model more powerful for understanding CRC. 

The 305 CpG sites were associated with developmental processes and 

carcinogenesis (GO: 0032502, log10P = -4.28; C4721208, log10P = -3.80). 

DNA methylation is a critical gene regulation mechanism. In cancer, cis-

regulatory elements of tumor suppressor genes and oncogenes are 

hypermethylated and hypomethylated, respectively, in tumor cells compared 

to normal cells. This underscores the importance of coordinating probes on 

the genome. The ChommHMM database is well-organized with regard to 

tissue-type chromatin status. In this study, 160 of 305 probes (52.5%) were 

annotated in regions related to gene regulation. In addition, 9 out of 25 probes 

annotated in either promoter or CDS regions correlated with mRNA 

expression. Methylation level could affect gene expression CpG site clusters 

rather than single CpG loci. Indeed, CpG islands are located in 40% of all gene 

promoters (23). For this reason, not all CpG site methylation was directly 

correlated with gene expression.  

In summary, this accurate prediction model yielded risk scores of 

informative methylation patterns detected in CRC or a broad range of cancer 

types, with prediction performance approaching the goal for large-scale 

screening based on Korean CRC data. These results support the feasibility of 

employing this machine learning-based methylation analysis for early CRC 
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detection in the Korean population. 
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II. Combined analysis of ctDNA mutation and 

fragment size for predicting prognosis of 

colorectal cancer 
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ABSTRACT 

The fragment size of cell-free DNA (cfDNA) was well characterized. 

It has been reported the size of cfDNA derived from the patients with cancer 

was shorter than the non-cancer individuals and short fragments were 

associated with the circulating tumor DNA (ctDNA) among cfDNA. Short 

fragments of ctDNA have been proposed as predictive biomarkers of disease, 

although their role in colorectal cancer remains unknown. We hypothesized 

that the fragment size of cfDNA, which include ctDNA fragments, isolated 

from colorectal cancer patients have the potential for prognosis after 

chemotherapy. Two hundred eighty plasma samples from 62 patients with 

colorectal cancer were collected along with plasma from 50 healthy controls. 

Sixty-two individuals were recruited through prospective clinical studies at 

Seoul National University Hospital. The chemotherapy backbone of the 

Cetuximab or Bevacizumab containing regimen was chosen between FOLFIRI 

or FOLFOX. Blood samples were obtained prior to chemotherapy and after 

every four cycles of chemotherapy until disease progression. ctDNA was 

detected by target capture panel. This panel sequencing is a tumor agnostic 

panel consist of 106 genes, including 10 gene fusion and MSI. Based on the 

panel sequencing data, the genetic alterations and the fragment size of cfDNA 

were calculated by our algorithm. And the fragmentation ratio was defined by 

the ratio of the read fragment proportion in size range P1 (100 – 155 bp) and 

P2 (160 – 180 bp). For survival analysis, the optimal thresholds separating 

the group based on the clinical response (responder vs. non-responder) were 
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calculated by the ROC analysis. Compared to cfDNA from healthy controls, 

the cfDNA fragment sizes from patients with colorectal cancer were 

significantly shorter (169.585 bp vs. 173.964 bp; P = 1.119e-09). Additionally, 

ctDNA fragments harboring mutant alleles were shorter than those harboring 

reference alleles of somatic mutations but not germline mutations (155.853 

bp vs. 160.613 bp; P = 0.0007829 & 160.911 bp vs. 159.889bp; P = 0.992). 

Further, the clonality inferred from the variant allele frequency (VAF) of 

somatic mutation was negatively correlated with the size of the ctDNA 

fragment. The read fragment proportion in size range P1 was significantly 

associated with the clonality. We divided the samples into the following 

groups: baseline, first follow-up, before-last follow-up, and last follow-up 

(end point). We calculated the mean size of DNA fragment and the 

fragmentation ratio with each longitudinal sample. In the before-last follow-

up group, the fragmentation ratio was found to accurately predict the 

prognosis of patients with colorectal cancer (average survival of 9 months; P 

= 0.016). The fragmentation ratio was also found to increase in a time-

dependent manner (P = 0.018; ANOVA). In summary, we identified the 

fragmentation ratio as a prognostic marker for survival of patients with 

colorectal cancer. 

Key words : Colorectal cancer (CRC), Fragmentomics, non-genetic marker, 

cell-free DNA(cfDNA), circulating tumor DNA(ctDNA), Prognosis 

Student Number : 2018-37966 
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INTRODUCTION 

In the cell nucleus, DNA is wrapped around proteins called histones. 

Upon cell death (apoptosis, necrosis, etc.), DNA is released into the 

bloodstream where it can freely circulate; such DNA is referred to as cell-

free DNA (cfDNA) (24). As DNA fragmentation can result from apoptosis (25), 

size patterns of cfDNA fragments are highly dependent on the extent of 

nucleosome packaging, with shorter fragments commonly associated with 

transcription factor-binding sites (26) (27). The mean size of cfDNA 

fragments is approximately 166 bp (28). However, such fragments tend to be 

shorter in patients with various diseases or in pregnant patients compared to 

healthy controls (29). Recent studies have reported on the novel applications 

of cfDNA fragments. 

For example, the size of circulating tumor DNA (ctDNA) tends to be 

shorter than that of cfDNA derived from normal tissues (30). In a study of the 

KRAS oncogene in patients with early pancreatic cancer, the size of a ctDNA 

fragment harboring a mutant allele was shorter than a ctDNA fragment 

harboring a reference allele using targeted deep sequencing (31). Using both 

targeted deep sequencing and shallow whole-genome sequencing (sWGS), 

copy number alterations were calculated via in silico size selection, which can 

enrich the tumor fraction harboring small cfDNA fragments (30, 32). On the 

other hand, using sWGS, cancer-specific regions harboring aberrant cfDNA 

fragments were identified, and a prediction model was built using a machine 

learning algorithm (33). The sizes of the cfDNA fragments examined were 
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found to be aberrant in DNase1l3-knockout mice, and their expression in liver 

cancer tissues was lower than that in adjacent normal liver tissues (34). 

However, research on ctDNA fragment size using targeted deep sequencing 

is still insufficient. 

Herein, deep sequencing of cancer-related genes from cfDNA 

samples isolated from 62 patients with colorectal cancer and 50 healthy 

controls was performed. In this prospective cohort study, the ability of 

particular subgroups and sizes of cfDNA fragments to predict the prognosis 

of patients with cancer was assessed. 
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EXPERIMENTAL DESIGN 

1. Information of cohort 

Two hundred eighty plasma samples from 62 patients with colorectal 

cancer were collected along with plasma from 50 healthy controls. 62 

individuals were recruited through prospective clinical studies at Seoul 

National University Hospital. The chemotherapy backbone of the Cetuximab 

or Bevacizumab containing regimen was chosen between FOLFIRI (5-

Fluorouracil, Leucovorin, Irinotecan) or FOLFOX (5-Fluorouracil, Leucovorin, 

Oxaliplatin), at the discretion of the treating physician. Response evaluation 

was done in accordance to RECIST 1.1 using contrast-enhanced computed 

tomography (CT) obtained at baseline and repeated every four cycles or at 

clinician’s suspicion of progressive disease. All patients provided written 

informed consent before any study-specific procedures. The protocol of this 

study was reviewed and approved by the Institutional Review Board (IRB) of 

SNUH (IRB number: 1805-049-944) and was conducted in accordance with 

the Declaration of Helsinki in biomedical research involving human subjects. 

 

2. Blood sample collection and cell-free DNA extraction 

Serial blood samples were obtained before treatment initiation (≤ 7 

days before treatment) and at the time of response evaluations. Whole blood 

(8–10 mL) was collected into EDTA tubes during routine phlebotomy. Blood 

samples were centrifuged with Ficoll solution at 1500 × g for 15 min. Plasma 

was then separated by centrifugation at 16,000 × g for 10 min to remove cell 
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debris, after which 1 mL aliquots were placed in Eppendorf tubes and stored 

at − 80 °C before extraction. This protocol was performed within 20 min of 

blood collection to prevent cell-free DNA (cfDNA) degradation and release 

of genomic DNA from dying blood cells. cfDNA was isolated according to the 

manufacturer’s instructions from 2 to 4 mL plasma using a cfKapture™ Kit 

(MagBio Genomics, USA) and quantified using a 2200 TapeStation (Agilent 

Technologies, Santa Clara, CA, USA). Peripheral blood mononuclear cell 

(PBMC) was separated following this protocol. Genomic DNA was isolated 

from PBMC using a QIAamp DNA Mini Kit (Qiagen). 

 

3. Targeted deep sequencing and bioinformatics analysis 

Briefly, ~ 20 ng of cfDNA and 100 ng of leukocyte DNA per patient 

were used for sequencing library preparation. A DNA NGS library was 

constructed using a IMBDx NGS DNA Library Prep Kit. Solution-based target 

enrichment was performed at IMBDx, Inc. (Seoul, South Korea), using a target 

capture panel (106 cancer related genes). Captured DNA libraries were 

sequenced using an Illumina NextSeq 550 platform (Illumina, San Diego, CA, 

USA) in 2 × 150 bp paired-end mode. All sequencing reads from the samples 

were generated as fastq format. Filtered fastq files were aligned to the human 

reference genome (hg38) using Burrows–Wheeler Aligner (v0.7.17) “mem” 

algorithm (35). Reads mapped on the target regions were extracted, and 

collapsing was carried out using Genecore (36). In order to variant calling, 

Initial variant calls were compiled using VarDict (37), then a series of in-

house filtering steps were applied. The remaining calls were annotated using 
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SnpEff (38), SnpSift (39), and VEP (40) for functional effect prediction and 

tagging information from various databases. In order to distinguish germline 

mutation from somatic mutation, the database called for GNOMAD was used 

for germline mutation. To analyze the fragment lengths of cfDNA molecules, 

I sorted that each read pair from a cfDNA molecule had a Phred quality score 

≥30 using Samtools (41). Then, I collected the read pairs contained the 

mutated (or wild-type) allele at the given genomic position. This was done 

using Bedtools and Pysam. Finally, for each read pairs, the fragment length 

was calculated by from the end of R1 tag to end of R2 tag. The performance 

of this was not different from Picard tools ‘CollectInsertSizeMetrics’(Figure 

1). This step was performed total three times for total regions of panel, 

regions of patient specific somatic and germline mutation. Using cfDNA 

fragment size, the distribution curve was calculated and the area under curve 

(AUC) for two regions was calculated (P1: 100 – 155 bp, P2: 160 – 180 bp). 

These regions were reported as representative regions for tumor fraction 

enriched (P1) and normal-like (P2) regions (30). 

 

4. ROC analysis 

 In order to determine the optimal threshold for classifying clinical 

response group, ROC analysis was performed using R package ‘pROC’. 

Through this step, the ROC curve and AUC were calculated for each variable. 

And the optimal threshold for classifying two group was calculated (42). 

 

5. Survival analysis 
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Using R package ‘survminer’, the survival rate for OS and PFS were 

calculated. And Kaplan-Meier plot were visualized and p value were 

calculated by Log-rank test. 

 

6. Statistical test 

 Using R, the following distribution of cfDNA/ctDNA size were 

evaluated by Kolmogorov–Smirnov test and Q-Q plot: “Colorectal cancer 

patients vs. Healthy controls” and “read fragments harboring mutant allele 

vs. read fragments harboring wild-type allele”. The of Progression-free 

survival (PFS) was evaluated as outcome measures for each marker related 

to fragment size. The following statistical significance for Kaplan-Meier 

analysis were evaluated by Log-rank test: “short fragment vs. long 

fragment”, “AUCP1 high vs. AUCP1 low”, “AUCP2 high vs. AUCP2 low” and 

“fragmentation ratio high vs. fragmentation ratio low”. The ANOVA test was 

performed for significance of the fragment size among time point, response 

group. 
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FIGURE 1. The benchmarking of the DNA fragment size calculation 

A distribution curve for patients with colorectal cancer was generated before 

correction (red) and after correction using the Picard tool (blue) and custom 

script (green). 
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RESULTS 

1. Patient characteristics 

Two hundred eighty plasma samples were collected from 62 

colorectal cancer patients (Table 1). Median age of cohort was 62 (37 - 79) 

and proportion of male and female was 61.3% (n=38) and 38.7% (n=24). 

Anatomical sites of primary tumor were ascending colon (9.7%; n=6), 

transverse colon (1.6%; n=1), sigmoid colon (53.2%; n=34), cecum (6.5%; n=4) 

and rectum (29.0%; n=18). Pathological subtypes were adenocarcinoma W/D 

(3.2%; n=2), adenocarcinoma M/D (87.1%; n=54) and adenocarcinoma P/D 

(9.7%; n=6). The status of microsatellite instability was MSI-H (1.6%; n=1), 

MSI-L (11.3%; n=7), MSS (82.3%; n=51) and NA (4.8%; n=3). Forty-one 

(66.1%) patients received FOLFIRI based cytotoxic chemotherapy and 20 

(32.3%) patients received FOLFOX based cytotoxic chemotherapy. There 

were 57 patients who received the targeted therapy (Cetuximab; n=35, 

Bevacizumab; n=22).  For each patient, I generated targeted deep 

sequencing data and assessed the utility of ctDNA fragment size as prognostic 

marker. 
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Table 1. Clinicopathological information of the prospective patient cohort. 

 

 

 

 

 

 

 

 

Categories Number of patients (%)

Age at diagnosis, median (range) 62 (37 – 79)

Sex
Male 38 (61.3 %)

Female 24 (38.7 %)

Disease presentation at enrollment
Metastasis 46 (74.2 %)

Recurrence (metastatic) 16 (25.8 %)

Primary tumor site

Cecum 4 (6.5 %)

Ascending colon 6 (9.7 %)

Transverse colon 1 (1.6 %)

Sigmoid colon 34 (53.2 %)

Rectum 18 (29.0 %)

Metastasis site

Liver 46 (74.2%)

Lung 20 (32.3%)

Peritoneal seeding 12 (19.4%)

Lymph nodes 12 (19.4%)

Other organs 7 (11.3%)

Pathology

ADC, W/D 2 (3.2 %)

ADC, M/D 54 (87.1 %)

ADC, P/D 6 (9.7 %)

Microsatellite instability

MSS 51 (82.3 %)

MSI-L 7 (11.3 %)

MSI-H 1 (1.6 %)

Not available 3 (4.8 %)

Cytotoxic chemotherapy*
FOLFIRI 41 (66.1 %)

FOLFOX 20 (32.3 %)

Targeted therapy**
Cetuximab 35 (56.5 %)

Bevacizumab 22 (35.5 %)

* 1 loss to follow up after pre-treatment evaluation
** 4 treated without targeted therapy 
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2. Differences in cfDNA size in healthy controls 

Recently, it was reported that cfDNA fragment size in cancer patients 

is shorter than that in healthy individuals (43). In our cohort, the cfDNA in 

280 plasma samples from patients with colorectal cancer and 50 plasma 

samples from healthy controls was subjected to targeted deep sequencing, 

and the cfDNA fragment size was estimated. As expected, the size of the 

cfDNA fragments from patients with colorectal cancer tended to be shorter 

than those from healthy controls (169.6 bp vs. 174.0 bp; P = 1.119e-09; 

Kolmogorov-Smirnov test) (Figure 2). One hypothesis for this phenomenon 

is that plasma cfDNA from patients with colorectal cancer harbor a highly 

aberrant fraction of DNA from the primary tumor. The size distribution 

between the cfDNA fragments harboring mutant alleles and wild-type alleles 

from patients with colorectal cancer (METHOD) was compared. The size of 

cfDNA fragments harboring mutant alleles was significantly shorter than the 

size of fragments harboring wild-type alleles (P = 0.0007829; Kolmogorov-

Smirnov test) (Figure 3). The shorter cfDNA fragments from patients with 

colorectal cancer appear to be the indirect result of ctDNA harboring mutant 

alleles. 
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FIGURE 2. Distribution curve of cfDNA fragment size in patients with 

colorectal cancer (n=62) and in healthy controls (n=50). 

A. The total fragment sizes were calculated and plotted. The mean fragment 

sizes from patients with colorectal cancer and healthy controls were 169.585 

bp and 173.964 bp, respectively; P = 1.119e-09; Kolmogorov-Smirnov test. 

B. For patients with colorectal cancer, read fragments were separated into 

those harboring mutant alleles (ALT) and wild-type alleles (REF) and plotted. 

The mean ALT and REF sizes were 155.853 bp and 160.613 bp, respectively. 
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FIGURE 3. Distribution curve of cfDNA fragments by mutation type. 

Read fragments from DNA harboring somatic (A) or germline (B) mutations 

were estimated and plotted. The mean sizes of somatic mutation fragments 

harboring ALT or REF were 155.853 bp and 160.613 bp, respectively 

(Kolmogorov-Smirnov test, P = 0.0007829). The mean sizes of germline 

mutation fragments harboring ALT or REF were 160.911 bp and 159.889 bp, 

respectively; P = 0.992; Kolmogorov-Smirnov test.  
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3. The association of ctDNA size with clonality 

Various types of mutations derived from PBMCs, tumor tissues, and 

normal tissues are normally detected in plasma cfDNA (44). To discern 

whether cfDNA fragment size depends on mutation type, ctDNA fragments 

harboring somatic mutations were separated from cfDNA fragments harboring 

germline mutations. Then, the size of each fragment was estimated. Although 

the ctDNA fragment size was significantly different between those harboring 

somatic mutant alleles and those harboring wild-type alleles, cfDNA fragment 

size was not affected by the presence of a germline mutation (somatic 

mutation; P = 0.0007829, germline mutation; P = 0.992) (Figure 3). This is 

the one of the features which could be distinguished somatic variants from 

germline variants. Next, the association of the variant allele frequency (VAF) 

of somatic mutations with ctDNA fragment size was determined. As the VAF 

of mutations, which represent either the clonality or purity of the samples, is 

roughly based on the cancer genome (45), three groups of clonality based on 

the maximum VAF of somatic mutations were defined and identified in 

patients with colorectal cancer. Very low clonality (max VAF < 10%), low 

clonality (10% < max VAF < 40%), and high clonality (max VAF > 40%) were 

identified in 29, 9, and 24 patients, respectively (Figure 4). Additionally, the 

mean size of all fragments, the mean size of fragments harboring mutant 

alleles, the mean size of fragments harboring wild-type alleles, the proportion 

of short fragments (P1; 100–155 bp), and the proportion of reference cfDNA 

fragments (P2; 160–180 bp) were calculated. Interestingly, the proportion of 

short fragments was significantly correlated with the maximum VAF of 
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somatic mutations (Pearson correlation r = 0.86; P = 2.9e-13) and was 

greater in the high clonality group (P < 0.001) (Figure 5 and 6). Among 

patients with a VAF of somatic mutations above 10%, ctDNA fragments with 

mutant alleles were shorter than those harboring wild-type alleles in 12 out 

of 33 patients (Figure 7). In summary, shorter ctDNA fragments were more 

frequently found in patients in the high clonality group. 
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FIGURE 4. Distribution curve of the VAF of somatic mutations detected in 

plasma cfDNA. 

A. The VAFs of somatic mutations were plotted. B. The VAF distribution was 

plotted for each patient, individually (10 %, 40%, and 60% VAF are annotated 

by blue, red, and red). 
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FIGURE 5. The association between clonality and ctDNA fragment size. 

Variables were plotted along with clonality group: A. Mean total fragment size 

in baseline samples. B. Mean ALT size in baseline samples. C. Mean REF size 

in baseline samples. D. AUC for short fragments (100–155 bp). E. AUC for 

reference fragments (160–180 bp). NS, not significant; *, P < 0.05; **, P < 

0.01, ***, P < 0.001; Student’s t test. 
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FIGURE 6. Correlation between the maximum VAF and ctDNA fragment size. 

Variables were plotted along with maximum VAF. A. Total mean fragment 

size in baseline samples. B. Mean ALT size in baseline samples. C. Mean REF 

size in baseline samples. D. AUC for short fragments (100–155 bp). E. AUC 

for reference fragments (160–180 bp). Pearson coefficients for A, B, C, D, 

and E were –0.29, –0.064, –0.034, 0.86, and –0.82; P values were 0.067, 

0.69, 0.027, 2.9e-13, and 3.7e-11; Pearson correlation analysis. 
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FIGURE 7. Distribution curves for ctDNA fragments from patients with more 

than 10% somatic mutations detected in plasma (n=33). 

A. Fragment sizes with a VAF greater than 10% were plotted. The mean ALT 

and REF sizes were 158.241 bp and 173.669 bp, respectively. The red and 

green lines indicate the ALT and REF read fragments, respectively. B. A 

distribution curve was plotted for each patient, individually.  
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4. The fragmentation ratio as prognostic marker 

Next, I wondered the ctDNA fragment size could predict the clinical 

response of colorectal cancer patients. For fifty-two out of 62 patients, 

clinical response was analyzed by RECIST 1.1 (46). Fifty-two patients were 

separated by two group which are responder (PR; n = 31) and non-responder 

(PD; n = 1 & SD; n = 20). The median survival was 269 days in non-responder 

group and 442 days in responder (P = 0.00059; Log-rank test) (Figure 8). 

The average 4.51 plasma samples of 62 colorectal cancer patients were 

collected along with the clinical response from baseline to end point. Among 

these samples, the data of four time points were analyzed (the baseline, first 

follow up; median 75 days, before end point; median 261 days and end point; 

median 339.5 days). In order to assess the utility of ctDNA fragment size as 

prognostic marker, I defined the ratio which is the proportion of the short 

fragment (P1; 100 – 155 bp) divided by the proportion of the reference 

cfDNA fragment lengths (P2; 160 – 180 bp) as ‘the fragmentation ratio’. The 

fragmentation ratio and mean size of total read fragment was calculated every 

time point each patient. Then, the threshold of each variable and each time 

point was calculated by ROC analysis (Figure 9). Clinical sub-group 

(responder vs. non-responder) could be separated by the optimal threshold 

as mentioned. With these thresholds, the group for prognosis analysis were 

separated by two group. As a result, the high fragmentation ratio group 

predicted poor prognosis than the low fragmentation ratio group at before end 

point (P = 0.016; Log-rank test) (Figure 10). The other plasma samples which 

were collected was not shown significant prediction. Furthermore, the 
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fragment ratio was increased in non-responder group from first follow up to 

end point (P = 0.0195; two-way ANOVA test) (Figure 11). In conclusion, with 

the fragmentation ratio, it showed that monitoring and prognosis for 

colorectal cancer patients were possible since the specific sampling time 

point (before end point). 

 

 

FIGURE 8. Calculation of PFS according to the RECIST 1.1 guideline. 

A. A Kaplan-Meier plot was used to analyze median survival time of patients 

grouped into those with PD, SD, or PR; P < 0.0001; log-rank test. B. A 

Kaplan-Meier plot was used to analyze median survival time of patients 

grouped into responder and non-responder groups; P = 0.00059. 

 

 

A B



 

 61 

 

FIGURE 9. ROC analysis for calculating the optimal cutoff values used to 

classify patients into the responder and non-responder groups. 
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FIGURE 10. Survival plot for each sampling time point and variables. 

Kaplan-Meier analysis was performed using optimal cutoff values for clinical 

responses. A log-rank test was used for analysis.  
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FIGURE 11. Clinical response monitoring using the fragmentation ratio 

(AUCp1 / AUCp2). 

A. Plot of sampling time and clinical response. B. Plot of fragmentation ratio 

and sampling time; P = 0.0195; ANOVA test. 
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DISCUSSION 

The results of this study show the potential of cfDNA fragment size 

as a prognostic marker for patients with colorectal cancer. Two hundred 

eighty plasma samples from 62 patients with colorectal cancer who received 

targeted therapy and 50 plasma samples from healthy individuals were 

analyzed using targeted deep sequencing of 106 cancer-related genes, and a 

comparison of cfDNA fragment sizes was performed. The representative size 

of cfDNA was reported to be 166 bp, likely as a result of histone packaging. 

On the other hand, highly fragmentated cfDNA (< 100 bp) is associated with 

transcription factor binding. To investigate this further, a platform able to 

detect nucleosome footprinting would be needed, such as MNase-seq, 

ATAC-seq, or DNase-seq (47) (48). According to previous reports, DNA 

fragmentation is related to cell death (25), as caspase-activated DNase 

activity has been shown to be associated with DNA fragmentation (49). Even 

though patient-derived ctDNA fragments harboring mutant alleles were 

shorter than those from healthy controls, the molecular mechanism is still 

unclear. 

Because the size of ctDNA fragments was shorter than cfDNA from 

normal cells, the region used for determining fragment size is important. 

Clonality is highly correlated with ctDNA fragment size. Concordance 

between primary tissues and ctDNA was previously calculated to be 93% in 

patients with colorectal cancer (50). The steps for detecting somatic 

mutations and ctDNA fragment size thus followed this previous report.  
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There are two primary approaches for analyzing the size of ctDNA fragments: 

the use of either a double-stranded DNA (dsDNA) or single-stranded (ssDNA) 

library. Snyder et al. described a diagnostic model for cancer based on 

analyzing the size of cfDNA fragments using an ssDNA library prepared via 

WGS (27). In that paper, the small cfDNA size was associated with 

transcription factor binding. Even though a dsDNA library was used to analyze 

cfDNA, the fragment data were sufficient for analysis. A different study 

compared the use of ssDNA and dsDNA libraries for cfDNA analysis (51), 

finding that fragments larger than 100 bp could be detected using either 

library. However, fragments smaller than 100 bp could only be detected using 

an ssDNA library. For analysis of either genome-wide fragment patterns or 

nucleosome footprinting, both an ssDNA library and WGS are needed. 

In a study monitoring the treatment response of patients with 

colorectal cancer who received an anti-EGFR therapy (52), patients whose 

average VAF was less than 1% during the first evaluation had significantly 

better PFS than those with a higher VAF (P < 0.001). In this study, responders 

and non-responders were categorized, according to the RECIST 1.1 guideline, 

by sampling time as determined by the ROC analysis. At time points prior to 

PD, the fragmentation ratio (AUCp1/AUCp2) was confirmed to be a prognostic 

marker for patients in the colorectal cancer cohort, increasing after treatment 

in the non-responder group. Thus, the fragmentation ratio can be used as a 

prognostic marker of treatment success in patients with colorectal cancer. To 

validate these findings, a larger cohort with various types of cancer should 

be studied. 
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CONCLUSION 

This is a study on the discovery of non-genetic markers for 

predicting the prognosis of Korean colorectal cancer for utilizing liquid biopsy.  

In part 1, based on machine learning, prediction model with genome-

wide DNA methylation markers for diagnosis and risk score for predicting 

prognosis were devised. Seven-hundred ninety methylation data were 

processed as COPM dataset (n=709; 330 normal adjacent colon tissues & 379 

colorectal cancer tumor tissues). Using machine learning algorithm, the 

optimized predictive modeling was set and the final 305 probes were defined 

as diagnostic marker. The performance of my prediction model was 0.997 

(training cohort) and 0.976 (validation cohort) AUC, each. With my prediction 

model, the colorectal cancer patient in TCGA and GEO dataset (n=9,660 

tissues and 59 plasma cfDNA) were significantly predicted as the positive for 

colorectal cancer. A subset of diagnostic markers was chosen to define a risk 

score for predicting prognosis (OS; 20 & PFS; 133 probes). The prognostic 

markers were enriched in transcription regulatory regions and some of the 

probe set were correlated with mRNA expression (41%; 9 / 22).  

In part 2, using next-generation sequencing data, the prognostic 

system with the fragment size of ctDNA was devised. Two-hundred eighty 

plasma samples from 62 colorectal cancer patients were collected along with 

50 plasmas from healthy donors and analyzed by targeted deep sequencing 

including cancer related 106 genes. The ctDNA fragment size was shorter 

than cfDNA from non-cancerous cell. The clonality was highly correlated with 
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the ctDNA fragment size. The responders and non-responders were 

separated by RECIST 1.1. Using ROC analysis, the optimal cut-off values for 

various sampling time points, each. At the time points before PD, the ratio of 

AUC (AUCp1/AUCp2) could be the prognostic markers for colorectal cohort. 

Assessing the utility of ratio of AUC (AUCp1/AUCp2) at various sampling time 

point, the ratio was increased after treatment in non-responder group, 

consecutively.   

In conclusion, I focused on validating the utility of non-genetic 

signatures(methylation markers and fragmentomics) in Liquid biopsy. 
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국문 초록 

 

암을 진단하고 모니터링하고 예후를 예측하는 것에 있어서 액체생검은 

매우 중요한 한가지 방법으로써 주목받고 있다. 특히나 새로운 마커로써 비유전

적 시그니처 들은 더욱 대두되고 있다. 그러한 이유는 암환자의 혈액종양DNA

는 다른 어떠한 마커보다 종합적으로 신체를 반영하고 있고, 원발암을 대표하는

데 있어서 많은 정보를 갖는다 것에 있다. 이러한 혈액종양DNA는 유전적 마커

뿐만 아니라, 비유전적 마커 즉, DNA 메틸레이션 or DNA 프래그먼트 크기 등 

다양한 분자적 특성들을 반영한다. DNA 메틸레이션 은 조직에 대한 특이한 패

턴을 갖고 있으며, DNA 프래그먼트 크기에 대한 특이성은 무세포핵산 자체의 

특징 중 하나고, 이를 활용하려는 노력들이 많아지고 있다. 이러한 특성을 포괄

적으로 활용하기 위하여, 통합적인 분석이 필요하고 새로운 마커의 발굴이 필요

하다. 

본 논문에서는 1) 기존에 DNA 메틸레이션 은 많이 보고 되어있지만, 

단일마커 그리고 서양인들 중심으로 보고가 되어왔다. 하지만, 메틸레이션 패턴

은 인종간의 차이도 어느정도 있고, 조직의 특이성을 반영하기 위해서는 단일마

커보다는 다양한 마커를 활용하여 예측력을 높이는 것이 중요하다. 따라서 나는 

709개의 한국인 대장암 조직을 이용하여 얻은 메틸레이션 데이터를 이용하여 

머신러닝 기반 305개 마커를 활용하는 진단 예측 모델을 구축하였다. 구축한 

모델은 조직 데이터뿐 만아니라 혈장 무세포핵산 메틸레이션 데이터에서도 또

한 높은 예측력을 보였으며, 마커의 서브셋을 이용한 예후 예측도 또한 가능하

였다.  

다음으로 2) 무세포핵산의 프래그먼트 크기는 무세포핵산 만이 갖는 

분자적 특성이다. 최근에 암환자에서 유래한 무세포핵산의 크기는 체성변이에서 

특이적으로 사이즈 차이가 난다는 점을 이용하는 연구들이 주되었다. 유전체 전

체를 이용하여 암 특이적 진단 마커를 발굴하는 내용 그리고 패널 시퀀싱을 이

용하여 특정 변이들에서 크기의 차이를 이용하여 변이의 검출확률을 높이는 방

법등이 대표적인 예이다. 하지만 진단 이외의 활용측면에서는 아직 연구할 부분

이 많다. 이러한 간극을 매꾸기 위하여 혈액종양DNA의 프래그먼트 크기 분석

을 진행하였다. 우리는 paired end 시퀀싱 기반의 패널 시퀀싱 데이터를 활용하

여 핵산 분자의 실제 크기를 계산하였고, 이러한 크기가 원발암 유래에 의함이
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라는 것을 데이터상으로 증명했다. 나아가, 한환자로부터 유래한 다양한 치료 

전/후 대장암 혈액 샘플에서 특정 시점에서 크기를 활용한 마커가 예후 예측에 

통계적으로 유의미한 파워를 갖는 것을 확인하였다. 
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