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ABSTRACT
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Non-genetic signatures from liquid biopsy samples are emerging as
feasible markers of cancer because plasma cell-free DNA (cfDNA) is
representative of the patient's systemic state. Non—-genetic signatures include
cfDNA methylation, topology of cfDNA, and cfDNA fragmentomics. DNA
methylation has somatic tissue specific patterns, and DNA fragment size is
one of the most representative characteristics of cfDNA. In particular, cfDNA
from the plasma of cancer patients, which contains circulating tumor DNA
(ctDNA), can be representative of the status of both the primary tumor and
minimal residual disease. For this reason, the tissue of origin (TOO) could be
determined from ctDNA methylation patterns. Fragment size of ctDNA could
also be a useful marker for cancer patients. However, studies on the
comprehensive applications of non—genetic signatures for cancer diagnosis,
monitoring, and predicted prognosis are still needed to define and validate
the role of non—-genetic markers in clinical practice.

Here, I show 1) an accurate prediction model that was developed using
a machine learning algorithm for the comprehensive analysis of multiple CpG
sites. Although many DNA methylation markers have been reported,
previously reported markers were based on a single marker and a western
population. My prediction model includes 305 CpG sites and was built by a
machine learning algorithm based on tissue samples from Korean colorectal
cancer patients. The prediction model showed high performance not only in
databases of pan—cancer tissue samples but also those based on plasma from
cancer patients. In addition, the prognosis of colorectal cancer patients was
accurately predicted with a subset of the 305 CpG sites.
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Next, I showed that 2) the fragmentation ratio of specific lengths of
DNA could be a valuable prognostic marker for colorectal cancer patients.
Many recent studies have shown ctDNA fragment size is shorter than that of
cfDNA derived from healthy tissue and have attempted to apply this to cancer
diagnosis; however, the data are limited, and the only application has been
for cancer diagnosis. In order to fill this gap, cfDNA fragment size was
analyzed using targeted deep sequencing from paired ends. I demonstrated
that ctDNA fragment length was related to variant allele frequency, and the
prognosis of colorectal cancer patients could be predicted by the
fragmentation ratio at a specific sampling time in longitudinal samples.

In summary, blood based non-genetic signatures are significantly
associated with the status of colorectal cancer and can be used to predict

patient prognosis.

Keyword : Colorectal cancer (CRC), Epigenetics, circulating tumor
DNA (ctDNA), Diagnosis, Prognosis, Next generation sequencing (NGS)

Student Number : 2018-37966
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I. Use of an optimized machine learning
algorithm to discover DNA methylation markers

from Korean colorectal cancer patients



ABSTRACT

DNA methylation is a key epigenetic regulator in mammalian
development. Furthermore, DNA methylation is well known to play an
important role in carcinogenesis. Pattern of DNA methylation vary in somatic
cancer tissues and among subjects of different races. Although numerous
cancer-related DNA methylation markers have been reported, they were
based on single marker studies performed in Western populations. In this
study, we investigated discovering comprehensive markers and validating the
potential as diagnosis and prognosis for colorectal cancer. Patients with
various stage of colorectal cancer were eligible for the current study, mainly
stage III. We generated genome-wide methylation data from 379 colorectal
cancer (CRC) tissues and 330 available paired adjacent normal mucosa tissues
from Korean patients by Illumina EPIC Human Methylation microarray
targeting 860,000~ CpG sites. A machine learning algorithm was used to build
an optimized prediction model and select the tumor specific markers based
on through theses CpG sites. Then, the risk score was devised for prognosis
using this marker set. Finally, in order to validate the rule of CpG sites, the
genomic location and pathway enrichment analysis was performed by
CHROMHMM and Metascape. A total of 305 methylation markers that showed
statistically significant differences between normal and cancer tissues were
selected. Our model could accurately identify CRC (areas under the curve for
the training and validation cohorts: 0.968 and 0.984, respectively). Using our

prediction model, the colorectal cancer patients were predicted as colorectal



cancer accurately in the methylation data from TCGA (COREAD:; colorectal
cancer tissue DNA) and GEO dataset (plasma cfDNA from colorectal cancer
patients). The risk score comprising the subset of 305 methylation markers
was calculated, and poor prognosis was predicted in the high-risk score
group (overall survival P = 0.073, progression—free survival P = 0.0026).
Gene ontology (GO) enrichment analysis showed that the 305 CpG sites were
enriched in transcription regulatory regions (160/305, 52.5%) and were
associated with developmental process and carcinogenesis (GO: 0032502,
loglOP = -4.28; C4721208, loglOP = -3.80). In summary, the performance of
our prediction model with these 305 CpG sites was highly accurate for CRC
diagnosis, and the optimized risk score could predict the prognosis of Korean
CRC patients.

Key words : Colorectal cancer (CRC), DNA methylation, Diagnosis, Prognosis,
Machine learning, Risk score

Student Number : 2018-37966



INTRODUCTION

Colorectal cancer (CRC) is a leading cause of death worldwide,
accounting for 9.0 age—standardized deaths per 100,000 people in 2020 (1).
According to GLOBCAN 2018 data, the cumulative risk of CRC development
in Korea was ranked in the top two (2). Regardless of sex, the incidence of
the CRC in Korea has been increasing steadily (3). The incidence rate
increases in an age-dependent manner (15-34 years, 3.6%; 3564 years,
10.3%; =65 years, 13.4%). However, CRC is curable when detected early,
with survival rates >89.2% at 5 years for patients diagnosed with stage I
disease. In contrast, patients with regional spread (stage IIIC) have a worse
prognosis, with approximately 43.2% surviving at 5 years. Therefore, early
diagnosis of CRC is important. Conventional screening methods include
colonoscopy or fecal occult blood testing. Although screening programs are
heterogeneous worldwide, introduction of a screening program seems to be
followed by reduced CRC mortality.

DNA methylation is well known to play an important role in
carcinogenesis. For example, it was reported that either the cis—-regulatory
elements of tumor suppressor genes were hypermethylated or the cis—
regulatory elements of oncogenes were hypomethylated in tumor cells
compared to normal cells (4). These aberrantly methylated regions have been
considered as diagnostic or prognostic markers for cancer. Luo et al. reported
the use of DNA methylation markers for diagnosing, prognosing, and

subtyping CRC based on machine learning, but the reproducibility of these



markers is unclear (5). DNA methylation has somatic cancer—specific patterns,
which Liu et al. used to develop a prediction model for both cancer diagnosis
and tissue of origin (TOO) (6). However, DNA methylation patterns are highly
race dependent (7). A comprehensive analysis of DNA methylation using East
Asian population data is still needed.

Machine learning and other computational resources are increasingly
used to discover epigenetic markers (8, 9). Here, I describe the identification
of epigenetic markers for cancer diagnosis using a large—scale Korean CRC
patient dataset. A comprehensive analysis based on machine learning was
carried out to identify genome-wide methylation patterns from databases, and
the utility of diagnostic markers and prognostic risk score was determined

with statistical methods.



EXPERIMENTAL DESIGN

1. Extraction genomic DNA from Colorectal tissue

Genomic DNA (gDNA) of 379 tumor tissue and 330 adjacent normal
colon tissues were extracted by following kit. Genomic DNA was isolated
from each sample using a Qiagen DNA FFPE Tissue Kit (Qiagen, Hilden,
Germany) for FFPE samples and a QIAamp DNA Mini Kit (Qiagen) for fresh-
frozen tissues. After isolation, the concentrations and purities of genomic
DNA were measured using a spectrophotometer (ND1000O; Nanodrop

Technologies, Thermo Fisher Scientific, MA, USA).

2. llumina Infinjum MethylationEPIC array BeadChip (850K) and Whole
transcriptome sequencing

Genome-wide methylation data was generated by Infinium
Methylation EPIC array (850K array). The signals were normalized by ‘SWAN’
method in R package ‘minfi’ (10). Through this, the B value of ~850,000 CpG
sites were calculated as representing the level of DNA methylation. Whole

transcriptome sequencing was performed and the quantification by gene

symbol and gene iso—form were calculated.

3. Monte—carlo simulation
Theoretically, 6,000 dGE(diploid genome equivalent; ~40ng) can be
isolated from 4ml of plasma which is 40% of the 10ml whole blood (11).

Detection rate 0.01 % means the platform detect 1 anomalous signal out of



12,000 copies. In order to simulating this theoretic situation, I performed
monte—carlo simulation. As Diploid genomes, 15,000 is the expected copy
number in 100 ng cfDNA. I created 15,150 simulated genomes with from 1 to
10,000 independent loci with from 0.01 to 10% cancer-specific DMRs in
tenfold increments. Next, I performed simulation with depending on the
number of epi—mutations to detect. The process was repeated 1,000 times

for each combination of parameters.

4. Building the prediction model and selecting significant CpG sites

Setting cohort for machine learning: Using R package ‘caret’,
colorectal cohort was divided into training cohort and validation cohort (8:2)
keeping the ratio (0.87:1) which is the ratio of sample size between adjacent
normal tissue and colorectal cancer tissue. For cross validation, the training
cohort was divided into sub-training set and test set (8:2) keeping the ratio
(0.87:1), additionally. Selection markers for machine learning: With sub-
training set, differentially methylated regions (DMRs) and each p value
between tumor tissue and normal tissue were calculated by student t—test.
After that, Benjamini—Hochberg correction were performed for calculating
FDR. Out of 850,000 probes, TOP 1,000 probes (500 DMRs for hyper-
methylated in tumor & 500 DMRs for hypo-methylated in tumor) were
selected by the criteria which is FDR under 0.05 and A value (mean of B
tumor tissues — mean of B normal tissues). This step was repeated 5 times
for inner cross—validation. Selection best machine learning model: With TOP
1,000 probes, the performance was compared among 5 suitable classification

7



model (Linear Discriminant Analysis; LDA, Decision Tree; CART, K Nearest
Neighbours; KNN, Random Forest; RF, Support Vector Machines; SVM).
Machine learning was performed by inner cross validation (inner CV; n=10).
Accuracy and Kappa value were calculated in every repeat. Through this,
TOP 2 accurate models were selected. Selection probe set: With TOP 2
models, importance score for each probe was calculated. In order to select
the probe set, inflection point analysis was performed based on importance
score sorted in descending order. Then, the set of probes intersecting
between the TOP 2 models was selected. Building prediction model &
Calculating performance of prediction: the prediction model was built by the
set of probes and TOP 1 classification model among 5 models. Area under
curve (AUC) with both sub-training set and test set was calculated by R
package ‘pROC’. Outer cross validation: The methods up to this point were
repeated a total of 5 times. Building final prediction model with the final set
of probes: the final classification model which is called 3 more times out of 5
outer CV was selected. With 305 final probes, the prediction model for cancer
diagnosis was built. Final validation & visualization: With validation cohort,
the AUC was calculated. And heatmap with 305 probes set were visualized

by R package ‘pheatmap’.

5. Processing 450k methylome data of TCGA, EWAS, GEO database

Using FireBrowse database (http://firebrowse.org/), methylome data
(Infinium HumanMethylation450 BeadChip array) of pan—-cancer level tissues
was collected (tumor and available matched normal tissue from 33 types of

8



cancer) (12). From EWAS database, methylome data (Infinium
HumanMethylation450 BeadChip array) of 31 type of somatic tissues was
collected (13). In GEO database, large cohort of normal PBMC methylome
data (GSE40279; Infinium HumanMethylation450 BeadChip) and methylome
data of plasma cfDNA from various disease included colorectal cancer
(GSE122126; Infinium HumanMethylation450 BeadChip) were collected.

Either ‘NA’ or probes in sex chromosome were excluded for analysis.

6. Deconvolution and clustering
With R package ‘Rtsne’, the deconvolution of large-scale database
was performed (dims = 2, max_iter = 500, perplexity = 5). Using prcomp

method in R package ‘ggfortify’, PCA analysis was performed.

7. Permutation test

With TCGA and EWAS data set (n=15,646), the intersected probes
were collected. Then, random forest algorithm applied to predict the tissue
of origin (ntree = 500). This step repeated 1,000 times and error rate were

calculated for each number of sampled probes.

8. ChromHMM status and GO analysis

Using bedtools (v.2.28.0), the 305 probes were annotated by
ChromHMM status (14). In addition, the coordinate of 305 probe were
annotated by Homer ‘annotatepeak.pl’ (15) . Then, GO analysis was
performed with probes which were located in either transcription starting stie

9



(TSS) or gene promoter (16) .

9. Risk score

Using coxph method in R package ‘survival, cox proportional—-
Harzards model analysis was performed with each probe. The prognostic
markers which were statistically fulfilled for overall survival (0S) and
progression free survival (PFS) were selected (Log-rank test; p-value <
0.05). 20 and 133 probes were selected as prognostic markers for OS and
PFS, each. The risk score was determined based on coefficients for each

probe from cox regression analysis. The formula is as follows:

n
Risk score = E B;i *x;
i

10. Survival analysis
Using R package ‘survminer’, the survival rate for OS and PFS were
calculated. And Kaplan—-Meier plot were visualized and p value were

calculated by Log-rank test.
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RESULTS

1. Clinicopathological Information of the COPM Dataset

All patients provided written informed consent before any study-—
specific procedures. The protocol of this study was reviewed and approved
by the Institutional Review Board (IRB) of SNUH (IRB number: 1708-031-
875) and was conducted in accordance with the Declaration of Helsinki in
biomedical research involving human subjects. Clinicopathological
information was collected from 367 of 379 patients (Table 1). The median age
of the cohort was 62 (23-88), and the percentages of males and females were
60.9% and 35.9%, respectively. The most common disease stage was III
(61.2%), followed by 11 (19.5%), IV (11.9%), and I (4.2%). The anatomical sites
of the primary tumor were right colon (25.5%), left colon (68.9%), and other
(3.2%). The pathological subtypes were adenocarcinoma (91.3%), mucinous
adenocarcinoma (4.2%), and other (1.3%). Microsatellite instability status was
high (7.1%), low (4.7%), and stable (83.1%). Genome-wide methylation data

and processed methylation data were generated for each patient.
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Categories

(n =379)

Number of
patients (%)

IAge at diagnosis, median (range)

62 (23 — 88)

Male 231 (60.9 %
Sex

Female 136 (35.9 %

| 16 (4.2%

Il 74 (19.5%
Stage

1] 232 (61.2%

v 45 (11.9%

Right colon 95 (25.15%
Primary tumor site Left colon 260 (68.9%

Other

[Adenocarcinoma

346 (91.3%

)
)
)
)
)
)
)
)
12 (3.2%)
)
)
)
)
)
)
)

Pathology Mucinous adenocarcinoma 16 (4.2%
Other 5(1.3%
MSS 315 (83.1%
MSI-L 18 (4.7%
Microsatellite instability
MSI-H 27 (71%
Not available 7(1.8%

not available patients; n = 12

Table 1. Clinicopathological information of the COPM cohort.
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2. Prediction Model Performance Based on Machine Learning

Through Monte Carlo simulation, screening more than eight epi-
mutations could detect cancer containing 0.1% tumor content with an
accuracy of 100% (Figure 1). To precisely differentiate between tumor and
normal tissue, more than eight markers needed to be comprehensively
analyzed (Figure 2). DNA methylome data was used to determine which
machine learning algorithm was best fitted. To avoid overfitting, 10-fold inner
CV and 5-fold outer CV was performed. This generated the prediction model
with the KNN algorithm and 305 cancer—specific markers. Using PCA, PC1
could separate tumor and normal tissues with all probes (17.8%) or 305
markers (85.31%), but the samples were more distinguishable using
calculation with the 305 probe set (Figures 3 and 4). Overall, 292 of 304
tumors and 74 out of 75 tumors were predicted as CRC in the training cohort
(n =568; 304T/264N) and validation (n = 141; 75T/66N) cohorts, respectively
(Figure 5A, C), with corresponding AUCs of 0.968 and 0.984 (Figure 5B, D).
In summary, prediction model performance was highly accurate and could

precisely distinguish CRC from normal tissue.
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1.0 - O

Number of
alterations

Probability of detection

0.01% 0.15% 0.1% 1.5%
Fraction of tumor-derived molecules

FIGURE 1. In silico simulation for setting the optimal number of DMRs.
The probabilities of detection were plotted along with fraction of tumor. The

number of DMRs are annotated by color.
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Training
set

5fold CV

Training
Set Test
set

(Cv=10)

Normal
(n=330)

Tumor
(n=379)

[8:2]
Moderate T-test

FDR(BH) <0.05
TOP1,000(x500 based on AB)

Significant DMC in

cancer genome

v
9

[Machine Learning (Inner CV; n=10)]

TOP2 high| performing model

Final cancer
Specific probes
(n=305)

FIGURE 2. Pipeline for building the prediction model and discovering cancer-

specific markers.

The outer CV for assessing model performance of the model is shown on the

left box. The inner CV for building every model is shown on the right side.
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FIGURE 3. Statistical differences according to tissue type.

(A) PC 1 and 2 were calculated with the methylation level measured at
~850,000 CpG sites using the Illumina EPIC array. Standard deviation (B),
mean (C), and relative standard deviation (D) were calculated as the basic
statistical values. Tumor tissues (n = 379) are in red, and adjacent normal

mucosa tissues (n = 330) are in green.
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FIGURE 4. Statistical differences according to tissue type.

sample_type

(A) PC1 and 2 were calculated with the methylation level measured at 305

CpG sites using lllumina EPIC arrays. Standard deviation (B), mean (C), and

relative standard deviation (D) were calculated as the basic statistical values.

Tumor tissues (n = 379) are in red, and adjacent normal mucosa tissues (n =

330) are in green.
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FIGURE 5. Prediction model performance using 305 DNA methylation
markers for cancer diagnosis.

Unsupervised hierarchical clustering of markers differentially methylated
between CRC and normal tissue DNA in the training (n=568) (A) and validation
(n=141) (C) cohorts. The AUCs were calculated by ROC analysis in the
training (B) and validation (D) cohorts (0, normal colon tissue; 1, colorectal

cancer tissue)
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3. Prediction Model Application

To wvalidate prediction model performance, methylome data from
various sources were collected and processed. First, t—distributed stochastic
neighbor embedding (tSNE) analysis was performed with TCGA, EWAS, and
GSE40279 datasets. Through this step, somatic tissues with tissue-specific
methylation patterns and normal tissues and tumor tissues were clustered
separately (Figure 6). The TOO error rate was calculated as <5% when more
than 100 probes were used (Figure 7). Although TCGA and COPM were
different from the platform, the intersected probes were selected, and the
prediction model was re-built (Figure 8). The performance of the re-built
prediction model was highly accurate (training cohort, 0.997; validation
cohort, 0.976; TCGA, 1.0) (Figure 9). The re-built prediction model could
accurately distinguish tumor samples from matched normal samples in almost
all types of cancer except glioblastoma, kidney chromophobe,
pheochromocytoma and paraganglioma, sarcoma, low—-grade glioma, thyroid
carcinoma, thymoma, and uveal melanoma (Figure 10A). In particular, normal
PBMC methylome data (GEO40279) could accurately be predicted as not
cancer. Furthermore, plasma cfDNA methylome data (GE0122126) from CRC
patients could be predicted as CRC (100%; 3/3) (Figure 10B). The results
showed that our prediction model could predict cancer based on plasma

cfDNA, as well as gDNA.
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FIGURE 6. tSNE analysis with CpG methylation level.

tSNE analysis was performed using TCGA (A) and EWAS (C) datasets.
Samples are annotated with tissue type-specific colors (B). (ACC,
adrenocortical carcinoma; BLCA, bladder carcinoma; BRCA, basal breast
invasive carcinoma; CESC, cervix squamous cell carcinoma; CHOL,
Cholangiocarcinoma; COAD, colon adenocarcinoma; DLBC, Lymphoid
Neoplasm Diffuse Large B-cell Lymphoma; READ, rectum carcinoma; ESCA,
esophageal carcinoma; GBM, glioblastoma multiforme; HNSC, head and neck
squamous cell carcinoma; KICH, kidney chromophobe carcinoma; KIRC,
kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma;
LGG, low grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung

adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, Mesothelioma;
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OV, ovarian carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG,
Pheochromocytoma and Paraganglioma; PRAD, prostate adenocarcinomas
SARC, Sarcoma; STAD, stomach adenocarcinoma; SKCM, skin cutaneous
melanoma; TGCT, Testicular Germ Cell Tumors; THCA, thyroid papillary
carcinoma; THYM, Thymoma; UCEC, uterine corpus endometrial carcinoma;
UCS, uterine carcinosarcoma; UVM, Uveal Melanoma; PBMC_Norm, PBMC

from healthy individual)
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4. Biological Rules of the Final Probe Set and Risk Score

As an important gene expression regulator, DNA methylation in cis—
regulatory elements could be crucial to either carcinogenesis or disease
progression (17). The 305 probes were annotated using ChromHMM and
subjected to pathway analysis with Metascape (16). Overall, 160 of 305
(52.5%) probes were annotated in regions related to gene regulation (Figure
11). Pathway enrichment analysis showed that the gene set containing probes
in the promoter regions were enriched in developmental processes and
carcinogenesis (GO: 0032502, logl0 P = -4.28; C4721208, logl0 P = -3.80)
(Figure 12). In addition, 9 of the 25 probes annotated in either promoter
regions or coding sequence (CDS) regions were correlated with mRNA
expression (Figure 13). The risk scores for OS (20 probes) and PFS (133
probes) were also determined. Poor prognosis could be predicted in high-risk
score group (OS, P =0.073; PFS, P = 0.0026) (Figure 14). These results were
more statistically significant than when all probes were used (OS, P = 0.14;
PFS, P = 0.015) (Figure 15). Although the risk score was not correlated with
age or sex, the risk score for OS was statistically higher in the late-stage
group (P < 0.05, t-test) (Figures 16, 17, 18). In conclusion, the probe set was
associated with the cancer-related pathway, and the risk score could be a

potential prognostic marker.
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test, P = 0.0026).
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32



SEX

score_OS
score_PFS

Hwu

SEX SEX
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FIGURE 18. The association risk score with cancer stage.
Risk scores for OS (A) and PFS (B) were plotted. P values were calculated
with Student’s t-tests (0OS, P = 0.05; PFS, P = N.S.). Early-stage group

included the stage I and II and late—-stage group included the stage III and IV.
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DISCUSSION

An accurate prediction model and diagnostic markers were developed
for Korean patients with CRC. To our knowledge, ours is the first description
of CRC-specific methylation markers to build a prediction model using data
from the largest Korean CRC cohort (COPM dataset; 330 adjacent normal
mucosa tissues and 379 CRC tissues). Furthermore, risk scores based on final
diagnostic marker subset could predict CRC patient prognosis.

The analysis was based on a machine learning algorithm with the goals
of identifying the best model for predicting CRC and selecting an optimal
probe set using genome-wide methylation data. Due to the nature of machine
learning, the number of patients in the cohort is an important feature. To
effectively utilize this feature, the cohort was separated prior to analysis.
Comprehensive analysis is needed for the properties of DNA methylation. In
a previous report, cancer tissue-specific methylation pattern was discovered
by machine learning and could predict the TOO (6, 18). Although this model
was built for CRC, predicting TOO would be possible by adding other types
of cancer. The model accurately predicted CRC patients in TCGA and GEO
datasets (n = 9,660 tissues and 59 plasma cfDNA) as having CRC. The
prediction model probes were 305 CpG sites in the human genome. Therefore,
the prediction model can analyze not only 850K array-based methylation
values but also other platform—-based methylation values. Targeted
sequencing is one of the representative methods for this approach and liquid

biopsy, where the amount of cell-free DNA is very low, so a platform based
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on bisulfite conversion would be not applicable (19, 20). To overcome these
issues, methylation levels can be detected using bisulfite—free methods based
on enrichment using methylated CpG sites with specific antibodies and
enzymatic C to T conversion (21) (22). The use of these methods would make
the prediction model more powerful for understanding CRC.

The 305 CpG sites were associated with developmental processes and
carcinogenesis (GO: 0032502, logl0P = -4.28; C4721208, loglOP = -3.80).
DNA methylation is a critical gene regulation mechanism. In cancer, cis—
regulatory elements of tumor suppressor genes and oncogenes are
hypermethylated and hypomethylated, respectively, in tumor cells compared
to normal cells. This underscores the importance of coordinating probes on
the genome. The ChommHMM database is well-organized with regard to
tissue—type chromatin status. In this study, 160 of 305 probes (52.5%) were
annotated in regions related to gene regulation. In addition, 9 out of 25 probes
annotated in either promoter or CDS regions correlated with mRNA
expression. Methylation level could affect gene expression CpG site clusters
rather than single CpG loci. Indeed, CpG islands are located in 40% of all gene
promoters (23). For this reason, not all CpG site methylation was directly
correlated with gene expression.

In summary, this accurate prediction model yielded risk scores of
informative methylation patterns detected in CRC or a broad range of cancer
types, with prediction performance approaching the goal for large-scale
screening based on Korean CRC data. These results support the feasibility of
employing this machine learning—based methylation analysis for early CRC
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detection in the Korean population.
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II. Combined analysis of ctDNA mutation and
fragment size for predicting prognosis of

colorectal cancer
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ABSTRACT

The fragment size of cell-free DNA (cfDNA) was well characterized.
It has been reported the size of cfDNA derived from the patients with cancer
was shorter than the non-cancer individuals and short fragments were
associated with the circulating tumor DNA (ctDNA) among cfDNA. Short
fragments of ctDNA have been proposed as predictive biomarkers of disease,
although their role in colorectal cancer remains unknown. We hypothesized
that the fragment size of ¢cfDNA, which include ctDNA fragments, isolated
from colorectal cancer patients have the potential for prognosis after
chemotherapy. Two hundred eighty plasma samples from 62 patients with
colorectal cancer were collected along with plasma from 50 healthy controls.
Sixty-two individuals were recruited through prospective clinical studies at
Seoul National University Hospital. The chemotherapy backbone of the
Cetuximab or Bevacizumab containing regimen was chosen between FOLFIRI
or FOLFOX. Blood samples were obtained prior to chemotherapy and after
every four cycles of chemotherapy until disease progression. ctDNA was
detected by target capture panel. This panel sequencing is a tumor agnostic
panel consist of 106 genes, including 10 gene fusion and MSI. Based on the
panel sequencing data, the genetic alterations and the fragment size of cfDNA
were calculated by our algorithm. And the fragmentation ratio was defined by
the ratio of the read fragment proportion in size range P1 (100 — 155 bp) and
P2 (160 — 180 bp). For survival analysis, the optimal thresholds separating

the group based on the clinical response (responder vs. non-responder) were
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calculated by the ROC analysis. Compared to cfDNA from healthy controls,
the cfDNA fragment sizes from patients with colorectal cancer were
significantly shorter (169.585 bp vs. 173.964 bp; P =1.119e-09). Additionally,
ctDNA fragments harboring mutant alleles were shorter than those harboring
reference alleles of somatic mutations but not germline mutations (155.853
bp vs. 160.613 bp; P = 0.0007829 & 160.911 bp vs. 159.889bp; P = 0.992).
Further, the clonality inferred from the variant allele frequency (VAF) of
somatic mutation was negatively correlated with the size of the ctDNA
fragment. The read fragment proportion in size range P1 was significantly
associated with the clonality. We divided the samples into the following
groups: baseline, first follow—up, before-last follow—up, and last follow—up
(end point). We calculated the mean size of DNA fragment and the
fragmentation ratio with each longitudinal sample. In the before-last follow—-
up group, the fragmentation ratio was found to accurately predict the
prognosis of patients with colorectal cancer (average survival of 9 months; P
= 0.016). The fragmentation ratio was also found to increase in a time-
dependent manner (P = 0.018; ANOVA). In summary, we identified the
fragmentation ratio as a prognostic marker for survival of patients with
colorectal cancer.

Key words : Colorectal cancer (CRC), Fragmentomics, non-genetic marker,
cell-free DNA(cfDNA), circulating tumor DNA(ctDNA), Prognosis

Student Number : 2018-37966
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INTRODUCTION

In the cell nucleus, DNA is wrapped around proteins called histones.
Upon cell death (apoptosis, necrosis, etc.), DNA is released into the
bloodstream where it can freely circulate; such DNA is referred to as cell-
free DNA (cfDNA) (24). As DNA fragmentation can result from apoptosis (25),
size patterns of cfDNA fragments are highly dependent on the extent of
nucleosome packaging, with shorter fragments commonly associated with
transcription factor—binding sites (26) (27). The mean size of cfDNA
fragments is approximately 166 bp (28). However, such fragments tend to be
shorter in patients with various diseases or in pregnant patients compared to
healthy controls (29). Recent studies have reported on the novel applications
of cfDNA fragments.

For example, the size of circulating tumor DNA (ctDNA) tends to be
shorter than that of ¢fDNA derived from normal tissues (30). In a study of the
KRAS oncogene in patients with early pancreatic cancer, the size of a ctDNA
fragment harboring a mutant allele was shorter than a ctDNA fragment
harboring a reference allele using targeted deep sequencing (31). Using both
targeted deep sequencing and shallow whole—genome sequencing (sWGS),
copy number alterations were calculated via in silico size selection, which can
enrich the tumor fraction harboring small cfDNA fragments (30, 32). On the
other hand, using sWGS, cancer-specific regions harboring aberrant cfDNA
fragments were identified, and a prediction model was built using a machine

learning algorithm (33). The sizes of the cfDNA fragments examined were

41



found to be aberrant in DNasell3-knockout mice, and their expression in liver
cancer tissues was lower than that in adjacent normal liver tissues (34).
However, research on ctDNA fragment size using targeted deep sequencing
is still insufficient.

Herein, deep sequencing of cancer-related genes from cfDNA
samples isolated from 62 patients with colorectal cancer and 50 healthy
controls was performed. In this prospective cohort study, the ability of
particular subgroups and sizes of cfDNA fragments to predict the prognosis

of patients with cancer was assessed.
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EXPERIMENTAL DESIGN

1. Information of cohort

Two hundred eighty plasma samples from 62 patients with colorectal
cancer were collected along with plasma from 50 healthy controls. 62
individuals were recruited through prospective clinical studies at Seoul
National University Hospital. The chemotherapy backbone of the Cetuximab
or Bevacizumab containing regimen was chosen between FOLFIRI (5-
Fluorouracil, Leucovorin, Irinotecan) or FOLFOX (5-Fluorouracil, Leucovorin,
Oxaliplatin), at the discretion of the treating physician. Response evaluation
was done in accordance to RECIST 1.1 using contrast—enhanced computed
tomography (CT) obtained at baseline and repeated every four cycles or at
clinician’s suspicion of progressive disease. All patients provided written
informed consent before any study-specific procedures. The protocol of this
study was reviewed and approved by the Institutional Review Board (IRB) of
SNUH (IRB number: 1805-049-944) and was conducted in accordance with

the Declaration of Helsinki in biomedical research involving human subjects.

2. Blood sample collection and cell-free DNA extraction

Serial blood samples were obtained before treatment initiation (£ 7
days before treatment) and at the time of response evaluations. Whole blood
(810 mL) was collected into EDTA tubes during routine phlebotomy. Blood
samples were centrifuged with Ficoll solution at 1500 X g for 15 min. Plasma

was then separated by centrifugation at 16,000 X g for 10 min to remove cell
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debris, after which 1 mL aliquots were placed in Eppendorf tubes and stored
at — 80 °C before extraction. This protocol was performed within 20 min of
blood collection to prevent cell-free DNA (cfDNA) degradation and release
of genomic DNA from dying blood cells. cfDNA was isolated according to the
manufacturer’s instructions from 2 to 4 mL plasma using a cfKapture™ Kit
(MagBio Genomics, USA) and quantified using a 2200 TapeStation (Agilent
Technologies, Santa Clara, CA, USA). Peripheral blood mononuclear cell
(PBMC) was separated following this protocol. Genomic DNA was isolated

from PBMC using a QIAamp DNA Mini Kit (Qiagen).

3. Targeted deep sequencing and bioinformatics analysis

Briefly, ~ 20 ng of ¢fDNA and 100 ng of leukocyte DNA per patient
were used for sequencing library preparation. A DNA NGS library was
constructed using a IMBDx NGS DNA Library Prep Kit. Solution—-based target
enrichment was performed at IMBDXx, Inc. (Seoul, South Korea), using a target
capture panel (106 cancer related genes). Captured DNA libraries were
sequenced using an [llumina NextSeq 550 platform (Illumina, San Diego, CA,
USA) in 2 X 150 bp paired—end mode. All sequencing reads from the samples
were generated as fastq format. Filtered fastq files were aligned to the human
reference genome (hg38) using Burrows—Wheeler Aligner (v0.7.17) “mem”
algorithm (35). Reads mapped on the target regions were extracted, and
collapsing was carried out using Genecore (36). In order to variant calling,
Initial variant calls were compiled using VarDict (37), then a series of in-
house filtering steps were applied. The remaining calls were annotated using
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SnpEff (38), SnpSift (39), and VEP (40) for functional effect prediction and
tagging information from various databases. In order to distinguish germline
mutation from somatic mutation, the database called for GNOMAD was used
for germline mutation. To analyze the fragment lengths of ¢cfDNA molecules,
I sorted that each read pair from a cfDNA molecule had a Phred quality score
>30 using Samtools (41). Then, I collected the read pairs contained the
mutated (or wild-type) allele at the given genomic position. This was done
using Bedtools and Pysam. Finally, for each read pairs, the fragment length
was calculated by from the end of R1 tag to end of R2 tag. The performance
of this was not different from Picard tools ‘CollectlnsertSizeMetrics’ (Figure
1). This step was performed total three times for total regions of panel,
regions of patient specific somatic and germline mutation. Using cfDNA
fragment size, the distribution curve was calculated and the area under curve
(AUC) for two regions was calculated (P1: 100 — 155 bp, P2: 160 — 180 bp).
These regions were reported as representative regions for tumor fraction

enriched (P1) and normal-like (P2) regions (30).

4. ROC analysis

In order to determine the optimal threshold for classifying clinical
response group, ROC analysis was performed using R package ‘pROC’.
Through this step, the ROC curve and AUC were calculated for each variable.

And the optimal threshold for classifying two group was calculated (42).

5. Survival analysis
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Using R package ‘survminer’, the survival rate for OS and PFS were
calculated. And Kaplan—-Meier plot were visualized and p value were

calculated by Log-rank test.

6. Statistical test

Using R, the following distribution of cfDNA/ctDNA size were
evaluated by Kolmogorov—Smirnov test and Q-Q plot: “Colorectal cancer
patients vs. Healthy controls” and “read fragments harboring mutant allele
vs. read fragments harboring wild-type allele”. The of Progression—free
survival (PFS) was evaluated as outcome measures for each marker related
to fragment size. The following statistical significance for Kaplan—-Meier
analysis were evaluated by Log-rank test: “short fragment vs. long
fragment”, “AUCp; high vs. AUCp; low”, “AUCps high vs. AUCp» low” and
“fragmentation ratio high vs. fragmentation ratio low”. The ANOVA test was
performed for significance of the fragment size among time point, response

group.
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FIGURE 1. The benchmarking of the DNA fragment size calculation
A distribution curve for patients with colorectal cancer was generated before
correction (red) and after correction using the Picard tool (blue) and custom

script (green).
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RESULTS

1. Patient characteristics

Two hundred eighty plasma samples were collected from 62
colorectal cancer patients (Table 1). Median age of cohort was 62 (37 - 79)
and proportion of male and female was 61.3% (n=38) and 38.7% (n=24).
Anatomical sites of primary tumor were ascending colon (9.7%; n=6),
transverse colon (1.6%; n=1), sigmoid colon (53.2%; n=34), cecum (6.5%; n=4)
and rectum (29.0%; n=18). Pathological subtypes were adenocarcinoma W/D
(3.2%; n=2), adenocarcinoma M/D (87.1%; n=54) and adenocarcinoma P/D
(9.7%; n=6). The status of microsatellite instability was MSI-H (1.6%; n=1),
MSI-L (11.3%; n=7), MSS (82.3%; n=51) and NA (4.8%; n=3). Forty—one
(66.1%) patients received FOLFIRI based cytotoxic chemotherapy and 20
(32.3%) patients received FOLFOX based cytotoxic chemotherapy. There
were b7 patients who received the targeted therapy (Cetuximab; n=35,
Bevacizumab; n=22). For each patient, I generated targeted deep
sequencing data and assessed the utility of ctDNA fragment size as prognostic

marker.
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Categories Number of patients (%)
lAge at diagnosis, median (range) 62 (37 - 79)
Male 38 (61.3 %)
Sex
Female 24 (38.7 %)
Metastasis 46 (74.2 %)
Disease presentation at enrollment
Recurrence (metastatic) 16 (25.8 %)
Cecum 4 (6.5 %)
IAscending colon 6 (9.7 %)
Primary tumor site Transverse colon 1(1.6 %)
Sigmoid colon 34 (53.2 %)
Rectum 18 (29.0 %)
Liver 46 (74.2%)
Lung 20 (32.3%)
Metastasis site Peritoneal seeding 12 (19.4%)
Lymph nodes 12 (19.4%)
Other organs 7 (11.3%)
ADC, W/D 2(3.2%)
Pathology ADC, M/D 54 (87.1 %)
ADC, P/D 6 (9.7 %)
MSS 51(82.3 %)
MSI-L 7 (11.3%)
Microsatellite instability
MSI-H 1(1.6 %)
Not available 3 (4.8 %)
FOLFIRI 41 (66.1 %)
Cytotoxic chemotherapy* COLFOX 20 (323 %)
Cetuximab 35 (56.5 %)
Targeted therapy™ Bevacizumab 22 (35.5 %)

* 1 loss to follow up after pre-treatment evaluation
** 4 treated without targeted therapy

Table 1. Clinicopathological information of the prospective patient cohort.
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2. Differences in cfDNA size in healthy controls

Recently, it was reported that cfDNA fragment size in cancer patients
is shorter than that in healthy individuals (43). In our cohort, the cfDNA in
280 plasma samples from patients with colorectal cancer and 50 plasma
samples from healthy controls was subjected to targeted deep sequencing,
and the cfDNA fragment size was estimated. As expected, the size of the
cfDNA fragments from patients with colorectal cancer tended to be shorter
than those from healthy controls (169.6 bp vs. 174.0 bp; P = 1.119e-09;
Kolmogorov—Smirnov test) (Figure 2). One hypothesis for this phenomenon
is that plasma cfDNA from patients with colorectal cancer harbor a highly
aberrant fraction of DNA from the primary tumor. The size distribution
between the cfDNA fragments harboring mutant alleles and wild-type alleles
from patients with colorectal cancer (METHOD) was compared. The size of
cfDNA fragments harboring mutant alleles was significantly shorter than the
size of fragments harboring wild-type alleles (P = 0.0007829; Kolmogorov—
Smirnov test) (Figure 3). The shorter cfDNA fragments from patients with
colorectal cancer appear to be the indirect result of ctDNA harboring mutant

alleles.

50



0.2
data_type
AT

data_type

freq

== CRC g
& == Healthy

== Healthy s
001

000 0004

100 20 300 100 20 20
fragment_size fragment_size

FIGURE 2. Distribution curve of cfDNA fragment size in patients with
colorectal cancer (n=62) and in healthy controls (n=50).

A. The total fragment sizes were calculated and plotted. The mean fragment
sizes from patients with colorectal cancer and healthy controls were 169.585
bp and 173.964 bp, respectively; P = 1.119e-09; Kolmogorov—-Smirnov test.
B. For patients with colorectal cancer, read fragments were separated into
those harboring mutant alleles (ALT) and wild-type alleles (REF) and plotted.

The mean ALT and REF sizes were 155.853 bp and 160.613 bp, respectively.
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FIGURE 3. Distribution curve of cfDNA fragments by mutation type.

Read fragments from DNA harboring somatic (A) or germline (B) mutations
were estimated and plotted. The mean sizes of somatic mutation fragments
harboring ALT or REF were 155.853 bp and 160.613 bp, respectively
(Kolmogorov-Smirnov test, P = 0.0007829). The mean sizes of germline
mutation fragments harboring ALT or REF were 160.911 bp and 159.889 bp,

respectively; P = 0.992; Kolmogorov—-Smirnov test.
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3. The association of ctDNA size with clonality

Various types of mutations derived from PBMCs, tumor tissues, and
normal tissues are normally detected in plasma cfDNA (44). To discern
whether cfDNA fragment size depends on mutation type, ctDNA fragments
harboring somatic mutations were separated from cfDNA fragments harboring
germline mutations. Then, the size of each fragment was estimated. Although
the ctDNA fragment size was significantly different between those harboring
somatic mutant alleles and those harboring wild-type alleles, cfDNA fragment
size was not affected by the presence of a germline mutation (somatic
mutation; P = 0.0007829, germline mutation; P = 0.992) (Figure 3). This is
the one of the features which could be distinguished somatic variants from
germline variants. Next, the association of the variant allele frequency (VAF)
of somatic mutations with ctDNA fragment size was determined. As the VAF
of mutations, which represent either the clonality or purity of the samples, is
roughly based on the cancer genome (45), three groups of clonality based on
the maximum VAF of somatic mutations were defined and identified in
patients with colorectal cancer. Very low clonality (max VAF < 10%), low
clonality (10% < max VAF < 40%), and high clonality (max VAF > 40%) were
identified in 29, 9, and 24 patients, respectively (Figure 4). Additionally, the
mean size of all fragments, the mean size of fragments harboring mutant
alleles, the mean size of fragments harboring wild-type alleles, the proportion
of short fragments (P1; 100-155 bp), and the proportion of reference cfDNA
fragments (P2; 160-180 bp) were calculated. Interestingly, the proportion of
short fragments was significantly correlated with the maximum VAF of
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somatic mutations (Pearson correlation r = 0.86; P = 2.9e-13) and was
greater in the high clonality group (P < 0.001) (Figure 5 and 6). Among
patients with a VAF of somatic mutations above 10%, ctDNA fragments with
mutant alleles were shorter than those harboring wild—type alleles in 12 out
of 33 patients (Figure 7). In summary, shorter ctDNA fragments were more

frequently found in patients in the high clonality group.
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FIGURE 4. Distribution curve of the VAF of somatic mutations detected in
plasma cfDNA.

A. The VAFs of somatic mutations were plotted. B. The VAF distribution was
plotted for each patient, individually (10 %, 40%, and 60% VAF are annotated

by blue, red, and red).
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FIGURE 5. The association between clonality and ctDNA fragment size.

Variables were plotted along with clonality group: A. Mean total fragment size

in baseline samples. B. Mean ALT size in baseline samples. C. Mean REF size

in baseline samples. D. AUC for short fragments (100-155 bp). E. AUC for

reference fragments (160-180 bp). NS, not significant; *, P < 0.05; #*, P <

0.01, ==, P < 0.001; Student’s t test.
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Variables were plotted along with maximum VAF. A. Total mean fragment
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size in baseline samples. D. AUC for short fragments (100-155 bp). E. AUC

for reference fragments (160-180 bp). Pearson coefficients for A, B, C, D,
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FIGURE 7. Distribution curves for ctDNA fragments from patients with more

than 10% somatic mutations detected in plasma (n=33).

A. Fragment sizes with a VAF greater than 10% were plotted. The mean ALT

and REF sizes were 158.241 bp and 173.669 bp, respectively. The red and

green lines indicate the ALT and REF read fragments, respectively. B. A

distribution curve was plotted for each patient, individually.
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4. The fragmentation ratio as prognostic marker

Next, I wondered the ctDNA fragment size could predict the clinical
response of colorectal cancer patients. For fifty-two out of 62 patients,
clinical response was analyzed by RECIST 1.1 (46). Fifty—-two patients were
separated by two group which are responder (PR; n = 31) and non-responder
(PD;n=1 & SD; n = 20). The median survival was 269 days in non-responder
group and 442 days in responder (7 = 0.00059; Log-rank test) (Figure 8).
The average 4.51 plasma samples of 62 colorectal cancer patients were
collected along with the clinical response from baseline to end point. Among
these samples, the data of four time points were analyzed (the baseline, first
follow up; median 75 days, before end point; median 261 days and end point;
median 339.5 days). In order to assess the utility of ctDNA fragment size as
prognostic marker, I defined the ratio which is the proportion of the short
fragment (P1; 100 — 155 bp) divided by the proportion of the reference
cfDNA fragment lengths (P2; 160 — 180 bp) as ‘the fragmentation ratio’. The
fragmentation ratio and mean size of total read fragment was calculated every
time point each patient. Then, the threshold of each variable and each time
point was calculated by ROC analysis (Figure 9). Clinical sub-group
(responder vs. non-responder) could be separated by the optimal threshold
as mentioned. With these thresholds, the group for prognosis analysis were
separated by two group. As a result, the high fragmentation ratio group
predicted poor prognosis than the low fragmentation ratio group at before end
point (P=0.016; Log-rank test) (Figure 10). The other plasma samples which
were collected was not shown significant prediction. Furthermore, the
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fragment ratio was increased in non-responder group from first follow up to
end point (P = 0.0195; two—way ANOVA test) (Figure 11). In conclusion, with
the fragmentation ratio, it showed that monitoring and prognosis for
colorectal cancer patients were possible since the specific sampling time

point (before end point).
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FIGURE 8. Calculation of PFS according to the RECIST 1.1 guideline.

A. A Kaplan—-Meier plot was used to analyze median survival time of patients
grouped into those with PD, SD, or PR; P < 0.0001; log-rank test. B. A
Kaplan—-Meier plot was used to analyze median survival time of patients

grouped into responder and non-responder groups; P = 0.00059.
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FIGURE 9. ROC analysis for calculating the optimal cutoff values used to

classify patients into the responder and non-responder groups.
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FIGURE 10. Survival plot for each sampling time point and variables.

Kaplan—-Meier analysis was performed using optimal cutoff values for clinical

responses. A log-rank test was used for analysis.
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DISCUSSION

The results of this study show the potential of cfDNA fragment size
as a prognostic marker for patients with colorectal cancer. Two hundred
eighty plasma samples from 62 patients with colorectal cancer who received
targeted therapy and 50 plasma samples from healthy individuals were
analyzed using targeted deep sequencing of 106 cancer-related genes, and a
comparison of cfDNA fragment sizes was performed. The representative size
of cfDNA was reported to be 166 bp, likely as a result of histone packaging.
On the other hand, highly fragmentated ¢fDNA (< 100 bp) is associated with
transcription factor binding. To investigate this further, a platform able to
detect nucleosome footprinting would be needed, such as MNase-seq,
ATAC-seq, or DNase-seq (47) (48). According to previous reports, DNA
fragmentation is related to cell death (25), as caspase-activated DNase
activity has been shown to be associated with DNA fragmentation (49). Even
though patient—-derived ctDNA fragments harboring mutant alleles were
shorter than those from healthy controls, the molecular mechanism is still
unclear.

Because the size of ctDNA fragments was shorter than cfDNA from
normal cells, the region used for determining fragment size is important.
Clonality is highly correlated with ctDNA fragment size. Concordance
between primary tissues and ctDNA was previously calculated to be 93% in
patients with colorectal cancer (50). The steps for detecting somatic

mutations and ctDNA fragment size thus followed this previous report.
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There are two primary approaches for analyzing the size of ctDNA fragments:
the use of either a double-stranded DNA (dsDNA) or single-stranded (ssDNA)
library. Snyder et al. described a diagnostic model for cancer based on
analyzing the size of cfDNA fragments using an ssDNA library prepared via
WGS (27). In that paper, the small cfDNA size was associated with
transcription factor binding. Even though a dsDNA library was used to analyze
cfDNA, the fragment data were sufficient for analysis. A different study
compared the use of ssDNA and dsDNA libraries for cfDNA analysis (51),
finding that fragments larger than 100 bp could be detected using either
library. However, fragments smaller than 100 bp could only be detected using
an ssDNA library. For analysis of either genome-wide fragment patterns or
nucleosome footprinting, both an ssDNA library and WGS are needed.

In a study monitoring the treatment response of patients with
colorectal cancer who received an anti—-EGFR therapy (52), patients whose
average VAF was less than 1% during the first evaluation had significantly
better PFS than those with a higher VAF (P < 0.001). In this study, responders
and non-responders were categorized, according to the RECIST 1.1 guideline,
by sampling time as determined by the ROC analysis. At time points prior to
PD, the fragmentation ratio (AUCp1/AUCp2) was confirmed to be a prognostic
marker for patients in the colorectal cancer cohort, increasing after treatment
in the non-responder group. Thus, the fragmentation ratio can be used as a
prognostic marker of treatment success in patients with colorectal cancer. To
validate these findings, a larger cohort with various types of cancer should
be studied.
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CONCLUSION

This is a study on the discovery of non-genetic markers for
predicting the prognosis of Korean colorectal cancer for utilizing liquid biopsy.

In part 1, based on machine learning, prediction model with genome-
wide DNA methylation markers for diagnosis and risk score for predicting
prognosis were devised. Seven—hundred ninety methylation data were
processed as COPM dataset (n=709; 330 normal adjacent colon tissues & 379
colorectal cancer tumor tissues). Using machine learning algorithm, the
optimized predictive modeling was set and the final 305 probes were defined
as diagnostic marker. The performance of my prediction model was 0.997
(training cohort) and 0.976 (validation cohort) AUC, each. With my prediction
model, the colorectal cancer patient in TCGA and GEO dataset (n=9,660
tissues and 59 plasma cfDNA) were significantly predicted as the positive for
colorectal cancer. A subset of diagnostic markers was chosen to define a risk
score for predicting prognosis (0OS; 20 & PFS; 133 probes). The prognostic
markers were enriched in transcription regulatory regions and some of the
probe set were correlated with mRNA expression (41%; 9/ 22).

In part 2, using next—generation sequencing data, the prognostic
system with the fragment size of ctDNA was devised. Two-hundred eighty
plasma samples from 62 colorectal cancer patients were collected along with
50 plasmas from healthy donors and analyzed by targeted deep sequencing
including cancer related 106 genes. The ctDNA fragment size was shorter

than cfDNA from non—cancerous cell. The clonality was highly correlated with
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the ctDNA fragment size. The responders and non-responders were
separated by RECIST 1.1. Using ROC analysis, the optimal cut—off values for
various sampling time points, each. At the time points before PD, the ratio of
AUC (AUC,1/AUC,2) could be the prognostic markers for colorectal cohort.
Assessing the utility of ratio of AUC (AUC,1/AUC,2) at various sampling time
point, the ratio was increased after treatment in non-responder group,
consecutively.

In conclusion, I focused on validating the utility of non-genetic

signatures(methylation markers and fragmentomics) in Liquid biopsy.
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