

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of JEONGWOO PARK

Design of Low-Power Neural Network
Training Accelerators through Highly

Quantized Learning Process

양자화된학습을통한저전력딥러닝훈련가속기설계

FEBRUARY 2022

Graduate School of Convergence
Science and Technology

Seoul National University
Intelligent Systems Major

JEONGWOO PARK

Design of Low-Power Neural Network
Training Accelerators through Highly

Quantized Learning Process

양자화된학습을통한저전력딥러닝훈련가속기설계

지도교수전동석

이논문을공학박사학위논문으로제출함

2022년 2월

서울대학교대학원

융합과학기술대학원지능형융합시스템전공

박정우

박정우의공학박사학위논문을인준함

2022년 2월

위 원 장: 이 재 욱 (인)
부위원장: 전 동 석 (인)
위 원: 김 장 우 (인)
위 원: 최 우 석 (인)
위 원: 정 두 석 (인)

Abstract

With the advent of the deep learning era, the computational need for processing

deep neural networks (DNN) have increased dramatically, both in terms of performing

training the neural networks on various tasks as well as in performing inference on

the trained neural networks for specific use cases. To address those needs, many cus-

tom hardware ranging from systems based on field-programmable gate arrays (FPGA)

or application-specific integrated circuits (ASIC) for deployment inside data centers

to acceleration blocks in system-on-chip (SoC) for low-power processing in mobile

devices were proposed. In this dissertation, custom integrated circuits hardware for

energy efficient processing of training neural networks are designed, fabricated, and

measured for evaluation of different methodologies that could be utilized for more en-

ergy efficient processing under same training performance constraints. In particular,

these methodologies are categorized to three different categories for evaluation: (1)

Training algorithm. While standard deep neural network training is performed with

the back-propagation (BP) algorithm, we investigate various training algorithms, such

as neuromorphic learning algorithms with spiking neurons or bio-plausible algorithms

with asymmetric feedback for exploiting computational properties for more efficient

hardware implementation. (2) Low-precision arithmetic. One of the most powerful

methods for increased efficiency in DNN accelerators is through scaling numerical

precision. While utilizing low precision numerics for inference phase of DNNs is well

studied, training DNNs without performance degradation is relatively more challeng-

ing. A novel numerical scheme for training DNNs in various models and scenarios is

proposed in this dissertation. (3) System implementation techniques. In actual real-

ization of a custom training system in integrated circuits, nearly infinite design space

leads to vastly different quality of results depending on dataflow inside the chip, system

load balancing, acceleration and gating blocks, et cetera. Different design techniques

i

which leads to better performance and efficiency are introduced in this dissertation.

First, a neuromorphic learning system for classifying handwritten digits (MNIST)

is introduced. This learning system aims to deliver low training overhead while main-

taining the training performance of classical machine learning. In order to achieve

this goal, a neuromorphic learning algorithm is modified for lower operation count

and memory buffer requirement while maintaining or even obtaining higher machine

learning performance. Moreover, implementation techniques such as update skipping

mechanism and lock-free parameter updates allow even lower training overhead, dy-

namically reducing training energy overhead from 25.6% to 7.5%. With these pro-

posed methodologies, this system greatly improves the accuracy-energy trade-off in

on-chip learning system as well as showing close learning performance to classical

DNN training through back propagation.

Second, a programmable DNN training processor with a custom numerical format

is introduced. While prior DNN inference accelerators have utilized 8-bit integers, im-

plementing 8-bit numerics for a training accelerator remained to be a challenge due to

higher precision requirements in the backward step of DNN training. To overcome this

limitation, a custom 8-bit floating point format dubbed 8-bit floating point with shared

exponent bias (FP8-SEB) is introduced in this dissertation. Moreover, a processing

architecture of 24-way fused-multiply-adder (FMA) tree greatly increases processing

energy efficiency per MAC, while complemented with a novel 2-dimensional routing

data-path for making use of spatiality to increase data reuse in both forward, backward,

and weight gradient step of convolutional neural networks. This DNN training proces-

sor is implemented with a custom vector processing unit, acceleration instructions,

and DMA in external DRAMs for end-to-end DNN training in various models and

datasets. Compared against prior low-precision training processor in ResNet-18 train-

ing, this work achieves 2.48× higher energy efficiency, 43% less DRAM accesses, and

0.8%p higher training accuracy.

ii

Both of the designs introduced are fabricated in real silicon and verified both in

simulations and in physical measurements. Design methodologies are carefully eval-

uated using simulations of the fabricated chip and measurements with monitored data

and power consumption under varying conditions that expose the design techniques

in effect. The efficiency of various biologically plausible algorithms, novel numeri-

cal formats, and system implementation techniques are analyzed in discussed in this

dissertations based on the obtained measurements.

keywords: Neural Network Accelerator, Digital Integrated Circuits, Very Large Scale

Integration, Computational Efficiency, Learning Systems, Neuromorphics, Machine

Learning Accelerators

student number: 2017-22051

iii

Contents

Abstract i

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Study Background . 1

1.2 Purpose of Research . 6

1.3 Contents . 8

2 Hardware-Friendly Learning Algorithms 9

2.1 Modified Learning Rule for Neuromorphic System 9

2.1.1 The Segregated Dendrites Algorithm 9

2.1.2 Modification of the Segregated Dendrites Algorithm 13

2.2 Non-BP Learning Rules on DNN Training Processor 18

2.2.1 Feedback Alignment and Direct Feedback Alignment 18

2.2.2 Reduced Memory Access in Non-BP Learning Rules 23

3 Optimal Numerical Format for DNN Training 27

3.1 Related Works . 27

iv

3.2 Proposed FP8 with Shared Exponent Bias 30

3.3 Training Results with FP8-SEB . 33

3.4 Fused Multiply Adder Tree for FP8-SEB 37

4 System Implementations 41

4.1 Neuromorphic Learning System . 41

4.1.1 Bio-Plausibility . 41

4.1.2 Top Level Architecture . 43

4.1.3 Lock-Free Weight Updates 47

4.1.4 Update Skipping Mechanism 48

4.2 Low-Precision DNN Training System 51

4.2.1 Top Level Architecture . 52

4.2.2 Optimized Auxiliary Instructions in the Vector Processing Unit 55

4.2.3 Buffer Organization . 57

4.2.4 Input-Output 2D Spatial Routing for FMA Trees 60

5 Measurement Results 70

5.1 Measurement Results on the Neuromorphic Learning System 70

5.1.1 Measurement Results and Test Setup 70

5.1.2 Comparison against other works 73

5.1.3 Scalability of the Learning Algorithm 77

5.2 Measurements Results on the Low-Precision DNN Training Processor 79

5.2.1 Measurement Results in Benchmarked Tests 79

5.2.2 Comparison Against Other DNN Training Processors 89

6 Conclusion 93

6.1 Discussion for Future Works . 93

6.1.1 Scaling to CNNs in the Neuromorphic System 93

6.1.2 Discussions for Improvements on DNN Training Processor . . 96

6.2 Conclusion . 99

v

Abstract (In Korean) 108

vi

List of Tables

2.1 Hyperparameters used in the Segregated Dendrites Algorithm. 13

2.2 Training* and Test Accuracy with Varying Time Steps 17

2.3 Hardware Cost and MNIST Accuracy in Modified SD Algorithms . . 17

2.4 Network-in-Network CIFAR-10 Training with Various Learning Rules 22

2.5 DNN Training Processor Latency and Energy Consumption 25

3.1 Energy Consumption & Area Per MAC, Synthesized Results 38

3.2 PSNR in Matrix Multiplication with Varying N-Way FMAs 39

4.1 Performance of SS-MSD algorithm With Different Internal Bit Precision 44

4.2 Capacity and Bandwidth of Banks* 59

5.1 Energy Consumption of Neuromorphic System with Various Configu-

rations* . 76

5.2 Comparison of On-Chip Learning Systems 77

5.3 Performance of the Processor on Benchmark Models 85

5.4 On-Chip and Off-Chip Memory Access in AlexNet Layers 88

5.5 Comparison of Neural Network Training Processors 89

5.6 Adders, multipliers, and MAC Units with Various FP8 Configurations.* 91

6.1 DNN Training Processor Power and Area with FP16/FP30 Accumula-

tors* . 97

vii

List of Figures

1.1 Three different processing schemes for DNN models. 3

1.2 Sparsity of state-of-art deep learning models have declined signifi-

cantly compared to their predecessors. 4

1.3 More error-sensitive tasks may result in quality of results degradation

in 8-bit fixed point math. 5

2.1 Structure of the hidden neurons in the Segregated Dendrites algorithm. 11

2.2 Illustration of network behavior and interconnect in forward and target

phases. 11

2.3 Illustration of modified hidden neuron structure. Basal dendrites are

omitted, and dendrite potentials are directly calculated from spikes

rather than through post synaptic potentials. 14

2.4 Test error rate on MNIST dataset for different versions of the segre-

gated dendrites algorithm. 16

2.5 Illustration of how errors are calculated in different learning algorithms. 20

2.6 Hardware advantages of using HFA learning rules. 23

2.7 Breakdown of bio-plausible learning rule execution in ResNet-18 back-

ward pass. 25

3.1 An illustration of the fine-grain mixed-precision training scheme in-

troduced in [1]. 28

viii

3.2 An illustration of the hybrid-fp8 arithmetic block introduced in [5]. . . 29

3.3 An illustration of the dual-representation problem in block floating point. 30

3.4 Illustration of FP8-SEB. Biases are tracked during each computation

pass with overflow/under-utilization flag to adjust to dynamic range

changes. 31

3.5 Matrix multiplication in FP8-SEB. Convolution operations could be

carried out similarly without re-quantization, as biases are shared across

entirety of the tensor. 33

3.6 Comparison of trained accuracy on selected tasks. Half-precision train-

ing, shown in gray, fails for GAN and LSTM task while FP8-SEB with

FP30 accumulators perform on par with models trained with full pre-

cision. 35

3.7 Generated super-resolution images, trained in FP32 (shown on left)

and FP8-SEB (shown on right). 36

3.8 FMA trees implementation. Partial products are added together in loss-

less dimensions of 37-bit integers. 37

4.1 A top-level view of implemented neuromorphic system. 44

4.2 Block diagram of components in a hidden layer. 45

4.3 Block diagram of components in a hidden neuron. 46

4.4 Diagram of lock-free parallel processing. 48

4.5 Illustration of a case where output and target spikes match exactly,

where update values become zero. 49

4.6 Disabling the update path through monitoring the spike pattern. 50

4.7 Top level block diagram of the DNN training processor. 51

4.8 Ratio of valid MACs with varying N in N-way FMA trees in ResNet-

18 processing. 52

4.9 Block level view of the 16-lane vector processor. 54

4.10 Cycle-by-cycle operation of the optimized SGD instruction. 57

ix

4.11 Breakdown of processor states in terms of number of cycles. 58

4.12 The routing at inputs and outputs for tree based processing, compared

against conventional routing units that is implemented between pro-

cessing elements. 60

4.13 Illustration of convolution feedforward processing steps in 3×3 kernel

size. 62

4.14 Input routing unit in implementation for different cases of kernel widths

for illustration. 63

4.15 Illustration of convolution backward functionality. 66

4.16 Illustration of the 2D output routing unit. 67

5.1 Die photo of the neuromorphic learning system. 71

5.2 Diagram of the FPGA design for automated testing in the neuromor-

phic learning system. 72

5.3 Test environment setup for real time measurement and verification of

the fabricated learning system. 74

5.4 The update skipping rate and training energy normalized over infer-

ence energy is plotted. 75

5.5 Plot of MNIST test accuracy and energy consumption per image for

various learning systems. 75

5.6 Using fully connected network with size of 1024-512-10 for CIFAR-

10 classification, trained with original SD, modified SD, and back

propagation. 78

5.7 Die photograph of the fabricated DNN training processor. 79

5.8 Integrated test environment for automated measurement and verifica-

tion of the DNN training processor. 80

5.9 Diagram of the test FPGA serving as memory bridge. 81

5.10 Block diagram of the custom memory transfer protocol. 83

5.11 Performance-Efficiency trade-off graph with core voltage. 85

x

5.12 Area and power breakdown of the DNN training processor. Layer con-

figuration is for conv-ff with 256 input channels, 256 output channels,

3×3 kernel size on a 14×14 image size. 87

5.13 Training graph for different low-precision DNN training methods on

ResNet-18 ImageNet classification benchmark. 90

6.1 Alignment of each layers in a 4-layer fully-connected network to the

target matrix in the modified Segregated Dendrites. 94

6.2 Processor state breakdown per layer in the backward and weight gra-

dient phase of ResNet-18 training. 98

xi

Chapter 1

Introduction

1.1 Study Background

The recent advances in deep learning algorithms have driven the need for specialized

hardware systems that process compute-intensive deep neural networks (DNNs) in

an energy-efficient manner. Accordingly, many research and industrial application-

specific integrated circuits (ASIC) and processing units designed for neural network

acceleration have been proposed and deployed for efficient processing [1, 2, 3, 4, 5, 6,

7, 8, 9, 10] . Generally, processing of DNNs consist of two different types of processing

phases. The first type is called inference, where a deep learning model is used on real

data from end users where DNN models are used for performing practical tasks such

as image detection, generating super-resolution images, translating sentences to other

languages, etc. The other type of processing is called training, or learning, where DNN

models’ parameters are fit and adjusted according to some learning rule, based on

showing filtered data, sometimes with labeled data and at other times without labels to

the DNN model.

While both training and inference of DNN models were first processed inside

data centers, using graphical processing units (GPUs) and sometimes with customized

hardware such as tensor processing units (TPUs) [10], other processing schemes with

1

inference near the edge device of the end user were also being adapted. Works such

as [7, 38] were part of SoC systems inside mobile devices, intended for inference of

DNN models. These processing styles have the advantage that this processing style 1)

shows less latency due to routing between edge device and data centers being avoided,

2) does not require network connection for performing inference, and 3) could avoid

private data being sent to data centers.

While these two processing styles are categorized by the place where inference op-

erations occur, another interesting processing scheme is performing training on edge

devices, as shown in Figure 1.1. The first advantage of training on the edge devices is

that neural networks customized for each end user such as customized next-word pre-

diction could be served without violating one’s privacy. Moreover, a training scheme

called federated learning [12] could be deployed. Federated learning is a novel pro-

cessing training scheme where the end user’s devices are used to calculate the gradient

values of parameters in a model based on the data on that device. Only these gradi-

ents, not the private data, are aggregated to the main server sporadically to update the

DNN model for training. However, in order to realize edge-device training, an energy-

efficient method for DNN training must first be satisfied.

One of the most reliable and concrete method for building more energy efficient

DNN processor is through scaling numerical precision in the processing models, ex-

ploiting the numerical robustness of DNN models. For inference phase of DNN mod-

els, use of 8-bit integers with 32-bit accumulators became one of the standard practices

[13] while some extreme works [14] reduced down to using only single bit representa-

tions for both weights and activations for inference, although this method suffered from

some loss of machine learning task performance. However, the numerical robustness

displayed during inference phase of DNN models could not be said the same for train-

ing the same models. When training DNN models with conventional back-propagation

(BP) algorithm, a pioneering work [15] showed that training neural networks even for

a simple machine learning task such as MNIST digit classification showed accuracy

2

Edge Device Servers

Request

Response

Data
Train &

Employ

Infer

(a) Processing in both inference and training on servers.

Edge Device Servers

Model

Data

Train Infer

(b) Processing training in servers, and inference on edge devices.

Edge Device Servers

TrainInfer

(c) Processing both training and inference on the edge devices.

Figure 1.1: Three different processing schemes for DNN models.

degradation when gradients, weights and activations were quantized to 8-bit fixed point

numbers, although some compensation techniques such as stochastic rounding [15]

could be deployed for better training convergence. More recent works [16] demon-

strated optimization methods which provide better results using fixed-point arithmetic

on larger models, but still suffer from machine learning task performance degradation

compared against models trained with full precision. Therefore, it could be concluded

that larger arithmetic units and data transmissions are typically required for training a

DNN model compared against inference for the same model.

Moreover, the changing environments in DNN models deployed for training and

3

©2021 IEEE

Figure 1.2: Sparsity of state-of-art deep learning models have declined significantly
compared to their predecessors.

inference also calls for different designs that meets the challenges that new models

face. For example, many of the prior works that builds either inference or training DNN

hardware were designed under the assumption that 8-bit integers provide enough pre-

cision for inference without quality degradation, and that the ReLU (Rectified Linear

Unit) activation function commonly used provide ample sparsity in the activation

maps. However, both of these assumptions have quickly changed in more recent state-

of-art DNN models. For example, the deep learning community has come to favor

other nonlinear activation functions such as Leaky Relu or Swish [35, 11]. This was

due to some of the weaknesses of the traditional ReLU function such as gradient un-

derflow for generative models or being weak against adversarial gradient attacks [11].

As such, the analysis of the change in sparsity of activation maps in many state-of-art

models in different machine learning benchmarks shows a decline in average sparsity

in activation maps compared to their predecessors. We analyzed state-of-art models

in image classification, image generation, image recognition, language modeling, and

speech recognition, shown in Figure 1.2. This figure implies that future DNN pro-

cessors could not rely on sparsity for gaining more energy efficiency out of standard

DNN models deployed, requiring a design that could perform efficiently not just on

models with sparse activations, but also perform reliably on DNN models with dense

activation maps.

4

(a) Low resolution image. (b) Enhanced with full precision. (c) Enhanced with 8-bit integer.

Figure 1.3: More error-sensitive tasks may result in quality of results degradation in
8-bit fixed point math.

Moreover, the numerical precision requirements of inference are getting higher.

DNN accelerators must account to not just image classification models, but hold ro-

bust numerical precision for more error-sensitive models such as generative models.

To illustrate this point, a low-resolution image shown in Figure 1.3(a) is enhanced with

two different versions (model with full-precision arithmetic and a model with 8-bit in-

teger arithmetic) of a super-resolution generative model, ESRGAN [47] with 23-layer

residual-in-residual block architecture. The full-precision model showed a PSNR of

27.79dB compared to the original image, with the generated result shown in Figure

1.3(b). The 8-bit integer model showed a PSNR of 22.43dB compared to the original

image, with the generated result shown in Figure 1.3(c). In summary, our analysis on

a super-resolution task showed a PSNR degradation of 5.56dB, not only with quanti-

tative degradation but with qualitative degradation as well, displaying clear artefacts

affecting the quality of generated image.

These environmental changes offer new challenges faced by mobile deep learning

processors; they must process non-sparse networks efficiently, maintain higher preci-

sion for more challenging tasks, and provide features for training neural networks with

minimal hardware overhead.

5

1.2 Purpose of Research

As discussed in section 1.1, the drive for building low-power DNN training system

has increased, while numerical scaling of DNN training proves to be more error-prone

compared to its inference operations. In this background, this research proposes new

methods for building more energy efficient DNN training systems while maintaining

the same level of accuracy. Moreover, these methods are verified and evaluated in

real integrated circuits systems that were taped out and verified on a silicon level in

real time to show concrete evidence for the validity of the newly proposed design

techniques.

In more detail, the proposed design methods could be categorized into three dif-

ferent areas of optimization. (1) First category is the training algorithm itself, where

some learning rules such as neuromorphic algorithms that are considered to be more

energy efficient compared against back-propagation based learning rules in conven-

tional DNN training [18]. (2) The next area of optimization is in the precision scaling.

This work proposes a novel floating point arithmetic that has distinct characteristics

from standard IEEE floating point, designed specifically for training neural networks

on various machine learning tasks. (3) Lastly, design techniques for digital circuits

that could exploit properties of the learning algorithms and the numerical precision

pipeline are proposed and evaluated.

The energy efficiency of the proposed design techniques in these three different

areas of optimization are evaluated and analyzed through two real digital integrated

circuits systems designed and taped out for this research. The first design is a neuro-

morphic learning processor [19], which is designed using a modified version of neu-

romorphic algorithm proposed in [20]. Works such as [25, 26, 46] have demonstrated

the energy efficiency of neuromorphic algorithms in integrated circuits systems. How-

ever, they either lack enough training performance for machine learning performance

on par with state-of-art DNN models [25, 26], or they are focused more only on the

inference phase of neuromorphic networks and could not be utilized for training neu-

6

romorphic networks [46]. The neuromorphic processor introduced in this thesis aims

to build a neuromorphic learning system that is fit for training deep learning models

that are comparable to models trained with back-propagation algorithms.

The next design is a DNN training processor [21] for processing many different

types of DNN models, fit for end-to-end general-purpose training. This design is built

using a custom 8-bit floating point arithmetic and has been verified for real time train-

ing in selected DNN models. This DNN training processor aims to verify the efficiency

of the custom 8-bit floating point, as well as proving the energy efficiency of the novel

routing scheme that makes use of spatiality in all stages of DNN training for reducing

data access.

Through the two designs, this thesis contributes to current research into DNN train-

ing processors in the following directions:

• Modification of existing neuromorphic algorithm for hardware implementation

• System implementation techniques such as update skipping and lock-free pa-

rameter updates

• Proposing novel 8-bit floating-point number system with shared exponent bias

for DNN training

• N-way fused multiply-add trees for energy-efficient training

• Flexible routing scheme for spatial processing in tree-based processing architec-

tures

• Extending bio-plausible learning rules to DNN training processor for hardware

efficiency.

7

1.3 Contents

The rest of the paper is organized as follows. In chapter 2, training algorithms are

discussed, including modifications that were made to an existing neuromorphic algo-

rithm and how these modifications could benefit hardware implementation. Moreover,

it is shown how training algorithms that are not based on back-propagation could be

beneficial in terms of hardware efficiency. Chapter 3 gives detail on the low-precision

arithmetic implemented in our DNN training processor, including experiment results

conducted on various DNN models. Chapter 4 introduces the two low power learning

systems that implements the research discussed in chapter 2 and 3, manufactured in

custom integrated circuits design. Moreover, digital circuit design techniques in those

systems for low power learning is introduced. Chapter 5 discuss the analysis results

of the two systems, validating the ideas discussed in the prior chapters in simulations

and measurements, as well as comparing the results to similar state-of-art integrated

circuits systems. Chapter 6 discusses future research directions based on the works

presented in this thesis and concludes the paper.

8

Chapter 2

Hardware-Friendly Learning Algorithms

2.1 Modified Learning Rule for Neuromorphic System

2.1.1 The Segregated Dendrites Algorithm

The segregated dendrites [20] algorithm is a supervised neuromorphic algorithm, orig-

inally proposed with multi-layer perceptron (MLP) architecture and demonstrated on

MNIST digits classification task. The original algorithm implements bio-plausible

neurons with three capacitance-coupled compartments, training with asymmetric feed-

back paths that connect hidden layer neurons and output neurons together through

spiking channels. This algorithm achieves 96.1% MNIST test accuracy through using

fixed and random feedback paths, similar to feedback alignment [23] and direct feed-

back alignment [24] algorithms. The Segregated Dendrites algorithm has more simi-

larities to the direct feedback alignment algorithm, as it only contains direct feedbacks

from the output neurons from the hidden neurons. This direct feedback path is desir-

able for hardware implementation for two main reasons: (1) processing time overhead

that is required for sequentially propagating the error gradients from the topmost layer

to the bottom-most layer, realizing parallel processing for more efficient processing

and (2) in cases where output neurons’ numbers are significantly smaller compared

against hidden neurons, the connections for the feedback paths are much simpler in

9

implementation.

We first inspect the computational modeling of the neuron’s behavior in the Segre-

gated Dendrites algorithm, which are derived from the observations made in biological

neurons. The neurons used in the Segregated Dendrites algorithm is made up of three

compartments, apical, basal, and somatic dendrites which each hold electrical poten-

tials that are interdependent on each other. First, the apical dendrites accumulate feed-

back spikes from the output neurons, translating the spikes they receive to electrical

potentials through a kernel function that smooths out the received spikes through a time

decayed signal to a Post-Synaptic Potential (PSP). Similarly, basal dendrites accumu-

late feedforward spikes from previous layer neurons with the same PSP mechanism.

The somatic dendrite voltage (VS) is determined through the capacitance coupling of

apical and basal dendrite voltages (VA and VB , respectively), as shown in equation 2.1,

with coupling constants denoted by gA, gB , and gL.

dVs/dt = gL ∗ Vs(t) + gB ∗ (VB(t)− VS(t)) + gA ∗ (VA(t)− VS(t)) (2.1)

The determined somatic voltage is stochastically translated to spikes with a sigmoid

function to interpret the voltage as probability. Unlike leaky integrate and fire neuron

models, the somatic potential does not drop after firing. The illustration of the hidden

neurons are shown in Figure 2.1.

The apical and basal dendrites are determined through synaptic weights and post

synaptic potentials (PSPs). Each of the PSPs are calculated from the kernel function in

equation 2.2 and incoming spikes that correspond to that specific synaptic connection,

as shown in equation 2.3. This kernel function is also known as the dual exponential

function.

k(t) = (e−t/τL − e−t/τS)/(τL − τS) (2.2)

PSPj(t) =
∑

k∈spikes of j

k(t−tk) (2.3)

10

Figure 2.1: Structure of the hidden neurons in the Segregated Dendrites algorithm.

(a) Forward phase (b) Target phase

Figure 2.2: Illustration of network behavior and interconnect in forward and target
phases.

Where tk denotes the time frame of the spike k, τL and τS each refers to long and short

time constants, and j refers to the jth neuron. These PSPs are translated to apical and

basal dendrite potentials through equation 2.4 and equation 2.5, where Wff refers to

feedforward weights and Wfb refers to feedbackward weights.

V A
i (t) =

M−1∑
o=0

PSP fb
o (t) ∗ wfb

i,o (2.4)

V B
i (t) =

N−1∑
j=0

PSP ff
j (t) ∗ wff

i,j (2.5)

In supervised training of the segregated dendrites, two phases exist to facilitate

11

learning: the unsupervised forward phase and the supervised target phase. While dif-

ferent number of time steps could be allocated for the forward and target phases, the

original paper suggests using 50 time steps for the forward phase and 20 time steps

for the target phase. During the forward phase of training, all spikes are generated

freely, with neurons’ dendrite potentials determined by equations 2.1 2.5. Note that

the while this phase is named ’forward’, the feedback spikes are still transferred to the

hidden neurons from the output neurons, making this phase self-supervised. The apical

dendrites during the forward phase are determined through the freely generated output

spikes without labels forcing output neuron behavior. In this forward phase, the aver-

age potentials are recorded to be used for weight update value calculation. However,

since the nature of the algorithms are stochastic, the original paper suggests waiting

some time periods to allow the network to reach a more stable plateau point. The origi-

nal paper suggests waiting 20 time steps, averaging over the timesteps number 20 to 50

for generating the average potentials of apical, somatic dendrites as well as the PSPs

for weight update value calculation. This forward phase behavior in the network is

illustrated in Figure 2.2(a). After the forward phase, the target phase is initiated. Note

that the potentials inside the neurons are not reset after a forward phase: the transition

from the forward and target phase is not abrupt but a smooth process. The behavior of

the neural network is the same as the forward phase everywhere except inside the out-

put neurons, where the output neuron somatic voltage is nudged with a teaching signal

to suppress all output neurons but the output neuron corresponding to the target label

j. This suppression and excitation is executed through a teaching signal Ii(t) given in

equation 2.6.

Ii(t) =


EE − VS,i(t) when i = j

EI − VS,i(t) otherwise

(2.6)

Where EE refers to the excitatory signal constant and EI refers to the inhibitory signal

constant. The teaching signal current Ii flows to the somatic dendrite per time step,

being accumulated to the right half side of the somatic dendrite differential equation

12

Table 2.1: Hyperparameters used in the Segregated Dendrites Algorithm.

Notation in equations Value Description

gA 0.05 Coupling conductance between apical and somatic

gB 0.6 Coupling conductance between basal and somatic

gL 0.3 Coupling conductance between somatic time steps

τL 10 Long depression constant

τS 3 Short potentiation constant

EE 8 Excitatory current in target phase

EI -8 Inhibitory current in target phase

given in equation 2.1. This target phase is illustrated in Figure 2.2(b).

After the target phase, the averaged apical dendrite potential is used with the saved

values from the forward phase to gain the weight update value, with the formula shown

in equation 2.7. This weight update value is not added directly to the feedforward

weight, but first multiplied with a learning rate hyperparameter. This learning rate

differs from layer to layer in the original Segregated Dendrites algorithm. The table of

hyper parameters that were described through equations that were used in this section

is summarized in Table 2.1.

∆Wff = PSPff ∗ σ′(VS,f) ∗ (σ(VA,f)− σ(VA,t)) (2.7)

2.1.2 Modification of the Segregated Dendrites Algorithm

We first re-implement the CPU-based code authors provide in [20] in a GPU-accelerated

framework PyTorch [49] for faster simulations of the algorithm to evaluate the train-

ing performance of any modifications to the algorithm. This re-implementation utilizes

matrix-based computation in GPUs, which results in over x20 faster simulation times.

Based on this GPU-based framework, we explore the original algorithm through two

13

(a) Modified hidden neuron model (b) Modified output neuron model
©2020 IEEE

Figure 2.3: Illustration of modified hidden neuron structure. Basal dendrites are omit-
ted, and dendrite potentials are directly calculated from spikes rather than through post
synaptic potentials.

different directions: changing the neuron behavior and using different number of time

steps for its impact on training performance.

For the first step in modifying the segregated dendrites algorithm for more suit-

able hardware implementation, we first simplify the neuron architecture to behave

more similarly to point neurons in conventional deep learning. As shown in Figure

2.3, basal dendrite is omitted from determining neuron behavior and spike probability.

Instead, somatic dendrite potentials are directly calculated from the input spikes and

the synaptic weights. Similarly, PSPs denoted in equation 2.3 are removed from apical

dendrites and apical dendrite potentials are directly calculated from feedback spikes

and the feedback synaptic weights, as shown in equations 2.8 and 2.9.

VS(t) = spikesff (t)Wff (2.8)

VA(t) = spikesfb(t)Wfb (2.9)

Moreover, during the target phase, we change the teaching signal behavior from

soft constraining output neuron firing patterns to directly applying one-hot encoded

14

target label as the output neuron firing pattern, which would mean that the apical den-

drite potential in equation 2.9 would change to 2.10 during the target phase.

VA(t) = Wfb[LabelIndex] (2.10)

Inspection of the simplified neuron behavior suggests that the neuron potentials are

now temporally independent and not reliant on post-synaptic potentials and differen-

tial equations. While the original SD algorithm required a minimum waiting period for

neuron potentials to reach a stable operating plateau point, this new property that is ob-

served leads us to conclude that the new neuron behavior allows waiving the constraint

on the minimum waiting period due to the neurons converging quickly compared to

the original algorithm. As such, shorter time periods are allowed compared against the

original algorithm, and we experiment with using shorter time step training for the

modified version of the segregated dendrites algorithm, even using single-time step

for forward and target phases. Moreover, as the weight update formula in equation 2.7

only demand apical dendrite potential of the target phase (which are inferred deter-

ministically from equation 2.10), we could skip target phase altogether, requiring only

single-pass computation for training in this modification in the time domain. Through

using single-steps for processing weight updates, we observe that the learning rule

described in equation 2.7 could be simplified to equation 2.11. Although not imple-

mented in our hardware, further optimization that saves one sigmoid operation could

be made through altering the update formula to 2.12, which is an approximation of

equation 2.11.

∆Wff = spikesffσ
′(VS,f)⊙ (σ(VA,f)− σ(VA,t)) (2.11)

∆Wff = spikesffσ
′(VS,f)⊙ σ(VA,f − VA,t) (2.12)

The changing of the neuron model is dubbed ‘modified segregated dendrites’, and its

15

©2020 IEEE

Figure 2.4: Test error rate on MNIST dataset for different versions of the segregated
dendrites algorithm.

single-shot implementation is dubbed ‘single-shot modified segregated dendrites’.

The test accuracy on the MNIST digit classification task is shown in Figure 2.4

for segregated dendrites, modified segregated dendrites, the single-shot modified seg-

regated dendrites, as well as the back-propagation trained version of the same MLP

architecture. While it may not be surprising that simplified neuron architectures elicit

better classification accuracy, it is interesting that using single-shot results from a

stochastic network reports better results compared against averaging over multiple

time steps. This result is speculated to stem from the effect of increased stochastic-

ity, which is known to yield regularization on training machine learning models [15].

Table 2.2 better supports this speculation, as it shows a trend of decreased train accu-

racy but increased test accuracy as time step is shortened, which is the desired effect

of regularization.

Through these modifications on the original segregated dendrites algorithm, we

could expect low overhead for training in terms of operations and memory required

for implementing the training phase of the Segregated Dendrites algorithm. Through

simplifying the neuron behavior, we no longer need to compute basal dendrites volt-

ages to indirectly couple somatic dendrite potentials, which leads to faster convergence

16

Table 2.2: Training* and Test Accuracy with Varying Time Steps
Number of
Time Steps Train Accuracy Test Accuracy

1 98.54% 98.17%

2 99.33% 98.25%

5 99.50% 97.95%

10 99.61% 98.12%

20 99.56% 97.81%

*Trained using batch size of 1
©2020 IEEE

Table 2.3: Hardware Cost and MNIST Accuracy in Modified SD Algorithms

Clock Cycles MNIST
Accuracy

Training
Buffer Size OP/Image

Original SD 14,000 96.1% 47.2Kb 29,379K

Modified SD 10,010 97.7% 38.4Kb 20,741K
Single-Shot
Modified SD

212 98.10% 7.6Kb 804K

©2020 IEEE

of somatic dendrite potentials and more even plateaus across the neurons. Moreover,

the target phase could be omitted to a single time step as the output neuron behavior is

deterministic. Moreover, the single-stage computations greatly reduces operation and

memory requirements, reducing over ×50 as the 50 time step long forward phase is

reduced to a single time step. This result is summarized in Table 2.3

In summary, the final bio-plausible algorithm that is based on modifications to the

Segregated Dendrites algorithm using direct spike-only feedback requires an opera-

tional overhead of 8K accumulates and 620 sigmoid activations for computing equa-

tion 2.11, compared to its inference phase. As the inference phase of our algorithm is

functionally similar to binarized DNN models, comparison against conventional BP-

based learning rule gives good insight into how much overhead our training algorithm

incurs. Denoting the ith layer activation as ai, ith layer hidden variable before activa-

17

tion as hi, and L as the evaluated loss during training, the computations required are

given as equation 2.13 and 2.14.

δL/δWi = ai−1σ
′(hi)δL/δai+1 (2.13)

δL/δai = Wiσ
′(hi)δL/δai+1 (2.14)

Using the same configurations of the layers in our implementation (784-200-200-10

architecture), we obtain 240.8K MAC operations and 400 sigmoid activations for ob-

taining the required weight update values. If binarization of the activations and gra-

dients are applied, similar to our spike-based learning rule, the MAC operation in

equation 2.13 could be removed and further reduces to 42K operations and 400 sig-

moid activations, which is still over 80% reduction in terms of the number of MAC

counts. Therefore, it could be concluded that this modified algorithm that only uti-

lizes feedback spikes for training exhibit lower computational requirements over the

back-propagation counterpart.

2.2 Non-BP Learning Rules on DNN Training Processor

2.2.1 Feedback Alignment and Direct Feedback Alignment

While neuromorphic learning rules that resemble more biological neuron behaviors

suffers from performance degradation compared against deep-learning models on more

difficult tasks such as ImageNet classification, recent research on bio-plausible learn-

ing rules such as feedback alignment and direct feedback alignment [27, 28] has shown

that it could scale with moderate performance degradation in modern deep learning

models for ImageNet classification. These bio-plausible learning rules, unlike neuro-

morphic algorithms with a biological neuron behavior, utilizes point neurons similar

to conventional deep learning while using a different learning rule that is not based on

back-propagation. As illustrated in Figure 2.5, conventional back-propagation propa-

18

gate errors through equation 2.15, where W refers to weights, e refers to error gradi-

ents, f ′ refers to derivative of activation nonlinear function f , a refers to activation,

and i refers to the layer number.

ei = W T
i+1,i ⊙ ei+1f

′(ai+1), i ∈ {1, 2, 3, . . . , L− 1} (2.15)

This error gradient that are propagated to different layers of the neural networks are

used in turn with weight gradient phase to generated final weight gradients. Feedback

alignment (FA) algorithm and direct feedback alignment (DFA) algorithm are similar

in this approach that the error gradients that are computed are used with weight gradi-

ent algorithms that compute final weight gradients. However, the main difference be-

tween the bio-similar algorithms (FA and DFA) and back-propagation is in the method

in which the error gradients are computed. Feedback alignment computes the error

gradients through propagate errors, similar to back-propagation, but is different in the

feedback matrix that is used for next-layer error gradient computation. The feedback

alignment algorithm is shown in equation 2.16. This error gradient computation path

is the same except for the feedback matrix R, whereas back-propagation in equation

2.15 utilizes the weight W that was used for feedforward computation is used. Note

that the R is not updated after random initialization.

ei = RT
i+1,i ⊙ ei+1f

′(ai+1) (2.16)

Direct feedback alignment (DFA) is deviates more from back-propagation in com-

parison with FA algorithm. Instead of using propagating error gradients from the prior

layer for computation, error gradients in each of the layers are directly computed from

the top layer error eL and a direct feedback matrix D as shown in equation 2.17.

ei = DT
i ⊙ eLf

′(ai+1) (2.17)

19

(a) Back Propagation (b) Feedback Alignment

(c) Direct Feedback Alignment (d) Hierarchical Feedback Alignment

Figure 2.5: Illustration of how errors are calculated in different learning algorithms.

The motivation for developing FA and DFA algorithms is to solve the credit assignment

problem. In conventional back-propagation in equation 2.15, the feedforward weight

Wi+1,i is used for propagating the error from layer i + 1 to layer i. In a biological

brain, this would mean that a feedforward synaptic connection from a neuron in layer

i to layer i+1 is also used to transmit feedback signals from that same pair of neurons

in layer i + 1 to layer i. The problem lies in the fact that biological synaptic connec-

tions are uni-directional: in other words, back propagation could not physically be the

method that our brains learn. However, in FA and DFA algorithms, learning is enabled

without symmetric feedback and feedforward synaptic connections. Through the use

of a separate feedback pathway, the learning is enabled while solving the credit assign-

ment problem, which in turn would mean these algorithms could act as a candidate for

how the real biological brain enables learning.

In terms of computational characteristics of the FA and DFA algorithms, we notice

that the feedback weights R and D are generated randomly at initialization and remain

constant throughout training, with no update mechanism for the feedback weights.

20

Moreover, DFA often suffers from scaling issues especially in CNNs both in terms

of training convergence and computational complexity. The original DFA implemen-

tation require each pixels in the activation map of the CNN layers to hold feedback

weights to each of the topmost layer neurons, resulting in significant increase in mem-

ory usage in deeper and larger CNN models.

In addition to FA and DFA algorithms, we propose a similar algorithm that prop-

agates errors through hierarchical feedback paths, as shown in Figure 2.5(d). Error

gradient is propagated in a hierarchical manner, where an error ej in a local head layer

is shared between the local groups with direct feedback matrix D through equation

2.18, and we hence call this error path Hierarchical Feedback Alignment algorithm

(HFA).

ei = DT
i,j ⊙ ejf

′(ai+1), i ∈ {LayersConnected toLocal Head j} (2.18)

The idea behind the HFA algorithm is to bring the ideas in FA and DFA together.

DFA could not scale to deeper CNNs and fails to converge as the error signals from the

topmost layers are not as relevant to low-level features in the convolution neural net-

works. However, the hierarchical structure of DFA could provide merits to hardware

implementation while providing a sort of bypass network for training deep layers, sim-

ilar to Residual Networks [30]. Our HFA algorithm combines the merits of DFA with

convergence stability of FA, providing a hierarchical feedback pathway by partially

applying DFA to locally grouped layers, with the local head layer j serving as the top-

most layer in DFA. In other words, instead of connecting to either the top layer (as

in DFA) or to the very next layer (as in FA), layers are grouped hierarchically so that

a layer group i j connects to a local head layer j. Using HFA, we expect to increase

hardware efficiency while facilitating learning to a higher degree of convergence com-

pared against conventional FA or DFA. Note that when using the HFA algorithm in

convolutional neural networks, there exist a limitation on how layers could be grouped

together. The layer groups must satisfy the condition that the tensor shape of the error

21

Table 2.4: Network-in-Network CIFAR-10 Training with Various Learning Rules

Learning Rule CIFAR-10 Test Accuracy

Back-Propagation 87.59%

FA 82.03%

DFA 10.00%

HFA 85.90%

Mixture-HFA(0.8)&BP(0.2) 87.23%

gradient in each of the group layers must be the same as the error gradient shape of the

local head layer. This condition should be met for proper mapping of gradients shown

in equation 2.18.

In order to check the validity of the proposed algorithm, we trained a Network-

In-Network [29] convolutional neural network on the CIFAR-10 dataset. We used

the same training hyperparameters in back-propagation, feedback alignment, direct

feedback alignment, and the proposed hierarchical feedback alignment to compare the

test accuracy result. The results are shown in Table 2.4. The HFA algorithm outper-

forms feedback alignment algorithm by more than 3%p, and is degraded from back-

propagation baseline by 1.7%p. While performance degradataion is still noticeable in

HFA algorithm, this is still a major improvement over FA or DFA, which fails to con-

verge to meaningful results.

An interesting method of training that could be implemented to provide viable

learning performance while providing hardware efficiency is through alternating be-

tween back propagation and HFA algorithm in a single training session. For example,

in 80% of the examples shown to a network in a single epoch, the network was trained

using HFA rule while the remaining 20% was trained using back propagation. The end

result show almost no degradation at 87.23%, whereas back propagation trained the

network to accuracy of 87.59%. Through the use of the hybrid training method, one

is able to exploit the hardware efficiency of HFA algorithm (discussed in the next sec-

22

Figure 2.6: Hardware advantages of using HFA learning rules.

tion 2.2.2) while maintaining training performance. In our implementation, switching

between HFA and back-propagation require very little software overhead as simply

branching to different code execution address provide switching.

2.2.2 Reduced Memory Access in Non-BP Learning Rules

One of the advantages of the bio-plausible learning rules discussed in chapter 2.2.1 is

that the feedback weights are generated randomly and are not updated for training. Due

to this characteristic, these feedback weights could be generated on-chip with proper

random seed control without accessing external memory. In the DNN training proces-

sor discussed in chapter 2.2, random number generation using LFSRs are implemented

on-chip to take advantage of the bio-plausible learning rule, which allow specifying

random number generation seeds with a 128-bit number initialization. Moreover, the

HFA algorithm proposed in chapter 2.2.1 could be further advantageous for process-

ing, as the gradient in the local head layer j could be reused multiple times for more

efficient processing. The advantages in hardware for HFA algorithm is shown in Fig-

ure 2.6. In summary, off-chip memory access are minimized through using seed-based

random weight load and head layer gradient re-use, which shows potential for mini-

mizing memory latency and reduced power at DRAM controllers and at the DRAM

itself.

Based on this observation, we create a test suite for comparing and analyzing back

propagation algorithm and the two other bio-plausible learning rules (FA and HFA)

23

discussed in section 2.2.1. This test suite is created with minimal alterations to the

DNN training processor discussed in section 4.2 to better exploit the characteristics

of the bio-plausible learning rules. First, a pseudo-random number generator that cre-

ates vectors of uniform distributions are implemented with minimal logic based on

XOR’s and LFSRs. Moreover, existing convolution backward instruction in the DNN

training processor makes use of two unused flag bit fields in the instruction to (1)

indicate whether to use random feedback weight generation for processing, and (2)

whether to use hierarchical feedback for parallel processing of multiple layers. The

control FSM is also modified to skip weight feedback loading, and instead points to

LFSRs for generating weights. Last, the memory address generator for storing result

gradients from convolution backward instruction for hierarchical feedback is modified

for storing different tensors in parallel. These three modifications comes at a minimal

cost in hardware logic, as the main processing blocks, vector processing units, and the

SRAM memory that takes up more than 95% of the total power and area budget is left

untouched.

With this test suite, we compared and analyzed naı̈ve convolution layer backward

instruction execution with back propagation and convolution layer backward instruc-

tion with random number generation in place of weight loading. Results that include

processor energy consumption, executed with a synthesized netlist are shown in Table

2.5. Two different configurations are used – the first configuration is part of a CIFAR-

10 network-in-network training with batch size of 1, while the second configuration is

a layer in ImageNet ResNet-18 training [30] with a batch size of 4. The first config-

uration is mainly bottlenecked with loading the weight from external memory to the

processor, which results in FA saving around 63.1% in total execution time and 53.3%

in total energy. However, this savings are quickly dwarfed when larger batch sizes and

larger images are deployed for training, as the model parameter sizes remain constant

while activations and gradients are increased by O(n) with increasing batch sizes. In

order to test the bio-plausible algorithms in scaled environments, larger batch sizes and

24

Table 2.5: DNN Training Processor Latency and Energy Consumption
Configuration Learning Rule Latency (µs) Energy(µJ)

128×128 channels, 8×8 features,
3×3 kernel size, Batch Size=1

BackProp 292.69 44.20
FA 108.00 20.63

128×128 channels, 28×28 features,
3×3 kernel size, Batch Size=4

BackProp 10272.65 1980.24
FA 9901.91 1886.86

HFA* 6850.29 1552.48

*3 layers are attached to a local head.

����� ��
� �
��

�

�

�

��

��
"�

���
#�

��
 ��

���
%�

��
!

����#��� �����
����#��� �����
	$��#"���
�"� �
�"�� !

Figure 2.7: Breakdown of bio-plausible learning rule execution in ResNet-18 back-
ward pass.

larger image feature sizes are used in the next configuration. In this configuration of

using batch size of 4 on ImageNet layer configuration, memory access is more con-

strained by the gradient rather than the weight due to large image sizes and a larger

batch size. We could observe that while FA does not scale well in this configuration

(as DRAM accesses are dominated by gradients), HFA still manages to reduce total

execution time by 23.3% as a result of sharing gradients and increased parallelism.

Moreover, we conducted a cycle-accurate experiment with register transfer level

(RTL) code of the DNN training processor with support for optimized bio-plausible

rules to evaluate system level latency and performance bottlenecks in such condi-

tions, with the result shown in Figure 2.7. For the backward pass of ResNet-18 on

the ImageNet dataset with batch size of 4, using back-propagation algorithm require

10.00M cycles in ResNet-18, with 3.06M cycles (30.6% of total execution time) spent

25

on memory stalls. In FA implementation on our DNN training processor, same ResNet-

18 backward pass required 9.29M cycles, with 2.36M cycles (25.4% of total execu-

tion time) spent on memory stalls. In HFA implementation, through sharing gradients

across layers with same conv-bp configuration, we observed total execution cycle of

8.77M cycles, with 1.84M cycles (21.0% of total execution time) on memory stalls. In

conclusion, compared against conventional back-propagation algorithm on ResNet-18

ImageNet training, FA require 22.9% less memory stall time and 7.1% less execution

time, while HFA require 39.9% less memory stall time and 12.3% less execution time.

26

Chapter 3

Optimal Numerical Format for DNN Training

3.1 Related Works

As discussed in section 1, scaling numerical precision for low power training proves to

be more difficult compared against scaling numerical precision for inference in DNN

models. Some related works [1, 31, 32, 33, 34] have addressed this problem. Work

in [1] proposed using a mixed precision of 8 bits and 16 bits for representing tensors

in DNN training, while maintaining the trained accuracy of full-precision based mod-

els. The method presented in [1] first represents tensors in 8-bit floating point, while

leaving the elements that are out of the dynamic range of the 8-bit floating point and

hence not representable with the exponents of the 8-bit floating point numbers to be

zero. Instead, these out-of-range elements are represented in the complementing 16-

bit floating point tensor while the elements that has been expressed as non-zero value

in the 8-bit floating point tensors are zero in this complementing 16-bit floating point

tensor. This method has the major drawback that it requires representing same ten-

sors twice in terms of 8 bits and 16 bits, which they mitigate through zero-skipping

features, as shown in Figure 3.1.

Work in [31] proposes using 8 bits of floating point and 16-bit accumulators for

DNN training. The major contribution of the work in [31] is identifying the point

27

Mantissa

Mant

Pre-Quant (FP16)

==0 ?

Represented as Zero in FP16 Group

FP16 Representation

Dual Sparse

Representation

In Fine-Grain

Mixed Precision

Single Dense

FP16 Results

FP8 Representation

Figure 3.1: An illustration of the fine-grain mixed-precision training scheme intro-
duced in [1].

where DNN training performance is lost when using 8-bit or similar low-precision

floating point numeric system. It states that the major source of loss of precision is

due to swamping effect, which is a known phenomena that occurs when two float-

ing point numbers with one of the number having magnitudes of larger absolute value

over the other are added together. When the exponent difference between the two addi-

tion operands are significantly large, precision loss is inevitable as the mantissa of the

smaller number is lost in the addition and re-normalization process. This swamping

effect is identified as the main source of precision loss, and the work in [31] suggests

using a chunking accumulation, where groups of MAC operations are carried out be-

fore being added to the actual accumulator, in the hopes of relieving the absolute value

difference between the accumulator and the multiply-added values in the dot product

operations in DNN training. Moreover, other auxiliary training methods such as using

16-bit copies of the original weights and using stochastic rounding is proposed to aid

DNN training in the bulk of computation carried out in 8-bit floating point numbers.

Work in [32], which succeeds the work in [31], proposed using a hybrid represen-

tation which utilizes 1.4.3 in the forward pass and 1.5.2 format during the backward

and weight gradient path. (Henceforward, 1.X.Y refers to using 1 bit sign, X bit ex-

ponents, and Y bit mantissa) The purpose of this hybrid approach is to compensate the

28

1.5.2 for Backward in DNN

1.4.3 for Forward in DNN

S Exp Mant

S Exp Mant
S Exp Mant

HFP8-FP9 Converter

HFP8 in Software

FP9 in Hardware Implementation

Figure 3.2: An illustration of the hybrid-fp8 arithmetic block introduced in [5].

training performance loss that is observed in some machine learning taks and models

observed following the straightforward 1.4.3 quantization format used in the work of

[31]. Through using different arithmetic of 1.4.3 and 1.5.2, this work demonstrates that

using two different types of 8-bit precision for DNN training shows a training perfor-

mance without any accuracy loss. This hybrid method incurs some additional hard-

ware, whereas the hardware implementation work in [5]showed that this cost could

be reduced through a hybrid implementation of FP9 format (1.5.3) and an FP8-FP9

converter, as shown in Figure 3.2.

Lastly, works in [33, 34] shows utilizing block floating point for DNN training.

Work in [33] proposed grouping tiles of N×N elements with 10-bit exponent value,

where each of the elements are represented with 8-bit mantissa. Work in [34] gener-

alizes the work in [33] to using a mini float representation for each of the elements

instead of using only mantissa in the elements, as shown in 3.3(a). This allows expo-

nents to differ in the elements and share biases instead of exact exponent values. This

strategy works well for matrix multiplication and dot products, where the cost of accu-

mulating the tiled results including aligning different biases could be amortized over

the length of the dot product, as shown in 3.3(b). However, when applied to spatial

architectures for processing convolutional layers, this strategy incurs more overhead

compared to simple matrix multiplication as overlapping components inside a tensor

to be convolved require special handling (such as representing same element twice or

29

S
h

a
re

d
 B

ia
s

S
h

a
re

d
 B

ia
s

S
h

a
re

d
 B

ia
s

S
h

a
re

d
 B

ia
s

Block Floating Point with

Shared Biases

S Exp Mant

Mini-Float Elements as

introduced in [34]

8-bit Integer

Straightforward 8b Int

as introduced in [33]

(a) Illustration of block floating point

Matrix Multiplication in

Block Floating Point

Tiled Computation with

Align & Add

(b) Matrix multiplication in block floating point

*

Convolution in

Block Floating Point

Different Group in Same

Computation Block Illegal

(c) Convolution in block floating point

Figure 3.3: An illustration of the dual-representation problem in block floating point.

using smaller block sizes), as shown in Figure 3.3(c). This is exemplified in an DNN

accelerator [45] that adopts block floating point for training, which exhibits 78% lower

TOP/s for ResNet-101 (which is consisted mostly of convolutions) compared against

LSTM models (consisted mostly of matrix multiplications).

3.2 Proposed FP8 with Shared Exponent Bias

To provide a more reliable and hardware-efficient quantization method for training

DNN models with 8-bit floating point numbers, this research proposes a quantiza-

tion method called FP8 with Shared Exponent Bias (FP8-SEB) that does not require

realignments or hybrid computing hardware that effectively produces 9-bit floating

point computation units. FP8-SEB represents elements of a tensor with 1-bit sign, 4-

bit exponents, and 3-bit mantissa, while sharing a common exponent bias for all the

elements of the tensor. Unlike the work in [33, 34], we group all of the elements of the

output activation in a layer as a tensor, weight in a layer as a single tensor, etc., instead

of tiling those tensors in small groups. To compensate for the shift of dynamic range in

30

©2021 IEEE

Figure 3.4: Illustration of FP8-SEB. Biases are tracked during each computation pass
with overflow/under-utilization flag to adjust to dynamic range changes.

tensors during progression, we automatically modify the exponent bias value through

tagging each tensor with flags that indicate whether it has been overflown (where the

bias values are increased by 1) or underutilized (similarly, bias values are decreased

by 1). The illustration of this FP8-SEB is shown in Figure 3.4.

In this numerical format, the real value for an FP8-SEB number that is represented

with bias b, 1-bit sign value s, 4-bit exponent value e, and 3-bit mantissa value m could

be retrieved with equation 3.1.

xQ = (−1)s2e−127+b(1 +m/8) (3.1)

As this representation format require using different bias values on each of the

tensor elements that are grouped together, the additional cost that is associated with

using different bias values for each tensor should be analyzed carefully since they

are an overhead that do not exist for other quantization methods. Firstly, in terms of

memory cost, the cost for storing the shared exponent bias should be considered. Our

31

analysis shows that this cost is negligible compared against the cost of actual elements

of the tensor: for example, in ResNet-18 ImageNet training, the cost of shared biases,

including the flag data for overflow and under-utilization, accounts for only 0.003% of

the entire memory allocated for ResNet-18 training.

Next, it should be considered whether hardware implementation require extra logic

to account for the fact that biases could take any value rather than being fixed. For some

arithmetic operations such as addition between FP8-SEB tensors, this case is true as

during normalization, realignment logic should be applied for arbitrary biases that

are not known priori. However, for matrix multiplication and convolution operations,

careful observations show that we scarcely require extra logic for using different biases

that are not determined during computation. To provide insight into the implementation

method that avoids extra logic, a dot product operation between two vectors X1 and

X2 with length N is shown in equation 3.2. By substituting x1 and x2 with equation

3.1 and rearranging, we obtain equation 3.3.

ydot =

n−1∑
i=0

xQ1,ix
Q
2,i (3.2)

ydot = 2b1+b2−254
n−1∑
i=0

(−1)s1,i+s2,i2e1,i+e2,i(1 +m1,i/8)(1 +m2,i/8) (3.3)

Observation into equation 3.3 show that computations related to the unfixed biases

could be decoupled from the bulk of dot product computation inside the summation.

Thus, after bias-free operations are complete, only on the accumulated value that we

need to apply re-quantization accounting for the bias values. As this biases are fixed

across all tensors, this could be easily scaled to matrix-matrix multiplications or con-

volutions. This computation process for matrix multiplication in FP8-SEB is shown in

Figure 3.5. Therefore, only hardware overhead for matrix multiplication and convolu-

tion in FP8-SEB is in re-quantization step after bulk of computation is finished. As an

example, suppose that FP30 (1.6.23 format) is chosen for accumulator precision, and

32

©2021 IEEE

Figure 3.5: Matrix multiplication in FP8-SEB. Convolution operations could be carried
out similarly without re-quantization, as biases are shared across entirety of the tensor.

the result target is expressed as YQ with a known exponent bias b(YQ). Re-quantization

is carried out as equation 3.4-3.6 from a final result Yacc in FP30 format, shown in

equation 3.7:

SYQ
= SYacc (3.4)

eYQ
= clip(eYacc − (b1 + b2 − bYQ

) + 254, 0, 15) (3.5)

mYQ
= round(mYacc/220) (3.6)

Yacc = (−1)SYacc2eYacc (1 +mYacc/2
23) (3.7)

3.3 Training Results with FP8-SEB

One of the advantages of using explicit separate biases in each of the tensors used dur-

ing training is that they provide more inter-tensor dynamic range while maintaining

33

intra-tensor dynamic range. Dynamic adjusting shown in Figure 3.4 makes sure that

all of the dynamic range in the 4-bit exponents are utilized, while allowing different

tensors such as weight gradients, weights, and activations, which have huge difference

in terms of their dynamic ranges [17], to all be expressed accurately. Therefore, our nu-

merical format correctly addresses the shift in dynamic range in tensors due to training

progression.

However, the accumulation precision must be considered for processing matrix

multiplication accurately without final neural network training degradation, as sug-

gested in [31]. While FP8 tensors provide high intra-tensor dynamic range for repre-

senting unique data, expressing such large dynamic ranges with limited precision in-

evitably results in lower grain precision in between data-points, leading to devastating

precision loss during accumulation. For instance, suppose an addition occurs between

two positive FP8 elements (1’b0, Ea, Ma) and (1’b0, Eb, Mb), where the element with

larger exponent value is assigned a such that Ea ≥ Eb. The addition process including

alignment is expressed as equation 3.8.

CpreQ = 2Ea(1+
Ma

23
)+2Eb(1+

Mb

23
) = 2Ea(1+

Ma + 2Eb−EaMb + 23−Ea

23
) (3.8)

Observing the right hand term of the equation 3.8 in combination of quantization equa-

tion 3.1, we could conclude that the resulting output FP8 value (1’b0, Ec, MC) is

always equal to (1’b0, Ea, Ma) when 2Eb−EaMb + 23−Ea < 0.5, resulting in quan-

tization loss. This phenomena is exemplified in real DNN training experiments when

such conditions are met. Note that this is condition is always met when Ea > Eb + 4,

meaning that all addition between elements with exponent difference larger than 4 are

ignored entirely. When naı̈vely using the same FP8-SEB representation for interme-

diary accumulation during matrix multiplication operations, experiments showed 5%p

accuracy degradation for even simple tasks such as LeNet training on CIFAR-10 and

failed to converge at all on deeper networks such as ResNet-18.

Thus, it is required to choose a higher precision format for accumulation without

34

��(��)���
��#� ���"�((!�!��)!%$�

�
�
��*&�'���(%"*)!%$�

����
��#� ����&)!%$!$ �

���

���

���

���

���

���

���

���

���

��
()
�

��
*'
��
,

��
%'
#
�"
!-
��
�)%
��
�	

��

����� ����� ����������

��!" ��!"

����� ����� ����	

��	���'�!$!$
��.+�����
��'�!$!$
�'%&%(����������
����
��	�
��*#*"�)!%$

©2021 IEEE

Figure 3.6: Comparison of trained accuracy on selected tasks. Half-precision training,
shown in gray, fails for GAN and LSTM task while FP8-SEB with FP30 accumulators
perform on par with models trained with full precision.

accuracy degradation in DNN training: while other works [31, 32] chose FP16 as ac-

cumulators, a custom FP30 (1.6.23) format was chosen for accumulation precision.

This decision was based on two different reasons: (1) First reason was to bit-match

the GPU simulation results. Unlike work in [31, 32], FP8-SEB lacked software model-

ing for changing the accumulator precision in GPU-based CUDA convolution kernels,

and we instead relied on using off-the-shelf CUDA convolution kernels provided by

PyTorch library and instead put quantization functions that works with . This meant

that while inputs and outputs of the convolution kernels were quantized in FP8-SEB,

the actual accumulators were in FP32 (1.8.23) precision. To ensure bit match with our

software simulations, FP30 (1.6.23) was chosen to ensure mantissa bit preservation

while reducing unnecessary exponent bits. (2) Second reason for FP30 implemen-

tation was that naı̈ve half-precision (1.5.10) showed training failure in many cases.

Figure 3.6 shows that FP8-SEB with FP30 accumulators match or even outperforms

FP32 training baseline on difficult tasks such as generative task and natural language

35

(a) GAN trained with FP32. (b) GAN trained with FP8-SEB.

Figure 3.7: Generated super-resolution images, trained in FP32 (shown on left) and
FP8-SEB (shown on right).

processing (image captioning), while half-precision fails to converge for those tasks.

Moreover, our FP8-SEB combined with FP30 accumulators showed even higher per-

formance compared against the full-precision in GAN tasks consistently. We speculate

this result stems from the implicit unbiased noise generated by FP8 quantization pro-

vide robust training that stochasticity provides. While quantitative results showed 3%

higher results for FP8-SEB, qualitative evaluation is equally important for compar-

ing GAN performance. To qualitatively verify the super-resolution performance of the

model trained with FP8-SEB numeric format, we show the GAN-generated result on

the same model, task as shown in Figure 1.3 in Figure 3.7. While super-resolution im-

age generated from FP32 training (shown in Figure 3.7(a)) produces erratic artifacts

around the edge, image generated from our GAN model trained with FP8-SEB (shown

in Figure 3.7(b)) produces smoother edge lines and no irregular artifacts.

While this choice of high-precision accumulators guarantees robust training per-

formance in various machine learning models with bit-matched simulations, this nu-

merical format incurs a huge cost in terms of hardware implementation when they are

designed straightforwardly with standard MAC-based processing in DNN processors.

In the next section, we discuss the hardware and software co-optimized design method

that could be utilized to mitigate the overhead incurred by the large accumulator.

36

©2021 IEEE

Figure 3.8: FMA trees implementation. Partial products are added together in lossless
dimensions of 37-bit integers.

3.4 Fused Multiply Adder Tree for FP8-SEB

To co-optimize the numerical pipeline for matrix multiplication using FP8-SEB format

and FP30 accumulators in hardware, we propose using tree-based fused multiply add

operation as the basic unit for computation in our DNN training processor [21]. In this

tree-based implementation, two 24 element vectors are multiplied and added together

in lossless fused multiply add operation in 3 pipeline stages, with the final result re-

quantized to 1-6-23 FP30 format. Figure 3.8 shows the detailed implementation in

block diagrams of the hardware. In the bias-free approach discussed in section 3.2,

the two input vectors are expanded and multiplied for 24 partial products. To prevent

any precision loss, the partial products of the two 8-bit floating point numbers are

translated to 37-bit signed integers accounting for the combined exponential range

(with each element having exponent range of 0 to 15, the seven-bit multiplier result

from mantissa are shifted by minimum of 0 to maximum of 30 bits, resulting in 37-

bit signed integer space) for lossless conversion and added together through 24-way

adder trees. After summation is complete, the 42-bit signed integer is normalized to

FP30 in 1.6.23 format without bias to be added to the accumulator. This 1.6.23 format

is chosen based on observation of the accumulator, choosing the minimum number of

37

Table 3.1: Energy Consumption & Area Per MAC, Synthesized Results

1-Way MAC, FP8 24-Way FMA, FP8

Comb. (pJ) 5.8 1.5

Seq. & Memory (pJ) 10.1 0.4

Area*(µm2) 3081.6 848.9

*Excludes SRAM
©2021 IEEE

exponent bits that does not overflow, which was 6 bits. 23 bits of mantissa are chosen

for bit-match with the IEEE full precision, which also contain 23 bits of mantissa. In

order to prevent glitches from incurring large currents in long cascaded combinational

logic, the FMA tree is split to 3 stages, ensuring a theoretical operating speed of less

than 2 ns in 40nm LPCMOS technology in synthesis results.

There are two advantages for using tree-based computation as the basic computing

unit. Firstly, the average cost for implementing the actual processing logic is reduced.

The obvious reason behind is that FP30 accumulators are very costly compared against

8-bit FMAs and sharing FP30 accumulators will greatly reduce this accumulator cost.

Yet another logic reduction for tree processing is due to implementation of the adder:

N-way adder trees provide more space for logic optimization than parallel implemen-

tation of adders. In our synthesis results, 24-Way 37-bit integer adder tree cost 9%

less in terms of combinational logic compared against 24 adders in 37-bit integers.

Combined together, the combinational logic’s energy cost per MAC operation is re-

duced from 5.8pJ in a straightforward MAC-based implementation to 1.5pJ in a 24-

way fused-multiply-adder tree based implementation. Moreover, the implicit cost of

accessing memory for accumulators could also be reduced. While the cost of access-

ing local scratchpad for loading and storing partial results vary with scratchpad sizes,

the cost of accessing SRAMs or register files are still large for either the cost associ-

ated with signal amplification (in SRAMs) or with the cost associated with encoding

and decoding address to data logic (in register files). For instance, in the local scratch-

38

Table 3.2: PSNR in Matrix Multiplication with Varying N-Way FMAs

N 1 2 4 8 16 32 64

Avg. Ex 5.26 6.72 7.97 9.03 10.02 11.00 12.00

PSNR 14.265 21.228 24.07 24.147 24.147 24.150 24.148

pad used in our design, which were foundry-provided two-port register file with 30

bit word and 256-entrees, the sequential and memory cost associated were up to 10.1

pJ per cycle. As in a 24-way FMA tree the memory access costs are reduced by 1/24

compared against conventional MAC implementations, this sequential and memory

energy is reduced to 0.4pJ. The total energy per MAC, comparing 24-way FMA trees

and conventional MAC is compared in Table 3.1. The second advantage in a tree-based

implementation is that the matrix multiplication results show higher numerical preci-

sion statistically when implemented in FMA tree structures. The reason behind this

statistical improvement is that small normalization errors that exist in floating point

arithmetic (also known as ‘swamping’ issues) could be mitigated through accumulat-

ing more values before quantizing and adding to FP30 accumulators. In MAC oper-

ation, when the result of multiplied values is much smaller than the accumulator, the

mantissa bits of multiplied values are lost during alignment and normalization. How-

ever, in FMA trees, as more values are added together in lossless dimension before

being added to the accumulator, the chance of losing mantissa bits during normaliza-

tion decreases. Quantitatively, expressing the accumulator as (s, EAcc,MAcc) and the

added operand x as (s, Ex,Mx), and letting D = 2EAcc−Ex, we could quantify error

as equation 3.9.

Error = min(D − (Mx mod D),Mx mod D)/2Ex (3.9)

As D ∝ 2−Ex for a fixed accumulator, from equation 3.9 we could find O(1
4Ex

) rela-

tionship between the rounding error and the exponent value of x, illustrating inverse

39

exponential relationship between the exponent value of the addition operand to the ac-

cumulator and the swamping error. We deploy more addition between the 24 element

partial products before being added to the accumulator for statistically increasing the

exponent value of the addition operand. To demonstrate this point, 1024×1024 matri-

ces initialized in a uniform distribution are multiplied with varying N in N-way FMA

tree accumulation. This uniform distribution encourages a result that is not centered

around a non-zero value, similar to the distributions that each neurons face in real-

image for a convolutional neural network as a large number of critical neurons are

biased for a well trained network on real images. The multiplied results are compared

against the full-precision baseline to shown peak signal to noise ratio (PSNR) in Table

3.2. The matrices were sampled from a uniform distribution and quantized to FP8-

SEB format before being multiplied, which explains the fundamental upper limit of

precision (24.15 PSNR dB) in Table 3.2. We denote the average exponent value of

the adder operand (x) in the accumulation, and we could observe a trend of larger

exponent values (Avg. Ex) for wider number of accumulation in the FMA trees.

40

Chapter 4

System Implementations

4.1 Neuromorphic Learning System

In this section, the overall architecture of the system and the design techniques that

are implemented on a fabricated integrated circuits chip for the bio-plausible learning

algorithm that were discussed in section 2.1 is described in more detail. In this im-

plementation, a feedforward, fully connected network with 2 hidden layers and 200

neurons are chosen. Note that this design is a proof-of-concept fixed-structure design

for learning on image classification. Noticeably, a parameter lock-free update algo-

rithm and an update skipping mechanism that exploits the sparsity of the learning rule

is utilized for a training operation with low overhead.

4.1.1 Bio-Plausibility

In neuromorphic learning algorithms, learning is said to be bio-plausible if either the

neuron model or the learning rule is bio-plausible [18]. For instance, neuron models

used in some neuromorphic systems mimic biological neurons, using spikes, or 1-bit

information as its inputs and outputs. Moreover, they are often modeled using differen-

tial equations in the time domain, determining their spike using the potential voltages

described by the equations [20]. Examples of such biological neuron models include

41

simple leaky-integrate-fire models [50] that models a neuron potential with a RC leaky

integrator to more complex Hodgkin-Hexley neuron models [51] that are described

through capacitance coupling of each neuron compartments’ potentials. These com-

plex, biologically modeled neurons are different from the point-neuron model used in

typical DNN models, where real number inputs and real number outputs are used for

its inputs and outputs, and its behavior described by simple multiply-and-accumulate

(MAC) operations.

In addition to neurons being modeled from real biology, the learning rules could be

adapted from biology as well. For instance, spike-timing dependent plasticity (STDP)

rules [22] are derived from biological observation of single neuron’s synaptic weight

changes according to the spike pattern it receives. While the STDP learning algorithm

is based on the observations of how a single neuron’s synpatic change are altered with

exterior stimulation, the composition of neural network hierarchy is another point of

consideration for bio-plausibility. For example, the unidirectional nature of synaptic

connections between neurons suggests that back-propagation learning rule is not di-

rectly plausible inside the biological brain, known as the weight transport problem

[23]. Some works [23, 24] solves this problem using separate feedback paths for train-

ing, relieving the need for symmetric, bidirectional synaptic connections. These learn-

ing rules could also be considered bio-plausible in the sense that they each explains

a structural problem in modern deep learning and provide network learning structures

that are consistent with biological observations.

In the neuromorphic processor designed in this research, the goal is to retain

only the energy efficient properties of neuromorphic learning rules while simplifying

computational requirements in the neuron models. For instance, while spiking input-

outputs are maintained in the neuron model, simple accumulate operations are chosen

for behavior of the neuron rather than using differential equations that describe volt-

age potentials. The learning rule is modified to take place in a single-shot setting with

stochasticity, while maintaining spike-based, local learning rules. The locality of the

42

learning rule indicate that error signals do not propagate through the cascaded layers in

the learning process: rather, the spiking information from the topmost (output) neuron

is fed directly to each of the hidden neurons, resulting in a propagation-free learning.

Through these modifications, the goal of obtaining the learning properties that are de-

sirable in hardware implementation is obtained by selecting energy-efficient character-

istics in both the biologically inspired algorithms and the modern deep learning. The

author speculates that this prevents quantization errors inherent in back-propagation

from accumulating while propagating through multiple layers, which provide better

tolerance against quantization in the feedback error paths.

4.1.2 Top Level Architecture

Based on the algorithm modifications made on the Segregated Dendrites algorithm

discussed in section 2.1, a neuromorphic learning system is designed, fabricated, and

verified in silicon level through custom printed circuit boards (PCB) and a host FPGA.

A top-level diagram is shown in Figure 4.1. The system has a fixed network architec-

ture, with three layers containing 200-200-10 neurons each. Global data transmission

is minimized, using only spikes between the neuron layers in both feedforward and

feedback paths. This is realized through the inherent nature of spiking neural net-

works (SNN) that only communicates with spike (1-bit) information, including the

feedback pathways for learning. As shown in Figure 4.1, signals are sent through seri-

alized single-bit spikes between layers, which are implicitly encoded in the clock cycle

that the spikes are being sent to be decoded for the spike locations. All neurons im-

plemented in this system were embedded in full digital circuits. While analog neurons

were implemented in other works in neuromorphic learning systems [25, 26, 42], anal-

ysis on the modified segregated dendrites algorithm implemented in this work showed

a requirement of at least 7-bit precision in the internal neuron’s dynamics for training

without performance degradation as shown in table 4.1, which indicate that the preci-

sion analog neurons provide are not enough for robust learning. As the nature of our

43

©2020 IEEE

Figure 4.1: A top-level view of implemented neuromorphic system.

Table 4.1: Performance of SS-MSD algorithm With Different Internal Bit Precision

Internal Bit Precision MNIST Test Accuracy

4 bits 48.80%

5 bits 62.97%

6 bits 96.36%

7 bits 98.04%

8 bits 98.01%

algorithm is highly stochastic, we implemented digital neurons with internal signals

represented in 8-bit fixed point arithmetic for higher robustness.

Input pixel data are converted to spikes stochastically using Bernoulli sampling

with p equal to pixel density during training, and used a fixed threshold (=0.5) com-

paring the pixel density and translating to ’1’ if pixel density is higher than the fixed

threshold, and ’0’ otherwise during inference. The four different layers (input, 2 hid-

dens, and an output/target layer) are connected serially for transmitting and receiving

information of a neuron,for processing both the forward phase (feedforward spikes)

and the target phase (feedbackward spikes).

The block diagram of the components in the hidden layer is shown in Figure 4.2. It

consists of spike buffers which temporally stores the spiking patterns received from the

44

©2020 IEEE

Figure 4.2: Block diagram of components in a hidden layer.

prior layer that is used for finalizing the weight update values, update value calculation

unit with sigmoid functionality implemented through 9-bit in, 10-bit out lookup tables,

and the hidden neurons. The final weight update values generated by the calculation

unit is buffered inside the register files, with updates taking place when the correspond-

ing neuron has spiked for the corresponding image. This hidden layer serially accepts

spiking information from the previous layer, interleaved in the cycle timing domain

for implicitly converting serial spikes to the corresponding specific neuron in that time

cycle. In summary, a hidden layer consists of 200 hidden neurons, selection mux with

multiple stages for selecting a spiking neuron, SRAM buffer for holding spiking infor-

mation, ∆W buffer memory for holding weight update values, and three fixed lookup

tables implemented in combinational logic for 9 bit inputs and 10 bit outputs. The bit

precision for the lookup tables were chosen from software simulations with empha-

sis on using the smallest input bit precision that did not show training performance

degradation.

The block diagram for the hidden neurons is shown in Figure 4.3. Note that in

45

©2020 IEEE

Figure 4.3: Block diagram of components in a hidden neuron.

actual implementation, 5 hidden neurons share the physical SRAM implemented as

the weight memory for increased area efficiency, as wider SRAMs provide higher

area efficiency with shared resources, and the access patterns for the SNN neurons

are highly predictable with fixed access patterns across shared neurons. While the

sigmoid functions that were used for calcuating the weight update values were prone to

numerical errors and had to be implemented in lookup tables with 9-bit input and 10-

bit output precision, a hard sigmoid function (approximating sigmoid function) is used

in place of using actual sigmoid activations for more efficient processing, described by

the equation 4.1 below, where Vs refers somatic dendrite potential, or the accumulated

value inside the neuron.

SpikeProbability = clip(0.2 ∗ Vs, 0, 1) (4.1)

The spike probability generated with the somatic potential put thorugh the hard sig-

moid function is compared against random values generated by 10-bit linear feed-

back shift registers (LFSR) for generating stochastic spikes during training, while a

46

fixed threshold of 0.5 is used to determine spikes (’1’ if probability is higher than the

threshold 0.5) during inference. These feedback spikes are transmitted to the next layer,

where they are accumulated to the next layer somatic dendrites potentials with their

respective feedforward weights decoded by the spike timing. In order to process the

feedback pathways, these neurons also hold embedded fixed random weights that are

unique in each of the neurons at initialization. These fixed random weights accumulate

to their apical dendrites for processing the weight updates.

4.1.3 Lock-Free Weight Updates

The first design technique that is implemented in the neuromorphic processor is using

lock-free parameter updates for parallel processing of forward phase, weight update

value calculation, and parameter updates. This lock-free updates provide a speedup

of ×4 in our pipeline scheme, which would require processing stalls incurred from

waiting for weight updates before processing the next images.

As shown in Figure 4.4, during online training of neuromorphic processor the in-

put images are propagated through the hidden dimensions to generate feedback spikes.

During this propagation, instead of waiting for finalized updated weight values, next

images are processed in a lock-free manner. This is equivalent to processing neural

networks with updates being delayed for some extra images are shown: for example,

during processing of the nth image, update values for (n−3)th image are being calcu-

lated, with the update for (n− 4)th image actually takes place. In other words, update

for nth is only takes effect after (n+ 4)th image.

While this parallel processing reduces the clock cycle overhead for training drasti-

cally by ×4 in our implementation, it needs to be verified that this processing style does

not impact training accuracy, as it changes update behaviors. In our simulations, the

lock-free implementation does not degrade MNIST classification accuracy, as shown

on the bottom left corner of Figure 4.4. This is in line with the observations made

in prior works [36, 37] that address implementing stochastic gradient descent (SGD)

47

©2020 IEEE

Figure 4.4: Diagram of lock-free parallel processing.

algorithms in distributed systems: delaying parameter updates within few training ex-

amples do not impact overall training performance.

Another benefit of this parallel processing is that it could reduce the total number

of reads required for parameter updates, as our processing pipeline makes use of the

feedforward weight read out for processing the forward phase and makes updates on

that specific synaptic weight. Therefore, w + ∆W takes place when the correspond-

ing weight is read out for forward processing, reducing 1 read operation per synaptic

weight that needs update.

4.1.4 Update Skipping Mechanism

In the case of SGD updates with back propagation, weight update values become

smaller in absolute size as training progresses so that model output becomes close

48

©2020 IEEE

Figure 4.5: Illustration of a case where output and target spikes match exactly, where
update values become zero.

to the targeted output. In our modified segregated dendrites algorithm, this observation

becomes more extreme, leading to sparse weight updates where up to 90% of the total

update values for a given training epoch are equal to zeros. This sparsity is an inherent

property in the update algorithm that is chosen for the modified Segregated Dendrite

algorithm. From equation 2.11, when the apical dendrite potentials during forward

and target phases (Vaf and Vat) match exactly, update values are all equal to zero. This

case is not rare if training progresses, as the apical dendrites are derived from target

and output spikes, which are only 10 bits of information each. Thus, as illustrated in

Figure 4.5, when these target and output spikes match exactly (e.g. the neural network

responds correctly with only the output neuron that correspond to the label ’3’ fir-

ing, and all other neurons not firing to match the one-hot encoded target spikes), we

can skip update values altogether without altering the behavior of the modified segre-

gated dendrites algorithm. Therefore, we could speculate sparsity in weight updates if

the network successfully learns to classify images to their correct labels exactly. No-

tice that matching spike patterns are not equivalent to a correct classification: multiple

neurons could still fire for a correctly guessed image, when multiple neurons have been

49

©2020 IEEE

Figure 4.6: Disabling the update path through monitoring the spike pattern.

above the firing threshold but the output neuron corresponding to the correct label was

the one with highest potential. Therefore, it is important for the neural network to dis-

courage wrong labels from spiking as well for sparse update weights, and the update

sparsity rate is upper bounded by the classification accuracy (as it holds true that a

matching spike pattern always classifies images correctly, but the converse does not

hold true).

This observation is exploited through logically gating the update value calculation

path and disabling SRAM write paths on the weight update pipeline when spike match

conditions are met, as illustrated in Figure 4.6. Energy consumption in the system ben-

efits from logically gated update value calculation unit with long (¿200) clock cycles

where combinational logic gates are not switching. SRAM writes being disabled also

benefits power consumption with reduced write operations that overwrites contending

SRAM cells. In our software simulations, as training progresses, update skip rate starts

at around 3.8% and increases to 81.7% after training on 60000 images. We could ex-

pect a power reduction in training progression: these results are measured and analyzed

50

©2021 IEEE

Figure 4.7: Top level block diagram of the DNN training processor.

in more detail in section 5.1.1.

4.2 Low-Precision DNN Training System

In this section, the overall architecture of the system and the design techniques that are

implemented on a fabricated integrated circuits chip for DNN training processor that

implements the floating point arithmetic introduced in section 3 is described in more

detail. The top-level architecture choice, as well as the design functions and novelties

such as flexible spatial routing on efficient tree-based processing architecture, custom

acceleration instructions, and bank composition are introduced in this section.

51

� �� �� �
 	� �

���� ����

���

��

���

��
��
��
��
��
�
�
�
�

���
��
�
��
��
��

��
��

�

©2021 IEEE

Figure 4.8: Ratio of valid MACs with varying N in N-way FMA trees in ResNet-18
processing.

4.2.1 Top Level Architecture

Based on the newly proposed 8-bit floating point numeric system that were discussed

in chapter 3, an end-to-end custom DNN training accelerator is designed in a digital

integrated circuits system and verified for real time training on a silicon level.

The top level block diagram of the DNN training processor is shown in Figure 4.7.

The main processing for DNNs occur on a tree-like processing structure described in

section 3.4. This tree performs 24-way Fused Multiply Add (FMA) operation on two 8-

bit vectors with length of 24, reducing down the FMA result to a custom FP30 (1.6.23)

format. This processor contains 64 of these FMA trees organized in a 4×16 structure,

which is equivalent to 1,536 multiply-accumulate (MAC) operations per cycle. The

reasoning behind using a 24-way FMA tree rather than using some power-of-2 (such

as 32 or 64-way FMA) is to ensure maximum utilization of the trees in our processor

for optimizing to varying convolution window sizes, as 24 is a multiple of 1, 2, 3, and

4 (which are all kernel sizes used commonly accounting for stride of 2). Figure 4.8

shows the utilization rate of the FMA trees for processing ResNet-18 with processing

architectures with varying N in N-way FMA. While 12-way shows slightly higher

utilization compared to 24-way FMA trees, we adopt 24-way as higher N results in

better energy and area efficiency.

For spatial processing of convolutional layers in both forward and backward phase,

52

routing units are placed on input and output vectors of the tree groups, reducing on-

chip memory access. A scratchpad for holding accumulation values, as well as being

served as vector memory for the vector processor is implemented with 30-bit wide

256-word deep dual port register file, with each scratchpad corresponding to an FMA

tree, totaling 64 scratchpads with 60kB of memory. Additionally, two buffer units,

high-performance (HP) bank with 40kB of memory and high-capacity (HC) bank with

192kB of memory support caching of activations and weights to reduce external mem-

ory read and writes. Combined with the 1kB FIFO that handles direct memory access

(DMA) transactions, our chip contains a total of 293kB in terms of on-chip mem-

ory. Lastly, a 16-lane floating point vector processing architecture shown in Figure 4.9

support auxiliary operations required for end-to-end DNN training, such as pooling

operations, weight updates, etc. In more detail, a fetched instruction will be decoded

to determine which executor (FP vector execution unit, integer execution unit, ma-

trix multiplication and convolution execution unit) will process on the instruction. For

example, FP vector execution unit will perform A*X + Y operations (AXPY), while

matmul and convolution execution unit uses dedicated finite state machines (FSMs)

dedicated for controlling the FMA tree units, routers, and buffers to process instruc-

tions according to their hyperparameters. Moreover, these FSMs are supported with

additional memory address generators with uops issued by the control logic in the

FSMs. The uops are a selection from the group of address generation patterns, such

as partial tiled weight loading the HC buffers, prefetching grouped row loading to the

HP buffers, etc. Given the uop type, target memory section, and base addresses, these

memory generators create the memory address patterns and handles memory transac-

tions through direct memory access. The direct memory access is implemented with

FIFOs and a wide I/O that connects to external FPGA design with DDR3-SDRAM.

The FP vector unit is consisted of 16 reconfigurable vector registers of 128 bits

each (for re-configuring into 16×8b or 8×16b vectors), a variable-precision AXPY unit,

full-precision FPU for supporting IEEE-compliant operations on scalar FP32 data, data

53

©2021 IEEE

Figure 4.9: Block level view of the 16-lane vector processor.

format casters that changes the data formats to or from any of the 5 data types used in

this processor (1.4.3 FP8-SEB, 1.8.7 brain float, 1.6.9 FP16, 1.6.23 FP30 accumulator,

and 1.8.23 full-precision), and a comparator. The AXPY unit provides variable pre-

cision between the two 16-bit floating point precision used in this processor through

implementation as an FP18 AXPY unit and including format converters. In more de-

tail, the AXPY unit could accept up to three 16-element vectors with (X , Y) in FP16

format, and a in FP8 format. Additionally, a scalar b is accepted to account for scale. 8

out of the 16 AXPY units adds support for stochastic rounding [15] with LFSR units.

Note that while actual hardware could only perform on (X:FP16, Y :FP16, a:FP8) for-

54

mat, the microarchitecture in this processor accepts arbitrary precision out of the 5

data formats as the FP vector execution pipeline implicitly puts the vector registers

to the data format casters before sending the data to the AXPY unit. The dedicated

control units tile the order of computation in convolution with optimized logic, which

is described in more detail in section 4.2.4. Moreover, the data load and store unit

includes dedicated address generators that could work with memory prefetchers de-

tailed in section 4.2.3 for the tiled computation of convolution, as well as on-chip data

transpose unit to facilitate computation during backward and weight gradient phase of

DNN training without physically re-loading and storing transposed memory to exter-

nal DRAMs. While dedicated memory controllers could be implemented for managing

external DRAMs, this design currently hosts simple wide 128-bit I/O for direct mem-

ory access through external FPGA-based DDR controllers.

4.2.2 Optimized Auxiliary Instructions in the Vector Processing Unit

The vector processing unit, in addition to general-purpose AXPY and element-wise

vector operations, supports custom accelerated instructions that handles some of the

widely used operations used in training DNNs such as stochastic gradient descents,

softmax, and pooling. This custom accelerated instructions utilize bypass routing and

additional control logic that avoids data hazards and could make use of multiple func-

tional units in a single pipeline stage to maximize processor utilization and minimize

external data access.

The stochastic gradient descent (SGD) algorithm is often used for optimizing state-

of-art DNNs with given weight gradients. This algorithm is often aided by weight

decay and momentum. In our notation, SGD algorithm update takes weight gradi-

ent (gW), current weight (Wt), current momentum (Mt), learning rate (lr), weight

decay constant (d), and momentum constant (µ) as input to produce updated weight

(Wt+1) and updated momentum (Mt+1). Equation 4.2 denotes the effect of weight de-

cay, while equation 4.3 calculates the updated momentum, which will then be used in

55

equation 4.4 to generate the final updated weights.

gW ′ = d ∗Wt + gW (4.2)

Mt+1 = µ ∗Mt + gW ′ (4.3)

Wt+1 = Wt − lr ∗Mt+1 (4.4)

Note that in our training scheme on the FP8-SEB processor, we use a separate 16-bit

copy of trained weights and 16-bit momentum, similar to prior literature [31].

In a naı̈ve SGD implementation, one would require 1 upscaling operation for cast-

ing 8-bit weight gradient (gW) to 16 bits for casting to AXPY operations, and addi-

tional 3 AXPY operations. Moreover, stall cycles are required to wait for intermediary

results to be written to FP registers. In our optimized SGD implementation, routing

paths are created such that: (1) Upscaling unit and AXPY unit is activated at the same

time, (2) Special routing allows AXPY results to be bypassed directly to AXPY in-

puts for removing stalls for data hazards. The implementation paths that includes the

fast-forwarded paths are shown in Figure 4.10. In more detail, the AXPY units are

grouped to two different types: (1) AXPY-v, where the v stands for vanilla, and (2)

AXPY-l, where the l stands for LFSR, which also includes an LFSR unit to support

stochastic rounding. Moreover, the upscaling unit that casts 1.4.3 FP8 elements to ei-

ther one of the FP16 formats (1.8.7 or 1.6.9) could be utilized within the same cycle.

Through these optimizations, our specialized SGD instruction require 31.7% less clock

cycles to complete compared against SGD implementation through combinations of

AXPY and upscaling instructions. Moreover, to better support average pools and var-

mean calculation used for batch normalization, we allow vector processor to access the

FP30 accumulators used in the main DNN processing logic for high-throughput com-

putation. This is realized through the custom channel-wise accumulation and squared

accumulation instruction.

56

©2021 IEEE

Figure 4.10: Cycle-by-cycle operation of the optimized SGD instruction.

4.2.3 Buffer Organization

The on-chip memory on the DNN training processor is categorized as high-performance

(HP) buffer with 40 kB of memory, high-capacitance (HC) buffer with 192 kB of

memory, and local scratchpad with 60 kB of total memory. The HP buffer contains

32 two-port SRAMs with 5B word and 256 entries. This buffer is usually used for

caching activations and gradients and supports memory pre-fetching feature for reduc-

ing memory stalls. This prefetching is enabled through using 4B of the 5B word as

‘active’ region and the remaining 1B as ‘pre-fetching’ region. Write word masks al-

low writes to only the pre-fetching region when this feature is enabled. Out of the 5B

readout words, the active 4B is selected through barrel shifters.

Through allowing explicit prefetching in activations and gradients placed in HP

buffer, memory stalls are reduced for memory operations from external memory to HP

buffer. The effect of this prefetching is analyzed in Figure 4.11(a), where latency for

feedforward stage of ResNet-18 model on ImageNet sample data with batch size of 4 is

broken down to the processor’s operation types. In the left side of the graph, prefetch-

ing is disabled. On the right side, prefetching is enabled, allocating HP buffer load time

(shown in blue) to active processing time (shown in red). Memory latency is reduced

by ×1.63, whereas the overall latency is reduced by ×1.20. The breakdown of proces-

57

���

�������

����

�������

�

�

��

�
��

��
���

���
!�

��
�

����������	���
�
��������	���
� �������
�����
������

(a) Breakdown of number of cycles per processor states with
prefetching and without prefetching on ResNet-18 feedforward
stage.

������
����

�������
����

��������
����

�������
����

��������
����

��������
����

��������
����

��������
����

��������
����

��������
����

��

����

����

����

����

��

�

���

��	
��

�

�

�����

�����	�
�����

�����	�
���
�����
�����
������

(b) Profile results per layer in ResNet-18 with prefetching enabled

Figure 4.11: Breakdown of processor states in terms of number of cycles.

sor states per layer is shown in Figure 4.11(b), showing the varying processor states by

different layer configurations in the ResNet-18 model. Noticeably, in the lower layers

where the memory access counts are dominated by activations, the prefetcher imple-

mented for the HP buffer mitigates the memory accesses successfully. While prefetch-

ing for HP buffers occur with writing on the masked row of the SRAM data such that all

the columns of the SRAM is utilized, requiring elaborate masking schemes for avoid-

ing data collision, more simple methods could be utilized to reduce memory stalls by

segmenting buffer sections into active columns and deactivated columns that are cur-

rently being used for prefetching. This method is implemented for the scratchpads that

holds the final accumulated values. For example, columns 0 through 127 out of the

256 columns available are marked for pushing final accumulated value to the external

memory. In this case, instead of waiting for the write pushes to finish, the processor

58

Table 4.2: Capacity and Bandwidth of Banks*

HC buffer HP Buffer ScratchPad

Configuration 16×(24-bit×512) 24×(40-bit×256) 64×(30-bit×256)

Capacity 192kB 40kB 60kB

Max Bandwidth* 2.88GB/s
4.32GB/s(@write)
17.28GB/s(@read)

43.20GB/s

Prefetching No Yes Yes (Store)

*At 180MHz clock frequency.

proceeds to the next stage of computations while only using columns 128 to 255, as

the first 128 columns are not available until the memory interface logic has finished

the qued task of storing the scratchpad data to the external memory. Write stalls only

occur in the case when the computation stage requires the scratchpad column indexes

0 to 127 before write push is finished. While similar methods could be implemented

for loading stage of the HC buffer, it incurs an overhead where HC buffer could not

be utilized to full extent, resulting in smaller tiles of computation and larger external

memory accesses. Thus, we do not implement such prefetchers for the HC buffeer. As

a result, in the upper layers where the memory accesses are dominated by the model

parameters, the HC buffer load stages could be seen to take up noticeable amount of

processor cycles as no prefetcher is implemented on the HC buffer to mitigate memory

stalls.

In the three different categories of on-chip memory, data are organized in a manner

such that data re-use are maximized so that data movements could be reduced. For

instance, during convolutional feedforward operation, HC buffers caches weight data

loaded from external memory. In order to reduce HC buffer access, weights that are

read out are shared across 4 processing units (single row) in the 4×16 processing array.

Activations are cached in the HP buffer and are processed spatially so that data

read/writes are reduced by the size of the kernel (kernel height × kernel width) in con-

volution layer processing compared to naı̈ve implementation that does not makes use

59

©2021 IEEE

Figure 4.12: The routing at inputs and outputs for tree based processing, compared
against conventional routing units that is implemented between processing elements.

of data spatiality. This spatial processing is enabled through the input-output routing

units that is discussed in the next section and will be analyzed in comparison against

another work that utilize spatiality in systolic processing array for evaluation of the

routing method.

4.2.4 Input-Output 2D Spatial Routing for FMA Trees

In input-output spatial routing scheme that is proposed in this research, routing units

are restricted to the inputs and the outputs of the 4×16 24-way FMA tree processing

array. In the inputs side, 4 ‘rows’ of 24-element vector inputs are routed through barrel

shifters, muxes and shift registers to allow spatial routing in convolution layers. Sim-

ilarly, the 4×16 outputs from the processing array are routed for spatial processing,

especially for transposed convolution and convolutional backward processing. The

conceptual diagram for this routing style is contrasted against intermediary routing

style in conventional MAC-based systolic architectures in Figure 4.12.

This routing style allows routing with convolutional spatiality taken into account

for optimized data movements and reduced buffer accesses in tree based processing

architectures for DNN training. To the best of our knowledge, while other work [38]

has also proposed using energy-efficient tree based processing for DNN workloads,

this work is the first to present routing mechanisms that allow convolutional spatiality

60

in tree based processing architectures in both convolution feedforward and convolution

feedbackward stages.

For example, during convolutional feedforward stage, the input routers allow re-

duced data access requirement on the HP buffers through the input routing units. The

32 SRAMs in the HP buffers are given group ids, with the number of channel groups

given by equation 4.5, the number of SRAMs per channel group given by equation 4.6,

the group id of a specific channel c calculated through equation 4.7, and the SRAM id

of that channel given by equation 4.8.

NChannelGroup = floor(24/KernelWidth) (4.5)

NBankPerGroup = floor(32/NChannelGroup) (4.6)

IDChGroup(c) ≡ c mod NChannelGroup (4.7)

IDSRAM (c) ≡ (c mod NChannelGroup) mod NBankPerGroup (4.8)

The case for convolutional feedforward processing order when the convolution

kernel sizes are 3×3 is shown in Figure 4.13. The input activation tensor with (Batch,

Channel, Height, Width) shape is shown on the left side of Figure 26 (a). This in-

put tensor is split along the channel axis and mapped to specific SRAMs according

to equation 4.8. Since the kernel width is 3, there exist 8 channel groups following

equation 4.5. One channel in each of the channel groups are selected to be mapped to

the processing array, so that 8 channels are processed simultaneously as seen in Figure

4.13(a). The SRAMs in HP buffer contain 4 active bytes in a word, which we call 4

processing rows. The input activation’s ‘rows’ (image patches along the height axis)

are mapped to these processing rows as denoted in the right figure of Figure 4.13(b).

Effectively, 4 rows along the height axis in an input activation map is processed at a

time. In the next cycle, convolution window slides along the ‘width’ axis, as seen in

Figure 4.13(c). After processing all of the input activations in the ‘width’ axis, the next

61

(a) The general configuration of conv-ff processing. The left hand side shows logical
mapping of tiled convolution processing, while the right hand side shows the ohysical
mapping to the DNN processor.

(b) The first step in tiled computation of convolution.

(c) The tiling strategy makes use of spatiality along the W-axis.

(d) After finishing a row group, the next rows are sequentially processed.
©2021 IEEE

Figure 4.13: Illustration of convolution feedforward processing steps in 3×3 kernel
size.

62

©2021 IEEE

Figure 4.14: Input routing unit in implementation for different cases of kernel widths
for illustration.

SRAMs in the processing group is selected until all of the input channels have been

accumulated, as seen in Figure 4.13(d).

In summary, the input router performs the following operations to enable this pro-

cessing order: (1) it first aligns the four active ‘rows’ along the height axis of the

input activations from the HP bank through barrel shifters, then (2) it selects the active

SRAMs from the active input channels being accumulated through 3-stage muxes, and

finally (3) shifts the selected rows and channels through the width axis considering the

sliding window of convolution. The diagram of the implemented input router is shown

in Figure 4.14, showing input routers in different configurations of kernel widths.

With the implemented input router, the complete pseudo code for this computa-

tional ordering in convolutional feedforward instruction is shown in Algorithm 1. As

HC buffers may not be large enough to accommodate all of the weights in a convolu-

tion parameter, we first split the output channels with the number of maximum output

channels, as in line 1 of Algorithm 1, iterating for NOCSplit times. During the iteration,

in order to ensure that no excessive memory loads and stores occur, all of the output ac-

63

Algorithm 1 Conv-FF Implementation

1: NOCSplit = Ceil(WeightSize
HCBufferSize)

2: Initialize O[Batch,OCh, OH , OW]← 0
3: for OchSplit ← 1 to NOCSplit do
4: Load split output channel weights to HC Buffer
5: StartOch = Och

NOCSplit
∗ (OchSplit − 1)

6: EndOch = Och
NOCSplit

∗OchSplit

7: for b← 1 to Batch do
8: for r ← 1 to InputHeight do
9: for och ← StartOCh to EndOCh do

10: for kh← 1 to KernelHeight do
11: for ICSplit ← 1 to NbankPerGroup do
12: Change channel selection mux
13: Read Weights to FMA Tree
14: iCh = NchGroup ∗ ICSplit

15: for p← 1 to InputWidth do
16: O[b, och, row, p] +=∑

I[b, ich : +NchGroup, r, p : +KW]
∗W [och, ich : +NchGroup, kh, :]

17: end for
18: end for
19: end for
20: end for
21: Store Output Row to Ext. Memory
22: end for
23: end for
24: end for

©2021 IEEE

tivations in output channels of StartOch to EndOch are processed completely without

requiring offloading high precision intermediary results to the external memory. After

weights are loaded to the HC buffer, the processing loop order is as follows: (1) Pixels

along the four active rows are processed along the input activation width axis (lines

15-17), (2) the channel selection in the input channel group is changed, while loading

corresponding weight with processing input channel, output channel, and kernel height

to the FMA trees (lines 11-13), (3) change the processing kernel height (line 10), (4)

change the processing output channels (line 9) and store the finished output channel to

64

external memory (line 21), (5) change the active rows along the height axis of the input

activation tensor (line 8), (6) change the current processing batch (line 7). The global

input routing unit, which consists of barrel shifters, 3-stage channel selection mux,

and shift registers, aligns data according to its rows, channels, and spatial positions to

allow this type of processing order.

In a similar manner, our processor could implement the feedbackward step of con-

volution layers (which are equivalent to transposed-convolution) necessary for CNN

training through utilizing the output data point routing. As shown in Figure 4.15, feed-

backward step of convolution layers (conv-bp) could be considered as a transpose

of convolution feedforward and exhibits spatial correlation between the output data

of conv-bp operations. There exist spatiality between the computations required for

neighboring pixels in the output of the conv-bp operation as they share the same pixel

location of the input data to complete their computation, as shown on the left-hand side

of the illustrations. Therefore, a time-delayed accumulation of the same pixel location

results in reducing data read and writes required for conv-bp processing.

In Figure 4.15(a), the accumulated value that is processed by the second FMA

tree is delayed by a cycle to be accumulated to the pixel values that are processed as

in Figure 4.15(b). The end result is that neighboring accumulation values are added

together through the readily available adder without requiring multiple read-outs of

input or output data. Similarly, to account for the spatiality along the H-axis in convo-

lution feedbackward, the rows are selected through barrel shifters to be accumulated

to the neighboring gradient rows that were computed in the previous steps. For exam-

ple, in Figure 4.15(c) and 4.15(d), the gradients are being accumulated to the gradient

values that were computed in the prior steps in Figure 4.15(a) and 4.15(b). Figure

4.16 illustrates the routing connections required for allowing conv-bp operations to

be processed with spatiality without requiring additional adders. The thick black line

denotes activated paths, while the dotted gray line denotes the deactivated paths. Dur-

ing convolution feedbackward stage, the output routing unit connects the neighboring

65

(a) First step for processing convolution backward.

(b) For spatial processing, neighboring gradients are accumulated.

(c) The next row processing step.

(d) For spatial processing, the neighboring rows are accumulated to results from
(a) and (b).

©2021 IEEE

Figure 4.15: Illustration of convolution backward functionality.
66

(a) Output routing unit configuration in Conv-
BP, kernel width=3

(b) Output routing unit configuration during
feedforward operation

©2021 IEEE

Figure 4.16: Illustration of the 2D output routing unit.

pixels through time-delayed accumulation of gradients with shift registers with length

that is equal to the kernel width, variable lengths supported through selection muxes.

Moreover, the barrel shifters account for spatiality along the H-axis, accumulating to

neighboring rows equal to the kernel height. This case is illustrated in Figure 4.16(a)

for a kernel width of 3. By delaying addition of the same input pixel gradient by 1 or 2

cycles, spatiality is effectively achieved as the end result is accumulation of neighbor-

ing pixel gradients. While the additional accumulation may seem to incur additional

adders for supporting conv-bp operation with spatiality, this could supported without

requiring additional adders, as they are performed by sharing the same adders that are

used for accumulation during feedforward and matrix multiplication operations. None

of the addition operations are mapped to overlapping adders as they could be avoided

through simple muxed selection, as seen in Figure 4.16(b).

The pseudo code for the computational ordering in the conv-bp operations are

shown in Algorithm 2. Note that the annotation ‘Igrad’ refers to the actual output of

the conv-bp function, and ‘Ograd’ refers to the actual input of the conv-bp function, as

conv-bp is a transpose of conv-ff. Following the same logic from conv-ff, input chan-

nels are split by the maximum number of channels that the HC buffer could accommo-

date, as seen in line 2, and has a similar processing order to conv-ff implementation:

(1) Pixels along the four active rows are processed along the output gradient width

67

Algorithm 2 Conv-BP Implementation

1: NOCh
= 16//KernelWidth

2: NICSplit = Ceil(WeightSize
HCBufferSize)

3: Initialize Igrad[Batch,OCh, OH , OW]← 0
4: for IchSplit ← 1 to NICSplit do
5: StartIch = Ich

NICSplit
∗ (IchSplit − 1)

6: EndIch = Ich
NICSplit

∗ IchSplit
7: Load split input channel weights to HC Buffer
8: for b← 1 to Batch do
9: for r ← 1 to InputHeight do

10: Load Row to HP Buffer
11: for ich ← StartICh to EndICh do
12: for kh← 1 to KernelHeight do
13: for OCSplit ← 1 to NbankPerGroup do
14: Change BankSelect
15: Read Weights to FMA Tree
16: oCh = NOch

∗OCSplit

17: for p← 1 to InputWidth do
18: Igrad[b, och, row, p] +=∑

Ograd[b, och : +24, r, p]∗
W [och : +noc, ich : +24, kh, :]

19: end for
20: end for
21: end for
22: end for
23: Store Igrad Row to Ext. Memory
24: end for
25: end for
26: end for

©2021 IEEE

axis (lines 17-19), (2) the channel selection in the output gradient channel group is

changed, while loading corresponding weight with processing output channel, input

channel, and kernel height to the FMA trees (lines 13-15), (3) change the processing

kernel height (line 12), (4) change the processing input channels (line 11) and store

the finished input channel to external memory (line 23), (5) Load output gradient rows

to the HP buffer (line 10), (6) change the active rows along the height axis of the

input activation tensor (line 9), (7) change the current processing batch (line 8), and

68

(8) change the processing input channel split group, loading corresponding weights to

HC buffer (lines 4-7). The global input routing unit, which consists of barrel shifters,

3-stage channel selection mux, and shift registers, aligns data according to its rows,

channels, and spatial positions to allow this type of processing order. Although we dub

this process Conv-BP, it should be noted that efficient implementations of this process

are of interest to hardware designs only focusing on inference stages as well. The rea-

son behind this is that the feedbackward processing of convolution is computationally

identical to deconvolution (or also known as transposed convolution), which could be

commonly found in generative models that makes use of CNNs.

69

Chapter 5

Measurement Results

5.1 Measurement Results on the Neuromorphic Learning Sys-

tem

In this section, the measurement results on the neuromorphic learning system is mea-

sured and analyzed. In particular, the effect of the update skipping mechanism is mea-

sured to compare with baseline design that does not implement this mechanism. More-

over, the system is compared against similar systems with on-chip learning for training

energy overhead, as well as comparing the inference efficiency with various learning

and inference-only systems.

5.1.1 Measurement Results and Test Setup

The neuromorphic learning system described in section 4.1 is fabricated in silicon and

measured using custom test environment using PCBs and host FPGA environment

built with Opal-Kelly FPGA boards. The die photograph of the fabricated integrated

circuits is shown in Figure 5.1. This system is built using 65nm TSMC LPCMOS

technology, a chip with 2.8mm×3.6mm core area and 353kB of on-chip memory im-

plemented in technology vendor SRAM and register files. To verify this system, a test

70

©2020 IEEE

Figure 5.1: Die photo of the neuromorphic learning system.

environment is built using an FPGA enabled with USB 3.0 for control from host PC,

communicating with the chip soldered on a custom PCB through general purpose I/O,

with external voltage source and ampermeter connected to the core voltage source

(VDD) to measure currents and power consumption. This test environment is shown

in Figure 5.3. The general purpose I/O uses control sequence for interrupting or ini-

tiating training, changing the state of the learning system, and feeding raw MNIST

image data at a speed of 32 bits per cycle. Power is measured through external current

monitors from the core voltage source to the actual VDD used in the system, excluding

the power of the test FPGA board. Clocks are given globally through a function gener-

ator, shared between the test FPGA and the design under test. Given this measurement

setup, we develop high-level software kernel for communicating control logic to the

neuromorphic system, retrieving monitored internal data of processor, receiving clas-

sified labels, and sending image pixel data to the neuromorphic processor based on

a low-level software-hardware interface provided by OpalKelly FPGAs. Such kernels

include SystemReset, WriteMNISTImage, GetOutputPotentials, SetToInferenceMode,

Interrupt, etc. Block diagram of the design inside the test FPGA, are shown in Figure

5.2. Two operating modes are implemented in the test FPGA design for a full-speed

71

Block Throttled

PipeIn 0x0a

Block Throttled

PipeIn 0x0b
U

S
B

 A
rb

it
e
r

Block Throttled

PipeOut 0x0c

Trigger Synchronizer

Image FIFO

128bI 32bO

LabelFIFO

4bI 4bO

Out FIFO

14bI 14bO

32b

4b

14b

Bit Extend

valid

valid

valid
32bx4

Shift Reg

4bx4

Shift Reg

10-Way Max

& Compare

H
o

s
t

P
C

Configuration Memory-Mapped Registers

Control

configs

DUT

Test FPGA

Figure 5.2: Diagram of the FPGA design for automated testing in the neuromorphic
learning system.

verification mode, which automatically analyzes the output results in the test design

and compares against the label data to record accuracy without interrupting the system.

At a maximum clock frequency of 50MHz with a nominal voltage of 1.2V, the

system is trained with a throughput of 235.8K frames per second. At maximum energy

efficiency of 20MHz with a nominal voltage of 0.8V, the system shows a training

throughput of 94.3K frames while consuming 23.1mW. When converted to energy

per image training, as is used in [25, 26], this result translates to 254.3nJ per image

for training on MNIST dataset, and inference efficiency of 236.5nJ per image. As

operations count for an MNIST image training in our algorithm is 804 kilo-Operations,

we obtain 3.16TOPS/W of operating computational efficiency for training on MNIST

images in our neuromorphic processor.

To illustrate the effect of the update skipping mechanism discussed in section 4.1.3,

the training power throughout training for 60,000 images was measured using pur-

posefully slow clock of 200KHz to capture training energy reduction in real time in

the granularity offered by measuring equipment. We measure the training energy per

image over the inference energy per image to evaluate the overeall overhead associ-

ated with training on our neuromorphic processor. In the first 1000 images, the energy

72

required per training image relative to the inference energy was at 1.256 - this result

is obtained using the inherent low overhead of training in the modified Segregated

Dendrite algorithm, as this is a measured in the case where update skipping rates are

very low (less than 3%). After learning progresses, the update skip rate is expected to

increase, where the effect of update skipping mechanism kicks in. At the last 1000

images of 60000 images, the normalized energy required per training energy over

inference energy was 1.082, which leads to the conclusion that the update skipping

mechanism could reduce the training energy overhead from 25.6% to less than 8.2%.

Over the average of 100 epochs that we trained the processor for, we measured an over-

head of 7.5%. Therefore, we conclude that while the inherent low training overhead of

the single-shot modified Segregated Dendrites algorithm provides us with low training

energy overhead (25.6%) which still outperforms prior on-chip training works, the up-

date skipping mechanism introduced in this work further reduces the training energy

overhead from 25.6% to less than 1/3 (7.5%). This energy reduction graph and the

update skipping rate is measured and plotted for training progression in a single epoch

in Figure 5.4.

5.1.2 Comparison against other works

In order to compare the efficiency of our learning system against various learning sys-

tems, we compare the energy overhead of training normalized over inference energy.

As inference takes 236.5nJ per image and training takes 254.3nJ per image, this learn-

ing system has a training energy overhead of only 7.5% while training from scratch

to a classification accuracy of 97.83% on real time measurements, while prior works

[39, 40, 41] with on-chip training showed a normalized training energy of 54.5% to

117.4%. Our low energy overhead was achieved mainly through two main implemen-

tation techniques: (1) Choice of energy-efficient algorithm. The modified segregated

dendrites algorithm trains only using direct spiking feedback which only contains 20

bits of data in MNIST classification. (2) The update skipping mechanism which ex-

73

©2020 IEEE

Figure 5.3: Test environment setup for real time measurement and verification of the
fabricated learning system.

ploits sparsity of updates in the modified algorithm. Among those two factors, we

conclude that the algorithm itself displays around 25.6% overhead for training (as this

is the overhead when update skip ratio is close to zero), while the update skipping

mechanism further brings this overhead down to 7.5%.

In order to validate the efficiency of the training in the implemented system, we

used training energy normalized over inference as a metric. However, this metric is

limited in the sense that it will look better for systems that have low inference effi-

ciency: in this sense, it must always be accompanied by evaluation of the inference ef-

ficiency. Figure 5.5 shows a plot of energy consumption required for an MNIST image

classification against the classification accuracy for this work and other SNN systems

[25, 26, 42, 43, 44], with exception of [43] (shown in blue) that is a DNN inference-

only chip. Our system improves the energy-accuracy trade-off for learning systems

[25, 26, 41], even outperforming DNN inference-only chip with similar MNIST accu-

racy while consuming 34% less energy.

74

� ����� ����� ����� 	����
���� �����
�$���!����#!��������&�� ��"

��

����

���

����

���

����

���

����
�
�!
�
��
�(
��
��
��
!�
'

��
%�
!��
��
�!
��
��
�

����!��������!�'

�

��

	�

��

��

��
�
�$
 �
�#
��
!�
#�
���

�

Figure 5.4: The update skipping rate and training energy normalized over inference
energy is plotted.

©2020 IEEE

Figure 5.5: Plot of MNIST test accuracy and energy consumption per image for various
learning systems.

75

Table 5.1: Energy Consumption of Neuromorphic System with Various Configura-
tions*

Network Configuration 784-10 784-200-10 784-200-
200-200-10

MNIST Accuracy 90.34% 96.4% 97.90%

Inference Energy 12.84nJ 87.87nJ 271.49nJ

Training Energy (without skip) 14.75nJ 107.36nJ 386.69nJ

Training Energy (with skip) 13.48nJ 93.11nJ 321.82nJ

Train Overhead (without skip) 14.8% 22.1% 42.4%

Train Overhead (with skip) 5.0% 6.0% 18.5%

*Synthesized results.
©2020 IEEE

Moreover, to further show the energy-accuracy trade-off for on-chip learning sys-

tems, we synthesized and measured energy consumption using real test vectors for

various network structures, plotting the energy and MNIST classification accuracy in

Figure 5.5 and Table 5.1. This table better shows the accuracy-energy trade-off that is

observed in various chips for MNIST image classifications, both inference and train-

ing. Putting this observation in perspective, the smallest network in Table 5.1 outper-

forms analog SNN system in [25] both in terms of energy (13.48nJ and 50.1nJ) and

classification accuracy (90.34% and 88%), although it has to be considered that this

is only a synthesized result. In Table 5.1, it is observed that training without update

skipping shows overheads of 15% 42%, while training with update skipping shows

overheads of 6% to 19% using real test vectors of the MNIST image dataset in our test

environment, demonstrating the update skipping mechanism in various system and

network configurations. This result also conforms to the observation in Figure 5.5 that

there is an exponential energy trade-off for a linear increase in classification accuracy.

In summary, our design 34% less energy compared to state-of-art DNN inference

chip on MNIST dataset during inference with 236.5nJ per image. For training, our

system spends merely 7.5% more energy for performing training, much less overhead

76

Table 5.2: Comparison of On-Chip Learning Systems

Our Work [19] [43] [41] [25] [26] [39] [40]

Technology 65nm 28nm 65nm 40nm 65nm 65nm 55nm

On-Chip Training Yes No Yes Yes Yes Yes Yes

MNIST Accuracy 97.83% 98.36% 93.4% 88% 84% N/A N/A

Algorithm SNN DNN(MLP) DNN(RBM) SNN SNN SVM SVM

Prediction Energy
(nJ/Image) 236.5 360 21900 50.1 4.5 N/A N/A

Training Overhead 7.5%* N/A 54.5% N/A N/A 61.9% 117.4%

MNIST Throughput
(FPS) 100K 15K 14K 2.2M 816K N/A N/A

Supply Voltage 0.8V 0.715V 1.2V 0.9V 0.425-0.45V 1.0V 0.4-1.0V

Frequency (MHz) 20-50
667-
1200 210 250 20-310 1000 780

*Averaged over 100 training epochs.
©2020 IEEE

compared to prior state-of-art that spent 54.5%, while showing an energy efficiency of

3.40TOPS/W. Moreover, our system delivers a latency of 12.7μs for inference with a

throughput of 94.3K images per second for training, which is over 5× higher through-

put for DNN training using Titan-X GPU on the same network configuration using

back-propagation. Accounting for different convergence speeds of the algorithm, our

network still manages to converge with less than a third of the time spent on training.

These results are summarized and compared to other on-chip learning systems in Table

5.2.

5.1.3 Scalability of the Learning Algorithm

This work focused on implementing a relatively small size network for a fixed neuro-

morphic learning rule. However, the question of scalability of the algorithm remains –

will this algorithm be scaled to larger, more complex tasks? For expanding the algo-

rithm as-is using fully connected structures on CIFAR-10, it works moderately well for

a fully connected network: While original SD algorithm achieves 46.2% accuracy on

77

©2020 IEEE

Figure 5.6: Using fully connected network with size of 1024-512-10 for CIFAR-10
classification, trained with original SD, modified SD, and back propagation.

these CIFAR-10, our adapted SD algorithm achieves 50.8% accuracy, whereas network

trained using back propagation showed 51.6% accuracy. This result is shown in Figure

5.6. During this training, update skip rate was measured to be at 31.5%. Similar model

configuration using fully-connected networks on the CIFAR-100 dataset resulted in

16.2% accuracy with update skip rate of 3.2%, indicating the limited accuracy de-

grading update skip rates. In order to ensure higher performance in more complicated

datasets, the segregated dendrites algorithm need to be modified for implementation in

convolutional neural networks.

While our attempts at scaling single-shot modified Segregated Dendrites algorithm

to convolutional neural networks were not successful, bio-plausible algorithms such as

FA, DFA, and HFA were scaled to convolutional neural networks using methods that

will be discussed in section 6.1. As the Segregated Dendrites could be considered as

a close relative of the DFA algorithm family, we speculate similar methods could be

utilized in this processor for scaling to CNNs in future works.

78

©2021 IEEE

Figure 5.7: Die photograph of the fabricated DNN training processor.

5.2 Measurements Results on the Low-Precision DNN Train-

ing Processor

In this section, the measurement results on the DNN training processor utilizing FP8-

SEB introduced in chapter 3 is measured and analyzed. Custom software chain is de-

signed for automated testing of various benchmark models in real time. Secondly, the

efficiency of the 2D input and output routing units introduced in this thesis are ana-

lyzed in both simulations and in measurements. Moreover, the fabricated processor’s

performance and power consumption is measured and analyzed on benchmark mod-

els including generative and language processing models. Finally, the efficiency of the

DNN training processor is compared against other DNN training processors.

5.2.1 Measurement Results in Benchmarked Tests

We fabricated and verified the DNN training processor in TSMC 40nm LPCMOS

technology. Figure 5.7 shows a micrograph of the 2.5mm×2.5mm core with 293kB

79

©2021 IEEE

Figure 5.8: Integrated test environment for automated measurement and verification of
the DNN training processor.

of on-chip memory and 64 24-way FMA trees. In order to test, measure and verify the

DNN training processor, we have also created an integrated test system with (1) a rudi-

mentary design translator software that automatically creates binary files for running

DNN models for training and inference on limited PyTorch models, (2) FPGA design

with DDR3 memory controller available for direct memory access, granting access for

both the host PC and the tested DNN training processor, (3) Processor control API in

host PC, with requests sent to the FPGA through USB and to the tested DNN training

processor for automated testing in real time, and finally (4) a designed and assem-

bled PCB board connecting FPGA and DNN processor with 128-bit wide data bus and

32-bit wide address bus. This test system is shown in Figure 5.8.

Design Translator. We created a custom software toolchain that translates off-the-

shelf PyTorch models to executable binary for our DNN training processor. First, the

target model is parsed to intermediary representation (IR) using the default PyTorch’s

just-in-time (JIT) compiler in plain text. Next, the parsed IR is passed to a map-based

model compiler that maps specific IR functions (e.g. batch normalization, convolution

80

Chip2DDR FIFO

128bI 128bO

DDR2Chip FIFO

128bI 128bOMemory

Bridge

With

Arbitration

DUT

I/O Direction

Address FIFO

32bI 32bO

Bidirectional

Data Bus

Addr Bus

3-stage Sync.
Memory Request

MemRequestCfg

3-stage Sync.
Bridge Ready

DDR3

Controller

+MIG

Host-to-

Bridge

USB

DDR3 Memory,

1GB

Host PC

Test FPGA as Memory Bridge

Figure 5.9: Diagram of the test FPGA serving as memory bridge.

cascaded with ReLU) to hand-designed instruction routines with pre-defined arith-

metic precision as well as mapping basic arithmetic operations (e.g. +, -, x). Note

that when creating executable binary for training phase of the model, this compiler

also automatically maps backward and weight gradient functions associated with each

arithmetic operation and functions, denoting the variables associated with training to

generate the backward pass automatically. Finally, each variables are assigned address

spaces and the instruction list is filled with the address space in place of the vari-

ables that are associated. It should be noted that this design translator currently hosts

very limited selection of models, as the model compiler back-end is written with hand-

designed maps for IR functions to DNN processor instructions and is currently defined

for only limited number of IR functions. However, this still hosts enough compilation

capabilities for the benchmark models in measured in this section.

FPGA Design. The FPGA acts as a memory bridge between three different com-

ponents: (1) the DNN training processor (design under test), (2) the DDR3 SDRAM

that is soldered on the FPGA board, and (3) host control PC connected through USB

3.0. In more detail, four asynchronous FIFO (first-in first-out) with 128-bit wide word

and 1024 entrees aids data movement between the test components. As the DRAM is

shared between DNN processor and the host PC, priority between the two needs to be

81

established. While priority is given to DNN processor in principle, interrupt from host

PC gives the host PC priority while ongoing data transaction in the DNN processor

is stored for recovery until the interrupt is released. Using a system clock speed of

200MHz, the bridge design in the FPGA connects DDR3 DRAM memory to the DNN

training processor’s custom memory transfer protocol to deliver a maximum band-

width of 3.2GB/s to the DNN training processor. The data bus is implemented in a

bi-directional manner, with 3-stage synchronizer for request and ready signals in clock

domain crossing. The block diagram of the host FPGA is shown in Figure 5.9.

Custom Memory Transfer Protocol. A custom data communication scheme us-

ing wide 128-bit I/O is implemented in the FPGA to be translated to the interfaces

provided by FPGA vendor’s memory interface generator. In this data communication

scheme, all data transitions are made based on block-level transfer requests with trans-

fer configurations packed in a 6-bit signal: (1) 4-bit number of words, which translates

to 2n number of transition words for a encoded number of words n, (2) 1-bit load-

store select where signal high represents store mode, and finally (3) 1-bit mask that

indicates bit-mask pattern is used in this transfer request: in this case, the first data

crossing indicates the bit mask pattern in this transfer. These transfer configurations

are held stable at the DNN training processor before sending memory request to the

FPGA memory bridge. A memory transaction request is sent by an asynchronous re-

quest signal, passing through three-stage synchronizers to cross clock domains to the

system clock in FPGA bridge. Similarly, the bridge indicates whether it is ready to

accept new transactions. At the beginning of the transaction, configurable multi-cycle

stalls are implemented for safe transition of the bi-directional bus to ensure no two

conflicting drivers (one on the FPGA and another at the processor) drives the bus at

the same time. More specifically, the select bit on each side of the bus is only able to

be set to drive the bus if either (1) it has already been driving the bus (for example, the

processor is driving the bus if it is in write phase, and if the next memory request is

82

App_en

App_cmd

IssueReadCmd DDR3Idle

Wait

DDR3IssueRd/Wr

Mem_Req <= 1'b1;

Addr <= Wr/RdStartAddr;

Mem Request
Sync.

Bridge Ready

WaitForDDR3

Wait

LD FIFO

128bIn

128bOut

DDR3Rd/Wr

App_rd_data

valid
Wait

LoadData
LoadStore Enable

Bi-Directional Data Bus[127:0] App_rd_data

M
e

m
o

ry
 I

n
te

rf
a
c
e

 (
D

D
R

3
)Mem_Req <= 1'b0;

STR FIFO

128bIn

128bOut

App_rd_data

IssueWriteCmd

WaitForDDR3

Wait

Wait

Wait

StoreData

LR_SW_Sync

TransitS2LTransitL2S

RW

Counter

LS Counter

LoadStore Valid

LoadStore Select

PourSpilled

NOP

Memory Handle Agent

Address Bus App_addrAddr FIFO

Memory Bridge

Figure 5.10: Block diagram of the custom memory transfer protocol.

also a write, this is the case of already driving the bus) or (2) it has not been driving

the bus at the previous request, but is set to drive the bus at this request and the config-

urable stall cycles has passed since it indicated that it wishes to take control of the bus,

allowing the other side driver to release control (hence being set to high-z state). After

correct control of the bus has been established on both sides, transactions can begin

with LoadStoreValid signal that indicates if the asynchronous FIFO has been able to

proceed with the memory transaction that the DNN processor has requested. If this

LoadStoreValid signal is high after an enable signal has been set from the processor,

the counters on each side is incremented, repeating until the correct number of mem-

ory transactions has occurred. The block diagram of this memory protocol is shown in

Figure 5.10.

Processor Control API. For automated testing and debugging of the fabricated DNN

training processor, we developed high-level software routines with FPGA-host PC in-

terface kernel provided by the FPGA vendor as the backend. For instance, WriteTensor

83

routine is used for writing data to the DDR3 memory for the DNN training processor

through the FPGA memory bridge, writing input data, parameters, and computation

graphs (or program) required for DNN execution in the training processor. CheckStates

routine is used to monitor the DNN training processor’s states in real time, as well as

the state of the memory bridge including FIFO counts. Other auxiliary routines such

as ExecuteGraph helps execute the program multiple times for accurate measurement

of power and latency.

PCB Design. For high-speed transaction of data between the test chip and the test,

the printed circuit boards are designed carefully to avoid latency and skew incurred

from implementation of the interconnect bus. 128-bit wide bus are designed such that

(1) The longest routing path does not exceed length of 5cm and (2) largest skew be-

tween the shortest routing path and longest routing path does not exceed 2cm. More-

over, to prevent inter-cycle clock skew, global clock signal generated from pulse gener-

ators are implemented with impedance matching of 50 ohms. Through these efforts to

reduce electromagnetic interference (EMI) from affecting signal integrity, a maximum

operating frequency of 180MHz is achieved with standard LVCMOS I/O pads.

Based on the test environment described above, we measured the DNN training

processor with varying operating points with different core voltage (VDD) and oper-

ating frequency to find optimal points in terms of performance and energy efficiency,

as shown in Figure 5.11. Our DNN training processor operates up to 180MHz of core

clock frequency at the nominal core voltage of 1.1V, and could operated at scaled down

core voltage of 0.75V with 20MHz of core clock. Among the measured points, we an-

alyze these two different operating points: (1) the first operating point with 180MHz

clock and 1.1V core voltage is dubbed the Maximum performance point, while (2) the

second operating point with 20MHz clock and 0.75V core voltage is dubbed the max-

imum efficiency point. Assuming 1 MAC operation as 2 FLOPs, the fabricated proces-

sor achieves 567 GFLOPS at maximum performance with 4.81 TFLOPS/W efficiency

84

���
 ���� ���
 ��
� ��

 ���� ���
 ����
�"$���" %�������

�

�

�

���

��

�
�

��

�$
�#

&�
!�

'�
��

�
(�

��

���

��

	��

	�

�!
�$

�'
��

���
��

�!
�'

���
��

�
��

��
�

©2021 IEEE

Figure 5.11: Performance-Efficiency trade-off graph with core voltage.

Table 5.3: Performance of the Processor on Benchmark Models

Model ResNet-18 DC-GAN LSTM

Config 224×224 Image
512 to

32×32 Image
128×128
1-layer

Train/Infer Train Infer Train Infer Train Infer
Energy

Efficiency
(TFLOPS/W)

1.64 2.05 1.63 2.05 0.31 0.34

Throughput
(FPS) 27.2 92.1 220.5 766.0 82K 264K

EMA
(bytes) 26.1M 5.2M 3.1M 0.6M 89.1K 39.9K

Number of
MACs 5.46G 1.82G 0.63G 0.21G 0.32M 0.13M

MAC
per Byte 209.2 350.0 203.2 350.0 3.6 3.3

©2021 IEEE

at the maximm efficiency point.

To test our processor in more realistic DNN models, we benchmarked the proces-

sor on training and inference phase of three different network models: (1) ResNet-

18 on ImageNet classification, (2) Single-layer LSTM for name classification, and

(3) DC-GAN for handwritten digit generation. The benchmarked results are shown

85

in Table 5.3. Note that train does not only include backward and parameter gradi-

ent generation phases, but also the feedforward path which are computationally very

similar to inference phase. In the results shown, inference operations show higher en-

ergy efficiency due to two main reasons: (1) Auxiliary operations required for training

generally require more memory-bound operations, such as weight updates and keeping

track of weight momentums, which degrade OP/Byte ratio. (2) There is more space for

optimization in forward phase, such as merging batch normalization with convolution

layer. Note that inference showing higher efficiency is not due to conv-bp operations

being inferior in terms of energy efficiency and utilization. This point is illustrated

by the fact that the ‘inference’ phase of DC-GAN network is made up of transposed

convolutions, which is essentially executed with conv-bp instructions. LSTMs show

lower energy efficiency due to the operations mainly being bottlenecked at memory

accesses, illustrated from the low MAC per byte ratio. The measurement results for

measured EMAs and number of MACs in a model is also shown in Table 5.3, which

demonstrates that the MAC per byte in training phase is lower compared against in-

ference phases. The MAC per byte is calculated from the actual EMA usage, not from

theoretical lower bound of external memory usage. In practical DNN training proces-

sors, theoretical lower bound memory accesses are difficult to achieve due to limited

on-chip memory sizes.

To give more insight on how our processor spends its area and energy for operation,

we use test vector inputs that were generated during actual measurement in a place-

and-routed netlist. The power and area breakdown for a convolutional feedforward

operation is shown in Figure 5.12. Accumulator and FMA trees, which are the main

computing blocks, consume 50.3% of the total power, while on-chip memory (HP, HC,

and scratchpads) consume 36.2% of total power. Note that the routing units proposed

in chapter 4.2.3 take up very little energy and area with 0.72% and 0.34% of the total

processor respectively. It should also be noted that reducing the accumulator precision

does not only impact the hardware overhead in the accumulator (shown in medium

86

©2021 IEEE

Figure 5.12: Area and power breakdown of the DNN training processor. Layer config-
uration is for conv-ff with 256 input channels, 256 output channels, 3×3 kernel size on
a 14×14 image size.

light pink), but also reduces the cost of the FMA trees (red) and the local scratchpads

(light gray). The reason for reduction in local scratchpads is because these scratchpads

holds the same number of bits as the accumulation precision: a linear reduction is

expected for reduction in accumulator precision. Complexity in the FMA trees are

expected to be reduced as the representation length required for integer representation

without precision loss in the accumulator is also reduced. For example, while 37-bit

signed integers are required in the FMA trees for FP30 accumulator with (1.6.30)

precision, only 24-bit signed integers are required for FMA trees with FP16 (1.6.9)

accumulators. The reduction in hardware complexity with different accumulator bits

are discussed in more detail in section 6.2.

Finally, to validate the spatial efficiency of the 2D input and routing units on the

tree-based processing architecture, we compare the on-chip and off-chip data access

counts required for processing a single model in each of the layers against another

work [6] with spatial, systolic-array-like CNN accelerator. The data access counts are a

good indicator of measuring the spatial efficiency, as the goal of spatial processing is to

reduce redundant memory read and writes. By comparing the memory access required

for convolution layers with the same configurations, we could quantitatively compare

87

Table 5.4: On-Chip and Off-Chip Memory Access in AlexNet Layers

Layer Types
This Work Eyeriss [6]

On-Chip Buffer Off-Chip
DRAM

On-Chip Buffer Off-Chip
DRAMHP Buffer HC Buffer ScratchPad Global ScratchPad*

InCh=3,
OutCh=64,

Kernel=(11,11)
3.1MB 6.1MB 486.4MB 1.0MB 18.5MB 1938.6MB 5.0MB

InCh=64,
OutCh=192,
Kernel=(5,5)

10.7MB 7.0MB 320.4MB 0.3MB 77.6MB 4038.5MB 4.0MB

InCh=192,
OutCh=384,
Kernel=(3,3)

8.9MB 7.6MB 133.7MB 0.3MB 50.2MB 2594.6MB 3.0MB

InCh=384,
OutCh=256,
Kernel=(3,3)

11.9MB 10.1MB 178.2MB 0.6MB 37.4MB 1904.3MB 2.1MB

InCh=256,
OutCh=256,
Kernel=(3,3)

7.9MB 6.8MB 118.8MB 0.4MB 24.9MB 119.2MB 1.3MB

Total 42.4MB 37.64MB 1238.5MB 2.6MB 208.5MB 11665.2MB 15.4MB

*Inferred from original paper, using 2*16b*(# of Active PEs)*(# of Processing Cycles) as ScratchPad access count
©2021 IEEE

the efficiency of spatial processing in the spatial architecture in [6] and the input-output

routing tree-based architecture in our work. As the work in [6] reports memory access

counts on AlexNet, we include the memory access counts required for Alexnet in Table

5.4. The advantage of using tree-based processing architecture is emphasised through

the reduction of data access in the local scratchpads: our processor requires 89.3%

less local scratchpad accesses (94.3% if data widths of partial sums are normalized to

16 bits). This reduction is not transferred to global bank accesses, as our 2D routing

units on the input and output paths complement the tree-based processing architecture

to maximize data reuse. This is supported by the fact that global buffer access for

weights and input activations actually decrease by 61.6% (23.2% if widths of data

access is normalized to 16 bits). Since the local scratchpads in [6] consumed 42.5%

of the total power budget, we could conclude that tree-based processing architectures

complemented with 2D routing paths may yield up to 40.2% less power just from

the reduced accesses required for the local scratchpads. This data access reduction is

achieved through the input and output routing units, as well as through the use of tree-

based processing architecture. Moreover, this does not come at the cost of increased

88

Table 5.5: Comparison of Neural Network Training Processors

Our Work [21] [1] [2] [3] [4] [5] [45]*

Technology 40nm 65nm 65nm 40nm 14nm 7nm 28nm

Data Format FP8-SEB FP8/FP16 FP8/FP16 BFLOAT16 FP16/FP32 HFP8 HBFP8

Peak Performance
(GFLOPS) 567 300-

600
540-
1080 204 3000 25600 400000

Energy Efficiency
(@sparsity=0%) 4.81 1.74-3.48 1.81-3.62 2.16 1.41 3.50 4.66

Real Model
Efficiency

1.64
(Res18)

0.66-0.87
(Res18)

0.57-1.00
(CycGAN) N/A N/A N/A

0.97
(LSTM)

0.21
(Res101)

On-Chip
Memory 293kB 372kB 676kB 448kB 2MB 8MB 75MB

Core Area
(mm2) 6.25 16 32.4 16 9.24 19.6 314.0

*Synthesized Results

external memory access: only 2.6MB of external memory access is required against

15.4MB required in [6].

5.2.2 Comparison Against Other DNN Training Processors

This DNN training processor is compared against prior fabricated DNN training chips

(with the exception of [45] which are simulated results from a synthesized netlist) in

Table 5.5. During ResNet-18 training, our processor is measured at 1.64TFLOPS/W of

energy efficiency which outperforms a prior work [1] with same ResNet-18 configura-

tion by 2.48× under 0% sparsity condition, and with real sparsity conditions provided

through ReLUs, still outperforms by 1.89×. Memory address generators and custom

convolution logic through dedicated FSM control allows more efficient usage of on-

chip memory for tiled convolution, requiring small on-chip memory (293kB) com-

pared against similar works to achieve high computational density. This small on-chip

memory does not result in excessive external memory accesses: in same ResNet-18

configuration, our processor require 43% less DRAM accesses.

To validate the training capabilities of the numerical format proposed in this DNN

89

©2021 IEEE

Figure 5.13: Training graph for different low-precision DNN training methods on
ResNet-18 ImageNet classification benchmark.

processor, we compare our training performance on ResNet-18 Image Classification

training with other low-precision works in Figure 5.13. We re-implemented the 8-bit

training method proposed in [31] and used the reported figures from [1, 32]. Our FP8-

SEB method outperforms fine grain mixed precision using FP8 and FP16 proposed in

[1] despite only using 8 bits as inputs and outputs. With a top-1 classification accuracy

of 69.0%, our results are comparable to trained top-1 accuracy of 69.39% reported

by hybrid FP8 proposed in [32]. It should be noted that software simulations based

on CUDA code that was verified to be bit-matched exactly with our DNN training

processor was used to extract the training results on the ImageNet dataset in realistic

amount time.

To evaluate the implementation costs of different FP8 formats introduced in other

works [31, 32, 21], we implemented combinational adders, multipliers, and MAC units

for 3 different FP8 formats, 1.4.3 FP8 (our format introduced in [21]), 1.5.2 FP8 [31],

and Hybrid FP8 [32] implemented as 1.5.3 FP9. The results are shown in Table 5.6. We

notice that in such tiny floating point representations, using more exponents is more

90

Table 5.6: Adders, multipliers, and MAC Units with Various FP8 Configurations.*

Logic Type FP8(1.4.3) FP8(1.5.2) HFP8

Adder
Area(µm2) 273.773 259.426 298.469

Energy(pJ) 0.65 0.57 0.67

Multiplier
Area(µm2) 408.307 354.92 455.35

Energy(pJ) 0.755 0.61 0.84

MAC
Area(µm2) 675.494 584.237 735.706

Energy(pJ) 1.81 1.42 1.87

*Synthesis results in 40nm LP CMOS technology.
©2021 IEEE

costly compared to using more mantissa bits. Note that in our HFP8 implementation,

we excluded the cost of FP8-FP9 conversion units as they could be shared for arbitrary

number of MAC units.

Finally, the cost of external memory should be included for comparison to give

a more extensive view on the energy consumption of the DNN processor as DRAM

is a major source of power consumption. It is well known that having larger on-chip

memory sizes are more advantageous for reduced external memory access due to al-

lowing larger tiled computations for reducing duplicate access to input/output data.

Despite having smaller on-chip memory size against other works shown in Table 5.5,

FP8-SEB tensor formats and optimized dataflow control for reduced memory access

allows our processor to require only 21.6MB of external memory access, 43% less ex-

ternal memory access compared against the work that required 45.8MB in [1] for same

ResNet-18 training benchmark. Note that for fair comparison, same DDR settings were

used, constraining our processor to use only 256MB of the available DRAM, as more

DRAM usage could benefit from larger batch sizes which could in turn mitigate the

91

memory access overhead for fetching model parameters from the external memory.

In order to compare against GPU-based DNN training, we train ResNet-18 model

on ImageNet dataset with a batch size of 64. Our training processor achieves energy

efficiency of 1.64 TFLOPS/W, which is 78.1× improvement compared to GPU energy

efficiency of 0.021 TFLOPS/W. In terms of DRAM usage, our processor requires only

573.9MB, 81.6% less compared to GPU DRAM consumption of 3127.0MB. This is

still an improvement over the obvious savings from using 8-bit representations, which

could theoretically save up to 75% over conventional full precision that utilizes 32

bits for representing tensor elements. We speculate this memory usage efficiency is a

result of custom optimizations such as collecting garbage memory after it is freed from

training process, specific optimized instruction control flow, and more compact code

space for representing models.

92

Chapter 6

Conclusion

6.1 Discussion for Future Works

6.1.1 Scaling to CNNs in the Neuromorphic System

Measurement results of the Modified Segregated Dendrites algorithm in section 5.1.3

suggests that fully-connected networks that were implemented in our hardware are in-

sufficient to perform on par with state-of-art DNN networks for real image processing.

In order to fare better in real world applications, scaling the Modified Segregated Den-

drites algorithm to convolutional neural networks may be a fascinating candidate for

improvement.

However, the author was unable to directly scale the modified Segregated Den-

drites algorithm to CNNs in many experiments, though more recent works in bio-

plausible algorithms such as feedback alignment could shed the light in directions that

could be explored for expanding the neuromorphic algorithm. For example, work in

[27] and [28] suggests that alignment of angles in the feedforward and feedbackward

weights in feedback alignment is the key to learning. In a similar manner, alignment

angles of the DFA algorithm could be retrieved from computing the cosine similar-

ity to an alignment target Ti, denoted by Equation 6.1, to the feedback matrix Di in

equation 2.17. The final alignment angle is computed as equation 6.2. Note that target

93

� ���� ���� ���� ���� ���� ����
��
�
�������	��
���
��

��

��

��

	�

�

�

�

�

�

���
�

���
���
���
���
���
���
���
���

Figure 6.1: Alignment of each layers in a 4-layer fully-connected network to the target
matrix in the modified Segregated Dendrites.

matrix changes as training progresses (as it is computed from feedforward weights)

while the feedback matrix remains constant.

Ti = WLWL−1...Wi (6.1)

θi = cos−1(TiḊi/|Ti||Di|) (6.2)

To validate the claim of this comparison method, an experiment using 4-layer fully

connected networks with the modified Segregated Dendrites algorithm to train on

MNIST dataset is conducted. The angle computed by equation 6.2 is plotted for the

training progression as in Figure 6.1. Alignment is observed between the target ma-

trix and the feedback weigths, confirming the validity of our evaluation metric. Using

our evaluation metric, we could not observe the alignment in CNN networks using the

modified Segregated Dendrites rule, where convergence fails.

While this method could not be considered bio-plausible, method introduced in

[27] could be applied for forcing the angle alignment between the target matrix and

the feedback matrix. Sign concordance, which is the method introduced in the paper,

suggests forcing alignments of feedback weights (Ri) to the target matrix using equa-

94

tion 6.3 at the end of every epoch for training.

Ri := sign(Ti) (6.3)

Similarly, by bypassing the nonlinear functions that are placed in between convolution

layers, we could merge convolution operators as they are linear operations. Suppose we

are constructing the target matrix T for two cascaded convolution layers with weights

W1 and W2. To obtain the equivalent convolution weight T , the intermediary convo-

lution result t[m,n] is shown in equation 6.4 and the final convolution result y[m,n]

is shown in equation 6.5, rearranged to equation 6.6.

t[m,n] =

k1−1∑
i=0

k1−1∑
j=0

x[m+ i, n+ j]W1[i, j] (6.4)

y[m,n] =

k2−1∑
l=0

k2−1∑
k=0

t[m+ l, n+ k]W2[l, k] (6.5)

y[m,n] =

k2−1∑
l=0

k2−1∑
k=0

k1−1∑
i=0

k1−1∑
j=0

x[m+ i+ l][n+ j + k]W1[i, j]W2[l, k] (6.6)

By substituting i′ = i+ l and j′ = j+ k, and letting W1[i, j] = 0 for all out-of-bound

indices, we obtain equation 6.7.

y[m,n] =

k2−1∑
l=0

k2−1∑
k=0

k1−1∑
i=0

k1−1∑
j=0

x[m+ i′][n+ j′]W1[i
′ − l, j′ − k]W2[l, k]

= (

k1+k2−2∑
i′=0

k1+k2−2∑
j′=0

x[m+ i′][n+ j′])(

k2−1∑
l=0

k2−1∑
k=0

W1[i
′ − l, j′ − k]W2[l, k])

(6.7)

By letting Wmerge[i
′, j′] as the summation result of the second parenthesis in equa-

tion 6.7, we could see that this form is equivalent to convolution, concluding that the

Wmerge[i
′, j′] is the equivalent convolution weight. Thus, the target matrix T for con-

volution in DFA and HFA introduced in section 2.2 could be obtained using the fol-

95

lowing equation 6.8.

T [i, j] =

k2−1∑
l=0

k2−1∑
k=0

W1[i− l, j − k]W2[l, k] (6.8)

To test the validity of the target matrix proposed for convolutional neural networks in

HFA algorithm introduced in section 2.2.1, we evaluated using the sign concordant al-

gorithm [27] using equation 6.3 on MobileNet[52] structures to compare against naive

HFA training without sign concordant. Similarly, using the sign concordant algorithm

with the target matrix obtained through equation 6.8 could provide viable learning for

modified Segregated Dendrites algorithm, and we leave this for future work.

6.1.2 Discussions for Improvements on DNN Training Processor

While the DNN training processor introduced in this thesis shows state-of-art results

on some of the benchmarked models in terms of training energy efficiency, there still

remains work to improve this processor for higher efficiency. We discuss three major

directions for improvements that could benefit the current design in this section.

Use of lower precision in accumulation. Our training processor deploys 1.6.23 ac-

cumulators, as well as using lossless representations inside the FMA tree to ensure

bit-match with GPU simulations of DNN training. However, by using FP16 (1.6.9)

accumulators and allowing some loss in the FMA tree, our synthesized results showed

that power consumption could be lowered in the computational units of the DNN train-

ing processor by approximately 20% less in total power consumption. A DNN training

processor with FP16 accumulator is synthesized and analyzed on its average power

consumption and area, with the results summarized in Table 6.1. As this method could

not ensure bit match with current GPU simulation method, the training performance of

this numerical pipeline needs to be analyzed. Through using FPGA-based simulations

or building CUDA convolution kernels with lower accumulation precision, we could

96

Table 6.1: DNN Training Processor Power and Area with FP16/FP30 Accumulators*
DNN Processor with
FP16 Accumulation

DNN Processor with
FP30 Accumulation [21]

Power

FMA Tree 53.7mW 64.5mW

Accumulator 7.9mW 13.7mW

Local SPad 12.4mW 23.5mW

Banks 28.2mW 29.0mW

Others 18.2mW 18.9mW

Total 120.4mW 149.6mW

Area

Seq. and Memory 2.64mm2 2.97mm2

Combinational 1.60mm2 1.75mm2

Total 4.24mm2 4.69mm2

*Synthesized results.

evaluate the impact of reduced accumulation precision for lowered power consumption

in future designs.

Mitigating memory latency. Another aspect that could be improved in current DNN

training processor is mitigating memory latencies. Although in chapter 4.2.2 we dis-

cuss memory prefetchers for HP buffers, we could not mitigate the latency from load-

ing network parameters to the HC buffer in the current design. Prefetchers for HC

buffer would help mitigate this in future designs. Figure 6.2(a) and Figure 6.2(b) shows

the breakdown of number of cycles per processor states for Resnet-18 backward and

weight gradient phases respectively. Exclusion of prefetching mechanism for load and

store of gradients incur more overhead in HP buffer loading with 9.1% of total execu-

tion time, contrary to HP buffer loading taking up 5.6% of total execution time during

feedforward operations. Moreover, use of L1-L2 caches could also help reduce mem-

ory latencies especially for memory-bound operations such as batch normalization,

although this was not included in our current design due to area constraints.

97

������
����

�������
����

��������
����

�������
����

��������
����

��������
����

��������
����

��������
����

��������
����

��������
����

��

����

����

����

����

��

�

���

��	
��

�

�

�����

�����	�
�����

�����	�
���
�����
�����
������

(a) Profile results per layer in ResNet-18 in backward phase.

������
����

�������
����

��������
����

�������
����

��������
����

��������
����

��������
����

��������
����

��������
����

��������
����

��

����

����

����

��

�

���

��	
��

�

�

�����

�����	�
�����

�����	�
���
�����
�����
������

(b) Profile results per layer in ResNet-18 in weight gradient phase.

Figure 6.2: Processor state breakdown per layer in the backward and weight gradient
phase of ResNet-18 training.

Optimization for Inference. Moreover, this DNN training processor could be ex-

tended to handle inference workloads more efficiently. Processors then can be utilized

for server-scale DNN workload accelerators to be used for both inference and training,

even allowing training to be processed while responding to inference task requests,

similar to work in [45]. For example, hybrid mode FMA trees could be implemented

such that one FMA tree performing vector FMA between (1.4.3)×(1.4.3) formats could

also be configured to act as two FMA trees each performing vector FMA between

(1.4.3)×(1.3.0) formats, which showed robust inference performance.

98

6.2 Conclusion

In this dissertation, various techniques for designing low power neural network train-

ing integrated circuits system are introduced, in terms of training algorithms, reduced

numerical precision, and digital circuit implementation techniques. Specifically, two

fabricated chips were designed, verified and measured for evaluation of these tech-

niques. The first chip demonstrated a neuromorphic learning system with very low

training energy overhead. The second chip implements a custom FP8 numeric for-

mat for energy-efficient training, with specialized instruction set for end-to-end DNN

training in spatial processing architecture. In conclusion, the contributions of this the-

sis could be summarized as following:

Neuromorphic Algorithm Modification and Update Skipping In the neuromor-

phic learning system, we modify an existing learning rule [20] for more hardware-

efficient implementation. The modifications reduce operations required per training

from 29.4MOP to 0.8MOP, as well as reducing the buffer memory requirement from

42.7Kb to 7.6Kb, while increasing the MNIST test accuracy from 96.3% to 98.1%.

Moreover, the sparsity of the learning rule is exploited in hardware to further reduce

training energy overhead from 25.6% of the inference energy to a mere 7.5%.

FP8 with Shared Exponent Bias The DNN training processor chip introduced in

this thesis is implemented with a custom FP8 format, which we dubbed FP8-SEB

(shared exponent bias). The shared exponents allow a inter-tensor dynamic range that

matches full-precision, while maintaining intra-tensor dynamic range of 44.9dB. While

accessing off-chip tensors in only 8-bit representations, our numeric format matches

full-precision baseline training in various benchmarks, including tasks in image classi-

fication (ImageNet classification using ResNet-18 [30]), generative task (Image Super-

resolution using ESRGAN [47]), and natural language processing (Image Captioning

using attention mechanisms and LSTMs [48]).

99

Flexible Routing Scheme in Tree-based Processing Architecture We obtain more

energy-efficient processing elements through the use of multiple way fused-multiply-

adder trees that consumes 87% less energy compared to straightforward MAC-based

implementation. While other works have also proposed using efficient tree-based pro-

cessing architecture, limited spatiality and data re-use has limited the energy efficiency

of such processing architectures. Our novel 2D routing schemes on both inputs and out-

puts outperforms prior spatial processing architecture based on systolic arrays while

offering very low hardware overhead that takes up 0.72% of total power and 0.34% of

total area.

Extending Bio-Plausible learning rules to DNN training processor Another con-

tribution of this work is verifying the hardware efficiency of bio-plausible learning

rules such as FA, DFA, and our proposed HFA. Through the use of on-chip random

weight generation and gradient sharing, proposed HFA algorithm could perform up

to 23% faster and with 21% lower energy in our DNN training processor, with the

hardware advantages shown to persist in computational scaling to settings of training

on ImageNet data. Moreover, this efficiency could be utilized with very low software

overhead through using mixed training schema of stochastically choosing either back-

propagation or the HFA learning rule on the processing mini-batch.

100

Bibliography

[1] J. Lee, J. Lee, D. Han, J. Lee, G. Park, and H.-J. Yoo. LNPU: A 25.3 TFLOPS/W

sparse deep-neural-network learning processor with fine-grained mixed precision

of FP8-FP16. In IEEE International Solid-States Circuits Conference (ISSCC),

pages 142–144. IEEE, 2019.

[2] S. Kang, D. Han, J. Lee, D. Im, S. Kim, S. Kim, and H.-J. Yoo. GANPU: A

135TFLOPS/W multi-DNN training processor for GANs with speculative dual-

sparsity exploitation. In IEEE International Solid-States Circuits Conference

(ISSCC), pages 140–142, 2020.

[3] C. Kim, S. Kang, D. Shin, S. Choi, Y. Kim, and H.-J. Yoo. A 2.1 TFLOPS/W mo-

bile deep RL accelerator with transposable PE array and experience compression.

In IEEE International Solid-States Circuits Conference (ISSCC), pages 136–138,

2019.

[4] B. Fleischer, S. Shukla, M. Ziegler, J. Silberman, J. Oh, V. Srinivasan, J. Choi, S.

Mueller, A. Agrawal, and T. Babinsky. A scalable multi-TeraOPs deep learning

processor core for AI training and inference. In IEEE Symposium on Very Large

Scale Integrated Circuits (VLSIC), pages 35–36, 2018.

[5] A. Agrawal, S. K. Lee, J. Silberman, M. Ziegler,M. Kang, S. Venkataramani, N.

Cao, B. Fleischer, M. Guillorn, and M. Cohen. A 7nm 4-core AI chip with 25.6

TFLOPS hybrid FP8 training, 102.4 TOPS INT4 inference and workload-aware

101

throttling. In IEEE International Solid-States Circuits Conference (ISSCC),

pages 144–146, 2021.

[6] Y. Chen, T. Krishna, J. Emer, and V. Sze. Eyeriss:An energy-efficient reconfig-

urable accelerator for deep convolutional neural networks. In IEEE Journal of

Solid-State Circuits, volume 52, pages 127–138, 2016.

[7] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and I. Kang.

An 11.5 TOPS/W 1024-MAC butterfly structure dual-core sparsity-aware neural

processing unit in 8nm flagship mobile SoC. In IEEE International Solid-States

Circuits Conference (ISSCC), pages 130–132, 2019.

[8] S. Kim, J. Lee, S. Kang, J. Lee, and H.-J. Yoo. A 146.52 TOPS/W deep-neural-

network learning processor with stochastic coarse-fine pruning and adaptive in-

put/output/weight skipping In IEEE Symposium on Very Large Scale Integrated

Circuits (VLSIC), pages 1–2, 2020.

[9] J. Oh, S. K. Lee, M. Kang, M. Ziegler, J. Silberman,A. Agrawal, S. Venkatara-

mani, B. Fleischer, M. Guillorn, and J. Choi. A 3.0 TFLOPS 0.62 v scalable

processor core for high compute utilization AI training and inference In IEEE

Symposium on Very Large Scale Integrated Circuits (VLSIC), pages 1–2, 2020.

[10] P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit In

Proceedings of the 44th annual International Symposium on Computer Architec-

ture (ISCA), pages 1–12, 2017.

[11] P. Ramachandran, B. Zoph, and Q. Le. Searching for activation functions. arXiv

preprint arXiv:1710.05941, 2017.

[12] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.Suresh, and D. Bacon.

Federated learning: Strategies for improving communication efficiency arXiv

preprint arXiv:1610.05492, 2016.

102

[13] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient infer-

ence: A whitepaper arXiv preprint arXiv:1806.08342, 2018.

[14] M. Rastegari, V.Ordonez, J. Redmon, and A.Farhadi. Xnor-net: Imagenet classi-

fication using binary convolutional neural networks. In European Conference on

Computer Vision (ECCV), Springer, 2016.

[15] S. Gupta, A. Agrawal, K. Goplakrishnan, and P. Narayanan. Deep learning with

limited numerical precision. arXiv preprint arXiv:1502.02551, 2015.

[16] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training

low bitwidth convolutional neural networks with low bitwidth gradients arXiv

preprint arXiv:1606.06160, 2016.

[17] U. Köster et al. Flexpoint: An adaptive numerical format for efficient training of

deep neural networks arXiv preprint arXiv:1711.02213, 2017.

[18] J. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi, M. Ben-

namoun, D. Jeong, and W.Lu. Training spiking neural networks using lessons

from deep learning arXiv preprint arXiv:2109.12894, 2021.

[19] J. Park, J. Lee, and D. Jeon. A 65nm 236.5nJ/classification neuromorphic proces-

sor with 7.5% Energy overhead on-chip Learning using direct spike-only feed-

back In IEEE International Solid-States Circuits Conference (ISSCC), pages

140–141, 2019.

[20] J. Guerguiev, T. Lillicrap, and B. Richards. Towards deep learning with segre-

gated dendrites. In ELife, vol. 6, 2017.

[21] J. Park, S. Lee, and D. Jeon. A 40nm 4.81 TFLOPS/W 8b floating-point training

processor for non-sparse neural networks using shared exponent bias and 24-way

fused multiply-add tree. In IEEE International Solid-States Circuits Conference

(ISSCC), pages 1–3, 2021.

103

[22] H, Markram, G. Wulfram , and S. Jesper. A history of spike-timing-dependent

plasticity. In Frontiers in Synaptic Neuroscience, vol. 3, 2011.

[23] T. Lillicrap, D. Cownden, D. Tweed, and C. Akerman. Random synaptic feed-

back weights support error backpropagation for deep learning. In Nature Com-

munications, vol. 7, 2016.

[24] A. Nøkland. Direct feedback alignment provides learning in deep neural net-

works. In Advances in Neural Information Processing Systems (NeurIPS), 2016.

[25] F. Buhler, P. Brown, J. Li, T. Chen, Z.Zhang, and M. Flynn. A 3.43TOPS/W

48.9pJ/pixel 50.1nJ/classification 512 analog neuron sparse coding neural net-

work with on-chip learning and classification in 40nm CMOS. In IEEE Sympo-

sium on Very Large Scale Integrated Circuits (VLSIC), pages 30–31, 2017.

[26] J. Kim, P. Knag, T. Chen, and Z. Zhang. A 640M pixel/s 3.65mW sparse event-

driven neuromorphic object recognition processor with on-chip Learning. In

IEEE Symposium on Very Large Scale Integrated Circuits (VLSIC), pages 61–

62, 2015.

[27] T. Moskovitz, L. Ashok, and L. Abbott. Feedback alignment in deep convolu-

tional networks. arXiv preprint arXiv:1812.06488, 2018.

[28] W. Xiao, H. Chen, Q. Liao, and T. Poggio. Biologically-plausible learning algo-

rithms can scale to large datasets. arXiv preprint arXiv:1811.03567, 2018.

[29] L. Min, Q. Chen, and S. Yan. Network in network. arXiv preprint

arXiv:1312.4400, 2013.

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-

nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

104

[31] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan. Training deep

neural networks with 8-bit floating point numbers. In Advances in Neural Infor-

mation Processing Systems (NeurIPS), 2018.

[32] X. Sun, J. Choi, C. Y. Chen, N. Wang, S. Venkataramani, V. Srinivasan, X. Cui,

W. Zhang, and K. Gopalakrishnan. Hybrid 8-bit floating point (hfp8) training

and inference for deep neural networks In Advances in Neural Information Pro-

cessing Systems (NeurIPS), pages 1—10, 2019.

[33] M. Drummond, T. Lin, and M. Jaggi, and B. Falsafi. Training DNNs with hybrid

block floating point. arXiv preprint arXiv:1804.01526, 2018.

[34] S. Fox et al. A Block minifloat representation for training deep neural networks.

In International Conference on Learning Representations (ICLR), 2020.

[35] B. Xu, N. Wang, T. Chen and M. Li. Empirical evaluation of rectified activations

in convolution Network. arXiv preprint arXiv:1505.00853, 2015.

[36] F. Niu, B. Recht, C. Ré, and S. Wright. Hogwild!: A lock-free approach to par-

allelizing stochastic gradient descent arXiv preprint arXiv:1106.5730, 2011.

[37] J. Tsitsiklis, B. Dimitri, and M. Athans. Distributed asynchronous deterministic

and stochastic gradient optimization algorithms. In IEEE transactions on auto-

matic control, pages 803–812, 1986.

[38] J. Park et al. A 6K-MAC Feature-map-sparsity-aware neural processing unit in

5nm flagship mobile SoC. In IEEE International Solid-States Circuits Confer-

ence (ISSCC), pages 152–154, 2021.

[39] S. Gonugondla, S. Kumar, M. Kang, and N. Shanbhag. A 42pJ/decision

3.12TOPS/W roust in-memory machine learning classifier with on-chip training.

In IEEE International Solid-States Circuits Conference (ISSCC), pages 490–491,

2018.

105

[40] A. Amravati, S. Nasir,i S. Thangadurai, I. Yoon, and A. Raychowdhury. A 55nm

time-domain mixed-signal neuromorphic accelerator with stochastic synapses

and embedded reinforcement learning for autonomous micro-robots. In IEEE

International Solid-States Circuits Conference (ISSCC), pages 124–125, 2018.

[41] C. Tsai, W. Yu, W. Wong, and C. Lee. A 41.3/26.7pJ per neuron weight RBM

processor supporting on-chip learning/inference for IoT applications. In IEEE

Journal of Solid-State Circuits, volume 52, pages 2601-2612, 2017.

[42] J. Seo et al. A 45nm CMOS neuromorphic chip with a scalable architecture for

learning in networks of spiking neurons. In IEEE Custom Integrated Circuits

Conference (CICC), pages 1–4, 2011.

[43] P. Whatmough, S. Lee, H. Lee, S. Rama, D. Brooks, and G. Wei. A 28nm SoC

with a 1.2GHz 568nJ/prediction sparse deep-neural-network engine with ¿ 0.1

timing error rate tolerance for IoT applications In IEEE International Solid-

States Circuits Conference (ISSCC), pages 242–243, 2017.

[44] S. Esser, R. Appuswamy, P. Merolla, J. Arthur, and D. Modha. Back propagation

for energy-efficient neuromorphic computing. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), 2015.

[45] M. Drumond, L. Coulon, A. Pourhabibi, A. Yüzügüler, B. Falsafi and M. Jaggi.

Equinox: Training (for Free) on a custom inference accelerator In 54th An-

nual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

421–433, 2021.

[46] P. Merolla et al. A million spiking-neuron integrated circuit with a scalable com-

munication network and interface. Science, pages 668–673, 2014.

[47] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Loy. ESRGAN:

enhanced super-resolution generative adversarial networks. In European Confer-

ence on Computer Vision (ECCV), Springer, 2018.

106

[48] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems (NeurIPS), 2017.

[49] A. Paszke et al. PyTorch: An imperative style, high-performance deep learning

library In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[50] W. Gerstner and W. Kistler. Spiking neuron models : single neurons, populations,

plasticity Cambridge University Press, 2002.

[51] A. Hodgkin and A. Huxley. A quantitative description of membrane current and

its application to conduction and excitation in nerve. In The Journal of Physiol-

ogy, pages 500–544, 1952.

[52] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-

dreetto, and H. Adam. MobileNets: efficient convolutional neural networks for

mobile vision applications arXiv preprint arXiv:1704.04861, 2017.

107

초록

딥러닝의시대가도래함에따라,심층인공신경망 (DNN)을처리하기위해요구

되는학습및추론연산량또한기하급수적으로증가하였다.딥러닝시대의도래와

함께다양한작업에대한신경망훈련및특정용도에대해훈련된신경망추론수행

측면에서 심층 신경망 (DNN) 처리에 대한 컴퓨팅 요구가 극적으로 증가하였으며,

이러한 추세는 인공지능의 사용이 더욱 범용적으로 진화함에 따라 더욱 가속화 될

것으로 예상된다. 이러한 연산 요구를 해결하기 위해 데이터 센터 내부에 배치하

기 위한 FPGA (Field-Programmable Gate Array) 또는 ASIC (Application-Specific

Integrated Circuit) 기반 시스템에서 저전력을 위한 SoC (System-on-Chip)의 가속

블록에이르기까지다양한맞춤형하드웨어가산업및학계에서제안되었다.본논

문에서는, 인공 신경망의 에너지 효율적인 훈련 처리를 위한 맞춤형 집적 회로 하

드웨어를 보다 에너지 효율적으로 설계할 수 있는 다양한 방법론을 제안하고 실제

저전력인공신경망훈련시스템을설계하고제작하여,그효율을평가하고자한다.

특히, 본 논문에서는 이러한 저전력 고성능 설계 방법론을 크게 세 가지로 분류하

여 분석을 진행하였다. 이러한 분류는 다음과 같다. (1) 훈련 알고리즘. 표준적으로

심층 신경망 훈련은 역전파 (Back-Propagation) 알고리즘으로 수행되지만, 더 효율

적인 하드웨어 구현을 위해 스파이크을 기반으로 통신하는 뉴런이 있는 뉴로모픽

학습알고리즘또는비대칭피드백을기반으로하는생물학적모사도가높은 (Bio-

Plausible) 알고리즘을 활용하여 더 효율적인 훈련 시스템을 설계하는 방법을 조사

및제시하고,그하드웨어효율성을분석하였다. (2)저정밀도수체계활용.일반적

으로사용되는 DNN가속기에서효율성을높이는가장강력한방법중하나는수치

정밀도를조정하는것이다. DNN의추론단계에낮은정밀도숫자를사용하는것은

108

잘연구되었지만,성능저하없이 DNN을훈련하는것은상대적으기술적어려움이

있다. 본 논문에서는 다양한 모델과 시나리오에서 DNN을 성능 저하 없이 훈련하

기위한새로운수체계를제안하였다. (3)시스템구현기법.집적회로에서맞춤형

훈련시스템을실제로실현할때,거의무한한설계공간은칩내부의데이터흐름,

시스템부하분산,가속/게이팅블록등다양한요소에따라결과의품질이크게달라

질수있다.본논문에서는더나은성능과효율성으로이어지는다양한설계기법을

소개하고분석하고자한다.

첫째로,손글씨분류학습을위한뉴로모픽학습시스템을제작하여평가하였다.

이학습시스템은전통적인기계학습의훈련성능을유지하면서낮은훈련오버헤

드를제공하는것을목표로하여설계되었다.이목적을달성하기위해,더적은연산

요구량과 버퍼 메모리 필요치를 위해 기존의 뉴로모픽 알고리즘을 수정하였으며,

이과정에서훈련성능손실없이기존역전파기반알고리즘에근접한훈련성능을

달성하였다.뿐만아니라,업데이트를건너뛰는메커니즘을구현하고 Lock-Free매

개변수업데이트방식을채택하여훈련에소모되는에너지를훈련이진행됨에따라

동적으로감소시킬수있는시스템구현기법또한소개하고그성능을분석하였다.

이런 기법을 통해, 이 학습 시스템은 기존의 훈련 시스템 대비 뛰어난 분류 성능-

에너지 소모량 관계를 보이면서도 기존의 역전파 알고리즘 기반의 인공 신경망의

훈련성능을유지하였다.

둘째로, 특수 명령어 체계 및 맞춤형 수 체계를 활용한 프로그램 가능한 DNN

훈련용 프로세서가 설계되고 제작되었다. 기존 DNN 추론용 가속기는 8비트 정수

기반으로 이루어진 경우가 많았지만, DNN 학습 설계시 8비트 수 체계를 이용하며

훈련 성능 저하를 보이지 않는 것은 상당한 기술적 난이도를 가지고 있었다. 이런

문제를 극복하기 위해, 본 논문에서는 공유형 멱지수 편향값을 활용하는 8비트 부

동 소수점 수 체계를 새로이 제안하였으며, 이 수 체계의 효용성을 보이기 위해 이

DNN훈련프로세서가설계되었다.뿐만아니라,이프로세서는단순한 MAC기반

Matrix-Multiplication가속기가아닌, Fused-Multiply-Add트리를기반으로하는에

너지 효율적인 가속기 구조를 채택하면서도, 칩 내부에서의 데이터 이동량 최적화

및컨볼루션의공간성을극대화할수있기위해데이터전달유닛을입출력부에 2D

109

로 제작하여 트리 기반에서의 컨볼루션 추론 및 훈련 단계에서의 공간성을 활용할

수 있는 방법을 제시하였다. 본 DNN 훈련 프로세서는 맞춤형 벡터 연산기, 가속

명령어 체계, 외부 DRAM으로의 직접적인 접근 제어 방식 등을 통해 한 프로세서

내에서 DNN 훈련의 모든 단계를 다양한 모델 및 환경에서 효율적으로 처리할 수

있도록설계되었다.이를통해본프로세서는기존의연구에서제시되었던다른프

로세서에 비해 동일 모델을 처리하면서 2.48배 가량 더 높은 에너지 효율성, 43%

적은 DRAM접근요구량, 0.8%p높은훈련성능을달성하였다.

이렇게소개된두가지설계는모두실제칩으로제작되어검증되었다.측정데

이터 및 전력 소모량을 통해 본 논문에서 제안된 저전력 딥러닝 훈련 시스템 설계

기법의효율을검증하였으며,특히생물학적모사도가높은훈련알고리즘,딥러닝

훈련에최적화된수체계,그리고효율적인시스템구현기법을활용하여시스템의

에너지효율성을개선하는목표를달성하였는지정량적으로분석하였다.

주요어: 인공 신경망 학습 가속기, 디지털 집적회로, 딥 러닝, 연산 효율, 학습

시스템,뉴로모픽,기계학습가속기

학번: 2017-22051

110

	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Study Background
	1.2 Purpose of Research
	1.3 Contents

	2 Hardware-Friendly Learning Algorithms
	2.1 Modified Learning Rule for Neuromorphic System
	2.1.1 The Segregated Dendrites Algorithm
	2.1.2 Modification of the Segregated Dendrites Algorithm

	2.2 Non-BP Learning Rules on DNN Training Processor
	2.2.1 Feedback Alignment and Direct Feedback Alignment
	2.2.2 Reduced Memory Access in Non-BP Learning Rules

	3 Optimal Numerical Format for DNN Training
	3.1 Related Works
	3.2 Proposed FP8 with Shared Exponent Bias
	3.3 Training Results with FP8-SEB
	3.4 Fused Multiply Adder Tree for FP8-SEB

	4 System Implementations
	4.1 Neuromorphic Learning System
	4.1.1 Bio-Plausibility
	4.1.2 Top Level Architecture
	4.1.3 Lock-Free Weight Updates
	4.1.4 Update Skipping Mechanism

	4.2 Low-Precision DNN Training System
	4.2.1 Top Level Architecture
	4.2.2 Optimized Auxiliary Instructions in the Vector Processing Unit
	4.2.3 Buffer Organization
	4.2.4 Input-Output 2D Spatial Routing for FMA Trees

	5 Measurement Results
	5.1 Measurement Results on the Neuromorphic Learning System
	5.1.1 Measurement Results and Test Setup .
	5.1.2 Comparison against other works
	5.1.3 Scalability of the Learning Algorithm

	5.2 Measurements Results on the Low-Precision DNN Training Processor
	5.2.1 Measurement Results in Benchmarked Tests
	5.2.2 Comparison Against Other DNN Training Processors

	6 Conclusion
	6.1 Discussion for Future Works
	6.1.1 Scaling to CNNs in the Neuromorphic System
	6.1.2 Discussions for Improvements on DNN Training Processor

	6.2 Conclusion

	Abstract (In Korean)

<startpage>15
Abstract i
Contents iv
List of Tables vii
List of Figures viii
1 Introduction 1
 1.1 Study Background 1
 1.2 Purpose of Research 6
 1.3 Contents 8
2 Hardware-Friendly Learning Algorithms 9
 2.1 Modified Learning Rule for Neuromorphic System 9
 2.1.1 The Segregated Dendrites Algorithm 9
 2.1.2 Modification of the Segregated Dendrites Algorithm 13
 2.2 Non-BP Learning Rules on DNN Training Processor 18
 2.2.1 Feedback Alignment and Direct Feedback Alignment 18
 2.2.2 Reduced Memory Access in Non-BP Learning Rules 23
3 Optimal Numerical Format for DNN Training 27
 3.1 Related Works 27
 3.2 Proposed FP8 with Shared Exponent Bias 30
 3.3 Training Results with FP8-SEB 33
 3.4 Fused Multiply Adder Tree for FP8-SEB 37
4 System Implementations 41
 4.1 Neuromorphic Learning System 41
 4.1.1 Bio-Plausibility 41
 4.1.2 Top Level Architecture 43
 4.1.3 Lock-Free Weight Updates 47
 4.1.4 Update Skipping Mechanism 48
 4.2 Low-Precision DNN Training System 51
 4.2.1 Top Level Architecture 52
 4.2.2 Optimized Auxiliary Instructions in the Vector Processing Unit 55
 4.2.3 Buffer Organization 57
 4.2.4 Input-Output 2D Spatial Routing for FMA Trees 60
5 Measurement Results 70
 5.1 Measurement Results on the Neuromorphic Learning System 70
 5.1.1 Measurement Results and Test Setup . 70
 5.1.2 Comparison against other works 73
 5.1.3 Scalability of the Learning Algorithm 77
 5.2 Measurements Results on the Low-Precision DNN Training Processor 79
 5.2.1 Measurement Results in Benchmarked Tests 79
 5.2.2 Comparison Against Other DNN Training Processors 89
6 Conclusion 93
 6.1 Discussion for Future Works 93
 6.1.1 Scaling to CNNs in the Neuromorphic System 93
 6.1.2 Discussions for Improvements on DNN Training Processor 96
 6.2 Conclusion 99
Abstract (In Korean) 108
</body>

