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ABSTRACT 

 

Neuromorphic engineering aims to implement a brain-inspired computing 

architecture as an alternative paradigm to the von Neumann processor. In this work, 

hardware-based neural networks that enable on-chip training using a thin-film 

transistor-type AND flash memory array architecture are designed. The synaptic 

device constituting the array is characterized by a doped p-type body, a gate 

insulator stack composed of SiO2 / Si3N4 / Al2O3, and a partially curved poly-Si 

channel. The p-body reduces the circuit burden on the high voltage driver required 

for both the source and drain lines when changing the synaptic weights. The high-

κ material included in the gate insulator stack helps to lower the operating voltage 

of the device. As the device scales down, the structural characteristics of the device 

have the potential to increase the efficiency of the memory operation and the 

immunity to the voltage drop effect that occurs in the bit-lines of the array. In the 

AND array architecture using fabricated synaptic devices, a pulse scheme for 

selective memory operation is proposed and verified experimentally. Based on the 
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measured characteristics of the fabricated synaptic devices and arrays, we design 

two types of hardware-based spiking neural networks (SNNs) according to the 

learning purpose. First, we propose a hardware-based SNN for unsupervised 

learning with spiking-timing-dependent plasticity (STDP) learning rule. The 

designed network does not use the pulses generated by the external circuitry, but 

the necessary pulses are generated in each spike neuron circuit. In this architecture, 

the STDP rule is implemented by the effective pulse scheme for using poly-silicon 

AND arrays. With the proposed pulse scheme and SNN, 91.63% of recognition 

accuracy is obtained in MNIST handwritten digit pattern learning using 200 output 

neurons. Second, we propose a hardware-based SNN for supervised learning with 

a direct feedback alignment (DFA) learning rule. Due to the DFA algorithm, which 

does not need to have the same synaptic weight in the forward path and backward 

path, the AND array architecture can be utilized in designing an efficient on-chip 

training neural network. Pulse schemes suitable for the proposed AND array 

architecture are also devised to implement the DFA algorithm in neural networks. 

In the system-level simulation, the recognition accuracy of up to 97.01% is obtained 
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in the MNIST pattern learning task based on the proposed pulse scheme and 

computing architecture. In addition, we propose and verify the integration 

fabrication method of the proposed synaptic array and complementary metal-oxide-

semiconductor (CMOS) circuits. Here, the CMOS circuits include either an 

integrate-and-fire circuit or a circuit that can change the width or amplitude of the 

spike signal. The proposed integration fabrication method has the advantage of 

reducing the number of masks and steps due to the shared process of the synaptic 

array and CMOS circuit. The proposed integration fabrication method is significant 

because it presents a methodology for efficient implantation of hardware-based 

neural networks as well as verification of excellent compatibility of the proposed 

synaptic device with CMOS. 

Keywords: hardware-based spiking neural network, flash memory synaptic 

device, AND-type array, on-chip training, unsupervised learning, supervised 

learning, neuron circuit. 
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Chapter 1 

Introduction 

 

1.1 Neuromorphic computing 

An artificial neural network (ANN) is a computational model inspired by the 

brain that excels at complex tasks like recognition, prediction, and classification. 

Unlike conventional von Neumann processors, the human brain that the ANN 

attempts to imitate is known as a very energy-efficient computing machine using 

massively parallel computation and is designed to adapt to the external environment. 

For this reason, ANN researches are underway in various ways to overcome the 

limits of traditional computing architectures in specific applications. Various ANN 

models have been continuously studied to date depending on the application, 

naturally leading to studies for designing efficient computing architectures to utilize 

neural networks. Software-based deep neural networks (SW-DNNs) such as 

convolutional neural network (CNN) and recurrent neural networks (RNN) are 

representative computing models, which use well-defined mathematical and 
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analytic algorithms [1-6]. These advanced computing models can offer excellent 

learning performance, but it is difficult to obtain a highly efficient solution in 

designing computing architectures for real-time applications. In particular, the 

vector-by-matrix multiplication (VMM) for the main operation occupies a 

significant part of the SW-DNNs’ computational tasks, which leads to enormous 

power consumption. For this reason, many studies on how to efficiently perform a 

large amount of VMM have been recently carried out, and one of the most popular 

methods is to utilize a crossbar array of an electronic synaptic device [7-9]. As 

shown in Fig. 1.1, in the crossbar array of the electronic synaptic device, an output 

signal can be expressed as the current flowing in a predetermined direction of the 

array when an input signal and a weight are represented by an input voltage and a 

conductance (G) of the electronic synaptic device, respectively. Since utilizing the 

crossbar array composed of electronic synaptic devices can reduce power 

consumption and improve computational speed, the need for hardware-based deep 

neural networks (HW-DNNs) has emerged. However, the efficient implementation 

of full HW-DNNs, which involves complex computations such as derivatives, is 
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still challenging simply by configuring arrays of electronic synaptic devices [10]. 

This is because if other complex computations, such as weight updates, require the 

support of software, there are still bottlenecks in power consumption and 

computational speed, which can greatly reduce the advantages of HW-DNNs. In 

addition, in representing the synaptic weight as the conductance of the electronic 

synaptic device, the degradation of system performance caused by the inaccuracy 

in weight transformation is difficult to solve completely [11-12]. Therefore, 

electronic circuits that are compatible with guaranteed electronic synaptic devices 

are essential, and appropriate learning rules for enabling efficient hardware 

implementation should be supported.  
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Fig. 1.1. Utilization of crossbar arrays composed of electronic synaptic devices for 

efficient vector-by-matrix multiplication. 
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1.2 Hardware-based spiking neural network 

Recently, a computing model called spiking neural network (SNN) with 

integrated neuron circuits and electronic synaptic devices has emerged as a 

candidate for another efficient ANN model [13-19]. SNN aims to approach 

biological energy efficiency using learning protocols implemented by synapses and 

neurons, which are components of the human brain. In SNN, data is encoded as 

spike patterns and transferred between neurons, relying on learning rules for higher 

computational efficiency than conventional methods. Neuromorphic computing 

performed in this kind of network has local data computing characteristics to 

improve the power and computational efficiency of the computing architecture.  

Meanwhile, in-memory computing has raised expectations for the realization 

of the hardware-based SNN by enabling VMM while utilizing the physical 

properties of a crossbar synaptic array [20-22]. For this reason, many studies have 

proposed various types of non-volatile electronic synaptic devices that can 

constitute the crossbar array as shown in Fig. 1.2 [23-26]. An electronic synaptic 

device aims to implement synaptic plasticity, a rule of change in synaptic weight 
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that allows learning by experience as in the nervous system. Among the many 

candidates for electronic synaptic devices, two-terminal electronic synaptic devices 

such as phase-change random access memory (PCRAM) [27-29], resistive random-

access memory (RRAM) [30-33], spin-based memory [34-37], and ferroelectric 

memristor [38] have attracted considerable attention from researchers in recent 

years. These kinds of two-terminal electronic synaptic devices represented by 

memristors have exhibited problems, such as sneak path currents, device 

characteristic variation, and poor reliability, despite advantages of scalability and 

fast operation. On the other hand, the field-effect transistor (FET)-based electronic 

synaptic device utilizing a charge trap layer is an attractive candidate with many 

advantages, such as low synaptic current, good reliability, high integration density, 

a large-conductance window, and process compatibility with CMOS [39-42]. Also, 

by operating the FET-type electronic synaptic device in the saturation region, it is 

possible to minimize the change in the synaptic current due to the voltage change 

applied to the device. Thus, any undesired voltage drop that can occur on the wiring 

in the array has little effect on the synaptic current. In the case of the three-terminal 
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electronic synaptic device, unlike the two-terminal, the degree of integration and 

how the array works depend on the configuration of the array. Therefore, it is 

important to determine the operation scheme for parallel computation while 

designing an appropriate array configuration of the electronic synaptic devices 

according to the type of neural network.  

 

Fig. 1.2. Several candidates for electronic synaptic device that can form crossbar 

arrays. 
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1.3 Purpose of research 

The learning algorithm used to implement the neuromorphic computing 

technology varies depending on the application but can be broadly classified into 

two types according to the data received. Firstly, unsupervised learning, which has 

purposes such as clustering and association, proceeds learning based only on input 

data. Among the various learning algorithms for unsupervised learning available in 

SNNs, spike-timing-dependent plasticity (STDP) and spike-rate-dependent 

plasticity (SRDP) are representative examples of intuitive synaptic weight change 

rules [43-46]. On the other hand, supervised learning, which has the purpose of 

regression or classification, learns by receiving input data and output label 

information corresponding to the correct answer of the input data as input. A 

representative learning algorithm for supervised learning is a backpropagation (BP) 

algorithm. Recently, several researchers have shown the possibility that a BP [47], 

which exhibits outstanding performance in conventional DNNs [48-50], can also 

be utilized in SNNs while achieving excellent accuracy [51-53]. However, although 

methods using the BP algorithm are very effective means on the von Neumann 
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architecture, they may become inefficient due to weight transport problems when 

extended to large networks [54, 55]. This includes requirements for symmetric 

synaptic connections between for- and back-ward paths throughout the network. To 

overcome the limitations of this training paradigm, various new training methods 

that relax the synaptic weight symmetry constraints have been recently reported.  

In this work, we design hardware-based SNNs to implement unsupervised 

learning and supervised learning using an AND flash memory synaptic array. First, 

a thin-film transistor (TFT)-type synaptic device based on flash memory technology 

is introduced, and its memory characteristics are analyzed. The proposed device has 

structural differences to improve memory operation and current saturation 

characteristics compared to the conventional TFT devices. And then, a 

representative pulse scheme for realizing the selective memory operation of the 

proposed synaptic devices in the AND array is described and experimentally 

implemented. Using the verified results, we devise efficient pulse schemes for 

unsupervised learning and supervised learning implementation in the designed 

hardware-based SNNs. The designed SNNs aim to implement on-chip training. 
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Also, system-level simulations are performed based on the characteristics of the 

fabricated synaptic array and the operation of the SNNs designed for each purpose. 

Lastly, to fabricate a neuromorphic chip for SNN implementation, we propose an 

efficient integration fabrication method of the proposed synaptic array and 

peripheral complementary metal-oxide-semiconductor (CMOS) circuits. The 

proposed fabrication method aims to integrate the synaptic array and CMOS circuit 

on a single wafer while reducing the number of masks required. And then, we verify 

the feasibility of the proposed fabrication method by analyzing the operation of the 

synaptic array and CMOS circuit and required to implement the hardware-based 

SNNs.  
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1.4 Dissertation outline 

The following is the structure of this dissertation. Chapter 1 provides an 

overview of neuromorphic computing and hardware-based SNNs. Chapter 2 

describes the proposed TFT-type AND flash memory array. This chapter includes 

the structure, fabrication process, and characteristics of the synaptic device. 

Moreover, the measurement results as a synaptic device and array are also presented. 

Chapter 3 deals with the hardware-based SNN designed to implement the 

unsupervised learning, the pulse scheme to utilize the proposed synaptic array, and 

the pattern recognition result reflecting the fabricated device characteristics. 

Likewise, chapter 4 described the hardware-based SNN designed to implement the 

supervised learning, the pulse scheme to utilize the proposed synaptic array, and the 

pattern recognition result reflecting the device characteristics. Chapter 5 present the 

integration fabrication of the proposed synaptic array and CMOS circuit required 

for hardware-based SNN implementation. This includes detailed key fabrication 

steps and experimentally verification of the operation of the synaptic array and 

CMOS circuit. Finally, chapter 6 concludes this dissertation with a summary.  
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Chapter 2 

TFT-type AND flash memory array 

 

2.1 Device structure and fabrication 

Fig. 2.1 (a) and (b) show a bird’s eye view of a TFT-type AND flash memory 

array and a schematic cross-sectional view cut in the word-line (WL) direction, 

respectively. A scanning electron microscope (SEM) image of the fabrication 

synaptic device is also shown in Fig. 2.1 (c). In the fabricated AND memory array, 

the source-line (SL) and drain-line (DL), as bit-line (BL), are formed in parallel, 

and the WLs are perpendicular to both of them. As shown in Fig. 2.1 (a) and (b), a 

poly-Si body (p-body) line (PL) is formed and electrically separated between the 

SL and DL. The PL is formed by implanting boron ions and has a doping 

concentration of 2 × 1017 cm-3. Also, the heights of the source (S) and drain (D) 

electrodes are lower than those of the SiO2 spacers on both sides of the p-body. So, 

the channel formed on the partial SiO2 spacers has a curved shape. Moreover, a 

Al2O3 / Si3N4 / SiO2 (A/N/O) gate insulator stack between the TiN gate and the 
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polysilicon channel serves to store the synaptic weights. The thickness of each layer 

included in the gate insulator stack is represented in a transmission electron 

microscope (TEM) image in Fig. 2.1 (d). Note that the channel width (W) and p-

body length (Lp) are both 0.5 μm. If the W can be scaled to the minimum feature 

size (F), the device in the memory array can be scaled down to 8 F2. 

Fig. 2.2 represents the schematic cross-sectional views of the key fabrication 

steps, and overall process flow of the proposed TFT-type synaptic device. The 

devices were fabricated on a 6-in Si wafer using CMOS process technology. First, 

a marker pattern is formed by patterning for the photolithography step of the 

subsequent process (first mask). And then, a 150-nm thick poly-Si layer was formed 

on a 350-nm-thick SiO2 layer, which was grown thermally via a wet oxidation 

process. After boron implantation was performed, the poly-Si layer was patterned 

(second mask). A 30-nm-thick SiO2 film was deposited and anisotropically etched 

to form SiO2 film spacers on both sides of the patterned poly-Si layer. Then, the 

deposition of an n+-doped poly-Si was followed by a chemical mechanical polishing 

(CMP) process. Additionally, through chemical dry etching (CDE), the thickness of 



14 

 

the n+-doped poly-Si was lowered so that the side of the SiO2 film spacer was 

partially exposed. Then, a 12-nm-thick amorphous Si layer was deposited as a 

channel material and poly-crystalized by annealing at 600 ℃ for 24 hours. After 

channel patterning (third mask), the boron ion was implanted in the contact area of 

the p-body (fourth mask), which was followed by rapid temperature processing 

(RTP) for activation. Then, device isolation patterning (fifth mask) was performed, 

and the A/N/O gate insulator stack was deposited. A 27-nm-thick layer of TiN was 

then deposited as a gate and patterned (sixth mask). After the deposition of a 200-

nm-thick tetraethyl orthosilicate (TEOS), contact holes for the gate, S, D, and p-

body were formed (seventh mask). Finally, Ti/TiN/Al/TiN metal wires were formed 

through sputtering and patterned (eighth mask). 
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Fig. 2.1. (a) A bird’s eye view of a TFT-type AND flash memory array. (b) A 

schematic cross-sectional view and (c) a SEM image of a fabricated TFT-type single 

synaptic device. (d) A TEM image including the gate insulator stack (A/N/O) in the 

fabricated synaptic device.  

 

 

(a) (b)

(c) (d)
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Fig. 2.2. Schematic cross-sectional views of the key fabrication steps, and overall 

process flow of the proposed synaptic device.  

(a)

(b)

(c) (d)

(e)

(f)
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2.2 Characteristics of the device 

The proposed TFT-type flash memory device has several advantages making it 

usable as a synaptic device. The low mobility of the poly-Si channel provides the 

possibility to reduce power consumption by reducing the current in the synaptic 

device. The Al2O3 used in the gate insulator stack is a material with high-κ 

characteristics, which can lower the voltage required for memory operation as well 

as the read operation of the synaptic device. Also, the p-body isolated between the 

S and D electrodes is responsible for providing holes during the erase (ERS) 

operation of the synaptic device and enables hole injection into the charge trap layer 

through direct biasing. This method is differentiated from the ERS operation using 

gate-induced drain leakage current (GIDL) through band-to-band tunneling in 

conventional 3-terminal devices without a p-body, which reduces the burden of 

designing the high voltage drivers required for both the SL and DL. The structural 

characteristics of the proposed synaptic device with a curved channel in the part of 

the side SiO2 spacers can maximize its merits in various ways, especially when the 

device is scaled down.  
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Fig. 2.3 shows the simulated drain current (ID) – gate voltage (VGS) 

characteristics each time a device is programmed and erased, sequentially. Fig. 2.3 

(a) and (b) represent the simulated results of a device with only a flat channel and 

a device with a partially curved channel, respectively. In the program (PGM) 

operation, a PGM pulse with an amplitude of 11 V and a width of 100 µs is applied 

to the gate of the device in the initial state, and the biases of the S, D, and p-body 

maintain 0 V. In contrast, in the ERS operation, an ERS pulse with 12 V amplitude 

and 10 ms width is applied to the p-body of the device in the stated programmed 

state. During the ERS operation, the gate maintains 0 V, and the S and D are floated. 

The simulation results indicate that the two devices have a difference in the memory 

window, even though the same memory operation is performed. This result is 

caused by an increase in memory efficiency due to the fact that the electric field 

from the gate to the channel direction can be concentrated in a partially curved 

channel. That is, in the charge trap layer located on the curved channel portion, a 

larger amount of electrons or holes can be stored under the same PGM/ERS 

conditions when compared to the case of the flat channel. For the same reason, a 
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partially curved channel in the device improves the current saturation 

characteristics of the output curve. Fig. 2.4 (a) and (b) show the output resistances 

(ro) extracted from the simulated ID – drain voltage (VDS) characteristics of the 

device with only a flat channel and the device with a partially curved channel, 

respectively. The device with the partially curved channel has more immunity to 

the short channel effect, which occurs as the length of the device is scaled-down, 

compared to the device with only the flat channel. This is because the gate bias 

concentrated in the curved channels located near the S and D can effectively 

suppresses the electric field penetration from the D in the scaled down device. This 

increases ro and reduces the current change due to the drain voltage change. 

Therefore, the proposed device structure significantly reduces the change in drain 

current due to an unwanted voltage drop across the parasitic resistance in the BL 

that occurs when the synaptic devices are configured as an array. 
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Fig. 2.3. Simulated ID – VGS characteristics each time (a) a device with only a flat 

channel and (b) a device with a partially curved channel are programmed and erased 

sequentially under the same memory conditions. 

(a)

(b)
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Fig. 2.4. Output impedances extracted from the simulated ID – VDS characteristics 

of (a) a device with only a flat channel and (b) a device with a partially curved 

channel.  

(a)

(b)
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2.3 Measurement results as a synaptic device  

The measured ID – VGS characteristics of a specific device in a fabricated TFT-

type AND flash memory array as a variable of the VDS are shown in Fig. 2.5. The 

inset figure shows the measured diode characteristics between the p-body and BL 

electrodes of the device. Fig. 2.6 shows the ID–VDS characteristics of the fabricated 

device as a parameter of VGS. Through the ID–VDS characteristics of the device, the 

range of the BL voltage (VBL), enabling the saturation region operation of the device 

in the array, can be determined by considering the specific read voltage (Vread) of 

the synaptic device. If the Vread of the synaptic device in the array is selected to be 

2 V, the minimum VBL needs to be 1.2 V, at which current saturation occurs. The 

output impedances (ro) under several VGS conditions are specified in the inset table. 

Fig. 2.7 (a) and (b) show the ID – VGS characteristics measured when an identical 

PGM or ERS pulse under specific conditions is applied several times to the 

fabricated synaptic device. The bias conditions for the program and erase are 

described in the inset. The figures indicate that the threshold voltage (Vth) of the 

device can be shifted by trapping the electrons or holes in the Si3N4 layer of the gate 
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insulator stack. Here, the Vth shift indicates that the conductance of the device, 

which can be expressed as the synaptic weight, can be adjusted by the amount and 

the polarity of the charges stored in the charge trap layer. In addition, the fact that 

the device can have various conductance values depending on the number of pulses 

of the specific polarity applied means that multi-state synaptic weights are possible 

in on-chip training.  

Fig. 2.8 represents the long-term potentiation (LTP) and long-term depression 

(LTD) characteristics obtained from the measured conductance each time the 

identical ERS and PGM pulses are applied to the fabricated synaptic device, 

respectively. The inset figure shows the memory window of the fabricated device 

used to obtain the LTP and LTD curves. The LTP characteristics are obtained by 

measuring the conductance of the synaptic device whenever 54 identical pulses 

(VERS = 10 V, tERS = 10 ms) are applied to the p-body under the ERS condition (VGS 

= 0 V, VS & VDS = floating). Similarly, the LTD characteristics are obtained by 

measuring the conductance of the synaptic device whenever 54 identical pulses 

(VPGM = 7 V, tPGM = 100 μs) are applied to the gate under the PGM condition (VS & 
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VDS & Vp-body = 0 V). Note that VGS is 2.2 V and VDS is 2 V in the read operation. As 

shown in Fig. 2.8, the LTP curve has a relatively linear characteristic compared to 

the LTD curve, the reason for which can be explained as follows. During the 

potentiation of the device, the amount of holes stored in the charge trap layer 

increases logarithmically with the number of potentiation pulses. This means that 

the effective value of VGS increases logarithmically with the number of potentiation 

pulses. If the read voltage is set in a specific range in which the current 

exponentially increases with the gate voltage, the LTP curve can have a linear 

characteristic. Unfortunately, the LTD curve has a non-linear characteristic because 

it cannot take the effect of the logarithmic and exponential functions canceling each 

other out. For this reason, not only the pulses used for the PGM and ERS operations 

but also the bias condition of the read operation can change the LTP and LTD 

characteristics. The linearity of the LTP and LTD curves affects the inference 

accuracy of the neural network because it is related to the degree of the synaptic 

weight change. In chapter 3 and 4, the LTP/LTD characteristics, as specified in Fig. 

2.8, are reflected in the system-level simulation of the proposed HNNs. Fig. 2.9 
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shows the LTP/LTD characteristics obtained under various read conditions in a 

specific memory window of the synaptic device. As stated above, it can be seen that 

the linearity of the LTP/LTD curve varies depending on the read condition of the 

synaptic device. In other words, the read condition of the device can determine the 

dynamic range of the synaptic weight that can be utilized under the same memory 

condition. When the read voltage of the device is set to a voltage lower than the 

linear region, a relatively wide range of synaptic weights can be used under the 

same memory pulse condition. However, if the read voltage of the device is 

included in the subthreshold region, the conductance of the device changes 

exponentially according to the read voltage. This means that it may be vulnerable 

to variations caused by the external environment such as temperature. On the other 

hand, the linear region of the device can have immunity to these kinds of variations. 

However, to utilize a relatively wide range of synaptic weights while using the read 

voltage in the linear region, the amplitude or width of the pulses required for 

memory operation should be large, or the number of pulses should be used more. 

Fig. 2.10 represents measured cycle-to-cycle variation characteristics in the 
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LTP/LTD of the fabricated synaptic device. The LTP characteristics are obtained by 

measuring the conductance of the synaptic device whenever 35 identical pulses 

(VERS = 10 V, tERS = 10 ms) are applied to the p-body under the ERS condition (VGS 

= 0 V, VS & VDS = floating). Similarly, the LTD characteristics are obtained by 

measuring the conductance of the synaptic device whenever 35 identical pulses 

(VPGM = 8 V, tPGM = 100 μs) are applied to the gate under the PGM condition (VS & 

VDS & Vp-body = 0 V). Note that VGS and VDS are both 2 V in the read operation. Fig. 

2.10 (a) shows the results obtained by continuously measuring the LTP/LTD 

characteristics 10 times under the conditions specified above. Fig. 2.10 (b) 

represents the overlapping LTP/LTD characteristics of 10 cycles. The value of 

(σ/µ)max is analyzed to be 0.062 and 0.097 in LTP and LTD operation, respectively. 

The analyzed values demonstrate the excellent cycle-to-cycle variation 

characteristics of the LTP and LTD in the fabricated device. 
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Fig. 2.5. Measured ID – VGS characteristics of a specific device in a fabricated AND 

flash memory array as a parameter of VDS. The measured diode characteristic 

between p-body and BL is represented in the inset figure.  
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Fig. 2.6. Measured ID – VDS characteristics of the fabricated device as a parameter 

of VGS. The measured output impedance as a parameter of VGS is shown in the inset 

table.  

 

0 1 2 3
0.0

0.5

1.0

1.5

2.0
Lp = 0.5 m

W = 0.5 m VGS (V)

 0.5

 1

 1.5

 2

 2.5

I D
 (


A

)

VDS (V)

VGS ro

0.5 (V) 24.7 (GΩ)

1 (V) 3.01 (GΩ)

1.5 (V) 0.163 (GΩ)

2 (V) 65.2 (MΩ)

2.5 (V) 23.0 (MΩ)



29 

 

 

Fig. 2.7. Measured ID – VGS characteristics when identical (a) PGM or (b) ERS pulse 

is applied several times to the fabricated synaptic device. 

  

(a)

(b)
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Fig. 2.8. Measured LTP and LTD characteristics of the fabricated synaptic device 

by applying identical ERS and PGM pulses, respectively. The memory window 

used to obtain the LTP/LTD curves is specified in the inset figure.  
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Fig. 2.9. Measured LTP and LTD characteristics of the fabricated synaptic device 

obtained under various read conditions in a specific memory window. 

(a)

(b)

(c)
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Fig. 2.10. (a) Measured cycle-to-cycle variation characteristics in the LTP/LTD of 

the fabricated synaptic device. (b) The LTP/LTD characteristics of the fabricated 

synaptic device obtained by cycling measurement. 
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2.4 Measurement results as a synaptic array 

Fig. 2.11 (a) and (b) represent the SEM image and schematic diagram of the 

fabricated 2 × 2 AND flash memory array. The device described in the previous 

section is arranged as a single cell that constitutes the memory array. This type of 

array architecture, consisting of n independent memory cells controlled by n WLs, 

makes it possible to sum the synaptic current of each synaptic device while keeping 

a relatively small footprint. Also, due to the configuration of the array, Fowler-

Nordheim (FN) tunneling can be used in the memory operations required to change 

the synaptic weights. Compared to the NOR memory array, which has to use the 

channel hot electron (CHE) method for selective PGM operation in the array, the 

FN tunneling method used in the AND memory consumes relatively lower power. 

Therefore, in designing a neural network aimed at on-chip training, the AND 

memory array architecture can have the advantage of lower power consumption 

than the NOR memory array. Table 2.1 represents the bias condition of each node 

required during the read operation and the selective PGM or ERS operation of a 

specific cell (Cell A in Fig. 2.11) in the 2 × 2 AND flash memory array. Note that 
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only positive voltage pulses are used to enable selective memory operation. In the 

read operation, the input signals from the pre-synaptic neurons are transmitted to 

the WLs as the Vread, and the current from the synaptic device with a specific 

synaptic weight flows through the BL to the post-synaptic neurons. During the PGM 

operation of Cell A, a PGM pulse with a positive VPGM is applied to WL1, and the 

bias of DL1, SL1, and p-body line 1 (PL1) is maintained at 0 V. During this period, 

an inhibition (INH) pulse with an amplitude of VINH is applied to PL2 to prevent 

Cell B crossing WL1 and BL2 from being programmed. In the array composed of 

a synaptic device with only the S, D, and gate, the INH pulses should be applied to 

both SL2 and DL2 to prevent voltage coupling with neighboring cells. However, in 

the proposed array, composed of synaptic devices with the PL, even if SL2 and DL2 

are floated, the selective PGM operation is possible. This is because the voltage 

coupling effect due to the PL is more dominant than that of the neighboring BLs. 

For this reason, it is not necessary to apply the INH pulses with a relatively large 

amplitude to the SL and DL. As a result, this PGM operation scheme can offer a 

great advantage in circuit design, along with the characteristic that a high voltage 
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driver is not required for both the SL and DL during the ERS operation described 

in the device’s characteristics. Also, during the PGM operation of Cell A, the bias 

of WL2 should be maintained at 0 V so that Cells C and D are not affected. 

Conversely, during the ERS operation of the selected cell, an ERS pulse with a 

positive VERS is applied to PL1, and the bias of WL1 is maintained at 0 V. During 

this period, SL1 and DL1 are floated. In order to prevent Cell C crossing PL1 and 

WL2 from being erased, an INH pulse with an amplitude of VINH is applied to WL2. 

Here, the value of VINH should be set not only to prevent the ERS operation of Cell 

C but to also not cause the PGM operation of Cell D. Also, the bias of PL2 should 

be maintained at 0 V to prevent the remaining cells from being affected. Note that 

SL2 and DL2 are floated. Fig. 2.12 represents a bias condition for measurement in 

a selective program operation of a specific cell (Cell A) in the fabricated 2 × 2 AND 

flash memory array. Fig. 2.13 (a) shows the measured ID – VGS characteristics of all 

cells in the fabricated array when a specific cell (Cell A) is programmed in the initial 

state. As shown in Fig. 2.13 (a), in the initial state, four cells in the array show 

similar ID–VGS characteristics. The selective PGM operation of Cell A is performed 
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by applying 10 PGM pulses with VPGM = 7 V and tPGM = 100 μs to WL1. During the 

PGM operation, the potentials of the remaining nodes are as follows: VWL2 = 0 V, 

VDL1 & VSL1 = 0 V, VPL1 = 0 V, and VPL2 = 3.5 V. Note that the unspecified nodes are 

floated. As shown in Fig. 2.13 (b), after the selective PGM operation, the Vth of Cell 

A is increased by 0.45 V, while the maximum ΔVth of the remaining cells is 0.03 V. 

Assuming that the read voltage is 2 V, the current of cell A is reduced by 154 nA, 

while the absolute value of the maximum change of the remaining cells is 4.52 nA, 

and the relative current change is less than 2.7%, proving that the selective PGM 

operation is successfully performed. And then, the selective ERS operation in the 

array is verified after the PGM operation stated above. Fig. 2.14 represents a bias 

condition for measurement in a selective erase operation of a specific cell (Cell A) 

in the fabricated 2 × 2 AND flash memory array, and Fig. 2.15 (a) shows the 

measured ID – VGS characteristics of all cells in the fabricated array when a specific 

cell (Cell A) is erased in the selective programmed state. In the ERS operation, 100 

ERS pulses with VERS = 10 V and tERS = 1 ms are applied to PL1. During the ERS 

operation, the potentials of the remaining nodes are as follows: VWL1 = 0 V, VWL2 = 
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3.5 V, and VPL2 = 0 V. During this period, all DLs and SLs are floated. As shown in 

Fig. 2.15 (b), The Vth of Cell A decreases by 0.4 V, while the amount of ΔVth of the 

remaining cells is less than 0.02 V. Assuming that the read voltage is 2 V, the current 

of cell A is increased by 98.5 nA, while the absolute value of the maximum change 

of the remaining cells is 2.81 nA, and the relative current change is less than 2.8%, 

proving that the selective ERS operation performs well. 

Fig. 2.16 shows a top SEM image of the fabricated 10 × 2 AND flash memory 

array. Fig. 2.17 represents the measurement result of VMM in the fabricated 10 × 2 

AND flash memory array. Fig. 2.17 (a) shows the raw data of the measurement 

result of performing current summation for 10 devices in the array, and Fig. 2.17 

(b) describes the result of analyzing the current summation value when the read 

voltage is assumed to be 2.2 V. The value obtained by measuring 10 devices 

individually and mathematically summed up is 7.204 µA, and the value measured 

by applying the input to 10 WLs at the same time is 7.193 µA, resulting in a current 

loss of 0.16%. Since the proposed device can secure good characteristics of output 

resistance due to its structural feature, it is possible to operate the device in the 
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saturation region. Nevertheless, long BLs in large-scale implementation can lead to 

loss of current summation. This can be solved by reducing the resistance of n+ poly-

Si used in DLs and SLs, or to design additional metal lines. Fig. 2.18 represents the 

measurement result of quantization of the synaptic weight in the fabricated synaptic 

array. The synaptic device fabricated in this work uses Si3N4 as a charge trap layer. 

And there can be variations for each device depending on the initial amount of 

stored charge in the charge trap layer. However, as previously experimentally 

verified, since selective memory operation in the synaptic array is possible, synaptic 

devices can be set to a specific conductance level. Fig. 2.18 (a) shows the 

measurement result of weight quantization for 4 states (conductance levels = 500, 

250, 100, 50 nA), and Fig. 2.18 (b) represents 4 states quantization distribution of 

synaptic weights in the fabricated 10 × 2 AND flash memory array. In each state, 

σ/µ is 0.02, demonstrating that the weight quantization is performed relatively 

evenly. 
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Fig. 2.11. (a) A SEM image and (b) a schematic diagram of the fabricated 2 × 2 

AND flash memory array.  

 

(a)

(b)
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Table. 2.1. Bias condition required for read operation of a specific cell (Cell A in 

Fig. 2.11) and selective program and erase operation of a specific cell (Cell A in Fig. 

2.11) in a 2 × 2 AND flash memory array. 

 

 

 

 

 

 

 

Node Read PGM ERS 

WL1 Vread VPGM 0 (V) 

WL2 0 (V) 0 (V) VINH  

DL1 & SL1 VDD & 0 (V) 0 (V) Floating 

DL2 & SL2 VDD & 0 (V) Floating Floating 

PL1 0 (V) 0 (V) VERS 

PL2 0 (V) VINH 0 (V) 
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Fig. 2.12. Bias condition for measurement in a selective program operation of a 

specific cell (Cell A) in the 2 × 2 AND flash memory array. 
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Fig. 2.13. Measured (a) ID – VGS characteristics and (b) threshold voltages of all 

cells in the fabricated 2 × 2 AND flash memory array when a specific cell (Cell A) 

is programmed in the initial state.  
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Fig. 2.14. Bias condition for measurement in a selective erase operation of a specific 

cell (Cell A) in the fabricated 2 × 2 AND flash memory array. 
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Fig. 2.15. Measured (a) ID – VGS characteristics and (b) threshold voltages of all 

cells in the fabricated 2 × 2 AND flash memory array when a specific cell (Cell A) 

is erased in the selective programmed state. 
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Fig. 2.16. A top SEM image of the fabricated 10 × 2 AND flash memory array. 
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Fig. 2.17. (a) Measurement result of VMM in the fabricated the fabricated 10 × 2 

AND flash memory array. (b) Analyzed result of VMM when the read voltage is 

assumed to be 2.2 V. 
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Fig. 2.18. (a) Measurement result of weight quantization for 4 states (conductance 

levels = 500, 250, 100, 50 nA), and (b) 4 states quantization distribution of synaptic 

weights in the fabricated 10 × 2 AND flash memory array. 
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Chapter 3 

Hardware-based SNN for unsupervised learning 

 

3.1 SNN using spike-timing-dependent plasticity (STDP) 

A spike-timing-dependent plasticity (STDP) is one of the representative 

examples of the synaptic weight change rules that enable unsupervised learning in 

SNN [56-58]. The network trained with STDP reinforces spike patterns associated 

with previously occurring stimulation and suppresses meaningless spiking activity, 

depending on the timing of pre-synaptic and post-synaptic neurons’ firings. The 

STDP learning rule as a simple, intuitive, and efficient method has significant 

advantages in constructing an event-driven computing architecture. To devise a 

hardware-based neural network that can effectively utilize the AND flash memory 

array, a fully-connected (FC) SNN using the STDP algorithm is designed. The 

proposed SNN architectures are designed so that the synaptic weight increases and 

decreases according to the timing of the neuron firing. Fig. 3.1 represents LTP/LTD 

of electronic synaptic devices in a crossbar array depending on firings of neurons 
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in SNN architecture using the STDP learning rule. In the crossbar architecture, input 

(pre-) and output (post-) neurons are connected through the electronic synaptic 

devices. The basic principles of LTP/LTD processes satisfying STDP in electronic 

synaptic devices are as follows. When the post-neuron fires after signals from pre-

neurons pass through synapses to a post-neuron, the electronic synaptic devices that 

contribute to the neuron’s firing undergo the LTP process. On the other hand, when 

the post-neuron fires before the signals from the pre-neurons pass through the 

synapses to the post-neuron, electronic synaptic devices connected to the post-

neuron undergo the LTD process. Pulses for LTP and LTD processes are generated 

from the input and output neurons and applied to the electronic synaptic devices. In 

more detail, the input pulses generated by the input neurons are applied to the WLs 

of the electronic synaptic array, and the feedback pulses generated by the fired 

output neurons are applied to SL, DL, and PLs. 

To describe the systematic operation of the input and output neurons, Fig. 3.2 

shows a conceptual diagram of the designed SNN using the STDP learning rule. In 

the proposed SNN architectures, there are global pulse generator modules for 
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systematically operating each neuron in a single neuron layer. Neurons within a 

single neuron layer share a global pulse generator, which is responsible for 

generating the various pulses required for neuron operation. And, each neuron is 

selectively assigned the necessary pulses depending on whether the neuron fires or 

not. Global pulse generators use signals generated by the neurons, eliminating the 

need for an additional external controller in the architecture to operate the neurons. 

In other words, the global pulse generator receives the spike signal generated by a 

fired neuron to generate the necessary pulses. Note that if one neuron fires in one 

layer of neurons, the other neuron is inhibited. In order to selectively apply various 

pulses generated by the global pulse generator to each neuron, each neuron includes 

switches for a specific purpose and switch control units for adjusting the switches. 

Most of the modules in the global pulse generator consist of circuits required for 

increasing the width and amplitude of the pulse. This is because the width and 

amplitude of the pulses to utilize electronic synaptic devices based on flash memory 

technology are very large compared to those of the spike signal from neurons. In 

addition, the width and amplitude of the pulses needed to control the operation 
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required for each neuron during the LTP/LTD processes should also be similar to 

those of the pulses applied to the electronic synaptic devices. In general, stable 

design condition for circuits required for increasing the amplitude of the pulse 

requires a fairly large area, which leads to an increase in the area of the computing 

architecture when this type of circuit is included in each neuron circuit. For this 

reason, as the number of neurons in a single neuron layer and the complexity of the 

required pulses increase, this computing architecture including the global pulse 

generators has an effective advantage in terms of system area as well as the 

systematic operation of the neurons. 
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Fig. 3.1. LTP/LTD characteristics of electronic synaptic devices in crossbar array 

depending on firings of neurons in SNN using the STDP learning rule. 
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Fig. 3.2. A conceptual diagram of the designed SNN using the STDP learning rule. 
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3.2 Pulse scheme for STDP learning rule 

Many studies using the STDP learning rule utilize the overlapping of pulses to 

implement the selective memory operation of the electronic synaptic devices [40, 

42, 59, 60]. Fig. 3.3 represents an example of a pulse scheme that enables selective 

LTP/LTD of electronic synaptic devices in neural networks using the STDP learning 

rule and the AND-type array. This pulse scheme does not include the inhibition 

(INH) pulse and utilizes the overlapping of pulses. Fig. 3.3 (a) shows the pulses 

applied to each terminal of the electronic synaptic devices corresponding to the 

diamonds in Fig. 3.1. These devices, connected to both the fired output neurons and 

the input neurons that receive input signals have increased synaptic weight by the 

LTP process. Input pulses that consist of a positive voltage held during the read 

operation time and a constant negative voltage maintained for the sufficient time 

required for ERS operation are generated from the input neuron and applied to the 

WLs of these devices. At this time, except for the read operation time, the drain 

terminals become floating nodes to prevent the system error due to unnecessary 

leakage current. In addition, feedback pulses generated from output neurons are 
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applied to PLs of these devices at the time when output neurons fire. This feedback 

pulse has a form that maintains the positive voltage for the sufficient time required 

for the ERS operation and has the constant negative voltage corresponding to -VPGM 

for the time required for the PGM operation. And then, while the time at which the 

negative voltage is maintained in the WLs and the time at which the positive voltage 

is maintained in the S and D lines overlaps, the devices are erased by the LTP 

process, increasing the weight. At this point, the end of the tail portion of the input 

pulse is set later than that of the feedback pulse to prevent unwanted PGM operation 

in the devices. Fig. 3.3 (b) shows the pulses applied to each terminal of the 

electronic synaptic devices corresponding to the triangles in Fig. 3.1. These devices, 

connected to both the fired output neurons and the input neurons that don’t receive 

input signals, undergo the LTD process. The WLs of these devices are maintained 

at 0 V because no input is present, and the feedback pulses are applied to the PLs 

because they are connected to the fired output neuron. These devices undergo PGM 

operation by the tail portion of the feedback signal with -VPGM, which causes the 

weight to be decreased by the LTD process. Fig. 3.3 (c) and (d) represent the pulses 
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applied to each terminal of the electronic synaptic devices connected to non-fired 

output neurons. The PLs of these devices maintain 0 V for the duration of the 

feedback pulse so that the amount of stored charge affecting the weight does not 

change. This method is very intuitive and simple since there is no need to generate 

additional INH pulses. However, as suggested above, the methods to utilize the 

overlapping of pulses have the disadvantages of requiring pulses with negative 

voltage values. This means that the circuit responsible for generating pulses with 

negative voltage values and supplying them stably to a large number of electronic 

synaptic devices can place a heavy burden on the design of the hardware-based 

computing architecture. The pulse scheme proposed in this study consists of pulses 

that use only positive voltage values without using signal superposition.  

Fig. 3.4 illustrates a proposed pulse scheme that enables selective LTP/LTD of 

electronic synaptic devices in neural networks using the STDP learning rule and the 

AND-type array. The proposed pulse scheme has the same purpose as the pulse 

scheme described above but utilizes INH pulses to enable selective LTP/LTD 

processes in the electronic synaptic array. Fig. 3.4 (a) shows pulses applied to each 
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terminal of the electronic synaptic devices undergoing the LTP process. These 

devices undergo the ERS operation by the applied feedback pulse to the PL, which 

is generated from the output neuron after the read operation. For the devices 

undergoing the LTD process represented in Fig. 3.4 (b), the PL of these devices is 

affected by the feedback pulse because it is connected to the same output neuron as 

in Fig. 3.4 (a). At this time, the PGM pulse that has a VPGM amplitude and a width 

longer by tPGM than the width of the feedback pulse is applied to the WLs of these 

devices. This is to prevent unnecessary ERS operation during the feedback pulse 

and to cause the LTD processes due to the pulses on the WLs of these devices. And 

then, as shown in Fig. 3.4 (c) and (d), the pulses having the Vinh amplitude and the 

same width as the pulse applied to WLs in Fig. 3.4 (b) are applied to the PLs of the 

devices that are not connected to the fired output neuron. These INH pulses can act 

as the suppressor for LTD operation that can be caused by the PGM pulses. 

Arranging the electronic synaptic devices in the array in the form of a crossbar 

is a very efficient way in terms of system area and power consumption in designing 

the neural computing architecture for parallel computing. And, it is also important 
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to efficiently design the neuron circuits connected to an array of electronic synaptic 

devices and peripheral circuits for synaptic weight change. Furthermore, the 

peripheral circuit used to change the synaptic weight should be designed 

considering the type of electronic synaptic device. In particular, when using 

electronic synaptic devices that require pulses with a relatively high voltage and a 

wide width, the configuration of the peripheral circuits and the neural computing 

architecture can vary significantly depending on the type of pulse used. 

Although the neuron circuits should generate the additional inhibition pulse for 

the proposed pulse scheme, they are more efficient in terms of area and energy 

consumption than the neuron circuits using the overlapping of pulses to implement 

STDP. This is because a fairly large capacitor is required to generate and control 

the pulses having negative voltage values in the pulse scheme using the overlapping 

of pulses. Even, a larger capacitor is needed to generate a negative voltage simply 

by using the charging and discharging method without using a negative power 

supply that can be a burden on the circuit design. Since the capacitance of this 

capacitor, which should be included in each neuron, increases as the number of 
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electronic synaptic devices connected to the neuron increase, the area burden of 

hardware can be increased. In addition, in order to generate a desired negative 

voltage value stably using a capacitor having a large capacitance, the current 

required for charging and discharging should be increased, which inevitably 

increases the energy consumption of the neuron circuit. For example, in a fully 

connected 2-layer SNN architecture including 784 input neurons and 200 output 

neurons using the overlapping pulse scheme, each input and output neuron should 

additionally contain large capacitors corresponding to tens of ~pF. To generate a 

large value of negative voltage required for memory operation using corresponding 

values of such capacitors, the energy consumption of several ~nJ is required, which 

implies several times more energy consumption than the circuit proposed in this 

study. 
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Fig. 3.3. An example of a pulse scheme without using INH pulses for realizing 

selective LTP/LTD of electronic synaptic devices using the STDP learning rule and 

the AND-type array. 
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Fig. 3.4. A proposed pulse scheme using INH pulses for realizing selective 

LTP/LTD of electronic synaptic devices using the STDP learning rule and the AND-

type array. 
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3.3 MNIST pattern learning and classification 

The system-level pattern learning simulation is performed by the software 

Python to evaluate the proposed hardware-based SNN architecture. Fig. 3.5 

illustrates the flow chart of the learning and recognition process in the hardware-

based SNNs using the STDP algorithm. The detailed description of the MNIST 

handwritten digit pattern learning method is as follows. First, the training dataset as 

input is a total of 60000, and the order of all data is set randomly. And the training 

dataset is encoded in binary rate coding. This means that if the brightness of the 

dataset is 0.5 or less, it is maintained at 0 during the time set. Conversely, when the 

brightness is 0.5 or more, it is maintained at 1 during the time step. Then, as 28 × 

28 input patterns are repeatedly applied to the synaptic array, changes in synaptic 

weights occur with feedback signals generated by fired neurons according to the 

STDP learning rule based on the proposed pulse scheme. In this case, the integrate-

and-fire model is used as the neuron. If the first fired output neuron is named A as 

the time step increases by one, the membrane potential of the remaining output 

neurons other than neuron A is set to 0 to take the winner-take-all (WTA) method. 
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Then, among the 784 synapses connected to neuron A, the conductance of the 

synapse with input is increased (LTP), whereas the conductance of the synapse with 

no input is decreased (LTD). The LTP/LTD characteristics reflect the characteristics 

of the electronic synaptic device discussed in Chapter 2.3, and a total of 784 

synaptic weight updates are performed. Fig. 3.6 shows training curves of the 

hardware-based SNN based on the STDP algorithm for the MNIST test set 

classification as a parameter of the number of output neurons. After the training 

process, we can obtain 91.63 % of recognition accuracy, and it can be seen that a 

weight mapping image corresponding to 784 × 200 synapses becomes clear as the 

number of training sets increases as shown in Fig. 3.7. 
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Fig. 3.5. Flow chart of the learning and recognition process in the hardware-based 

SNNs using the STDP algorithm. 
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Fig. 3.6. Training curves of the hardware-based SNN based on the STDP algorithm 

for the MNIST test set classification as a parameter of the number of output neurons. 
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Fig. 3.7. Weight mapping images of the synaptic weights after training process of 

the MNIST pattern utilizing the fully connected 784 input neurons and 200 output 

neurons. 
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Chapter 4 

Hardware-based SNN for supervised learning 

 

4.1 SNN using direct feedback alignment (DFA) 

A feedback alignment (FA) algorithm leverages the existing structure of the BP 

algorithm but replaces the backward synaptic weights with random connections to 

solve the weight transport problem [61]. For this reason, in a computing architecture 

using the FA algorithm, synaptic weights located in the shallow layer do not require 

information about the synaptic weights of the deep layers. As a method derived 

from the FA algorithm, a direct feedback alignment (DFA) algorithm uses a method 

in which the error information from the output layer is directly propagated to all 

upstream layers, and it can achieve performance competitive with backpropagation 

in fully-connected layers [62-64]. This learning method enables parallel processing 

in the propagation of errors, reducing the backward phase latency and the number 

of computations required for the synaptic weight update in the network. 

Furthermore, the use of this learning algorithm also provides an opportunity to 
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alleviate the complex design requirements of a hardware-based neural network 

(HNN) for on-chip training. Fig. 4.1 (a), (b), and (c) show the error transportation 

configuration in HNN utilizing BP, FA, and DFA, respectively.  

In order to devise a hardware-based neural network that can effectively utilize 

the AND flash memory array, a fully-connected (FC) three-layer SNN using a DFA 

algorithm is designed. In the BP algorithm, the synaptic weights in the forward path 

and backward path are identical as shown in Fig. 4.2 (a). Therefore, the synaptic 

arrays used in the forward path should be used again in the backward path, while 

the current summation of the backward path is performed in the same array 

orthogonally to that of the forward path. Unfortunately, as shown in Fig. 4.2 (b), 

and (c), since the SLs and DLs in the AND flash memory array are formed in 

parallel, the current summation is only performed in one direction. Thus, this array 

architecture is not suitable for the backpropagation algorithm. However, since the 

DFA algorithm uses random backward connections to solve the weight transport 

problem, the DFA algorithm does not need to have identical synaptic weights in the 

forward and backward paths. In other words, the current summation in the forward 
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and backward paths is performed in separated synaptic arrays. This enables the 

HNN using the AND flash memory array to update the synaptic weights on the chip 

and achieve superior performance close to that of the backpropagation algorithm 

while taking advantage of the array architecture.  

Fig. 4.3 represents the schematic illustration of a designed FC SNN for DFA. 

The specified architecture has 28 × 28 input neurons, 256 hidden neurons, and 10 

output neurons. The internal synaptic arrays in the form of the AND architecture 

are located between adjacent neurons. The error information required for the 

external layers is provided by the difference between the output layer value and the 

teaching layer value. Note that, in DFA, the synaptic weights in the external 

synaptic arrays are not updated although the training is performed. Since the 

external synaptic array is directly connected between the output layer and the 

multiple hidden layers, which implies “direct” feedback alignment, the increase in 

the area due to the external synaptic arrays is relatively small compared to the 

overall area of the SNN. Here, two 256 × 10 excitatory and inhibitory arrays are 

required as the external synaptic arrays. The SNN using DFA consists of three 
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phases: Forward-propagation Phase (FP), Backward-propagation Phase (BP), and 

Update Phase (Update). 

 

Fig. 4.1. Error transportation configuration in HNN utilizing (a) BP, (b) FA, and (c) 

DFA. 
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Fig. 4.2. (a) Symmetry of synaptic weights in HNN using BP algorithm. (b) Signal 

flow of forward path in synaptic array utilizing AND flash memory array. (c) 

Limitations of realization of backward path in synaptic array utilizing AND flash 

memory array. 
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Fig. 4.3. Schematic illustration of a FC SNN for DFA.  
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4.2 Pulse scheme for DFA learning rule 

The proposed pulse scheme for the DFA algorithm is represented in Fig. 4.4 

and Fig. 4.5. Fig. 4.4 shows examples of pulses generated from each internal layer 

over time in the FP and BP. In the FP, for the inference, the read operation is 

performed in the internal synaptic array. A Poisson-distributed spike train (S0) is 

generated at the input layer in the form of a voltage pulse with an amplitude and 

width of Vread and tw, respectively. Then, the voltage spikes are applied to the WLs 

of the internal synaptic arrays, and the current summation is performed along the 

DLs. In the hidden layer l (l ∈  {1,…, L}), the current summed in the DL is 

integrated into the membrane capacitor of the integrate and fire (IF) neuron to 

determine the membrane voltage as follows:  

𝑉mem
𝑙  𝑡𝑠 = 𝑉mem

𝑙  𝑡𝑠 − 1 +
∑𝑆𝑙−1 𝐺+,𝑖𝑛𝑡

𝑙  𝐺−,𝑖𝑛𝑡
𝑙  𝑡𝑤

𝐶𝑚𝑒𝑚
   (1) 

where Vmem is the membrane voltage, ts is a time step (ts ∈ {1, …, T}), and Cmem 

is the membrane capacitance. Here, a synaptic weight is represented by W = G+,int 

– G-,int, where G+,int and G-,int are the conductance of the excitatory and inhibitory 

synaptic devices in the internal synaptic array, respectively. This means that two 
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devices are used to represent one synaptic weight. If the membrane voltage exceeds 

the specific Vth of the IF neuron, the IF neuron generates a spike as follows: 

𝑖𝑓 𝑉𝑚𝑒𝑚
𝑙  𝑡𝑠 > 𝑉𝑡ℎ :   {

𝑆𝑙 𝑡𝑠 = 𝑉𝑟𝑒𝑎𝑑

𝑉𝑚𝑒𝑚
𝑙  𝑡𝑠 = 𝑉𝑚𝑒𝑚

𝑙  𝑡𝑠 − 𝑉𝑡ℎ

𝑔𝑙 = 1

   (2) 

𝑒𝑙𝑠𝑒:      𝑆𝑙 𝑡𝑠 = 0   (3) 

where g is an approximated derivative of the neuron’s activation function. When 

the FP begins for a given input signal, the g of all neurons’ activation function are 

initialized to 0. When the IF neuron generates a spike, the corresponding g is set to 

1. Note that the membrane potential in the fired neuron is reduced by the value of 

the selected Vth to prevent information loss. The generated spike from the IF neuron 

is the same type of spike as the input voltage spike, and it is applied to the WLs of 

the next internal synaptic array. This signal transmission process in the forward 

direction is similarly performed between the hidden and output layers. For this 

reason, the hidden and output layers can be configured with the same IF neuron 

circuit [65]. In the last layer (l = L), the number of spikes from the output neuron 

indicates the prediction value for the corresponding neuron. In the teaching layer, 
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the teaching spike is generated every ts for the correct label, and the teaching spike 

is not generated for the wrong label. The number of teaching spikes and the number 

of output spikes from the output layer are compared to obtain the delta value in the 

output layer (δL).  

In the BP, the error pulse whose width is modulated by the δL is applied to the 

WLs of the synaptic devices in the external synaptic arrays. The pulse-width 

modulation (PWM) circuit can easily modulate the width of the error pulse with the 

δ [66]. The width of the error pulse is set so that not only the error value but also 

the error sign can be expressed. For example, when the error value is 0, a reference 

pulse having a certain width can be set. And then, if the error value is positive, the 

error pulse with a width that is longer than the width of the reference pulse by the 

error value is generated. Conversely, if the error value is negative, an error pulse 

with a width shorter than the width of the reference pulse by the error value is 

generated. The delta value in the hidden layer (δl) is obtained by the current 

summation along the BLs in the external synaptic array and is stored in the capacitor 

in the neuron of the external layer as follows: 
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𝛿𝑙 =
∑𝜆𝛿𝐿 𝐺+,𝑒𝑥𝑡

𝑙+1  𝐺−,𝑒𝑥𝑡
𝑙+1  

𝐶𝐵𝑃
g𝑙   (4) 

where CBP is the capacitance responsible for charge integration in the neuron in the 

external layer. Note that λ is a constant converting the delta value into the width of 

the voltage pulse with an amplitude maintained at Vread. The neuron in the external 

layer is used for receiving the summed current from the external synaptic array 

during the BP, and it stores the δl in the capacitor. After all δls of the neurons are 

obtained in the BP, the synaptic weights in the internal array are updated during 

Update. 

Fig. 4.5 (a) and (b) show examples of pulses applied to the WLs and PLs of 

the internal synaptic array during Update. During Update, the synaptic weights 

change simultaneously in a pair of internal synaptic arrays representing G+,int and 

G-,int. Each time step during Update consists of two separate time steps. During the 

first period of each time step, the selective PGM operation is performed in the 

internal synaptic arrays, and depression of the internal synaptic devices occurs. On 

the other hand, the second period of each time step is for selective ERS operation 

in the synaptic arrays, and the potentiation of the internal synaptic devices occurs. 
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Similar to the backpropagation algorithm, the amount of synaptic weight change is 

obtained as ΔWl ∝ xlδl+1, where x is the activated value of the pre-synaptic neuron. 

In the proposed hardware-based SNN, x is transformed into the input update pulse 

that correlates with the total number of spikes generated from the pre-synaptic 

neuron, and δ is converted into the delta update pulse with a width determined by 

the value of δ. First, the input update pulses from the pre-synaptic neurons are 

applied to the WLs of the internal synaptic arrays. The number of input update 

pulses with an amplitude of VPGM in the first period of each time step is proportional 

to the number of spikes generated from the pre-synaptic neuron. In the second 

period of the time step, when no pulse is applied to the first period, an input pulse 

with an amplitude of VINH is applied. Meanwhile, the delta update pulses are 

generated from the external layer and applied to the PLs of the internal synaptic 

arrays. The width of the delta update pulse applied to the synaptic device in the 

internal synaptic array is obtained as follows: 

Δ𝑡 
𝑙 = 𝜆 |𝛿

𝑙|, Δ𝑡 
𝑙 = 𝜆 |𝛿

𝑙|   (5) 

where Δ𝑡 
𝑙  and Δ𝑡 

𝑙  are the widths of the delta update pulse for LTP and LTD, 



78 

 

respectively. Note that λ+ and λ- are related to the rate of the training. Also, different 

delta update pulses are applied to each of the internal synaptic arrays, representing 

G+,int and G-,int according to the sign of δ. As shown in Fig. 4.5 (a) and (b), for 

example, the delta update pulse corresponding to δ+ applied to the internal synaptic 

array for G+,int has the same form as that corresponding to δ- applied to the internal 

synaptic array for G-,int. The delta update pulse is applied T times to the internal 

synaptic array during Update. As a result, in the internal synaptic array, the synaptic 

weights are updated by the delta update pulses applied to the PLs and the input 

update pulses applied to the WLs.  
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Fig. 4.4. Examples of pulses generated from each internal layer over time in the FP 

and BP. 
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Fig. 4.5. Examples of pulses applied to the WLs connected to the internal layers 

and the PLs connected to the external layers in the Update. (a) and (b) show the 

excitatory and inhibitory synaptic devices in the internal synaptic array, respectively. 

(a)

(b)
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4.3 MNIST pattern learning and classification 

Fig. 4.6 shows a flow chart representing the overall training process using the 

DFA in the designed network. The blue, red, and purple boxes indicates the FP, BP, 

and Update, respectively. A 1-hidden layer network (784-256-10) is designed, as 

described in Fig. 4.3. Fig. 4.7 shows the training curves of the designed hardware-

based SNNs based on the DFA algorithm for the MNIST test set classification. The 

training is performed for 20 epochs, and the batch size of the training is 1 to 

minimize memory usage. As shown in Fig. 4.7, the SNN using ideal synaptic 

devices, which has a linear conductance response and no variation, achieves 97.7% 

for MNIST classification when T = 10 (total number of time steps). This accuracy 

is slightly lower than the accuracy of the ANNs in our previous work (98.2 %) [67], 

meaning that the DFA algorithm can show comparable training performance to the 

backpropagation algorithm. In addition, the accuracy of the SNNs using the AND 

flash memory array is evaluated. The nonlinearity and dynamic range of the 

synaptic device are set to the values when Vread and VDS are 2.2 V and 2 V, 

respectively, as described in Fig. 2.8. Although the LTP curve of the device is near-
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linear with respect to the number of erase pulses, the nonlinear LTD curve of the 

device degrades the accuracy of the SNNs (97.01%). This is because the expected 

weight updates cannot be exactly reflected in the conductance updates due to the 

nonlinear response. The inset shows the accuracy of the SNNs using the AND flash 

memory array depending on T. T is a key factor in improving the performance of 

the SNNs, since T determines the precision of the neuron’s activation function. The 

IF neuron represents the intensity of the input current in the form of the number of 

spikes. Therefore, as T increases, the IF neuron represents the intensity more 

precisely within the extended T. Fig. 4.8 (a) and (b) show the recognition results of 

the 10 output neurons in the SNNs based on the AND flash memory array at the 

initial state and the end (epoch = 20) of the training, respectively. The output neuron 

number corresponds to the MNIST image number, and the image can be classified 

within 10 time steps. As shown in Fig. 4.8 (b), only the output neuron that has 

learned a particular image generates frequent spikes, while the other neurons rarely 

generate spikes.  
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Fig. 4.6. Flow chart of the training process in the hardware-based SNNs using DFA 

algorithm. 
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Fig. 4.7. Training curves of the hardware-based SNN based on the DFA algorithm 

for the MNIST test set classification. The inset represents the accuracy of the SNNs 

using the AND flash memory array depending on T. 

 

 

 

 

 



85 

 

 

Fig. 4.8. Recognition results of the 10 output neurons in the designed SNN using 

DFA based on the AND flash memory array at (a) the initial state and (b) the end of 

the training. 
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Chapter 5 

Hardware implementation of neural networks 

 

5.1 Integration of a synaptic array and CMOS circuits 

To implement the designed hardware-based neural networks, not only the 

synaptic array but also the peripheral circuits should be supported. For example, an 

integrate-and-fire (I&F) circuit required for the neuron module, or various types of 

circuits that convert the output pulse from the I&F circuit into the input pulse of the 

synaptic array should be included in the chip design. Therefore, to target a 

neuromorphic chip for implementing the neural network, research on the effective 

integration fabrication of the synaptic array and CMOS circuits should be preceded. 

In this chapter, the integration fabrication method of the proposed synaptic array 

and CMOS circuits is proposed, and the results of experimental verification of the 

operation of the synaptic array and several CMOS circuits are presented. 

The proposed AND-type synaptic array [68] and CMOS circuit were fabricated 

on a 6-inch p-type single-crystalline Si wafer with the (100) orientation using 12 
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masks and conventional CMOS process technology. The used masks are marker 

formation (1st), n-well / pMOS channel implantation (2nd), active (CMOS) define 

(3rd), nMOS field / nMOS channel implantation (4th), p-body (synaptic device) 

formation (5th), gate (CMOS) & S/D (synaptic device) formation (6th), pMOS S/D 

& p-body contact (synaptic device) implantation (7th), nMOS S/D implantation (8th), 

channel (synaptic device) define (9th), gate (synaptic device) formation (10th), 

contact hole (11th), and metal line formation (12th). The 2nd and 4th masks are used 

separately in the specified fabrication steps, respectively, and the 6th and 7th masks 

are used once each to share the process steps of the synaptic array and CMOS circuit. 

Full fabrication processes were carried out in Inter-University Semiconductor 

Research Center located in Seoul National University. 

Fig. 5.1 and Fig. 5.2 show the schematic cross-sectional views of the key 

fabrication steps and overall process flow of the proposed synaptic array and CMOS 

circuit integration, respectively. First, after a standard cleaning process including 

sulfuric peroxide mixture (SPM), ammonium hydroxide-hydrogen peroxide 

mixture (APM), hydrochloric acid-hydrogen peroxide-water mixture (HPM), and 
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diluted hydrogen fluoride (DHF), the area to be the reference marker for all 

fabrication is patterned (1st mask). This is to compensate for the loss of the reference 

marker due to the CMP in the overall fabrication. A 10-nm-thick SiO2 layer was 

deposited as a sacrificial oxide by a low-pressure chemical vapor deposition 

(LPCVD). And, a phosphorus ion implantation with a dose of 3.0 × 1012 cm-2 and 

energy of 120 keV for n-well doping was performed (2nd mask). A diffusion process 

by annealing at a temperature of 1100 ℃ for 11 hours was followed by removing 

the sacrificial oxide by wet etching in 100:1 DHF. After a 10-nm-thick SiO2 layer 

was formed via a dry oxidation process at 950 ⁰C, a 150-nm-thick Si3N4 layer was 

deposited by the LPCVD process. Then, a layer of Si3N4/SiO2 was patterned by a 

reactive ion etching (RIE) to define the regions that will be the active area of the 

CMOS (3rd mask). And, nMOS field implantation was performed by a boron ion 

implantation with a dose of 1.6 × 1013 cm-2 and energy of 40 keV (4th mask). Field 

implantation is for the isolation of nMOS in the CMOS circuit operation, and 

compensation for the boron concentration that can be lost in the process of the field 

oxide (FOX) formation. A field oxide was grown thermally by the wet oxidation 
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process at 1000 ℃, and the oxynitride, nitride, and pad oxide were stripped in 

sequence. After a 30-nm-thick SiO2 layer was formed by dry oxidation at 950 ℃, a 

10-nm-thick sacrificial oxide was formed by wet etching in 100:1 DHF. This step 

is to solve the problem called “white ribbon” that occurs along the edge of the active 

area in the local oxidation of silicon (LOCOS) process. Then, a boron implantation 

ion implantation with a dose of 4.0 × 1012 cm-2 and energy of 28 keV for nMOS 

channel doping was performed (4th mask). The mask used in this fabrication step is 

the same as the mask used in the nMOS field implantation in the previous step. And, 

a pMOS channel implantation by BF2
+ ions with a dose of 2.7 × 1012 cm-2 and 

energy of 25 keV was followed by a pMOS punch-through implantation by P+
 ions 

with a dose of 1.1 × 1012 cm-2 and energy of 110 keV (2nd mask). The mask used in 

this fabrication step is the same as the mask used in the n-well implantation in the 

previous step. The channel implantation of the CMOS is to control the Vth of the 

nMOS and the pMOS. In particular, the punch-through implantation of the pMOS 

was included in the fabrication process because it uses n+-doped poly-Si as a gate 

material and is designed to use a buried channel. After a 250-nm-thick poly-Si layer 
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was formed by the LPCVD process at 625 ℃, a 10-nm-thick sacrificial SiO2 layer 

was deposited. After BF2
+ implantation with a dose of 5.0 × 1012 cm-2 and energy 

of 150 keV was performed, the sacrificial oxide was removed by wet etching in 

100:1 DHF. Then, the poly-Si layer was patterned by the RIE process to form the 

p-body of the synaptic device on the FOX (5th mask). After removing the sacrificial 

oxide in the active area of the CMOS, a 10-nm-thick SiO2 layer was formed via dry 

oxidation at 850 ℃. At this time, a 12-nm-thick SiO2 film was also formed on both 

sides and the upper surface of the patterned poly-Si layer on the FOX. This oxide 

is for the separation of the p-body and the S/D of the synaptic device. Then, the 

deposition of a 300-nm-thick in situ n+-doped poly-Si was deposited, and the CMP 

process was performed. While the n+ poly-Si layer, which will become the S/D of 

the synaptic device, is flattened through the polishing process, the n+ poly-Si layer, 

which will become the gate of the CMOS, is hardly affected as shown in Fig. 5.3. 

Removing the oxide exposed on the top of the p-body of the synaptic device by wet 

etching in 100:1 DHF was followed by the CDE for lowering the thickness of the 

n+-doped poly-Si layer. After patterning the n+-doped poly-Si layer by the RIE 
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process to form the gate of the CMOS and the S/D of the synaptic device (6th mask), 

a phosphorus ion implantation with a dose of 5.0 × 1013 cm-2 and energy of 10 keV 

for the lightly doped drain (LDD) implantation of the nMOS was performed (8th 

mask). The mask used in LDD implantation is the same as the mask that will be 

used for the S/D implantation of the nMOS in the later step. A 60-nm-thick SiO2 

film was deposited and anisotropically etched by the RIE process to form SiO2 film 

spacers on both sides of the patterned n+-doped poly-Si layer. And, the S/D 

implantation of the pMOS by BF2
+ ions with a dose of 2.0 × 1015 cm-2 and energy 

of 25 keV (7th mask) was followed by the S/D implantation of the nMOS by As+
 

ions with a dose of 2.0 × 1015 cm-2 and energy of 40 keV (8th mask). During the S/D 

implantation of the pMOS, the p-body contact of the synaptic device on the FOX is 

also implanted at the same time. The implanted ions are then activated and diffused 

by rapid thermal annealing (RTA) at a temperature of 1050 ℃ for 5 sec. Then, a 13-

nm-thick amorphous Si layer was deposited by the LPCVD at 550 ℃ as a channel 

material of the synaptic device and poly-crystalized by annealing at 600 ℃ for 24 

hours. For isotropic etching of the channel of the synaptic device, a 20-nm-thick 
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SiO2 layer was deposited and patterned by wet etching through DHF (9th mask). 

This was followed by the CDE process for patterning of the channel of the synaptic 

device. A gate insulator stack of SiO2 / Si3N4 / Al2O3 as the tunneling oxide 

layer/charge storage layer/blocking oxide layer was deposited. Al2O3 film was 

formed through the atomic layer deposition (ALD) process, and the remaining 

layers were deposited by the LPCVD process at 780 ℃. Similar to the channel 

etching process of the synaptic device, the deposition of a 30-nm-thick layer of TiN 

by metal-organic chemical vapor deposition (MOCVD) was followed by the 

deposition of a 300-nm-thick SiO2 layer. After patterning the SiO2 film by wet 

etching using buffered oxide etchant (BHF), the TiN layer was also patterned by 

wet etching using diluted hydrogen peroxide (10th mask). After the deposition of 

TEOS by a plasma-enhanced CVD (PECVD) process, contact holes were formed 

by the RIE process (11th mask). And then, Ti (30 nm) / TiN (30 nm) / Al (300 nm ) 

/ TiN (30 nm) metal wires were formed through sputtering and patterned (12th mask). 

Finally, H2 annealing at 400 ℃ for 10 min was performed was performed to 

improve the interface characteristics. 
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A bird’s eye view of the synaptic array and CMOS circuit integration is 

represented in Fig 5.4. This fabrication method aims to efficiently integrate the 

synaptic array and the CMOS circuit on a single wafer. As explained in the detailed 

fabrication steps, this fabrication method has the advantage of reducing the number 

of masks and steps due to the shared process of the synaptic array and CMOS circuit. 

First, the gate of the CMOS and the S/D of the synaptic device use the same material 

as n+ poly-Si. Moreover, contact doping of the p-body of the synaptic device can be 

formed in the S/D implantation process of the pMOS. In conclusion, it is possible 

to reduce the total number of masks by four, including the formation process of 

contact holes and electrodes. Additionally, the design of passive devices such as 

electrical capacitors and resistors is also possible in the proposed integration 

fabrication method. The electrical capacitors are formed through the gate insulator 

between n+-doped poly-Si and TiN material. The electrical resistors can be also 

formed through the p-body line used when designing the synaptic array. A relatively 

lightly-doped p-body line has the advantage of efficiently designing an area 

occupied by the electrical resistors. As a result, passive devices can be designed in 
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the same process without using additional masks. In the stated fabrication method, 

there is a total of one metal line, but even if the fabrication process is designed with 

several metal layers, the advantages of the fabrication method are the same. In 

addition, although the CMOS circuit is formed through the LOCOS process in the 

proposed fabrication method, the advantages of the fabrication method can be 

maintained even when the isolation oxide is formed through the shallow trench 

isolation (STI) process. 
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Fig. 5.1. Schematic cross-sectional views in the key fabrication steps of the 

integration of the proposed synaptic array and CMOS circuit. 
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Fig. 5.2. Overall process flow of the integration of the proposed synaptic array and 

CMOS circuit. 
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Fig. 5.3. A SEM image of the fabricated (a) MOSFET and (b) TFT-type single 

synaptic device after the CMP process. 

CMOS

Synaptic device

295 nm

240 nm

n+ poly-Si

n+ poly-Si p-body

FOX FOX

FOX

Si

Oxide

(a)

(b)

Gate oxide



100 

 

 

Fig. 5.4. A bird’s eye view of the synaptic array and CMOS circuit integration. 
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5.2 Measurement results of a synaptic array 

Fig. 5.5 (a) shows a TEM image of a fabricated TFT-type single synaptic device 

in the integration fabrication of the synaptic array and CMOS circuit. The gate 

insulator stack (A/N/O) in the fabricated synaptic device is represented in Fig. 5.5 

(b). There are two differences from the synaptic device discussed in Chapter 2. First, 

the SiO2 film between the p-body and S or D is simultaneously formed via dry 

oxidation when forming the gate oxide of CMOS. By forming a thinner thickness 

than the same SiO2 film of the synaptic device discussed in Chapter 2, it is possible 

to increase the voltage coupling effect during selective PGM or ERS operation in 

the synaptic array. Second, H2 annealing included in the process of the CMOS 

circuit is additionally performed, thereby improving the interface characteristics 

between the poly-Si and the gate insulator stack. The measured ID – VGS 

characteristic of a fabricated TFT-type single synaptic device through the 

integration fabrication of the synaptic array and CMOS circuit is shown in Fig. 5.6. 

Compared to the synaptic device discussed in Chapter 2, improved SS and on-

current characteristics can be seen. 
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Fig. 5.7 (a) and (b) show the ID – VGS characteristics measured when an 

identical PGM or ERS pulse under specific conditions is applied several times to 

the fabricated synaptic device through the integration fabrication of the synaptic 

array and CMOS circuit. In the inset, the bias conditions for the PGM and ERS are 

specified. It can be seen that the voltage required for the same ERS operation 

performed in chapter 2.3 is significantly reduced due to the reduction in the 

thickness of the tunneling oxide included in the gate insulator stack. This is the 

same as meaning that the width of the pulse required for the same ERS operation 

can be reduced. Fig. 5.8 represents the measured ID – VGS characteristics when 

identical PGM or ERS pulse with relatively shorter width is applied several times 

to the fabricated synaptic device through the integration fabrication of the synaptic 

array and CMOS circuit. The fact that memory operation is possible with pulses 

having a relatively short width and low voltage means that the burden on the circuit 

generating the pulses required for memory operation can be reduced. In addition, 

the power consumed in the circuit generating the pulse required for the memory 

operation can be reduced although power consumption does not occur in the 
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memory operation on the AND-type array architecture. 

Fig. 5.9 shows a SEM image of the fabricated 15 x 3 AND flash memory array 

through the integration fabrication of the synaptic array and CMOS circuit. To 

verify the selective memory operation of the synaptic devices in the synaptic array, 

specific number patterns are learned. Fig. 5.10 represents a bias condition for 

measurement in a selective PGM operation of specific cells in the 15 × 3 AND flash 

memory array. During the PGM operation of a specific cell, a PGM pulse with a 

positive VPGM is applied to WL connected to the specific cell, and the bias of DL, 

SL, and PL connected to the specific cell is maintained at 0 V. During this period, 

the WLs of cells that do not want PGM operation while located in the same BL 

maintains 0 V. In addition, an INH pulse with an amplitude of VINH1 is applied to 

other PLs to prevent the PGM operation of cells crossing the WL to which the PGM 

pulse is applied. Note that the other SL and PL are floated. On contrary, Fig. 5.11 

represents a bias condition for measurement in a selective ERS operation of specific 

cells in the 15 × 3 AND flash memory array. During the ERS operation of the 

selected cell, an ERS pulse with a positive VERS is applied to PL connected to the 
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selected cell, and the bias of WL is maintained at 0 V. During this period, an INH 

pulse with an amplitude of VINH2 is applied to the WLs of cells that are in the same 

BL and do not want ERS. Note that the both SLs and PLs in the array are floated 

during the selective ERS operation. Fig. 5.12 shows the measurement results of 

learning specific number patterns in the fabricated flash memory array. It can be 

seen that the number patterns of 2 in BL1, 4 in BL2, and 7 in BL3 are learned, 

respectively. The current values of the synaptic devices specified in the number 

patterns are the values measured when the read voltage is 2 V. Fig. 5.13 represents 

the measured ID – VGS characteristics of each cell in the fabricated flash memory 

array after learning the specific number patterns. The synaptic devices for which 

each number pattern is to be learned are in the ERS state, and the synaptic devices 

corresponding to the area without a number pattern are in the PGM state. In addition, 

Fig. 5.14 shows the measurement result of each IBL according to the input pattern 

in the fabricated flash memory array after learning the specific number patterns. 

When an input such as a learned number pattern is applied to WL, it can be 

confirmed that the learned BL has the largest current value. 
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Fig. 5.5. A cross-sectional TEM image of (a) a fabricated TFT-type single synaptic 

device through the integration fabrication of the synaptic array and CMOS circuit. 

(b) The gate insulator stack (A/N/O) through the fabricated synaptic device. 

(a)

(b)
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device through the integration fabrication of the synaptic array and CMOS circuit.  
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Fig. 5.7. Measured ID – VGS characteristics when identical (a) PGM or (b) ERS pulse 

(with relatively longer width) is applied several times to the fabricated synaptic 

device through the integration fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.8. Measured ID – VGS characteristics when identical (a) PGM or (b) ERS pulse 

(with relatively shorter width) is applied several times to the fabricated synaptic 

device through the integration fabrication of the synaptic array and CMOS circuit.  
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Fig. 5.9. A top SEM image of the fabricated 15 x 3 AND flash memory array 

through the integration fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.10. A bias condition for measurement in a selective PGM operation of 

specific cells in the 15 × 3 AND flash memory array. 
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Fig. 5.11. A bias condition for measurement in a selective ERS operation of specific 

cells in the 15 × 3 AND flash memory array. 
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Fig. 5.12. Measurement results of learning specific number patterns in the 

fabricated flash memory array.  
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Fig. 5.13. Measured ID – VGS characteristics of each cell in the fabricated flash 

memory array after learning the specific number patterns. 
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Fig. 5.14. The measurement result of each IBL according to the input pattern in the 

fabricated flash memory array after learning the specific number patterns.  
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5.3 Measurement results of CMOS circuits 

Fig. 5.15 shows a cross-sectional SEM image of a fabricated MOSFET through 

the integration fabrication of the synaptic array and CMOS circuit. Fig. 5.16 

represents the measured ID – VGS characteristics as a parameter of VDS of the 

fabricated CMOS without LDD implantation. In the nMOS, as shown in Fig. 5.16 

(a), the curves show n-type behaviors with a SS of 90 mV/decade, a Vth of 0.52 V 

at VDS = 1 V. In the pMOS, as shown in Fig. 5.16 (b), the curves show p-type 

behaviors with a SS of 87 mV/decade, a Vth of -0.87 V at VDS = 1 V. The Vth is 

calculated by fitting through the constant current method at the point where ID = 

100 nA. In the nMOS without LDD implantation, the drain-induced barrier 

lowering (DIBL) phenomenon is almost non-existent. On the other hand, in the 

pMOS without LDD implantation, the value of DIBL is extracted to 67 mV/V. This 

is caused by the effect of shortening the channel length due to the diffusion of boron 

ion, which is used as the S/D of pMOS. Fig. 5.17 represents the measured ID – VGS 

characteristics as a parameter of VDS of the fabricated CMOS with LDD 

implantation. In the nMOS, as shown in Fig. 5.17 (a), the curves show n-type 
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behaviors with a SS of 92 mV/decade, a Vth of 0.55 V at VDS = 1 V. In the pMOS, as 

shown in Fig. 5.17 (b), the curves show p-type behaviors with a SS of 90 mV/decade, 

a Vth of -0.94 V at VDS = 1 V. Compared to the case without LDD implantation, the 

value of DIBL in pMOS decreased to 44 mV/V. Fig. 5.18 (a) and (b) show output 

characteristics (ID-VDS) of nMOS and pMOS, respectively. Fig. 5.19 to 5.21 show 

the measurement results for various types of breakdown voltages (BVs) of the 

fabricated CMOS devices. These BVs provide important information for designing 

CMOS circuits using various voltages. The values of all BVs are extracted only for 

devices with both W and L of 0.5 µm among the fabricated CMOS devices. Fig. 

5.19 represents the measured junction BV of the fabricated CMOS devices. The 

junction BV is extracted by applying a reverse bias between the body and the source 

or drain of the MOSFET, and it is measured to be around 20 V for both the nMOS 

and pMOS. Fig. 5.20 shows the measured gate oxide BV of the fabricated CMOS 

devices. The gate oxide BV can be extracted with two values according to the sign 

of VGB, and it is measured by applying the voltage between the gate and the body 

of the MOSFET. In both nMOS and pMOS, when the value of VGB is positive, the 



117 

 

gate oxide BV is measured to be ~30 V. On the other hand, when the value of VGB 

is negative, it is measured to be ~15 V. Finally, Fig. 5.21 represents the measured 

drain to source breakdown voltage (BVDSS) of the fabricated CMOS devices. The 

electrical parameter BVDSS value is extracted by applying the bias between the 

source and drain while the gate is floating state, and it is measured to be around 10 

V for both the nMOS and pMOS. 

The nMOS and pMOS described above are connected in series to compose a 

CMOS logic inverter. Fig. 5.22 shows a SEM image of the fabricated CMOS logic 

inverter consisting of nMOS and pMOS through the integration fabrication of the 

synaptic array and CMOS circuit. The corresponding voltage transfer 

characteristics (VTC) of the fabricated CMOS logic inverter are shown in Fig. 5.23 

(a) as a parameter of VDD. The VTC displays good inverting performance with a full 

logic swing, abrupt transition, and almost zero current in the static condition. The 

logic transition occurs at a VIN closer to zero than VDD since the nMOS has a 

relatively lower Vth than the pMOS. The voltage gains of the fabricated CMOS logic 

inverter are higher than 50 for given VDDs from 1 V to 3 V. The transition region 
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widths, which can be defined as the region where the gain is larger than 1, under 

different VDDs are plotted in Fig. 5.23 (b). The transition regions for all measured 

VDDs are less than 0.35 V. Another key component in influencing sensitivity and 

tolerance to signal interference in logic gates is the noise margin. Noise margin can 

be calculated by extracting ideal logic-high voltage VOH, ideal logic-low voltage 

VOL, maximum low input voltage in transition region VIL, and minimum high input 

voltage in transition region VIH. Therefore, noise margins for logic state 1 (NMH) 

and logic state 0 (NML) are defined as NMH = VOH - VIH and NML = VIL - VOL. In this 

work, the normalized total noise margins to VDD, which can be defined as 

(NML+NMH)/VDD, are calculated at different VDDs. 

Fig. 5.24 (a) and (b) represent a circuit diagram and a SEM image of the 

fabricated I&F circuit through the integration fabrication of the synaptic array and 

CMOS circuit, respectively. The C1 named the membrane capacitor (Cmem) plays a 

role in the integration of the current signal from the synapse array. The value of the 

Cmem can vary depending on the amount of current from the synapse array and the 

frequency of firing required by the system. The capacitance of Cmem determines the 
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L and W of M6 for resetting the neuron circuit. The operation scheme of the I&F 

circuit is as follows. When current signals from the synapse array are repeatedly 

transmitted to the neuron, the Cmem described above performs the integration 

function. And then, the membrane potential (Vmem) by an accumulation of charge in 

Cmem increases within the range of the threshold voltage (Vth) of M1. At the very 

moment Vmem becomes higher than Vth of M1, the M1 turns on and node 1 in the 

high state becomes low. Then, the output node of inverter 1 changes from the low 

state to the high state, and this initialized the state of Vmem using M6. In addition, 

the output node of inverter 2 operates M5 after the delay time by C2 and returns 

node 1 to its original state. M2, M3, and M4 exist to compensate for the stabilization 

of each node state in the neuron circuit. The C2 determines the width of a spike 

generated at the output node, which can be designed as a minimum value as long as 

a certain width is ensured. Fig. 5.25 and Fig. 5.26 represent the measurement results 

of the operation of the fabricated I&F circuit. The input of the fabricated I&F circuit 

is connected to a MOSFET, which can be assumed a virtual synaptic device, and 

the current signal of the MOSFET is transmitted to the I&F circuit through the 
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current mirror. As shown in Fig. 5.25, it can be seen that the frequency of firing in 

the I&F circuit increases as the voltage of the input pulse signal increases. Fig. 5.26 

shows the firing frequency of the I&F circuit according to the period of the input 

pulse. For an input pulse with 10 µs, the I&F circuit fires once for every 5 inputs, 

whereas for an input pulse with 25 µs, it fires once for every 2 inputs. 

The I&F circuit plays an important role in the main operation of the neuron 

circuit, but an additional circuit is required to convert the output signal of the I&F 

circuit into a pulse to be applied to the synaptic device. This is because the period 

and amplitude that the pulse as input of the synaptic device should have are different 

from those of the output pulse of the I&F circuit. For this reason, a pulse width 

extension circuit and a voltage shifter circuit responsible for changing the period 

and amplitude of the pulse, respectively, should be included in the neuron circuit. 

Fig. 5.27 (a) and (b) show a circuit diagram and a SEM image of the fabricated 

pulse width extension circuit through the integration fabrication of the synaptic 

array and CMOS circuit, respectively. The operation scheme of the pulse width 

extension circuit is as follows. In the stable state, the input is the low state so that 
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the output from the NOR gate is the high state. In this period, the M7 acting as a 

resistor is connected to the VDD, and the input potential of the last inverter is equal 

to this voltage. As a result, the output from the last inverter will be in the low state, 

which means zero output. When an input pulse is triggered, the output of the NOR 

gate changes to the low state resulting in an output of the inverter equal to the high 

state. And then, the inverter maintains this unstable state until the capacitor charges 

up through the M7. When the M7 reaches the threshold voltage of the inverter, the 

output of the circuit changes to the low state. As a result, the width of the generated 

pulse is determined by the resistance of M7, and the values of C3. Here, the W and 

L of M7 are 1 µm and 5 µm, respectively. Fig. 5.28 represents the measurement 

result of the operation of the fabricated pulse width extension circuit. The inset 

figure shows the input pulse of the pulse width extension circuit with a period of 10 

ns, and it is confirmed that the period of the output increases as the value of Va, 

which determines the resistance value of M7, increases. In addition, the 

reproducibility of the circuit operation for repeated input pulse at a specific Va value 

is also verfied. Fig. 5.29 (a) and (b) represent a circuit diagram and a SEM image 
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of the fabricated voltage level shifter circuit through the integration fabrication of 

the synaptic array and CMOS circuit, respectively. The operation scheme of the 

voltage level shifter circuit is as follows. When the input signal is in the low state, 

the M11 pulls down the output node to the ground. In the opposite case, when the 

input signal is in the high state, the M10 turns on, and the M9 pulls up the output 

node to VDD1. The design consideration of the voltage level shifter circuit is to 

ensure that the W/L ratios of M8 and M9 are less than those of M10 and M11 to 

reduce the current spikes generated when the circuit changes state. The parameters 

used in the fabricated voltage level shifter circuit are as follows: WM8, M9 = 1 μm, 

LM8, M9 = 10 μm, WM10, M11 = 10 μm, LM10, M11 = 1 μm. Fig. 5.30 shows the 

measurement result of the operation of the fabricated voltage level shifter circuit. 

From the result, it can be seen that the input pulse with an amplitude of 1.5 V is 

changed into the output pulse of various amplitudes according to the VDD1. 
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Fig. 5.15. A cross-sectional SEM image of a fabricated MOSFET through the 

integration fabrication of the synaptic array and CMOS circuit. 

 

 

 

 

 

 

 

FOX

TEOS

Si-substrate

Contact metal
n+ poly-Si gate

FOX



124 

 

 

Fig. 5.16. Measured ID – VGS characteristics as a parameter of VDS of the fabricated 

(a) nMOS and (b) pMOS without LDD implantation through the integration 

fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.17. Measured ID – VGS characteristics as a parameter of VDS of the fabricated 

(a) nMOS and (b) pMOS with LDD implantation through the integration fabrication 

of the synaptic array and CMOS circuit. 
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Fig. 5.18. Measured ID – VDS characteristics as a parameter of VGS of the fabricated 

(a) nMOS and (b) pMOS with LDD implantation through the integration fabrication 

of the synaptic array and CMOS circuit. 
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Fig. 5.19. Measured junction BV of the fabricated (a) nMOS and (b) pMOS through 

the integration fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.20. Measured gate oxide BV of the fabricated (a) nMOS and (b) pMOS 

through the integration fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.21. Measured BVDSS of the fabricated (a) nMOS and (b) pMOS through the 

integration fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.22. A top SEM image of the fabricated CMOS logic inverter consisted of 

nMOS and pMOS through the integration fabrication of the synaptic array and 

CMOS circuit. 

 

 

pMOS

nMOS

VDD

VSS

Vin Vout



131 

 

 

Fig. 5.23. (a) Voltage transfer characteristics (output voltage as a function of the 

input voltage) of a CMOS logic inverter consisted of nMOS and pMOS through the 

integration fabrication of the synaptic array and CMOS circuit. (b) Transition width 

and the normalized total noise margin to VDD are shown on the left and right y-axes, 

respectively, as a function of VDD. 
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Fig. 5.24. (a) A circuit diagram and (b) a top SEM image of the fabricated I&F 

circuit through the integration fabrication of the synaptic array and CMOS circuit. 
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Fig. 5.25. The measurement result of the operation of the fabricated I&F circuit 

according to the amplitude of the input pulse. 
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Fig. 5.26. The measurement result of the operation of the fabricated I&F circuit 

according to the width of the input pulse. 
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Fig. 5.27. (a) A circuit diagram and (b) a top SEM image of the fabricated pulse 

width extension circuit through the integration fabrication of the synaptic array and 

CMOS circuit. 
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Fig. 5.28. The measurement result of the operation of the fabricated pulse width 

extension circuit. 
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Fig. 5.29. (a) A circuit diagram and (b) a top SEM image of the fabricated voltage 

level shifter circuit through the integration fabrication of the synaptic array and 

CMOS circuit. 
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Fig. 5.30. The measurement result of the operation of the fabricated voltage level 

shifter circuit. 
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Chapter 6 

Conclusion 

 

In this work, we have investigated hardware-based SNNs based on the AND 

flash memory synaptic array. Since flash memory technology has already been 

proven in terms of nonvolatile characteristics, reliability, and mass production, it 

can be said to have a suitable aspect to be used as the electronic synaptic device. 

The proposed TFT-type synaptic device has a layer of poly-Si as a channel material 

and a high-κ material included in the gate insulator stack. The structure of the 

synaptic device with a boron-doped body reduces the circuit burden for the memory 

operation, and the partially curved channel can maximize the merit of the memory 

characteristics and output impedance when the device is scaled down. An effective 

pulse scheme for selective memory operation in the fabricated AND array was 

proposed and verified experimentally. The AND array can have the advantage in 

on-chip learning since the power consumption is determined by a relatively low 

tunneling current flowing through the device when updating synaptic weights. For 
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unsupervised learning, we have proposed a SNN that supports the STDP pulse 

scheme available for AND type array. The designed computing architecture does 

not generate pulses from external circuits but makes the necessary pulses using 

output signals from the neuron circuits in the architecture. System-level simulation 

based on pulse scheme and proposed SNN architecture was demonstrated, and an 

accuracy of 91.63% was obtained for the MNIST dataset. Although the proposed 

pulse scheme utilizes the inhibition pulses for selective memory operation in the 

synaptic array, it is more efficient in terms of system area and energy consumption 

of the computing architecture than the pulse schemes that use overlapping pulses. 

For supervised learning, a FC three-layer SNN for utilizing the DFA algorithm was 

designed based on the characteristics of the synaptic array and pulse scheme. Due 

to the asymmetry of the synaptic array in the DFA, it was designed by adding 

relatively small external arrays compared to the overall area of the SNN. An 

efficient pulse scheme for on-chip training was also proposed, and a system-level 

simulation was performed. The simulation result obtained from the SNN consisting 

of 28 × 28 input neurons, 256 hidden neurons, and 10 output neurons shows 
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superior accuracy (97.01%). This is a recognition rate comparable to that of a 

software-based network and shows that DFA can be used for on-chip learning in 

hardware SNNs employing AND flash memory arrays. To implement the designed 

hardware-based neural networks, not only the synaptic array but also the peripheral 

additional circuits should be supported. In addition, to target a neuromorphic chip 

for implementing a neural network, an efficient integration fabrication of a synaptic 

array and a CMOS circuit is required. For this reason, we have proposed and 

verified the fabrication method in which the proposed synaptic array and CMOS 

circuit can be efficiently integrated. The proposed fabrication method integrates 

synaptic arrays and CMOS circuits on the same wafer and has the advantage of 

reducing the number of masks and process steps. In the fabricated synaptic array, 

selective memory operation was verified by learning the specific number pattern. 

In addition, circuits such as CMOS inverters, I&F circuit, pulse width extension 

circuit, and voltage level shifter that can be included in the neuron circuit have been 

verified. The designed fabrication method is significant in that it presents a 

methodology that can efficiently implement a hardware-based neural network.  
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Appendix A 

Neuron circuits to implement a hardware-

based neural network using the STDP learning 

algorithm and the pulse scheme not including 

the inhibition pulses 

 

Fig. A.1 (a) and (b) represent conceptual diagrams of blocks including signal 

flows in the input neuron and the global pulse generator I, respectively, to 

implement the designed hardware-based neural network using the STDP learning 

algorithm and the pulse scheme not including the inhibition pulses. To generate the 

input pulse of the form described in Fig. 3.3, we design the circuit block that does 

not use a negative power source. In the input neuron, three pulses with different 

amplitudes and widths are used to generate the input pulse with a 3-level amplitude. 

Since two of the three pulses have the same width, two pulse extension modules are 

included in the input neuron to convert a short spike received from the input detector 

module into pulses with two different widths. And then, the pulses extended in the 
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pulse extension module are assigned to the pulse selection module to make each 

pulse with a specific amplitude. Since the pulse selection module generates the 

desired pulses depending on whether or not the signal is received from the pulse 

extension module, the input pulse generator module generates the input pulse only 

when the input neuron receives the input signal. At this time, the pulses required for 

the pulse selection module are provided by the global pulse generator I. While, 

among the pulses generated by the global pulse generator I, the pulse that does not 

participate in the input pulse generator module is involved in maintaining the input 

pulse with a positive voltage. In addition, switches should also be included in the 

input neuron so that the pulse with a positive voltage and the pulse from the input 

generator module are not affected by each other. The control pulses for these 

switches are also given from the global pulse generator I. In Fig. A.1 (b), the pulse 

entering the output neurons allows the output neuron to receive current only during 

the read operation time of in the electronic synaptic array, thereby preventing the 

system error due to the leakage current. Note that the dotted arrows in the figure 

indicate two or more signals. Fig. A.2 shows the input neuron circuit for generating 
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the input pulse used in the designed hardware-based neural network using the STDP 

learning algorithm and the pulse scheme not including the inhibition pulses. First, 

the pulse width generated by the pulse extension module including A.M1 and A.C1 

is determined by the resistance of A.M1 and the capacitance of A.C1. The same 

principle applies to pulse extension modules that include A.M2 and A.C2. The 

operation of the pulse selection module can be explained by the potential of node 1 

(A.N1). In the absence of the input signal, the potential of A.N1 remains high and 

the front node of A.C3 remains low because the output terminals of the pulse 

extension module and global pulse generator remain at 0 V. However, when the 

input detector module detects the input signal, the potential of A.N1 can be changed 

depending on whether the input signal is received in the input neuron. At this time, 

if there is the input signal in the input neuron, the potential of A.N1 has a low state 

because the output terminal of the pulse extension module and the global pulse 

generator I change to the high state. This means that the output terminal of the pulse 

selection module has a high state. On the other hand, when there is no input signal 

in the input neuron, the output terminal of the pulse extension module is kept low 
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state, and the output terminal of the global pulse generator is kept high so that A.N1 

remains in the high state. The input pulse generator module consists of two 

capacitors (A.C3 and A.C4) and two MOSFETs (A.M3 and A.M4). The A.C3 and 

A.M3 are responsible for generating negative voltage through the charging and 

discharging of the capacitor, and A.C4 and A.M4 determine the length of time that 

the negative voltage value is maintained. The A.S1 and A.S2 switches help ensure 

that the positive and negative voltage pulses are not affected by each other when 

they are applied to the electronic synaptic array, respectively. Fig. A.3 (a)-(c) show 

examples of input signals applying to several input neurons included in the input 

neuron layer. Fig. A.3 (d) represents input signals of the global pulse generator I 

when input signals are recognized by the input detector module. Fig. A.3 (e)-(g) 

show input pulses generated by the input neuron circuit in each representative 

neuron. In each represenatative neuron, the desired form of input pulses for the 

pulse scheme are generated at the time the input signal comes in the input neuron. 

Fig. A.3 (h) shows an enlarged view of the part of the input pulse that is involved 

in the read operation. The read operation time depends on the conductance range of 
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the electronic synaptic device and the component that accepts the current in the 

output neuron. If the read operation time is too long, it can be disadvantageous in 

terms of the energy consumption of the system. If it is too short, the ability to 

distinguish neurons can be lost. For this reason, it is necessary to determine the read 

operation time by considering the characteristics of the electronic synaptic device, 

the number of the synaptic devices in the array, and the potential condition of the 

output neuron determined by the current flowing through the electronic synaptic 

array. 

Fig. A.4 (a) and (b) represent conceptual diagrams of blocks including signal 

flows in the output neuron and the global pulse generator II, respectively, to 

implement the designed hardware-based neural network using the STDP learning 

algorithm and the pulse scheme not including the inhibition pulses. Since the form 

of the feedback pulse to be generated from the output neuron is similar to that of 

the input pulse, the components of the output neuron and global pulse generator II 

are almost the same as those of the input neuron and global pulse generator I. 

However, the output neuron includes an integrate-and-fire module that accepts 
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current from the electronic synaptic array as input and determines the timing of 

firing depending on the potential of a specific component in the output neuron. Fig. 

A.5 shows the output neuron circuit for generating the input pulse used in the 

designed hardware-based neural network using the STDP learning algorithm and 

the pulse scheme not including the inhibition pulses. In the integrate-and-fire 

module, the A.C9 named the membrane capacitor serves to integrate the current 

from the electronic synaptic array. The capacitance value of A.C9 can be determined 

by the amount of current received from the electronic synaptic array during a 

particular period, and the frequency of output neuron’s firing required for the 

computing architecture. Furthermore, the capacitance value of A.C9 determines the 

specification of A.M10, which resets the membrane potential (Vmem) of the output 

neuron. The operation of the output neuron circuit is described as follows. The Vmem 

due to charge accumulation in Cmem can increase within the range of the Vth of A.M9, 

connected to one terminal of Cmem. If Vmem becomes higher than Vth of A.M9, the 

A.M9 turns on and the state of node 2 (A.N2) in the high becomes low. Then, the 

output node of the integrate-and-fire module changes from the low state to the high 
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state by the inverter, and A.M10 can initialize the state of the Vmem. Next, after a 

certain delay time, A.N2 returns to its original state by A.M11. A.M12-14 

compensate for the stabilization of each node state in the integrate-and-fire module 

circuit. A.C10 determines the width of the output spike of the integrate-and-fire 

module and can be designed to the minimum as long as operation in the connected 

circuit is guaranteed. The output spike from the integrate-and-fire module is 

converted into the feedback pulses with positive and negative voltages values 

through circuits similar to the input neuron. However, in the output neuron, the 

specifications of the pulse extension modules differ from those of the input neuron. 

This is because the input pulse and the feedback pulse have different times of 

maintaining the positive and negative voltages. The switches A.S3 and A.S4 are 

connected to the DL of the electronic synaptic array. They allow the current flowing 

through the electronic synaptic devices to affect the Vmem of the output neuron only 

when there is the input signal. In addition, they allow the potential of DL in the 

electronic synaptic array to be properly determined by the feedback pulse from the 

output neuron during the memory operation. Similarly, A.S5-7 switches serve to 
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determine the potential of the PL and SL in the electronic synaptic array. The PL 

and SL of the electronic synaptic array should maintain 0 V during the read 

operation time and have the same potential as the feedback pulse when the feedback 

pulse is generated. Fig. A.6 shows the behavior of each representative neuron circuit 

in the single output neuron layer. Fig. A.6 (a)-(c) represent the Vmem changes in each 

output neuron, and Fig. A.6 (d)-(f) shows the firing spikes from the integrate-and-

fire module caused by the Vmem change in each output neuron. As shown in Fig. A.6 

(a)-(f), when the Vmem of a certain output neuron exceeds the Vth of M9, it can be 

seen that the integrate-and-fire module in the corresponding neuron generates a 

firing spike. In addition, it can be confirmed that all neurons have a refractory period 

during a time when the feedback pulse is generated due to the firing of the output 

neuron. Fig. A.7 (a)-(c), (d)-(f), and (g)-(i) show the potential of the PLs, the SLs, 

and the DLs, respectively, of the electronic synaptic devices in the AND-type array 

connected to representative output neurons in the single output neuron layer. 

Simulation results for the potential of the PL, the SL, and the DL of the electronic 

synaptic devices due to the feedback pulse show that the pulse scheme described in 
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Fig. 3.3 is effectively implemented by the designed output neuron circuit. Fig. A.7 

(j) and (k) show an enlarged view of the tail portion of the feedback pulse and the 

drain potential in the read operation, respectively. As shown in Fig. A.7 (k), the 

drain potential of the electronic synaptic device has the required read voltage only 

during the read operation time. 
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Fig. A.1. Conceptual diagrams of blocks including signal flows in the (a) input 

neuron and the (b) global pulse generator I to implement the designed hardware-

based neural network using the STDP learning algorithm and the pulse scheme not 

including the inhibition pulses. 
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Fig. A.2. An input neuron circuit for generating the input pulse used in the designed 

hardware-based neural network using the STDP learning algorithm and the pulse 

scheme not including the inhibition pulses. 
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Fig. A.3. Operation of input neuron circuits to implement the designed hardware-

based neural network using the STDP learning algorithm and the pulse scheme not 

including the inhibition pulses. (a)-(c) Input signals received by representative input 

neurons included in the single input neuron layer. (d) Input signals of the global 

pulse generator I when input signals are recognized by the input detector module. 

(e)-(g) Input pulses generated by the input neuron circuit in each representative 

neuron. (h) An enlarged view of the part of the input pulse that is involved in the 

read operation. 
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Fig. A.4. Conceptual diagrams of blocks including signal flows in the (a) output 

neuron and the (b) global pulse generator II to implement the designed hardware-

based neural network using the STDP learning algorithm and the pulse scheme not 

including the inhibition pulses. 
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Fig. A.5. An output neuron circuit for generating the input pulse used in the 

designed hardware-based neural network using the STDP learning algorithm and 

the pulse scheme not including the inhibition pulses. 
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Fig. A.6. Operation of integrate-and-fire circuits to implement the designed 

hardware-based neural network using the STDP learning algorithm and the pulse 

scheme not including the inhibition pulses. (a)-(c) Membrane potentials of 

representative output neurons included in the single output neuron layer. (d)-(f) 

Input signals of the global pulse generator II when output signals recognized by the 

neuron firing detection module.  

 

 

 

 

0 50 100 150 200 250 300
0.0

0.5

1.0  Membrane potential (output neuron 3)

 

V
o
lt

a
g

e 
(V

)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0  Membrane potential (output neuron 2)

 

V
o

lt
a
g

e 
(V

)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0  Membrane potential (output neuron 1)

 

V
o
lt

a
g

e 
(V

)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0
 Firing of output neuron 3

 

V
o

lt
a
g

e 
(V

)
t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0
 Firing of output neuron 2

 

V
o
lt

a
g

e 
(V

)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0
 Firing of output neuron 1

 

V
o
lt

a
g

e 
(V

)

t (ms)

(a)

(b)

(c)

(d)

(e)

(f)



157 

 

 

Fig. A.7. Potentials of (a)-(c) the PLs, (d)-(f) the SLs, and (g)-(i) the DLs of the 

electronic synaptic devices in the AND-type array connected to representative 

output neurons in the single output neuron layer. (j) and (k) show an enlarged view 

of the tail portion of the feedback pulse and the drain potential in the read operation, 

respectively. 
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Appendix B 

Neuron circuits to implement a hardware-

based neural network using the STDP learning 

algorithm and the pulse scheme including the 

inhibition pulses 

 

Fig. B.1 (a) and (b) represent conceptual diagrams of blocks including signal 

flows in the input neuron and the global pulse generator I, respectively, to 

implement the designed hardware-based neural network using the STDP learning 

algorithm and the pulse scheme including the inhibition pulses. In the pulse scheme 

as illustrated in Fig. 3.4, a pulse having a width required for the read operation is 

applied to the WLs of electronic synaptic devices connected to the fired output 

neuron while having the input signal. Also, the pulse with the constant amplitude 

and width should be applied to the WLs of the electronic synaptic devices even 

when no input signal is applied. For this reason, the input neuron uses logic circuits 

to determine the input pulse depending on whether there is an input signal or not 
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and whether an output neuron fires. A detailed description of the operation in the 

input neuron is as follows. First, in the case of the input neuron with the input signal, 

the input signal is converted to the pulse width for the read operation through the 

pulse extension module. At this time, when the output neuron fires during the read 

operation, the output of the pulse extension module connected to the output of the 

AND gate has the same width as the pulse generated by the fired output neuron in 

the global pulse generator II. On the contrary, if no output neuron fires during the 

read operation, the output of the pulse extension module connected to the output of 

the AND gate remains in the low state, and the input of the XOR gate from the 

global pulse generator II also remains the low state. In other words, in the presence 

of the input signal such that the input pulse is involved in the read operation, the 

output of the XOR gate remains low state regardless of whether or not the output 

neuron fires. As a result, in the input neuron that accepts the input signal, the input 

pulse that affects the read operation can be applied to the WL of the electronic 

synaptic array. On the other hand, in the input neuron that does not receive the input 

signal, the output of the pulse extension module connected to the output of the AND 



160 

 

gate remains low by the same principle. If there is the fired output neuron at this 

time, the output of the XOR gate changes to the high state, allowing a certain pulse 

to be applied to the WL of the electronic synaptic array as shown in Fig. 3.4. The 

dotted arrow generated by the global pulse generator I represent the switch control 

pulses that allow the output neuron to receive current only during the read operation 

of the electronic synaptic array. Fig. B.2 shows the input neuron circuit for 

generating the input pulse used in the designed hardware-based neural network 

using the STDP learning algorithm and the pulse scheme including the inhibition 

pulses. The operation principles of the pulse extension module and pulse selection 

module included in the input neuron circuit were described in Appendix A. The 

A.S8 and A.S9 switches allow one of the pulses involved in the read operation or 

PGM operation to be assigned to the electronic synaptic array according to the 

operation of the input neuron. Fig. B.3 shows the operation of input neuron circuits 

to implement the designed hardware-based neural network using the STDP learning 

algorithm and the pulse scheme including the inhibition pulses. The input signals 

received by the several input neurons as shown in Fig. B.3 (a)-(c) produce the inputs 
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of the global pulse generator I as shown in Fig. B.3 (d). Fig. B.3 (e)-(g) show the 

pulses that are generated through the input neuron circuit and applied to the WL of 

the electronic synaptic array connected to each input neuron. In each neuron, the 

input pulse is generated that is involved in the read operation when the input signal 

is sent to the input neuron. In addition, when output neuron fires, neurons that don’t 

do not receive an input signal generate input pulses that are involved in LTD process. 

Fig. B.3 (h) shows an enlarged view of the part of the input pulse that is involved 

in the read operation. 

Fig. B.4 (a) and (b) represent conceptual diagrams of blocks including signal 

flows in the output neuron and the global pulse generator II, respectively, to 

implement the designed hardware-based neural network using the STDP learning 

algorithm and the pulse scheme including the inhibition pulses. The integrate-and-

fire module, the current receiving part of the output neuron, is identical to that of 

the output neuron described in Appendix A. Since the form of the feedback pulse to 

be generated from the output neuron is similar to that of the input pulse, the 

components of the output neuron and global pulse generator II are almost the same 
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as those of the input neuron and global pulse generator I. In the pulse scheme using 

the INH pulses, the output neuron should select one of the pulses for the ERS 

operation of the electronic synaptic array and the INH pulse depending on whether 

the output neuron fires or not. A detailed description of the operation in the output 

neuron is as follows. The pulse extension module connected to the input terminal 

of the XOR gate determines the width of the INH pulse. When the output neuron 

fires, the output of the XOR gate remains low state because the two pulses received 

by the XOR gate are high state. On the contrary, when the output neuron does not 

fire, only the pulse received by the XOR gate from the global pulse generator II 

becomes high, and the output of the XOR gate changes to the high state. This 

operation occurs, of course, when one of the output neurons included in the single 

output neuron layer fires. This logic circuit allows the INH pulse to be given to the 

PLs of the electronic synaptic array only when the output neuron does not fire as 

shown in Fig. 3.4. The output pulse from the pulse selection module connected to 

the pulse extension module that determines the width of the INH pulse acts as a 

control pulse to select one of the pulses for the ERS operation and the INH pulse. 
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Fig. B.5 shows the output neuron circuit for generating the input pulse used in the 

designed hardware-based neural network using the STDP learning algorithm and 

the pulse scheme including the inhibition pulses. The operation principles of the 

major modules including the integrate-and-fire module, pulse extension module, 

and pulse selection module were covered in Appendix A. The A.S10 and A.S11 

switches help select the ERS Pulse or INH pulse as the feedback pulse. In addition, 

A.S12 and A.S13 switches determine the potential of the DL of the electronic 

synaptic array. Fig. B.6 shows the behavior of each representative neuron circuit in 

the single output neuron layer. Similar to the operation of the integrate-and-fire 

module stated in Appendix A, it can be confirmed that the integrate-and-fire module 

of the fired output neuron emits the spike signal when the Vmem of a specific output 

neuron exceeds a certain potential. Fig. B.7 (a)-(c), (d)-(f), and (g)-(i) show the 

potential of the PLs, the SLs, and the DLs, respectively, of the electronic synaptic 

devices in the AND-type array connected to representative output neurons in the 

single output neuron layer. Simulation results for the potential of the PL, the SL, 

and the DL of the electronic synaptic devices due to the feedback pulse show that 
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the pulse scheme described in Fig. 3.4 is effectively implemented by the designed 

output neuron circuit. That is, it is confirmed that the feedback pulse for the LTP 

process of the electronic synaptic device is selectively applied to the PL of the array 

connected to the fired output neuron. Also, it is confirmed that the INH pulses are 

applied to the PLs of the electronic synaptic array connected to the non-fired output 

neurons. The potential of the DL is maintained at a certain read voltage only during 

the read operation time of the electronic synaptic array and becomes the floating 

node during the rest of the time. Fig. B.7 (j) and (k) show an enlarged view of the 

tail portion of the feedback pulse and the drain potential in the read operation, 

respectively. As shown in Fig. B.7 (j), a synaptic device that is connected to the 

firing neuron and receives no input is subjected to LTD by the input pulse with VPGM 

amplitude applied to the WL while the feedback pulse is maintained at 0 V. 
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Fig. B.1. Conceptual diagrams of blocks including signal flows in the (a) input 

neuron and the (b) global pulse generator I to implement the designed hardware-

based neural network using the STDP learning algorithm and the pulse scheme 

including the inhibition pulses. 

(b)

(a)
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Fig. B.2. An input neuron circuit for generating the input pulse used in the designed 

hardware-based neural network using the STDP learning algorithm and the pulse 

scheme including the inhibition pulses. 
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Fig. B.3. Operation of input neuron circuits to implement the designed hardware-

based neural network using the STDP learning algorithm and the pulse scheme 

including the inhibition pulses. (a)-(c) Input signals received by representative input 

neurons included in the single input neuron layer. (d) Input signals of the global 

pulse generator I when input signals are recognized by the input detector module. 

(e)-(g) Input pulses generated by the input neuron circuit in each representative 

neuron. (h) An enlarged view of the part of the input pulse that is involved in the 

read operation. 

0 50 100 150 200 250 300
0

2

4

6

8

10  Input pulse 2

V
o

lt
a

g
e 

(V
)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0
 Input signal 1

 

V
o
lt

a
g
e 

(V
)

t (ms)
0 50 100 150 200 250 300

0

2

4

6

8

10  Input pulse 1

V
o
lt

a
g
e 

(V
)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0
 Input signal 2

 

V
o
lt

a
g
e 

(V
)

t (ms)

0 50 100 150 200 250 300
0.0

0.5

1.0
 Input signal 3

 

V
o
lt

a
g
e 

(V
)

t (ms)
0 50 100 150 200 250 300

0

2

4

6

8

10  Input pulse 3

V
o

lt
a

g
e 

(V
)

t (ms)

115.00 115.01 115.02
0.0

2.0

4.0

V
o

lt
a

g
e 

(V
)

t (ms)
0 50 100 150 200 250 300

0.0

0.5

1.0
 Input detector signal

 

V
o
lt

a
g
e 

(V
)

t (ms)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)



168 

 

 

Fig. B.4. Conceptual diagrams of blocks including signal flows in the (a) output 

neuron and the (b) global pulse generator II to implement the designed hardware-

based neural network using the STDP learning algorithm and the pulse scheme 

including the inhibition pulses. 
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Fig. B.5. An output neuron circuit for generating the input pulse used in the 

designed hardware-based neural network using the STDP learning algorithm and 

the pulse scheme including the inhibition pulses. 
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Fig. B.6. Operation of integrate-and-fire circuits to implement the designed 

hardware-based neural network using the STDP learning algorithm and the pulse 

scheme including the inhibition pulses. (a)-(c) Membrane potentials of 

representative output neurons included in the single output neuron layer. (d)-(f) 

Input signals of the global pulse generator II when output signals recognized by the 

neuron firing detection module.  
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Fig. B.7. Potentials of (a)-(c) the PLs, (d)-(f) the SLs, and (g)-(i) the DLs of the 

electronic synaptic devices in the AND-type array connected to representative 

output neurons in the single output neuron layer. (j) and (k) show an enlarged view 

of the tail portion of the feedback pulse and the drain potential in the read operation, 

respectively. 
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초    록 

 

뉴로모픽 기술은 폰 노이만 프로세서의 대안으로서 두뇌에서 영감을 

받은 컴퓨팅 아키텍처를 구현하는 것을 목표로 한다. 이 논문에서는 박

막 트랜지스터형 및 플래시 메모리 어레이 아키텍처를 사용하여 온칩 

훈련을 가능하게 하는 하드웨어 기반 신경망을 설계한다. 어레이를 구

성하는 시냅스 소자는 도핑된 p형 바디, SiO2 / Si3N4 / Al2O3로 구성된 게

이트 절연막 스택 및 부분적으로 구부러진 폴리실리콘 채널을 특징으로 

한다. 시냅스 소자 구조에 포함된 바디 영역은 시냅스 가중치를 변경할 

때 소스 및 드레인 라인 모두에 필요한 고전압 드라이버의 회로 부담을 

줄일 수 있다. 또한 게이트 절연막 스택에 포함된 high- κ 물질은 시냅스 

소자의 동작 전압을 낮출 수 있다. 시냅스 소자의 크기가 축소됨에 따

라 소자의 구조적인 특징은 메모리 동작의 효율성 뿐만 아니라 어레이

의 비트 라인에서 발생하는 전압 강하 효과에 대한 내성을 증가시킨다. 

우리는 제작된 시냅스 소자를 이용한 AND형 어레이 구조에서 선택적

인 메모리 동작을 위한 펄스 방식을 제안하고 실험적으로 검증한다. 이

후 제작된 시냅스 소자 및 어레이의 측정된 특성을 기반으로 학습 목적

에 따라 2가지 유형의 하드웨어 기반 스파이크 신경망 (SNN)을 설계한

다. 먼저 스파이크 시점 의존 가소성 기반 학습 규칙을 이용하여 비지

도 학습을 위한 하드웨어 기반 SNN을 제안한다. 설계된 네트워크는 외

부 회로에서 펄스를 생성하지 않으며 각 스파이크 뉴런 회로에서 필요

한 펄스들이 생성된다. 이러한 네트워크에서 스파이크 시점 의존 가소
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성 기반 학습 규칙은 폴리실리콘 AND형 어레이를 사용하기 위한 효과

적인 펄스 구동 방식을 통해 구현된다. 제안된 펄스 구동 방식과 SNN

을 기반으로 200개의 출력 뉴런을 사용하는 MNIST 필기 숫자 패턴 학

습에서 91.63 %의 인식 정확도를 얻을 수 있다. 두 번째로, 우리는 직접 

피드백 정렬 학습 규칙을 사용하여 지도 학습을 위한 하드웨어 기반 

SNN을 제안한다. 순방향 경로와 역방향 경로에서 동일한 시냅스 가중

치를 가질 필요가 없는 직접 피드백 정렬 알고리즘으로 인해 AND형 

어레이 아키텍처는 효율적인 온칩 훈련 신경망 설계에 활용될 수 있다. 

AND형 어레이 아키텍처에 적합한 펄스 구동 방식도 신경망에서 직접 

피드백 정렬 알고리즘을 구현하기 위해 고안된다. 시스템 수준 시뮬레

이션에서 제안된 펄스 구동 방식과 컴퓨팅 아키텍처를 기반으로 하는 

MNIST 패턴 학습에서 최대 97.01%의 인식 정확도를 얻을 수 있다. 또

한, 우리는 제안된 시냅스 어레이와 CMOS 회로의 집적 공정 과정을 

제안하고 이를 검증한다. 제안하는 집적 공정 방법은 시냅스 어레이와 

CMOS 회로의 공정 과정을 공유함으로써 마스크와 공정 수를 줄일 수 

있는 장점이 있다. 제안된 집적 공정 방법은 제안하는 시냅스 소자와 

CMOS와의 우수한 호환성을 검증할 뿐만 아니라, 하드웨어 기반 신경

망을 효율적으로 구현할 수 있는 방법론을 제시한다는 점에서 의의를 

갖는다. 

 

주요어 : 하드웨어 기반 스파이크 신경망, 플래시 메모리 시냅스 소자, 

AND형 어레이, 온칩 학습, 비지도 학습, 지도 학습, 뉴런 회로. 

학번 : 2015-20881 
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