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Abstract 

 
 

Deep Learning-based Metabolite 

Quantification in Proton Magnetic 

Resonance Spectroscopy of the Brain  
 

Hyeong Hun Lee 

Major in Biomedical Sciences 

Department of Biomedical Sciences 

Seoul National University Graduate School 

 

Nonlinear-least-squares-fitting (NLSF) is widely used in proton magnetic 

resonance spectroscopy (MRS) for quantification of brain metabolites. However, it 

is known to subject to variability in the quantitative results depending on the prior 

knowledge. NLSF-based metabolite quantification is also sensitive to the quality of 

spectra. In combination with NLSF, Cramer-Rao lower Bounds (CRLB) are used as 

representing lower bounds of fit errors rather than actual errors. Consequently, a 

careful interpretation is required to avoid potential statistical bias.  

 The purpose of this study was to develop more robust methods for 

metabolite quantification and uncertainty estimation in MRS by employing deep 

learning that has demonstrated its potential in a variety of different tasks including 

medical imaging.  

To achieve this goal, first, a convolutional neural network (CNN) was 

developed. It maps typical brain spectra that are degraded with noise, line-



 

 ii 

broadening and unknown baseline into noise-free, line-narrowed, baseline-removed 

spectra. Then, metabolites are quantified from the CNN-predicted spectra by a 

simple linear regression with more robustness against spectral degradation. Second, 

a CNN was developed that can isolate each individual metabolite signals from a 

typical brain spectrum. The CNN output is used not only for quantification but also 

for calculating signal-to-background-ratio (SBR) for each metabolite. Then, the SBR 

in combination with big training data are used for estimating measurement 

uncertainty heuristically. Finally, a Bayesian deep learning approach was employed 

for theory-oriented uncertainty estimation. In this approach, Monte Carlo dropout is 

performed for simultaneous estimation of metabolite content and associated 

uncertainty. These proposed methods were all tested on in vivo data and compared 

with the conventional approach based on NLSF and CRLB. 

The methods developed in this study should be tested more thoroughly on a 

larger amount of in vivo data. Nonetheless, the current results suggest that they may 

facilitate the applicability of MRS. 

 

Keywords: Magnetic Resonance Spectroscopy, Deep learning, Metabolites 

 

Student Number: 2014-22018 
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Chapter 1. Introduction 

 

1.1 Magnetic Resonance Spectroscopy  

Spectroscopy is the study of the interaction between particles and 

electromagnetic radiation or the response of particles to radiation as a function of the 

frequency of radiation. The types of spectroscopy are divided according to the 

wavelength of the electromagnetic wave and the properties of materials 

corresponding thereto. Representative examples include infrared (IR) spectroscopy, 

ultraviolet (UV) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. 

Among them, NMR spectroscopy uses radio frequencies in the range of 10 MHz – 1 

GHz for the observation of magnetic properties and energy states of nuclei. [1, 2]  

In vivo NMR is one of the major applications of modern NMR [3-5], and its 

representative examples include magnetic resonance imaging (MRI) and magnetic 

resonance spectroscopy (MRS). These methods obtain spatial encoded or voxel-

localized signal from a sample placed in a static external magnetic field using RF 

pulses and magnetic field gradient pulses. MRS is a technique that observes 

metabolic activities such as oxidative phosphorylation and glycolysis in specific 

tissues in vivo by non-invasively measuring the resonance signals of metabolites in 

anatomically localized voxels.  

This Section introduces the basic principles of MRS, those metabolites 

detectable in vivo, and measurement methods.  

   

1.1.1. Nuclear Spin 

Spin is the intrinsic angular momentum of subatomic particles (i.e., protons, neutrons, 

and electrons), exhibiting the property of being quantized as discrete values in a 

magnetic field, [6-10] and can be classified into nuclear and electron spins. Since 

MRS mainly uses nuclear spin, which is the intrinsic angular momentum of the 

nucleus, the following descriptions are based on nuclear spin.  

The magnitude of the nuclear spin angular momentum L can be written as 

L =  ℏ√I(I + 1).  (1.1) 

where I  is the nuclear spin quantum number [8, 9] and is characterized by the 

following properties of subatomic particles. [11]  



 

 
２ 

 The number of neutrons and the protons are both even, then the I = 0. 

 The number of neutrons plus the number of protons is odd, then the I = half-

integer. (i.e., 1/2, 3/2, 5/2) 

 The number of neutrons and the number of protons is both odd, then the I 

= integer. (i.e., 1, 2, 3) 

Since this study deals only with hydrogen (proton), the following contents will be 

explained on the basis of I = 1/2. 

 In the presence of an external magnetic field B0 = Bz, a spin angular 

momentum component along z can only have a certain value of Lz, which can be 

written as 

LZ = ℏm  

m = −I, −I + 1, … ,0, , … I − 1, I 

(1.2) 

(1.3) 

where m is the nuclear spin projection quantum number, and the possible values for 

proton (I=1/2) in a magnetic field are +1/2 or –1/2 (called spin-up state (𝛼, ground 

energy state) and spin-down state ( 𝛽,  excited energy state), respectively). 

Meanwhile, the angular momentum L in classical mechanics is also expressed as 

𝐋 =  𝐫 × 𝐩  (1.4) 

𝐩 =  m𝐯. (1.5) 

Next, the magnetic dipole moment 𝛍 is a vector indicating the degree to which a 

particle receives a rotational force in response to a magnetic field, and is expressed 

as a product of a current i and the area of the current loop 𝐀. That is, 

𝛍 =  𝑖 × 𝐀 = (𝑒
𝐯

2𝜋𝐫
) 𝜋𝐫𝟐 (1.6) 

where e is the electric charge, r is the distance between the particle and the center of 

rotation, i is the value obtained by dividing the amount of charge of the electron by 

the period of the circular motion, and the period of the circular motion is expressed 

as  2𝜋𝐫 𝐯⁄ . [12] Substituting the 𝐋 derived in Equation (1.4) into the 𝛍, it is written 

as 

𝛍 =  (
e

2m
) 𝐋 =  𝛾𝐋 (1.7) 

where 𝛾  is the gyromagnetic ratio, which represents the ratio of the magnetic 

moment to the angular momentum of the nuclei and represents a unique value for 

each nucleus as shown in the Table 1-1. This means that each nucleus can be 
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distinguished even in an environment with the same magnetic field strength. 

 

Nucleus 
Spin 

(I) 

Gyromagnetic 

Ratio 

(107 rad T-1s-1) 

Gyromagnetic 

Ratio 

(MHz T-1) 

Natural 

Abundance 

(%) 

1H 1/2 26.752 42.576 99.985 

2H 1 4.107 6.536 0.015 

13C 1/2 6.728 10.705 1.108 

17O 5/2 -3.628 -5.772 0.0001 

19F 1/2 25.181 40.059 100 

31P 1/2 10.841 17.235 100 

23Na 3/2 7.080 11.262 100 
 

Table 1-1. Gyromagnetic ratios, spin quantum number and natural abundance of selected 

nuclei. 

 

As in Equation (1.7), a nucleus with a magnetic moment exhibits angular 

momentum, and if there is an external magnetic field (𝐁𝟎), a rotational force (torque; 

𝐓) is applied to the magnetic moment and the spin precession occurs around the 

direction of the 𝐁𝟎. 

𝐓 = 𝐫 × 𝐅 = (
d𝐋

dt
) =  𝛍 × 𝐁𝟎  (1.8) 

Rewriting Equation (1.8) for 𝛍 as 

(
d𝛍

dt
) =  𝛾𝛍 × 𝐁𝟎  =  𝛍 × 𝛚𝟎. (1.9) 

𝛚𝟎 = 𝛾𝐁𝟎.  (1.10) 

Equation (1.10) is called the Larmor Equation and 𝛚𝟎 represents the precession 

frequency of the proton (or other nuclei) in the external magnetic field, and is directly 

proportional to the external magnetic field (𝐁𝟎). 

Meanwhile, since the magnetic potential energy is also related to magnetic 

moment 𝛍 and external magnetic field 𝐁𝟎, it can be written as 

E =  − 𝛍 ∙ 𝐁𝟎. (1.11) 

Assuming that the direction of  𝐁𝟎  is along the z-axis, Equation (1.11) can be 

rewritten as 

E =  −  μ𝑧B0 =  −(𝛾LZ)B0 =  −𝛾ℏmB0. (1.12) 
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Therefore, the energy difference ∆E between the spin-up and spin-down states can 

be written as follows. 

∆E =  𝛾ℏB0 = ℏω0 (1.13) 

ω0 =  𝛾B0  (1.14) 

where ω0 is also called the Larmor frequency and has the identical concept as 𝛚𝟎 

in Equation (1.10). This is the most fundamental concept in MRS that is utilized in 

the generation of the resonance signal through the RF excitation as described in 

Section 1.1.3.  

 In conjunction with Equation (1.3) and (1.11), if an external magnetic field 

is applied along the z-axis, the  μ𝑧 of the proton is aligned in a direction parallel 

(spin-up state) to or antiparallel (spin-down state) to the magnetic field direction 

according to the spin state. (Figure 1-1) There exists a population difference between 

the two states, which is descripted in detail in the next Section. 

 

 

Figure 1-1. Graphical representation of magnetization. 

 

1.1.2. Magnetization  

In a sample at thermal equilibrium in the presence of an external magnetic field, the 

spins in spin-up state (𝛼 ) slightly outnumbers those in spin-down state (𝛽) , and 

consequently, a magnetization is generated (Figure 1-1). The magnetization M of an 

n-spin system is expressed as 
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𝐌 =  ∑ μ𝑖

𝑛

𝑖

=  n𝛼μ𝛼 +  n𝛽μ𝛽 . (1.15) 

where μ𝛼 and μ𝛽 are the magnetic moments in the spin-up and spin-down states 

of the proton, respectively, and n𝛼 and n𝛽 are the populations for each spin state. 

Since μ𝛼 and μ𝛽 contain 1/2 and −1/2 of the value of m (Equation (1.2) and (1.7)), 

respectively, it can be rewritten as follows. 

𝐌 =  (
1

2
)

𝛾ℎ

2𝜋
n𝛼 + (−

1

2
)

𝛾ℎ

2𝜋
n𝛽 =

𝛾ℎ

4𝜋
(n𝛼 − n𝛽) (1.16) 

On the other hand, according to the Boltzmann statistics, the population ratio of n𝛼 

to n𝛽 at thermal equilibrium can be written as 

 
n𝛼

n𝛽
= e∆E/𝑘T = eℎυ0/𝑘T. (1.17) 

where k is the Boltzmann constant and the T is the absolute temperature [13]. Using 

a first order approximation of the Taylor series, Equation (1.17) becomes 

n𝛼

n𝛽
≃ 1 + (

ℎυ0

𝑘T
).   (1.18) 

where ℎυ0 𝑘T⁄ ≪ 1. Then, the difference of the population between the spin-up and 

spin-downstate can also be approximated as below for the n-spin system. 

n𝛼 − n𝛽  ≃
n

2
(

ℎυ0

𝑘T
)   (1.19) 

Therefore, by plugging Equation (1.13) and (1.1) into Equation (1.15) and assuming 

the direction of 𝐁𝟎  is along the z-axis, the magnitude of the macroscopic 

magnetization at the thermal equilibrium can be written as 

M0 =  
𝛾ℎ2

4𝜋
(

nυ0

2𝑘T
) = 𝛾2ℏ2 (

nB0

4𝑘T
).   (1.19) 

Equation (1.19) intuitively represents several factors that determine the magnitude 

of the magnetization that is associated with the sensitivity of the MRS signal. First, 

M0 is directly proportional to the strength of B0. Therefore, the signal sensitivity is 

improved in a higher magnetic field. Second, due to the fact that M0 is proportional 

to the square of 𝛾 , 1H has a much higher sensitivity than other nuclei. (e.g., 

according to Table 1-1, the 𝛾 of 1H is ~2.47 times and ~3.98 times higher than those 

of 31P and 13C, respectively, and therefore, when all other variables in Equation (1.19) 

remain the same, M0 of 1H is about ~6.1 times and ~15.8 times larger than those of 
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31P and 13C, respectively.) Combined with its natural abundance in human body, 1H 

is considered the nucleus of choice in MRS. Third, M0 is directly proportional to n. 

Therefore, the larger the sample size (voxel size in MRS), the stronger the signal. 

 

1.1.3. MRS Signal 

At thermal equilibrium, M is a static vector along the z-direction. That is, defining 

the z-component of the magnetization as longitudinal magnetization (Mz), Mz = M0, 

and as no transverse magnetization (Mxy) exists, there is no signal detectable. 

dMz(t)

dt
= 0   (1.20) 

In order to generate an MRS signal, an additional, time-varying magnetic field (B1) 

must be applied to the sample in the direction perpendicular to B0 to flip Mz onto the 

transverse plane.  

In MRS, RF pulses are utilized as the B1 field that is turned on and off with 

a limited duration (<100 ms on 3T human scanner). The magnetic field component 

of an RF pulse applied in the +x direction can be expressed as 

𝐁𝟏(t) =  2B1
𝑒(t) cos(ωt + φ) 𝐱̂. (1.21) 

where B1
𝑒 is the envelope of 𝐁𝟏(t), φ is the initial phase of 𝐁𝟏(t) (ignored from 

here on for simplicity), and ω is the carrier frequency of the RF pulse. Therefore, 

while an RF pulse is being applied, magnetization exhibits precession around both 

B0 and B1. Due to the application of an RF pulse, magnetization exhibits complex 

motion in three-dimensional space. More details about the motion of the 

magnetization are described in Section 1.1.7. On the other hand, since the RF pulse 

is linearly polarized according to Equation (1.21), it can be decomposed into two 

circularly polarized fields. 

𝐁𝟏(t) =  B1
𝑒(t)[cos(ωt) 𝐱̂ + sin(ωt) 𝐲̂] 

                     + B1
𝑒(t)[cos(ωt) 𝐱̂ − sin(ωt) 𝐲̂] 

(1.22) 

where B1
𝑒(t)[cos(ωt) 𝐱̂ + sin(ωt) 𝐲̂]  in Equation (1.22) represents the circularly 

polarized field rotating counterclockwise, of which the influence is usually 

negligible. [14]  

Given that a torque is exerted on the magnetic moment μ in the magnetic 

field B, and that the magnetization is the sum over all magnetic moments (Equation 

(1.14)), Equation (1.9) can be generalized to the macroscopic magnetization and is 
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expressed as [1] 

d𝐌(t)

dt
= 𝛾𝐌(𝑡) × 𝐁(t). (1.23) 

 The total magnetic field B(t) considering both the approximated Equation for 𝐁𝟏 

and B0 can be expressed as 

𝐁(t) =  B1cos(ωt)𝐱̂ − B1sin(ωt)𝐲̂ + B0𝐳̂. (1.24) 

  

 

Figure 1-2. Change of magnetization by RF pulse. (A) Magnetization behavior in laboratory 

frame (B) Magnetization behavior in rotating frame. 

Due to the RF pulse, Mz experiences a torque, which causes a rotation towards the 

transverse plane. (Figure 1-2(A)) Since the two magnetic fields act on the 

magnetization simultaneously, Equation (1.23) can be written for each component as 

dMx(t)

dt
= 𝛾(MyB0 + MzB1sin(ωt)) (1.25) 

dMy(t)

dt
= 𝛾(−MxB0 + MzB1cos(ωt)) (1.26) 

dMz(t)

dt
= 𝛾(−MxB1sin(ωt) + MyB1cos(ωt)). (1.27) 

At this point, it is more convenient to describe the behavior of the magnetization in 

a frame of reference that also rotates at ω around the z-axis. (Figure 1-2(B)) The 

magnetization in the rotating frame is defined as 

Mx
′ (t) = Mxcos(ωt) −  Mysin(ωt) 

My
′ (t) = Mxsin(ωt) +  Mycos(ωt) 

Mz
′ (t) = Mz(t). 

(1.28) 

(1.29) 

(1.30) 

Using Equation (1.28) – (1.30), Equation (1.25) – (1.27) become as follows. 
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dMx
′ (t)

dt
= (𝛾B0 − ω)My

′  (1.31) 

dMy
′ (t)

dt
= −(𝛾B0 − ω)Mx

′ + 𝛾B1Mz
′  (1.32) 

dMz
′ (t)

dt
= −𝛾B1My

′  (1.33) 

Equation (1.31) – (1.33) can be expressed in the form of Equation (1.23) as 

d𝐌′(t)

dt
= 𝛾𝐌′(t) × 𝐁𝐞𝐟𝐟(t). (1.34) 

where Beff is defined as the effective magnetic field, which can be expressed as 

follows. 

𝐁𝐞𝐟𝐟 =  B1𝐱′̂ + (B0 −
ω

𝛾
) 𝐳′̂ (1.35) 

Beff = |𝐁𝐞𝐟𝐟| = √B1
2 +  (B0 −

ω

𝛾
)

2

 (1.36) 

 

 

Figure 1-3. Vector representation of on/off resonance by RF pulse in rotating frame. (A) on 

resonance, (B) In the presence of a relatively weak or (C) strong effective magnetic field. 

Figure 1-3(A) shows the on-resonance case. That is, when ω  of the applied RF 

pulse is equal to Larmor frequency of the spin system (ω0), Equation (1.35) becomes 

𝐁𝐞𝐟𝐟 = B1𝐱′̂ , and the magnetization is entirely placed on the transverse plane, as 

shown in Equations (1.31) – (1.32). In this process, the amount of rotation 

experienced by the net magnetization (M) due to an RF pulse is defined as the flip 

angle and can be expressed as 

α = 𝛾 ∫ B1
𝑒(t)dt

T

0

. (1.37) 

If the shape of the RF pulse is a simple square, the flip angle can be simply expressed 
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as α = 𝛾B1T , and α=90° should be applied for maximum transverse component 

under the ideal on-resonance condition. 

For an off-resonance case (i.e., ω ≠ ω0 ), the direction of 𝐁𝐞𝐟𝐟  lies 

between the transverse plane and the z-axis (Figure 1-3(B)-(C)). Therefore, the 

magnetization precesses around that direction of 𝐁𝐞𝐟𝐟 and induces a more complex 

rotation when compared to the on-resonance case.  

The off-resonance effect in MRS can deteriorate spatial localization 

performance, and interrupt acquisition of the signal from the desired region. [15] The 

off-resonance effects can be reduced by optimizing RF pulses [16] and minimizing 

B0 inhomogeneity through high-dimensional shimming. [17] For the rest of this 

chapter, off-resonance effects are ignored. 

Immediately after an excitation RF pulse, transverse magnetization appears 

as an observable signal by inducing an electromotive force in the receiving coil 

through Faraday's law. According to Equations (1.23), (1.31) – (1.33), the resulting 

MRS signal will be detected forever. Therefore, Equation (1.23) requires an 

additional term that serves to cause the net transverse and longitudinal magnetization 

to return to their thermal equilibrium values over time. This is called relaxation. It is 

classified into transverse and longitudinal relaxation. 

 

 

Figure 1-4. Transverse and longitudinal magnetization component with time by T2 (black), 

T2
* (red) relaxation (A) and T1 relaxation (B). 

 First, longitudinal relaxation (or T1 relaxation) is a process in which the Mz 

of the spin system excited by an RF pulse is restored to the thermal equilibrium value 

(Mz = M0) through the interaction of the spin system with its environment. (i.e., the 

process by which the ratio of the spin populations between the spin-up and spin-

down states recovers back to its original value at thermal equilibrium as in Equation 

(1.17)). The environment surrounding the spin system is collectively referred to as 
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lattice, and longitudinal relaxation is also termed as spin-lattice relaxation. The 

amount of change of Mz over time in longitudinal relaxation can be expressed as the 

difference between M0 and Mz at a certain time (t) as 

dMz(t)

dt
=

1

𝑇1
(M0−Mz(t)). (1.38) 

Solving Equation (1.38) for Mz,  

MZ(t) = M0 (1 − e
−

t
𝑇1) + MZ(0)e

−
t

𝑇1 .  (1.39) 

In Equations (1.38) and (1.39), T1 represents the time constant required for the Mz 

component to recover to 0.63M0, (Figure 1-4(A)). In MRS, different metabolites can 

have different T1 depending on the characteristics of the lattice (e.g., viscosity and 

size of molecules). [18] In addition, T1 tends to increase as B0 increases in the range 

of clinical field strength (1.5 – 3.0T). [19, 20] In order for Mz(t) to have recovered  

to M0 at each excitation, the repetition time (TR) must be at least 5T1. [21], which is 

the main cause of the long scan time. [22]  

 

Figure 1-5. Graphical representation of spin dephasing (A) and consequent free induction 

decay (B). 
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 The second relaxation term, transverse relaxation, also known as spin-spin 

relaxation, is caused by perturbation of local magnetic field at the site of neighboring 

spins. The effectiveness of this perturbation depends on the microscopic motion of 

the spins. As a result of the perturbation, the relative phase of the spins is gradually 

lost. (Figure 1-5(A)) Similar to longitudinal relaxation, the time-dependent change 

in the Mxy component due to transverse relaxation may be expressed as below. 

dMxy(t)

dt
=

1

𝑇2
(0 −Mxy(t)) (1.40) 

Unlike Mz, the initial net magnetization of Mxy is 0 due to lack of phase coherence 

at thermal equilibrium. Solving Equation (1.40) for Mxy,  

Mxy(t) = Mxy(0)e
−

t
𝑇2 . (1.41) 

In Equation (1.40) and (1.41), T2 represents the time constant required for the Mxy 

component to decrease to 0.37M0, (Figure 1-4(B)) and, like T1, different metabolites 

can have different T2. [18] In addition, as field strength (1.5 – 3.0T) increases, T2 

tends to be shortened. [19] The dephasing of the spins causing transverse relaxation 

is manifested as a decaying signal during data collection known as free induction 

decay (FID) (Figure 1-5(B)). The signal attenuation of FID is often expressed as an 

exponential function as in Equation (1.41).. In practice, in addition to T2 relaxation 

due to spin-spin interactions, the spin dephasing is much faster due to imperfect 

magnets and/or susceptibility effects. Therefore, the decay of FID is expressed in 

terms of T2
*. Considering the decay constant, T2', due to the local magnetic field 

inhomogeneity, 

1

T2
∗ =

1

T2
+

1

T2
′ . (1.42) 

Although the initial signal decay after RF excitation obeys T2
* decay, the 

effect of the imperfect magnet (if it is time-independent) can be compensated by 

refocusing of the spin phase in a spin echo experiment. [23] Spin echo is a signal 

generated by applying a 180° RF pulse after a 90° RF pulse, which refocuses the 

dephased spins. Therefore, the 180° RF pulse is often referred to as a refocusing RF 

pulse. The time delay between the first 90° pulse the spin echo is defined as echo 

time (TE). (Figure 1-6) 



 

 
１２ 

 

Figure 1-6. Spin echo process by refocusing RF pulse. 

Finally, the Equation (1.23) can be rewritten by simultaneously considering 

RF field and relaxation as follows. [1] 

d𝐌(t)

dt
= 𝛾𝐌(𝑡) × 𝐁(t) − R{𝐌(t) − 𝐌0} (1.43) 

𝐁(t) = 𝐁0 + 𝐁1(t) (1.44) 

where R is a relaxation matrix given as 

R = [

1/𝑇2 0 0
0 1/𝑇2 0
0 0 1/𝑇1

]. (1.45) 

In MRS, the Equation (1.43) – (1.45) are used to analyze only the simple behavior 

of the magnetization vector under the application of RF pulses and longitudinal / 

transverse relaxation. For more general analysis of the behavior of the spin systems 

found in human brain, a quantum mechanical approach is required due to J-coupling 

(Section 1.1.5).  

 

1.1.4. Chemical Shift  

In B0, the electron cloud around a nucleus is known to shield the magnetic field at 

the nucleus site [24, 25]. Therefore, the actual strength of the magnetic field 

experienced by the nucleus slightly differs from that of the static B0. Consequently, 

the resonance frequency of the nucleus would change accordingly. (Figure 1-7 (A) – 

(B)) As those protons detected in MRS reside in molecules with multiple nuclei, the 
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amount of change in resonance frequency of the protons would depend on their 

locations in a molecule and the structure of the molecule. Such a change in resonance 

frequency of a nucleus in a molecule due to its different chemical environment is 

called chemical shift. The shielded, effective magnetic field at a nucleus is expressed 

as 

𝐁 =  𝐁𝟎(1 − σ). (1.46) 

where σ is a shielding constant (dimensionless) and depend on the chemical 

environment of the nucleus. Then, Equation (1.14) combined with Equation (1.46) 

yields 

𝜐 =  
𝛾

2π
B0(1 − σ).  (1.47) 

Chemical shift is expressed in part per million (ppm) as a relative frequency (δ) to a 

reference resonance frequency, such that it does not depend on B0. (Figure 1-7 (C)) 

δ =  
𝑣 − 𝑣ref

𝑣ref
 ×  106. (1.48) 

 

 

Figure 1-7. Graphical description of chemical shift. (A) deshielding (B) shielding effect (C) 

chemical shift change pattern according to the degree of shielding 
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In 1H-MRS, the reference chemical shift (δ = 0) is set to the resonance frequency 

(𝑣ref) of the protons in the three methyl groups (in total, 9 protons per molecule) of 

Sodium trimethylsilyl propanesulfonate (DSS) or Trimethylsilylpropanoic acid 

(TSP).[26] However, since it does not exist in vivo (especially in the brain), the 

chemical shift of the protons in the methyl group of N-Acetyl-Aspartate (2.01 ppm) 

is typically used as an internal reference. 

 

1.1.5. Indirect Spin-Spin Coupling 

Indirect spin-spin coupling (also called J-coupling and scalar coupling) is a 

phenomenon that occurs as a result of an interaction  between two nuclear spins in 

a molecule through a chemical bond (thus indirect) [27, 28]. 

More specifically, it is an interaction between two nuclear spins via covalent bonds, 

in which the electrons interact with the nuclear spins (hyperfine or Fermi contact 

interactions) [29]. Thus, the indirect spin-spin coupling contains information about 

the relative bonding distance and angle between nuclei, which could be extracted 

from MR spectra [30]. The strength of the indirect spin-spin coupling is expressed 

as a coupling constant J (Hz). Denoting ∆𝜐 as the chemical shift difference between 

two J-coupled spins, the so-called degree of coupling can be classified as follows 

[31, 32]: 

 If ∆𝜐/J ≫1, the spin system is called week coupled. By considering the 

relative proximity of alphabet letters, they are denoted as, for instance, AX, 

A2X2, AX3, … where the subscript corresponds to the number of 

magnetically equivalent spins, which exhibit exactly the same interactions 

(e.g. same J-coupling) with other nuclei in the molecule. Therefore, 

magnetically equivalent nuclei have the same resonance frequency. 

 If ∆𝜐/J ≤1, the spin system is called strongly coupled, and denoted as AB, 

A2B2, … 

 For those intermediately coupled spin systems, they are denoted as AMX, 

AMNPQ, … 

The J-coupling constant decreases rapidly as the number of chemical bonds 

between the coupled spins increases. The indirect spin-spin coupling involving 4 or 

more of chemical bonds is generally ignored. 

Summarizing in terms of changes in the energy state of nuclei, a nucleus in a 
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magnetic field exhibit a single peak (single resonance frequency) in the spectrum as 

the energy state of the spin is split according to Equation (1.9) - (1.11) due to the 

Zeeman effect (Figure 1-8 (A), (B)). For a two-spin system with J = 0 between the 

spins, the chemical shift effect results in two singlets (i.e., two distinguishable peaks 

due to changes in resonance frequency) (Figure 1-8 (B), (D)). Assuming that the two 

spins are now indirectly coupled, the energies of the spin states slightly change due 

to the J-coupling, exhibiting two doublets (Figure 1-8 (C), (D)).  

 

 

Figure 1-8. Change in energy state of spin due to spin-spin coupling. (A) without a magnetic 

field (B) with a magnetic field and without coupling state (C) spin-spin coupling considered 

(D) Resonance signal change form by spin-spin coupling 

 

1.1.6. in vivo Metabolites 

MRS can simultaneously acquire signals from multiple metabolites non-invasively.  

For instance, 1H-MRS can detect various neurotransmitters in the brain, and 13C-

MRS can measure fluxes of metabolites non-invasively. 31P-MRS can detect 
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metabolites involved in energy metabolism. 

Since protons have high sensitivity compared to other nuclei, in vivo 1H-

MRS is a powerful technique that can distinguish, measure, and quantify a number 

of important biological compounds. 

Figure 1-9 is a 1H-MRS spectrum of a human brain at 3.0 T (healthy 

volunteer). In general, the number of metabolites that can be observed in vivo using 

1H-MRS is more than 20, and the following metabolites can be quantified in human 

brain: Acetate (Ace), Adenosine Triphosphate (ATP), Alanine (Ala), Ascorbic acid 

(Asc), Aspartate (Asp), Creatine (Cr), γ-aminobutyric acid (GABA), Glucose (Glc), 

Glutamate (Glu), Glutamine (Gln), Glutathione (GSH), Glycerophosphorylcholine 

(GPC), Glycine (Gly), Lactate (Lac), myo-Inositol (mI), N-Acetyl-Aspartate (NAA), 

N-Acetyl-Aspartyl-Glutamate (NAAG), Phosphocreatine (PCr), Phosphorylcholine 

(PCh), Phosphorylethanolamine (PE), Pyruvate (Pyr), scyllo-Inositol (sI), Serine 

(Ser), Succinate (Suc), Taurine (Tau), Threonine (Thr), Valine (Val), 2-

Hydorxyglutarate (2-HG). 

 

 

Figure 1-9. 1H-MR spectrum acquired at 3.0 T of healthy subject. 

 These metabolites are functionally specialized in organs and regions therein. 

Their concentrations can be altered due to disease-specific changes in metabolite 
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pathways. For example, GABA and Glu are representative neurotransmitters in the 

brain, and their concentration changes are largely linked to psychiatric disorders. [33] 

The chemical shift and J-coupling constant values of a number of metabolites have 

already been well established. [34] This information is also used to build a metabolite 

basis set that is essential for metabolite quantification as described in Section 1.1.10.  

Macromolecules (MMs) are composed mainly of mobile/immobile proteins 

(> 3kD), which are also important elements in 1H-MRS of the brain in addition to 

metabolites. (Figure 1-9) MMs signal are distributed over the entire spectra region 

in 1H-MRS of the brain, and therefore, significantly hinders metabolite 

quantification. Unlike metabolites, the spectral characteristics of MMs signal has not 

been well defined. [35, 36] The influence of the pathological condition of patients 

on the MMs signal is also yet to be clarified. [37, 38] The variability of the MMs 

signal has a non-negligible effect on metabolite quantification [39] and ultimately 

lowers the reliability and accuracy of the metabolite quantification in vivo. To 

address this issue, metabolite-nulled spectra can be acquired by taking advantage of 

the large T1 difference between MMs and metabolites, and included in the metabolite 

quantification process. [40, 41] However, it is very time consuming to obtain 

metabolite-nulled spectra, which limits its clinical application. This will be dealt with 

in more detail in Chapter 2. 

 

1.1.7. RF Pulses and Gradients 

As described in the previous Section, RF pulses are used to manipulate 

magnetization. They can be classified into the following types in terms of their 

function in the data acquisition: 

 Excitation pulse: It serves to flip the longitudinal magnetization onto the 

xy-plane, and can be further divided into non-self-refocusing and self-

refocusing pulses depending on the phase distribution of the excited spins 

immediately after the pulse. The phase distribution of the spins generated 

by the RF pulses can effectively be removed for the latter such that the 

minimum delay required before the onset of data collection can be shorted. 

 Saturation pulse: A saturation pulse is used to suppress signal from a 

specific region of the sample. For instance, MRS signal could also be 

contributed from an outer-volume (outside a voxel) due to imperfect voxel 
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localization. To minimize such a voxel contamination, saturation pulses (in 

combination with gradients) are irradiated to those regions outside the 

defined voxel. 

 Inversion pulse: An inversion pulse aims to invert longitudinal 

magnetization. (+Mz → -Mz). For instance, it is used for the inversion 

recovery-based water suppression by taking advantage of the large 

difference in T1 between water and metabolites. In this case, the inversion 

delay between the inversion pulse and an excitation pulse is tuned at a 

temporal point such that the amount of the transverse magnetization of 

water generated by the excitation pulse is negligible compared with that of 

metabolites. It is this technique that is frequently used for the acquisition of 

the above-mentioned metabolite-nulled spectra. 

 Refocusing pulse: This pulse flips transverse magnetization (Mxy) by 180o 

to induce realignment of the dephased spins and is an essential RF pulse in 

the spin echo experiment. 

Another essential component of MRS is magnetic field gradient. Slice selection 

is achieved by applying a one-dimensional constant gradient while simultaneously 

applying a frequency selective RF pulse. MRS signal is detected from three 

orthogonal intersecting slices (voxel), (Figure 1-10), which will be discussed in 

detail in Section 1.1.9. 

 

 

Figure 1-10. MRS signal acquisition process for a specific voxel. It is possible to form an 

MRS signal for a specific voxel (purple) from three RF pulses and gradient pairs. That is, by 

controlling the flip angle of RF pulses, timing between RF pulses, etc., the remaining signals 

can be suppressed while maximizing the desired signal type. (spin echo (SE), or stimulated 

echo (STE); purple) 

The application of a gradient can result in eddy current. It can severely degrade 

the quality of MRS spectra. [42, 43] Therefore, additional postprocessing may be 
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performed if necessary. [42, 43] 

 

1.1.8. Water Suppression 

Water exhibits the strongest signal and can influence the entire spectral range of 1H-

MRS spectra. Therefore, effective suppression of water signal is the most important 

prerequisite to detecting other metabolite signal. Water signal can be suppressed 

during data collection using frequency-selective RF pulses and gradients . [44, 45] 

(Figure 1-11(A)-(B)). It can also be reduced to a certain extent by data 

postprocessing such as singular value decomposition (SVD). [46] (Figure 1-12(A)-

(B)) 

 

 

Figure 1-11. MRS signal difference according to whether water suppression module using 

RF pulses and gradients is applied. (A) water suppressed MRS signal (B) water unsuppressed 

MRS signal 

 
Figure 1-12. MRS signal difference according to whether post-processing method (HLSVD) 

is applied. (A) MRS signal before HLSVD application (B) MRS signal obtained by 

decomposing residual water signal using HLSVD 
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Both approaches have limitations. The performance of water suppression 

could also be subject to hardware imperfections (e.g., poor shimming and 

miscalibrated RF pulse power). The removal of water signal by postprocessing 

depends on the quality of the acquired MR spectrum (e.g., linewidth and signal-to-

noise ratio (SNR)). Ineffective water suppression or removal can substantially 

influence result in the quantitative outcome. 

 

1.1.9 Spatial Localization Methods in Single Voxel MRS 

Spatial localization techniques allow for the extraction of region-specific 

metabolomic information. The performance of the techniques determines the 

integrity of the signal from the region of interest (ROI). 

In order to selectively obtain an MRS signal from a voxel at a specific 

location of the human body, at least three frequency-selective RF pulse are required 

along with the current gradient pulses. Such a sequential collection of RF and 

gradient pulses is called a pulse sequence. The pulse sequences used for single voxel 

MRS are continuously being developed. Among them, the most frequently used 

pulse sequences at clinical field strength are as follows: 

 Image Selected In vivo Spectroscopy (ISIS) [47] 

 Stimulated Echo Acquisition Mode (STEAM) [48] 

 Point Resolved Spectroscopy (PRESS) [49, 50] 

 Spin-echo Full-intensity Acquired Localized Spectroscopy (SPECIAL) [51] 

The ISIS localization method requires eight scans for 3D localization. (Figure 

1-13(A)) That is, by turning the three inversion pulses on and off for each axis and 

switching the position of the receiver channel, the areas to be localized for each scan 

are defined and a signal is obtained using an excitation pulse (FID type). After 

performing the 8 scans, the 3D localized spectrum for the desired voxel is obtained 

by adding and subtracting the resulting spectra. The most important issue of ISIS 

localization is that a complete, spatially localized spectrum can be obtained only after 

all eight data are completely acquired. Thus, the performance of spatial localization 

could be very sensitive to the movement of the patient and the slice profile of the 

inversion pulses. 

STEAM, PRESS, and SPECIAL (Figure 1-13 (B)-(D)) pulse sequences use only 

three RF pulses and slice selective gradients, and the types of RF pulses are 
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configured as follows (the resulting types of echo are denoted in parentheses): 

 STEAM: Three excitation pulses (Stimulated echo) 

 PRESS: One excitation and two refocusing pulses in order (Spin echo) 

 SPECIAL: One inversion, excitation and refocusing pulses in order (Spin 

echo) 

 

 

Figure 1-13. Simplified diagram of the (A) ISIS, (B) STEAM, (C) PRESS and (D) SPECIAL 

single voxel pulse sequence for MRS. 

Theoretically, spin echo type pulse sequences (PRESS, SPECIAL) provide 

twice as high a signal yield as the stimulated echo type pulse sequences (STEAM). 

[48, 52] However, in general, the smaller the number of RF pulses, the better the 

localization performance. For instance, in the case of the SPECIAL sequence, since 

the ISIS localization scheme is employed along one direction, it also has the 

sensitivity to patient movement. Therefore, STEAM and PRESS pulse sequences 

that can localize on a single shot are typically used in clinical application.  

All pulse sequences are subject to voxel contamination. The signal outside the 

ROI can sneak into the detected signal due to imperfect pulse profile and hardware. 

For example, if the ROI is close to the extracranial lipid (e.g., located in the 

prefrontal cortex), the lipid signal can almost completely ruin the MR spectrum. The 

most commonly used technique to minimize such unwanted signal is outer volume 
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suppression (OVS), which exploits the difference in spatial information inside and 

outside the ROI. [53] OVS can be placed together with the water suppression module 

in front of the spatial localization module. By placing at least 6 OVS slices around 

the ROI, MR signal with negligible contamination could be obtained. 

 

1.1.10. Metabolite Quantification 

Typical in vivo brain spectra suffer from severe spectral overlap between metabolite 

resonances and between metabolite and MMs signal due to the limited spectral 

dispersion, particularly at the clinical field strength. The spectral quality is 

exacerbated by the limited SNR due to scan time constraint. 

Therefore, for quantification of individual metabolites from in vivo brain 

spectra, conventional spectral analysis methods such as peak area integration or 

simple line fitting without a prior knowledge is almost of no use. For this reason, 

advanced spectral fitting methods have been continuously developed in the form of 

software package such as QUEST [54], LCModel [55], and others. [56, 57]  

 

 

Figure 1-14. Representative spectra of a metabolite basis set and quantification process.  

A metabolite basis set (A) incorporates chemical shifts, spin-spin coupling, T2 relaxation 

times, and line shapes of expected metabolites. The basis set is used to metabolite 

quantification from raw in vivo MR spectrum (B). 

All of these methods employ nonlinear least squares fitting (NLSF) using a 

prior knowledge – namely the metabolite basis set, which means a collection of each 

individual metabolite signals either in time-domain (FID) or in frequency domain 

(spectrum). (Figure 1-14(A)) They are typically prepared either by actual 



 

 
２３ 

experiments in phantom or by quantum mechanical simulation incorporating J-

coupling. 

More specifically, for the measured basis set approach, a high concentration 

of an aqueous solution (50 mM <) is prepared for each metabolite and spectra are 

collected with the same sequence and sequence parameters that is to be used in the 

in vivo experiment. [55] To approximate the in vivo condition, the temperature (310 

K) and pH (7.2 - 7.4) should be adjusted. Each metabolite signal should have high 

SNR. The measured basis set approach has a great advantage in that it largely reflects 

the actual experimental condition such as hardware imperfection (e.g., eddy current) 

and non-ideal spatial localization. [58] 

The simulation approach requires solving the Equation of motion of density 

matrix for the given pulse sequence [59] taking account of each of the sequence 

elements such as RF pulses, gradients and inter-pulse delays. Due to computational 

complexity, approximations are frequently used such as hard pulses instead of actual 

shaped pulses and weak coupling even for strongly coupled spins. Next, an in vivo 

MRS signal (Sinvivo) can be modeled approximately as 

Sinvivo ≃  ∑ M̂𝑖 (θ) + b(φ) + 𝜀.

𝑁

𝑖=1

 (1.49) 

where M̂𝑖 is the 𝑖-th model metabolite basis set signal of N metabolites, b is the 

background baseline signals such as MMs, and 𝜀 is the Gaussian noise including 

physiological noise (e.g., breathing, eye movement). Lastly, θ and φ are variables for 

fine tuning of each modeled signal, which have control over the amplitude of 

metabolite basis set signal, line-shape (Gaussian or Lorentzian), frequency, and 

phase. Equation (1.49) is iteratively solved in a nonlinear least squares sense to 

minimize the cost function given as 

argmin
θ,φ

‖Sinvivo − (∑ M̂𝑖 (θ) + b(φ)

𝑁

𝑖=1

)‖

2

. (1.50) 

That is, it is a modification of the Levenberg–Marquardt algorithm [60] to find the 

minimal distance between the Sinvivo  and model functions ( M̂𝑖 (θ) +

b(φ)). (Figure 1-14(B))  

Metabolite quantitation errors are caused by inadequate modeling of the 

metabolite and/or background signal overlapped with the measurement noise. The 
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error is usually calculated by estimating the Cramér-Rao lower bound (CRLB). [61] 

CRLB is a lower bound on the variance (𝜎2)  of estimators such as metabolite 

concentrations (amplitudes of the individual metabolite bases), linewidth and phase 

shifts, and calculated as the inverse of the Fisher information matrix (F). [62] 

𝜎2 ≥ CRLB = F−1. (1.51) 

CRLB is commonly expressed as %SD (𝜎, %). In general, the fitting results with a 

CRLB greater than 30% for quantified metabolite concentrations are excluded from 

the analysis. [63] 

Finally, the amplitude of metabolites obtained through the fitting algorithm are 

often normalized to water and converted into a (semi) absolute concentration 

(mmol/kgww), [64] or expressed as a relative concentration to a reference metabolite 

(e.g. total creatine (= Cr+PCr)) that is relatively insensitive to physiological changes. 

[65]  

 

1.2 Deep Learning 

Artificial intelligence (AI) originated from the field of computer science in the 1950s 

and can be defined as a research activity aimed at automating intelligent tasks 

performed by ordinary humans.[66-69] Therefore, AI encompasses machine learning 

and deep learning, and could include many other methods that have no learning 

process at all. Early chess programs, for example, had only hard-coded rules, which 

were not accepted as machine learning then. 

Symbolic AI,[70, 71] an approach to solving problems by making enough 

explicit rules, was developed, and became the dominant paradigm in the field of AI 

until the 1980s. Since then, attempts have been made to develop techniques to find 

a clear way to solve more complex and entangled problems such as image 

classification and speech recognition, and advanced methods using machine learning 

have emerged. 

Machine learning is a research field that develops algorithms that allow 

machines to learn and execute unspecified actions from data, [72]. Typically, the data 

needs to be expressed such that the machine can process it, which is called feature 

transformation. Deep learning is a sub-concept of machine learning, which was 

developed as an efficient means for expression learning.[73, 74]  
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In deep learning, meaningful expressions can be learned progressively from 

successive layers. In this context, deep learning is also called ‘layered 

representations learning’ or ‘hierarchical representations learning’. Deep learning 

has become the de facto standard for processing big data and complex high-

dimensional data such as images, texts, and audio signals upon the use of high-

performance hardware. 

This Section deals with the basic principles of deep learning and the 

essential concepts that make up neural networks. 

 

1.2.1. Training for Regression Model 

A regression is a process of finding a solution from a model function that predicts a 

ground-truth (GT) value y given a corresponding input value x. In a linear regression, 

the model function is expressed as a linear combination of input variables. For 

instance, for an input vector X. 

𝐲̂ = 𝐗𝐰 + b (1.52) 

where b is a bias, and w is the weight vector. 𝐲̂ represents the predicted vector, and 

the difference between y and 𝐲̂ may vary depending on w and b. Therefore, to find 

the optimal w and b, 1) a method for measuring the quality of the current model (loss 

function) and 2) a method for improving the model quality (optimization algorithm) 

are required. 

 First, in order to measure the quality of the model, we need to quantify the 

error in 𝐲̂. The loss for measuring the quality of the model for the entire dataset (n) 

can be expressed as follows.  

𝑳(𝐰, b) =
1

𝑛
∑ (

1

2
(𝐲̂𝒊 − 𝐲𝒊))

2𝑛

𝑖=1

 

=  
1

𝑛
∑ 𝑙𝑖(𝐰, b)

𝑛

𝑖=1

 

=  
1

𝑛
∑ (

1

2
((𝐰𝚻𝐱𝒊 + b) −  𝐲𝒊 ))

2𝑛

𝑖=1

  

(1.53) 

where 𝑳, 𝑙𝑖 𝐱𝒊, 𝐲𝒊 and 𝐲̂𝒊 are loss for entire dataset, i-th loss, input data, GT data, 

and predicted data from the model, respectively. The function used to calculate the 

loss is the mean squared error (MSE), which is most widely used in regression 
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models.  

 Second, the optimization algorithm is usually a stochastic gradient descent 

algorithm with mini-batch applied. [75] Before optimization, w and b constituting 

the model are initialized with random numbers. More details on weight and bias 

initialization are described in Section 1.2.5.  

After that, the optimization is performed iteratively in the direction of 

negative gradient of the loss function over the entire training dataset. [76] When the 

number of training data is very large, a mini-batch B is constructed by selecting a 

predetermined number of samples randomly and uniformly, and the average loss 

over the elements of B is used in the optimization. In each step of optimization in 

the gradient descent method, the gradient is multiplied by a predefined step size, 

namely a learning rate (η; η>0). That is,   

(𝐰, b)  ←  (𝐰, b) −  
η

𝑩
∑ 𝜕𝐰,b

𝑖 ∈ 𝑩

𝑙𝑖(𝐰, b). (1.54) 

The B and η are not the values found through model training, but are values that the 

user must select manually. Therefore, these values are called hyperparameters. 

Hyperparameter tuning refers to optimizing these values, and the tuning process can 

be performed by using various methods. [77] The training process of a neural 

network consists of forward propagation, which calculates and stores variables from 

the input layer to the output layer, and back propagation, [78, 79] which calculates 

gradients for the neural network parameters.  

 

 

Figure 1-15. Graphical representation of a simple regression process. 

Model optimization is accomplished by finding the optimal values of the 
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neural network parameters while forward propagation and backpropagation are 

alternately performed. The technical details of forward propagation and 

backpropagation are provided in Section 1.2.3. After training, the estimated 𝐰̂ and 

b̂  are stored. Then, the learned linear regression model is used for inference 

(prediction) on unseen data x that is not in the training dataset.  

The dimension of the input in the neural network is called a feature 

dimension. For example, Figure 1-15 shows a neural network with a feature 

dimension of 5 and an output dimension of 1. The total number of layers in this 

network is one, and since all inputs are connected to all outputs, this layer is called 

a fully connected layer or dense layer. 

 

1.2.2. Training for Classification Model 

Unlike regression, which predicts successive values, predicting the probability of 

belonging to a specific category is called classification. Therefore, the model 

presented in the previous subsection is difficult to apply to the classification 

problem.  

There are two ways to represent GT labels in the classification problems. 

The first way is to define class with y∈{1,2,3…}. Although this method can be 

efficiently stored in the computer, it is more suitable for regression problems, and 

the order of these numbers is meaningless in problems of classification. The second 

way is to label classes in the form of y∈{(1,0,0,…),(0,1,0,…),(0,0,1,…)} through 

one-hot-encoding. That is, when the number of classes is n, each class is labeled as 

an n-dimensional vector. 

For classification, the number of output neurons is set equal to the number 

of classes. The values of output neurons specify the likelihood of the input belonging 

to the respective classes of the neurons. Therefore, they need to be normalized 

properly. 

Since classification problems require discrete prediction results, it is 

necessary to express the confidence level for each class. Therefore, unlike linear 

regression in Equation (1.52), a softmax logistic regression process is added in a 

multiclass classification model. The softmax logistic regression result is subject to 

nonlinearity such that the sum of all results becomes 1, and each result has a value 
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between 0 and 1. To avoid confusion in the expressions, rewrite Equation (1.52) as 

follows. 

𝐨 = 𝐗𝐰 + b (1.55) 

where 𝐨  is the output vector calculated with weight and bias as 𝐲̂  in Equation 

(1.52). Then, softmax logistic regression is expressed as 

𝐲̂ = softmax(𝐨) 

 ŷ𝑖 =  
exp (o𝑖)

∑ exp (o𝑖)𝑛
𝑖=1

.   
(1.56) 

where 𝐲̂ is a vector of probability for each class (Figure 1-16) and o𝑖 and ŷ𝑖 is the 

𝑖-th output value and probability value, respectively. Therefore, 0≤ŷ𝑖≤1 for all classes, 

and the class with the highest probability for the input vector X can be found simply 

as argmax
𝑖

 ŷ𝑖.  

 

 

Figure 1-16. Graphical representation of the logistic regression process. 

To measure how accurate the output probability is, a loss function is needed 

as in the linear regression. In this softmax regression, the negative log-likelihood 

(NLL) estimation is typically used for that purpose, which is given as  

− log 𝑝(Y|X) = − ∑ log  𝑝(y𝑖|x𝑖).

𝑛

𝑖=1

 (1.57) 

Using Equation (1.57), the loss function for n-class problem is defined as  
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𝑳(𝐰, b) = − log 𝑝(Y|X) =  − ∑  y𝑖 log ŷ𝑖.

𝑛

𝑖=1

 (1.58) 

Equation (1.58) is known as a cross-entropy loss. This is the most commonly used 

loss in classification problems and is a concept derived from information theory. [80, 

81] The training process of the classification model using softmax regression is not 

different from the contents described in Section 1.2.1. However, classification 

accuracy is used as a method of evaluating the performance of the model, which is 

equal to the ratio of the number of correct predictions to the number of predictions 

for the entire dataset. 

Finally, the softmax function is one of the representative non-linear 

activation functions constituting an artificial neural network. More details such as 

the types of activation functions are described in Section 1.2.3. 

 

1.2.3. Multilayer Perceptron 

Multilayer perceptron (MLP) refers to a class of neural networks that consist of at 

least three layers of nodes (neurons), namely an input layer, a hidden layer, and an 

output layer, and multiple layers can be stacked within a hidden layer compartment. 

(Figure 1-17). The output of each layer is fed into the next layer. 

 

 

Figure 1-17. Graphical representation of multilayer perceptron with single hidden layer. 
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The main characteristic of the MLP model is that the layers are not 

connected with a linear relationship except for the input layer due to the non-linear 

operations that are performed on the output of every layer. 

An MLP for classification including only one hidden layer can be expressed 

as follows. 

𝐳 =  𝐱𝐖𝟏 + b1 

𝐡 = σ(𝐳) 

𝐨 = 𝐡𝐖𝟐 + b2 

𝐲̂ = softmax(𝐨) 

(1.59) 

(1.60) 

(1.61) 

(1.62) 

where z and o represent variables before nonlinear operation. Also, 𝐖𝟏, b1 are the 

weight vectors and bias between the input layer and the hidden layer, 𝐖𝟐, b2 are 

the weight vectors and bias between the hidden layer and the output layer, 

respectively, and σ  represents the nonlinear activation function. As mentioned 

earlier, the final output 𝐲̂ cannot be described as a linear combination of the weight 

vectors and biases as a result of the application of the nonlinear activation functions 

expressed in Equation (1.60) and (1.62). Also, Equation (1.59) – (1.62) can simply 

be expressed in the form of a layer as shown below. 

𝐡 = σ( 𝐱𝐖𝟏 + b1) 

𝐲̂ = softmax(𝐡𝐖𝟐 + b2) 

(1.63) 

(1.64) 

Widely used nonlinear activation functions include rectified linear unit (ReLU), 

Sigmoid and Tanh, and since the output characteristics of these functions are 

different, they can be selectively used according to the purpose. [82] 

MLP is known to act as a universal approximator if enough nodes and 

precise weights are provided. [83] MLP is also called a feed-forward deep neural 

network (FFDNN) because it operates in the forward direction.  

On the other hand, in the process of optimizing artificial neural networks 

including MLP, backpropagation is required as mentioned in Section 1.2.1. 

Backpropagation is performed to update the trainable parameters after finding the 

gradient of the loss function moving in the reverse direction from the output to the 

input layer according to the chain rule. In more detail, first, the gradient 𝜕𝑳/𝜕𝐖𝟐 

of the loss function for the model parameter closest to the output layer (W2; bias is 

ignored for simplicity) is calculated by applying the chain rule. 
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𝜕𝑳

𝜕𝐖𝟐
=

𝜕𝑳

𝜕𝐨

𝜕𝐨

𝜕𝐖𝟐
=

𝜕𝑳

𝜕𝐨
𝐡⊤ (1.65) 

As in Equation (1.65), this process multiple operations are performed such as 

transposition (e.g., 𝐡⊤ in Equation (1.65)) and multiplication. The above principle 

applies equally to all chain rule processes below. Next, the gradient of the loss 

function 𝜕𝑳/𝜕𝐡 for the hidden layer variable h is performed as below 

𝜕𝑳

𝜕𝐡
=

𝜕𝑳

𝜕𝐨

𝜕𝐨

𝜕𝐡
=  𝐖𝟐

⊤ 𝜕𝑳

𝜕𝐨
. (1.66) 

Since the activation function is applied on a per-element basis, the gradient for the 

intermediate variable z is 

𝜕𝑳

𝜕𝐳
=

𝜕𝑳

𝜕𝐡

𝜕𝐡

𝜕𝐳
=  

𝜕𝑳

𝜕𝐡
⊙ σ′(𝐳).  (1.67) 

In order to calculate Equation (1.67), unlike Equations (1.65) – (1.66), it is necessary 

to perform an element-wise multiplication (operator (⊙)). Finally, the gradient of 

the model parameter (W1) closest to the input layer is calculated as follows. 

𝜕𝑳

𝜕𝐖𝟏
=

𝜕𝑳

𝜕𝐳

𝜕𝐳

𝜕𝐖𝟏
=  

𝜕𝑳

𝜕𝐳
𝐱⊤ (1.68) 

The gradient descent algorithm described in Section 1.2.1 is a method of updating 

the model parameters until the gradients calculated from Equation (1.65) – (1.68) are 

minimized. That is, as in Equation (1.54), parameter update is performed by 

subtracting the gradient from the current parameter values during the 

backpropagation process. There are also other optimization algorithms utilizing 

gradient values in various ways. [84, 85] 

Backpropagation reuses intermediate values (e.g., Equation (1.59)) stored 

during forward propagation to avoid duplicate calculations. This means that the 

intermediate values must be held until backpropagation is complete. This is one of 

the reasons why backpropagation requires much more computing memory compared 

to forward propagation. Also, the size of these intermediate values is roughly 

proportional to the number of layers and the batch size. Therefore, training a deeper 

network using a larger batch size runs the risk of encountering out-of-memory errors. 

Data applied as an input to MLP is processed in a one-dimensional form. In 

other words, all values in the data are considered as equally important. In order to 

process high-dimensional data such as medical images, MLP can still be used, but 

there is a critical limitation. Since MLP needs to transform a high-dimensional 
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feature into a one-dimensional tensor, it only learns information with lack of the 

spatial structure of the input. Therefore, its performance could be subject to 

variability even upon a small change in the element of the input data (e.g., a few 

pixel values). Also, as the size of the data increases, the size of the neural network 

should also increase accordingly, resulting in a problem of high computational cost. 

[86] Therefore, artificial neural networks that reduce the inefficiency of the training 

process and improve the performance have been continuously developed. [87-89] A 

convolutional neural network (CNN) is one of them [88, 90], which is described in 

detail in 1.2.6. 

 

1.2.4. Model Evaluation and Selection 

The goal of deep learning is to discover common patterns in the data it is dealing 

with. However, the data used for training the model may not represent the entire data 

characteristics. Considering the limited sample size, those features contained in the 

data not participating in the training could be missed. Therefore, the model can 

overfit to the distribution of the training samples rather than to the true distribution 

of the data. It can also underfit to the samples, for instance, because the model is too 

simple. These two problems should always be addressed simultaneously whenever 

possible, and overfitting is usually the main reason for the degradation of the 

performance of the model. 

The methods frequently used to reduce overfitting are as follows: [91] 

 Increase the number of data 

 Reduce the complexity of the model 

 Apply weight regularization 

 Add dropout layer [92] 

When the number of data is small, the model easily memorizes a specific pattern or 

noise present in the data set, so the possibility of overfitting increases. The number 

of data can artificially be increased by data augmentation. 

 The range of the types of the functions that a model can approximate is 

called model capacity, which is known to increase as the numbers of hidden layers 

and neurons increase. To prevent overfitting, the capacity of artificial neural 

networks should be reduced. 

Weight regularization is used for model optimization along with the loss 
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functions as in Equation (1.53) to avoid overfitting. For weight regularization, 𝑙1 or 

𝑙2-regularization are most widely used. 

 𝑙1 Regularization: inclusion of the sum of the absolute values of all weights 

in the loss function. 

𝑱 =  𝑳(𝐰, b) + λ‖𝐰‖𝟏 (1.69) 

 𝑙2 Regularization: inclusion of the sum of squares of all weights in the loss 

function. 

𝑱 =  𝑳(𝐰, b) + λ‖𝐰‖𝟐 (1.71) 

where 𝑱 is an objective function, which is a function used for model optimization 

problems, and is more commonly used in the model training than the loss function 

described above. A hyperparameter λ is employed to control the relative contribution 

of the regularization term. If λ is large, the model prioritizes reducing the loss 

resulting from the regularization term. 

 

 

Figure 1-18. Graphical representation of drop out (dotted circles in hidden layer). 

In dropout operation, [92] a part of neurons are not used (dropped out) 

during training. (Figure 1-18) the neurons to be dropped out is selected randomly, 

and their proportion is predetermined by dropout rate that is also a hyperparameter. 

Since randomly selected neurons are excluded from the training process each time, 



 

 
３４ 

overfitting could be prevented as in ensemble modeling.[93] It is common to use 

dropout only during training. However, it could also be used at test time as well for 

Bayesian inference. [94] 

 

 

Figure 1-19. Change in loss value according to model complexity. 

Overfitting and underfitting problems can usually be identified by 

estimating the error. (Figure 1-19) Errors in deep learning are divided into 1) training 

errors and 2) generalization errors. (validation and test errors) A training error is an 

error that occurs in the training process using a training dataset. A generalization 

error refers to an error that occurs on previously unseen data such as a test data set.  

In the training process, a model is usually selected after evaluating the 

performance of several candidate models. This process is called model selection. 

Candidate models can simply be a group of models with different values of hyper-

parameters and different types of activation functions. Model selection should not 

depend solely on the training data because the generalized error can never be 

expected to be similar to that of the training error. It is possible to check overfitting 

or underfitting continuously during training using an additionally secured data set 

other than the training and test data (i.e., validation data set).  

The optimal model could also be selected using K-fold cross validation. 

(Figure 1-20) [95] In K-fold cross validation, the original data is divided into K non-

overlapping partial datasets. The model is trained on K-1 datasets and validated on 

the rest one dataset in turn. In this way, all data are involved in the validation. The 

optimal model is selected by checking the training and validation errors of the K 

models.  
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Figure 1-20. Graphical representation of K-fold cross validation. 

 

1.2.5. Training Stability and Initialization 

During the training phase of neural networks, a phenomenon in which the gradient 

gradually decreases as the backpropagation progresses towards the input layer may 

occur, which is called gradient vanishing. [96, 97] Conversely, the gradient may 

increase gradually, and the weights become abnormally large and eventually diverge, 

which is called gradient exploding. [96, 97] Both problems adversely affect training 

and lead to the inability to find an optimal model. The simplest way to alleviate 

gradient vanishing is to use ReLU, Leaky ReLU, or Exponential Linear Unit (ELU) 

as the activation function of hidden layers. Under this condition, a training stability 

can be achieved by minimizing the saturation effect in which the output value of the 

activation function converges to 0 or 1 (i.e. the gradient becomes 0). Gradient 

clipping [98] can be used to prevent gradient exploding by limiting the gradient value 

not to exceed a threshold value.  

The gradient vanishing/exploding problems can also be alleviated by 

initializing weights and biases. Even if the same model is trained, the training results 

may vary depending on the initial values of the weights and biases. In general, biases 

are all initialized to 0, and weights are usually initialized by LeCun [99], Xavier 

[100], or He [101] initialization 

Another way to prevent gradient vanishing/exploding is to use batch 

normalization (BN). [102] BN is known to improve the gradient vanishing and 

overfitting problem by making the learning process efficient by normalizing the 

input of each layer of the neural network with the mean and variance. [102] 
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1.2.6. Convolutional Neural Networks 

In the visual cortex, only a part of neurons residing in a specific area activate in 

response to external stimuli, and the specific area is called receptive field. [103] In 

other words, it refers to the area of the sensory periphery where stimuli can affect 

the electrical activity of cells. Receptive fields can overlap each other, and 

overlapping receptive fields can respond to more complex information (objects) by 

combining low-level patterns (surfaces, edges). Based on this concept, a CNN was 

developed. [88, 90] 

 

Figure 1-21. Part of the hierarchical structure of a typical convolutional neural network. 

As discussed in Section 1.2.3, MLP is not capable of learning the high-order 

information such as correlated pixels within the data. On the other hand, CNN can 

learn such correlations between adjacent signals, and even extract the strongest (or 

weakest) feature. Among the layers constituting CNN, the former is achieved  by 

the convolutional layers, and the latter is obtained by the pooling layer. [74] In Figure 

1-21, CONV means a convolution operation. The result of the convolution operation 

passes through a nonlinear activation function such as ReLU, which is also included 

in the convolution layer. (BN is also included between convolution and activation 

[102]) After that, a pooling operation (POOL) is performed. 

The convolution layer extracts data features. That is, the filter (kernel) scans 

over the entire data by multiplying the filter with the elements of the data and 

resulting in a map of activations. (Figure 1-22 (A)) Therefore, the result of 

convolution operation using filters is called a feature map. One can set the size and 
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movement range of the filter. The movement range of the filter is defined as the stride. 

Therefore, each convolution operation does not necessarily use all data dimensions. 

As a result, CNN requires a much smaller number of weights than MLP and yet is 

capable of preserving the spatial structural information of the input. If multiple 

convolutional layers are stacked, the resulting feature map will be much smaller than 

the initial input. To keep the size of the feature map the same as the size of the input 

after the convolution operation, padding is used, which is a function that adds a 

specified number of rows and columns of zeroes at the edge of the input. (Figure 1-

22 (B)) 

 

Figure 1-22. Functional elements composing the convolutional layer. (A) filter stride (B) 

zero padding 

In general, a pooling layer is added after a convolutional layer. Typically, max 

pooling and average pooling are used for pooling operations. [104] The pooling layer 

downsamples the feature map to reduce its size. Therefore, the use of pooling has 

the effect of reducing the number of parameters of the model. 

CNN can be designed much deeper than MLP. The resulting capacity of the 

model can also be extended accordingly. Therefore, the former can outperform the 

latter. 

In a preliminary study (data not shown), the potential application of MLP in 

deep learning-based 1H-MRS was investigated. However, the results were not 

satisfactory due to the difficulty of training the neural network as the number of 

hidden layers increases in an effort of improving its performance. The convolutional 

layer, which is an essential component of a CNN effectively extracts local patterns 

or features in the data. As such, it is known to work better than an MLP for data types 

such as audio and electroencephalogram (EEG). [105, 106] In 1H-MRS, each 
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metabolite has its unique resonance frequency and lineshape (i.e., local pattern in 

one-dimensional space) depending on the chemical shift and J-coupling of the 

protons residing in that metabolite. In this research, therefore, CNNs are used 

exclusively. It will be shown in the subsequent chapters that CNN has a great 

potential in deep learning-based MRS by efficiently handling the complexity of the 

spectra through partial connection and weight sharing. 

 

1.3 Purpose of the Research 

Figure 1-23 summarizes the development of the metabolite quantification methods 

in the field of 1H-MRS of the brain in chronological order along with the 

achievement and limitation of the individual methods.[56, 107-121], [122] Given the 

limitation of the current methods such as LCModel [55] and jMRUI (software 

package including HLSVD [118], AMARES [119], QUEST [115] in Figure 1-23) 

[114], the purpose of this study is to develop deep learning-based methods that 

address the following issues in 1H-MRS. 

(1) Sensitivity of the performance of the existing 1H-MRS spectrum analysis 

software to the initial setting of the software and the quality of the spectra 

(2) Limited information as to the uncertainty in the quantitative results of 

metabolite content. Currently, CRLB is most widely used as a measure of 

the reliability of spectral fitting. However, it provides only the minimum 

possible errors, which are not necessarily highly correlated with the actual 

errors. The current data inclusion criteria based on a cutoff CRLB value is 

also known to be subject to statistical bias [123]. 

Chapter 2 demonstrate the potential of a deep learning-based 1H-MRS. It is 

shown that the metabolite content estimated from in vivo human brain spectra by 

using the deep learning-based method is comparable to that with the existing 

nonlinear least squares fitting method. Furthermore, the proposed method is more 

robust against degradation of the spectral quality. 

Chapters 3 and 4 are dedicated to developing deep learning-based methods 

that provide not only the metabolite content but also the uncertainty therein. In 

Chapter 3, a heuristic, big data-driven method is introduced for quantitative 

uncertainty estimation. In Chapter 4, a theory-oriented, [94, 124] Bayesian deep 
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learning-based method is proposed. 

Finally, Chapter 5 summarizes the achievement from the studies and 

discusses the follow-up research that can potentially further advance the metabolite 

quantification methods in 1H-MRS. 

 

Figure 1-23. Brief development status of metabolite quantification methods in 1H-MRS of 

the brain so far. Quantification methods that are frequently used up to now are marked with *. 
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1.4 Preparation of MRS Spectra and Their Usage 

In this research, various types of spectra such as phantom spectra, simulated 

spectra, and in vivo spectra (both animal and human) are used for specific purposes. 

The preparation methods and usage of in vivo and phantom spectra are summarized 

in Table 1-2 and Table 1-3, respectively. The preparation methods and usage of 

simulated brain spectra are summarized in Table 1-4. Finally, Table 1-5 provides the 

information about the rest of the spectra that are also used in this research with 

different purposes.



 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Table 1-2. Preparation and usage of in vivo brain spectra. 

 

 

  

Acquisition Information of the in vivo Spectra 

Chapter 2 Chapter 3 Chapter 4 

Section 2.2.1 Section 3.2.1 Section 4.2.2 

Magnetic field strength 3.0 T 9.4 T 3.0 T 

Magnet model Siemens Trio (VB17A)  Agilent 160AS Siemens Trio (VB17A)  

Coil  32-channel head coil Single channel surface coil 32-channel head coil 

Target Human Brain Rat Brain Human Brain 

Number of subjects 5 15 5 

 Pulse sequence parameters of the in vivo Spectra 

Pulse sequence PRESS SPECIAL PRESS 

Repetition time / Echo time 2 sec / 30 ms 5.5 sec / 3.45 ms 2 sec / 30 ms 

Spectral width 2 kHz 5 kHz 2 kHz 

Data points 2048 2048 2048 

Phase cycling 8 step 32 step 8 step 

Voxel position Left frontal lobe Cerebellum / Thalamus Left frontal lobe 

Voxel size 8 cm3 (2ⅹ2ⅹ2 cm3) 23.5 mm3 (3.0ⅹ2.8ⅹ2.8 mm3) 8 cm3 (2ⅹ2ⅹ2 cm3) 

Number of signal averages 64 (8 averagesⅹ8 times) 384 (32 averagesⅹ12 times) 64 (8 averagesⅹ8 times) 
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Table 1-3. Preparation and usage of brain phantom spectra. 

  

  

Acquisition Information of the Phantom Spectra 

Chapter 2 Chapter 3 Chapter 4 

Section 2.2.2 Section 3.2.3 Section 4.2.2 

Purpose of use Metabolite basis set Metabolite basis set Metabolite basis set 

Magnetic field strength 3.0 T 9.4 T 3.0 T 

Magnet model Siemens Trio (VB17A)  Agilent 160AS Siemens Trio (VB17A)  

Coil  32-channel head coil Single channel surface coil 32-channel head coil 

Target 300 mL glass bottle 50 mL cylindrical tubes 300 mL glass bottle 

Number of subjects 
17 

(each metabolite) 

3  

(different combination of the  

metabolite concentration) 

17 

(each metabolite) 

Considered metabolites 
Ala, Asp, Cr, GABA, Glc, Gln, Glu, GSH, GPC, Lac,  

mI, NAA, NAAG, PCr, PCh, PE, Tau 

Concentration 
50mM; NAAG at 10mM,  

PCh at 36.05mM 
50mM 

50mM; NAAG at 10mM,  

PCh at 36.05mM 

pH 7.0 – 7.5 7.0 – 7.5 7.0 – 7.5 
 Pulse sequence parameters of the Phantom Spectra 

Pulse sequence PRESS SPECIAL PRESS 

Repetition time / Echo time 2 sec / 30 ms 10 sec / 3.45 ms 2 sec / 30 ms 

Spectral width 2 kHz 5 kHz 2 kHz 

Data points 2048 2048 2048 

Phase cycling 8 step 32 step 8 step 

Voxel position Isocenter Isocenter Isocenter 

Voxel size 8 cm3 (2ⅹ2ⅹ2 cm) 23.5 mm3 (3.0ⅹ2.8ⅹ2.8 mm) 8 cm3 (2ⅹ2ⅹ2 cm) 

Number of signal averages 256 128 256 
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Table 1-4. Preparation and usage of simulated brain spectra. 

  

  

Information of the Simulated Brain Spectra 

Chapter 2 Chapter 3 Chapter 4 

Section 2.2.3 Section 3.2.4 Section 4.2.2 

Language  Python 3.5.2 Python 3.6 Python 3.5.2 

Total number of simulated spectra 50,000 110,000 100,000 

Training / Validation / Test set 40,000 / 5,000 / 5,000 80,000 / 20,000 / 10,000 80,000 / 10,000 / 10,000 

 Information of the Metabolites in the Simulated Brain Spectra 

Total number of metabolites 17 27 17 

Type of metabolite basis set Phantom Simulated (GAMMA) Phantom 

Concentration range Table 2-1 Figure 3-1 Table 2-1 

 Information of the MMs baseline in the Simulated Brain Spectra 

Total number of MMs group 9 10 10 

Total number of MMs linefunction 17 25 10 

Relative MMs group amplitudes Table 2-2 Table 2 in reference 156 Table 2-2 

 Information of the Spectral Quality of the Simulated Brain Spectra 

Linewidth range 10 – 20 Hz 10 – 30 Hz 10 – 20 Hz 

SNR range 5 – 15 5 – 30 5 – 15 

Frequency shift range ± 10 Hz ± 21 Hz ± 10 Hz 

Zeroth order phase shift range ± 5° ± 1° ± 5° 
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Table 1-5. Preparation and usage of simulated, in vitro or modified in vivo spectra. 

  

 Information of the Simulated, in vitro or Modified in vivo Spectra  

Chapter 3 Chapter 4 Chapter 4 

Section 3.3.2 Section 4.2.2 & 4.2.4 Section 4.2.2 & 4.2.4 

Purpose of use 
Performance compared to 

LCModel 
Responses for OOD data 

Performance compared to 

LCModel 

Data type in vitro phantom Simulation modified in vivo 

Total number of data set 54 3,000 50 

Linwidth range 10 – 20 Hz 4.9 – 40.3 Hz Table 4-2 

SNR range 5 – 30 Hz 3.5 – 40 Table 4-2 

４
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Chapter 2. Intact metabolite spectrum mining by 

deep learning in proton magnetic resonance 

spectroscopy of the brain  

 

2.1. Introduction 

1H-MRS provides a noninvasive means of extracting biochemical information from 

the brain. Typically, spectra are acquired at a shortest TE for maximal signal yield 

against signal decay due to transverse relaxation (T2) and for coupled spins J-

modulation as well. Then, spectral fitting is performed either in the time-domain [116] 

or in the frequency-domain [55] for the quantification of individual metabolites. At 

clinical magnetic field strength, however, in vivo brain spectra are subject to low 

SNR and spectral overlap between metabolite signals, which are exacerbated by 

limited field homogeneity across the spectroscopic voxel. They are known to 

strongly influence the quantitative outcome. [55] Although data post-processing is 

routinely performed for improved SNR and/or linewidth by applying filters on the 

FID signal in the time domain, their performance is limited due to different FID 

signal decay rates for different spin systems. [58, 125]  

In addition, metabolite signal at short TE is always superimposed on the 

spectral baseline across the entire spectral range, which is mainly contributed by 

MMs. [35] Unlike SNR and spectral overlap between metabolite signals that can be 

improved by higher main field strength and a better shimming technology, spectral 

baseline is unavoidably present in the spectra at short TE, and is the major hindrance 

for accurate metabolite quantification by fitting. [55, 126] To this end, development 

of a means of robust metabolite quantification from the brain spectra that are severely 

degraded by low SNR, broadened linewidth and unknown spectral baseline has long 

been a major technical issue in 1H-MRS.  

 Given the recent accomplishment of deep learning in a variety of different  
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tasks [74, 127] and its potential application in 1H-MRS [107, 110, 111, 128, 129], 

this chapter aimed to develop and evaluate a CNN that maps degraded generic in 

vivo brain spectra at short TE into noise-free, line-narrowed, baseline-removed 

metabolite-only spectra (intact metabolite spectra). The subsequent metabolite 

quantification from such intact metabolite spectra is achieved by solving a simple 

inverse problem using a metabolite basis set. The CNN was trained on simulated 

brain spectra. The robust performance of the proposed method against poor SNR and 

linewidth and unknown spectral baseline was tested first on simulated spectra and 

further on in vivo spectra from healthy volunteers. 

 

2.2. Methods and Materials 

All MR data were collected on a 3.0 T MR system (Magnetom Trio; Siemens 

Medical Solutions, Erlangen, Germany) using a cylindrically polarized body coil for 

RF transmission and a 32-channel head coil for signal reception. 

 

2.2.1. Acquisition of in vivo Spectra 

The study was approved by the Institutional Review Board (IRB). Scout images were 

acquired in all three orthogonal directions using a T2-weighted fast spin echo 

sequence (TR/TE = 2000/25 ms, echo train length = 8, field of view = 220 × 220 

mm2, matrix size = 256 × 256, number of slices = 15 (no gap), slice thickness = 8 

mm). Based on the scout images, a voxel (2 × 2 × 2 cm3) was placed on the left 

frontal lobe containing mainly white matter. Then, auto-shimming was performed 

over the voxel. MRS data were collected using a PRESS sequence [49, 50] (TR/TE 

= 2000 / 30 ms, spectral bandwidth = 2 kHz, number of data points = 2048). A water-

unsuppressed spectrum was collected for the screening of the quality of the spectrum 

such as the measurement of the linewidth of water signal (number of signal averages 

(NSA) = 8). Then, a total of 8 water-suppressed spectra each with NSA = 8 were 

collected consecutively for each subject (a total of 40 spectra from 5 subjects). The 

8 water-suppressed spectra were combined to generate another 8 spectra with NSA 

equivalent to 8, 16, 24, 32, 40, 48, 56, and 64 for each subject, which were used for 

the evaluation of the performance of the CNN against different SNR of the spectra. 

The acquired FID data were zero-filled to 4096, Fourier transformed, and zeroth 

order phase corrected by using jMRUI (v.5.0). [116] No first order phase correction 
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and line-broadening was applied. Then, the residual water signal at ~ 4.7 ppm was 

removed by using the HLSVD filter. [119] Finally, the processed spectra were 

cropped to 1024 data points corresponding to ~ 0.5-4.5 ppm range as with the 

simulated spectra. 

 

2.2.2. Acquisition of Metabolite Phantom Spectra 

For the simulation of brain spectra for training and testing of the CNN, data were 

collected from the aqueous solutions of metabolites in glass bottles (300 mL) for 17 

metabolites individually (Ala, Asp, Cr, GABA, Glc, Gln, Glu, GSH, GPC, Lac, mI, 

NAA, NAAG, PCr, PCh, PE, Tau; NAAG at 10 mM, PC at 36.05 mM, and the rest 

at 50 mM in a mixture with TSP (1 mM) and sodium azide (NaN3; 0.1%); pH = 7.0 

– 7.5; Sigma-Aldrich). Each phantom was placed at the isocenter of the magnet. 

After defining a voxel also at the isocenter, auto-shimming was performed followed 

by manual refinement. Spectra were acquired using the same sequence and sequence 

parameters that were used for the human subjects except for a larger NSA of 256. 

 

2.2.3. Simulation of Brain Spectra 

In the simulation of brain spectra the metabolite phantom spectra were used as a 

spectral basis set and the true in vivo brain spectra were used for the extraction of a 

priori knowledge such as SNR and linewidth of in vivo spectra. Simulation was 

performed by using in-house scripts written in Python (v.3.5.2; Python Software 

Foundation).  

 First, the upper and lower bounds of the metabolite concentrations in 

normal human brain were determined according to the literature [34, 58, 130, 131] 

(Table 2-1). These concentration ranges were evenly divided according to the total 

number of simulated spectra (N = 50,000) for all metabolites. Then, metabolite 

spectra were generated by combining all metabolite phantom spectra according to 

randomly selected relative metabolite concentration ratios within the concentration 

bounds. The GT target spectra (intact metabolite spectra) were prepared by using 

these metabolite spectra without spectral baseline and artificial addition of noise, 

line-broadening and frequency/phase shift (Figure 2-1). 

Second, the spectral baseline in the range of ~ 0.5 – 4.5 ppm was simulated 
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using 17 Gaussian model functions based on the previous studies. [132, 133] These 

model functions were combined into 9 groups (M1-M9) and their relative amplitudes 

were normalized according to the literature (Table 2-2). [132, 133]Then, spectral 

baselines were generated by randomly varying the linewidth of the 17 model 

functions and the relative amplitude of the M1-M9 groups within ± 20% and ± 10% 

from their initial values, respectively. Third, the relative proportions of the 

metabolite signal and baseline signal in typical in vivo brain spectra were 

investigated from the true in vivo spectra prior to combining these two signal groups. 

Based on a previous study [134] 43 initial data points (empirically determined) were 

truncated from the FID of the in vivo data (NSA = 64, N = 5) and their Fourier 

transforms were considered as a surrogate of baseline-nulled metabolite-only spectra. 

Then, by comparing the spectra with and without the FID truncation a metabolite-

to-baseline signal ratio of 1 : 0.876 was determined. The metabolite signal and 

baseline signal were combined by randomly varying the ratio within ± 25% (Figure 

2-1). Forth, Lorentzian line broadening was applied such that the linewidth of the 

total NAA (tNAA = NAA + NAAG; ~ 2.0 ppm) was broadened from ~ 5 Hz as 

measured in phantom to 10 – 20 Hz. A zeroth order phase shift was also applied in 

the range of ± 5°. 

Fifth, after Fourier transformation all simulated spectra were cropped to 

1024 data points (~ 0.5-4.5 ppm) for efficient CNN training. Then, the SNR of the 

spectra were adjusted by adding random noise such that the mean SNR of the tNAA 

(~ 2.0 ppm), total Cr (tCr = Cr + PCr; ~ 3.0 ppm), and total Cho (tCho = PCh + GPC; 

~ 3.2 ppm) is in the range of ~ 5-15. The spectral noise was estimated by measuring 

the standard deviation in the 8.0-10.0 ppm range prior to the cropping of the spectra 

to 1024 data points. A frequency shift was also applied to the spectra at this stage in 

the range of ± 10 Hz.  

Finally, a total of 50,000 brain spectra were simulated and randomly 

assigned into a training (N = 40,000), a validation (N = 5,000) and a test (N = 5,000) 

sets (these data sets are referred to as the original data sets). The range of the spectral 

amplitudes was -248.5 – 14125.0 (2150.9 ± 1045.7) for the whole simulated brain 

spectra and 6.2 – 10875.0 (746.2 ± 1049.0) for the corresponding whole GT target 

spectra. 
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Table 2-1. Ranges of the relative metabolite concentrations used in the simulated brain 

spectra. 

  

Metabolite 

Concentration 

Lower limit 

(mmol L
-1

) 

Upper limit 

(mmol L
-1

) 

Ala 0.1 1.5 

Asp 1.0 2.0 

Cr 4.5 10.5 

GABA 1.0 2.0 

Glc 1.0 2.0 

Gln 3.0 6.0 

Glu 6.0 12.5 

GPC 0.5 2.0 

GSH 1.5 3.0 

Lac 0.2 1.0 

mI 4.0 9.0 

NAA 7.5 17 

NAAG 0.5 2.5 

PC 0.5 2.0 

PCr 3.0 5.5 

PE 1.0 2.0 

Tau 2.0 6.0 

Glx 9.0 18.5 

tCho 1.0 4.0 

tCr 7.5 16.0 

tNAA 8.0 19.5 
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Table 2-2. Spectral characteristics of the Gaussian linefunctions and macromolecule (MM) 

groups used in the simulated spectral baseline.  

a Separate line functions were used only when the chemical shift difference between the line 

functions reported in the literature is larger than 0.05 ppm. 
b The initial relative amplitudes of the MM groups were normalized to the amplitude of M9. 

These initial values were randomly varied in the range of ± 10%. 
c For the line functions reported with different chemical shifts in the literature, their mean 

value was used. 
d In the simulation of spectral baseline, these initial linewidths were randomly varied in the 

range of ± 20%. 

 

MM 

group 

Line 

function
a 

Initial 
amplitude

b 
Chemical 

shift 

(ppm)
c 

Initial 

linewidth 

(Hz)
d 

M1 M1-09 0.72 0.90 21 

M2 M2-12 0.28 1.20 19 

M3 M3-14 0.38 1.36 16 

M4 M4-16 0.05 1.63 8 

M4-17 1.68 13 

M4-18 1.81 13 

M5 M5-20 0.78 2.02 29 

M5-21 2.08 21 

M5-23 2.25 18 

M5-26 2.61 5 

M6 M6-30 0.3 2.97 14 

M7 M7-31 0.11 3.11 18 

M7-32 3.22 10 

M7-33 3.27 10 

M8 M8-37 0.71 3.67 34 

M8-38 3.80 12 

M9 M9-40 1 3.96 37 
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Figure 2-1. A schematic of the simulation of brain spectra and the training of the 

convolutional neural network (CNN). The metabolite-only spectra simulated by linearly 

combining the metabolite phantom spectra according to randomly selected relative 

concentration ratios are used as the ground truth in the training of the CNN. To mimic in vivo 

brain spectra the metabolite-only spectra are combined with noise, line broadening, 

frequency/phase shift, and spectral baseline. These simulated brain spectra are used as the 

input to the CNN in the training. The CNN is trained to map the brain spectra degraded by 

low SNR, broadened linewidth, frequency/phase shift, and unknown spectral baseline into 

the noise-free, line-narrowed, frequency/phase shift-corrected, baseline-removed, intact 

metabolite spectra. (Conv: convolution, Batch Norm: batch normalization, ReLU: rectified 

linear unit, Max Pool: max pooling) 
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2.2.4. Design and Optimization of CNN 

CNNs were designed and optimized by using MATLAB neural network 

toolbox (v.9.4 (R2018a); Mathworks Inc., Natick, MA, USA) on 4 GPUs (NVIDIA 

Titan Xp). Initially, a CNN was designed that consisted of 1 input layer, 3 

convolution blocks, 2 max pooling layers, 1 fully connected layer, and 1 regression 

layer. Each convolution block was composed of n-repetitions (nrep) of one- 

dimensional convolution-batch normalization-activation layers (Figure 2-1). The 

simulated spectra in the training set (height × width × channels × array = 1024 × 1 × 

1 × 40000) were zero-center normalized. 

Using the original training and validation data sets, the nrep, initial learning 

rate, momentum of the stochastic gradient descent with momentum algorithm 

(SGDM), and L2 regularization parameter were Bayesian-optimized [135] for each 

of the convolution filter sizes of 3, 5, 7, 9, 11, 15, and 25. The range of nrep in the 

optimization was 1 – 4. The ranges of the initial learning rate, momentum of SGDM, 

and L2 regularization were 1×10-10 – 1×10-4, 0.80 – 0.95, and 1×10-10 – 1×10-2, 

respectively. The number of convolution filters was set to the integer closest to 

64/√nrep at the first convolution block and doubled at each of the following blocks. 

The convolutions were performed with stride = 1 and pad size = (filter size - 1)/2 to 

match the input and output sizes of the convolution layers. A ReLU activation 

function was used in the activation layer. For the training of the network an SGDM 

was used. The loss function was MSE. Other parameters used in the Bayesian 

optimization were: pool size and stride of max pooling = 2 × 1 and 1, batch size = 

32, 3 validations per epoch, and maximum epoch = 100. The learning rate was 

scheduled to drop at the 91st epoch by a factor of 0.1. The maximum number of 

objective function evaluations and maximum total optimization time for each filter 

size were 30 and 12 hours, respectively. 

 

2.2.5. Evaluation of the Reproducibility of the Optimized CNN 

To evaluate the reproducibility of the optimized CNN parameters, a 10-fold cross 

validation was performed. Specifically, the 45,000 simulated spectra in the original 

training and validation sets were randomly split into 9 equally sized groups (thus, a 

total of 10 folds including the original test set). Each group was assigned to a test set 
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(N = 5,000), while those spectra in the remaining 9 groups were randomly divided 

into a training set (N = 40,000) and a validation set (N = 5,000). The Bayesian-

optimized CNN was trained on each of these training sets (the corresponding 

validation sets being also used during training), and the resulting mean MSE between 

the GT and the CNN-predicted intact metabolite spectra for the test sets were 

examined.  

 

2.2.6. Metabolite Quantification from the Predicted Spectra 

Given that the simulated target spectra of the CNN were generated by a linear 

combination of the metabolite phantom spectra only, quantification of individual 

metabolites from the CNN-predicted intact metabolite spectra amounts to solving a 

simple inverse problem. That is, 

𝐂 = 𝐒 ×  pinv(𝐛). (2.1) 

where, for N-predicted spectra to be analyzed for metabolite quantification, C is an 

N-by-17 matrix containing the relative concentrations of the 17 metabolites, S is an 

N-by-1024 matrix containing the N-predicted spectra with 1024 data points, pinv 

denotes the Moore-Penrose pseudoinverse of a matrix, and b is a 17-by-1024 matrix 

containing the basis spectra of the 17 metabolites with 1024 data points.   

 

2.2.7. Evaluation of CNN in Metabolite Quantification 

For the simulated spectra in the test set, the relative metabolite concentrations 

estimated by the proposed method were directly compared with the GT values, and 

the resulting mean absolute percent errors (MAPE) were calculated. 

For in vivo spectra, metabolite concentrations were estimated by using the 

proposed method from the spectra with different NSA of 8, 16, 24, 32, 40, 48, 56, 

and 64. The results with NSA = 64 were compared with those obtained by using the 

LCModel analysis (v.6.3-1J; [55]) that is most widely used for metabolite 

quantification in 1H-MRS. The vendor-provided spectral basis set was used in the 

LCModel analysis. The results were also compared with those reported in the 

literature. [64, 136-141] Specifically, the references used for obtaining the expected 

concentration ranges of the metabolites were: Glx (= Gln + Glu), mI, tCho, tCr [141], 

GABA, GSH [137], Gln/Glu [139], PC/GPC [140], Cr/PCr [64, 138] and 

NAAG/NAA. [136] The expected concentration ranges of the metabolites with 
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respect to tNAA were calculated by mean ± (2 × SD) where SD denotes standard 

deviation and was estimated by assuming that the covariance between the 

concentrations of tNAA and the rest of the metabolites was zero. To evaluate the 

robustness of the proposed method against low SNR, the metabolite concentrations 

obtained with NSA = 8, 16, 24, 32, 40, 48 and 56 were compared with those obtained 

with NSA = 64. The same analysis was also performed with the LCModel analysis. 

In the case of the LCModel analysis the resulting CRLB values were also shown. 

For in vivo spectra, metabolite concentrations were estimated using the 

proposed method from spectra with NSAs of 8, 16, 24, 32, 40, 48, 56 and 64. The 

results with NSA = 64 were compared with those obtained by using the LCModel 

analysis (v.6.3-1J; [55]). The results were also compared with those reported in the 

literature [64, 136-141]. To evaluate the robustness of the proposed method to low 

SNR, the metabolite concentrations obtained with NSA = 8, 16, 24, 32, 40, 48 and 

56 were compared with those obtained with NSA = 64. For LCModel analysis, the 

resulting CRLB values were also shown. 

 

2.2.8. Statistical Analysis 

All statistical analyses were performed by using PRISM (v.6.01; GraphPad Software, 

Inc., La Jolla, CA, USA). For pair-wise group comparison a Student t-test was 

performed. A P-value of less than 0.05 was considered statistically significant. 

 

2.3. Results 

2.3.1. SNR Distribution of the Simulated Spectra 

The SNR distribution of the Glx (~ 2.1-2.4 ppm), mI (~ 3.5-3.6 ppm), tCho (~ 3.2 

ppm), tCr (~ 3.0 ppm) and tNAA (~ 2.0 ppm) for the simulated spectra in the test set 

are shown in Figure 2-2, for which the SNR can be measured directly from the 

spectra. The wide range of the relative metabolite concentrations in the simulated 

spectra is clearly demonstrated. 
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Figure 2-2. The SNR distribution of the Glx, mI, tCho, tCr, and tNAA for the simulated 

spectra in the test set (N = 5,000). For these metabolites the SNR can be measured directly 

from the spectra. The SNR ranges were 5.28 – 9.48 (6.37 ± 0.59) for Glx, 6.23-13.32 (7.89 ± 

1.00) for mI, 7.05 – 15.19 (8.67 ± 1.04) for tCho, 6.84 – 18.26 (9.71 ± 1.72) for tCr, and 6.90 

– 20.74 (10.41 ± 2.14) for tNAA. The signal was estimated by measuring the maximum 

amplitude in ~ 2.1 – 2.4 ppm, ~ 3.5 – 3.6 ppm, ~ 3.2 ppm, ~ 3.0 ppm, and ~ 2.0 ppm for Glx, 

mI, tCho, tCr, and tNAA, respectively, and the noise was estimated by measuring the standard 

deviation in 8.0 – 10.0 ppm before the cropping of the spectra down to 1024 data points. 
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2.3.2. Optimized CNN 

The Bayesian-optimized CNN parameters were: convolution filter size = 15× 1, 

number of convolution filters = 32, 64, and 128 for the 1st, 2nd, and 3rd convolution 

blocks, nrep = 4 (thus, a total of 41 layers with 12 convolution layers), initial learning 

rate = 3.0709 × 10-8, SGDM momentum = 0.8024, and L2 regularization = 

1.0291×10-4. 

In the 10-fold cross validation using the optimized CNN parameters, the 

mean MSE between the GT and the CNN-predicted spectra ranged 4904.5 – 5050.0 

(4970.2 ± 45.2). Defining the maximum MSE as the mean squared value of the GT 

target spectrum (i.e., in the case where the predicted spectrum has zero amplitude 

across the whole spectral range (null spectrum)), and %MSE as the MSE normalized 

to the maximum MSE, the %MSE corresponding to the mean MSE of 4970.2 ± 45.2 

is estimated to be 0.3 ± 0.0 %. Using the original train/validation/test sets that were 

used for the Bayesian optimization of the CNN, the mean MSE was 4945.3 (%MSE 

= 0.3 ± 0.0 %) (the 4th lowest among the 10 CNNs in the cross validation). All results 

reported from here were obtained with the CNN that was trained by the original data 

set.  

 

2.3.3. Representative Simulated and CNN-predicted Spectra 

The representative simulated spectra in the test set with different SNR, linewidth, 

and relative signal intensity of the peaks are shown in Figure 2-3(A)-(D) along with 

the GT (Figure 2-3(E)-(H)) and the CNN-predicted intact metabolite spectra (Figure 

2-3(I)-(L)). A high tCho (~ 3.2 ppm) and a low tNAA (~ 2.0 ppm) signals are 

observed in Figure 2-3(A) and Figur 2-3(D) with respect to their well-known relative 

signal intensity relationship (tNAA > tCr (~ 3.0 ppm) > tCho) in normal human brain. 

Despite the severe degradation of the simulated input spectra due mainly to poor 

SNR and linewidth, the CNN effectively recovered the spectral details in 3.2 – 3.8 

and 2.1 – 2.9 ppm ranges (Figure 2-3(I)-(L)). The line-narrowing capability of the 

CNN is also clearly shown. That is, the signal amplitude of the major peaks such as 

tCho (~ 3.2 ppm), tCr (~ 3.0 ppm), and tNAA (~ 2.0 ppm) appear larger in the CNN-

predicted spectra (Figure 2-3(I)-(L)) than in the simulated brain spectra (Figure 2-

3(A)-(D)) resulting from the effective line-narrowing by the CNN. The linewidth 

(LW) of the tNAA (~ 2.0 ppm) ranging 10.4 – 16.2 Hz in the simulated brain spectra 
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(Figure 2-3(A)-(D)) are all narrowed into ~ 5 Hz in the CNN-predicted spectra 

(Figure 2-3(I)-(L)), which corresponds to the linewidth of NAA in phantom. The 

spectra reconstructed by linearly combining the metabolite phantom spectra 

according to the estimated relative metabolite concentrations are also shown (Figure 

2-3(M)-(P)). The individual spectral components of the reconstructed spectra are 

shown more clearly in Figure 2-4. The difference spectra between the GT and the 

CNN-predicted spectra show only a small amount of residual signal mainly in the 

major peak areas such as tCho, tCr, and tNAA (Figure 2-3(Q)-(T)). The difference 

spectra between the reconstructed spectra and the predicted spectra show no visible 

residual signal (Figure 2-3(U)-(X)), which demonstrates that the CNN fulfills its 

tasks of removing noise, line broadening, frequency/phase shift, and spectral 

baseline as trained such that the predicted spectra can be completely accounted for 

by a linear combination of the metabolite phantom spectra only. 

 

2.3.4. Metabolite Quantification in Simulated Spectra 

The results of the metabolite quantification from all simulated spectra in the test set 

(N = 5,000) by using the proposed method are shown in Figure 2-5. For all 17 

metabolites MAPE was 20.67 ± 16.71%. Excluding Ala, GPC, Lac, NAAG, and PC 

(MAPE > 20%), MAPE was 12.49 ± 4.35%. The MAPE were less than 10% for Cr 

(8.65 ± 7.16%), Glu (8.16 ± 6.85%), mI (7.61 ± 6.77%), NAA (4.64 ± 4.02%), Glx 

(5.36 ± 4.48%), tCho (7.87 ± 7.35%), tCr (3.66 ± 3.05%), and tNAA (4.00 ± 3.38%). 

GABA and GSH were quantified with MAPE of 17.5 ± 11.76% and 12.72 ± 10.04%, 

respectively.  
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Figure 2-3. Representative simulated brain spectra in the test set and corresponding CNN-

predicted intact metabolite spectra. (A)-(D): simulated brain spectra with noise, line 

broadening, phase and frequency shift, and spectra baseline, which were used as the input to 

the CNN. (E)-(H): ground truth (GT) spectra that were composed solely of the metabolite 

phantom spectra. (I)-(L): CNN-predicted intact metabolite spectra (Pred.). (M)-(P): 

reconstructed spectra (Recon.) by linearly combining the metabolite phantom spectra 

according to the relative metabolite concentrations estimated by solving the inverse problem 

using the CNN-predicted spectra. The metabolite phantom spectra used for the reconstruction 

are also shown. (Q)-(T): difference spectra obtained by subtracting the CNN-predicted 

spectra from the ground truth spectra (GT – Pred.). (U)-(X): difference spectra obtained by 

subtracting the reconstructed spectra from the CNN-predicted spectra (Pred. – 

Recon.). %MSE = {mean square of (GT – Pred.)}/{mean square of (GT)}×100. 
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Figure 2-4. The individual metabolite spectra consisting of the reconstructed spectra shown 

in Figure 2-3(M)-(P). They were obtained by solving the inverse problem for the CNN-

predicted spectra. 
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Figure 2-5. Mean absolute percent error (MAPE) of the concentrations of the metabolites 

estimated over all simulated brain spectra in the test set (N = 5,000).  
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2.3.5. Representative in vivo and CNN-predicted Spectra 

The in vivo spectra with NSA equivalent to 64 and 8 are shown for all five human 

subjects in Figure 2-6(A)-(E) and Figure 2-7(A)-(E), respectively, along with the 

corresponding CNN-predicted intact metabolite spectra (Figure 2-6(F)-(J) and 

Figure 2-7(F)-(J)). The SNR and linewidth of the spectra with NSA = 64 measured 

from tNAA ranged 14.9-17.8 and 10.4-12.4 Hz, respectively. As in Figure 2-3, the 

spectral details that were obscured by the noise and line broadening in the in vivo 

spectra were effectively recovered in the CNN-predicted spectra. The line-narrowing 

capability of the CNN is also clearly shown. The difference spectra between the 

CNN-predicted spectra and the reconstructed spectra by linear combination of the 

metabolite phantom spectra (‘Difference (Pred – Recon)’ in Figure 2-6(P)-(T) and 

Figure 2-7(P)-(T)) show no visible residual signal and thus demonstrate complete 

removal of spectral baseline. The difference spectra between the CNN-predicted 

spectra in Figure 2-7(U)-(Y) demonstrate the robust performance of the CNN against 

low SNR.  
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Figure 2-6. In vivo brain spectra with NSA = 64 ((A)-(E)) from the five healthy subjects and 

corresponding CNN-predicted intact metabolite spectra ((F)-(J)). The difference spectra 

(Pred64 – Recon64) ((P)-(T)) between the CNN-predicted intact metabolite spectra (Pred) and 

the reconstructed spectra (Recon) ((K)-(O)) by linearly combining the metabolite phantom 

spectra demonstrate that the CNN successfully mapped the degraded in vivo spectra into the 

noise-free, line-narrowed, baseline-removed, intact metabolite spectra that can be completely 

accounted for by a linear combination of the metabolite phantom spectra only. %MSE = 

{mean square of (Pred64 – Pred8)}/{mean square of (Pred64)}×100. 
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Figure 2-7. In vivo brain spectra with NSA = 8 ((A)-(E)) from the five healthy subjects and 

corresponding CNN-predicted intact metabolite spectra ((F)-(J)). The difference spectra 

(Pred8 – Recon8) ((P)-(T)) between the CNN-predicted intact metabolite spectra (Pred) and 

the reconstructed spectra (Recon) ((K)-(O)) by linearly combining the metabolite phantom 

spectra demonstrate that the CNN successfully mapped the degraded in vivo spectra into the 

noise-free, line-narrowed, baseline-removed, intact metabolite spectra that can be completely 

accounted for by a linear combination of the metabolite phantom spectra only. The difference 

spectra (Pred64 – Pred8) ((U)-(Y)) between the CNN-predicted metabolite spectra for the in 

vivo spectra with NSA = 64 and 8 (i.e., the difference spectra between (F)-(J) in Figure 2-6 

and (F)-(J) in this Figured 2-7) demonstrate the robust performance of the CNN against low 

SNR. %MSE = {mean square of (Pred64 – Pred8)}/{mean square of (Pred64)}×100. 
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2.3.6. Metabolite Quantification in in vivo Spectra 

The results of metabolite quantification from the in vivo spectra with NSA = 64 by 

using the proposed method and the LCModel analysis are compared in Figure 2-8 

for those metabolites that are most commonly reported in the literature (Figure 2-8 

(A)-(D)), challenging to detect (Figure 2-8(E)-(F)), and difficult to separate from 

each other (Figure 2-8(G)-(J)). Overall, the metabolite concentrations estimated 

from the five human subjects are within or close to the expected ranges (mean ± 2 × 

SD) from the literature except mI, GSH and especially Cr/PCr for the LCModel 

analysis and PCh/GPC for the proposed method. In the LCModel analysis the 

PCh/GPC values were not available (Figure 2-8(H)) because PCh were not 

detectable (amplitude = 0 and CRLB = 999%) for all five subjects. 

For the two approaches the variations in metabolite concentration estimated across 

the in vivo spectra with NSA = 8, 16, 24, 32, 40, 48, and 56 with respect to the 

concentrations estimated with NSA = 64 are compared in Figure 2-9 for those 

metabolites included in Figure 2-8. The variations in metabolite concentration and 

the CRLB values are the mean values over the five human subjects except for Cr 

with NSA = 8 in the LCModel analysis where amplitude = 0 and CRLB = 999% 

(‘not detectable’) were returned for one subject. Therefore, this case was excluded 

in the calculation of the mean values. For the LCModel analysis, such a case of ‘not 

detectable’ occurred with PCh for all subjects across all NSA, and therefore, the 

results of PCh were excluded in Figure 2-9(J). For the proposed method the 

variations were ~ 10% or less for the majority of the metabolites except for GSH. 

For the LCModel analysis the estimated concentrations appear more variable, 

particularly for Cr and GABA. 

The whole run time for a pre-processed single in vivo spectrum was 

estimated to be 4.13 seconds on a PC using CPU only  (Intel® CoreTM i5-3570 

processor (3.40 GHz); 16 GB RAM), which included loading of the files (input 

spectrum, metabolite basis set, and the trained CNN), prediction of the intact 

metabolite spectrum from the input spectrum by the CNN, and quantification of the 

individual metabolites from the intact metabolite spectrum by solving the inverse 

problem. 
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Figure 2-8. Comparison of the relative metabolite concentrations estimated by the CNN (red 

symbols; left) and the LCModel analysis (blue symbols; right) from the in vivo brain spectra 

(NSA = 64) of the five healthy subjects (#1 - #5). Different symbols were used for different 

subjects. The expected concentration ranges of the metabolites from the literature were 

marked with dotted lines (the mean values marked with thick-dotted lines). 
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Figure 2-9. The variations (%) in the metabolite concentrations estimated by the proposed 

method (red lines and circles) and the LCModel analysis (blue lines and squares) across the 

in vivo spectra with NSA = 8, 16, 24, 32, 40, 48, and 56 with respect to the concentrations 

estimated from the spectra with the maximum NSA of 64. 
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2.4. Discussions 

2.4.1. Motivation of Study 

In a typical clinical setting, brain metabolite spectra are indispensably degraded due 

to many factors including, but not limited to, low SNR, overlap between metabolite 

signals, line broadening, and unknown spectral baseline. For the quantification of 

individual metabolites from the degraded brain spectra, a nonlinear least squares 

fitting has been the most widely used approach. [55, 116] However, even with the 

current state-of-the-art software package, it can be challenging. [126] Spectral 

editing methods [31] such as a multiple quantum filter and a J-difference editing can 

effectively isolate a target metabolite signal from its neighboring metabolite signals 

and spectral baseline, but is not suitable for profiling of all MR visible metabolites. 

Therefore, development of a more robust method for brain metabolite quantification 

is a remaining issue in 1H-MRS. 

To this end, several pioneering studies reported potential applicability of 

deep learning in 1H-MRS in line with its rapidly expanding applications in a variety 

of different tasks. For instance, Kyathanahally et al [129] reported the application of 

CNNs in the detection and removal of spectroscopic artifacts following their earlier 

work using machine learning. [142] Gurbani et al [128] reported a fully automated 

management of spectral quality using a CNN. The potential applications of machine 

learning for metabolite quantification have also been explored by a few research 

groups. Using a random forest regression Das et al [107] reported the utility of 

machine learning for the quantification of major metabolite peaks such as Cho, Cr, 

Glx, mI and NAA in the simulated and in vivo 1H-MRS spectra. Using deep learning 

Hatami et al [110] reported a CNN that was trained on the time-domain data set and 

capable of quantifying individual metabolites in simulated spectra. Iqbal et al [111] 

also reported the potential application of a CNN for metabolite quantification using 

two dimensional simulated spectra. To the best of our knowledge, however, none of 

these previous studies evaluated the performance of their machines on in vivo spectra 

of human brain for all representative MR visible brain metabolites including Glu 

separately from Gln and those metabolites suffering from low concentrations and 

severe spectral overlap such as GABA [143] and GSH. [118] 

Inspired by these previous studies and motivated by the remaining issue, we 
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developed a CNN that was trained to map in vivo brain spectra degraded by poor 

SNR and linewidth, frequency and phase shift, and unknown baseline into noise-free, 

line-narrowed, frequency and phase shift-corrected, baseline-removed, intact 

metabolite spectra through a sequence to sequence regression. As the target spectra 

used in the training of the CNN were generated solely by a linear combination of the 

metabolite phantom spectra with different relative concentration ratios, the 

quantification of individual metabolites from the CNN-predicted spectra is nothing 

but a simple inverse problem involving only one matrix inversion and one matrix 

multiplication. The difference spectra (Figure 2-3 (Q)-(T) and (U)-(X); Figure 2-

6(P)-(T); Figure 2-7(P)-(T)) clearly demonstrate that the CNN fulfills its tasks of 

removing noise, line broadening, phase and frequency shift, and spectral baseline as 

trained such that the CNN-predicted spectra can be completely accounted for by a 

linear combination of the metabolite phantom spectra only. 

 

2.4.2. Metabolite Quantification on Simulated and in vivo Brain Spectra 

In this study, Ala, GPC, Lac, NAAG, and PC were quantified with MAPE > 

20% for the simulated brain spectra in the test set. Ala and Lac are known to be 

present in mammalian brain at a concentration of < 1 mM [58], and could be detected 

only upon increased concentrations under pathological conditions. [144] In this study, 

they were the two lowest in concentration among the metabolites included in the 

simulated spectra (Table 2-1). Thus, the low concentrations in combination with the 

overlapping MMs signal (M3 in Table 2-2) [132, 133] may explain their relatively 

high MAPE. The quantification of NAAG separately from NAA is also known to be 

difficult due to low concentrations and spectral overlap. [144, 145] In this study the 

difficulty should be exacerbated by the wide range of line broadening applied to the 

simulated spectra, resulting in the relatively high MAPE. As shown in Figure 2-6, 

whereas the linewidth of the in vivo spectra with NSA = 64 ranged 10.4 – 12.4 Hz, 

the linewidth of the simulated spectra ranged 10 – 20 Hz. Likewise, the large line 

broadening in our simulated spectra most likely influenced the separate 

quantification of GPC and PCh, given the spectral overlap from mI, Glc, and Tau 

[58] in addition to between the two metabolites. It should be noted, however, that 

these results were obtained across all simulated spectra in the test set (N = 5,000), a 

portion of which had metabolite SNR substantially lower than that found in typical 
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human brain spectra in addition to the wide range of the line broadening. For instance, 

whereas the typical SNR range of tNAA in vivo is reported to be 23.5 ± 11.3 [19], it 

was 10.41 ± 2.14 (6.90 – 20.74) in this study as shown in Figure 2-2. Excluding these 

five metabolites, an overall MAPE of 12.49±4.35% was achieved for the rest 12 

metabolites. 

Despite the poorer SNR and linewidth ranges in the simulated spectra than 

in typical in vivo spectra our CNN achieved MAPE close to 10% or less for mI, 

NAA, and Tau, and even for Cr, Gln, Glu, GSH, and PCr that are already difficult 

enough to quantify in the short TE spectra with typical SNR and linewidth at clinical 

field strength. Specifically, due to the spectral proximity the separate quantification 

of Cr and PCr is known to be possible only at 7.0 T or higher. [58] The differentiation 

between Gln and Glu has long been an issue for MR spectroscopists. [146] GSH as 

well as GABA can be detected only upon the use of spectral editing methods. [58, 

144] Nonetheless, our CNN achieved MAPE close to 10% for GSH and less than 

20% for GABA in the simulated spectra. For the true in vivo spectra the 

concentrations of the metabolites of interest estimated by using the proposed method 

and the LCModel analysis were comparable to the expected concentration ranges 

except PCh/GPC for the proposed method and mI, GSH and Cr/PCr for the LCModel 

analysis. For the proposed method the deviation of PC/GPC from the expected range 

is due to the difficulty of quantifying both metabolites (MAPE > 20% in the 

simulated spectra). The difficulty of quantifying PC was also encountered with the 

LCModel analysis where it was not detectable for all subjects across all NSA. Given 

the potential dependence of metabolite concentrations on the brain regions and 

relative proportion of the gray/white matters [147], the deviation of mI as well as 

GSH from the expected concentration ranges with the LCModel analysis may need 

to be carefully interpreted. For Cr/PCr, however, the estimated values with the 

LCModel analysis were substantially deviated from the expected range of ~ 1.3-3.0 

[64, 138], which may be in support of the efficacy of the line-narrowing provided by 

the proposed method. 

 

2.4.3. Metabolite Quantification Robustness against Low SNR 

One of the potential advantages of our CNN is the robustness against low 

SNR. Despite the substantial difference in SNR between the in vivo spectra with 
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NSA equivalent to 8 and 64 (SNR 7.7 ± 0.9 vs. 16.2 ± 1.2), the resulting CNN-

predicted intact metabolite spectra are in close agreement with each other as 

demonstrated in the difference spectra (Figure 2-7 (U)-(Y)). Further, despite the wide 

range of the SNR across the in vivo spectra with different NSA (8 through 64), the 

majority of the metabolites of interest showed only ~ 10% variations in concentration 

with respect to the concentrations estimated with the maximum NSA of 64 using the 

proposed method. On the other hand, larger variations were observed with the 

LCModel analysis, particularly for Cr and GABA. Given that the experimental 

settings associated with the SNR of 1H-MRS brain spectra (such as number of 

receiver channels, coil design, voxel size, and NSA) can be quite diverse even for 

different studies in the same laboratory, the robust performance of the proposed 

method against different SNR can be advantageous. In addition, while far more 

improvement is required prior to the routine use of deep learning-based metabolite 

quantification, results in this study all together are in support of the feasibility of 

implementing a sub-minute 1H-MRS of human brain (e.g., with an NSA of only 16) 

by exploiting the robustness of our CNN against low SNR, which then can further 

extend the applicability of 1H-MRS in clinical studies. 

 

2.4.4. Study Limitation 

In the simulation of spectra that mimic in vivo spectra this study did not include 

several factors that may influence the accuracy of metabolite quantification such as 

residual water signal, other spectroscopic artifacts [129, 142], lipid, and first order 

phase distortion. For instance, incomplete water suppression can result in substantial 

baseline distortion. Therefore, the goal of a follow-up study should be to further 

improve the capability of the CNN upon more realistically simulated in vivo spectra 

such that the CNN in itself can either filter out contaminated spectra prior to further 

analysis or still extract uncontaminated intact metabolite spectra therefrom. Or at 

least, a separate processing unit for spectral quality control [128, 129, 142, 148] 

should be integrated into the working pipeline prior to the CNN. Nonetheless, the 

observation that our CNN successfully mapped the degraded in vivo spectra into the 

intact metabolite spectra with negligible residual signal in the difference spectra 

(Figure 2-6 (P)-(T) and Figure 2-7 (P)-(T)) without being ever trained on the actual 

in vivo spectra is in support of the utility of our simulated brain spectra.  
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This study was evaluated CNN only on the in vivo spectra that were 

acquired with the same voxel size (2 × 2 × 2 cm3) and from the same brain location 

(left frontal lobe). However, simulated spectra have a wide range of relative 

metabolite concentration ratios and substantially low SNR and large line broadening 

with respect to those for typical human brain spectra (Figure 2-2 and 2-3).  

The spectral baseline was also modeled with varying relative amplitude and 

linewidth for all MMs groups in consideration of its potential regional and/or disease 

state-dependent variability [37, 38, 149, 150]. Therefore, the proposed CNN may 

also be tolerant of changes in the size and location of the voxel to a certain extent. 

However, in order to apply CNN to the spectra with drastically deviated relative 

metabolite concentration ratios from those found in normal human brain such as 

brain tumor spectra, the CNN should be retrained accordingly with additional 

simulated spectra. 

Figure 2-10 and Figure 2-11 show the responses of CNN in its current form 

to previously unseen simulated spectra that mimic brain tumor spectra (Figure 2-10) 

and that are severely contaminated by strong water signal (Figure 2-11 (B)), ghosting 

artifact (Figure 2-11 (C)), or both. (Figure 2-11(D)), respectively.  

The spectrum in Figure 2-10 (A) is one of the spectra in the test set. 

Although tCho appears higher and tNAA appears lower than those in the normal 

human brain spectra, they are still within the range of the relative metabolite 

concentration ratios used in the simulation of our original 50,000 spectra for the 

training/validation/test of the CNN. Despite the poor SNR, the difference spectra 

between the ground truth spectrum and the predicted spectrum by the CNN show 

only a small amount of residual signal mainly in the major peak areas such as tCho, 

tCr, and tNAA. In Figure 2-10 (B), the spectrum now contains strong tCho and Lac 

signal, of which the relative concentration ratios substantially deviate from those in 

the training set. As a result, a relatively large residual tCho signal is observed at ~ 

3.2 ppm in the difference spectrum (GT – Pred.). For Lac, the CNN appears to have 

treated it as a non-metabolite signal. The Lac signal is almost completely suppressed 

in the predicted spectra together with the spectral baseline. Consequently, the 

difference spectrum (GT – Pred.) shows as much Lac signal as in the ground truth 

spectrum (the residual Lac signal is also observed at ~ 4.1 ppm). n Figure 2-10 (C), 

the spectrum contains high tCho signal and low tNAA signal, of which the relative 
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concentration ratios substantially deviate from those in the training set (Lac 

concentration ratio being within the range used for the original simulation). In 

addition, strong lipid signals were also included in the spectrum. For the modeling 

of the lipid signals, 10 line functions were used, and combined into 5 groups (~ 0.9, 

~ 1.3, ~ 2.0, ~ 2.3, and ~ 2.8 ppm with the relative amplitude ratio of ~ 0.5 : 1 : 0.1 : 

0.1 : 0.1 [39, 133, 151]). Similar to Figure 2-10 (B), relatively large residual signals 

of tCho and tNAA are observed in the difference spectrum (GT – Pred.) at ~ 3.2 and 

~ 2.0 ppm, respectively. As with the Lac signal in Figure 2-10 (B), the CNN appears 

to have treated the strong lipid signal (esp., the methylene group at ~ 1.3 ppm) as a 

non-metabolite signal (this time correctly) and almost completely suppressed it in 

the predicted spectra together with the spectral baseline. 

The spectrum in Figure 2-11 (A) is one of the spectra in the test set, from 

which the CNN resulted in the most accurate quantitative outcome. Almost 

negligible residual signals are observed in the corresponding difference spectrum 

(GT – Pred.). A strong residual water signal (Figure 2-11 (B)), a strong ghosting 

artifact (Figure 2-11 (C)), or both residual water signal and ghosting artifact (Figure 

2-11 (D)) were artificially added to the spectrum in Figure 2-11 (A) to simulate those 

spectra shown in Figure 2-11 (B) through (D), respectively. In Figure 2-10 (B), the 

strong residual water signal that the CNN has never seen before was completely 

suppressed in the predicted spectrum (GT – Pred.) together with the spectral baseline. 

However, higher residual signals are observed in that predicted spectrum. In Figure 

2-11 (C), a strong ghosting artifact that the CNN has never seen before completely 

ruined the spectrum in the ~ 3.5 – 4.3 ppm range. Nonetheless, the CNN successfully 

predicted the metabolite only spectrum in that spectral region according to the minor 

residual signals in the resulting difference spectrum (GT – Pred.). However, the 

strong ghosting artifact appears to have influenced the prediction of other spectral 

regions such as ~ 3.2 and ~ 2.0 ppm regions according to the slightly higher residual 

tCho signal and more noticeable residual tNAA signal in the corresponding 

difference spectrum in Figure 2-11 (C) with respect to those in the difference 

spectrum in Figure 2-11 (A). In Figure 2-11 (D), the strong residual water signal and 

ghosting artifact are combined to completely ruin the spectrum in the ~ 3.5 – 4.3 

ppm range. Despite the fact that the CNN has never seen before such a severely 

degraded spectrum, it almost completely suppressed the contaminators in the 
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predicted spectrum. The residual signals in the resulting difference spectrum, 

however, are not negligible across the ~ 2.0 – 4.0 ppm range. 

In summary, our CNN has a great potential for robust metabolite 

quantification from normal human brain spectra. However, the capability of our 

CNN should be further improved in order to apply it to those spectra that 

substantially deviate from typical, normal human brain spectra due to severe 

contamination resulting from unwanted signals such as strong residual water signal 

and ghosting artifact and/or due to aberrant relative metabolite concentration ratios 

as in brain tumor spectra. This would require more extensive training of the CNN on 

more realistically simulated in vivo spectra such that the CNN in itself can either 

filter out those atypical spectra prior to further analysis or still extract 

uncontaminated intact metabolite spectra therefrom. 

To the best of our knowledge, the vendor-provided basis set is most widely used in 

the LCModel analysis. However, for more direct comparison between the two 

approaches, the metabolite phantom spectra that were used for the simulation of the 

brain spectra need to be incorporated as a basis set in the LCModel analysis. 

Combined with voxel-specific spectral baseline information such as metabolite-

nulled spectra [41, 152], they would have improved the performance of the LCModel 

analysis in our study. Although our CNN requires data pre-processing such as Fourier 

transformation of the FID signal followed by the zeroth and first order phase 

correction, they are only minor works. In terms of fully automated metabolite 

quantification, a neural network may be preferred that directly uses the time domain 

signal as an input [107] and is capable of managing data quality. [128, 129, 142, 148] 

Such an advanced CNN might also be developed for MRSI, in which case the 

processing time for MRSI data would substantially be reduced. The feasibility of 

automatic quality management for MRSI data sets has been demonstrated previously. 

[128, 148] 

One additional limitation of this study is the difficulty of clearly 

understanding what our CNN has learned for the mapping of the degraded brain 

spectra into the intact metabolite spectra. To address such a black box problem of 

artificial intelligence development of techniques for visualizing neural networks is 

one of the active research areas in deep learning. [153] For those who may be 

interested in, the layer activations of the CNN are shown in Figure 2-12, Figure 2-
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13, Figure 2-14 and Figure 2-15 for several representative network layers. Finally, 

given that we employed a quite generic neural network architecture in the design of 

our CNN and that the function mapping the degraded brain spectra into intact 

metabolite spectra can be approximated by using different deep learning models and 

architectures [154], development of a CNN with better performance than ours is 

likely. 
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Figure 2-10.   The responses of the CNN in its current form to the simulated spectra (A) 

that mimic brain tumor spectra (B) – (C). 
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Figure 2-11.   The responses of the CNN in its current form to the simulated spectra (A) 

that are severely contaminated by strong residual water signal (B), ghosting artifact (C), or 

both (D). 

 

 

  



 

 
７７ 

 

 

 
Figure 2-12. The activations of the first ReLU layer for all of the 32 channels. 

 

 

 

 

 

 
Figure 2-13. The activations of the fifth ReLU layer for all of the 32 channels. 
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Figure 2-14. The activations of the ninth ReLU layer for all of the 32 channels. 

 

 

 

 

 

 
Figure 2-15. The activations of the twelfth ReLU layer for all of the 32 channels. 
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Chapter 3. Deep learning-based target metabolite 

isolation and big data-driven measurement 

uncertainty estimation in proton magnetic resonance 

spectroscopy of the brain 
 

3.1. Introduction 

For quantification of individual metabolites from brain spectra acquired at a short 

echo time (TE) by using by using 1H-MRS, a NLSF has been most commonly used. 

[55, 116] However, it can be challenging due to limited SNR, spectral overlap 

between metabolite signals and the presence of unknown baseline. [35, 55, 126, 155] 

Therefore, development of a more robust method is still on demand in 1H-MRS. 

In accordance with the recent revolutionary advances in deep learning [99], 

studies supporting the applicability of machine learning/deep learning in 1H-MRS 

have been rapidly accumulating. [107, 108, 110, 111, 128, 129, 142] In these studies 

the potential of the machine learning-/deep learning-based spectral quality 

management [128, 129, 142] and metabolite quantification [107, 108, 110, 111] has 

been clearly demonstrated. For machine learning-/deep learning-based metabolite 

quantification, however, estimation of the measurement uncertainty in the machine-

predicted metabolite concentrations such as the CRLB in the LCModel analysis [55] 

should also be important [108], and yet has not been reported to date.   

 In NLSF the accuracy of metabolite quantification is known to depend 

mainly on SNR, linewidth and degree of spectral overlap [55], and this appears to 

hold also in the deep learning-based metabolite quantification to a certain extent. 

[108, 110, 111] Therefore, knowledge about those three factors may be utilized for 

the prediction of the quantitative errors in the machine-predicted metabolite 

concentrations. While SNR and linewidth are typically measured from a 

representative singlet such as tNAA, the degree of spectral overlap or signal-to-

background ratio (SBR) as its quantitative metric needs to be measured from each 
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individual metabolites. Thus far, the outputs of the CNNs used in the deep learning-

based metabolite quantification are in the form of direct metabolite concentrations  

[108, 110], individual metabolite spectra [111], or whole (metabolite-only) spectrum 

as described in Chapter 2. For the second approach the estimation of SBR of 

individual metabolites from the CNN-output is more straightforward, and the 

function to be approximated by a CNN may be computationally less costly than the 

first approach where the CNN is required to learn the mapping from input spectra 

directly to metabolite concentrations. 

To this end, this chapter aimed to develop and evaluate CNNs specific to 

each individual metabolites, which isolate signals only from one designated 

metabolite and one fixed reference metabolite (e.g., tCr) and suppress the rest of the 

signals including baseline signal and spectral noise. The estimation of SBR, as well 

as quantification, of the metabolites are achieved from the spectrally isolated and 

denoised CNN-output spectra. Then, the resulting SBR that is subject to error due to 

limited performance of the CNNs is adjusted according to the relationships between 

the CNN-predicted SBR and the corresponding GT SBR that were pre-defined for 

each metabolite by exploiting the big training data set. The adjusted SBR together 

with the SNR and linewidth of the input spectrum are used for the prediction of the 

quantitative errors. The accuracy of the metabolite quantification by the deep 

learning-based spectral isolation and the feasibility of the big data-driven 

quantitative error estimation were tested first on two different groups of simulated 

rat brain spectra and further on in vivo spectra at 9.4T.  

 

3.2. Methods and Materials 

3.2.1. Acquisition and Analysis of in vivo Rat Brain Spectra 

The animal study was approved by the Institutional Animal Care and Use Committee 

(IACUC). In vivo data were acquired from heathy Sprague-Dawley rats (n= 15, 7±1 

weeks old, 220±30 g) to extract a prior knowledges such as SNR and linewidth for 

the simulation of rat brain spectra.  

MR data were collected on a 9.4T animal MR scanner using a single 

channel surface coil (20-mm in diameter) for RF transmission and signal reception 

(Agilent Technologies, Santa Clara, CA, USA) as previously described. [156] After 
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acquisition of scout images, voxels were defined in the cerebellum and the thalamus 

(3.0×2.8×2.8 mm3) for each animal. Then, auto-shimming was performed followed 

by manual adjustment. 

1H-MRS data were collected using a SPECIAL sequence [51] (TR/TE= 

5500 / 3.45 ms, 2048 data points, spectral BW= 5 kHz, and 32-step phase cycling). 

For minimal voxel displacement [157], the carrier frequency was shifted by -2.3 ppm 

from the water resonance. A variable pulse power and optimized relaxation delays 

(VAPOR) [158] module in combination with OVS modules [45] preceded the main 

sequence. To investigate the performance of the CNNs against different SNR, 12 

spectra with a NSA of 32 were acquired consecutively from each voxel. Then, by 

combining these data 12 spectra with different NSA ranging 32 – 384 (step size=32) 

were generated.  

Metabolite-nulled spectra were collected as a surrogate of the spectral 

baseline from the thalamus of three rats by using double inversion [156], and used 

for one of the simulated spectra groups.   

The acquired data were zero-filled to 4096, Fourier transformed, and 0th- and 

1st-order phase corrected by using jMRUI (v.5.2) [116] with no line-broadening. The 

residual water signal was removed by the HLSVD filter. [119] In the case where the 

in vivo data are used as CNN-inputs, the processed spectra were cropped to 1308 

data points corresponding to 0.5 – 4.5 ppm range as with the simulated spectra. 

 

3.2.2. Simulation of Metabolite Basis set 

The spectral basis set was simulated for 27 metabolites in response to a single spin-

echo by using GAMMA [59] according to the reported chemical shifts and J-

coupling constants [34]. They were alanine Ala, Asp, GABA, Glc, Gln, Glu, GPC, 

GSH, Lac, mI, NAA, NAAG, PCh, PCr, PE and Tau. Those metabolites in the first 

group and the second group are referred to as major and minor metabolites, 

respectively. 

 

3.2.3. Acquisition of Metabolite Basis set in Phantom 

Metabolite phantoms were made in cylindrical tubes (50 mL) for each one of the 17 

major metabolites (TSP (0.5 mM) and sodium azide (NaN3; 0.1%) also included in 

the phantoms; pH= 7.0 – 7.5; Sigma-Aldrich). Spectra were acquired by using the 
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same sequence that was used for the in vivo data collection except for TR (=10 sec) 

and NSA (=128). 

 

3.2.4. Simulation of Rat Brain Spectra using Simulated Metabolite and 

Baseline Basis Sets 

Based on the simulated metabolite basis set and a priori knowledge from the in vivo 

spectra, rat brain spectra were simulated by using an in-house script written in 

Python (v.3.6; Python Software Foundation, Wilmington, DE) as previously 

described in Section 2.2.3. 

 First, the upper and lower bounds of the metabolite concentrations for 

normal rat brain were determined according to the literature (Figure 3-1). [132, 159] 

These concentration ranges were evenly divided by the number of spectra to be 

simulated for the optimization of the CNNs (N=100,000) for all metabolites. Then, 

metabolite spectra were generated by combining all simulated metabolite basis 

spectra according to randomly selected relative metabolite concentration ratios 

within the concentration ranges.  

 Second, the spectral baseline in the range of 0.5 – 4.5 ppm was simulated 

using 25 Gaussian model functions based on the previous studies. [132, 159] These 

model functions were grouped into 10 resonance groups (M1-M10) and their relative 

amplitudes were normalized according to the literature. [132, 159] Then, spectral 

baselines were generated by randomly varying the linewidth of the 25 model 

functions and the relative amplitude of the M1-M10 groups within ± 20 % and ± 10 % 

from their initial values, respectively.   

 Third, the metabolite signal and baseline signal were combined by 

randomly varying the initial ratio of 1 : 0.9 within ± 25 % followed by the application 

of Lorentzian line broadening (10 – 30 Hz as measured from tNAA (~2.0 ppm)) and 

phase-/frequency-shift (± 1o and ± 21 Hz, respectively) (Figure 3-2).   

Forth, all simulated spectra were cropped to 1308 data points (0.5 – 4.5 ppm) 

for efficient CNN training. Then, the SNR of the spectra were adjusted by adding 

random noise such that the SNR of tNAA was in the range of ~5 – 30. The spectral 

noise was estimated by measuring the two standard deviations [160] in the ~8.0 – 

10.0 ppm range prior to the cropping of the spectra.  
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Fifth, for each of the simulated brain spectra the corresponding GT target 

spectra (metabolite-specifically isolated spectra) were prepared for individual 

metabolites without adding the spectral baseline and noise. The tCr was used as the 

reference metabolite for quantification and thus the two singlets of tCr were also 

included in all of the GT target spectra.   

Finally, 100,000 spectra were simulated for the optimization of the CNNs. 

In addition, 10,000 spectra were simulated for the testing of the optimized CNNs. 

This set of the simulated spectra using the simulated metabolite and baseline basis 

sets is referred to as simulated spectra set I. 
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Figure 3-1. The relative metabolite concentration ranges used for the simulated spectra set I. 

Those 10 metabolites referred to as minor metabolites are indicated with †. The rest of the 17 

metabolites are referred to as major metabolites. The solid line in the middle of each bar 

indicates the mean value. 
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Figure 3-2. A schematic of the simulation of rat brain spectra at 9.4T. The simplified structure 

of the CNN is also shown. The simulated spectra with different relative metabolite 

concentrations, baseline, SNR, linewidth, frequency shift, and phase shift are used as CNN-

input spectra. For each CNN-input spectrum the constituent metabolite spectra without 

artificial spectral noise are individually saved and used as ground truth spectra. As a reference 

signal for quantification tCr signal is combined with all individual metabolite spectra. Using 

these CNN-input and ground truth spectra CNNs are trained one by one for each metabolite 

such that each CNN filters out signals only from a designated target metabolite (GABA in 

this example) and tCr. After completion of training, an input rat brain spectrum is fed into the 

27 CNNs and tCr-normalized quantitative results are obtained for the 27 metabolites. 



 

 

Metabolites 

  Ground truth  Ground truth LCM GT  

Absolute concentration for LCModel and jMRUI  for CNN  / CNN GT‡ 

(mM) (/tCr concentration)* (/tCr area)†  

Phantom 1 Phantom 2 Phantom 3 Phantom 1 Phantom 2 Phantom 3 Phantom 1 Phantom 2 Phantom 3   

Ala 0.5 1 0.75 0.07 0.11 0.08 0.08 0.12 0.09 0.89 

Asp 3 1 2 0.43 0.11 0.21 0.29 0.07 0.14 1.49 

Cr 4 5 4.5 0.57 0.56 0.47 - 

GABA 2 1 0.5 0.29 0.11 0.05 0.69 0.27 0.13 0.42 

Glc 2 3 1 0.29 0.33 0.11 0.32 0.37 0.12 0.9 

Gln 5 3 4 0.71 0.33 0.42 0.99 0.46 0.58 0.74 

Glu 8 10 12 1.14 1.11 1.26 1.54 1.5 1.71 0.72 

GPC 1 3 2 0.14 0.33 0.21 0.18 0.42 0.27 0.34 

GSH 0.5 0.75 1 0.07 0.08 0.11 0.21 0.25 0.31 0.78 

Lac 1 2 3 0.14 0.22 0.32 0.14 0.21 0.3 1.04 

mI 6 9 8 0.86 1 0.84 1.42 1.66 1.4 0.6 

NAA 9 6 12 1.29 0.67 1.26 1.36 0.71 1.34 0.94 

NAAG 0.5 0.25 0.1 0.07 0.03 0.01 0.09 0.04 0.01 0.6 

PCh 1 2 0.5 0.14 0.22 0.05 0.4 0.63 0.15 0.34 

PCr 3 4 5 0.43 0.44 0.53 - 

PE 1 1.5 2 0.14 0.17 0.21 0.09 0.1 0.13 1.67 

Tau 12 10 8 1.71 1.11 0.84 2.24 1.45 1.1 0.76 
 

Table 3-1. Metabolite concentrations in the three phantoms and corresponding ground truth metabolite content.  
* Ground truth metabolite content upon measurement by LCModel and jMRUI where the concentrations of the metabolites were normalized by the 

concentration of tCr.  
† Ground truth metabolite content upon measurement by CNNs where the area of the signals of the metabolites were normalized by the area of the methyl 

signal of tCr at ~3.0 ppm in the CNN-output spectra.  
‡ The ratio of LCModel to CNN ground truth.
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3.2.5. Simulation of Rat Brain Spectra using Metabolite Phantom 

Spectra and in vivo Baseline 

To evaluate the trained CNNs further on more realistically simulated in vivo spectra, 

spectra were simulated by using metabolite phantom spectra in combination with in 

vivo baseline.  

 Three metabolite phantoms were made in cylindrical tubes (50 mL) 

including those 17 major metabolites with different relative metabolite concentration 

ratios (Table 3-1) (TSP (0.5 mM) and NaN3 (0.1 %) also included; pH=7.0-7.5). 

Spectra were acquired by using the same sequence that was used for the in vivo data 

collection except for TR (=10 sec) and NSA (=128).  

The phantom spectra were line-broadened (10 Hz) and then combined with 

the in vivo baselines. For each of the three combined spectra the linewidth and SNR 

were adjusted in the ranges of ~10 – 20 Hz (step size = 5 Hz) and ~5 – 30 (step size 

= 5), respectively. Thus, a total of 54 spectra were generated from the original three 

combined spectra (3 linewidth × 6 SNR × 3 spectra = 54 spectra). This set of the 

simulated spectra using the metabolite phantom spectra and in vivo baseline is 

referred to as simulated spectra set II. 

 

3.2.6. Design and Optimization of CNN 

Only the real (absorption) part of the spectrum was used as the input and output of 

the CNNs. A base CNN was designed (Figure 3-2) and optimized for individual 

metabolites by using Tensorflow framework (Tensorflow v1.4.1; Google LLC, 

Mountain View, CA) on 4 graphics processing units (GPUs; NVIDIA Titan Xp). The 

base CNN consisted of 1 input layer, 9 convolution blocks, 9 max pooling layers, 2 

fully connected layer, and 1 regression layer. Each convolution block was composed 

of 2 repetitions of one-dimensional convolution – batch normalization – rectified 

linear unit (ReLU) activation layers. The following hyperparamters were commonly 

used in the CNN optimization: max pooling pool size=2×1, max pooling stride=1, 

batch size=128, 1 validation per epoch. For the training of the CNNs an adaptive 

moment (ADAM) estimation algorithm [84] was used. The loss function was MSE. 

The 100,000 spectra simulated for the optimization of the CNNs in the 

simulated spectra set I were randomly split into a training (N=80,000) and a 
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validation (N=20,000) sets. The spectra in the training set were min-max normalized 

(height × width × channels × array = 1308 × 1 × 1 × 80,000). Then, the CNNs were 

Bayesian-optimized [135] with a coarse-to-fine search for individual metabolites. 

First, the following coarsely selected hyperparameter ranges were used with max 

epoch=3 and number of objective evaluations = 300: filter size = 3 × 1 to {int(input 

height/2n)} × 1 where int stands for a closest integer and n is convolution block index 

(1–9) for each convolution layer; number of filters = 1 to 100 for each convolution 

layer; the number of neurons of the first fully connected layer = {1 to 5} × 1308; 

initial learning rate = 1 × 10-5 to 1 × 10-2. From this first optimization step, 10 sets 

of the optimized hyperparameters were selected for each metabolite that resulted in 

the 10 smallest validation losses. Then, the hyperparameter ranges were fine-tuned 

according to the lower and upper limits of the above optimized hyperparameters, and 

an additional Bayesian optimization was performed with max epoch=5 and number 

of objective evaluations = 200. After this second optimization step, 10 sets of the 

optimized hyperparameters were selected again for each metabolite. 

Then, the 100,000 spectra simulated for the optimization of the CNNs in 

the simulated spectra set I were randomly divided into 5 groups and a 5-fold cross 

validation was performed [161] for each of the 10 hyperparameter sets for individual 

metabolites. From this step the best hyperparameter set was determined for each 

metabolite based on the mean validation loss over the 5-folds. 

Finally, a training set (N=80,000) and a validation set (N=10,000) were 

randomly assigned from the 100,000 spectra for the optimization of the CNNs in the 

simulated spectra set I, and CNNs were trained with the optimized hyperparameter 

(Table 3-2) for individual metabolites (maximum epoch=2000). An early stopping 

rule was applied with 100 epochs patience. The learning rate was scheduled to drop 

every 10 epochs by a factor of 0.9. The total optimization time for each metabolite 

was 120–168 hours.  



 

 

Metabolites 
Filter size in convolution layers Number of filters in convolution layers Number 

of neurons* 

Initial 

learning rate 1
st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 1

st
 2

nd
 3

rd
 4

th
 5

th
 6

th
 7

th
 8

th
 9

th
 

Ace 178 153 133 65 27 6 9 3 3 18 56 49 13 20 59 33 82 62 5693 0.007404 

ATP 168 237 31 43 8 12 8 3 3 24 63 92 44 17 8 76 62 51 4668 0.006661 

Ala 96 245 78 37 9 14 7 4 3 11 39 51 15 21 57 53 24 29 5855 0.006354 

Asc 17 156 73 63 30 14 4 4 3 32 73 30 79 27 39 77 71 47 5763 0.005434 

Asp 22 146 154 11 32 3 4 4 3 7 89 44 26 60 91 18 56 75 6316 0.006156 

Eth 260 248 140 21 27 4 6 5 3 26 58 12 58 10 5 75 56 47 6110 0.006247 

GABA 33 24 17 57 19 6 6 3 3 49 33 66 22 16 50 51 97 86 6476 0.007486 

Glc 85 114 126 43 17 7 10 4 3 86 25 55 59 88 72 67 43 60 4599 0.006746 

Glu 168 69 4 40 14 10 9 5 3 52 24 29 38 22 73 21 58 45 6353 0.006154 

Gln 65 185 134 9 34 16 4 3 3 14 72 7 73 4 42 29 28 48 5886 0.007347 

GPC 118 179 8 57 7 8 5 5 3 27 20 14 33 75 34 77 36 90 6345 0.006534 

GSH 36 110 38 16 5 18 8 4 3 56 37 38 76 31 50 13 54 58 6360 0.005054 

Gly 81 204 111 58 4 10 7 5 3 64 8 26 41 69 57 77 52 40 5506 0.006368 

Lac 11 28 19 46 23 9 4 4 3 51 24 61 20 22 23 36 86 83 6109 0.00644 

mI 75 16 135 18 13 15 4 4 3 28 33 66 67 61 29 62 87 48 6245 0.006057 

NAA 199 78 8 65 8 5 4 5 3 9 36 46 77 25 60 42 30 85 5910 0.005944 

NAAG 168 257 8 13 12 14 7 3 3 19 73 34 71 12 69 20 75 82 5257 0.006486 

PCh 27 153 133 23 12 4 4 4 3 31 34 19 73 50 10 39 30 90 6404 0.006901 

PE 65 197 66 13 12 11 5 5 3 56 34 18 50 19 55 67 95 31 4961 0.006891 

Pyr 22 300 101 16 23 5 7 4 3 84 22 55 11 9 62 44 59 83 5283 0.006836 

sI 30 297 116 39 13 15 7 4 3 19 50 12 78 57 25 14 20 80 6000 0.006479 

Ser 257 10 99 6 37 6 7 5 3 26 67 28 67 5 38 36 57 73 5716 0.006272 

Suc 141 204 89 46 11 14 5 4 3 75 40 7 87 25 15 38 71 65 4530 0.006261 

Tau 22 253 109 9 19 10 5 4 3 37 16 22 30 32 76 79 29 89 6225 0.006225 

Thr 29 105 104 68 21 18 5 4 3 8 17 54 37 22 72 66 47 88 5846 0.006129 

tCr 12 106 27 50 4 4 5 5 3 37 7 71 57 54 72 72 61 61 4814 0.006912 
 

Table 3-2. Optimized hyperparameters of the CNNs for individual metabolites. 
* The number of neurons of the first fully connected layer 
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3.2.7. Metabolite Quantification from the CNN-predicted Spectra 

Prior to the use of the trained CNNs data needs to be pre-processed manually such 

as zero-filling, Fourier transform, phase and frequency correction, removal of 

residual water signal, and cropping the 0.5 – 4.5 ppm range of the real part of the 

spectrum. Metabolite quantification is achieved by feeding the pre-processed input 

spectrum into the 27 metabolite-specific CNNs and measuring the area of the 

metabolite signal (summing signal over the known spectral region) relative to that of 

the methyl signal of tCr (~3.0 ppm) in the output spectra. This process was included 

in the working pipeline for fully automated quantification. In the case where 

metabolite signal overlaps with the reference signal (such as GABA), the area of the 

rest of the metabolite signal is measured with respect to the methylene signal of tCr 

(~3.9 ppm) and then converted to that with respect to the methyl signal according to 

the area ratio between the two signals of tCr. 

 

3.2.8. Prediction of Quantitative Error 

In the preliminary observation the losses for both training and validation sets rapidly 

decrease until ~100th epoch. After that, the training loss decreases slowly but 

continuously towards its minimum. The corresponding validation loss also decays 

but in a far slower manner. Given this initial observation, CNNs were saved in the 

middle of training at the 100th epoch where the training and validation loss decay 

curves start deviating from each other. Then, CNN-predicted spectra were obtained 

for all metabolites from the training set by using the saved CNNs. 

 Figure 3-3(A) illustrates the metabolite-specific measurement of SBR for 

GABA as an example. The signal in SBR refers to the area of the peaks of a spectrally 

isolated metabolite. The background refers to the area of the rest of the signal in the 

spectral regions where the area of the spectrally isolated metabolite signal was 

estimated. The SBR is measured from both the CNN-predicted spectrum and 

corresponding GT spectrum. The SNR and linewidth are measured from tNAA in 

the input spectrum commonly for all metabolites. 

 Once the SNR, linewidth, and SBR are measured for all metabolites from 

the input spectra and each one of the CNN-predicted spectra, a 3-D SNR-linewidth-

SBR space (SLS space) is formed (Figure 3-3(B)) for each metabolite where the SBR 
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is from the CNN-predicted spectra (SBRCNN). Then, the SLS space is segmented 

heuristically using 3-D cuboidal bins. Given that the SNR and linewidth were evenly 

varied in the simulation of the spectra, their ranges are set to 5-35 and 10-30 Hz and 

divided into 30 and 20 equally spaced pieces, respectively. On the other hand, the 

SBR was not controlled during simulation of the spectra. Therefore, it is not 

necessarily evenly varying and its variation and range are metabolite-dependent. For 

this reason the range of the SBR (e.g., 0-0.35 for GABA) is divided with a variable 

bin width along the SBR-axis such that all bins contain a fixed, identical number of 

data points. In practice, the SBR range was heuristically divided into 20 pieces and 

each bin contained 6-7 data points (80000 / (30 × 20 × 20) ~ 6.7) such that the 

predicted error is large enough to include the GT error while maintaining the high 

correlation between the two errors. Next, the relationship between the SBRs 

estimated from the CNN-predicted spectra and the GT spectra is stored for all data 

points in the SLS space (Figure 3-3(C)). At the same time a 3-D error space (absolute 

percent errors of metabolite concentrations) is also stored as a function of SNR, 

linewidth, and the SBR measured from the GT spectra (SBRGT) for each metabolite 

(Figure 3-3(D)). 

In summary, for an input spectrum, the CNNs predict metabolite-specific 

isolated spectra. The SBR of the metabolites are measured from the CNN-predicted 

spectra (Figure 3-3(A)). The SNR and linewidth are measured from the input 

spectrum. Using the co-isolated tCr in the CNN-predicted spectra, the relative 

concentrations of the metabolites are estimated (Figure 3-3(A)). Then, a bin 

corresponding to the SLS coordinate is identified from the 3-D SLS space for each 

metabolite (Figure 3-3(B)). For all data points in that bin the SBR are adjusted to the 

GT SBR (Figure 3-3(C)). Finally, a set of measurement errors corresponding to the 

data points with the adjusted SBR are obtained from the 3-D error space (Figure 3-

3(D)), among which the maximum error is chosen as the predicted error. 
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Figure 3-3. The construction of the database from the training data set for the prediction of 

the quantitative errors in the CNN-predicted metabolite concentrations. (A): The signal-to-

background-ratio (SBR) of a target metabolite (GABA in this example) is estimated by 

measuring the signal area of the target metabolite and its background (Background) from 

both the CNN-predicted spectrum (PRED) and corresponding ground truth spectrum (GT). 

At the same time, the SNR and linewidth are measured from the CNN-input spectrum (Input). 

In this case, the GABA signal at ~3.0 ppm overlaps with the reference signal (the methyl 

signal of tCr at ~3.0 ppm). Therefore, the area of the methyl signal of tCr is not used (Reject). 

Instead, the methylene signal of tCr at ~3.9 ppm is estimated (Accept), and the area of the 

rest of the GABA signal (at ~2.3 and ~1.9 ppm) is measured with respect to the methylene 

signal of tCr. Then, it is converted to that with respect to the methyl signal of tCr according 

to the area ratio between the two signals of tCr. (B): Using the relationships among the SNR, 

linewidth, and SBR estimated from the CNN-predicted spectra (SBRCNN) from the 80,000 

spectra in the training data set, the SNR-linewidth-SBR space (SLS space) is formed for each 

target metabolite. Then, the space is segmented with 3-D bins, each of which contains ~6-7 

data points. (C): the relationships between the SBR of a target metabolite estimated from the 

CNN-predicted spectra (SBRCNN) and that from the GT spectra (SBRGT) are stored for all 

data points in the SLS space. (D): a 3-D space of the quantitative errors obtained from the 

training data set is also stored for each target metabolite as a function of the SNR, linewidth, 

and SBR measured from the GT spectra (SBRGT). 
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3.2.9. Evaluation of Proposed Method 

For the simulated spectra sets I and II, the metabolite concentrations and 

corresponding errors predicted by the proposed method were directly compared with 

the GT values. For the predicted concentrations the resulting MAPE was calculated 

for each metabolite. For the predicted errors whether or not they are inclusive of (no 

less than) the GT errors was examined along with the correlations between the 

predicted and the GT errors. 

For the simulated spectra set II, the metabolite concentrations and errors 

predicted by the proposed method were also compared with the concentrations and 

CRLB obtained by the LCModel (v.6.3-1J; [55]) and jMRUI (QUEST [54]) where 

the metabolite basis set acquired in phantom was used and the baselines used for the 

simulation were incorporated into the spectral basis set for better performance of the 

software. It should be noted in this analysis that CRLB are estimations of the 

minimum possible error that can be achieved given the amount of information 

available (i.e., not predictions of the real errors but of the level of uncertainty). 

Therefore, the results need to be interpreted carefully. 

For the in vivo spectra the CNN-predicted metabolite concentrations were compared 

with those reported in the literature. [162] 

 

3.2.10. Statistical Analysis 

All statistical analyses were performed by using PRISM (v.6.01; GraphPad Software, 

Inc., La Jolla, CA, USA). For pair-wise group comparison a Student t-test was 

performed. A P-value of less than 0.05 was considered statistically significant. For 

multiple pair-wise group comparison the Bonferroni correction was applied by 

adjusting the significance level. For correlations between two variables the Pearson’s 

correlation coefficient, r, was calculated. 

For the analysis using LCModel and jMRUI only those results with 

CRLB≤50% [160] were included in the statistical analysis. 
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3.3. Results 

3.3.1. Performance of Proposed Method on Simulated Spectra Set I 

First, the performance of the proposed method was evaluated by using the 10,000 

spectra simulated for the testing of the CNNs in the simulated spectra set I. 

The SNR and linewidth of the input spectra ranged 4.88-30.23 (17.51±7.13) 

and 10.11-30.02 Hz (19.97±5.80 Hz), respectively.  

Using the CNN-based spectral isolation method the MAPE of the reference 

metabolite tCr were 1.92% and 2.56% for the methyl (~3.0 ppm) and methylene 

(~3.9 ppm) peaks, respectively, and the ratio of their relative areas was 2:3.01, over 

the 10,000 test spectra. 

Figure 3-4 (A) shows the MAPE of the 25 metabolites obtained by the CNN-

based method. For the minor metabolites MAPE were mainly over 10%, but were 

less than 10% for Asc and ATP. For the major metabolites MAPE were close to 10% 

or less except for Ala, GPC, NAAG and PCh (14.79±11.12%). The MAPE of Gln, 

Glu, mI, NAA, and Tau were close to 5% or less. The correlations between the GT 

metabolite concentrations and the CNN-predicted metabolite concentrations for the 

simulated spectra set I are given in Figure 3-5. 

 Figure 3-4 (B) shows the percentages of the predicted quantitative errors 

that were inclusive of (no less than) the GT errors (absolute percent errors) for 

individual metabolites over the whole spectra in the test set. They are all larger than 

85% except for Glc, GPC, and PCh. For the majority of the metabolites the predicted 

errors by the proposed method were highly correlated with the GT errors (r=0.81 ± 

0.13; 0.88 ± 0.09 for the major metabolites only). The correlation coefficients are 

shown for all metabolites in Table 3-3. The relationships between SBRGT and 

SBRCNN as well as between the GT errors and SBRGT, SBRCNN, SNR, and linewidth 

are shown for the 15 major metabolites in Figure 3-6. 
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Figure 3-4. The performance of the proposed method on the simulated spectra by using the 

simulated metabolite and baseline basis sets (the 10,000 spectra simulated for the testing of 

the CNNs in the simulated spectra set I;). (A): Mean absolute percent errors (MAPE) of the 

27 metabolites obtained by using the CNNs. The error bars indicate the standard deviations. 

(B): The percentages of the predicted quantitative errors that are inclusive of (no less than) 

the ground truth errors. For both A and B, those metabolites referred to as minor metabolites 

are marked with †. 
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Figure 3-5. The correlations between the GT metabolite concentrations and the CNN-

predicted metabolite concentrations for the simulated spectra set I. For the 25 metabolites 

(out of the 27 metabolites, Cr and PCr were used as the reference (tCr)), correlation (r) ranged 

from 0.117 (Pyr) to 0.986 (Tau). (p < 0.001 for all metabolites) The mean r value was 

0.700±0.309. For the 15 major metabolites (Ala, Asp, GABA, Glc, Gln, Glu, GPC, GSH, 

Lac, mI, NAA, NAAG, PCh, PE, and Tau), correlation ranged from 0.543 (NAAG) to 0.986 

(Tau). The mean r value was 0.850±0.147. For Asc, ATP, Gln, Glu, GSH, Lac, mI, NAA, 

PE, and Tau, which were quantified with the mean absolute percent error (MAPE) less than 

10% by the CNNs, the mean r value was 0.887±0.1
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Table 3-3. Correlations between the ground truth error (absolute percent error) and the 

predicted error by the proposed method for all metabolites.  
*Those referred to as minor metabolites in the text. 
† For all metabolites the corresponding P-values were <0.001.

Metabolite Correlation (r)† 

Ace
*

 0.701 
Ala 0.706 
Asc

*

 0.738 
Asp 0.919 

ATP
*

 0.825 
Eth

*

 0.62 
GABA 0.921 

Glc 0.717 
Gln 0.942 
Glu 0.981 
Gly

*

 0.663 
GPC 0.75 
GSH 0.746 
Lac 0.915 
mI 0.982 

NAA 0.988 
NAAG 0.832 

PCh 0.962 
PE 0.949 

Pyr
*

 0.733 
Ser

*

 0.829 
sI

*

 0.559 
Suc

*

 0.596 
Tau 0.983 



 

 

 

 
Figure 3-6. The relationships between SBRGT and SBRCNN as well as between the GT errors and SBRGT, SBRCNN, SNR, and linewidth (LW). To minimize 

the confounding effect among the three variables of SBRGT, SNR, and LW, we provided the contour plots of the GT error (%) as a function of the two of the 

three variables in (C)-(E) above, instead of scatter plots between the error and each one of the three variables. Note the different scales of the GT (absolute) 

errors (%) for the contour plots. For all of the correlation coefficients shown in (a), p < 0.001. 
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3.3.2. Performance of Proposed Method, LCModel, and jMRUI on 

Simulated Spectra Set II 

The SNR and linewidth of the simulated spectra set II ranged 5.01-30.09 (17.51 ± 

5.79) and 9.95-19.98 Hz (15.02 ± 2.35 Hz), respectively.  

The representative spectra are shown in Figure 3-7 where the input spectra 

came from the same source spectrum (metabolite phantom 2 in Table 3-1) but with 

different combinations of SNR and linewidth. The corresponding CNN-predicted 

spectra are also shown. For the majority of the metabolites the CNN-predicted 

spectra pairs in Figure 3-7 (A)-(B) and in Figure 3-7 (C)-(D) (pairs in terms of the 

linewidth) are comparable despite the substantial difference in SNR (5 vs. 30). 

The MAPE from the proposed method, LCModel, and jMRUI are compared in 

Figure 3-8 (A). Overall, the proposed method outperforms LCModel and jMRUI. 

For the proposed method the mean MAPE over the major metabolites were increased 

from 14.79 ± 11.12 % to 23.07 ± 16.36 %, but Gln, Glu, mI, NAA, and Tau remained 

as the five metabolites with the lowest MAPE (~10% or less) as compared to the 

MAPE obtained from the simulated spectra set I shown in Figure 3-4. The 

correlations between the GT metabolite concentrations and the CNN-predicted 

metabolite concentrations for the simulated spectra set II are given in Figure 3-9. 

The correlations between the metabolite concentrations estimated by the proposed 

method, LCModel, and jMRUI are compared for the individual metabolites in Table 

3-4.   

The predicted errors by the proposed method and the CRLB from the 

LCModel and jMRUI are shown with respect to the GT errors (MAPE) in Figure 3-

8 (B)-(D), respectively. The predicted errors are inclusive of the GT errors for the 

majority of the metabolites. The CRLB values tend to be smaller than the GT errors 

as they are not the predictions of the real errors but the estimations of the minimum 

possible errors and only those data with CRLB ≤ 50 % were included in the analysis. 

The correlations of the GT errors with the predicted errors and CRLB from LCModel 

and jMRUI are summarized for each metabolite in Table 3-5. For the proposed 

method the correlations were ~ 0.7 or higher (0.78 ± 0.05) and statistically significant 

for all 15 major metabolites. 
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Figure 3-7. The representative rat brain spectra simulated by using the metabolite phantom 

spectra and in vivo baselines (simulated spectra set II) and the corresponding CNN-predicted 

spectra for the major metabolites. All CNN-input spectra (Input) have the same relative 

metabolite concentrations but with different combinations of SNR and linewidth (LW). 
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Table 3-4. The correlations between the metabolite concentrations estimated by the proposed 

method (CNN), LCModel (LCM), and jMRUI for the simulated spectra set II. 

  

 
CNN vs. LCM CNN vs. jMRUI LCM vs. jMRUI 

r P-value r P-value r P-value 

Ala 0.256 0.031 0.531 < 0.001 0.064 0.324 

Asp 0.683 < 0.001 0.336 0.007 0.046 0.369 

GABA 0.579 < 0.001 0.697 < 0.001 0.423 0.001 

Glc -0.365 0.997 0.278 0.021 0.130 0.175 

Gln 0.490 -0.006 -0.006 0.517 -0.197 0.923 

Glu 0.737 < 0.001 0.659 < 0.001 0.797 < 0.001 

GPC -0.422 0.999 0.145 0.148 -0.145 0.851 

GSH 0.033 0.406 0.505 < 0.001 0.574 < 0.001 

Lac 0.732 < 0.001 0.747 < 0.001 0.928 < 0.001 

mI 0.507 < 0.001 0.448 < 0.001 0.575 < 0.001 

NAA 0.922 < 0.001 0.975 < 0.001 0.950 < 0.001 

NAAG 0.504 < 0.001 -0.161 0.878 -0.562 < 0.001 

PCh 0.885 < 0.001 -0.239 0.959 0.295 0.015 

PE 0.579 < 0.001 0.197 0.077 -0.983 < 0.001 

Tau 0.904 < 0.001 0.828 < 0.001 0.849 < 0.001 
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Figure 3-8. The performance of the proposed method, LCModel, and jMRUI on the 

simulated spectra by using the metabolite phantoms and in vivo baselines (simulated spectra 

set II; N=54). (A): Comparison of the mean absolute percent errors (MAPE) obtained from 

the proposed method, LCModel, and jMRUI. * statistically significant difference (Bonferroni 

corrected). (B): Comparison between the ground truth errors (MAPE) and the predicted errors 

by the proposed method. (C): Comparison between the ground truth errors (MAPE) and the 

CRLB from the LCModel. (D): Comparison between the ground truth errors (MAPE) and 

the CRLB from the jMRUI. In the interpretation of C and D, it should be recalled that CRLB 

are not predictions of the real errors but estimations of the minimum possible errors and that 

only those data with CRLB ≤ 50% were included in this analysis. 

 



 

 

 

 

 
 

 

Table 3-5. Correlations of the absolute percent error with the predicted errors by the proposed method (Proposed) and with CRLB obtained from the LCModel 

(LCM) and jMRUI for the major metabolites. 
* Only those cases with CRLB ≤ 50% were included. 

 

 

 

Metabolites 
Proposed LCM + phantom basis set jMRUI + phantom basis set 

Correlation P-value N Correlation P-value N Correlation P-value N 

Ala 0.702 0.011 54 0.439 < 0.001 49 0.599 < 0.001 50 

Asp 0.758 0.004 54 0.404 < 0.001 14 0.541 < 0.001 50 

GABA 0.777 0.003 54 0.590 < 0.001 54 0.258 0.070 34 

Glc 0.744 0.006 54 0.984 < 0.001 16 0.633 < 0.001 30 

Glu 0.831 < 0.001 54 -0.096 0.49 54 0.215 0.065 51 

Gln 0.727 0.007 54 -0.229 0.095 54 0.246 0.041 51 

GSH 0.785 0.003 54 -0.155 0.512 52 0.039 0.404 42 

GPC 0.692 0.013 54 0.584 < 0.001 54 0.255 0.036 51 

Lac 0.842 < 0.001 54 0.140 0.188 53 0.607 < 0.001 51 

mI 0.802 0.002 54 -0.603 < 0.001 54 -0.220 0.060 51 

NAA 0.857 < 0.001 54 -0.203 0.141 54 0.299 0.017 51 

NAAG 0.704 0.01 54 0.335 < 0.001 13 -0.236 0.057 46 

PCh 0.792 0.002 54 -0.983 < 0.001 3 0.137 0.313 15 

PE 0.814 0.001 54 0.715 < 0.001 3 0.090 0.265 51 

Tau 0.863 < 0.001 54 0.328 0.016 54 0.540 < 0.001 51 
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Figure 3-9. The correlations between the GT metabolite concentrations and the CNN-

predicted metabolite concentrations for the simulated spectra set II. Given that the ground 

truth metabolite concentrations of the simulated spectra set II are discrete (3 different 

concentrations for each metabolite), Spearman’s rank correlation coefficient was estimated, 

rs. (p < 0.001 for all metabolites) The higher rs indicates higher monotonic association 

between the ground truth and the CNN-predicted metabolite concentrations. The results are 

shown below. For the 15 major metabolites (out of the 17 major metabolites, Cr and PCr 

were used as the reference (tCr)), rs ranged from 0.592 (NAAG) to 0.937 (Tau). The mean r 

value was 0.797±0.117. Note that NAAG and Tau showed the lowest and the highest 

correlations, respectively, also for the simulated spectra set I. For Gln, Glu, mI, NAA, and 

Tau, which are the five metabolites with the lowest MAPE (~10% or less), the mean rs value 

was 0.912±0.014. In summary, for those metabolites with low MAPE values (~10% or less), 

there are strong correlations between the ground truth metabolite concentrations and the 

CNN-predicted metabolite concentrations (r being close to 0.9 or higher). These results 

(Figures 3-5 and 3-6) clearly demonstrate that the CNNs are not just generating one of the 

values within the range they are trained, but have actually learned the operation of 

quantification. 
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3.3.3. Proposed Method Applied to in vivo Spectra 

For the spectra with NSA=384 the SNR and linewidth ranged 5.33 – 28.45 (17.81 ± 

4.99) and 11.47 – 18.63 Hz (15.32 ± 2.05 Hz), respectively.  

The representative in vivo spectra from the cerebellum (A, B) and the 

thalamus (C, D) of a rat are shown in Figure 3-10 for NSA of 32 (A, C) and 384 (B, 

D). As in Figure 3-7, the CNN-predicted spectra pairs in Figure 3-10 (A)-(B) and in 

Figure 3-10 (C)-(D) are comparable for the majority of the metabolites despite the 

substantial difference in NSA. The quantitative analysis supporting the relatively 

robust performance of the CNNs against different SNR (NSA of 32 through 384 with 

a step size of 32) is given in Figure 3-11 in comparison with the LCModel for the 

major metabolites. 

 The metabolite concentrations and corresponding predicted errors 

estimated from the in vivo data (NSA=384) by using the proposed method are shown 

for the cerebellum and the thalamus in Figure 3-12 (A)-(B), respectively, where Gln, 

Glu, mI, NAA, and Tau were the five metabolites with the lowest predicted errors 

(less than 10%) for both brain regions as in Figure 3-8 (B) that was obtained from 

the simulated spectra set II. Overall, the metabolite concentrations estimated by the 

proposed method were close to or within the reported ranges (Figure 3-12 (C)). [162] 

 

3.3.4. Processing Time 

It took 6.9 sec to quantify the 15 major metabolites (normalized to tCr) from a pre-

processed in vivo spectrum on a PC using CPU only (Intel® CoreTM i7-7700k 

processor (4.50 GHz); 48 GB RAM). The runtime includes loading of the files (input 

spectrum and metabolite-specific SLS spaces and CNNs), prediction of the 

metabolite spectra by the CNNs, normalization of the peak areas to tCr, and 

prediction of the quantitative errors.  
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Figure 3-10. The representative in vivo rat brain spectra from the cerebellum ((A), (B)) and 

the thalamus ((C), (D)) of a rat and the corresponding CNN-predicted spectra for the major 

metabolites. The spectra A and C with NSA=32 were included in the reconstruction of the 

spectra B and D with NSA=384, respectively. 

 



 

 

 

Figure 3-11. The performance of the proposed deep learning-based method against different SNR of the in vivo rat brain spectra. The variations in metabolite 

concentrations estimated by the CNNs from the in vivo spectra are shown for the major metabolites over the NSA ranging 32 through 352 with a step size of 

32 (red line on circles). The variation in metabolite concentrations at each NSA was calculated with respect to the metabolite concentrations estimated at the 

maximum NSA of 384. The data from the cerebellum and the thalamus were combined in this analysis. The results obtained by the LCModel are also shown. 

The LCModel analysis was performed with (black line on triangles) and without (blue line on squares) the baseline line functions. Overall, the performance 

of the proposed method appears more robust than that of the LCModel against different SNR of the spectra. Note the different y-axis (variation in 

concentration (%)) scales.  
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Figure 3-12. The concentrations and predicted errors of the major metabolites estimated from 

the in vivo data (NSA=384) by using the proposed method. A and B: The metabolite 

concentrations (box-and-whisker plot; left y-axis) and the corresponding predicted errors in % 

(shaded bar graph; right y-axis) for the cerebellum (A) and the thalamus (B) of the rats. The 

concentrations were estimated by measuring the signal area of the metabolite normalized to 

the signal area of the methyl group of tCr in the CNN-predicted spectra. The vertical bounds 

of the box (for the concentrations) indicate the lower and upper quartiles, and the line inside 

the box indicate the median value. The whiskers indicate the minimum and maximum values. 

The height of the shaded bar and the vertical line extending therefrom (for the predicted errors) 

indicate the mean and standard deviation, respectively. C: The comparison of the CNN-

predicted metabolite concentrations to the reported concentration ranges. The reported 

concentration ranges of the metabolites are marked as bands (the left pink band for the 

cerebellum and the right green band for the thalamus for each metabolite). Note that those 

reported metabolite concentrations were estimated by using the LCModel and thus 

normalized to the concentrations of tCr in C unlike those concentrations estimated by the 

CNNs and thus normalized to the signal area of the methyl group of tCr in A and B. For this 

reason, those concentrations shown in A and B were converted by using the LCModel GT to 

CNN GT ratio in Table 3-1 such that they can be directly comparable to the reported 

concentrations. This explains the use of “concentrations (/tCr concentrations)” as the label of 

the y-axis in C instead of “concentrations (/tCr area)” as in A and B. 
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3.4. Discussions 

3.4.1. Summary of the Study 

The recent development of deep learning is revolutionary and its application to 1H-

MRS is rapidly growing. To translate the current development in deep learning-based 

1H-MRS ultimately into clinical applications, the assessment of measurement 

uncertainty is an important prerequisite. [108] 

The SNR, linewidth, and degree of spectral overlap are known to be the 

major factors that influence the NLSF-based metabolite quantification, and this 

appears also to be the case with the deep learning-based 1H-MRS. [108, 110, 111] 

For instance, the SNR-dependent performance of the CNNs was reported from all of 

the previous deep learning-based metabolite quantification studies. [108, 110, 111] 

In addition, as described in Chapter 2, those metabolites that were difficult to 

quantify using the LCModel also resulted in relatively large errors in the CNN-based 

metabolite quantification.   

To this end, we first defined SBR as a quantitative metric of the degree of 

spectral overlap, which requires metabolite-specific measurement unlike SNR and 

linewidth. Next, inspired by the previous studies [111], we developed CNNs that are 

capable of isolating signals only from a specific target metabolite and a reference 

metabolite while suppressing the rest of the signals and spectral noise. Using this 

approach, first of all, the quantification of metabolites is achieved by simply 

measuring the area of target signals relative to that of the reference signals in the 

CNN-output spectrum, which is automated in our study. It also greatly simplifies the 

metabolite-specific SBR measurement from the CNN-output. Thus, the current study 

is clearly distinguished from the Chapter 2 in which the CNN-output contains signal 

from all metabolites and the quantification of the individual metabolites is achieved 

by multiple regression using a metabolite basis set. The narrowed linewidth in the 

output spectrum therein also makes it difficult to directly measure the metabolite 

SBR.  

The SBR thus measured, however, is subject to errors due to the limited 

performance of the CNNs. Therefore, the next step was to adjust the SBR empirically 

by exploiting the big spectral data. In this process the relationships between the 

CNN-predicted SBR and GT SBR were investigated for each metabolite from the 
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80,000 simulated rat brain spectra, and stored in a 3-D database where the SNR, 

linewidth and SBR ranges were segmented heuristically such that the predicted error 

is large enough to include the GT error while maintaining the high correlation 

between the two errors. Finally, a group of candidate quantitative errors are obtained 

from a pre-defined 3-D error space for each metabolite, among which the maximum 

error was chosen as the predicted error. 

 

3.4.2. Performance of Proposed Method on Simulated Spectra 

For the simulated spectra set I, the MAPE was 14.79 ± 11.12% and the correlation 

between the GT errors and predicted errors was 0.88±0.09 over the all major 

metabolites. For the simulated spectra set II, the overall MAPE was elevated to 23.07 

± 16.36% and the correlation between the GT errors and predicted errors was 

lowered to 0.78 ± 0.05 despite the comparable SNR (17.51 ± 5.79) and narrow 

linewidth (15.02 ± 2.35 Hz) of the spectra relative to those of the simulated spectra 

set I (SNR=17.51 ± 7.13 and linewidth = 19.97 ± 5.80 Hz).  

The use of the simulated basis set and resulting potential difference in 

lineshape between the simulated basis spectra and phantom spectra of the 

metabolites could at least in part be responsible for the different performance of the 

CNNs. The possibility of the presence of unwanted signals such as residual water 

signal and/or artifact in the metabolite phantom spectra and/or in vivo baseline may 

not completely be excluded, given the difficulty of perfectly identifying those 

unwanted signals using visual inspection. This result may reemphasize the 

importance of the spectral basis set and thorough screening and modeling of 

unwanted signals in the preparation of a training data set in machine learning-/deep 

learning-based 1H-MRS. [128, 129, 142] 

Nonetheless, for the simulated spectra set II, the overall quantitative 

accuracy of the proposed method was higher than those of the LCModel and jMRUI, 

and the predicted errors were inclusive of, and highly correlated with, the GT errors 

for the majority of the major metabolites. These observations clearly support the 

potential applicability of the proposed method in noninvasive metabolomics of the 

rat brain at 9.4T.  
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3.4.3. Proposed Method Applied to in vivo Spectra 

Using the proposed method Gln, Glu, mI, NAA, and Tau were quantified with the 

predicted errors less than 10%. They were also the five metabolites with the lowest 

MAPE (~10% or less) using the simulated spectra set II as well. Given that the SNR 

and linewidth of the in vivo data were comparable to those of the simulated spectra 

set II, that the predicted errors were inclusive of the GT errors for most of the 

metabolites using the simulated spectra set II, and that the CNNs were trained on the 

wide ranges of the relative metabolite concentration ratios, the actual quantitative 

errors with the in vivo data might likely be smaller than the predicted errors. 

While the use of our trained CNNs requires data pre-processing such as 

Fourier transform, phase and frequency correction, and removal of residual water 

signal, these are routinely practiced minor tasks. Once a pre-processed spectrum is 

prepared and fed into the CNNs 15 major metabolites can automatically be 

quantified along with the corresponding quantitative errors in ~7 sec on CPU only. 

Therefore, upon the development of an automatic pre-processing unit, fully 

automated metabolite quantification with error estimation could be implemented 

online without the need of high-performance GPUs.     

 

3.4.4. Robustness of CNNs against Different SNR 

One of the great advantages with deep learning-based 1H-MRS is that the CNN-

output can flexibly be controlled by a suitable choice of training labels. Combined 

with an effectively designed and optimized CNN along with a large enough training 

sample size, therefore, a CNN can be made capable of spectral denoising as 

previously demonstrated in Chapter 2. In this study the training input contained those 

spectra with SNR as low as 5 – 6, while the training labels were almost free from 

noise. As a consequence of this training input/label setup, the CNN-predicted 

metabolite concentrations were comparable despite the substantial difference in SNR 

(Figure 3-7) and across different NSA (Figure 3-11). Such denoising capability of 

CNNs would allow for exploiting far smaller voxels for minimized partial volume 

effect or substantially reduced scan time, and thus facilitate the clinical applicability 

of 1H-MRS. 
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3.4.5. CRLB and Predicted Error 

CRLB has been widely used in the NLSF-based metabolite quantification as a 

measure of the reliability of fitting. CRLB is of great help in the screening of the 

fitted data prior to statistical analysis upon a suitable choice of its cutoff value. [123] 

In the comparison between the predicted errors from the proposed method and the 

CRLB from LCModel and jMRUI, CRLB tended to be smaller than the GT errors. 

However, in general, CRLB values are not necessarily larger than measurement 

errors (%) as they are estimations of the minimum possible errors (i.e., not 

predictions of the real errors but of the level of uncertainty). Furthermore, for the 

large errors the CRLB values can naturally be smaller than the measurement errors 

(%) in our study as we included only those data with CRLB≤50% in the analysis (i.e., 

max CRLB = 50%). The relatively low correlations of the CRLB values with the GT 

errors could also be understood in the similar context (i.e., the definition and 

restricted dynamic range of CRLB). Therefore, while the relatively small CRLB 

values (GPC and NAAG with LCModel and NAAG with jMRUI; Figure 3-8) and 

the statistically significant negative correlations (mI and PCh with LCModel; Table 

3-5) for some of the metabolites need further speculation, the relationships between 

the measurement errors and the CRLB values in our study should be interpreted 

carefully. 

It is known that CRLB values are indicative of the precision of the fitted 

outcome but not the accuracy. [163] On the other hand, the proposed error prediction, 

although heuristic and empirical, is based on the GT errors and thus indicative of the 

accuracy of the CNN-predicted metabolite concentrations as demonstrated by the 

high correlations between the predicted errors and the GT errors, and by the ranges 

of the predicted errors that are inclusive of the GT errors. In our heuristic approach 

the predicted error ranges can be adjusted wider to make sure their complete 

inclusion of the GT error ranges for all metabolites. But then, it may reduce the 

correlations between the predicted and the GT errors. For a well-trained CNN the 

measurement errors and thus the candidate errors would be smaller, and therefore 

the predicted error ranges would become narrower accordingly. Of course, a larger 

amount of data would further improve the accuracy of the predicted errors in this 

heuristic and empirical approach. It may also simplify the optimization procedure 

for the prediction of the errors by taking advantage of more evenly distributed data 
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points along the SBR-axis in the SLS space. Further, it may allow reduction of the 

volume of the bins followed by SBR correction for the whole data points inside a bin 

using a calibration function rather than using the current one-to-one correction 

(Figure 3-3(C)). 

 

3.4.6. Study Limitation 

Approach of the in this study to the assessment of measurement uncertainty is 

heuristic and developed specific to the case where the SBR of metabolites are used 

in the assessment. For general applications, therefore, a theory-oriented, formal 

approach is still required. 

 In our study we generated the database for the big data-driven error 

correction by using the training data set for its far larger sample size than the 

validation data set. To avoid overfitting of the CNNs to the training data set, therefore, 

they were saved in the middle of training at the epoch where the training and 

validation losses were comparable. However, ideally, more spectra can be simulated 

and assigned as an additional validation data set, and the database can be generated 

therefrom. 

 In the prediction of the measurement errors the SNR and linewidth of the 

input spectrum were estimated from tNAA. Therefore, if the concentrations of tNAA 

vary, the SNR of the spectrum is also measured to be varied even in the case where 

the effective SNR of all other metabolites remain the same. To minimize potential 

degradation of the performance of the proposed method in error prediction in this 

case, those spectra that may well approximate such input spectra should already be 

stored in the database in our data-driven approach. Thus, our approach is subject to 

high computational cost for optimization and to demanding large data storage. One 

of the potential solutions to such an issue may be to improve further the performance 

of the CNNs particularly against different SNR and linewidth. This study showed 

the feasibility of developing CNNs that are relatively robust against different SNR 

(e.g., Figures 3-7 and 3-10), and also demonstrated in Chapter 2, the feasibility of 

developing CNNs that are relatively robust against different linewidth as well. As 

the performance of the CNNs against different SNR and linewidth improves, the 

dependence of the proposed method on the internal reference peak such as tNAA 

would be reduced. Note that the SBR is naturally dependent on linewidth. Note also 
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that the SBR defined in our study is also dependent on SNR, given that the signal of 

a metabolite is directly obtained from the denoised, CNN-predicted spectrum and 

the background is estimated by subtracting the denoised spectrum from the input 

spectrum that still contains noise. Taken these altogether, the prediction of the 

measurement error might also be achieved by solely relying on the SBR without 

referring to an internal reference upon the improved performance of the CNNs. 

This study was trained the CNNs to generate spectrally isolated target signal 

as an output for each individual metabolites. However, upon the availability of 

hardware with higher performance, a single CNN may be developed that is capable 

of generating the output spectra for all metabolites at a time or directly providing 

their concentrations altogether, while maintaining the quantitative accuracy achieved 

with the current approach. The preprocessing required by our CNNs could also be 

incorporated into the development of such a single CNN including a far more 

tolerable phase shift range in particular. It is interesting to note that the individual 

CNNs appear to utilize almost whole spectral region for the generation of the output 

spectrum despite the fact that the output spectrum has multiple spectral regions that 

are completely devoid of signal (Figure 3-13, Figure 3-14 and Figure 3-15). 
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Figure 3-13. The activations of the CNN trained for NAA in response to a simulated 

spectrum. One spectrum from the simulated spectra set II was used as an input spectrum. 

Figure shows the activations of the last ReLU layers in the first and the second convolution 

blocks of the CNN for NAA. The output spectrum contains signals from NAA at ~ 2.0, 2.6, 

and 4.4 ppm as well as from the tCr as a reference at ~ 3.0 and 3.9 ppm. In particular, there 

is no signal at all in the 0.5-2.0 ppm range. Nonetheless, for the majority of the filters, the 

ReLU layers activate across the whole spectral regions in addition to those regions where the 

signals from NAA and tCr are present. 
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Figure 3-14. The activations of the CNN trained for Lac in response to a simulated spectrum. 

Figure shows the activations of the last ReLU layers in the first and the second convolution 

blocks of the CNN for Lac which has signals with the largest separation (~ 1.3 and 4.1 ppm) 

among the metabolites with a coupled spin system. The same input spectrum that was used 

for NAA above was also used. In the output spectrum, there is no signal in the 1.5-3.0 ppm 

range. Nonetheless, for many of the filters, the ReLU layers activate even in the 1.5-3.0 ppm 

range as well. 
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Figure 3-15. The activations of the CNN trained for Tau in response to a simulated spectrum. 

The figure shows the activations of the ReLU layers in the first and the second convolution 

blocks of the CNN for Tau which has signals with the smallest separation (~ 3.3 and 3.4 ppm) 

among the metabolites with a coupled spin system. The same input spectrum that was used 

for NAA and Lac above was also used. In the output spectrum, there is no signal in the 0.5-

3.0 ppm range. Nonetheless, for many of the filters, the ReLU layers activate even in the 0.5-

3.0 ppm. 
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Chapter 4. Bayesian deep learning-based proton 

magnetic resonance spectroscopy of the brain: 

metabolite quantification with uncertainty estimation 

using Monte Carlo dropout 
 

4.1. Introduction 

As explained in the previous chapters, quantification of the individual brain 

metabolites by using 1H-MRS at a clinical field strength can be challenging due to 

limited SNR, spectral overlap not only between metabolites but also between 

metabolites and MMs, and the presence of unknown spectral baseline. [36, 55] To 

address this issue, nonlinear least squares fitting (NLSF) is widely used [55, 116], 

and yet development of a more robust method is a remaining important research 

topic. [126, 155] 

Following the machine learning study [107], deep learning-based 1H-MRS 

(DL-MRS) has shown its potential as an alternative to the NLSF approaches. [108, 

110, 111, 164] However, these previous studies used standard CNNs that do not 

provide uncertainty in the quantitative outcome. [94, 165] In the training of standard 

CNNs, the weights are directly optimized by minimizing the objective function. [74, 

90] The set of the optimized weights are then used for inference where a single, best 

guess output is obtained but with no information as to how certain the prediction 

would be. [166] To be translated to clinical applications, deep learning-based 

methods should also provide how much the network is confident about its predicted 

outcome. In the case of the NLSF approaches, the CRLB have been used as 

representing lower bounds of the fit error (uncertainty). [123, 167] 

In contrast, Bayesian neural networks (BNNs) provide a probabilistic 

interpretation of deep learning models by inferring distributions over the models’ 

weights. [165, 168] That is, a trained BNN can be described in terms of the (posterior) 

probability distribution of weights instead of a single set of optimized, deterministic 
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weights in the standard CNNs. [165, 168] The distribution of weights results in a 

distribution of network outputs and thus provides information about the uncertainty  

therein. [166] The Bayesian approach requires highly complex computations and 

thus BNNs are difficult to generalize. [166, 168] However, recent studies showed  

that a CNN trained with dropout can be interpreted as a BNN and that such a 

Bayesian convolutional neural network (BCNN) in combination with Monte Carlo 

dropout (MCDO) sampling can provide uncertainty in the predicted outcome. [98, 

124, 165] 

 This chapter deals with the applicability of the BCNN with MCDO 

sampling in 1H-MRS of human brain at 3.0 T. Using simulated spectra, a BCNN was 

trained to generate a noise-free, line-narrowed, MMs signal-removed, metabolite-

only spectrum from a human brain spectrum that is typically degraded with limited 

SNR, line-broadening, MMs-signal, and unknown baseline. (described in Chapter 2) 

Both metabolite content and corresponding uncertainty are quantified from MCDO 

sampled spectra. The method was tested first on the simulated spectra and further on 

modified in vivo spectra. For the latter, the BCNN-predicted results were compared 

with the metabolite content and CRLB from the linear combination of model spectra 

(LCModel) analysis [55] which is the current gold-standard in the NLSF approaches. 

 

4.2. Methods and Materials 

4.2.1. Theory 

Outline of Bayesian approach 

In the Bayesian approach, one seeks the most probable functions for a given data set 

consisting of input X = {x1, x2, …, xN} and output Y = {y1, y2, …, yN}. In BNN, the 

functions are defined in terms of network weights w, and one seeks a distribution of 

weights.[94, 168] Initially, a prior distribution of weights, p(w), such as a Gaussian 

distribution, is assumed based on one’s prior knowledge before observing any data. 

As one observes data, p(w) is optimized towards the most probable weight 

distribution for the given data set, namely, a posterior distribution, p(w|X, Y), upon 

the knowledge about the probability of the output being generated from the input for 

a set of w, namely, a likelihood distribution, p(Y|X, w), according to the Bayes’ 

theorem given as 
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𝐩(𝐰|𝐗, 𝐘) =
p(𝐘|𝐗, 𝐰)p(𝐰)

p(𝐘|𝐗)
. (4.1) 

where p(𝐘|𝐗) = ∫ p(𝐘|𝐗, 𝐰)p(𝐰)d𝐰 is the normalizer known as model evidence. 

[166, 168]  Denoting the approximate variational distribution as q(w), the BNN 

output for an input x*, is calculated by [165, 168]  

p(𝒚∗|𝒙∗, 𝐗, 𝐘) = ∫ p(𝒚∗|𝒙∗, 𝐰)p(𝐰|𝐗, 𝐘)d𝐰. (4.2) 

However, the posterior is computationally intractable and thus modelled using a 

simple variational distribution. Such approximation of the posterior is called 

variational inference.[94, 168] If the approximate variance distribution as q(w), then 

the BNN output for the inputs x*, p(𝒚∗|𝒙∗, 𝐗, 𝐘) can be approximated as [94] 

p(𝒚∗|𝒙∗, 𝐗, 𝐘)  ≃ ∫ p(𝒚∗|𝒙∗, 𝐰)q(𝐰)d𝐰  ≃  
1

𝑇
∑ p(𝒚∗|𝒙∗, 𝐰𝒕

𝑴𝑪).

𝑇

𝑡=1

 (4.3) 

where the integration in the second term in the Equation (4.3) was approximated with 

Monte Carlo integration in the third term and 𝐰𝒕
𝑴𝑪 denotes the weights sampled 

from q(w) at the t-th draw. Recently, it was shown that sampling weights from q(wi) 

is equivalent to performing a dropout operation on the i-th layer of a neural network, 

which randomly sets pdropout proportion of the elements of the layer to zero (pdropout: 

dropout probability) [124].  

Given this interpretation of dropout as performing approximate variational 

inference [124, 168], the last term in Equation (4.3) is viewed as averaging the 

stochastic forward pass through a neural network with dropout at test time, which is 

called Monte Carlo dropout (MCDO) sampling. [94] In practice, MCDO sampling 

is performed first by training a neural network with dropout before every weight 

layer and then by performing dropout at test time as well. [124] It was further shown 

[168] that optimization of any neural network with dropout is equivalent to 

variational inference and that the optimized weights in a neural network with dropout 

can be viewed as the optimized approximate variational distribution in a BNN with 

the same network architecture as the neural network. Therefore, a CNN trained with 

dropout can be treated as a BCNN. [124, 168] 

 

Classification of uncertainty 

In BCNN, one deals with a distribution of network weights rather than a 
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deterministic single set of weights in a standard CNN. The uncertainty in weights 

results in the uncertainty in the model output. Such uncertainty resulting from the 

uncertainty in the model parameters is called epistemic (model) uncertainty. [124] In 

addition, noise inherent in the observation can also result in uncertainty in the 

network output. [124] Such uncertainty is called aleatoric (data) uncertainty and 

further classified into homoscedastic and heteroscedastic aleatoric uncertainty 

depending on the variability of the uncertainty for different inputs. [124]  

Here, heteroscedastic aleatoric uncertainty is assumed, i.e., different 

observation noise for different inputs. Unlike aleatoric uncertainty, epistemic 

uncertainty is known to be reduced as the amount of training data increases [124, 

169], and thus associated with the prediction errors in response to the input data that is 

out of distribution (OOD). [124] 

 

Training and inference 

To estimate the uncertainty using the MCDO approach, a BCNN is trained by using 

the following loss function. [124] 

𝐿 =  
1

𝐷
∑

1

2
𝑖

||𝑦𝑖 −  𝑦̂𝑖||2

𝜎̂𝑖
2 +  

1

2
log𝜎̂𝑖

2 (4.4) 

where, for an input x, 𝑦̂i is the output from the network, 𝑦𝑖 is the corresponding GT, 

D is the number of elements in the output, and 𝜎̂i
2 is the noise variance for output 

element i that corresponds to the amount of noise inherent in the data and is therefore 

associated with the aleatoric uncertainty. Note that 𝜎̂i
2 is also obtained as a network 

output in the MCDO approach by making it data-dependent (heteroscedastic) and 

learned during training in an unsupervised manner. [124] 

Once the BCNN is trained, the network output 𝒚̂t and 𝝈̂t
2 are sampled for T times. 

Then, the prediction is achieved by obtaining the predictive mean as  

𝒚̂  ≃  
1

𝑇
∑ 𝒚̂𝑡

𝑇

𝑡=1

 (4.5) 

and the predictive uncertainty of 𝒚̂ from the variance of 𝒚̂, Var(𝒚̂), as: 

Var(𝒚̂) ≃
1

𝑇
∑ 𝒚̂𝑡

2

𝑇

𝑡=1

− (
1

𝑇
∑ 𝒚̂𝑡

𝑇

𝑡=1

)

2

+  
1

𝑇
∑ 𝝈̂𝑡

2

𝑇

𝑡=1

 (4.6) 

where the epistemic uncertainty is given by the sum of the first two terms and the 
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aleatoric uncertainty is given by the last term in Equation (4.6). [124] From here on, 

we refer to Var (𝑦̂) as total uncertainty.  

 

Estimation of metabolite content and uncertainty 

The outline of estimating metabolite content and uncertainty is shown in Figure 4-1. 

Our BCNN takes a brain spectrum as an input and is trained to predict a metabolite-

only spectrum. After training of the BCNN, MCDO sampled spectra were obtained 

T times (T-MCDO) per an input spectrum. The predictive mean of the T-MCDO 

sampled spectra was calculated using Equation (4.5) and assigned as the final, 

BCNN-predicted spectrum. 

The individual metabolite content were estimated from the BCNN-

predicted spectrum by multiple regression. That is, 𝑨̂  = 𝑺̂ Bpinv where, for 17 

metabolites and 1024 spectral data points, 𝑨̂ is the estimated metabolite content (1 

× 17 vector), 𝑺̂ is the BCNN-predicted spectrum (1 × 1024 vector), and Bpinv is 

the pseudo-inverse of the metabolite basis set (1024 × 17 matrix). 

To estimate uncertainty in the BCNN-predicted metabolite content, first, 

we defined a two-standard deviation spectrum (2SD spectrum) as 2 × SD-spectrum 

where SD-spectrum was obtained by (total uncertainty spectrum)1/2 based on 

Equation (4.6). Then, the uncertainty was estimated from the 2SD spectrum also by 

the multiple regression. Given that the 2SD spectrum is in absolute mode, the 

metabolite basis set was used also in absolute mode in this process of uncertainty 

estimation.  

Finally, the BCNN-predicted metabolite content was expressed in 

‘metabolite content (%uncertainty)’ where %uncertainty was obtained by converting 

the estimated uncertainty into the percentage of the respective metabolite content.  
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Figure 4-1. The simplified design of the Bayesian convolutional neural network (BCNN) 

and the workflow from training of the network to estimation of metabolite content and 

associated uncertainty. The input spectra are simulated human brain spectra at 3.0T, which 

are typically degraded by low SNR, linebroadening, MM signal, unknown baseline, and 

phase/frequency shift. The ground truth (GT) target spectra are metabolite-only spectra 

before adjusting SNR, linewidth and phase/frequency and adding the MM signal. The output 

of the network consists of a metabolite-only spectrum and a noise variance spectrum. A total 

of 50 output are obtained per an input spectrum by Monte Carlo dropout (50 times MCDO) 

sampling. The mean of the metabolite-only output spectra (predictive mean spectrum) is 

assigned as the BCNN-predicted spectrum. The variance of the metabolite-only output 

spectra is assigned as the epistemic (model) uncertainty spectrum. The mean of the noise 

variance spectra is assigned as the aleatoric (data) uncertainty spectrum. A 2SD spectrum is 

obtained from the total (= aleatoric + epistemic = predictive) uncertainty spectrum. Multiple 

regression is performed on both the BCNN-predicted spectrum and the 2SD spectrum using 

the metabolite basis set to estimate the individual metabolite content and associated 

uncertainty, respectively. Finally, the results are expressed as ‘metabolite content 

(%uncertainty)’. 
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4.2.2. Preparation of Spectra 

Simulation of spectra 

Human brain spectra were simulated by including 17 metabolites [34, 58, 130, 131] 

and 9 resonance groups of MMs [132, 133] as previously described in Section 2.2.3. 

The 17 metabolites were: Ala, Asp, Cr, GABA, Glc, Glu, Gln, GSH, GPC, Lac, mI, 

NAA, NAAG, PCr, PCh, PE, and Tau. The SNR and linewidth as measured from 

tNAA at ~2.0 ppm ranged 7 – 20 and 10.2 – 20.6 Hz, respectively. The zeroth-order 

phase (± 5°) and frequency shift (± 10 Hz) were randomly varied. The real 

components of the spectra were extracted and cropped to 1024 points (~ 0.5 – 4.5 

ppm). A total of 100,000 brain spectra were simulated (N = 80,000 (training), 10,000 

(validation), and 10,000 (test)) (simulated data set I).  

In addition, to investigate the individual behavior of aleatoric, epistemic, 

and total uncertainty as a function of SNR, linewidth or metabolite concentrations, 

three groups of spectra (N = 1000 for each group) were simulated by varying one of 

those three simulation parameters in turn (simulated data set II). The values of the 

rest of the simulation parameters were fixed at their mean values in the simulated 

data set I. For simplicity, only NAA was considered in this analysis, for which the 

most robust BCNN performance was obtained on the simulated data set I. The ranges 

of the SNR, linewidth, and concentrations of NAA were 3.5 – 40, 4.9 – 40.3 Hz, and 

3.75 – 34 mmol/L, respectively, which were far wider than those in the simulated 

data set I such that the investigation can be conducted in OOD regions as well.  

 

Modification of in vivo spectra 

The proposed method was further tested on modified in vivo data. The original, 

unmodified, in vivo data were collected previously from the left frontal lobe (2 × 2 

× 2 cm3) of 5 healthy volunteers (all males; age, 24 – 36 years (30 ± 3 years)) using 

a PRESS [49, 50] sequence at 3.0T (Siemens MAGNETOM Tim Trio (VB17A), 32 

channel head coil, TR/TE = 2000/30 ms, spectral bandwidth = 2 kHz, number of data 

points = 2048, frequency offset = -2.0 ppm, autoshimming; the same sequence used 

for the acquisition of the metabolite basis spectra in phantom). For each volunteer, 

eight water‐suppressed spectra each with NSA = 8 were collected consecutively from 

the same voxel and combined into one spectrum (NSA ~ 64). Each of the five 

resulting spectra were zero-filled to 4096, Fourier transformed, zeroth-order phase-
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corrected, and frequency-shifted by using jMRUI (v.5.2). [116] The residual water 

was removed (HLSVD filter [119]). Then, both SNR and linewidth were 

simultaneously adjusted to generate 10 groups of modified spectra with increasing 

severity of spectral degradation. For line-broadening, the same Lorentzian 

apodization function that was used for the training data set was used. Thus, there 

were one group of unmodified and 10 groups of modified in vivo spectra, each of 

which has 5 spectra from the 5 subjects. The spectra in real mode were extracted and 

cropped to 1024 points as with the simulated spectra. 

 

4.2.3. BCNN  

Implementation 

A BCNN was implemented using Matlab deep learning toolbox (v.9.7 (R2019b); 

Mathworks Inc., Natick, MA) based on a ResNet [170] (Figure 4-1). It contained 5 

residual blocks and 3 residual blocks with additional convolutional and batch 

normalization layers. Each residual block consists of one-dimensional convolution, 

batch normalization, activation (ReLU) and dropout. A dropout layer was placed 

before every convolutional layer (except for the 1st one) and the fully connected layer 

(or equivalently, placed immediately after every activation layer in our network 

design), and rendered to operate at test time as well. To learn heteroscedastic 𝜎̂i
2 

during training, the number of channels of the fully connected layer prior to the 

regression layer was doubled and the additional channel was assigned for 𝜎̂i
2. [124]  

 

Optimization and training 

The BCNN was optimized and trained by using the training and validation sets of 

the simulated data set I on four graphics processing units (GPUs; NVIDIA TITAN 

RTX). The root-mean-square propagation (RMSprop) [171] optimizer was used. An 

L2 regularizer (weight decay) was included in the loss function. The training set was 

normalized to a 0 – 255 scale followed by zero-center normalization.  

The filter size and number of filters of the convolutional layers were set 

based on the Chapter 2.2.4. The one-dimensional convolution filter sizes were 15 × 

1 for the first residual block (stride = 2 × 1) and 7 × 1 for the rest of the residual 

blocks (stride = 1 × 1). The numbers of filters were 32 and 512 for the first and the 

last residual blocks, respectively. For the pair of the residual blocks with three 
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repetitions between the first and the last residual blocks, they were 64, 128 and 256 

for each repetition. The initial learning rate and L2-regularization parameter were 

7.524 × 10-4 and 9.393 × 10−5, respectively, which were Bayesian-optimized [135] 

in the ranges of 1 × 10-5 to 1 × 10-3 and 1 × 10-6 to 1 × 10-3, respectively. The dropout 

probability and mini batch size were determined to be 0.2 and 256, respectively, 

according to the root-mean-square-error (RMSE) between the BCNN-predicted and 

GT spectra in a simple grid search. The searching points of these two parameters 

were 0.1, 0.2, and 0.5 (3 points), and 32, 64, 128, 256, and 512 (5 points), 

respectively. The number of samples (T) in the T-MCDO sampling was optimized 

on the validation set. Five to 200 MCDO samples were obtained with a step size of 

5 for each BCNN input. An optimal T of 50 was determined according to the overall 

MAPE of the 17 metabolite content. 

Using the optimized hyperparameters, the BCNN was trained with the 

maximum epoch of 2000 and an early stopping rule (50 epoch patience). The 

learning rate was scheduled to drop at every 11th epoch by a factor of 0.9. The 

optimization and training of the BCNN took ~96 and ~18 hours, respectively. 

 

4.2.4. Evaluation of Proposed Method 

Evaluation on simulated spectra 

The performance of the BCNN in the estimation of the metabolite content and 

associated uncertainty was evaluated on the test set of the simulated data set I. 

The results of the metabolite quantification were presented in term of 

MAPE for individual metabolites (MAPE = 
1

Ntest
∑ |𝐺𝑇𝑛 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝑛|/

Ntest
𝑛=1

𝐺𝑇𝑛  × 100; Ntest = 10,000). 

In comparison between two spectra (e.g., GT spectrum vs. BCNN-predicted 

spectrum), the resulting residual spectrum is shown and the amount of the residual 

signal therein is presented in terms of the MSE in percent (%MSE = [mean square 

of (GT – predicted)]/[mean square of (GT)] × 100). 

 

Uncertainty as a function of SNR, linewidth or metabolite concentrations 

Using the BCNN trained on the simulated data set I, the BCNN-predicted 

(metabolite-only) spectra and the aleatoric, epistemic, and total uncertainty spectra 
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were obtained for the simulated data set II. Then, the areas of the NAA signal at ~2.0 

ppm were measured from the three types of the uncertainty spectra and normalized 

to that from the BCNN-predicted (metabolite-only) spectra. Finally, the changes of 

the three types of the uncertainty were examined as a function of the SNR, linewidth 

or concentration of NAA.   

 

Evaluation on modified in vivo spectra 

Using the unmodified in vivo spectra as a reference, the robustness of the BCNN 

against varying SNR and linewidth was tested on the 10 groups of the modified in 

vivo spectra. The results from the BCNN were compared with the metabolite content 

and CRLB from the LCModel analysis (v.6.3‐1J) [55] where the vendor-provided 

metabolite basis set was used. The analysis was performed for the 6 representative 

metabolites. That is, Glx, mI, tCho, total tCr, and tNAA were included as they are 

most frequently presented from LCModel analysis. GABA was also included for its 

well-known difficulty of quantification. The estimated metabolite content was 

normalized by that of tNAA. Those cases where metabolites are quantified with null 

amplitude and 999% CRLB were excluded in the LCModel analysis. 

 

4.2.4. Statistical Analysis 

Statistical analyses were performed using PRISM (v.6.01; GraphPad Software, Inc., 

La Jolla, CA, USA). For a pair-wise group comparison, a Student t-test was 

performed. For correlations between two variables, the Pearson’s correlation 

coefficient was calculated. A p-value of less than 0.05 was considered statistically 

significant. 

 

4.3. Results 

4.3.1. Metabolite Content and Uncertainty Estimation on the Simulated Spectra 

Representative spectra for metabolite quantification 

Figure 4-2 shows the representative simulated brain spectra used as BCNN inputs 

(A-D) and each BCNN prediction spectrum (I-L). BCNN mapped the simulated 

brain spectra (A-D) into noise-free, line-narrowed, baseline-removed, 

phase/frequency shift-corrected metabolite-only spectra (I-L). The denosing, line-
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narrowing and baseline removal functions of BCNN are clearly shown in Figure 4-

2 (I-L). The GT (E-H), reconstructed (using the estimated metabolite content and the 

metabolite basis set) (M-P), residual spectra ([GT – predicted] (Q-T) and [predicted 

– reconstructed] (U-X)) are also shown. The residual signal is negligible ([GT – 

predicted] (Q-T)). The predicted spectra are almost fully accounted for by a linear 

combination of the metabolite basis set as demonstrated in the residual spectra 

([predicted – reconstructed] (U-X).  

 

Representative spectra for uncertainty estimation 

Figure 4-3 (E)-(H) show the total (aleatoric + epistemic) uncertainty spectra for the 

BCNN-input spectra (A-D) which are the same spectra that were shown in Figure 4-

2(A)-(D). The corresponding aleatoric ((I)-(L)) and epistemic ((M)-(P)) uncertainty 

spectra are also shown. The 2SD spectra are shown in Figure 4-3 (Q)-(T). The 

reconstructed 2SD spectra ((U)-(X)) are almost fully accounted for by the linear 

combination of the metabolite basis set (Figure 4-3 (Y)-(B’)).  

The mean %MSE between the 2SD spectra and reconstructed 2SD spectra 

for the test set of the simulated data set I was 1.54 ± 0.38 %. 
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Figure 4-2. The representative BCNN input, output, and residual spectra. (A)-(D): Simulated 

brain spectra with different combinations of SNR and linewidth used as inputs to the BCNN. 

(E)-(H): Ground truth (GT) of the network output. (I)-(L): BCNN-predicted metabolite-only 

spectra obtained from the predictive mean of the 50-MCDO samples. The linewidths also 

well match those in GT. (M)-(P): Reconstructed spectra (dotted line) using the estimated 

metabolite content and basis set for 17 metabolites. The individual metabolite signals 

constituting the reconstructed spectra are also shown. (Q)-(T): Difference spectra obtained 

by subtracting BCNN-predicted spectra ((I)-(L)) from GT spectra ((E)-(H)). The mean 

squared error in percent (%MSE) between the two spectra are also shown. (U)-(X): 

Difference spectra obtained by subtracting the reconstructed spectra ((M)-(P)) from BCNN-

predicted spectra ((I)-(L)). 
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Figure 4-3. The representative uncertainty spectra used in the estimation of uncertainty in 

metabolite content for the input spectra shown in Figure 4-2(A)-(D). (A)-(D): The same 

simulated brain spectra shown in Figure 4-2(A)-(D). (E)-(H): Total uncertainty spectra (solid 

line) obtained by combining the aleatoric and epistemic uncertainty spectra. The BCNN-

predicted spectra are also shown in dotted line. (I)-(L): Aleatoric uncertainty spectra. (M)-

(P): Epistemic uncertainty spectra. (Q)-(T): 2SD spectra (scaled 10 times) obtained from the 

total uncertainty spectra. The 2SD spectra are used for the estimation of the uncertainty in 

metabolite content by multiple regression in combination with the metabolite basis set in 

absolute mode. (U)-(X): Reconstructed 2SD spectra (Recon2SD; scaled 10 times; dotted line) 

using the estimated uncertainty in metabolite content and basis set for 17 metabolites. The 

individual metabolite signals constituting the reconstructed spectra are also shown. (Y)-(B’): 

Difference spectra (scaled 10 times) obtained by subtracting reconstructed spectra ((U)-(X)) 

from 2SD spectra ((Q)-(T)). The mean squared error in percent (%MSE) between the two 

spectra are also shown. 
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Quantitative results 

Figure 4-4 shows the actual errors in the estimated metabolite content in terms of 

MAPE over the 10,000 spectra in the test set of the simulated data set I. The actual 

errors (MAPE) are compared with the BCNN-predicted uncertainty expressed in 

mean %uncertainty. The MAPE of Cr, Glu, Gln, mI, NAA, and Tau are < 10% (< 5% 

for Glu, NAA, and mI). However, the MAPE of GABA is ~20%, and they are > 20% 

for Ala, GPC, Lac, NAAG, and PCh. For the majority of the metabolites, the 

mean %uncertainty are no less than MAPE (except for Gln and GPC). 

Figure 4-5 shows the correlations between the GT and estimated metabolite 

content for the test set. The r ranges from 0.240 (p < 0.001; PE) to 0.996 (p < 0.001; 

NAA) (0.797 ± 0.209). For those 6 metabolites with MAPE ≤ 10%, the r ranges from 

0.934 (p < 0.001; Gln) to 0.996 (p < 0.001; NAA) (0.973 ± 0.022).  

Table 4-1 summarizes the correlations between the GT error and BCNN- 

predicted %uncertainty for the test set (0.72-0.94 (0.83 ± 0.06); p < 0.001 for all 

metabolites). For those 6 metabolites with MAPE ≤ 10%, the r ranges from 0.77 (Cr) 

to 0.94 (Glu) (0.88 ± 0.07). The cases where the predicted %uncertainty is no less 

than the GT error are also shown in percentage, which ranges 76.6-98.0 (85.0 ± 6.4). 

 

Aleatoric and epistemic uncertainty as a function of SNR, linewidth or concentration 

Figure 4-6 compares the aleatoric, epistemic, and total uncertainty of NAA as a 

function of SNR (A), linewidth (B), or concentration (C) using the simulated data 

set II. In Figure 4-6(A), the aleatoric uncertainty is far more strongly dependent on 

the SNR than the epistemic uncertainty. The total uncertainty increases gradually and 

smoothly as the SNR decreases throughout the entire SNR range. In Figure 4-6(B), 

overall, the aleatoric uncertainty tends to be increasing as the linewidth is increasing 

up to the upper bound of the training linewidth range (dotted vertical lines) and 

shows little change thereafter. The epistemic uncertainty below the lower bound of 

the training linewidth range is higher than the values inside the training linewidth 

range. In Figure 4-6(C), (for the given constant noise level) the aleatoric uncertainty 

is decreasing as the concentration is increasing, as it was decreasing with increasing 

SNR shown in Figure 4-6(A). The epistemic uncertainty does not change 

substantially not only inside but also outside the training concentration ranges except 

in the concentration range beyond ~23 mmol/ L.  
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Figure 4-4. The comparison between the actual errors and the BCNN-predicted uncertainty 

in the estimated metabolite content for individual metabolites. The actual errors in the 

estimated metabolite content are expressed in terms of mean absolute percent error (MAPE) 

over the 10,000 simulated spectra in the test set of the simulated data set I. The BCNN-

predicted uncertainty in the estimated metabolite content is expressed in mean %uncertainty 

(mean over the 10,000 simulated spectra). The 10% and 20% error levels (y-axis) are marked 

in dotted horizontal line 



 

 

 
 

Figure 4-5. The correlations between the ground truth and estimated metabolite content for the 10,000 simulated spectra in the test set of the simulated data 

set I. The correlation coefficients (r) are shown on each panel. For all r’s p < 0.001.
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 Ala Asp Cr GABA Glc Gln Glu GSH GPC 

Correlation (r*) 0.83 0.79 0.77 0.84 0.81 0.83 0.94 0.75 0.72 

Number of cases 

for %uncertainty ≥ 

GT error (%) 

82.9 87.9 79.4 84.4 77.0 85.8 95.8 87.0 81.4 

          

 Lac NAA NAAG mI PCh PCr PE Tau  

Correlation (r*) 0.85 0.93 0.79 0.93 0.76 0.80 0.87 0.87  

Number of cases 

for %uncertainty ≥ 

GT error (%) 

83.5 98.0 81.3 97.2 76.6 78.7 81.6 87.1  

Table 4-1. The correlations between the absolute error and BCNN-predicted %uncertainty of 

the individual metabolites for the test set of the simulated spectra set I.  
* For all correlations, p < 0.001. 
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Figure 4-6. Aleatoric (green), epistemic (pink), and total (gray; aleatoric + epistemic) 

uncertainty of NAA as a function of (A) SNR, (B) linewidth, or (C) concentration using the 

BCNN and the simulated data set II. The BCNN was trained on the simulated data set I, of 

which the ranges of SNR, linewidth, and concentrations of NAA are indicated with the dotted 

vertical lines. The amount of uncertainty was obtained by calculating the area of the NAA 

signal at ~2.0 ppm from each of the three types of the uncertainty spectra and normalizing it 

to that from the respective BCNN-predicted (metabolite-only) spectrum. Note that in (A) the 

SNR is decreasing (from left to right) along the x-axis. 
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4.3.2. BCNN and LCModel on Modified in vivo Spectra 

The representative modified in vivo spectra from one subject are shown in Figure 4-

7 for the 3rd (B), 6th (C), and 9th (D) modified spectra groups and the unmodified 

reference spectra group (A). The increasing severity of spectral degradation due to 

the adjusted SNR and linewidth is clearly seen from the left to the right. 

Table 4-2 summarizes the mean SNR and linewidth over the 5 volunteers 

for the spectra groups. The severity of spectral degradation is elevated towards the 

10th spectra group. Those spectra in the #6 - #10 spectra groups are OOD data.  

 Figure 4-8 shows the mean variations (in %; mean over the 5 volunteers) in 

the BCNN-predicted metabolite content across the 10 modified in vivo spectra 

groups with respect to the metabolite content estimated from the reference spectra 

group for the 6 representative metabolites. The corresponding mean BCNN-

estimated %uncertainty are also shown. The results are compared to the mean 

metabolite content and CRLB from the LCModel analysis. Overall, for both BCNN 

and LCModel, the variation in the estimated metabolite content tends to be 

increasing as the severity of spectral degradation increases. However, the extent of 

variation in the metabolite content tends to be smaller with BCNN than with 

LCModel for all metabolites both inside and outside the training ranges except for 

mI, for which LCModel outperforms BCNN inside the training range. For tCr and 

tNAA, the variation in metabolite content is more highly correlated with CRLB from 

LCModel than with %uncertainty from BCNN (r = 0.942 vs. 0.910 for tCr; 0.949 vs. 

0.934 for tNAA). Overall, however, there is a trend towards higher r with BCNN 

than with LCModel (0.938 ± 0.019 vs. 0.881 ± 0.057 (p = 0.115)).  

The original, unmodified in vivo spectra as well as the corresponding 

BCNN-predicted metabolite-only spectra and uncertainty spectra are shown for all 5 

volunteers in Figure 4-9. For the same volunteer used in Figure 4-7, the BCNN-

predicted metabolite-only spectra, uncertainty spectra and the LCModel fits are 

shown for all modified in vivo spectra (belonging to #1 – #10 spectra groups) as well 

as for the original, unmodified in vivo spectrum in Figure 4-10, Figure 4-11 and 

Figure 4-12, respectively. 

 



 

 

 

 

 

 

 

 

 

 
 

Figure 4-7. The representative modified in vivo spectra from one subject. (A): Unmodified reference (original in vivo) spectrum. (B)-(D): The SNR and linewidth 

of the reference spectrum shown in (A) were simultaneously modified with 10 different severities of spectral degradation (10 modified spectra groups) and the 

results are shown for the 3rd (B), 6th (C), and 9th modified spectra groups. The corresponding SNR and linewidth are shown. 
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Spectra group* Reference** #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

SNR* (a.u) 16.3±1.1 15.6±1.0 12.7±1.4 10.8±1.5 10.4±0.7 8.1±0.8 6.2±0.5 5.7±0.7 4.5±0.4 3.5±0.3 2.3±0.2 

Linewidth* 

(Hz) 
11.4±0.8 13.0±1.4 14.6±1.7 15.8±1.1 17.1±0.8 19.0±0.8 21.7±0.6 24.3±1.5 25.6±1.7 27.8±2.4 30.2±1.7 

 

Table 4-2. The SNR and linewidth of the modified in vivo spectra groups. 

* The ranges of the SNR and linewidth are within, and out of, the training ranges of the BCNN for the spectra groups from reference to #5 and for the spectra 

groups from #6 to #10, respectively.  

** Original in vivo spectra 
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Figure 4-8. The mean variations (%) in the BCNN-predicted metabolite content (upper panel; 

red line with closed circle) across the 10 modified in vivo spectra groups (#1 - #10) with 

respect to the metabolite content estimated from the reference spectra group (Ref.) for the 6 

representative metabolites of (A) GABA, (B) Glx, (C) mI, (D) tCho, (E) tCr, and (F) tNAA. 

The mean values of the variations were calculated over the 5 volunteers in each spectra group. 

The corresponding mean BCNN-estimated %uncertainty (upper panel; purple line with open 

circle) are also shown. The results from the BCNN are compared to the mean variations in 

metabolite content (lower panel; blue line with closed diamond) and CRLB (lower panel; 

green line with open diamond) from the LCModel analysis. The correlation coefficient (r) 

between the variation in metabolite content and the estimated uncertainty (%Uncertainty for 

BCNN and CRLB for LCModel) is also shown. Please note the varying scale of the y-axes. 

For both BCNN and LCModel, the metabolite content was normalized to that of tNAA. In 

the LCModel analysis, GABA was quantified with null amplitude and 999% CRLB for one 

subject in spectra group #1 and #3. These data were excluded in the final analysis. 
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Figure 4-9. The original, unmodified in vivo spectra and corresponding BCNN-predicted 

metabolite-only spectra and uncertainty spectra for all 5 volunteers. (A) original, unmodified 

spectra. (B) BCNN-predicted metabolite-only spectra. (C) reconstructed spectra using the 

metabolite basis set. (D) difference spectra between (B) and (C). (E) total uncertainty spectra. 

(F) aleatoric uncertainty. (G) epistemic uncertainty. (H) 2SD spectra obtained from (E). (I) 

reconstructed 2SD spectra using the metabolite basis set. (J) difference spectra between (H) 

and (I). 

 



 

 

 

 

 

 

 

 

 
Figure 4-10. The BCNN-predicted metabolite-only spectra for all modified in vivo spectra (#1 - #10) from the same volunteer shown in Figure 4-7. 
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Figure 4-11. The BCNN-predicted uncertainty spectra for all modified in vivo spectra (#1 - #10) from the same volunteer shown in Figure 4-7. 
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Figure 4-12. The LCModel fits for all modified in vivo spectra (#1 - #10) from the same 

volunteer shown in Figure 4-7. 
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4.4. Discussion 

4.4.1. Motivation of Study 

The recent accomplishment of deep learning is astonishing. [172, 173] However, 

estimation of uncertainty in the predictions of a neural network is an important 

prerequisite for more rigorous applications of deep learning, which is particularly so 

for its clinical applications. [174] According to the growing impact of deep learning 

on medical data analysis [173, 175], DL-MRS has also been reported for brain 

metabolite quantification [108, 110, 111, 164], and, indeed, as described in Chapter 

3, achieved the estimation of the uncertainty in the CNN-predicted metabolite 

content by a data-driven approach. However, as the authors discussed, the approach 

was derived heuristically and suitable only if the SBRs are available for individual 

metabolites. On the other hand, the MCDO sampling approach [94, 124, 168] is 

theory-oriented and could be implemented for any CNN by simply adding dropout 

layers rendered to operate at test time as well. [124] It is increasingly used in deep 

learning-based MRI studies. [176-178]   

 

4.4.2. Metabolite Quantification on Simulated Brain Spectra 

Among the 17 metabolites, Cr, Glu, Gln, mI, NAA, and Tau had MAPE < 10% (< 

5% for Glu, NAA, and mI). Tau is less commonly reported than Glx, mI, tCho, tCr, 

and tNAA from LCModel analysis. Although we are not able to fully understand the 

relatively low MAPE of Tau in our study due to the black box nature of artificial 

neural networks, it may likely result, at least in part, from the effective line-

narrowing capability of our BCNN. Given the relatively low MAPE of both Glu and 

Gln, separation of these two metabolites may also be benefited from the line-

narrowing, MMs signal-removing, and denoising capability of the BCNN. However, 

our BCNN should be tested further on more realistically simulated spectra (see the 

4.6 study limitation Section) and a larger amount of in vivo data. The quantification 

of Ala, GPC, Lac, NAAG, and PC remains very challenging and requires further 

improvement as in Chapter 2. There is a trend towards slight improvement in the 

accuracy of metabolite quantification for several metabolites (Ala, GSH, Gln, Glu, 

mI, and Tau) in the current study with respect to the previous study. This may result 

from the use of a more advanced network architecture (ResNet vs. generic CNN) and 
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a larger amount of training data (80,000 vs. 40,000). The dependence of MAPE of 

the metabolites on the amount of training data is provided in Figure 4-13. 

 

4.4.3. Uncertainty Estimation on Simulated Brain Spectra 

The predicted errors obtained by the MCDO sampling were highly correlated with 

GT errors for the majority of the metabolites. We estimated the uncertainty in the 

BCNN-predicted metabolite content from the 2SD spectrum. Out of the 10,000 

spectra in the test set of the simulated data set I, the percentage of the spectra, for 

which the estimated %uncertainty was no less than the corresponding GT error 

ranged 76.6 – 98.0% (85.0 ± 6.4%) over the 17 metabolites. It should be noted that 

this result would depend on the performance of neural networks and test data sets, 

and the factor of 2 multiplied to the SD spectrum could be adjusted such that the 

predicted errors are preferentially inclusive of, and as close as, the actual errors.    

In the estimation of the uncertainty, the 2SD spectra were in absolute mode. 

As such, the multiple regression was performed using the metabolite basis set also 

in absolute mode. This means that those spectral regions where metabolites 

containing negative signal in real mode due to J-modulation are spectrally 

overlapped with other metabolites are subject to quantitative errors, if fitted in 

absolute mode. However, at the TE of 30 ms, at which both the metabolite basis set 

used for the spectra simulation and the in vivo spectra were acquired, the amount of 

such negative signal and the resulting quantitative errors are negligible for all 

metabolites. This is demonstrated in Table 4-3 using the 10,000 spectra in the test set 

of the simulated data set I. In this additional analysis, the MAPE of the metabolites 

obtained in absolute mode (for both BCNN-predicted spectra and basis set) were in 

close agreement with those obtained in real mode (Figure 4-4) with no statistical 

difference (p > 0.901 for all 17 metabolites). 



 

 

  

 

 

Spectra mode Ala Asp Cr GABA Glc Glu Gln GSH GPC 

real* 54.0±83.7 16.8±11.9 8.1±6.4 17.2±12.0 15.4±11.0 4.4±3.7 9.7±7.8 8.7±7.2 25.7±24.9 

absolute* 53.8±83.3 16.8±11.9 8.1±6.4 17.4±12.1 15.4±11.1 4.5±3.7 9.8±7.8 8.8±7.2 25.8±24.9 

p-value 0.998 0.955  <0.999  0.993  0.989  0.993  0.975  0.902  <0.999  

          

 Lac mI NAA NAAG PC PCr PE Tau  

real 43.4±44.7 4.2±3.5 3.1±2.5 32.4±34.3 22.2±21.4 13.6±9.6 17.7±12.3 7.4±6.6  

absolute 43.0±44.2 4.2±3.5 3.1±2.5 32.4±34.3 22.2±21.5 13.6±9.6 17.7±12.3 7.4±6.6  

p-value 0.988  0.989 0.996 0.997  0.998  0.996  0.968 0.991   
 

Table 4-3. Comparison between the mean MAPE of the metabolites obtained in real and absolute spectral modes over the 10,000 spectra in the test set of the 

simulated data set I.  
* The mean MAPE values over the 17 metabolites were 17.87±30.04% and 17.87±29.90% for the real and absolute spectral modes, respectively.  
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4.4.4. Aleatoric, Epistemic and Total Uncertainty as a Function of SNR, 

Linewidth or Concentration of NAA 

In Figure 4-6(A), the substantially increased aleatoric uncertainty and the relatively 

stable epistemic uncertainty in response to the reduced SNR are in line with the 

characteristics of aleatoric uncertainty that is associated with inherent noise in the 

input data. [124, 168] The relatively low total uncertainty beyond the upper bound 

of the training SNR range (> 20) indicates that the corresponding spectra could also 

be used for NAA quantification without additional training of the BCNN. 

Linebroadening renders peak-to-peak distinction difficult and therefore 

might be recognized to a certain extent as another form of noise in the point of view 

of the BCNN. This might explain, at least in part, the increasing aleatoric uncertainty 

as a function of linewidth in the ~5 – 20 Hz range in Figure 4-6 (B). In general, a 

lower CRLB is expected for those spectra with a narrower linewidth in the NLSF 

approach. However, the epistemic uncertainty appears higher below the lower bound 

of the training linewidth range (< 10 Hz) in Figure 4-6 (B). Therefore, our BCNN 

requires more training if it is to be used also in that narrower linewidth range.  

In Figure 4-6 (C), the noise levels of the spectra were fixed. Therefore, the 

decrease in aleatoric uncertainty in combination with the relatively stable epistemic 

uncertainty as the concentration of NAA increases indicate again that aleatoric 

uncertainty is associated with SNR. [124, 168] The epistemic uncertainty did not 

change substantially against concentration changes even outside the training range, 

but was rapidly increased beyond ~23 mmol/L. Therefore, our BCNN might also be 

used for those input spectra where NAA is present with higher concentrations than 

the training range to a certain extent, which is in line with the observation in Figure 

4-6 (A). However, as the NAA level deviates from that extent of tolerance, the 

spectra may finally be recognized as the OOD data by the BCNN (i.e., too 

dominating a signal at ~2.0 ppm), and consequently the epistemic uncertainty starts 

rapidly increasing. This result together with the continuous monotonic decrease in 

aleatoric uncertainty are also in line with the characteristics of the two types of 

uncertainty. [124, 168] 

As discussed above, the current approach where the total uncertainty can 

be resolved into the data and model uncertainty provides an insight into the effective 

training strategies. 
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4.4.5. Robustness of BCNN against SNR and Linewidth Tested on 

Modified in vivo Spectra 

The robustness of the proposed method was compared with that of the LCModel 

analysis on the modified in vivo spectra. For both BCNN and LCModel, the variation 

in the estimated metabolite content tended to be increasing as the severity of spectral 

degradation increases, but to a lesser extent with BCNN. For mI, the variation 

obtained from the BCNN was larger than expected from Figure 4-4, which requires 

further investigation on a larger data set. Nonetheless, for the rest of the metabolites, 

the variation obtained with the BCNN was less than 20%, and, for tNAA and Glx, it 

was ~10% or less in the training range even including those spectra in the 5th 

modified spectra group (#5 in Table 4-2), the SNR and linewidth of which were 

degraded by a factor of ~2 with respect to the reference spectra. Even beyond the 

training ranges, the BCNN-predicted metabolite content was smoothly varying, 

which is in line with the findings in Figure 4-6. The finding herein that BCNN tends 

to be more robust than LCModel against spectral degradation is encouraging. 

Overall, the correlation of the variation in the estimated metabolite content 

also tended to be higher with %uncertainty from BCNN than with CRLB from 

LCModel (0.938±0.019 vs. 0.881±0.057 (p = 0.115)). The strong correlation 

between the variation in the estimated metabolite content and the uncertainty 

obtained from BCNN seen in Figure 8 together with those findings from Figure 4-4 

and Table 4-1 support that the uncertainty estimated by the proposed method is 

indicative of the accuracy of the estimated metabolite content rather than precision. 

As is well known and as discussed extensively in the Chapter 3, CRLB provides 

minimum possible errors rather than actual errors as a measure of the level of 

uncertainty. Therefore, the relatively low correlation of the CRLB values with the 

variation in the estimated metabolite content found in this study needs to be 

interpreted carefully.  

 

4.4.6. Study Limitation 

The accuracy of metabolite quantification with the BCNN in this study tended to be 

improved for several metabolites compared to that with a CNN in the Chapter 2. 

However, the BCNN still requires data preprocessing such as phase/frequency 
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correction, Fourier transform, removal of residual water signal, and cropping of input 

spectra. While the preprocessing may not require a considerable amount of effort for 

MR spectroscopists, fully automated quantitative analysis directly from the raw data 

as in the LCModel analysis should be the next step. It would facilitate rapid 

processing of large data sets such as those from magnetic resonance spectroscopic 

imaging (MRSI) (Table 4-4). In the development of such a fully automated analysis 

tool, the ranges of the simulation parameters also need to be extended accordingly 

(esp., phase (both zeroth- and first-order) and frequency shift). 

Having mentioned a fully automated analysis, the analysis should also 

include handling of spectral artifacts such as ghosting. We investigated the 

performance of our BCNN in response to the spectra with varying degrees of 

contamination by residual water (for mimicking the baseline variation), lipid, or 

ghosting. We used residual water signal and ghosting artifact that were acquired in 

phantom in the previous study. [179] The lipid signal was modeled by using jMRUI. 

These different types of spectral contaminators were added to the original, 

unmodified in vivo spectrum shown in Figure 4-7 with varying degrees of 

contamination. 

The performance of our BCNN in response to these spectra are shown in 

Figure 4-14. All spectra that are involved in the course of the metabolite 

quantification and uncertainty estimation by BCNN are shown. Note that these types 

of spectra that are contaminated by residual water, lipid, or ghosting artifact have 

never been shown to the BCNN during training. These spectra are also clearly 

distinguished from those out-of-distribution data set that we simulated for additional 

testing of the BCNN by simply extending the ranges of SNR and linewidth. 

Nonetheless, according to “Difference (Pred. in (A) – Pred.)” (the 4th row in the 

Figure 4-14; the 1st dotted red box), which were obtained by subtracting each 

BCNN-predicted spectrum from the BCNN-predicted spectrum of the original, 

unmodified spectrum in A, our BCNN appears robust against mild contamination 

(i.e., contamination level B). However, at contamination level C, residual signal 

(difference) starts noticeable for lipid in particular. At contamination level D, 

residual signal (difference) is noticeable not only for lipid but also for residual water. 

For lipid, in line with the noticeable residual signal in “Difference (Pred. in 

(A) – Pred.)” at contamination levels C and D, the corresponding “2SD” spectra (the 
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3rd row from the bottom of the Figure 4-14; the 2nd dotted red box), which are used 

for the calculation of %uncertainty show higher intensity (larger uncertainty) of the 

peaks. On the other hand, for residual water, such higher peaks (larger uncertainty) 

are not clearly depicted in the “2SD” spectrum at contamination level D, despite the 

noticeable residual signal in the corresponding “Difference (Pred. in (A) – Pred.)”. 

In summary, our BCNN in its current form appears robust against mild 

spectral contamination by residual water (baseline variation), lipid, or ghosting 

artifact. For more severe contamination, however, it is subject to less accurate 

prediction of metabolite-only spectra and uncertainty spectra (2SD spectra). 

Therefore, a separate unit (machine) needs to be incorporated into the working 

pipeline, which is capable of detecting and even removing such unwanted signal 

from input spectra. Alternatively, the neural network should be trained such that 

metabolite-only spectra and uncertainty spectra could still be accurately retrieved 

from those contaminated spectra. 

 Recent studies have shown that such unwanted signal can be detected [128, 

129, 179] and even removed [129] by deep learning approaches. Therefore, such a 

machine also needs to be incorporated in the fully automated working pipeline. 

Alternatively, our BCNN needs to be trained such that metabolite-only spectra and 

uncertainty spectra could still be accurately retrieved from those contaminated 

spectra, which should otherwise be discarded. 

In this study, we used simulated spectra for both training and testing of the 

BCNN. The effectiveness of the simulation strategy and the utility of the simulated 

spectra were demonstrated in the previous study where, using the same simulation 

strategy, a CNN was trained solely on the simulated brain spectra, and yet the 

performance of the CNN on actual in vivo spectra were comparable to those from 

the LCModel analysis as described in Chapter 2. Nonetheless, the lack of 

incorporation of the baseline variation into the simulation is an additional limitation 

of our study. Although we modeled it simply using residual water in the above 

discussion, it results from many other factors including hardware imperfection [180], 

and can be difficult to recognize by visual inspection. Due to the difficulty of 

precisely characterizing and modeling the baseline variation, we did not include it 

explicitly in the simulation. Instead, we simulated MMs signal by randomly varying 

the linewidth and amplitude of the 9 MMs resonance groups (M1-M9) individually 
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(within ±20% and ±10%, respectively) as described in Chapter 2. The relative 

amount of MMs signal to metabolite signal was also randomly varied (within ±25%). 

Therefore, our BCNN is somewhat tolerant against variation in the shape and amount 

of the background signal of the metabolites (i.e., the leftover excluding the 

metabolite signal), and may also likely be tolerant of the baseline variation to a 

certain extent. In additional analysis (Figure 4-15), the BCNN was tested on a 

spectrum without MMs signal at all. On the one hand, the overall quantification 

errors from the spectrum without MMs were more than twice as large as those from 

the spectrum with MMs. On the other hand, our BCNN did not totally fail, despite 

the fact that such a spectrum without MMs signal is a completely out-of-distribution 

sample. This observation supports, at least in part, that our BCNN may likely be 

capable of handling the baseline variation to a certain extent. This is not to say that 

our simulation approach can well account for the baseline variation. Ultimately, it 

should also be considered explicitly in the simulation. In the simulation of spectra, 

we used solely a Lorentzian apodization function, and additional analysis (Figure 4-

16) shows that substantial line-broadening by different apodization functions such 

as Gaussian and Voigt functions can influence the performance of the BCNN. As 

depicted in “Difference (Pred. in (A) – Pred.)” (the 3rd row in the Figure 4-16; dotted 

red box), which were obtained by subtracting each BCNN-predicted spectrum from 

the BCNN-predicted spectrum of the reference spectrum in A, the influence of line-

broadening is larger with different apodization functions than with the Lorentzian 

function that was used in our study. The corresponding quantitative results are 

summarized in the Table 4-5. Broadening the linewidth of the reference spectrum 

from the lower bound (~10 Hz) to the upper bound (~21 Hz) of the linewidth range 

of the training set resulted in the mean variation in metabolite content of 3.5% for 

the Lorentzian. For mI, Glx, tCr, tCho, and tNAA that are most commonly reported 

in MRS studies, the variations ranged 1.9-4.4%. However, for the Gaussian and 

Voigt functions, the mean variations increased to 6.7% and 4.9%, respectively. For 

mI, Glx, tCr, tCho, and tNAA, the variations ranged 0.6-14.7% for the Gaussian 

function and 1.4-9.3% for the Voigt function. Therefore, such sensitivity of neural 

networks to the choice of apodization functions should also be recalled in DL-MRS.  

Lastly, this study was designed not to provide a lower bound on the target 

linewidth. Training a CNN with a narrower target linewidth (< 5 Hz) for reduced 



 

 
１５２ 

spectral overlap could potentially improve the quantitative outcome to a certain 

extent on the one hand. On the other hand, development of such a CNN that should 

learn more spectral details could be more challenging in practice, given the limited 

performance of our CNN for the current target linewidth of ~5 Hz. For instance, the 

improved performance resulting from the narrower target linewidth might be traded 

off with a reduced upper limit of the linewidth of input spectra that can be processed 

with an acceptable quantitative error.



 

 

  

 

 

 

 

 

    single spectrum   40 spectra  1024  spectra& 

    BCNN* LCModel#  BCNN* LCModel#  BCNN* LCModel# 

processing 

time 

(sec)$ 

 CPU  1.6 6.2  16.3 253  332 6742 

 GPU  0.5 -  0.9 -  13.6 - 

Table 4-4. Comparison of processing times between BCNN and LCModel. 

$ A personal computer was used (Intel Core i5-9400F CPU @ 2.90Hz (4 cores), DDR4 RAM 16 GB, Ubuntu 20.04.2 LTS, Matlab (v.9.7 (R2019b), a single 

GPU (NVIDIA 1660ti)).  

& a single MRSI data that consists of 1024 spectra (MRSI matrix size = 32 x 32) 

* Unlike LCModel, the current version of our BCNN requires data preprocessing, which was not accounted for in the estimated processing time. The 

processing time was estimated for 50 MCDO samples (T = 50). 

# version v.6.3‐1J 
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Figure 4-13. The dependence of MAPE of the metabolites on the amount of training data. The figure compares the mean absolute percent errors (MAPE) of 

the individual metabolites over the 10k spectra in the test set after training the BCNN on each of the 4k, 20k, 80k (finally selected in this study), and 600k 

training data sets. The same test set (10k spectra) was used for all training data sets. Overall, there is a trend towards decreasing MAPE as the number of 

training data increases. The MAPE tends to drop suddenly at 80k training set (for Asp, GABA, Glc, Gln, Lac, PE, and Tau). The MAPE of the metabolites 

for the 80k training set are comparable to those for the 600k training set, despite the substantial difference in the number of spectra between the two training 

sets. According to this result and in consideration of training efficiency, we had finally selected the 80k training set in this study. 
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(Figure caption on next page.) 
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Figure 4-14. The performance of BCNN in response to spectra with varying degrees of contamination by residual water, lipid, or ghosting artifact. Note that 

these types of spectra that are contaminated by residual water, lipid, or ghosting artifact have never been shown to the BCNN during training. These spectra 

are also clearly distinguished from those out-of-distribution data set that we simulated for additional testing of the BCNN by simply extending the ranges of 

SNR and linewidth. Nonetheless, according to “Difference (Pred. in (A) – Pred.)” (the 4th row in the figure; the 1st dotted red box), which were obtained by 

subtracting each BCNN-predicted spectrum from the BCNN-predicted spectrum of the original, unmodified spectrum in A, our BCNN appears robust against 

mild contamination (i.e., contamination level B). However, at contamination level C, residual signal (difference) starts noticeable for lipid in particular. At 

contamination level D, residual signal (difference) is noticeable not only for lipid but also for residual water. 

For lipid, in line with the noticeable residual signal in “Difference (Pred. in (A) – Pred.)” at contamination levels C and D, the corresponding “2SD” 

spectra (the 3rd row from the bottom of the figure; the 2nd dotted red box), which are used for the calculation of %uncertainty show higher intensity (larger 

uncertainty) of the peaks. On the other hand, for residual water, such higher peaks (larger uncertainty) are not clearly depicted in the “2SD” spectrum at 

contamination level D, despite the noticeable residual signal in the corresponding “Difference (Pred. in (A) – Pred.)”. 

In summary, our BCNN in its current form appears robust against mild spectral contamination by residual water (baseline variation), lipid, or 

ghosting artifact. For more severe contamination, however, it is subject to less accurate prediction of metabolite-only spectra and uncertainty spectra (2SD 

spectra). As discussed in the main text (discussion section), therefore, a separate unit (machine) needs to be incorporated into the working pipeline, which is 

capable of detecting and even removing such unwanted signal from input spectra. Alternatively, the neural network should be trained such that metabolite-

only spectra and uncertainty spectra could still be accurately retrieved from those contaminated spectra.
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Figure 4-15. The performance of BCNN in response to a spectrum without MM signal. To 

examine the performance of BCNN in response to a spectrum without macromolecule signal, 

two identical metabolite spectra was simulated and added macromolecule signal only to one 

of them. To isolate the impact of the presence/absence of macromolecule signal on the 

performance of the BCNN, the SNR and linewidth of the spectra were adjusted to the mean 

values of the training data set. The BCNN-generated spectra in the course of metabolite 

quantification and uncertainty estimation are shown below for the simulated spectra without 

(A) and with (B) macromolecule (MM) signal. 
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Figure 4-16. The performance of the BCNN on the spectra broadened with different 

apodization functions. ((A) reference, (B) Lorentzian function, (C) Gaussian function, and 

(D) Voigt function) 
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Metabolite 
Apodization function 

Lorentzian Gaussian Voigt 

Ala 6.5 14.2 12.4 

Asp 1.2 6.7 2.8 

Cr 6.2 9.0 7.7 

GABA 0.8 2.1 0.5 

GPC 3.9 5.6 1.9 

GSH 0.7 5.2 0.1 

Glc 5.0 5.9 8.5 

Gln 2.0 1.3 3.9 

Glu 2.1 7.7 3.9 

Lac 4.4 6.0 4.7 

NAA 2.8 15.1 8.8 

NAAG 3.9 11.6 12.9 

mI 1.9 0.6 2.4 

PC 3.7 7.1 0.8 

PCr 1.8 2.3 1.8 

PE 3.7 1.6 3.1 

Tau 10.1 6.3 8.6 

Glx 2.1 5.1 1.7 

tCho 3.8 6.4 1.4 

tCr 4.4 6.2 5.2 

tNAA 2.9 14.7 9.3 

Mean (%) 3.5 6.7 4.9 

SD (%) 2.0 3.8 3.4 

 

Table 4-5. The variation (%) in the estimated metabolite content with respect to the 

metabolite content estimated from the reference spectrum. 
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Chapter 5. Conclusion 

 

5.1. Study summary 

This study utilized deep learning to method developed for quantifying in vivo 

metabolites using MRS and obtained results showing improved accuracy and 

performance than the existing NLSF method. In the deep learning approach, the 

metabolite-only spectrum was set as GT and trained to extract the metabolite 

information inherent in the MR spectrum as much as possible. That is, we proposed 

a method for predicting all metabolites (Chapter 2 and 4) or isolating and extracting 

only a specific target metabolite with metabolites serving as an internal reference 

(Chapter 3). As a result, both methods showed high accuracy and low variability in 

metabolite quantification performance compared to the NLSF methods. 

Moreover, this study shown a quantitative uncertainty for the predicted 

results in deep learning. That is, we developed an uncertainty quantification 

technique based on a big data-driven heuristic approach (Chapter 3) and a theoretical 

approach through BCNN (Chapter 4) that approximates variational inference 

(Chapter 4) and applied it in both in vivo and simulated brain MR spectrum. As a 

result, it provides uncertainty information closer to the actual accuracy than the 

CRLB used in the NLSF. 

Therefore, the metabolite quantification method through deep learning-

based MRS presented in this study is expected to increase clinical applicability by 

accurately providing in vivo metabolite information. 

 

5.2. Future works 

GABA and Glu are important metabolites in various diseases, but are 

known to be difficult to quantify with conventional methods. Nonetheless, MAPEs 

of less than 15% and 10% were obtained for GABA and Glu on the simulated spectra. 

Using true in vivo data, it was also shown that the proposed deep learning-based 

methods were more robust against poor SNR (Chapter 2 and 4) and spectral 

dispersion (Chapter 4). These results clearly demonstrate the potential applicability 

of the proposed methods. For animal studies at high field, the advantage of the higher 

SNR can easily be compensated with the far smaller voxel size, especially, for mice. 
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In this circumstance, the robust performance of our methods against poor SNR could 

be advantageous over the LCModel. However, since the current study was conducted 

only on healthy human/animals, all of the methods developed in this study should 

extensively be verified on a larger amount of actual in vivo data representing various 

diseases. 

 

 

Figure 5-1. Abnormal MRS spectra including spectral artifact used for additional verification 

of the method presented in the current study. 

 

Spectra contaminated by unwanted signal such as ghosting, residual water 

signal, and lipid signal are encountered more often than not. (Figure 5-1) As 

discussed in Section 2.4.4 and Section 4.4.6, the methods developed in this research 

are tolerant only of mild contamination (Figure 4-14). Therefore, an additional 

technical development is mandatory prior to the practical application of the methods 

This is also true for those spectra, in which the relative metabolite concentrations are 
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outside the training range, such as those from tumor patients as discussed in Section 

2.4.4. 

Furthermore, the current BCNN-based uncertainty estimation method in 

Section 4.4.6 show that a local perturbation (artifact) can influence the uncertainty 

for all metabolites. This is clearly an additional limitation of the current method. 

Such a spectrum may still be identified and rejected prior to BCNN processing, for 

instance, by defining an inclusion criterion in terms of the sum of the uncertainty 

over all metabolites. However, to clearly understand as to why the input spectrum 

has to be rejected, an alternative approach should also be considered. For instance, a 

generative adversarial network (GAN)-based detection of anomaly in brain spectra 

has recently been reported. [179] The big data-driven approach proposed in Chapter 

3 might also be considered for the estimation of uncertainty for individual 

metabolites in response to a localized spectral contaminator. However, unlike the 

GAN-based approach, it would require a tremendous amount of training data in order 

to account for a variety of different types, locations, and amplitude of spectral artifact.  

The separation of uncertainty into the data and model uncertainty as 

employed in Chapter 4 can potentially provide an intuition into the training strategy. 

However, Figure 4-6 also implicitly shows the difficulty of clearly distinguishing 

between these two different types of uncertainty, which could be possible only upon 

a perfectly trained BCNN. This limitation should also be recalled in the application 

of our BCNN in its current form. 

Magnetic resonance spectroscopic imaging (MRSI) is a technique that 

combines the single voxel MRS with the spatial encoding in MRI such that it allows 

spatial mapping of multiple metabolites across a slice or over the whole volume of 

the brain. FIDs are collected in k-space to form a k-t space data set. Therefore, the 

current deep learning methods should be applied to each individual FIDs in the k-t 

space in the case of MRSI data. This means that an MRSI-specific method should be 

developed for more efficient data processing. 

Finally, a number of data repositories are available for deep learning in MRI. 

However, even as of today, such data sources are very limited in MRS. Initiation of 

MRS data repositories by cooperative effort of the International Society as well as 

local research groups would be a major asset in the development of deep learning-

based MRS. 
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Abstract in Korean (국문 초록) 

 

두뇌 내 특정한 부위에 대한 대사체들의 종류와 농도 정보를 획득할 수 

있는 자기공명분광 (MRS) 분야에서 일반적으로 활용하고 있는 비선형 

최소제곱피팅 (Nonlinear least squares fitting; NSLF)은 주어진 사전 정보 

(Prior knowledge)에 의존한 정량화 결과 변동 특성을 나타낸다. NLSF 

기반한 두뇌 대사체 정량화는 MRS 신호품질에 민감하게 성능 변화를 

나타낸다. 무엇 보다, NLSF를 통한 정량화 결과의 신뢰 지표인 크라메르-

라오 하한 (Cramer-Rao lower Bound; CRLB)은 정량화 결과에 대한 

오차정보를 반영하는 정확도가 아닌, 정밀도를 표현하므로, 이를 

주의하여 활용하지 않으면 통계적 편향성을 나타낼 위험이 있다. 이러한 

문제들로 인해 MRS는 현재까지도 제한적으로만 임상 활용되고 있는 

상황이다. 

따라서 본 연구는 자기공명분광법을 이용한 두뇌 대사체 정량화 

과정에 있어서 딥 러닝 기술을 접목하여, 정량화 정확도를 개선하는 

점에 주 목적을 두고 있다. 구체적으로 본 연구에서는 다음과 같이 두 

부분에 대한 방법을 제안하였다.  

첫번째로는 깊은 인공신경망을 통해 MRS 신호내의 두뇌 대사체 

공명 신호만을 추출하여, 이를 간단한 선형 회귀 후처리를 통해 

정량화를 할 수 있는 분석 기술을 개발하였다. 두번째로는 딥 러닝에서 

예측하는 결과들에 대한 불확실성 지표를 표현하는 방법에 대해 

개발하였다. 구체적으로는 빅데이터 기반의 경험적 불확실성 지표와, 
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베이지안 접근법에 기반한 정규분포를 따르는 불확실성 지표 표현 

방법을 개발하였다.  

결과적으로 제안된 방법들은 NLSF 대비 MRS 신호 품질에 덜 

영향을 받으면서 낮은 정량화 결과 변동성을 나타내는 동시에, NLSF의 

정량화 결과에 대한 신뢰지표인 CRLB에 비해 더 실제 오차와 상관성이 

높은 불확실성 지표 성능을 보였다. 

따라서 본 연구는, MRS를 활용한 두뇌 대사체 정량화에 대한 

정확도 개선을 위해 딥 러닝 기술들을 활용한다면, MRS의 임상 적용 

가능성을 높일 수 있음을 시사한다. 

 

주요어: 자기공명분광법 (MRS), 대사체, 딥 러닝 

학번: 2014-22018 
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