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Abstract

In this dissertation, we propose two methods to overcome problems that may occur in

cross-modal representation learning. First, in order to overcome the problem that the

existing joint embedding based model is difficult to learn relation among data from

heterogeneous modalities, we propose a cross-modal representation learning model

adopting the distributed embedding method. The proposed model first learns intra-

modal association by training a specialized embedding space for each modality with

single-modal representation learning. Then the proposed model learns cross-modal

association by introducing associator, which connects the embedding spaces of multi-

ple modalities. To separate the learning process of intra-modal association and cross-

modal association, the model parameters involved in intra-modal association are not

updated during training of cross-modal association. Through the two-step learning

process, the proposed model can well perform cross-modal representation learning

among heterogeneous modalities. Furthermore, the proposed model has the advantage

of utilizing unpaired data for learning. We validated the proposed method in the cross-

modal data generation task between visual and auditory modalities, which is one of

the heterogeneous modal relationships. The proposed method achieves improved per-

formance compared to the existing joint-embedding based models.

Second, though cross-modal paired data is essential for cross-modal representation

learning, securing a sufficient number of paired data is too difficult in practical appli-

cations. To mitigate data shortage problem, we propose an active learning method

for cross-modal representation learning. In particular, we propose active learning for

image-text retrieval, which is one of the most popular applications related to cross-

modal representation learning. Since the existing active learning scenario for image-
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text retrieval can not be applied to the recent image-text retrieval benchmarks, we first

propose an active learning scenario feasible for the recent benchmarks. In contrast to

the existing scenario where a category label for a given image-text pair data is queried

to the human experts, in the proposed scenario, unpaired image or text data are given

and human experts are requested to pair the unpaired data. We also proposed an ac-

tive learning algorithm for the proposed scenario. The proposed algorithm selects the

data that is expected to have the most influence on the max-hinge triplet loss function,

which is mainly adopted loss function in recent image-text retrieval method. To this

end, we define the condition that data can influence the loss function, and estimate

the influence score (referred to as HN-Score) of the data on the loss function based on

the defined condition. The proposed algorithm selects the data of the highest score. We

validate the effectiveness of the proposed active learning algorithm through the various

experiments on recent image-text retrieval benchmarks.

Keywords: cross-modal representation learning, distributed embedding, active learn-

ing, deep neural network

Student Number: 2016-20977
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Chapter 1

Introduction

As humans utilize the multi-sensory signals to think and judge something in their

daily life, learning multi-modal data is also very important in machine learning area.

The most basic step to understand multi-modal data is to learn the relationship among

multi-modal data, referred to as multi-modal association learning. Through multi-

modal association learning, useful machine learning tasks such as cross-modal gen-

eration or cross-modal retrieval can be performed. Multi-modal association learning

can be realized through cross-modal representation learning. In cross-modal represen-

tation learning, multi-modal data are embedded into a latent space, while semantically

correlated data are embedded closely to each other in the embedding space.

Many studies have been proposed for cross-modal representation learning. Those

studies have achieved a great improvements in various machine learning tasks such

as cross-modal data generation [1–9], cross-modal data retrieval [10–15, 15–20] and

recognition [5, 21]. Nevertheless, learning cross-modal representations is still one of

the difficult topics in machine learning area. In this dissertation, we focused on the

two major problems of cross-modal representation learning and proposed methods to
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mitigate those problems.

The first problem is that learning cross-modal representations among heteroge-

neous modalities is very difficult. Note that we referred to modalities with very dif-

ferent characteristics as heterogeneous modality. Learning between vision and audi-

tory modality can be an example. The word know and no have similar pronuncia-

tion, but they have different meanings. Like this, similarity in the auditory domain

does not guarantee similarity in the visual domain, it may be difficult to learn corre-

lations for these modals. We think that the existing joint embedding method, which

projects multi-modal data into one embedding space, have a limitation to solve the

aforementioned problem. In the joint embedding method, paired data from heteroge-

neous modality should be close to each other in the joint embedding space. However,

as mentioned above, since similarity in one modality does not guarantee similarity in

another modality, forcing close embedding of heterogeneous data can be problematic.

To mitigate the limitation of the joint embedding method, we propose an approach that

adopts distributed embedding spaces. In proposed approach, each modality is encoded

in each embedding space separately by the variational auto-encoder (VAE) [22] and

the distributed embedding spaces are associated with the other modalities via associ-

ators. Through the proposed structure, not only the relationship among heterogeneous

modality can be learned, but also unpaired data can be utilized for learning.

The second problem is that securing a sufficient amount of paired data for cross-

modal representation learning is difficult. Paired data is essential for cross-modal rep-

resentation learning. However, collecting paired data requires a lot of money and time

than single modal data, since paired data should be collected from multiple sources

and the correlation between them should be checked. Therefore, in actual machine

learning application, it is difficult to secure sufficient amount of paired data for cross-

modal representation learning. To mitigate the data shortage problem, we employed

active learning concept to multi-modal data to cost-efficiently collect the paired data,

2



especially for image-text retrieval task. Since active learning studies for image-text

retrieval is not such exploited, we defined the active learning scenario for the multi-

modal dataset with unpaired data first. Then we propose active learning algorithm for

the developed scenario. Inspired by the loss function usually adopted in image-text re-

trieval research [14], the proposed method select the samples which are the most likely

to be a hard negative sample for the existing paired dataset. To this end, we defined

the conditions for data to be a hard negative for a existing paired data, and estimated

scores for data by reflecting that the given data satisfies defined conditions.

The contribution of this dissertation is to propose methods that can complement

the two problems of cross-modal representation learning. First, for robust cross-modal

association learning among heterogeneous modalities, we proposed a distributed em-

bedding method that allocates an embedding space separately for each modality rather

than the existing joint embedding method. Second, to mitigate the data shortage prob-

lem in multi-modal task, we proposed an active learning scenario and algorithm for

cross-modal representation learning method to obtain paired data cost-effectively, es-

pecially for image-text retrieval.
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Chapter 2

Preliminary

2.1 Associative Learning in Human Brain

There have been many studies that investigate associative learning from the perspec-

tive of neuroscience [23–26]. One of the most popular study about the associative

learning is Pavlov’s work [27, 28]. In their experiment, the unconditioned stimulus is

to give a dog some food that make him salivate, while the neutral stimulus is to let

the dog hear sounds of a metronome. If food and sounds are provided simultaneously

and consistently, the dog learns association between the food and the sound. Then the

dog salivates only by hearing the sound of a metronome even though the sounds of a

metronome is a neutral stimulus and salivating is an unconditional stimulus.

In the recent study which tried to analyze associative learning at the cellular sub-

strate level [29,30], they introduce the associative memory cells to describe brain neu-

rons which are mainly involved in integration and storage of associated signals. A brain

learns associated information by enhancing the strength of the synapses between co-

activated associative memory cells activated by associated signals. According to [29],
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Visual Cortex Auditory Cortex

APPLE

Figure 2.1: Example of how the brain memorizes multi-modal associative data

Intra-modal associative memory cells (highlighted cells) in the visual cortex are trained

to discriminate various sensory data (images of an apple, an orange and a banana)

through their mutual innervations. Intra-modal associative memory in the auditory cor-

tex is also trained in the same manner. When associative information between visual

and auditory data is provided, co-activation of associative memory cells induces mu-

tual synapse innervations between associative memory cells, and thus, cross-modal

associative memory cells are trained.

detailed associative learning process in the brain includes intra-modal and cross-modal

association processes. Figure 2.1 illustrates the two associative learning processes. The

intra-modal association process is to make humans familiar with single-modal sensory

information. An example of single modal associative learning is the process of remem-

bering the image of a fruit in the visual cortex while observing the fruit. Then, without

any help from a teacher, the image is memorized by itself and becomes familiar to

the person. This is an unsupervised learning process. The process of remembering the

5



name of the fruit and memorizing it in the auditory cortex works in a similar manner.

In the cross-modal association process, when the image and name of the fruit enter into

the sensory organs at the same time, the process of learning the relationship between

them proceeds.

The conventional artificial neural network is an engineering model inspired by the

biological mechanism of the brain. Parameters of those networks are usually updated

by Hebbian learning rule where weight connections between firing nodes for input data

are strengthened [31]. The Hopfield network and Boltzmann machine are representa-

tive examples [32]. The Hopfield network models associative memory of human, thus

network is trained to memorize specific patterns. Even if the input is incomplete, The

Hopfield network can restore incomplete data through recurrent iteration. The Boltz-

mann machine is a stochastic version of the Hopfield network, which can learn a latent

representation for input data through its hidden nodes.

2.2 Cross-modal Representation Learning

One of the major issues in machine learning is exploiting multi-modal data for var-

ious applications, such as data generation [3, 22, 33, 34], retrieval [10] and recogni-

tion [5, 21]. There are a lot of studies that extract modality independent cross-modal

representation by finding the joint representation of multi-modal data [1]. The joint

representation is utilized in diverse applications such as handling a missing modal-

ity [3, 4] or accomplishing better performance than models trained on single-modal

data [5, 21].

2.2.1 Cross-modal Data Generation

The research related to cross-modal data generation can be categorized into two groups

[1]. One is a method mapping data from diverse modalities to the joint latent space.
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[2] proposes the extended version of a Variational auto-encoder [22] which combines

distribution parameters from encoders and calculate integrated distribution parameters.

[3] also a variant of Variational auto-encoder for hand pose estimation with multi-

modal data. The model proposed by [3] chooses the input modality and the output

modality pair and train the corresponding encoder and decoder pair at every iteration.

[4] trains an auto-encoder that takes RGB images, depth images and semantic images

as its network input, then the trained model can a generate complete depth image and

semantic image from an RGB image and partial depth and semantic image. [21] builds

a deep-belief network structure that maps audio data and lip images into the common

hidden node for audio-visual speech recognition. [5] extends the RBM structure to

reflect the sequential characteristic of a speech dataset.

The other group comprises methods that encode the corresponding data to the la-

tent space of each modality but enforce similarity constraints to corresponded latent

vectors. [7] trains domain specific encoders and decoders, allowing encoders and de-

coders from different modality to be combined, then, the model is able to generate

an unseen data pair by combining the encoders and decoders. [8] extracts low-level

representation from original data first. Then they trains auto-encoders for each modal-

ity and enforces similarity constraints to embedding spaces of each auto-encoders for

correlated data pair. In [9], a model is trained to maximize the similarity of an image

feature and a vectorized label to infer a proper label for a given image.

2.2.2 Image-text Retrieval

Image-text retrieval (ITR) is an popular machine learning application where a model

retrieves the most semantically relevant text (image) in the data base when a query im-

age (text) is given. VSE++ [14] is the most popular algorithms for find-grained ITR.

VSE++ extracts feature from image and text, then estimates the similarity between

image and text through inner-product. Then a retrieval model is trained by the hinge-
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based triplet ranking loss [35–38]. However, when training a model, a mini-batch from

an find-grained ITR benchmark includes one relevant (positive) sample and a number

of irrelevant (negative) samples. Thus gradient can be biased to the negative term of

the triplet loss. To mitigate this problem, VSE++ only reflects the hard negative sam-

ple in the mini-batch to the loss term. SCAN [15] improves the retrieval performance

by estimating the similarity between image and text more precisely. Whereas VSE++

extracts the one global feature from image and text data, SCAN extracts lots of lo-

cal features from sub-regions of image [39] and words in text. Then SCAN calculates

similarity between each region (word) and full text (image) and aggregates them. Such

algorithm is referred to as fine-grained ITR algorithm. IMRAM [16] refines local fea-

tures by iteratively fusing local features with the proposed memory units. In addition

to the aforementioned studies, numerous studies have been proposed [15, 17–20].

2.3 Active Learning

2.3.1 Pool-based Active Learning

Recently in the deep learning field, active learning has emerged as one way to effi-

ciently collect supervised data. The key idea of active learning is to efficiently im-

prove the performance of the target model by actively selecting the data to be labeled

through an algorithm, rather than randomly selecting the data to be labeled. Figure 2.2

shows the general process of active learning. Through active learning, it is expected

to achieve better performance even if we pay the same amount of annotation budget

compared to random selection (in several papers, random selection is referred to as

passive learning).

There are many scenarios for active learning [40], but recent studies have mainly

considered a pool-base active learning scenario. In the pool-based active learning, lots

of labeled data and unlabeled data are given, and the machine queries a large number

8
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Query
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Figure 2.2: General process of active learning. Given labeled data and unlabeled

data, the machine is trained with labeled data. Then machine selects the set of informa-

tive samples from the unlabeled data which are expected to improve the performance

of the machine when human annotates them. The machine queries selected samples

for human to annotate them. Finally, human annotates the queried samples and incor-

porate them into an existing labeled dataset. Those processes are repeated until the

annotation budget is exhausted or target performance is achieved.

of informative samples to humans at once. Since deep learning algorithm requires a

huge amount of training data, pool-based scenario is generally considered. The most

important part of active learning is how to select the most informative samples from

the unlabeled dataset. To this end, many studies are trying to design a function referred

to as a selection function or an acquisition function, in consideration with correlation

between unlabeled sample and labeled dataset, model prediction, additional module,

and others.
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In addition, most of the active learning studies consider the single-modal case. In

the single-modal case, unlabeled data is simply composed of one data, and a human

provides an annotation according to a task (e.g. class label, bounding box, segmenta-

tion ...). The most representative validation task for active learning is image classifica-

tion. Most of the recent AL studies validated their algorithm on binary or multi-class

classification problem.

2.3.2 Single-modal Active Learning

Recently, the active learning [40] has been applied to various deep learning tasks such

as object detection [41, 42], person re-identification [43], multi-task learning [44],

named entity recognition [45], human pose estimation [46], action localization [47],

and biomedical image analysis [48, 49]. Recent active learning methods can be cate-

gorized into two types [50]. The one is the uncertainty-sampling methods [41–43, 45,

48, 51–53] which select the most uncertain (also referred to as informative) samples

for the target model. The other is representative subset methods [54, 55], which select

the representative subset from the unlabeled data pool.

The core of the uncertainty-sampling methods is to estimate the uncertainty infor-

mation for the unlabeled sample. In case the target model infers a probability distribu-

tion (e.g., image classification), classical methods such as entropy [56] or variational

ratio [57] of probability distribution can be used as uncertainty estimators. Despite its

simplicity, classical methods are still utilized in many deep learning applications and

show prominent performance [41, 45–48, 53, 58].

However, most deep learning applications, such as object detection [59] or human-

pose estimation [60], infer deterministic results, instead of probabilistic results. In ad-

dition, the classical uncertainty-based active learning methods have a problem with

scalability to high dimensional data and a huge number of model parameters [51].

Therefore, recent studies attempt to efficiently estimate the sample-uncertainty in a
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deep model. Dropout-based method [51] performs multiple forward passes with dropout

layers [61] to predict the sample uncertainty. Ensemble-based method [52] utilizes

multiple deep neural networks, which have the same structure but are differently ini-

tialized. The method proposed in [42] estimates the sample-uncertainty by predicting

the loss value of the sample. To this end, they add the additional network (loss predic-

tion module) to the target model. Since the loss function should be defined in any deep

learning tasks, this method can be applied to any deep learning tasks.

The representative subset methods select the representative subset from the un-

labeled data pool. Core-set approach [54] formulated the active learning problem as

k-Center problem [62]. The goal of the k-Center problem is to select the k points that

maximize the minimum distance among the selected points and its nearest centers.

Then the Core-set method solves the problem via integer programming. Variational

adversarial active learning method [55] selects unlabeled data that are not similar to la-

beled data by training VAE [22] and discriminator adversarially. k-centered clustering

algorithms such as k-medoid clustering [63] can be utilized for selecting representative

samples by choosing cluster-center [64].

Some studies [65, 66] have attempted to combine the two strategies mentioned

before. The method proposed in [65] selects samples which have high uncertainty

while preserving the distribution of the dataset. The method proposed in [66] improves

its original one [65] by considering the easiness of a sample.

In Figure 2.3 and 2.4, we present visualized results of applying several active

learning algorithms to the 2-dimensional binary classification problem with a SVM

classifier. Red cross, light-gray dots, and dark-gray dots represent selected samples,

unlabeled samples, and labeled samples, respectively. The colored area denotes the

predicted area of the classifier. For the Entropy sampling, most of the samples are se-

lected near the classification boundary. In contrast, Core-set and K-means clustering

method select evenly across the entire data set.
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(a) Random (b) Entropy sampling

(c) Core-set (d) K-means clustering

Figure 2.3: An example of sample selection based on four query strategy (Random

sampling, Entropy sampling, Core-set, and K-means clustering) in a 2-dimensional

binary classification problem with a SVM classifier. Red cross, light-gray dots, and

dark-gray dots represent selected samples, unlabeled samples, and labeled samples,

respectively. The colored area denotes the predicted area of the classifier.
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(a) Core-set (b) Entropy sampling

Figure 2.4: An example of sample selection based on two query strategy (Entropy sam-

pling, Core-set) in a 2-dimensional binary classification problem with a SVM classi-

fier depending on the number of initial labeled data. Red cross, light-gray dots, and

dark-gray dots represent selected samples, unlabeled samples, and labeled samples,

respectively. The colored area denotes the predicted area of the classifier.
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2.3.3 Multi-modal Active Learning

Collecting supervised data for multi-modal tasks such as image-text retrieval is more

difficult and costly than for single-modal tasks. Therefore, AL is a more attractive re-

search topic for multi-modal tasks than for single-modal tasks, but AL for deep multi-

modal tasks have not been exploited much. [67] proposed COSLAQ, an AL algorithm

for coarse-grained ITR based on [11]. Given two relevant image-text pair, COSLAQ

calculates intra-modal (image-image and text-text) and cross-modal (image-text) sim-

ilarities between them. Then algorithm measures variance of similarities and selects

two relevant image-text pairs that have the highest variance of similarities. Note that

COSLAQ queries human experts whether two pairs belong to the same class or not.

However, COSLAQ can not be applied to find-grained ITR since each relevant pairs

in find-grained ITR dataset belongs to different classes. [68] proposed MMQL, an AL

algorithm for multi-modal classification based on reinforcement learning. In a train-

ing phase, MMQL trains individual network for each modality. The results from each

modality network are concatenated and treated as state for reinforcement learner. Then

reinforcement learner learns a binary action whether to query the input multi-moal data

to a human or not.
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Chapter 3

Distributed Embedding Model

3.1 Contribution

The brain combines multisensory information to understand the surrounding situation.

Through various sensory experiences, humans learn the relationships between multi-

sensory data and understand the experienced situation. This mechanism to learn the

relationship among multiple stimuli is called associative learning [23–25]. Because

of the associative learning mechanism, humans can robustly understand and perceive

their surrounding situations even when only some of the modalities are available.

In the field of machine learning, utilizing multi-modality is also important issues

because of its usefulness in a wide range of applications [1, 69]. As a representative

example, object recognition and scene understanding methods based on multi-modal

data outperform the methods using only single-modal data [5, 21]. Moreover, one can

generate the synthesized data for a missing or desired modality [3,4,7,34,70,71]. The

multi-modal data association is one of the fundamental steps to understand the rela-

tionships among multi-modal data. Recently, along with the advances of deep learn-
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Figure 3.1: Conceptual illustration of the proposed AVAE. AVAE has modality-specific

encoders and decoders for each modality (image, voice). Each modality has its own

embedding space, which is painted with a different color (red, green, blue). The em-

bedding spaces are connected via the proposed associator which associates two differ-

ent modalities.

ing, many studies have attempted to solve the multi-modal data association problem

by deep learning algorithms [1]. The studies have adopted an approach that encodes

multi-modal data into a joint embedding space to memorize common features among

multiple modalities [2–5, 21].

However, as pointed out by [8], most existing studies did not consider the case

that the characteristic of each modality is very different from others. The encoding in
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the joint embedding space is hard to represent all characteristics of the heterogeneous

modalities or could be biased to a dominant modality. Furthermore, the capacity of the

joint embedding will be saturated as modalities increase and so encounters a scalabil-

ity problem. To mitigate the limitation of the joint embedding space, we propose an

approach that adopts distributed embedding spaces. In proposed approach, as shown in

Figure 3.1, each modality is encoded in each embedding space separately by the vari-

ational auto-encoder (VAE) [22] and the distributed embedding spaces are associated

with the other modalities via associators.

The proposed structure is implemented with a deep neural network with multiple

variational auto-encoders and variational associators [6]. The loss function to train the

network is derived by the variational inference framework. In experiments, the effec-

tiveness and performance are evaluated through comparison with the existing methods

and self-analysis using various datasets including voice and visual data. In addition,

by self-experiments, the advantage of our structure is verified on generalization ability

for semi-supervised learning, scalability of the network, and flexibility of distributed

embedding space dimensions.

3.2 Motivation

For cross-modal representation learning, the most recent studies have adopted joint

embedding schemes, where data of each modality is embedded into the joint embed-

ding space. Joint embedding methods achieved good performances in many applica-

tions. However, Joint embedding methods often has trouble in learning cross-modal

relationship among heterogeneous modalities. Heterogeneous means that characteris-

tics of modalities are very different such as the case of vision and audio data. For

heterogeneous modalities, similarity in the one modality does not guarantee similar-

ity in the other modality. Thus, with joint embedding schemes, it is difficult to learn
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the relationship among heterogeneous modalities. But humans are proficient at learn-

ing relationships among even heterogeneous modalities. Therefore, I obtained a motif

from the process of associative learning mechanism of the human brain.

According to recent studies [29, 30], associative learning process in the brain in-

cludes intra-modal and cross-modal association processes (detailed explanations are

provided in Section 2.1). The intra-modal association process is to make humans fa-

miliar with single-modal sensory information. On the other hand, the cross-modal as-

sociation process is accomplished to enhance the strength of the synapses connecting

multi-modal information to be associated.

From the process of the associative learning in human brain, I obtained two key

concepts: (1) Intra-modal information is memorized in each cortex, and (2) Intra-

modal memorization and cross-modal memorization are separated. From the point of

view of machine learning, those two key concepts can be interpreted as (1) Distributed

latent space for each modality, and (2) Separate intra-modal association and cross-

modal association in training phase. Note that the conventional methods adopting the

joint embedding space are in conflict with the aforementioned key concepts. With the

joint embedding space, every multi-modal data are embedded into the same spaces

(conflict with key concept 1), and intra-modal association and cross-modal association

are simultaneously trained during training phase (conflict with key concept 2). This

discrepancy might be the reason why the joint embedding schemes are hard to learn

the relationship among heterogeneous modalities.

Therefore, the goal of this chapter is to develop a novel scheme that can robustly

learn cross-modal representation among heterogeneous modalities, motivated by as-

sociative learning mechanism of human brain. To this end, I establish the Bayesian

formulation of these two association processes and to realize them in a variational

auto-encoder framework.
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Figure 3.2: Graphical models for intra-modal and cross-modal association. Ob-

servable variables are illustrated as shadowed circles. θ, ϕ, ρ are distribution parame-

ters: θ for true distribution, ϕ for variational distribution, and ρ for cross-modal asso-

ciation model. Subscripts denote modality. Dotted lines indicate variational approxi-

mation of true probability distribution. (a) Intra-modal association Latent variable z

is obtained by x through qϕ(z|x) and x is inferred from z through pθ(x|z) (b) Cross-

modal association between two modalities The cross-modal association model has

mutual connections between latent variables zi and zj .

3.3 Graphical Modeling

3.3.1 Graphical Model of Intra-modal Association

Intra-modal association is the process of memorizing single-domain information. To

efficiently memorize a vast amount of information, the model needs to extract the
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expressive features of the data. One way to make the encoding model remember the

features of the data in an unsupervised manner is to formulate a mathematical model

reconstructing the original sensory data from the encoded information. Figure 3.2 (a)

shows Bayesian graphical model to formulate the intra-modal association to memorize

a distribution of the latent variable zi associated with the input variable xi for an

observation in modality i. In the Bayesian framework, the objective is to infer model

parameter θi of posterior distribution pθi(zi|xi).

One of the most popular approaches to approximate an intractable posterior is the

variational inference method. In this method, the variational distribution qϕi
(zi|xi)

approximates the true posterior pθi(zi|xi) by minimizing the Kullback-Leibler diver-

gence, DKL (qϕi
(zi|xi)∥pθi(zi|xi)). According to [22], the minimization of Kullback-

Leibler divergence DKL (qϕi
(zi|xi)∥pθi(zi|xi)) can be replaced with the maximiza-

tion of the evidence lower bound, given by

L(qϕi
(zi|xi)) =−DKL(qϕi

(zi|xi)∥pθi(zi))

+ Eqϕi (zi|xi)[log pθi(xi|zi)],
(3.1)

where Eqϕi (zi|xi) indicates expectation over distribution qϕi
(zi|xi).

3.3.2 Graphical Model of Cross-modal Association

In this section, we design a graphical model to represent the cross-modal association

mechanism as in Figure 3.2 (b). Without loss of generality, we consider a path from

modality i to j. From observations of an associated variable pair (xi,xj), the distribu-

tion parameter ρji is inferred to model the association between zi and zj .

For a given observation pair (xi,xj), the cross-posterior distribution pθi,ρji(zj |xi)

is defined by marginalization for zi as

pθi,ρji(zj |xi) =

∫
pρji(zj |zi)pθi(zi|xi) dzi. (3.2)
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To establish the cross-modal association model, we define a variational distribution

for cross-posterior distribution qϕi,ρji(zj |xi). Then, to infer the distribution parameters

(ϕi, ρji), we minimize Kullback-Leibler divergence between pθj (zj |xj) and qϕi,ρji(zj |xi).

To avoid clutter, subscripts for the distribution parameters are omitted in the remain-

ders of this section. Kullback-Leibler divergence between p(zj |xj) and q(zj |xi) is

given by

DKL(q(zj |xi)∥p(zj |xj)) = log p(xj)− L(q(zj |xi)), (3.3)

where

L(q(zj |xi)) =

∫
q(zj |xi) log

p(xj)p(zj |xj)

q(zj |xi)
dzj . (3.4)

Since log-evidence log p(xj) is independent to the model parameter, the target problem

is identical to maximizing the evidence lower bound L(q(zj |xi)). With probabilistic

tricks, L(q(zj |xi)) can be decomposed as following.

L(q(zj |xi)) =

∫
q(zj |xi) log

p(xj)p(zj |xj)

q(zj |xi)
dzj

=

∫
q(zj |xi) log

p(zj)

q(zj |xi)
dzj +

∫
q(zj |xi) log

p(xj)p(zj |xj)

p(zj)
dzj

= −DKL(q(zj |xi)∥p(zj)) +
∫

q(zj |xi) log p(xj |zj) dzj

= −DKL(q(zj |xi)∥p(zj)) + Eq(zj |xi)[log p(xj |zj)].
(3.5)

In the last line in Eq. (3.5), the first term is a negative KL divergence term that leads

zj given by xj to have similar distribution with a prior distribution of target modality.

The expectation term in Eq. (3.5) minimizes the reconstruction error of decoded output

from zj fired from xi, which also promotes the inference for ρji. By the similar steps,

we can easily derive the opposite association from modality j to modality i.
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3.4 Realization

3.4.1 Cross-modal Association Network

We accomplish a realization of the aforementioned intra-modal and cross-modal as-

sociation models by extending the Variational Auto-Encoder framework (VAE) [22].

Figure 3.3 illustrates the proposed cross-modal association network for modality i and

j. Although only two modalities are considered in this paper, the proposed model can

be applied to the association among three or more modalities also. In the proposed

structure, the encoder produces the parameter of qϕi
(zi|xi = xi), and the decoder

produces the parameter of pθi(xi|zi = zi). The encoder and decoder are realized by

deep neural networks. Likewise, the latent space associating models pρji(zj |zi = zi)

and pρij (zi|zj = zj) are also realized by deep neural networks, which are called by

associator. Thus, the intra-modal association network contains several auto-encoders,

each of which considers one of the multiple modalities only. The latent spaces of the

auto-encoders are connected by associators in a pairwise manner, which configure the

cross-modal association network.

The proposed network is trained in the two phases: intra-modal training phase

and cross-modal training phase. In the intra-modal training phase, the auto-encoder

in each modality is trained separately by minimizing the approximated version of the

negative evidence lower bound in Eq. (3.1). As derived in [22], variational distributions

are assumed by the centered isotropic multivariate Gaussian distribution. For a given

observation sample xi, the encoder Ei produces the mean µϕi
and the variance σϕi

for a Gaussian distribution of qϕi
(zi|xi = xi). Then, the latent vector zi is sampled

as zi = µϕi
+ σϕi

∗ ϵ and ϵ ∽ N(0, I). Similarly, the decoder Di also produces the

mean µθi and the variance σθi for a Gaussian distribution of pθi(xi|zi = zi). Then, the

reconstruction vector x̂i is sampled as x̂i = µθi + σθi ∗ ϵ and ϵ ∽ N(0, I).
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Using the samples, the empirical loss for auto-encoder can be derived as

Lint(θi, ϕi;xi)

= −Eqϕi (zi|xi)[log pθi(xi|zi)] + λ
′
intDKL(qϕi

(zi|xi)||pθi(zi)),

= ||xi − x̂i||22−λint

H∑
k

(1 + log σ2
ϕi(k)

− µ2
ϕi(k)

− σ2
ϕi(k)

).

(3.6)

where λint is a user-defined parameter and H is the dimension of the latent variable

zi. µϕi(k) and σ2
ϕi(k)

denote the k-th element of µϕi
and σ2

ϕi
.

Detailed derivation step for each loss term is given as following. Given a latent

vector zi encoded by an input sample xi, the probability distribution pθi(xi|zi = zi) is

assumed to be a Gaussian with mean xi and variance cI for a constant scalar c. Then

the negative log-likelihood of sampled output x̂i of decoder Di for input

− log pθi(x̂i|zi = zi) = − logC
′
e−

1
2c

(x̂i−xi)
T (x̂i−xi)

= C +
1

2c
∥x̂i − xi∥22,

(3.7)

where C,C
′

are appropriate constants. From the results of [22], Kullback-Leibler term

in Eq. (3.6) can be written as:

DKL(qϕi
(zi|xi)∥pθi(zi)) = −

1

2

H∑
k=1

(1 + log σ2
ϕi(k)

− µ2
ϕi(k)

− σ2
ϕi(k)

). (3.8)

Since the constant C can be ignored in Eq. (3.7), Eq. (3.6) can be obtained by combin-

ing the two terms in Eq. (3.7) and Eq. (3.8) with a weighting parameter λint. Figure 3.4

shows the example of training flow for intra-modal association.

After the convergence of the intra-modal training phase, the following cross-modal

training phase proceeds to train the associators while freezing the weights of the auto-

encoders. In the same way as in the intra-modal training phase, for a given observation

pair xi and xj , the encoders Ei and Ej produce the latent vectors zi and zj , respec-

tively. In addition, associators Aji and Aij produce the latent vectors zji and zij using
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inputs zi and zj , respectively. Thereafter, the decoders Di and Dj produce the recon-

struction vectors x̂ij and x̂ji from zij and zji, respectively.

Using the samples, the empirical loss for Aji is designed according to Eq. (3.5) as

follows:

Lcrs(ρji;xi, xj)

= −Eqρji (zji|xi)[log pθj (xj |zji)] + λ
′
crsDKL(qϕi,ρji(zji|xi)||pθj (zji))

= ||xj − x̂ji||22−λcrs

H∑
k

(1 + log σ2
ρji(k)

− µ2
ρji(k)

− σ2
ρji(k)

).

(3.9)

where λcrs is a user-defined parameter and H is the dimension of the latent variable

zji. (µρji , σ
2
ρji) are parameters for Gaussian distribution qϕi,ρji(zji|xi) produced by

Aji.

Detailed derivation step for Eq. (3.9) is similar to the auto-encoder case. The prob-

ability distribution pθj (xj |zji = zji) is assumed to be a Gaussian distribution with

mean xj and variance cI when zji is given, and then the negative log-likelihood for

sampled output x̂ji of decoder Dj for input zji can be written as:

− log pθj (x̂ji|zji = zji) = − logC
′
e−

1
2c

(x̂ji−xj)
T (x̂ji−xj)

= C +
1

2c
∥x̂ji − xj∥22.

(3.10)

From the results of [22], Kullback-Leibler term in Eq. (3.9) can be written as:

DKL(qϕi,ρji(zji|xi)∥pθj (zji)) = −
1

2

H∑
k=1

(1 + log σ2
ρji(k)

− µ2
ρji(k)

− σ2
ρji(k)

).

(3.11)

Since the constant C can be ignored in Eq. (3.10), the loss in Eq. (3.9) in the paper can

be obtained by combining the two terms in Eq. (3.10) and Eq. (3.11) with a weight-

ing parameter λcrs. Figure 3.5 shows the example of training flow for cross-modal

association.

The loss Lcrs(ρij ;xi, xj) for Aij is given in the same form of Aji except the index.

Note that all µ’s and σ’s in Eq. (3.6) and Eq. (3.9) are the functions of weights (w)
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in encoders, decoders, or associators. Hence, the weights of the proposed network are

trained by the negative direction of the gradient of the losses with respect to the weights

(∇wL(·)).

3.4.2 Advantages of the Proposed Model

Owing to the newly introduced associator, the proposed model can associate hetero-

geneous modalities effectively. Reckless coalescence of heterogeneous data may have

a fatal impact on associative learning such as the problem that shared latent vectors

can be biased to the dominant modality. However, in our model, the associator acts

as a translator between heterogeneous modalities and thus the characteristics of each

latent space are preserved. Furthermore, in contrast to the existing models which adopt

a shared latent space for the different modalities [2–4, 21], our structure can provide

a flexible dimensional encoding in each latent space depending on the complexity of

each modality. This provides better cross-modal data association results. Figure 3.6 (a)

illustrates the advantage of flexible dimension.

The proposed model easily incorporates additional modalities while maintaining

the existing modalities. That is, a new modality can be added via training of only a

new associator between an existing auto-encoder and a new auto-encoder. Though the

associator only associates the new modality with one of the existing modalities, the

model can associate the new modality with the rest of the modality by passing through

multiple associators. Figure 3.6 (b) illustrates the advantage of incorporating additional

modalities.

Finally, in contrast to existing models which always require paired data for cross-

modal association, our structure can train the associator with the only small amount

of paired data in a semi-supervised manner after learning each auto-encoder using

unpaired data independently. Since obtaining paired data for cross-modal association is

more expensive than obtaining unpaired data, our model is cost-effective. Furthermore,
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our model is plausible in that, when a person learns a cross-modal association, the

paired examples are rarely given by a teacher after the person has become familiar

with each modality via self-experience without a teacher. Figure 3.6 (c) illustrates the

advantage of semi-supervised learning with unpaired data.

3.5 Experiment

3.5.1 Implementation Details

3.5.1.1 Datasets

Google Speech Commands (GSC) [72]: As the data for the auditory modality, we

used the GSC dataset, which consists of 105,829 audio samples containing utterances

of 35 short words. Each audio sample is one-second-long and encoded with a sampling

rate of 16KHz. Among 35 words, we chose 14 words, including words for each digit

(’ZERO’ to ’NINE’) and four traffic commands (’GO,’ ’STOP,’ ’LEFT,’ ’RIGHT’).

The chosen set has 54,239 samples. We extracted the Mel-Frequency Cepstral Coef-

ficient (MFCC) from each audio clip to generate an audio feature. MFCC has been

widely used in the processing of voice data because it reflects the human auditory per-

ception mechanism well [73–75]. The resulting features are 40 × 101 matrices. We

randomly divided the original dataset into training, validation and test sets at the ratio

of 8:1:1.

German Traffic Sign Recognition Benchmark (GTSRB) [76]: For the visual data

that correspond to the traffic commands in GSC, we used the GTSRB dataset, which

consists of 51,839 RGB color images illustrating 42 kinds of traffic signals. In partic-

ular, to evaluate the performance on pairs of traffic sign images and voice commands

in GSC, we chose four pair sets, where each pair set has similar semantic meaning,

i.e., (’Ahead only,’ ’GO’), (’No entry for vehicle,’ ’STOP’), (’Turn left and ahead,’

’LEFT’), and (’Turn right and ahead,’ ’RIGHT’). The first and the second element
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are taken from GTSRB and GSC dataset, respectively. Then, to prevent the four signs

from occupying the entire latent space, we chose additional sign images in GTSRB

such as ’No overtaking,’ ’Entry to 30kph zone,’ ’Prohibit overweighted vehicle,’ ’No-

waiting zone,’ and ’Roundabout’. The chosen set includes 10,709 samples. All of the

chosen signs have a circular backboard. The size of each image varies from 15× 15 to

250× 250 pixels for each RGB channel in the original dataset. In our experiments, we

resized all images into 52× 52.

MNIST [77]: We used the MNIST dataset as the corresponding visual data to the

GSC for each digit. The MNIST consists of center-aligned 28× 28 gray-scale images

for handwritten digits from 0 to 9. The dataset contains 60k and 10k samples for the

training set and testing set, respectively.

SVHN [78]: We used the SVHN dataset as another visual modality. Even though

SVHN and MNIST are equally categorized by digits, their capturing environments

are very different from each other. The SVHN consists of 32 × 32 RGB images for

digits from 0 to 9. The dataset contains 73257 and 26032 samples for the training set

and testing set, respectively.

Fashion-MNIST (F-MNIST) [79]: To validate that the proposed model can associate

even not semantically related datasets, we used the F-MNIST dataset. We associated

F-MNIST with the MNIST and the GSC dataset. After this association learning, we

can imagine the clothing items (F-MNIST) from their numberings (MNIST). The F-

MNIST consists of center-aligned 28 × 28 gray-scale images assigned with a label

from 10 kinds of clothing such as T-shirt, Trouser and Sneaker. The dataset contains

60k and 10k samples for the training set and testing set, respectively.

3.5.1.2 Network Architecture

Table 3.1, Table 3.2, and Table 3.3 describe the network architectures of classifiers

and auto-encoders for each dataset. The input data are forwarded from the top layer to
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the bottom layer in Tables. The Tuples in Shape column denote (the number of input

channels, the number of output channels, kernel height, kernel width) for Conv layers,

(kernel height, kernel width) for Linear layers, while the tuples in Stride and Padding

columns denote (vertical steps, horizontal steps). The last linear layer in each encoder

returns µ, σ2. Dropout ratio for all dropout layers is set to 0.5.

All the associators used in experiments have the identical structure. Each associator

consists of multiple linear and ReLU layers: (I×2(I+O)), (2(I+O)×2(I+O))∗4

and (2(I+O)×2O) where I and O denote dimension of latent space of input modality

and output modality, respectively.

3.5.1.3 Evaluation Metric

Since aforementioned datasets have no direct matching relationships, we cannot mea-

sure cross-likelihood p(x1|x2) for paired sample (x1,x2) used in recent works [2,80].

In our work, we used the classification accuracy for the reconstructed results as the

evaluation metric of the association models. The quality of results reconstructed by an

association model can be a valid measure to evaluate the association model since the

quality of the reconstructed results is acceptable to both the human and the classifier.

Table 3.4 shows the performance of the classifiers trained with the each dataset, which

shows sufficient performance for evaluating the reconstructed results of the compared

encoders. For the GSC dataset, we get performance comparable to the 88.2% [72].
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(a) MNIST and F-MNIST

Layer Shape Stride Padding Activation

Linear (784, 256) - - ReLU

Linear (256, 10) - - Softmax

(b) GTSRB

Layer Shape Stride Padding Activation

Conv. (3, 16, 3, 3) (1, 1) (1, 1) -

Pool. (16, 16, 2, 2) (2, 2) (0, 0) ReLU

Conv. (16, 32, 3, 3) (1, 1) (1, 1) -

Dropout - - - -

Pool. (32, 32, 2, 2) (2, 2) (0, 0) ReLU

Linear (5408, 256) - - ReLU

Dropout - - - -

Linear (256, 9) - - Softmax

Table 3.1: Network architecture of classifier for MNIST, F-MNIST and GTSRB

dataset.
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(a) GSC

Layer Shape Stride Padding Activation

Conv. (1, 16, 9, 21) (1, 1) (4, 10) ReLU

Dropout - - - -

Pool. (16, 16, 2, 2) (2, 2) (0, 0) -

Conv. (16, 16, 5, 11) (1, 1) (2, 5) ReLU

Dropout - - - -

Pool. (16, 16, 2, 2) (2, 2) (0, 0) -

Linear (4000, 256) - - ReLU

Linear (256, 14) - - Softmax

(b) SVHN

Layer Shape Stride Padding Activation

Conv. (3, 32, 5, 5) (1, 1) (1, 1) ReLU

Pool. (32, 32, 2, 2) (2, 2) (0, 0) -

Conv. (32, 64, 5, 5) (1, 1) (1, 1) ReLU

Pool. (64, 64, 2, 2) (2, 2) (0, 0) -

Conv. (64, 128, 5, 5) (1, 1) (1, 1) ReLU

Pool. (128, 128, 2, 2) (2, 2) (0, 0) -

Conv. (128, 128, 5, 5) (1, 1) (1, 1) ReLU

Pool. (128, 128, 2, 2) (2, 2) (0, 0) -

Linear (1152, 2048) - - ReLU

Linear (2048, 2048) - - ReLU

Linear (2048, 10) - - Softmax

Table 3.2: Network architecture of classifier for GSC and SVHN dataset. For GSC and

SVHN dataset, batch normalization layers are added after every Conv. layers.
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(a) MNIST and F-MNIST

Layer Shape Activation

Linear (784, 128) ReLU

Linear (128, 128) -

Reparam. - -

Linear (64, 128) ReLU

Linear (128, 784) Sigmoid

(b) GSC

Layer Shape Activation

Linear (4040, 512) ReLU

Linear (512, 128) -

Reparam. - -

Linear (64, 512) ReLU

Linear (512, 4040) HardTanh

(c) GTSRB

Layer Shape Activation

Linear (8112, 512) ReLU

Linear (512, 128) -

Reparam. - -

Linear (64, 512) ReLU

Linear (512, 8112) Sigmoid

(d) SVHN

Layer Shape Activation

Linear (3072, 512) ReLU

Linear (512, 128) -

Reparam. - -

Linear (64, 512) ReLU

Linear (512, 8112) Sigmoid

Table 3.3: Network architecture of auto-encoders for each dataset. For GSC, GTSRB,

SVHN datasets, batch normalization layers are added after every linear layers except

for the last layer.
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Table 3.4: Performance of the classifier trained with the each dataset and reconstruction

performance of VAE. dim(z) denotes the dimension of latent space of VAE.

Dataset Acc (%) VAE (%) dim(z)

MNIST 97.97 96.12 64

F-MNIST 89.22 80.54 64

SVHN 93.73 78.22 64

GSC 88.65 81.93 64

GTSRB 98.53 95.70 64

GTSRB - 95.50 256

3.5.2 Intra-Modal Association

As mentioned in the problem statements section, it is also essential for the proposed

model to learn the intra-modal association that encodes single modal input data into

the latent space. For a fair comparison to existing works, we trained encoders and

decoders for each dataset with the fixed dimension of latent space (dim(z) = 64). In

addition, to show the advantages of the proposed model where the dimension of the

latent space can be flexibly designed according to the complexity of target modality,

we trained additional auto-encoder whose latent space dimension is 256 for GTSRB

dataset.

Table 3.4 shows the performance of the classifiers and the intra-modal association

network implemented by VAE. Performance of VAE is also measured by the classifier

on the results reconstructed by VAE. As shown in the table 3.4, the voice data in the

GSC dataset shows much degraded accuracy, which means that the voice data are hard

to be reconstructed than other modalities. Since F-MNIST has confused classes such

as pullover, coat, and shirt, performance on F-MNIST dataset is also degraded.
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3.5.3 Cross-Modal Association

Cross-modal problem is defined to develop a model that can generate the sample of

target modality from a given sample of source modality, where samples are seman-

tically associated. We evaluated the proposed model on five scenarios: (1) Associa-

tion between MNIST and GSC, (2) GTSRB and GSC, (3) F-MNIST and GSC, (4)

F-MNIST and MNIST, (5) SVHN and MNIST. Scenario (1), (2) and (3) are for as-

sociation between heterogeneous datasets, i.e. voice and image datasets. Scenario (3)

and (4) is for association between datasets which have no semantic relations between

classes. Scenario (5) is for association between semantically related datasets, through

two datasets have different dataset characteristics like image size. Figure 3.7 illus-

trates all scenarios. In order to train cross-modal association, we used randomly paired

training samples from each dataset belonging to the correlated class. For example,

we paired a randomly chosen sample in ’0’ class of MNIST dataset with a randomly

chosen sample in ’ZERO’ class of GSC dataset.

To evaluate the proposed associator, the following methods were compared: VAE

and VAE-CG are variants of the standard VAE. When training VAE, we constructed

the training data with vectors concatenated with data from two associated modalities,

whereas one modality in the concatenated vector for 50% of training data was set to

zero-vector to learn the case of the missing modality. VAE-CG is trained to gener-

ate the target modality sample from a given input sample of other modality. VAE-CG

has to be trained only by supervised data with input and output pairs. Joint Multi-

modal Variational Auto-Encoder (JMVAE) [80] has two kinds of latent spaces: one

is for each modality and the other is for jointly encoding of two modalities. The joint

latent space is shared for association between two modalities. The training for encod-

ing in the joint latent space is done to minimize Kullback-Leibler divergence between

the latent vector of each encoder and the joint latent vector of the joint encoder. In
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Figure 3.7: Illustration of experiment scenarios for cross-modal generation.

comparison, the hyper-parameter α was set to 0.01 for whole scenarios. Cross-modal

Variational Auto-Encoder (CVA) [3] is an extension of VAE for cross-modal data. In

CVA, the latent space is shared between two modalities. In the training process, the se-

lected sample pair are trained alternately throughout iteration. Multimodal Variational

Auto-Encoder (MVAE) [2] is also a variant of VAE for cross-modal data. MVAE uses

the standard VAE for each modality, but each latent space is associated via a shared la-

tent space expressing the unified distribution of the association modalities. We trained

MVAE by using the sub-sampled training paradigm presented in their paper.

To evaluate the flexibility of encoding dimension in our model, we have conducted

an experiment where each modality is encoded in a different dimensional space from

the other. ours-flex has large dimension of latent space for GTSRB dataset (dim(z) =

256). Except for ours-flex, all compared models use the same VAE of which the latent

space dimension is 64.
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Table 3.5 shows the evaluation result of the proposed model and the compared

models for the cross-modal association. The proposed model accomplishes significant

enhancement from the compared algorithms for most of the scenarios. Interestingly, in

the challenging scenarios such as the association between heterogeneous modalities,

for instance, between voice (GSC) and image data (MNIST, GTSRB), the proposed

model achieves a remarkable improvement compared to the existing methods.

3.5.4 Qualitative Results

Figure 3.8 presents the qualitative results of our model for data generation from GSC

dataset. Figure 3.8 (a) and (b) show 3 generated images for each ‘number’ command

of GSC. Figure 3.8 (c) shows 5 generated images for each ‘traffic command’ of GSC.

3.5.5 Application: 3D Hand pose estimation

We have conducted additional experiments for 3D hand pose estimation on Rendered

Hand pose Dataset (RHD) [81]. RHD dataset provides 320 × 320 RGB image, depth

map, segmentation map and 21 keypoints for each hand. The dataset contains 41258

training and 2728 testing samples. The association target is to generate 3D keypoints

from the RGB image. The evaluation metric is the average End-Point-Error (EPE),

which measures Euclidean distance between ground truth keypoints and estimated

keypoints. We used the same encoders and decoders structure to CVA and added our

associator. The proposed model achieves 13.15, which outperforms recent 3D hand

pose estimation algorithms such as CVA (19.73) and HPS (30.42) [81]. Figure 3.9

shows qualitative results for 3D hand pose estimation.

3.5.6 Utilizing Unpaired Data

We conducted an additional experiment to verify the effectiveness of the proposed

associator in semi-supervised learning. Figure 3.10 illustrates a trend of performance
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Ground Truth ours CVAInput Image

Figure 3.9: Qualitative results for 3D hand pose estimation on RHD dataset. Each col-

umn corresponds to input images, ground truth 3D keypoints, estimated 3D keypoints

in order from left to right.

variation depending on the proportion of paired data, from 100% to 1% in the GSC→

MNIST scenario. The result shows that the proposed associator can achieve eminent

performance with only a small proportion of paired data (5%) in a semi-supervised

manner.

3.5.7 Scalability

The proposed structure can easily expand a new modality while maintaining the ex-

isting modalities. That is, a new modality can be added via training of only a new
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Figure 3.10: Utilizing Unpaired Data. Performance variation while reducing the pro-

portion of paired data from 100% to 1% in the GSC → MNIST. Our method can

achieve much better performance with only 5% paired data than the existing methods

with 80% paired data.

Table 3.6: Performance of the proposed model in the case of cascading association and

direct association.

GSC→MNIST GSC→ F-MNIST→MNIST

88.66 76.99

associator between an existing auto-encoder and the new auto-encoder. Since the as-

sociator connect only two latent spaces, if the existing network associates N modality,

N associators need to be trained newly. In our model, this inefficiency can be miti-

gated by cascading association through multiple associators. Table 3.6 compares the

results of cascading association and direct association for the example of MNIST, F-

MNIST and GSC dataset. The F-MNIST is utilized as a medium between MNIST and
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(a)

(b)

Figure 3.11: Quantitative results when the proposed model is trained (a) with / (b)

without weight-freezing at training phase.

GSC. Although the cascading association has some performance degradation, it still

has good performance compared to other algorithms presented in Table 3.5.

3.5.8 Effect of Weight-freezing

After the convergence of the intra-modal training phase, the following cross-modal

training phase proceeds to train the associators while freezing the weights of the

auto-encoders. By weight-freezing scheme, the proposed model can learn relationship

among heterogeneous modalities and easily incorporates additional modalities while

maintaining the existing modalities.

Figure 3.11 shows the quantitative results of MNIST images generated from GSC

dataset, when the proposed model is trained with (a) weight-freezing and (b) without

weight-freezing. When the proposed model is trained without weight-freezing (Fig-

ure 3.11 (b)), generated results converges to the similar results whatever the input

audio data are given. This phenomenon is referred to as mode collapse problem. Since

simultaneous training of intra-modal and cross-modal association between image and

audio dataset, the model first learns mean images of MNIST datasets but fails to gen-

erate diverse outputs. On the other hand, when weight-freezing is applied, the model

first learns decoding ability through intra-modal association learning (relative easy

task) and freezes parameters of decoder. Therefore, cross-generated results are well
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(b) w/ discriminator

(a) w/o discriminator

Figure 3.12: Quantitative results when the proposed model is trained (a) without / (b)

with discriminator.

generated even the model learns relationships between heterogeneous modalities.

3.5.9 Adversarial Learning for Generator

Since the proposed model is based on VAE structure, generated results seem blurry. To

obtain clear results, we introduced discriminator to the proposed model. Figure 3.13

shows the intra-modal association network of the proposed network with discriminator.

While intra-modal association learning, discriminator is trained to discriminate input

data (real data) and self-reconstructed data from decoder (fake data). Training gener-

ator (encoder and decoder) and discriminator was performed alternately. Figure 3.12

shows quantitative results when the proposed model is trained without / with discrimi-

nator. Discriminator version generates more clear images but slightly distorted. This is

well known problem of adversarial learning. Therefore, it would be proper to modify

the proposed model according to the purpose.

45



𝒩
(0
,𝐼)

K
L
DR
eco

n
stru

ctio
n

L
o
ss

𝐷

R
eal / F

ak
e

𝑝
(∙)

𝐷
𝑖𝑠𝑐𝑟𝑖𝑚

𝑖𝑛
𝑎
𝑡𝑖𝑜

𝑛
𝐿
𝑜
𝑠𝑠

Figure
3.13:Intra-m

odalassociation
netw

ork
w

ith
discrim

inator.

46



3.6 Summary

We proposed a novel multi-modal association network structure that consists of mul-

tiple modal-specific auto-encoders and associators for cross-modal association. By

adopting the associators, the proposed multi-modal network can incorporate new modal-

ities easily and efficiently while preserving the encoded information in the latent space

of each modality. In addition, the proposed network can effectively associate even het-

erogeneous modalities by designing each latent space independently and can be trained

by a small amount of paired data in a semi-supervised manner. Based on the validation

of our structure in experiments, future work can attempt to implement a large-scale

multi-modal association network for practical use.
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Chapter 4

Cross-modal Active Learning

4.1 Contribution

To increase the applicability of deep learning networks in various machine learning

tasks, it is essential to collect sufficient high-quality data on target applications. How-

ever, the collection of a sufficient amount of data is a cost-consuming task. Active

learning (AL) is one of the methods to collect data cost-efficiently. AL assumes a sit-

uation where only a small number of data can be annotated by the annotator with a

limited budget although a large amount of unlabelled data are given. In this situation,

it is important to actively select samples that should be annotated for cost-efficiently

training of the target model. With the limited number of annotated samples, the target

model can achieve better performance with the actively selected samples via AL than

the randomly selected samples.

In multi-modal applications, collecting data is more cost-consuming than the single-

modal applications. In terms of reducing annotator’s labor, AL for multi-modal tasks

can be much more beneficial than that for single-modal tasks. However, many previ-
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ous AL studies have considered single-modal tasks such as image classification, im-

age segmentation [55] and AL for the multi-modal applications has not been exploited

much yet. In this paper, we focus on AL for multi-modal applications, especially on

image-text retrieval (ITR), which is one of the most popular multi-modal tasks.

In ITR, given a query image, an ITR model should retrieve relevant text from a

database, and vice versa for a query text. To train a model for ITR, most methods usu-

ally employ the contrastive learning scheme that leads a model to yield high similarity

for a relevant image-text pair and low similarity for an irrelevant image-text pair. Thus,

the training data for ITR contains lots of relevant image-text pairs and their category

labels to predict relevance for other image-text pairs in the dataset.

In previous AL methods for ITR, annotators provide category labels for queried

pairs [67]. However, according to recent ITR studies [14, 15, 15–20], category label

becomes less important in a training phase. The recent ITR studies have targeted chal-

lenging benchmarks, where relevant pairs are finely-categorized into numerous cat-

egories and each category contains very few pairs [82, 83]. Thus, during a training

phase, in most cases, most relevant pairs in a training mini-batch have different cate-

gories from others. For this reason, many ITR studies assume that each relevant pair

in the training dataset has its own category different from the categories of the other

pairs, which does not need to compare its category label to the others. Therefore, the

category label is no longer utilized in the training phase and so asking a category label

to annotators is meaningless for finely-categorized benchmarks.

In this paper, first, we set up a new AL scenario that is feasible to finely-categorized

ITR benchmarks. In our scenario for the finely-categorized benchmarks, relevant pairs

without category labels are used instead of category-annotated data. Thus, an unpaired

image is regarded as an unlabelled sample that is used for a query sample to request its

paired text from the annotator. For the new scenario, we develop an AL algorithm of

which key idea is to select unpaired images that are expected to produce a large training

49



loss at a training phase. Samples causing a high loss can be regarded as hard samples

to the current model. Thus, the model trained with the hard samples can achieve better

performance than the model trained with randomly selected samples. To this end, we

utilize the triplet ranking loss function adopted in recent ITR studies that emphasize

the hard negative samples [14]. Then we design an AL algorithm that selects images

that can be a hard negative for as many texts as possible from the paired dataset. To

determine a hard negative image for a text in the paired dataset, we suggest a scor-

ing function to measure the ‘hard negativeness’ of each unpaired image sample for

the given texts. Our AL algorithm selects image samples in the order of the highest

score. Through extensive experiments on the Flickr30K [83] and MS-COCO [82], we

validate the effectiveness of the proposed AL algorithm.

The contribution of the paper can be summarized as follow.

- We set up a novel AL scenario that is feasible to finely-categorized ITR bench-

marks. In the scenario, a set of unpaired images is given and annotators provide

paired texts for the limited number of images selected by an AL algorithm.

- We propose an AL algorithm for our AL scenario, which can cost-effectively

construct paired data beneficial for training the model to perform ITR tasks.

- We validate the proposed AL algorithm through extensive evaluation and self-

ablation studies on the Flickr30K and MS-COCO.
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4.2 Proposed Active Learning for ITR

4.2.1 New AL Scenario for ITR

In this section, we set up a new AL scenario considering the characteristics of the

finely-categorized dataset. In e-th epoch of the scenario, AL algorithm actively selects

b valuable images Q(e) from the unpaired image data set X(e). Then an annotator

provides a proper text for each image in Q(e), which yields a paired set P (e). Then P (e)

is added to the set of accumulated relevant pairs P (e)
a , whereas Q(e) is subtracted from

X(e), resulting in X(e+1). Then a retrieval model M is trained by the accumulated

paired dataset, i.e., P (e+1)
a = P

(e)
a ∪ P (e).

To represent initial states, we set the initial epoch index to zero, i.e., e = 0. Algo-

rithm 1 and Figure 4.1 describe a detailed procedure of the proposed AL scenario for

ITR. In the scenario above, an unpaired image data set is given and the annotator pro-

vides paired texts for the queried images. The reverse scenario of Algorithm 1, where

an unpaired text data set is given and the annotator provides images for the queried

texts, can be defined in a similar manner.

4.2.2 Key Concept of Proposed AL Algorithm

An AL algorithm selects unpaired images that are expected to largely improve the per-

formance of a model. Our key idea for the AL algorithm is to select unpaired images

that will have a large training loss at the training phase. Samples causing a large loss

can be regarded as hard samples to the current model. When using the same num-

ber of training samples, the model trained with the hard samples can achieve better

performance than the model trained with randomly selected samples. In our AL al-

gorithm, we employ the triplet ranking loss modified to emphasize the hard negative

samples [14]. Based on the characteristics of the triplet ranking loss, we define con-

ditions that an image is determined as a hard negative image for a text in the paired
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Algorithm 1 Proposed AL scenario for ITR
Input:

M(0): Initial retrieval model

P
(0)
a : Initial accumulated paired dataset

X(0): Initial unpaired image dataset

b: The number of images to be selected at each epoch

E: Maximum epoch

Functions:

train(M, Pa): Train modelM with dataset Pa

AL(X, b, ·): Actively selects b images from X

Annotator(Q): Annotate images in Q

Procedure:

1: M← train(M(0), P
(0)
a )

2: for e = 0 to E − 1 do

3: # ACTIVE SAMPLE SELECTION

4: Q(e) = {xi}bi=1 = AL(X(e), b, ·); Algorithm 2

5: P (e) = {(xi, ti)}bi=1 = Annotator(Q(e))

6: P
(e+1)
a = P

(e)
a ∪ P (e)

7: X(e+1) = X(e) \Q(e)

8: # EVALUATION

9: M← train(M(0), P
(e+1)
a )

10: end for

11: returnM, P
(E)
a
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dataset. Then we propose a scoring function that measures the ‘hard negativeness’ of

each unpaired image sample for the texts in the paired dataset accumulated during

AL. Finally, we propose the AL algorithm that selects the samples in the order of the

highest score.

4.2.3 Loss Function for Training ITR Model

To perform ITR, a retrieval model is trained to yield high similarity for a relevant pair,

and low similarity for an irrelevant pair. To this end, the triplet ranking loss is usually

adopted for the model training [84,85]. Especially, we consider the max of hinges loss

function [14] that emphasizes the hard negative samples, i.e., only the most irrelevant

pair which gives the highest similarity score is penalized. For a relevant pair (x, t) for

image x and text t, the max of hinges loss is defined by

l(x, t) =max
t′

[α+ s(x, t′)− s(x, t)]+ +max
x′

[α+ s(x′, t)− s(x, t)]+

=[α+ s(x, t(−))− s(x, t)]+ + [α+ s(x(−), t)− s(x, t)]+,

(4.1)

where x′ (or t′) represents any one image (or text) except for x (or t) in the training

mini-batch. The hard negative image (or text) is denoted as x(−) = argmaxx′ s(x′, t)

(t(−) = argmaxt′ s(x, t
′)). s(x, t) denotes the cosine similarity function between x

and t, and [x]+ denotes the hinge function as: [x]+ = max(x, 0). α is a margin for the

ranking loss.

4.2.4 Proposed Hard Negative Conditions

According to Eq. 4.1, the hard negative image x(−) makes the loss large and so can

be chosen as a valuable image for AL. For a given relevant pair sample (x, t), we can

obtain the hard negative sample x(−) from Eq. 4.1. However, in the AL, because only

unpaired samples are given, we can not obtain the hard negative sample x(−) from

Eq. 4.1. To circumvent this, we propose an approximate condition to choose the hard
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negative unpaired image for a certain text in a given paired data. For convenience, the

condition is referred to as ‘hard negative condition’.

To establish the hard negative condition, let Z (or T ) be a set of images (or texts)

in the set of accumulated relevant pairs Pa. When describing the procedure in each

epoch, we omit the superscript ‘(e)’ for simplicity. xi denotes the i-th image in X .

Additionally, zj (or tj) as the j-th sample in Z (or T ). Note that the same subscript for

z and t means that they are relevant. Then, we define the hard negative condition of xi

regarding tj as below.

Hard negative condition: xi ∈ X is determined as the hard negative image of tj

if s(xi, tj) > ξj(tj), where ξj(tj) is a threshold to be designed depending on tj .

ξj can be designed in several ways. The first way is to design a threshold ξj , where

we aim to choose xi such that it should have higher similarity with tj than all other

images zl in Z \ {zj}. To this end, we design ξj as

ξj = max
zl
{s(zl, tj) | zl ∈ Z \ {zj}}. (4.2)

Z (full-batch) is the image set of Pa and so its size is large, which requires heavy

computation when using Eq. 4.2. To reduce the computation, we design a relaxed

version of ξj using a small subset (mini-batch) of Z as

ξj = max
zl
{s(zl, tj) | zl ∈ Zs}, (4.3)

where Zs is a randomly chosen subset of Z \ {zj}. We also define Ts ⊂ T as a text

subset corresponded to Zs.

Another way for relaxing Eq. 4.2 is to replace the max function with the top-k max

function which returns k-th largest value, that is, ξj is designed as

ξj = kth max
zl
{s(zl, tj) | zl ∈ Z \ {zj}}. (4.4)

Eq. 4.2, 4.3, and 4.4 are referred to as a combination of Full-batch and Top-1 con-

dition, Mini-batch and Top-1 condition, and Full-batch and Top-k condition, respec-
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tively. In a similar manner, Mini-batch + Top-k condition can be defined by replacing

a max function of Eq. 4.3 with top-k function. In the ablation study, we validate the

effectiveness of the threshold designs and choose one considering both computation

and performance.

4.2.5 Proposed AL Algorithm

Utilizing the hard negative condition, we propose a scoring function that measures the

‘hard negativeness’ of each unpaired image sample for the texts in the paired dataset,

accumulated during AL. The proposed scoring function of xi counts the number of

tj ∈ T for which xi satisfies the hard negative condition. To this end, the hard nega-

tiveness score function hi(xi) is defined by

hi(xi) =
∑
tj∈T

wij · 1(s(xi, tj) > ξj), (4.5)

where 1(·) is indicator function that returns 1 if the input condition is satisfied, other-

wise returns 0. wij is a aggregation weight for xi and tj . For the mini-batch condition,

T in Eq. 4.5 is replaced with Ts.

Note that when wij = 1 for all tj , then hi merely counts the number of text for

which xi satisfies the hard negative condition. This is referred to as the Counting

weight. On the other hand, we can suppose to give more weight to the harder negatives

as follows: wij = [s(xi, tj) − ξj ]+. In this case, wij aims to give weights for (xi, tj)

such that s(xi, tj) > ξj . This is referred to as the Surplus weight.

Finally, the proposed AL algorithm selects b images from X , in the order of the

highest score. Algorithm 2 describes the detailed procedure of the proposed AL algo-

rithm with the combination of Full-batch and Top-1 conditions and the Surplus weight.

Figure 4.2 shows an example of the score calculation.
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Algorithm 2 Proposed AL Algorithm for ITR
Input:

M: Retrieval model

Pa: Accumulated paired dataset

X: Unpaired image dataset

b: The number of images to be selected at each epoch

Functions:

s(x, t): Calculate similarity between image x and text t

[x]+: Return maximum value between x and 0

1(c): Return 1 / 0 if condition c is true / false

Procedure:

1: nl = |Pa|, nu = |X|

2: Split Pa = {(zj , tj)}nl
j=1 into

Z = {zj}nl
j=1, T = {tj}nl

j=1

3: # CALCULATE THRESHOLD

4: for j = 1 to nl do

5: tj ← j-th sample of T

6: zj ← j-th sample of Z

7: ξj = max {s(zl, tj) | zl ∈ Z \ {zj}}

8: end for

9: # CALCULATE SCORE

10: for i = 1 to nu do

11: for j = 1 to nl do

12: tj ← j-th sample of T

13: wij = [s(xi, tj)− ξj ]+

14: end for

15: hi =
∑nL

j=1wij · 1(s(xi, tj) > ξj)

16: end for

17: Q← select b images with the highest hi from X

18: Return Q
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4.3 Experiments

4.3.1 Settings

4.3.1.1 Dataset

We have evaluated the proposed algorithm on MS-COCO [82] and Flickr30K [83]

datasets, which are popular fine-grained categorized benchmarks for ITR. MS-COCO

contains 82, 783 training images and 40, 504 validation images. Each image has five

captions. Following [86], we utilized only 5, 000 for validation and 5, 000 images for

testing from the original validation set. Flickr30K contains 31, 014 images and five

captions are provided for each image. Following [86], we split the dataset into 29, 000

training images, 1, 014 validation images, and 1, 000 testing images. Since each image

has five captions, we generated five positively relevant pairs. But many recent stud-

ies [15, 16] assumed that each pair among the five pairs has a different category from

the others although five pairs share the same image. This data processing might not be

a fatal problem for training the ITR model. However, for AL task, the image sharing

might be problematic. Thus, we used only one caption for each image for training. On

the other hand, for test and validation, we used all five captions for each image.

4.3.1.2 Retrieval Model

For validation of the proposed method, we employed Iterative Matching with Recur-

rent Attention Memory network (IMRAM) [16], one of the state-of-the-art ITR mod-

els, as our retrieval model. For computational efficiency, we used Text-IMRAM. The

hyper-parameters were set following [16].
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4.3.1.3 Feature Extraction

For each image, following [39], we extracted 36 local features using Faster R-CNN [59]

with ResNet-101 backbone [87] pretrained on Visual Genome dataset [88]. Each lo-

cal feature vector for image has 2048-dimension. For text data, following [15], each

word in sentence was embedded into 300-dimensional vector first. Then we utilized

bi-directional GRU [89] to extract final feature for each word. Final feature vector for

word has 1024-dimension.

4.3.1.4 Training Scheme

At each epoch of the proposed scenario, we trained a retrieval model from scratch,

with Adam optimizer [90] during 40 epochs. Learning rate was initially set to 0.0002

and decayed to 0.00002 at 20 epoch. We performed validation during last 10 epoch,

and chose the model with the best validation performance.

4.3.1.5 AL Settings

Randomly selected 30% of the entire paired data were assigned to P
(0)
a . Then the

remaining 70% images were assigned to X(0). We set a maximum epoch of the AL

scenario to E = 3 and b to 5% of the cardinality of the entire data set. Therefore, after

completing the scenario, |P (E)
a | becomes 45% of the cardinality of the entire dataset.

4.3.1.6 Hyper-parameters

For Flickr30K, a threshold ξ was determined with combination of Full-batch and Top-1

condition. For MS-COCO, we determined ξ with combination of Mini-batch and Top-

1 condition to reduce the computational complexity. For both datasets, aggregation

weight w was determined with the Surplus weight.
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4.3.1.7 Evaluation

We evaluated the retrieval model on two tasks. In a Image Retrieval task, a model

retrieves images given a text query. In a Text Retrieval task, a model retrieves texts

given an image query. Performance was measured by Recall at K (R@K) metric. We

evaluated the model with K = 1, 5, and 10.

For each epoch of the scenario, we trained the model with the accumulated paired

data set (P (e+1)
a for e-th epoch) and reported the test performance of the trained

model. For MS-COCO, the model was validated by both testing on full 5K test images

(COCO-5K) and averaging the results over five subsets of 1K test images (COCO-1K).

4.3.2 Ablation and Self Study

4.3.2.1 Validation on Hyper-parameters

We evaluated the proposed algorithm with various hard negative conditions (Sec-

tion 4.2.4) and aggregation weights (Section 4.2.5). Table 4.1 shows the R@1 per-

formance at each epoch of AL scenario for Flickr30K. To evaluate the overall perfor-

mance over epoch, we also reported R@1-sum metric that sums all R@1 performances

over epoch for both text retrieval and image retrieval task.

According to the results in Table 4.1, the dominant combination that achieves the

best performance at every epoch does not exist. But the combination of Top-1 condi-

tion and Surplus weight achieves the best R@1-sum performance by 298.5 and 298.6,

about 2 ∼ 6 better than the other combinations. Therefore, we mainly considered Top-

1 condition and Surplus weight as our default setting. Unless otherwise specified for

the top-k condition and the aggregation weight, the Full-batch / Mini-batch version of

the proposed algorithm indicates the algorithm to which a combination of Full-batch /

Mini-batch and Top-1 condition and Surplus weight are applied.

Each of Full-batch and Mini-batch versions has its own advantages and disad-
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vantages. Full-batch version has advantages in performance. For R@1-sum, R@5-

sum, and R@10-sum values, Full batch version achieves 298.5/520.0/602.9, whereas

Mini-batch version achieves 298.6/520.2/600.7, respectively. Though both show sim-

ilar R@1-sum and R@5-sum performance, the Full-batch version is slightly better

in the R@10-sum, Mini-batch version is computationally efficient. Mini-batch ver-

sion requires similarity calculations of |Zs|·|Ts|+|X|·|Ts|, whereas Full-batch ver-

sion requires |Z|·|T |+|X|·|T |. In our experimental setting on Flickr30K, |Zs|= |Ts|=

2560 is considerably smaller than |Z|= |T |∈ [8700, 13050]. (For MS-COCO, |Z|∈

[24834, 37252]) Therefore, a trade-off in performance and computational cost can be

negotiated between full and mini-batch versions.

4.3.2.2 Validation on Relaxed Condition

In the Section 4.2.4, we proposed relaxed conditions including Mini-batch condition

(Eq 4.3) and Top-k condition (Eq 4.4). To validate the relaxation effect of proposed

conditions, we chose hard negative unpaired images satisfying the relaxed condition

for at least one text in the paired dataset. Then we compared the ratio of the hard

negative images in the unpaired image dataset with those of the non-relaxed conditions.

High ratio means that the relaxation effect is large.

Table 4.2 shows the ratio of hard negative images at each epoch of the AL scenario,

depending on hard negative conditions. According to Table 4.2, the ratio of hard neg-

ative images increases when Mini-batch condition is applied and k of Top-k condition

increases. This implies that the combination of Mini-batch and Top-k conditions gives

the largest relaxation effect.

It is interesting to note that the ratio of the hard negative images decreases as

the AL scenario progresses. The more training paired data accumulated as the AL

scenario progresses, any unpaired image is more likely to be similar to the images in

the accumulated paired dataset. In addition, the retrieval model is trained to predict
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Condition
% of Hard neg. Images

e = 0 e = 1 e = 2

Full-batch + Top-1 55.04 44.85 39.72

Full-batch + Top-5 92.64 89.85 88.17

Full-batch + Top-10 98.27 97.51 96.98

Mini-batch + Top-1 56.23 49.71 47.11

Mini-batch + Top-5 95.26 93.94 92.76

Mini-batch + Top-10 99.24 99.14 99.19

Table 4.2: Percentage of the hard negative unpaired images in the unpaired image

dataset depending on the hard negative condition.

low similarity between texts and negative images in the accumulated paired dataset.

Therefore, the retrieval model is likely to predict low similarity between any unpaired

image and texts in the accumulated dataset. In consequence, the number of unpaired

images that satisfy the condition will decrease.

4.3.2.3 Validation on Score Function

In the Section 4.2.5, we proposed the scoring function. If scores have similar values

for all unpaired images, the images selected in the order of the highest score are not

different from the randomly selected images. To observe the detailed distribution of

score values, we present histograms of score values calculated for unpaired images.

Figure 4.3 shows the histograms depending on the aggregation weights and the hard

negative conditions, at e = 0 of AL scenario. The vertical axis indicates the number

of images and the horizontal axis denotes the score values hi. According to the results,

the scores are diversely distributed. Therefore, the samples selected in the order of the
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Figure 4.3: Histogram of score values of unpaired images depending on the aggrega-

tion weights (columns) and the hard negative conditions (rows).

highest score are distinct from the randomly selected samples. Full histogram results

are provided in the Appendix 4.5.4.

4.3.2.4 |Zs| for Mini-batch Condition

For the mini-batch version of the proposed algorithm, the cardinality of subset Zs,

|Zs|, needs to be determined. To validate the effect of |Zs|, we evaluated the Mini-

batch version algorithm by increasing |Zs| from 640 to 5120.

Figure 4.4 shows R@1-sum (top), R@5-sum (middle), R@10-sum (bottom) per-
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𝑍𝑠 ; Cardinality of 𝑍𝑠

Figure 4.4: Performance of the proposed method with Mini-batch version, according

to the cardinality of Zs.

formances. Red and black dotted lines denote the performance of the Full-batch ver-

sion and random selection, respectively. When |Zs|≥ 1280, the mini-batch version

always shows better performance than random selection. The best performance is

achieved when |Zs|= 2560, which is equivalent to 40 times of the training mini-batch

size and 20% of the full-batch version. We fixed |Zs|= 2560 for Mini-batch version

during the other experiments.
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4.3.3 Comparisons

Since the proposed AL scenario is the new one, there are no existing works. Hence

we compared the proposed method with the baseline with random selection and our

AL scenario version using Core-set algorithm for the single-modal AL [54]. Detailed

implementation of our modified Core-set version is provided in the Appendix 4.5.2.

For the MS-COCO, Core-set version was not compared due to the GPU memory lim-

itation.

Figure 4.5 shows the evaluation results. We can see that the proposed method

achieves the best performance in most epochs, compared to both random baseline and

Core-set. When performing image-text retrieval, only the similarity between image

and text is considered. Thus, the proposed method that selects images by considering

the similarity between image-text seems to select more valuable samples rather than

the Core-set method that considers only the relationship between images. In fact, as

shown in Figure 4.2, the images corresponding to texts having the highest similarity to

xi are not very similar to xi.

An interesting point is that, at the first epoch (when the percentage of paired data is

35%), the proposed algorithm achieves much better R@1 performance than the other

algorithms by [0.4 ∼ 1.6]. Since the proposed algorithm selects hard negative images

for the retrieval model, the hard negative images decrease as epochs progress. Thus the

proposed algorithm needs to select harder negative images than the previously selected

hard negative images. However, it is much more difficult to select hard negative images

in later epochs of AL scenario. Therefore, the proposed method shows especially high

performance in the first epoch of the AL scenario.
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4.4 Summary

In this paper, first, we have suggested a new AL scenario for ITR where unpaired im-

ages are given and the annotator provides their corresponding paired texts. Then we

have developed our own AL algorithm that chooses unpaired samples that are expected

to have a large training loss, especially triplet ranking loss [14] in our work. The key

components of our AL algorithm are 1) hard negative conditions to mine the hard

negative images for constructing new paired data; 2) the scoring formula that weighs

the number of texts satisfying the hard negative conditions, which is used as the cri-

terion to determine the hard negative images. We demonstrated the effectiveness of

the proposed algorithm through extensive experiments for self&ablation studies, and

comparisons on Flickr30K and MS-COCO.
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Dataset #Image #Text #Class

NUS-WIDE-1.5K 1,521 1,521 30

LabelMe 2,688 2,688 8

Wikipedia 2,866 2,866 20

Pascal-VOC 6,146 6,146 20

Flickr8K 8,091 40,455 8,091

Flickr30K 31,014 155,070 31,014

MS-COCO 123,287 616,435 123,287

Table 4.3: Configuration of the popular ITR benchmarks.

4.5 Appendix

4.5.1 Configuration of ITR Datasets

ITR dataset contains relevant image-text pairs categorized into several classes. In datasets

such as Wikipedia [91], LabelMe [92], Pascal VOC2007 [93] and NUS-WIDE [94] uti-

lized in [67], data are categorized according to high-level (coarse) semantics. There-

fore, each category contains many relevant pairs. we referred to those datasets as

coarsely-categorized datasets. But recent ITR studies have validated their algorithm

at more challenging datasets such as Flickr [83] and MS-COCO [82]. These datasets,

on the other hand, contain data that are categorized according to low-level (fine) se-

mantics. Thus, data samples are discriminated more thoroughly and precisely than the

coarsely-categorized datasets. In other words, the number of category has increased,

but the number of data samples has relatively decreased compared to coarsely-categorized

datasets. Table 4.3 shows the configuration of the popular coarsely-categorized datasets

used in [67] (top side) and finely-categorized datasets (bottom side).
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Algorithm
Text Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

Core-set-mean 45.2 74.8 84.3 33.2 59.2 69.8

Core-set-BoW 46.3 75.0 83.7 32.9 59.3 70.3

Random 45.8 74.2 84.3 32.8 59.8 69.7

Proposed 46.4 75.1 84.4 32.8 59.9 70.9

Table 4.4: Performance of Core-set depending on the feature extraction method.

4.5.2 Implementation Details for Core-set

Core-set algorithm [54] extracts one global feature vecror from an image sample, and

then utilizes distances between any two feature vectors. However, IMRAM model ex-

tracts local feature vectors from 36 local regions in an image. Therefore, in order to

apply Core-set method to our setting, it is necessary to extract one global feature vector

for an image.

We obtain the global feature vector via two methods. One is to extract a 2048

dimensional global feature vector by average 36 local feature vectors extracted from

an image, referred to as ‘Core-set-mean’ in Table 4.4. The other one is to extract a

300 dimensional global feature vector of which element is the number of local feature

vectors belonging to a local cluster region formed by K-means clustering, referred to

as ‘Core-set-BoW’ in Table 4.4.

Table 4.4 shows the evaluation results at the last epoch of AL scenario, when above

two methods are applied to Core-set. We also present the performance of proposed

method and random selection. Core-set-mean and Core-set-BoW show comparable

performances, but Core-set-BoW shows slightly better performances than Core-set-

mean. Therefore, we compared Core-set-BoW with ours in the experiments.
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4.5.3 Distribution of Selected Samples

To observe the tendency of samples selected by the proposed algorithm, we visualized

the selected samples in tSNE embedding space. Figure 4.6 shows the visualization

results of the samples selected by the proposed method (Top) and random selection

(bottom) at each epoch of AL scenario. Blue and gray circles represent the selected and

non-selected unpaired images, respectively. The selected images extracted by both our

and random methods are evenly distributed over the entire region, which shows that our

results also are not biased to a region, along with achieving meaningful improvement

of performance.

72



U
n

p
aired

 im
ag

es

S
elected

 im
ag

es

𝑒
=
0

𝑒
=
1

𝑒
=
2

𝑒
=
3

Figure
4.6:V

isualization
of

im
ages

selected
by

the
proposed

m
ethod

(Top)
and

the
random

selection
(bottom

)
in

the
tSN

E

em
bedding

space.

73



4.5.4 Full Experimental Results for Section 4.3.2.3

In the Figure 4.3 in the main document, we provide the histograms of scores at e =

0. Figure 4.7 shows full results at each iteration e = 0, 1, 2: (a) Full-batch + Top-

k condition with Surplus weight and (b) Mini-batch + Top-k condition with Surplus

weight. Figure 4.8 shows full results at each iteration e = 0, 1, 2: (a) Full-batch + Top-

k condition with Counting weight and (b) Mini-batch + Top-k condition with Counting

weight.
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4.5.5 Full Experimental Results for Section 4.3.3

Figure 4.9 and 4.10 show R@5 and R@10 results of the proposed algorithm and com-

parisons.
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4.5.6 Full Experimental Results for Section 4.3.2.1

Table 4.5 and 4.6 provide R@5 and R@10 results for all combinations of the hard neg-

ative conditions presented in Section 4.3.2.1. Similar to the R@1 results in Table 4.1

in the main document, the combination of Top-1 conditions and Surplus weight still

shows the best performances at R@5-sum and R@10-sum metric.

Figure 4.11, 4.12, 4.13, and 4.14 present full evaluation results with aggregation

weight function is fixed. Figure 4.15, 4.16, 4.17, 4.18, 4.19, and 4.20 present full eval-

uation results with the hard negative condition is fixed.
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Chapter 5

Conclusion

In this dissertation, we proposed methods to overcome the two major problems that

may occur in cross-modal representation learning: (1) learning cross-modal associa-

tion among heterogeneous modalities, and (2) lack of paired data.

First, to overcome the problem of learning cross-modal association among hetero-

geneous modalities, we proposed a cross-modal representation learning model adopt-

ing the distributed embedding method. Motivated by the association learning mecha-

nism of human brain, the proposed method consists of two learning phase. The pro-

posed model first learns intra-modal association by training a specialized embedding

space for each modality with single-modal representation learning. Intra-model asso-

ciation model is realized by training conventional variational auto-encoder for each

modalities. Then, the proposed model learns cross-modal association by introducing

associator, which connects the embedding spaces of multiple modalities. Associator is

realized by tiny networks with small number of fully connected layers, which connects

latent spaces of each variational auto-encoders. To separate the learning process of

intra-modal association and cross-modal association, the model-parameters involved
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to intra-modal association are not updated during training of cross-modal associa-

tion. Through the two-step learning process, the proposed model has the advantage of

learning relation among heterogeneous modalities, utilizing unpaired data for learning,

and incorporating additional modality. We validated the proposed method on image-

audio generation and 3d hand pose estimation tasks. The proposed method achieves

improved performance compared to the existing joint-embedding based models.

Second, to mitigate the data shortage problem in cross-modal representation learn-

ing, we proposed an novel active learning scenario and algorithm for cross-modal rep-

resentation learning. In particular, we targeted active learning for image-text retrieval,

which is one of the most popular applications related to cross-modal representation

learning. In the proposed scenario, unpaired image or text data are given and active

learning algorithm selects the most informative unpaired data. Then selected data are

queried to human experts to be paired. The proposed active learning algorithm selects

the data that is expected to have the most influence on the max-hinge triplet loss func-

tion, which is mainly adopted loss function in recent image-text retrieval method. To

this end, we define the condition that an image (text) can be the hard negative for the

texts (images) in the existing paired data. Based on condition, we proposed HN-score

for an unpaired image (text) which estimates an image (text) can be a hard negative for

as many texts (images) in paired data as possible. Then the proposed algorithm selects

the data of highest score. We validate the proposed active learning algorithm through

the comparison to random selection and self-ablation studies on Flickr and MS-COCO

dataset. As a future work, we will further validate proposed methods for the various

benchmarks.
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Abstract

본논문에서는교차모달표현학습에서발생할수있는문제점들을개선하기위한

두 가지 방법을 제안한다. 첫 째, 기존의 공동 임베딩 방식의 교차 모달 표현 학습

모델이 상이한 모달 데이터 사이의 표현을 학습하기 어려운 단점을 해결하기 위하

여,분산임베딩방식의교차모달학습모델을제안한다.분산임베딩방식의학습

모델은먼저각모달마다독립적으로단독모달표현학습을수행함으로써각모달

마다 특화된 임베딩 공간을 학습한다. 그 후 교차 모달 표현을 학습하기 위해 여러

모달의 임베딩 공간사이를 연결하는 연상학습 모듈을 학습한다. 두 단계를 거치는

학습 과정을 통해 제안하는 모델은 상이한 모달들 간의 교차 모달 표현학습도 잘

수행할 수 있으며, 쌍이 주어지지 않은 교차 모달 데이터도 활용하여 학습할 수 있

다는 장점을 가진다. 상이한 모달 관계 중 하나인 시각과 청각 모달 간의 데이터

생성 실험에서 제안하는 방법은 기존의 공동 임베딩 방식의 모델보다 향상된 성능

을검증하였다.둘째,교차모달표현학습을위해서는모달간쌍을이루는데이터가

필수적이지만 실제 응용분야에서 충분한 수의 데이터 쌍을 확보하는 것은 어렵다.

이러한문제점을해결하기위하여교차모달표현학습을위한능동적학습방법을

제안한다. 특히 교차 모달 표현 학습 관련 응용분야 중 하나인 이미지-텍스트 반환

에 대한 능동적 학습을 제안한다. 기존의 이미지-텍스트 반환에 대한 능동적 학습

시나리오는최신의이미지-텍스트반환데이터셋에적용하기어렵기때문에,본논

문에서는 우선 최신의 데이터셋에 적합한 능동적 학습 시나리오를 먼저 제안한다.

주어진 이미지-텍스트 쌍 데이터에 대하여 사람에게 분류 라벨을 요청하는 기존의

시나리오와는 달리, 제안하는 시나리오는 쌍이 주어지지 않은 이미지 혹은 텍스트

데이터에대하여사람에게나머지모달리티의데이터를요청하여쌍데이터를확보

하는것을목표로한다.또한제안하는시나리오에적합한능동적학습알고리즘도

제안한다. 제안하는 알고리즘은 이미지-텍스트 반환에서 주로 사용되는 최대 힌지
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트리플렛 손실함수에 가장 영향력을 많이 끼칠 것으로 생각되는 데이터를 선별한

다. 이를 위해 특정 데이터가 손실함수에 영향력을 미칠 수 있는 조건을 정의하고,

정의된 조건에 기반하여 데이터가 손실함수에 미치는 영향력 점수를 추정한다. 제

안하는알고리즘은영향력점수가가장높은순서대로데이터를선택하여사람에게

나머지 쌍 데이터를 제공해줄 것을 요청한다. 최신의 이미지-텍스트 데이터셋에서

의제안하는알고리즘이무작위로쌍데이터를확보하는것보다학습데이터수대비

향상된성능을달성하는것을보여주었다.

Keywords:교차모달표현학습,분산형임베딩,능동적학습,심층학습네트워크
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