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Abstract

This study presents statistical and control analyses for grid resources to enhance the

stability and efficiency on their operations. More specifically, this study focuses on

cost-optimal model predictive control for a virtual power plant with the uncertainty

in neural network power forecasting.

Chapter 2 analyzes the monitoring data of solar photovoltaic power plants (PVs)

distributed throughout Korea. Errors within the raw data are categorized according to

their causes and symptoms. The effect of typical errors on the statistical analysis is

particularly evaluated for a day-ahead hourly PV power forecast study.

Chapter 3 addresses a control strategy for an energy storage system (ESS). A vir-

tual power plant or a microgrid with a commercial building load, PV generation,

and ESS charge/discharge operation is targeted as a behind-the-meter consumer-

generator. Economic dispatch scheduling problem for the ESS is formulated as a

mixed-integer linear program. The main goal of the control problem is optimizing the

economic benefit under the time-of-use tariff and future uncertainties. Peak control as

a regulation ancillary market service can be also applied during the optimization. The

resulting control schedule robustly guarantees the economic benefit even under the

forecast uncertainties in load power consumption and PV power generation patterns.

Chapter 4 presents a more specific case of day-ahead hourly ESS scheduling. An

integration of a PV and ESS is considered as a control target. Power transactions

between the grid and resources are normally settled according to the time-of-use

tariff. Additional incentive is provided with respect to the imbalance between the

forecasted-scheduled power and actual dispatch power. This incentive policy stands
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for the imbalance tariff of a regulation ancillary service market. Accurate forecasting

and robust scheduling functions are required for the energy management system to

maximize both revenues. The PV power forecast model, which is based on a recurrent

neural network, uses a convolutional neural network discriminator to decrease the gap

between its open-loop one-step-ahead training and closed-loop multi-step-ahead test

dynamics. This generative adversarial network concept for the model training process

ensures a stable day-ahead hourly forecast performance. The robust ESS scheduling

model handles the remaining forecast error as a box uncertainty set to consider the

cost-optimality and cost-robustness of the control schedule. The scheduling model is

formulated as a concise mixed-integer linear program to enable fast online optimiza-

tion with the consideration for both transaction and incentive revenues.

Keywords: energy management, mixed-integer linear programming, neural network,

cost-optimization, forecasting, solar photovoltaic power plant, energy storage system.

Student Number: 2019-30142
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Chapter 1

Introduction

The grid is an interconnected group of power lines and associated equipment for

moving electrical energy between points of supply and points of consumption [1].

Electrical energy that is generated in the supply side is transmitted and distributed

via the grid to be consumed or stored on the demand side. The basic structure of an

electrical power grid is presented in Fig. 1.1 [2].

The stability of a grid operation is closely related to the operation of intercon-

nected energy resources. For example, momentary imbalance between the power

supply and demand results in a frequency stability problem. The rapid increase of

demand that exceeds the active power supply induces a downward drift of the grid

Figure 1.1: Basic structure of an U.S. electrical power grid [2].
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frequency [3] because of the inversely proportional speed-load curves of synchronous

generators [4]. Conversely, the oversupply of power by distributed energy resources

(DERs) results in a voltage stability problem; an overvoltage is applied at the point

of a DER connection to export remaining power as a reverse power flow [5, 6].

The grid of today faces an increasing penetration of DERs driven by the needs

of reduced line losses [7], sustainable generation [8], energy bill management on the

consumer side, and reliable power supply for the fault protection [9]. Despite these

advantages, the increasing penetration of DERs requires complicated considerations

for the grid management. In case of the frequency stability, conventional synchronous

generators, i.e., motor-based generators that convert mechanical power into electrical

one, help decrease the amount of frequency drift with their high inertia. However,

they are largely displaced with power electronics-based generators such as solar pho-

tovoltaic power plants (PVs) with DC-to-AC inverters and wind turbine plants (WTs)

with back-to-back AC-to-AC converters. To compensate the grid inertia for these

inertia-less generators, additional equipment such as a synchronous condenser with a

rotating motor [10] is required for the grid management.

The increasing penetration of variable renewable energy resources (VREs) such

as PVs and WTs also becomes a crucial problem for grid power balancing. The grid

operator has to manage dispatchable generators to match the power supply with the

varying power demand. However, VREs are generally operated in a non-dispatchable

manner. In case of a grid with large PVs, the daily peak power occurs at noon, while

the daily peak demand occurs in the evening. This peak power imbalance is known as

duck curve [11]. The effect of weather conditions on the power generation capacity

is also a well-known problem for VREs. A grid with a large VRE penetration even

2
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Figure 1.2: The concept of a smart grid [13].

faces new types of threats on the supply side such as a solar eclipse for PVs [12] and

strong wind for WTs.

Communications and interactions between the demand and supply sides are en-

couraged for a grid to achieve opportunities for controlling possible instabilities. The

concept of a smart grid, which is presented in Fig. 1.2, has its basis on these two

operations. According to the definition of the European Commision, a smart grid is

an electricity network that can integrate the actions of all users, including generators,

consumers (customers), and customer-generators [14]. It aims to provide an econom-

ically efficient, sustainable system with the consideration for the power quality and

safety. The Energy Independence and Security Act of the United States Congress in

2007 identifies the smart grid as a modernized version of the transmission and dis-

tribution system with the consideration for the reliability and safety [15]. Specific

characteristics for a smart grid are also defined: DER deployments, increased use of

digital information, and dynamic optimization for grid operations and resources.
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The introduction of a smart grid with the increased deployment of DERs and

their control technologies provides an opportunity to enhance the management for a

grid through market-based approaches. This concept is known as transactive energy

[16]. Transactive energy refers to a combination of economic and control approaches

for the reliability and efficiency of the grid operation [17]. Transactive energy is not a

new concept because of the traditional power market and other policies such as power

purchase agreement, time-of-use tariff, and net energy metering; it rather stands for

the existence of traditional approaches and possibilities for future approaches. Eco-

nomic constructs for transactive energy and a smart grid, or a traditional grid that are

related to this study are follows:

• Electricity market, a.k.a. power exchange, is a system that enables to purchase

or sell electricity. A wholesale market uses a contract-based predefined price

or an auction-based clearing price to settle the trades between generators and

resellers. Trades between a reseller and its consumers are proceed within a

retail market. In case of a grid with many resellers, consumers can choose

their resellers, i.e., retail electricity providers, according to power purchasing

options that are provided by resellers [18].

• Time-of-use tariff refers to a policy in a retail market to charge the electricity

use with different prices for each hour of the day. A price schedule is gen-

erally determined according to the peak and off-peak hours [19], or can be a

dynamic one as real-time pricing [20]. Customers under the time-of-use tariff

may shift their non-critical power usage for off-peak hours, thereby contribut-

ing the grid stability. Consequently, time-of-use tariff can be classified as a

demand response strategy that uses the price as a control signal [20].

4
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Figure 1.3: Distributed energy resources with their energy management system.

• Grid ancillary services are a set of special grid services beyond generation and

transmission [21]. They are procured by transmission or distribution system

operators [22] to support stable operations of the electricity network. Ancil-

lary services may include regulation and reserve markets to compensate small-

scale and large-scale power imbalances, respectively [23]. Dispatchable DERs

and demand-response resources can participate an ancillary service market to

achieve economic benefits by providing proper services.

This study presents statistical and control analyses for grid resources to enhance

the stability and efficiency on their operations. Loads and DERs that are focused in

this study are presented in Fig. 1.3. The result of this study would help to develop an

energy management system (EMS) for DERs within or without a smart grid.

Chapter 2 analyzes the monitoring data of PVs distributed throughout Korea.
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Errors within the raw data are categorized according to their causes and symptoms.

The effect of typical errors on the statistical analysis is particularly evaluated for a

day-ahead hourly PV power forecast study.

Chapter 3 addresses a control strategy for an energy storage system (ESS). A

virtual power plant or a microgrid with a commercial building load, PV genera-

tion, and ESS charge/discharge operation is targeted as a behind-the-meter consumer-

generator. Economic dispatch scheduling (planning) problem for the ESS is formu-

lated as a mixed-integer linear program. The main goal of the control problem is opti-

mizing the economic benefit under the time-of-use tariff. Peak control as a regulation

ancillary market service can be also applied during the optimization. The resulting

control schedule robustly guarantees the economic benefit even under the forecast

uncertainties in load power consumption and PV power generation patterns.

Chapter 4 presents a more specific case of day-ahead hourly ESS scheduling. An

integration of a PV and ESS is considered as a control target. Power transactions

between the grid and resources are normally settled according to the time-of-use

tariff. Additional incentive is provided with respect to the imbalance between the

forecasted-scheduled power and actual dispatch power. This incentive policy stands

for the imbalance tariff of a regulation ancillary service market. The EMS requires

accurate forecasting and robust scheduling functions to maximize both revenues. The

PV power forecast model, which is based on a recurrent neural network, uses a con-

volutional neural network discriminator to decrease the gap between its open-loop

one-step-ahead training and closed-loop multi-step-ahead test dynamics. The appli-

cation of this generative adversarial network concept to the model training process

ensures a stable day-ahead hourly forecast performance. The robust ESS scheduling

6



model handles the remaining forecast error as a box uncertainty set to consider the

cost-optimality and cost-robustness of the control schedule. The scheduling model is

formulated as a concise mixed-integer linear program to enable fast online optimiza-

tion with the consideration for both transaction and incentive revenues.
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Chapter 2

Analysis of Data Errors in the Solar

Photovoltaic Power Plant Monitoring

System Database

Management services for solar photovoltaic power plants (PVs) have become an im-

portant issue in today’s era of increasing PV installations. The existence of error-free

data is necessary for data-driven PV management; however, real-world data contain

an unignorable portion of errors, thereby reducing the reliability of corresponding

analyses. A report on the plausible errors within the data is necessary to help PV

administrators configure proper data cleaning algorithms. This study provides an er-

ror case report derived from an analysis of nearly 2,000 PVs distributed throughout

Korea. Real error cases are categorized according to their causes and symptoms. The

effect of typical errors on the data-driven PV analysis is particularly evaluated for

the day-ahead hourly PV power forecast. Errors in the system specification data sig-

nificantly decrease the forecast accuracy, thereby addressing the impact of human

errors. Regression imputation in the time domain demonstrates acceptable results as

a simple ad-hoc method in most error situations.
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2.1 Background

Solar photovoltaic power plants (PVs) have been widely installed with support from

various public policies that encourage sustainable production of energy [24, 25, 26,

27]. Many governments have tried to replace traditional power plants with PVs be-

cause they are simple to install [28], have carbon-free operation [29], and are sustain-

able [8]. However, the increase in PV installation has also aroused debates regarding

the tradeoff between their environmental effect and economic feasibility [30].

Operation and maintenance (O&M) services for a PV can be a solution to en-

hance economic feasibility while conserving the environmental advantages. Real-

time monitoring of a PV is considered as a minimal version of the O&M service.

Fault detection and diagnosis using the monitoring data helps the PV administrator

to deal with major failures in real time, thereby maintaining the system performance

within an allowable level [31, 32]. Although the installation and operation costs of

monitoring devices negatively affect plant economics [32, 33, 34, 35], the expected

benefit tends to be higher than its introduction cost [31].

The reliability of data is an important issue to be considered prior to introduc-

ing an O&M service. The performance of a PV can be correctly analyzed only with

reliable data. PV analyses such as economic dispatch [36, 37], power forecasting

[38, 39, 40], fault and electricity theft detection [32, 40, 41, 42, 43] are mostly per-

formed using data-driven approaches. It is inherently assumed that the data used for

deciding control strategies, learning artificial neural networks, or developing detec-

tion rules are error-free. However, real-world data may contain an unignorable por-

tion of complex errors that are difficult to be identified by simple filtering. Even in the

medical field, several studies have found that medical data, directly related to human
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health, contain many types of errors such as duplication, inconsistency, unclearness,

and programming inaccuracies [44, 45]. Although it is a reasonable assumption that

industrial data contain more errors than medical ones, only a few studies have focused

on the reliability of meter data [46, 47, 48, 49, 50, 51, 52].

This chapter provides a simplified version of the white paper on PV data errors,

particularly those that are closely related to the monitoring process. Real-time mon-

itoring of a PV suffers from various problems caused by hardware, software, and

human issues. Missing data is a common symptom for these problems. Engineers

in the real world try to identify and fix the cause of a problem with their empirical

knowledge. Although some of the issues can be typical among PVs, it is difficult to

find a generalized error-handling document because of the lack of error cases for each

plant and the reluctance to share data among plant owners. An analysis of dozens or

hundreds of systems is insufficient to create such documents. To deal with insufficient

error data, a massive monitoring system for PVs is developed in this project.

The monitoring system of this project has collected data from nearly 2,000 PVs

nationwide in South Korea. The errors that were found during operation are cate-

gorized according to their causes and symptoms. Data communication problems are

identified as typical errors among PVs, thereby disrupting the continuity of time-

series data. Errors within system specification information data are also found for

some PVs. The results suggest that human or system errors are not seriously con-

cerned by PV administrators.

This chapter also evaluates the effect of typical errors on the PV study, partic-

ularly for the PV power forecast study using statistical models. The parameters of

a statistical model can be accurately and robustly estimated only if there is a suf-
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ficient amount of error-free historical data [53]. Data cleaning [54] and imputation

[55] during data preprocessing are essential for such data-driven approaches to rem-

edy the effect of errors within the training data. The exclusion of multivariate error

records, which is known as list-wise deletion or complete-case analysis, is the sim-

plest cleaning method but it reduces the data size and corresponding statistical power

[55, 56, 57]. Substituting the error value with a reasonable one may produce a better

result. Several imputation methods were tested to prepare error-free training data for

the data-driven PV power forecast study. Regression imputation in the time domain

demonstrated good results as a simple ad-hoc method in most monitoring data er-

ror situations. The results will provide insights for PV administrators who decide to

introduce their own monitoring systems along with error handling algorithms.

The remainder of this chapter is organized as follows. General policies and statis-

tics for the PVs in Korea are briefly described in Section 2.2. An overview of the

PVs analyzed in this study is provided in Section 2.3. Analyses of the errors found

within the monitoring system database are presented in Sections 2.4 and 2.5, depend-

ing on the data type. The effect of errors on the PV power forecast study is analyzed

in Section 2.6. The chapter summary is presented in Section 2.7.

2.2 Solar Photovoltaic Power Plants in Korea

The increase in PVs and other renewable power plants has been promoted in Korea

through national policies ranging from Alternative Energy Development Promotion

Act 1987 [58] to The Third National Energy Master Plan 2019 [59]. The latest policy

aims to supply 30%–35% of national electric power by renewable sources by 2040.

With the help of government support, the power supplied by PVs increased from
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Figure 2.1: Annual growth of solar photovoltaic power plant (PV) power generation
capacities in Korea.

7.0 GWh to 7,056.2 GWh between 2002 and 2017 [60]. The annual growth of PV

installations as their total installed power capacity [61] is presented in Fig. 2.1.

There are around 386,000–430,000 PVs in Korea, according to government an-

nouncements in 2018 [62, 63]. Each PV is classified into one of three categories

depending on its size and purpose [64]. PVs for electric utility business, i.e., plants

that sell their power to the national electricity market, are nationally managed by the

Korea Power Exchange, the market operator. The exact number of these large-scale

PVs is 30,271 [62]. PVs for private use, i.e., plants with the primary goal of sup-

porting private facilities, are managed by the Korea Electric Power Corporation, the

operator of the national electric sales business. There are 356,195 plants of this type

[62]. The remaining small-scale PVs are classified as those for general use. Their

numbers are roughly estimated to be 1000–110,000 [65, 66]. A summary of legal

classifications and the following statistics are presented in Table 2.1.
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Table 2.1: Legal Classifications and Statistics of PVs in Korea
Cash balancing with

Classification Capacity Electricity Power Purchase Net Numbers

Market Agreement Metering (ea)

For electric

utility business

> 1 MW Mandatory Impossible Impossible
30,271

≤ 1 MW Possible Possible Impossible

For private use
> 1 MW Possiblea Impossible Impossible

356,195
≤ 1 MW Possiblea Possiblea Possibleb,c

For general use ≤ 10 kW Impossible Impossible Possibleb ∼110,000
a Balancing is allowed only for the excess power after private use.
b Net excess generation is carried forward to the next month.
c Net excess generation can be redeemed under a fixed unit price.

[Cities]

(01) Seoul
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Figure 2.2: Capacity distribution of PVs by region and capacity level (2017).

The distribution of PVs by region and capacity level [67] is presented in Fig. 2.2.

Most power generation capacities are located in the flat regions of the south where

there is high solar irradiance but low population density. PVs with capacities ranging

50–100 kW make up 29.3% of the total installed capacity, which implies a significant

number of small-scale plants.
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2.3 Solar Photovoltaic Power Plants for Analysis

Figure 2.3: Web-based user interface of the monitoring system for nationwide PVs.

This study was conducted for a project to develop a unified monitoring system

for PVs in Korea, as presented in Fig. 2.3. It has an internal goal of accommodating

1% of nationwide PVs to the system. PVs participating in this project had reached

nearly 2,000 in number, 0.5% of the total in mid-2019. Most of them are small- and

mid-scale PVs with capacities lower than 1 MW, and it is economically infeasible for

them to have their own monitoring systems. Meanwhile, large-scale ones for electric

utility business or private use tend to have their own management systems because

they have a duty to interact with public or governmental systems. Consequently, only

3.5% of the participating PVs have a capacity higher than 1 MW.

The spatial distribution of monitoring PVs, as presented in Fig. 2.4, is not con-

centrated in high solar irradiance regions; both nationwide and monitoring PVs have
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Figure 2.4: Spatial distribution of monitoring PVs and geographical conditions. (a)
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provided by the National Spatial Data Infrastructure Portal of Korea in 2015.
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Figure 2.5: Capacity distribution of PVs by region and capacity level. (a) Nationwide
plants (2017). (b) Monitoring plants.

a wide spatial distribution to avoid mountainous terrains of the Korean Peninsula. A

comparison between the distributions of nationwide and monitoring PVs is presented

in Fig. 2.5. The notable difference, shown by a sharp peak, is caused by the limited

number and distribution of large-scale PVs participating in the project. Without this

difference, both distributions show similar concentrations in rural regions, between

the ninth and sixteenth, as mid-scale PVs.
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The monitoring system provides a representational state transfer application pro-

gramming interface (API) to collect data from remote PVs. PV administrators can

freely send their facility data (e.g. inverter power or status ones) through the API if

they want. Any privacy information is not collected by the API nor the monitoring

system. Moreover, the researchers of this study strictly agreed not to discuss sen-

sitive information such as degradations or failures on each PV. In accordance with

the agreement, this study only addresses the data errors that are identified during the

development and analysis of the monitoring system.

2.4 Errors in Static Information Data
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Figure 2.6: Physical entity-relationship diagram for the relational database schema of
the developed monitoring system.

16



Table 2.2: Summary for the Data Stored in the Monitoring System Database

Data Classification

Volume Inserted Rows

(MiB) (%)
Total Max. Growth Rate

(thousands) (thousands per day)

Static information 2.56 0.0026 16.77 -

Monitoring data 60,113.75 61.58 226,786.83 652.66

Internal service 6,871.05 7.04 38,697.85 154.20

External service 30,625.59 31.37 79,362.99 358.16

Others 2.64 0.0027 19.99 -

Total 97,615.59 100.00 344,884.42 1,165.02

The monitoring system developed in this project manages each PV and its facili-

ties as individual objects with associations, which is a common concept for relational

databases. Each object registers its specification information to the system database

as static data. Static information data of a PV object include information about the

location, capacity, owner, legal classification, and monitoring data transmission pe-

riod. Static information data of a facility object include information regarding facility

type, manufacturer, installed date, and facility-specific data such as efficiency, oper-

ation range, and monitoring data resolution.

The monitoring system assigns a unique identifier to each object that has been

registered. Facility objects additionally take the identifier of their parent PV object.

A physical entity–relational diagram [68] for the relational database schema of the

system is presented in Fig. 2.6. Static and monitoring data tables are highlighted in

yellow. The system matches the identifiers in the static and monitoring data tables to

find plant and facility objects associated with the received monitoring data. Insertion

of a duplicated record [51] for both the static and monitoring data is systematically
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prevented by unique primary keys including identifiers and datetime.

The monitoring system database also contains tables for internal system opera-

tions, such as the latest monitoring data table for the user interface, and those for

external system interactions, such as national weather service and electricity market

data tables. The total volume of the database reached 95.3 GiB from June 2018 to Au-

gust 2019. Table 2.2 summarizes the statistics of the data stored in the database. The

total volume of the real-time monitoring data consistently grows at a maximum rate

of 652,000 rows per day, roughly 173 MiB. Static information data, occupying only

a small amount of volume, are first analyzed. A flowchart for the error identification

process is presented in Fig. 2.7.

Collecting static information data

Registration of PV and facility objects

with their static information data.

Section 4. Filtering duplicated static information data

Applying unique value constraints (e.g. a combination of the facility 

name and location) to prevent an insertion of duplicated data.

Identifying static information data errors

Section 4.1. Missing or redundant static information data

Comparing the list of object identifiers found in each database table.

Section 4.2. Incorrect specification data

Comparing related values (e.g. a comparison between the registered

address and geographical coordinate information).

Figure 2.7: Error identification process for the static information data.
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2.4.1 Errors: Missing or Redundant Static Information Data

Table 2.3: Number of Distinct PV Identifiers in Static and Monitoring Data Tables
Static Data Table PV Monitoring Data Existence Level (ea)

PV Inverter 0 100 1,000 > 1,000 Total

Found Found 4 1 1 1,866 1,872

Found Missing 11 - - 1 12

Missing Found - - - 1 1

Missing Missing - 7 2 57 66

Total 15 8 3 1,925 1,951

There are 1,951 PVs, 3,150 inverters, and other facilities registered in the mon-

itoring system. Registration and deregistration of PV or facility objects commonly

occur during monitoring system operation. Although most of these processes are per-

formed as expected, they sometimes comprise errors because of connection timeout

or invalid request parameters. Furthermore, some PV administrators forget to regis-

ter/deregister their PVs and just start/stop sending the monitoring data to the system.

The monitoring system can have a functionality of registering a missing object

with expected static information. However, the result may be meaningless without the

official confirmation. Automatic deregistration of a long-term disconnected object is

also discouraged; it results in cascade deletion of static information and monitoring

data without an approval. Consequently, the monitoring system of this study just

warns about missing or redundant objects without altering their data.

Missing or redundant static information as a result of improper registration was

checked by comparing the distinct identifiers in the PV static data, inverter static

data, and inverter monitoring data tables. A summary of this comparison is presented
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in Table 2.3. Missing PV static data was found for 67 identifiers; 9 of which with less

than a thousand monitoring data were considered as system testing data. 17 registered

PV objects were assumed to be redundant owing to the same reason. One additional

PV was identified as the one just missed the inverter static information.

2.4.2 Errors: Incorrect Specification Data

Specification data, which are necessary to register an object to the monitoring system,

are mostly collected and inserted manually by PV administrators. The resulting data

can suffer from value errors because of the risk of inaccuracy in human processes:

i.e., mistyping, referencing outdated documents, or misunderstanding of the facil-

ity. Although some systematic solutions such as cyber-physical systems enable the

automatic creation of static information, they are only applicable to vendor-specific

devices. In most cases, double-checking the collected and registered data is the only

way to determine the existence of value errors.

Three types of double-checking were performed using the registered data. A

comparison between the registered address and geographical coordinate information

found 14 PV objects with conflicting data. Introducing the national address database

additionally found two typos in the registered address information. Facility identi-

fiers, which are assigned to reflect facility type and parent PV information, were

checked again with the parent PV identifier; a conflict within one PV object was

found within a few seconds. This concept of joint information for the facility identi-

fier definition is particularly useful as the size of the database increases.
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2.5 Errors in Monitoring Data

The monitoring system uses a wide area network to collect data from PVs distributed

throughout South Korea. Long-range data transmission from a remote PV to the mon-

itoring system has an inherent risk of being halted or corrupted by various systematic

or environmental issues. The resulting errors in the monitoring data can be cate-

gorized as value or communication errors. A flowchart for the error identification

process is presented in Fig. 2.8.

2.5.1 Errors: Invalid Peak Power Values

Value errors, denote invalid or incorrect data values, are often caused by faults in

measurement devices or their installations. In case of an electromechanical watt-hour

meter [69], dirt on the disk or bearing will cause a bias error by introducing friction

Collecting monitoring data

Continuous communications between PVs

and the monitoring system.

Section 4. Filtering duplicated monitoring data

Applying unique value constraints (e.g. a combination of the facility

identifier and time) to prevent an insertion of duplicated data.

Identifying monitoring data value errors

Section 5.1. Invalid peak power values

Applying valid range tests (e.g. a range between zero

and the inverter capacity for inverter power data).

Section 5.2. Invalid units

Comparing related values (e.g. a comparison between the DC and

AC power values) of the data that failed the valid range test.

Section 5.3. Conflictions between static and monitoring data 

Analyzing time-series monitoring data of a facility

that consistently failed the valid range test.

Section 5.4. Garbage or corrupted values

Analyzing binary or hexadecimal values of the data

that failed the valid range test.

Identifying monitoring data communication errors

Section 5.5. Terminations of daily monitoring

Comparing the number of successful communications

for each hour of the day.

Section 5.6. Long-term disconnections

Comparing the monitoring data time interval

and predefined transmission period value.

Section 5.7. Fluctuating data transmission periods

Analyzing the consistency in the data transmission period.

Section 5.8. Disharmonious data collection timings

Analyzing the consistency in data timings between related facilities

(e.g. inverters and weather sensors within a same PV).

Figure 2.8: Error identification process for the monitoring data.
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Table 2.4: Statistics for the Intermittent Peak Power Value error
Error Rate PV Capacity Level (kW) Total

(%) 10 100 1,000 10,000 (ea) (%)

0.0 79 36 75 12 202 10.96

0.1 1,235 108 128 52 1,524 82.64

0.2 89 6 6 1 102 5.53

1.0 13 - - - 13 0.71

10.0 3 - - - 3 0.16

Total 1,419 150 209 65 1,843 100.00

to the disk rotation. Vibration of the meter mounting point, which can be occurred by

wind or facility operation, may cause a variance error. A data acquisition system can

also generate garbage or corrupted values as described in Section 2.5.4.

The detection of a value error is difficult in most cases because the real value

is unknown. Duplicate installation of measurement devices for each monitoring data

can be a solution, but is unrealistic. A plausible alternative for error detection is the

use of the known distribution of the data.

The PV power generation data have a valid value range between zero and its

capacity. Measurement failures, often caused by electrical sparks or foreign matter

on electrometers, can result in values that exceed the valid range. Such intermittent

peak value errors were analyzed for 1,866 normally monitored PVs that are free from

missing and redundant static information errors, as shown in Table 2.3. During the

analysis, 23 PVs were excluded because they exhibited more serious problems, which

are described in the following subsections 2.5.2–2.5.4.

The analysis results for the power value error are presented in Table 2.4. A total

of 99.1% of PVs had a negligible error rate, lower than 0.2%. Only three small PVs
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suffered from high error rates of 5.65%, 7.06%, and 9.47%. All three have invert-

ers that only measure accumulated generation values; their operators then manually

developed software to calculate hourly averaged power values and send them to the

monitoring system. The comparison between the accumulated and calculated power

data identified bugs in the calculation algorithm that caused the errors.

2.5.2 Errors: Invalid Units

Although the monitoring system officially accepts kW-unit data, some PVs were

identified as sending W-unit data. Most of them even use different units for DC,

AC, and accumulated power values. The monitoring system has an internal logic to

handle this problem because it was expected during the system design. However, a

comparison between the capacity and monitoring data found eight PVs with 100 W-

unit data, which were not expected. The invalid unit error of this type may lead to

a serious economic feasibility problem: the monitoring data multiplied by ten can

make the owner of a low-performance PV believe its normal operation.

2.5.3 Errors: Conflictions Between Static and Monitoring Data

Conflictions within the static information of a PV has been analyzed in Section 2.4.2.

A comparison between the capacity information and real-time monitoring data addi-

tionally found eight PVs that continuously generate higher power than their capaci-

ties. Two of these with deviations of less than a kW are believed to have inverters with

unreported capacity margins, as shown in Fig. 2.9. Another six of these PVs regis-

tered invalid capacity information; for example, one PV with two inverters registered

swapped capacities to the system.
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Figure 2.9: PV power generation with an unreported capacity margin.

2.5.4 Errors: Garbage or Corrupted Values

Garbage or corrupted values in data occur as a result of invalid memory operation in

computer engineering. Accessing an unallocated memory address, possible in a low-

level programming language like C, causes an undefined behavior [70, 71] including

uninitialized garbage value return. Moreover, buffer [72] or integer overflows [73],

well-known buggy conditions in backend software such as communication device

firmware, result in corrupted values for not only the target data but also nearby data.

Three types of memory-related error values were found within the database, par-

ticularly for eight PVs managed by the same company. Five of these sent a value of

65,535 during night hours, which is equal to the maximum value of the unsigned 16-

bit short integer 0xffff. Another PV sent the maximum value of the unsigned 24-bit

integer 0xffffff, 16,777,215. It is expected that their inverters do not assign values to

the memory if no power is generated, whereas communication firmware tries to send

the memory value. The remaining two plants, including the one also presented an
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Table 2.5: Reset of Accumulated Power Generation Value

Datetime
DC Power AC Power Accumulated Generation

(kW) (kW) (kWh)

2019-04-14 11:55:00 251.8 243.4 4,294,898.0

2019-04-14 12:00:00 275.2 267.0 4,294,919.5

2019-04-14 12:05:00 311.4 301.3 4,294,944.5

2019-04-14 12:10:00 221.3 213.6 0.204

2019-04-14 12:15:00 166.7 161.5 16.704

2019-04-14 12:20:00 134.0 129.7 29.204

2019-04-14 12:25:00 93.7 90.5 38.204

2019-04-14 12:30:00 47.5 45.8 43.204

2019-04-14 12:35:00 39.6 38.0 46.704

2019-04-14 12:40:00 47.4 44.8 52.704

invalid capacity problem, showed some corrupted values higher than their capacities.

Firmware bugs, such as accessing incorrect memory addresses or memory overflows,

were suspected as the reason behind these errors. Garbage or corrupted values corre-

sponding to these errors can also be zeros [51] or replications of the last valid values

depending on firmware logic.

One additional error was found for some inverters with accumulation (watt-hour)

meters. Because the accumulated power generation in time has a non-decreasing

value, the meter should reset its value after an interval of time to avoid overflows.

The time to reset is presented in Table 2.5. The accumulated power generation value

was reset near the maximum value of the unsigned 32-bit long integer 0xffffffff,

4,294,967,295, divided by one thousand. Corruption in the accumulated value oc-

curred during reset: an unknown value 0xcc, 204, divided by one thousand, was con-

tinuously added to the value after the reset.
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toring of one PV.

2.5.5 Errors: Terminations of Daily Monitoring

Continuous communications for real-time PV monitoring were occasionally discon-

nected owing to various software and hardware problems, including processing time-

out, power outage, and device replacement. Missing data as a result of the discon-

nection is undesirable because it disrupts the continuity of time-series data. However,

even manual termination of the monitoring process was observed among PVs.

Large-scale PVs tend to maintain the monitoring service the whole day because

the prevention of plant failure has a higher priority than the saving of a small por-

tion of the energy used by monitoring devices. By contrast, small-scale PVs may

decide to turn off their monitoring devices during midnight hours to reduce energy

consumption and enhance economic feasibility. Further, some PVs provide the power

for monitoring devices through their own generation; monitoring at night or cloudy

hours is physically impossible in such cases.
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Table 2.6: Statistics for the Missing of Monitoring Data in Night Hours
Missing Ratio PV Capacity Level (kW) Total

(%) 10 100 1,000 10,000 (ea) (%)

5 5 120 143 65 333 17.85

10 1 4 1 - 6 0.32

20 7 - - - 7 0.38

30 809 2 1 - 812 43.52

40 596 - - - 596 31.94

100 1 30 77 4 112 6.00

Total 1,419 156 222 69 1,866 100.00

A real-world example of the manual termination of PV monitoring is presented

in Fig. 2.10. The termination time was mostly observed at five to midnight; while the

restart time was widely distributed in each day morning. Changes in human behavior

or device startup duration may cause such variations.

Statistics for the missing monitoring data at night are presented in Table 2.6.

Most small-scale PVs terminated monitoring during night hours. Completely missing

night data for some mid- and large-scale PVs imply that these PVs are systematically

controlled by the administrators to terminate monitoring in idle hours.

2.5.6 Errors: Long-term Disconnections

Most intermittent disconnections in monitoring can be recovered within a short time

after their causes are removed by themselves. A simple iterative loop with excep-

tion handling is sufficient for the monitoring system to retry disconnected commu-

nications. The automatic restart function of the monitoring device is also helpful in

dealing with power or firmware failures.
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Disconnections that last more than a week are classified as long-term ones in

this study. These are caused by unexpected serious system failures. For example,

several monitoring devices in the real world experienced issues related to a lack of

firmware memory because of rapidly increasing log file sizes. Some of them took a

week to find these unexpected failures and recover normal communications. Analysis

of the monitoring database found that 1,858 out of 1,866 PVs suffered from long-term

disconnections at least once during their operations.

The longest disconnection found in the database lasted 134 days, roughly one-

third of a year. However, approximately 60% of disconnections were solved by the

operator within 10 days; whereas 99.5% of the disconnections were solved within 35

days, which is approximately a month.

2.5.7 Errors: Fluctuating Data Transmission Periods

Continuous communications between PVs and the monitoring system are established

by a periodic data transmission. Each PV has its own data transmission period of

5–60 min. The length of the transmission period defines the tradeoff between the

system load and data quality; a long period results in insufficient data resolution but

decreases the system network and storage loads. Changing the period length has to

be done after serious deliberations because it breaks the consistency between the

preceding and succeeding data. Therefore, data transmission period changes are not

common after the installation of monitoring devices.

The consistency in the data transmission period was analyzed as Table 2.7. Many

small PVs suffer from fluctuations as a result of intermittent, manual, and long-term

disconnections. Some of them even presented a permanent change in period without
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Table 2.7: Statistics for the Data Transmission Period Consistency
Consistency PV Capacity Level (kW) Total

(%) 10 100 1,000 10,000 (ea) (%)

70 61 2 1 - 64 3.43

80 579 - - - 579 31.03

90 774 - 1 - 775 41.53

100 5 154 220 69 448 24.01

Total 1,419 156 222 69 1,866 100.00
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Figure 2.11: Fluctuation in data transmission period. (a) Cumulative distribution of
the data transmission period for one PV. (b) Time-slots of the corresponding moni-
toring data.

any notification. The analysis result of one PV with both fluctuating and permanently

changed data transmission period is presented in Fig. 2.11. The data transmission

period had permanently changed from 15 min to 1 h on January 30, 2019. The time

slots of the collected monitoring data show additional intermittent fluctuations.

Fluctuations in the data transmission period occur for various reasons. Lack of

network bandwidth during peak hours results in delayed or missing data. The limi-

tation of data processing speed in a server or monitoring device is also a reason. A
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Table 2.8: Sensor Data with Delayed Data Transmission Period in a Sensor Network
Datetime Value

2017-02-20 00:24:59 21.100

2017-02-20 00:25:59 21.100

2017-02-20 00:26:59 21.100

2017-02-20 00:28:00 21.100

2017-02-20 00:29:00 21.100

2017-02-20 00:30:00 21.100

sample of these error data was collected from a sensor network with a lower data

transmission period for better understanding.

Table 2.8 presents part of the monitoring data collected from a sensor network.

It has a fixed data transmission period of 1 min; however, the real period slightly

exceeds this by a few milliseconds because of the monitoring device processing

time. The device firmware did not consider the time difference and naively cast the

millisecond-based time-series as the minute-based one. As a result, missing mon-

itoring data was periodically observed when the accumulated time loss reached a

multiple of one minute.

2.5.8 Errors: Disharmonious Data Collection Timings

Several types of communication failures are analyzed at the PV site level. However,

facilities such as inverters and weather sensors in each PV may face different situ-

ations. Samples of monitoring data were collected for a PV with multiple inverters.

Each inverter has a data transmission period of 15 min. The occurrence of differ-

ent failures at different times and facilities, as presented in Fig. 2.12(b), (c), and (d),

results in disharmonious time-series data with inconsistent data collection timings
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Figure 2.12: Monitoring data of a PV with multiple inverters under different com-
munication failures. (a) Normal communication. (b) Intermittent disconnections. (c)
Long-term disconnections. (d) Delays and periodic disconnections.

between inverters. Statistics for timing consistency were analyzed for 280 PVs with

multiple inverters. The results are summarized in Table 2.9.

Consistency in data timing is an important issue for time-series analysis. The

lack of consistency between the inverter and weather sensor data makes the correla-

tion analysis between the solar irradiance and plant power generation impossible. A

similar problem occurs when linking external service data to the monitoring system.

The monitoring system collects data from two external services, as shown in the

database schema of Fig. 2.6. The electricity market service [74] operated by the Korea

Power Exchange provides unit-balancing price data on an hourly basis. The weather
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Table 2.9: Statistics for the Data Collection Timing Consistency Between Inverters
Consistency Number of Inverters in Each PV (ea) Total

(%) 5 10 20 30 40 (ea) (%)

50 2 1 - - - 3 1.07

60 - - - - - - 0.00

70 - - - 1 - 1 0.36

80 2 - - - - 2 0.71

90 4 12 2 - - 18 6.43

100 194 50 10 1 1 256 91.43

Total 202 63 12 2 1 280 100.00
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Figure 2.13: Discrete time-series data of the national weather forecasting service.

forecasting service [75] operated by the Korea Meteorological Administration pro-

vides weather forecast data on a three-hour basis. The weather forecast data also

have complicated data timing and length, as presented in Fig. 2.13. Data preprocess-

ing is mandatory for these external service data to match their timings and resolutions

to those of the monitoring data, and therefore to enable further analyses such as cash

balance calculation or PV power forecast.
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2.6 Analyses with Error Data

Table 2.10: Summary of Errors Found in the PV Monitoring System Database
Specification of Data Error Statistics in the Database

Target Description Section
Total PVs Error PVs Ratio

(ea) (ea) (%)

Static information Missing 2.4.1 1,951 67 3.29

Static information Redundancy 2.4.1 1,951 18 0.92

Static information Incorrectness (location) 2.4.2 1,872 14 0.75

Static information Incorrectness (address) 2.4.2 1,872 2 0.11

Static information Incorrectness (facilities) 2.4.2 1,872 1 0.05

Monitoring data Invalid (peak value) 2.5.1 1,843 3 0.16

Monitoring data Invalid (unit) 2.5.2 1,866 8 0.43

Monitoring data Invalid (confliction) 2.5.3 1,866 8 0.43

Monitoring data Invalid (memory access) 2.5.4 1,866 8 0.43

Monitoring data Disconnection (daily) 2.5.5 1,866 112 6.00

Monitoring data Disconnection (long-term) 2.5.6 1,866 1,858 99.57

Monitoring data Inconsistency (period) 2.5.7 1,866 643 34.46

Monitoring data Inconsistency (timing) 2.5.8 280 6 2.14

The static and monitoring data errors found in the PV monitoring system database

are summarized in Table 2.10. Each error would directly or indirectly affect the ac-

curacy and availability of data-based PV analyses:

• Missing, redundant, and conflicting static information makes the correspond-

ing data unusable for analyses.

• Incorrect static information may result in completely wrong conclusions.

• Invalid monitoring data values act as outliers and affect the result robustness.
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Figure 2.14: Autocorrelation and partial autocorrelation plots of hourly PV power
generation data.

• Inconsistencies in data period and timing require additional data handling to

match the time resolution.

The effects of errors on data-driven PV analyses were tested, particularly for the

day-ahead hourly power generation forecast. PV power forecast helps a plant admin-

istrator decide a power purchase agreement, control local power supply, or even iden-

tify failures by the comparison with real power data. Autoregressive statistical models

are suitable for forecasting studies because the hourly power generation of a PV has

a strong correlation to its generation in the previous hour. The trend of power genera-

tion also has a short-term seasonality of 24 h. The autocorrelation and partial autocor-

relation plots [53] of Fig. 2.14 reveal these intrinsic properties within the PV power

generation data. Therefore, autoregressive integrated moving average (ARIMA) mod-

els, such as ARIMA(1, 0, 0) (1, 1, 0)24 [76], ARIMA(0, 1, 1) (1, 0, 1)24 [77], and oth-

ers [78], have been widely used for PV power forecast studies.

34



t-3 t-2 t-1
True

Sequence

Forecasted

Sequence

t

t

Hidden

State

t-3 t-2 t-1 t

t

t-3 t-2 t-1 t

t

t
Weights

Weights + Activations

Autoregressive Model Feed-forward Neural Network Recurrent Neural Network

t-3 t-2 t-1 t

Weights + Activations

Figure 2.15: Autoregressive and neural network models for sequence modeling.

Dç?5

Tç

?ç?5

Dç

?ç

Bç Eç Á?ç

forget gate

input gate output gate

êê ê

Kç

Affine Affine Affine Affine

Dç

T5
ç

T6
ç

­

>

S5 S6

LSTMLSTMLSTM

LSTMLSTMLSTM

AffineAffineAffineReLU

tanh

tanh

+

+

×

× UÜ
ç

Dropout

Dropout

Layer

Norm.

p
o
w

er
 (

t-
1
)

w
ea

th
er

 (
t)

p
o
w

er
 (

t-
2
)

w
ea

th
er

 (
t-

1
)

p
o
w

er
 (

t-
3
)

w
ea

th
er

 (
t-

2
)

Affine

Layer

Norm.

ReLU

Affine

Layer

Norm.

ReLU

Affine

Layer

Norm.

ReLU

[fcst]

power

(t-2)

[fcst]

power

(t-1)

[fcst]

power

(t)

Figure 2.16: PV power forecast model using long short-term memory multilayers.

However, a more complicated data-driven model was applied for this analysis.

Autoregressive models can be generalized as feed-forward neural networks, as pre-

sented in Fig. 2.15. Meanwhile, recurrent neural networks (RNNs) further apply a

memory concept to store past information. These have shown better performance

than traditional autoregressive models for PV power forecast studies [79, 80, 81].

The forecast model developed for this analysis comprises two long short-term mem-

ory [82] RNN layers and two feed-forward layers with rectified linear unit [83] ac-
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tivations. The model also contains dropout [84] and layer normalization [85] layers

for regularization. The structure of the model is presented in Fig. 2.16. The model is

trained under a generative adversarial network framework [86] to further regularize

its weight parameters. The robust regression error metric log-cosh loss [87] is applied

during the training to reduce the effect of possible outliers.

The model is trained with historical power and weather data of a maximum two-

year length and inferenced with one-day-length day-ahead forecasted weather data.

Many PV studies, including power forecast research, use the atmospheric conditions

of the PV location to produce accurate results [79, 88, 89]. Public weather data had

been collected from the national weather forecasting service [75] to cooperate PVs

with no weather sensor (e.g. small-scale PVs which suffer from economic feasibility

problems). Three-hour-basis historical and forecasted weather data are interpolated

into one-hour-basis ones to match with the power data.

Five weather parameters are selected as predictor variables for the PV power fore-

cast model: cloudiness, precipitation type, relative humidity, temperature, and wind

speed. Weather parameters that are not provided by the national weather service, such

as solar irradiance, are excluded from the predictor variables. Cloudiness parameter

with an ordinal value is selected as an alternative for solar irradiance. Categorical

precipitation type and numerical relative humidity parameters are assumed to affect

irradiance by absorption and scattering mechanisms of the water vapor in the air. Air

temperature and wind speed parameters are expected to change PV cell temperature

and corresponding performance by convection heat transfer.

Three types of data errors, as shown in Fig. 2.17, were simulated for a PV with

700 kW capacity to show their effects on the forecast accuracy: incorrect static in-
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Figure 2.17: Simulated errors for the PV power forecast study. (a) Incorrect location
information and corresponding weather data. (b) Intermittent peak power value errors
as a result of invalid memory access. (c) Missing monitoring data as a result of data
cleaning with invalid capacity information.

formation in location, invalid monitoring data values, and missing monitoring data.

The performance of a model trained with error data is evaluated by the mean absolute

error (MAE) and root mean square error (RMSE) of the day-ahead hourly forecast

results during a month. These two metrics are normalized by the inverter capacity as

normalized MAE (NMAE) and normalized RMSE (NRMSE). It is a common tech-

nique in PV studies to provide a value similar to the mean absolute percentage error

while considering zero-power generation hours [90].
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2.6.1 Effect of Incorrect Location Information

Incorrect static information in the location results in wrong weather data as the model

input. The impact of each weather parameter on hourly PV power generation is first

analyzed using a linear least squares model [91, 92]:

log pimh =β1clearimh + β2cloudyimh + β3rainimh + β4snowimh

+ β5rehimh + β6tempimh + β7wsdimh + αi + δm + τh + ϵimh (2.1)

where αi, δm, and τh represent fixed effects by an individual inverter i, month-of-

year m, and hour-of-day h, respectively. The three-level cloudiness variable is split

into two dummy variables which represent clear (clearimh) and cloudy (cloudyimh)

conditions. A partly cloudy condition is defined as the combination of zero values

for the dummy variables. The eight-level precipitation-type variable is merged and

then split into two dummy variables rainimh and snowimh. rehimh, tempimh, and

wsdimh represent relative humidity, temperature, and wind speed, respectively. β is

the coefficient of interest and ϵimh is the error term. Hourly PV power generation

pimh is transformed into a logarithmic form to obtain approximations of percentage

changes: a unit increase in a weather parameter multiplies pimh by expβ, which is

approximately expβ = 1 + β + β2/2! + · · · ≈ 1 + β for a small value of β. Data

with zero power, which represent idle states of PVs, are excluded from the analysis

because of the logarithmic transform.

The analysis result is presented in Table 2.11. Solar irradiance conditions, cloudi-

ness and precipitation type, presented a significant impact on hourly power genera-

tion. Snow condition was identified as one with a positive impact because it increases
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Figure 2.18: Effect of distance error in location information on the forecast accuracy.
(a) Normalized mean absolute error (NMAE). (b) Normalized root mean square error
(NRMSE).

the surface albedo and corresponding horizon brightening [93]. Removing the month-

of-year fixed effect change this impact into a negative one; the decrease in solar irra-

diance during winter is merged into the impact of snow condition.

The distance error between the true PV location and incorrect information was

simulated at several levels. The model was trained with the historical weather data

of an incorrect location and inference with the day-ahead weather forecast data of

that location. The increases in NMAE and NRMSE along with the distance error are

presented in Fig. 2.18. Each dot represents NMAE or NRMSE of a day-ahead hourly

forecast result for each day. The two metrics show exponential-like growth trends for

both the median and interquartile range.

2.6.2 Effect of Invalid Monitoring Data Values

Three types of value errors can be found within the monitoring data: intermittent

peaks, invalid units, and garbage values. Appropriate filters are required for data pre-
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Figure 2.19: Effect of randomly doubled values in historical power data on the fore-
cast accuracy. (a) NMAE. (b) NRMSE.

processing to detect errors prior to applying the data as forecast input. However, the

development of a filtering algorithm recursively requires knowledge about errors. Er-

rors that are not familiar to PV administrators, such as garbage or corrupted values

due to memory problems, may not be detected because of the absence of a specialized

filtering algorithm.

The invalid monitoring data value error was simulated as the random occurrence

of doubled power values. It represents not only the intermittent peak values, but also

the corrupted values as a result of accessing a bitwise shifted memory address of the

binary data. This type of doubled-value error was reported by a metering company

for their real-world metering system, without identifying the cause of an error [51].

The level of error occurrence probability was simulated from 5% to 25%, as

shown in Fig. 2.19. Linear growth trends were observed for the NMAE and NRMSE

metrics. The growth in the forecast error was lower than expected because of three

reasons. First, the number of doubled values was half the simulation target because

41



the multiple of zero values at night hours is equal to zero. Second, the effect of the er-

ror in power data was limited because the multivariable forecast model uses weather

parameters as additional predictor variables. Univariable models such as ARIMA

may suffer more significant problems. Lastly, the introduction of the robust regres-

sion error metric during the model training further reduced the effect of outliers with

doubled values.

2.6.3 Effect of Missing Monitoring Data

Missing monitoring data is closely related to data collection problems. Inconsisten-

cies in data collection timing and period generate missing completely at random

(MCAR) [55] patterns. The termination of daily monitoring results in missing val-

ues at night hours, which can be simply assumed to be zero. By contrast, continuous

missing data from long-term disconnections are difficult to recover.

Missing monitoring data can also occur as a result of data cleaning. Correcting in-

termittent peak or corrupted values as missing ones again produces MCAR patterns.

However, correcting for power values exceeding the capacity limit may remove every

high-power data if the target PV suffers from invalid unit error or conflicting static

information error. Missing not at random (MNAR) patterns occur in these cases. In-

troducing time and weather data, which have strong correlations with the power data,

during data imputation may remedy the MNAR situation as the one similar to missing

at random (MAR).

Three imputation methods were applied to both the MCAR and MNAR situations

described here. Complete-case analysis, also known as list-wise deletion [55, 56, 57],

was first tried as the simplest ad-hoc method with its capability of producing unbiased
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estimation for MCAR. A list of daily data is completely removed if any error is found

within its daily power generation data. Therefore, even a small error occurrence of

1% in hourly data may remove 21.4% of daily data and the corresponding statistical

power of the models.

In contrast to the complete-case analysis, mean and regression imputations were

employed to preserve the sample size and corresponding statistical power. Mean im-

putation replaces an error value with the average of the same hour data within the

previous and next one-week intervals. Regression imputation for this analysis applies

a cubic spline [94] to the same interval data in the time domain. Both imputation

methods have their own advantages; the former can decrease the effect of noise in

samples by averaging, and the latter can consider the time-series trend of the data.

More complicated regression methods such as ARIMA and neural network mod-

els were not tested because the development of a precise model for data imputation

recursively requires large error-free data. Multiple imputation methods [95, 96, 97]

were also ignored in this study because training and test for multiple datasets propor-

tionally increase the training time.

The performance of the trained model with the MCAR error in historical power

data is presented in Fig. 2.20. Error bars represent a standard error of the forecast

accuracy for each day. Complete-case analysis, which presented a steep growth in

model error metrics, was identified as an improper method for PV data imputation

because a significant amount of training data was removed during the imputation.

Mean and regression imputations effectively controlled the decrease in model perfor-

mance by replacing the missing values as plausible ones.

Similar but different results were derived from the test with the MNAR error, i.e.,
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Figure 2.20: NMAE and NRMSE of the trained model with different imputation
methods for the random missing error.
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Figure 2.21: NMAE and NRMSE of the trained model with different imputation
methods for the high-power data missing error. (a) NMAE. (b) NRMSE. (c) Nor-
malized absolute error for the test data with only high-power values.

missing of high-power data. Each test simulated the training data cleaning process

with a power value limit of 30—100% of the real PV capacity. Three imputation

methods were again applied after the data cleaning. Regression imputation in the

weather data domain was additionally tested to deal with the MNAR situation as the

MAR one. A simple linear model of temperature and humidity was estimated using

the complete-case data of each hour.

The performance of the trained model shown in Fig. 2.21(a) and (b) exhibits a
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notable decrease in performance as the simulated power limit becomes lower than

70% of the original PV capacity. This value is the same as the maximum power value

found within the test data. Data cleaning with a power limit lower than this value

removes higher values within the training data. As a result, the statistical forecast

model produces unbounded results for the high-power condition.

Fig. 2.21(c) focuses more on such high-power conditions by calculating the fore-

cast performance only for power data with values higher than half of the PV capacity.

A linear but steep decrease in performance was observed regardless of the imputation

method. Complete-case analysis was the most effective among the initial three impu-

tation methods, unless extreme error situations. Mean imputation presented the worst

overall performance in contrast to the MCAR case. Meanwhile, regression imputa-

tion in the weather domain presented the best performance, despite the simplicity of

a linear extrapolation model applied to the imputation. The correlation between the

weather and power data helped to remedy the performance decrease resulted from

the MNAR situation, as expected.

2.7 Conclusion

A PV monitoring system that covers nearly 2,000 plants nationwide in Korea is in-

troduced in this study. Several types of errors in PV monitoring data are categorized

and analyzed with the help of massive data collected by the monitoring system. This

type of study is rare in engineering fields because of the lack of error cases for each

plant and the reluctance to share data among plant owners. PV administrators such

as O&M service companies are expected to benefit from this study as it identifies the

issues that should be checked for their continuous and error-free services. Error iden-
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tification processes that are suggested in this study can be applied to the database or

data collecting API to inherently prevent the collection of erroneous data. The exis-

tence of error-free data also helps researchers conduct data-driven analyses by saving

the data preprocessing time and enhancing the result accuracy.

The errors found in this study are mainly categorized as those within the static

information data and those within the real-time monitoring data. A general focus on

PV data, including data preprocessing targets, may only be limited to monitoring

data. Intermittent errors within the monitoring data are easily notified by administra-

tors because of their invalid or missing values. However, PV power forecast analyses

with simulated error data proved that static information data errors such as invalid

location or capacity significantly affect the accuracy of the results. Double-checking

the PV specification document is the most effective and easiest method to increase the

quality of PV data analyses. If there are remaining monitoring data errors, regression

imputation in the time domain will provide good results in most cases.

The limitation of this study mainly comes from the sample size and privacy is-

sue. One example of the sample size issue is related to the geographical distribution

of PVs. It is expected that a PV in an uninhabited island may suffer from serious

monitoring problems because of unstable network connections, corrosion on moni-

toring devices, and lack of supports for the maintenance. However, it was impossible

to validate this hypothesis because only a few PVs match with this geographical con-

dition. Although this study analyzes the data from approximately 0.5% of nationwide

PVs, a large enough sample in its number, increasing the sample size would enable

additional analyses on data errors.

The names of facility manufacturers or monitoring service companies related to
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error situations are not mentioned in this study because of privacy issues. One thing

that can be said is that each company tends to use the same monitoring devices for ev-

ery PV site, thereby reproducing the same error. Therefore, plant owners should share

their data and opinions to identify the existing issues and provide the service provider

a chance to repair the devices before the issues become a significant problem.
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Chapter 3

Robust Scheduling of a Microgrid

Energy Storage System

with Ancillary Service Considerations

This chapter presents a robust optimal control strategy for an energy storage sys-

tem (ESS) of a grid-connected microgrid. The robust optimal control guarantees the

highest possible economic benefit of the control schedule even under the worst case

net demand prediction error conditions. The global optimum of a concise control

problem can be found within a short computation time using mixed-integer linear

programming. The rolling horizon controller of the energy management system pe-

riodically updates the control schedule by solving the control problem. The state of

charge of an ESS is precisely calculated by the piecewise linearization technique us-

ing nonlinear efficiency maps. Grid ancillary services, which are denoted as external

working conditions in this chapter, can be dynamically applied during the optimiza-

tion process. Two ancillary services are considered: peak control and demand re-

sponse. The proposed strategy provides control robustness in terms of cost reduction,

precise control, and external effect.
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3.1 Background

A microgrid is a localized electrical grid that manages a variety of loads and dis-

tributed energy resources (DERs) within its electrical boundaries [98]. It operates in

a grid-connected or island mode depending on its connection to the main grid. In

a grid-connected operation, it acts as a single controllable resource that enables the

main grid to establish a unified binding contract with regard to its aggregated power

usage pattern [99]. Instead, the main grid takes responsibility for its power quality

control. The entire power/energy capacities of DERs can be utilized for optimal en-

ergy management [100]. By contrast, in an island mode operation, a certain portion

of the DER capacities must be allocated for power quality control such as voltage and

frequency regulations [101].

DERs in a microgrid can be classified as either dispatchable (active) or non-

dispatchable (passive) resources [102]. Controllable conventional generators and un-

controllable renewable generators are typical examples of each category, respectively.

The microgrid energy management system (EMS) predicts the net demand power of

the loads and uncontrollable passive DERs and controls the active DERs. The main

objective of the microgrid energy management is to achieve the highest possible eco-

nomic benefit by minimizing its operating costs [103, 104].

Several control strategies have been applied to microgrid optimal control prob-

lems. Evolutionary algorithms such as genetic algorithm [105, 106, 107] and particle

swarm optimization [100, 108] are generally applied to find a local optimum of the

nonlinear control problem. Levron et al. [109] proposed a dynamic programming ap-

proach to find the global optimum. These algorithms can solve complex optimization

problems, however, they suffer from long computation time. Linear programming
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approaches have been proposed in many studies to overcome this disadvantage.

Linear programming is a subfield of convex optimization. It consists of a linear

objective and linear equality/inequality constraints that define a convex polytope fea-

sible region [110]. The convex feature of the optimal problem guarantees that its local

minimum must be the global one. Although much effort is required to linearize the

control problem; or it is sometimes even impossible, linear programming is worth

trying because of its nearly linear [111] fast computation time.

In addition to linear programming, mixed-integer linear programming (MILP) is

also used for microgrid economic scheduling problems to represent microgrid state

conditions as integer binary variables. Branch-and-cut algorithm [112] is applied to

solve the optimization problem with integer variables. Morias et al. [113] studied

an optimal scheduling of DERs under different unit power costs. Hoke et al. [114]

applied preprocessing and postprocessing steps to work with nonlinear constraints.

Jiang et al. [115] presented an MILP-based optimal scheduling algorithm for both

grid-connected and island modes.

Although the EMS attempts to maximize the economic benefit of a microgrid,

the prediction uncertainty of a net demand power decreases the reliability of the op-

timization. Xiang et al. [103] applied an orthogonal array testing method to control

the worst case scenario. Handschin et al. [116] presented a stochastic optimization

method for price and demand uncertainties. Malysz et al. [117] proposed a fast ro-

bust counterpart optimization that considered the prediction uncertainty threshold.

Both Handschin et al. [116] and Malysz et al. [117] used MILP to achieve robust

optimal results. MILP-based online optimization has been also proposed to deal with

future uncertainty. Parisio et al. [118] proposed a model predictive control to peri-
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odically update the control schedule. Prodan and Zio [119] applied a time-varying

weight concept to improve system reliability. Palma-Behnke et al. [120] presented a

rolling horizon control strategy and communication infrastructures of an EMS.

This chapter first introduces an MILP-based robust optimal control strategy for

an energy storage system (ESS) of a grid-connected microgrid. The robust control

strategy allows the microgrid to robustly maintain a low level of grid power usage

cost even if the net demand prediction error increases within the predefined range.

Several robust optimization approaches are proposed to maximize the worst case eco-

nomic benefit of an ESS operation. The concise form of a control problem can handle

an interval-type net demand prediction uncertainty within a short computation time,

thereby enabling its application as a rolling-horizon controller.

Along with the robust optimization, this chapter presents a method to introduce

2D efficiency maps for the ESS state of charge (SOC) calculation. The efficiency

of an ESS strongly depends on its power and SOC states [121, 122, 123] because

of electrical, electrochemical, or mechanical properties. The application of nonlinear

efficiency maps using a piecewise linearization technique can provide a more precise

control result than that of a fixed efficiency.

Finally, the application of ancillary services is proposed to consider short-term

external effects from the main grid. The robust optimal control strategy can dynami-

cally apply these external working conditions to achieve both robust optimal control

and operational limitations. Two external working conditions are considered in this

study: peak control and demand response. Each condition requires insertion of addi-

tional terms into the optimization problem. The proposed control strategy provides

control robustness in terms of cost reduction, precise control, and external effect.
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The rest of this chapter is organized as follows. The full EMS architecture is de-

scribed in Section 3.2. Robust optimal scheduling of the microgrid ESS is proposed

in Section 3.3. Applications of nonlinear ESS efficiency maps and external working

conditions are presented in Section 3.4 and 3.5. Section 3.6 presents the robust opti-

mal control results under different working scenarios. The chapter summary is given

in Section 3.7.

3.2 System Architecture

This study targets a grid-connected microgrid as presented in Fig. 3.1. Building

and campus microgrids are typical examples of this grid-connected microgrid. Sur-

plus/Insufficient power of the microgrid is traded to the main grid. The microgrid
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Figure 3.1: Typical grid-connected microgrids with their loads and DERs.
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Figure 3.2: Communication flow of the target microgrid EMS. The EMS receives
real-time/future data through its communication interface.

EMS controls its active DERs to achieve the highest economic benefit from the power

transaction. A building microgrid with a controllable ESS is considered in this study.

Fig. 3.2 presents communication between the target microgrid EMS and inter-

nal/external systems. The communication interface receives real-time power usage

data from the internal energy resources. A smart meter measures the real-time power

usage and sends it through BACnet [124] or IEC 61850 [125] protocol. IEC 61850

protocol is also used to transfer DER state information and control commands be-

tween the active DER actuator and the microgrid EMS.

The RESTful [126] application programming interface (API) requests the XML

structured data from three external servers. The price server provides a daily sched-

uled buying/selling system marginal price (SMP). The weather server provides local
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weather forecast. The event server provides additional operating limitations as ex-

ternal working conditions. The prediction module predicts future power usages of

the loads and passive DERs. The optimal control module generates the active DER

control schedule that maximizes the economic benefit under given conditions.

The optimal control module shown in Fig. 3.3 provides rolling horizon control of

the active DER. It applies the latest information to the rolling horizon optimization to

make the administrator manage the remaining time horizon. The MILP-based rolling

horizon controller uses the input information of following XML files: active DER

properties, optimization constants, scheduled external working conditions, unit power

prices, and predicted power usages of the loads and passive DERs.
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3.3 Robust MILP Optimization

3.3.1 ESS Constraints

A simple grid-connected microgrid system presented in Fig. 3.2 is considered in this

study. It contains an ESS as its only active DER. Prior to introducing the grid-level

optimization, the physical system limitations of an ESS have to be considered.

The maximum power of an ESS is limited by the system specification. The min-

imum power of an ESS can be also limited with respect to the operation of internal

equipment, i.e., balance of plants. For example, some vanadium redox flow batter-

ies have the minimum power limitation to guarantee the consistent operation of their

circulating pumps. This study considers both the maximum and minimum power lim-

itations to generalize the problem:

Pmin,spec
chg 1 ≤ Pmin

chg ≤ Pmax
chg ≤ Pmax,spec

chg 1 (3.1)

Pmin,spec
dis 1 ≤ Pmin

dis ≤ Pmax
dis ≤ Pmax,spec

dis 1 (3.2)

Pmin
chg ◦ δchg ≤ Pchg ≤ Pmax

chg ◦ δchg (3.3)

Pmin
dis ◦ δdis ≤ Pdis ≤ Pmax

dis ◦ δdis (3.4)

0 ≤ δchg + δdis ≤ 1 (3.5)

where operator ◦ represents the entry-wise production. Two binary vectors δchg and

δdis indicate the ESS operating state. The ESS system-specified power limitations

are defined as Pmin,spec
chg , Pmax,spec

chg , Pmin,spec
dis , and Pmax,spec

dis . The administrator

can additionally define the user-defined limitations Pmin
chg , Pmax

chg , Pmin
dis , and Pmax

dis

to consider optional properties such as safety and lifetime. Vectors Pchg and Pdis
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represent the charge and discharge power in the entire schedule period, respectively.

The ESS SOC limitation is defined similar to the power limitation. A simple

discrete-time ESS SOC model is defined as

Si+1 =S1 −
∑i

k=1
dtk

(
P k
dis/η

k
dis − ηk

chgP
k
chg

)
/ECap (3.6)

where S is the SOC vector, i is the time-step index, dt is the time-step length vector,

ECap is the ESS energy capacity, and ηchg and ηdis are the charge and discharge

efficiency vectors, respectively. The ESS SOC limitations are expressed as

Smin,spec1 ≤ Smin ≤ S ≤ Smax ≤ Smax,spec1. (3.7)

3.3.2 Non-Robust Approach

The net demand power of the microgrid must be predicted prior to the formulation of

the control problem. The prediction module of the microgrid EMS predicts demand

power PD for Nt discrete time steps using load power consumption pattern PL and

passive DER (PV) power generation pattern PPV . Main grid power usage Pg of the

grid-connected microgrid under ESS operation PESS is expressed as

Pg = (PL − PPV )− PESS = PD − Pdis + Pchg. (3.8)

If there is no ESS operation, the unbalanced microgrid net demand must be traded

with the main grid. The grid power-usage cost in the absence of ESS operation is

∑
P i

D>0
cibP

i
Ddt

i +
∑

P i
D<0

cisP
i
Ddt

i ≡ (cbs ◦ PD)
⊺ dt (3.9)
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where cb and cs are the unit power buying and selling cost vectors, respectively. cb

must be higher than cs to prevent the microgrid from realizing a profit by directly

selling the bought power. Vector cbs represents the unit price applied to the no ESS

condition. Each of its element cibs has a value of cib or cis.

The main objective of the non-robust optimal control is achieving the highest

possible benefit by minimizing the grid power-usage cost during the entire period:

minimize
Pchg ,Pdis

 ∑
i∈{i|P i

g>0}

cibP
i
gdt

i +
∑

i∈{i|P i
g<0}

cisP
i
gdt

i

 . (3.10)

The MILP form of the control problem aims to maximize the economic benefit as

a result of the optimal ESS control. It has 5Nt variables and 5Nt constraints except

for the integer value limitations of binary variables:

minimize {(cb ◦ Pgb + cs ◦ Pgs)− cbs ◦ PD}⊺ dt (3.11)

s.t. Pgb + Pgs = PD − Pdis + Pchg (3.12)

0 ≤ Pgb ≤ P limit
line δg (3.13)

− P limit
line (1− δg) ≤ Pgs ≤ 0 (3.14)

where vectors Pgb and Pgs represent the buying and selling portions of Pg, respec-

tively. Binary vector δg represents the sign of Pg. Constant P limit
line indicates the max-

imum power limitation of the power line, which stands for a large-enough value.

Constraints (3.12)–(3.14) can be converted into general linear form Ax ≤ b. There-

fore, the control problem can be solved using MILP algorithms with optimization

arguments Pgb, Pgs, Pchg, Pdis, and δg.
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3.3.3 Intuitive Approach

Although the optimal control problem requires a future net demand schedule as its in-

put parameter, predicted value PD may include an error because of the perturbations

in the load power consumption and renewable power generation. Robust optimiza-

tion techniques can help in handling the uncertain constants of the control problem.

However, duplicated usages of uncertain constant PD in both (3.11) and (3.12) makes

direct application of these techniques difficult [127].

Interval-type prediction error boundaries Pmin
D and Pmax

D of uncertain net de-

mand PD are introduced to optimize the worst case control result. The main objective

of the robust optimal control is to maintain a high level of benefit regardless of the

prediction uncertainty. Intuitively, it can be assumed that the worst case benefit would

occur under extreme prediction error conditions. The robust optimization form of the

control problem becomes

minimize 1⊺obj (3.15)

s.t. Pgb,1 + Pgs,1 = Pmin
D − Pdis + Pchg (3.16)

0 ≤ Pgb,1 ≤ P limit
line δg,1 (3.17)

− P limit
line (1− δg,1) ≤ Pgs,1 ≤ 0 (3.18)

Pgb,2 + Pgs,2 = Pmax
D − Pdis + Pchg (3.19)

0 ≤ Pgb,2 ≤ P limit
line δg,2 (3.20)

− P limit
line (1− δg,2) ≤ Pgs,2 ≤ 0 (3.21){(

cibP
i
gb,1 + cisP

i
gs,1

)
− cibs,1P

min,i
D

}
dti ≤ obji (3.22){(

cibP
i
gb,2 + cisP

i
gs,2

)
− cibs,2P

max,i
D

}
dti ≤ obji (3.23)
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Table 3.1: Resulting Constraints of the Intuitive Robust Optimization Problem under
Different Operational Conditions

Charge/Discharge Condition obji/dti ≥

0 ≤ Pmin,i
D ≤ Pmax,i

D ≤ P i
dis −cibP

min,i
D − cis

(
P i
dis − Pmin,i

D

)
0 ≤ Pmin,i

D ≤ P i
dis ≤ Pmax,i

D −cibP
min,i
D − cis

(
P i
dis − Pmin,i

D

)
0 ≤ P i

dis ≤ Pmin,i
D ≤ Pmax,i

D −cibP i
dis

−P i
chg ≤ 0 ≤ Pmin,i

D ≤ Pmax,i
D +cibP

i
chg

−P i
chg ≤ Pmin,i

D ≤ Pmax,i
D ≤ 0 −cisP

max,i
D + cib

(
P i
chg + Pmax,i

D

)
Pmin,i
D ≤ −P i

chg ≤ Pmax,i
D ≤ 0 −cisP

max,i
D + cib

(
P i
chg + Pmax,i

D

)
Pmin,i
D ≤ Pmax,i

D ≤ −P i
chg ≤ 0 +cisP

i
chg

Pmin,i
D ≤ Pmax,i

D ≤ 0 ≤ P i
dis −cisP i

dis

−P i
chg ≤ Pmin,i

D ≤ 0 ≤ Pmax,i
D +cibP

i
chg

Pmin,i
D ≤ −P i

chg ≤ 0 ≤ Pmax,i
D +cibP

i
chg

Pmin,i
D ≤ 0 ≤ P i

dis ≤ Pmax,i
D −cisP i

dis

Pmin,i
D ≤ 0 ≤ Pmax,i

D ≤ P i
dis −cisP i

dis

where obj represents the worst case benefit in each time step. Predicted net demand

PD in (3.11) and (3.12) is replaced with its extreme error thresholds Pmin
D and Pmax

D .

Constraints (3.22) and (3.23) limit the worst case benefit as a worse one between

the benefits under extreme error conditions. Table 3.1 lists the conditional result of

(3.16)–(3.23) under different conditions.

The intuitive robust control problem (3.15)–(3.23) has 9Nt variables and 12Nt

constraints. Although the intuitive assumption about the worst case benefit has not yet

been proven, the ESS power partitioning approach [117] could help its certification.
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3.3.4 ESS Power Partitioning Approach

Despite its complex problem structure, the ESS power partitioning approach can

provide a mathematical proof of the robust optimization. It attempts to remove the

equality constraints and duplicated uncertain constants so that the robust counterpart

optimization technique can be applied [127].

Fig. 3.4 presents the graphical explanation of this approach. In the case of pos-

itive demand conditions shown in Fig. 3.4(a) and Fig. 3.4(b), the microgrid has to

buy the unbalanced demand from the main grid. Portion Pdb of discharge power Pdis

first replaces this buying demand. If the discharge power is higher than the demand,

surplus portion Pds is sold to the main grid. Uncertain portion Pdu represents the un-

certain combination of these portions depending on the uncertain PD value. Portions

of charge power Pchg are partitioned similarly. After the partitioning, the grid power
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Figure 3.4: ESS power partitioning approach to disregard the uncertain net demand
power. Four out of twelve possible conditions in Table 3.1 are presented. (a) High
discharge, definitely positive demand (1st). (b) Medium discharge, definitely positive
demand (2nd). (c) High charge, definitely negative demand (5th). (d) Medium charge,
definitely negative demand (6th).
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usage cost (3.10) is converted into

(Cost) = (cbs ◦ PD)
⊺ dt

− (cb ◦ Pdb + cu,dis ◦ Pdu + cs ◦ Pds)
⊺ dt

+ (cs ◦ Pcs + cu,chg ◦ Pcu + cb ◦ Pcb)
⊺ dt

(3.24)

where unit-price vectors cu,chg and cu,dis represent the uncertain combinations of the

buying and selling portions. Each of their elements ciu,chg or ciu,dis is an uncertain

value between cib and cis.

The first term of the objective cost in (3.24), which contains the uncertain value

PD, can be removed by considering only the economic benefit and not the whole

power transaction cost. It is the same approach as applied to (3.11). Demand predic-

tion uncertainty PD is now fully converted into two independent unit-price uncer-

tainties cu,chg and cu,dis. If the interval-type uncertainties are assumed again for the

two, the robust counterpart form of the control problem that considers the worst case

economic benefit is derived as

minimize
obj

obj (3.25)

s.t. − (cb ◦ Pdb + cs ◦ Pdu + cs ◦ Pds)
⊺ dt

+ (cs ◦ Pcs + cb ◦ Pcu + cb ◦ Pcb)
⊺ dt ≤ obj

(3.26)

where obj represents the worst case benefit of the entire period.

Fig. 3.4(a) can provide a simple explanation of (3.26). The worst case economic

benefit occurs when uncertain P i
D is equal to Pmin,i

D so that ciu,dis of (3.24) has its

lowest value cis.
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Considering the power trading condition and robust counterpart optimization, the

following constraints are applied:

Pmin,i
chg δichg ≤ P i

cs + P i
cb + P i

cu ≤ Pmax,i
chg δichg (3.27)

Pmin,i
dis δidis ≤ P i

db + P i
ds + P i

du ≤ Pmax,i
dis δidis (3.28)

Pmax,i
cs δibs,1 ≤ P i

cs ≤ Pmax,i
cs (3.29)

0 ≤ P i
cb ≤ Pmax,i

chg δibs,1 (3.30)

Pmax,i
db

(
1− δibs,2

)
≤ P i

db ≤ Pmax,i
db (3.31)

0 ≤ P i
ds ≤ Pmax,i

dis

(
1− δibs,2

)
(3.32)

Pmax,i
cs δibs,2 ≤ P i

cs (3.33)

Pmax,i
cu δibs,1 ≤ P i

cu ≤ Pmax,i
cu δibs,2 (3.34)

Pmax,i
db

(
1− δibs,1

)
≤ P i

db (3.35)

Pmax,i
du

(
1− δibs,2

)
≤ P i

du ≤ Pmax,i
du

(
1− δibs,1

)
(3.36)

where δbs,1 and δbs,2 are the binary vectors for the power trading condition, as pre-

sented in Table 3.2.

Table 3.2: Grid Trading Decision Table
δibs,1 δibs,2 Power Trading Condition

0 0 selling to the main grid

0 1 uncertain

1 0 infeasible

1 1 buying from the main grid
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The upper limitation of each power portion is derived from its definition:

Pmax,i
cs = min

(
max

(
0,−Pmax,i

D

)
,Pmax,i

chg

)
(3.37)

Pmax,i
db = min

(
max

(
0,Pmin,i

D

)
,Pmax,i

dis

)
(3.38)

Pmax,i
cu = min

(
Pmax,i
chg ,min

(
0,Pmax,i

D

)
−min

(
0,Pmin,i

D

))
(3.39)

Pmax,i
du = min

(
Pmax,i
dis ,max

(
0,Pmax,i

D

)
−max

(
0,Pmin,i

D

))
. (3.40)

The ESS power limitations in (3.3) and (3.4) are replaced by those in (3.27) and

(3.28). The control problem (3.25), (3.26), and (3.29)–(3.36) generates the same re-

sults as in Table 3.1 with 8Nt+1 variables and 14Nt+1 constraints. It is proved that

the intuitive approach is correct and provides an easier explanation.

3.3.5 Combined Constraint Approach

A more concise form of the robust control problem can be formulated by combin-

ing its similar constraints. Table 3.3 lists the compressed conditions for the result of

the intuitive approach in Table 3.1. Two binary vector variables δD,+ and δD,− are

Table 3.3: Compressed Conditions of the Intuitive Approach
Charge/Discharge Condition obji/dti ≥

Pmin,i
D ≤ 0 ≤ P i

dis −cisP i
dis

0 ≤ Pmin,i
D ≤ P i

dis −
(
cib − cis

)
Pmin,i
D − cisP

i
dis

0 ≤ P i
dis ≤ Pmin,i

D −cibP i
dis

Pmax,i
D ≤ −P i

chg ≤ 0 +cisP
i
chg

−P i
chg ≤ Pmax,i

D ≤ 0
(
cib − cis

)
Pmax,i
D + cibP

i
chg

−P i
chg ≤ 0 ≤ Pmax,i

D +cibP
i
chg

63



introduced to combine the remaining conditions:

−P limit
line (1− δD,+) ≤Pmin

D ◦ δD,+ (3.41)

Pmax
D ◦ δD,− ≤P limit

line (1− δD,−) . (3.42)

The concise form of the robust optimal control problem with combined con-

straints is derived as

minimize 1⊺obj (3.43)

s.t.
{
−
(
cib − cis

)
Pmin,i
D δiD,+ − cisP

i
dis + cisP

i
chg

}
dti ≤ obji (3.44){

+
(
cib − cis

)
Pmax,i
D δiD,− − cibP

i
dis + cibP

i
chg

}
dti ≤ obji. (3.45)

The combination of the binary elements δiD,+ and δiD,− indicates the range of an

uncertain net demand in each time step. Because the control problem tries to mini-

mize the objective in (3.43), the feasible combination that produces the lowest obji

limitation value in (3.44) and (3.45) is selected as the optimum set.

The concise form of the control problem (3.41)–(3.45) has only 4Nt variables

and 4Nt constraints except for the binary variable limitations. It provides the same

robust control results as those listed in Table 3.3 within a shorter computation time.

Furthermore, it can replace the non-robust control problem (3.11)–(3.14) by applying

uncertain net demand PD itself, thereby providing a faster computation time.
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3.4 ESS Efficiency Maps

The previously proposed simple ESS model (3.1)–(3.7) uses fixed efficiency value

vectors ηdis and ηchg for its SOC calculation. To improve the accuracy of the ESS

model, the extended model proposed in this study uses 2D efficiency maps. The 2D

efficiency maps of the power and SOC are introduced to provide more precise op-

timization result than that from a constant efficiency value. It enables the EMS to

safely control the ESS without violating its SOC limitations.

The efficiency maps of a massive vanadium redox flow battery system installed

in the target microgrid are presented in Fig. 3.5. They are generated from the ex-

perimental results and known trend information [123]. To handle the nonlinearity of

the efficiency maps, the ESS SOC model is piecewise linearized using the sampled

power and SOC values:

Pmin,i
dis = P i

dis,1 ≤ P i
dis,l ≤ P i

dis,Ndis
= Pmax,i

dis (3.46)
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Figure 3.5: Graphical presentations of the installed vanadium redox flow battery sys-
tem charge/discharge efficiency maps. (a) Surface plot. (b) Contour plot.
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Pmin,i
chg = P i

chg,1 ≤ P i
chg,l ≤ P i

chg,Nchg
= Pmax,i

chg (3.47)

Smin,i = Si
1 ≤ Si

m ≤ Si
NS

= Smax,i (3.48)

where P i
chg,l, P

i
dis,l, and Si

m are the sampled power and SOC constants in each time

step i. P i
chg, P i

dis, and Si are sampled by Ndis, Nchg, and NS times, respectively. The

SOC limitation in (3.7) can be rewritten using the sampled values. Binary variable

δiS,m represents the SOC location within the sampled value ranges:

NS−1∑
m=1

Si
mδiS,m ≤ Si ≤

NS−1∑
m=1

Si
m+1δ

i
S,m,

NS−1∑
m=1

δiS,m = 1. (3.49)

The power limitations in (3.3) and (3.4) are also redefined:

P i
dis =

Ndis∑
l=1

P i
dis,lθ

i
dis,l,

Ndis∑
l=1

θi
dis,l = δidis (3.50)

P i
chg =

Nchg∑
l=1

P i
chg,lθ

i
chg,l,

Nchg∑
l=1

θi
chg,l = δichg (3.51)

where θi
dis is a special ordered set of type 2 (SOS2) [128] representing the weights of

the samples. At most two adjacent elements of θi
dis may take positive values in each

time step. θi
chg is the same. If an MILP solver does not support a special ordered set,

additional constraints are required [129]:

Ndis−1∑
l=1

P i
dis,lδ

i
dis,l ≤ P i

dis ≤
Ndis−1∑
l=1

P i
dis,l+1δ

i
dis,l (3.52)

Nchg−1∑
l=1

P i
chg,lδ

i
chg,l ≤ P i

chg ≤
Nchg−1∑

l=1

P i
chg,l+1δ

i
chg,l (3.53)
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Ndis−1∑
l=1

δidis,l = δidis,

Nchg−1∑
l=1

δichg,l = δichg (3.54)

and the special ordered sets are now defined as

θi
dis,1 ≤ δidis,1, θi

dis,Ndis
≤ δidis,Ndis−1, (3.55)

θi
dis,l ≤ δidis,l−1 + δidis,l ∀l ∈ {2, ..., Ndis − 1} (3.56)

θi
chg,1 ≤ δichg,1, θi

chg,Nchg
≤ δichg,Nchg−1, (3.57)

θi
chg,l ≤ δichg,l−1 + δichg,l ∀l ∈ {2, ..., Nchg − 1} . (3.58)

The step-wise increase or decrease of the ESS energy is also sampled with respect

to the sampled power and SOC:

dEi
dis,lm = P i

dis,l / ηdis
(
P i
dis,l, 0.5

(
Si
m + Si

m+1

))
(3.59)

dEi
chg,lm = P i

chg,l × ηchg
(
P i
chg,l, 0.5

(
Si
m + Si

m+1

))
(3.60)

where ηchg (P, S) and ηdis (P, S) are the 2D efficiency map functions and dEi
chg,lm

and dEi
dis,lm are the sampled effects.

The ESS SOC model (3.6) is now simply linearized as

Si+1 = S1 −
i∑

k=1

dtkdEk/ECap (3.61)

where dEi represents the step-wise change in the ESS energy at the time step i. It is
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selected from sampled values dEi
chg,lm and dEi

dis,lm by the following condition:

(
δiS,m − 1

){
max

l

(
dEi

dis,lm

)
+max

l

(
dEi

chg,lm

)}

≤ dEi −
Ndis∑
l=1

dEi
dis,lmθi

dis,l +

Nchg∑
l=1

dEi
chg,lmθi

chg,l (3.62)

≤
(
1− δiS,m

){
max

l

(
dEi

dis,lm

)
+max

l

(
dEi

chg,lm

)}
.

For each SOC-sample index m, dEi is determined as the sum of the weighted sample

values when δiS,m represents the current SOC location as its value one. The weights

are determined by the current power value with corresponding special ordered sets

θi
chg,l and θi

dis,l.

3.5 External Working Conditions

Microgrid operating limitations that are not specified in the initial EMS specifica-

tions can be dynamically applied to the optimal control problem as external working

conditions. It is possible to achieve both robust optimal control and additional power

limitations by applying them to an online optimization process. For example, the

main grid operator can handle a temporary power shortage by sending a peak control

condition to the event server shown in Fig. 3.2.

Two types of grid ancillary services are introduced as external working conditions

in this study. The peak control (PC) condition defines the peak power limitation. The

demand response (DR) condition represents the energy conservation during a specific

period. Each condition includes energy and time parameters.
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3.5.1 Peak Control

The PC condition defines the peak power limitation of the active DER or the whole

microgrid. Its most common application is the limitation of the grid-buying power.

Under a power shortage situation, grid-level blackout can be prevented by applying

the PC conditions to the grid-connected microgrids.

A grid-buying PC condition within the time-step range i ∈
[
istartPC,g,buy, i

end
PC,g,buy

]
is considered. The following limitation for the peak power has to be additionally

applied to the robust optimal problem:

Pmax,i
D − P i

dis + P i
chg ≤ P i

PC,g,buy + P fail,i
PC,g,buy (3.63)

where PPC,g,buy is the defined power limit value vector and P fail
PC,g,buy is the non-

negative failure amount vector. If the EMS fails to control the peak power under the

limit value, the excess amount value is identified as P fail
PC,g,buy. The upper bound of

the PC failure value is expressed as

P fail,i
PC,g,buy ≤

(
Pmax,i
D + Pmax,i

chg − P i
PC,g,buy

)
×
(
1− δiPC,g,buy

)
(3.64)

where δPC,g,buy is the binary vector that represents the success/failure state of the

PC condition. Even if the target external working condition is too harsh that the EMS

cannot satisfy it during the entire condition applied time steps, the optimization pro-

cess tries to find the best solution by assigning some time steps as failed ones. In this

case, the condition is not applied to these failed time steps by assigning the value zero

to the binary vector elements.
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The objective cost of an external working condition have to be added to the main

control problem objective in (3.11), (3.15), (3.25), or (3.43). The cost of the grid-

buying PC condition is defined as

iend
PC,g,buy∑

i=istartPC,g,buy

{
c1PC,g,buy

(
1 +

(
c2PC,g,buy

)i) (
1− δiPC,g,buy

)
+c3PC,g,buyP

fail,i
PC,g,buy

}
dti (3.65)

where c1PC,g,buy, c2PC,g,buy, and c3PC,g,buy are the grid-buying PC failure penalty con-

stants. The aim of the objective cost is to find the maximum possible success states

of δiPC,g,buy and to reduce the failure power amount of P fail
PC,g,buy.

Non-negative penalty constant c1PC,g,buy represents the effect of the condition

failure states. A high value of this penalty constant enables success/failure state vector

δPC,g,buy to obtain the greatest effect in the full objective cost.

c2PC,g,buy represents the time dependence of the penalty. If the condition is unsat-

isfied in some time steps because of the lack of DER capacities, the faster time steps

should be satisfied first to gain time. It must have a positive value of less than one to

make the time-step index i act as an exponent to prioritize the success states of the

faster time steps. It is similar to the time-varying weight concept [119].

c3PC,g,buy functions as a penalty to reduce the excessive power amount as possible

even when the PC condition is not satisfied.

The grid-selling PC condition can be expressed similar to the grid-buying one.

A net-zero power usage condition can be also achieved by applying both the grid-

buying and grid-selling PC conditions with zero-peak-power limitations. Above con-
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cept (3.63)–(3.65) works as the basic formulation for external working conditions.

3.5.2 Demand Response

The DR condition aims to decrease the total grid energy usage during a specific pe-

riod. The net demand without active DER operations is considered as the reference

usage. The EMS tries to find a proper control schedule to achieve energy conservation

EDR during time-step range
[
istartDR , iendDR

]
:

iend
DR∑

i=istartDR

{
Pmin,i
D −

(
Pmax,i
D − P i

dis + P i
chg

)}
dti ≥ EDR − Efail

DR (3.66)

where Efail
DR represents the non-negative failure amount for the energy conservation.

The minimum and maximum uncertain net demand power boundaries Pmin
D and

Pmax
D are applied as the reference and real power usage, respectively, to consider

the worst case prediction uncertainty.

The upper bound of the DR failure amount is expressed as

Efail
DR ≤

−
iend
DR∑

i=istartDR

(
Pmin,i
D − Pmax,i

D − Pmax,i
chg

)
dti + EDR

 (1− δDR)

(3.67)

where δDR is the DR success state binary vector. The DR condition is robustly sat-

isfied under the worst case prediction uncertainty consideration if δDR has a success

state value of one so that non-negative failure amount Efail
DR has a value of zero.
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The objective cost of the DR condition is defined as

c1DR

(
1 +

(
c2DR

)(DR ID Number)
)
(1− δDR) + c3DRE

fail
DR (3.68)

where c1DR, c2DR, and c3DR are the DR failure penalty constants. If several DR condi-

tions are applied at once, c2DR prioritizes each objective cost using their ID numbers.

3.6 Simulation Results

3.6.1 Computation Time

Table 3.4: Objective and Constraint Equations of the Full Robust Optimal Control
Problem (Part 1)

Model Objective
Constraints

(Power & Cost)

Constraints

(SOC)

Non-Robust (3.11) (3.12)–(3.14)

Intuitive (3.15) (3.16)–(3.23)

ESS Power Partitioning (3.25) (3.26)–(3.36)

Combined Constraint (3.43)
(3.41), (3.42),

(3.44), (3.45)

Simple ESS (3.3)–(3.5) (3.6), (3.7)

Extended ESS (w SOS2) (3.50), (3.51) (3.49), (3.61), (3.62)

Extended ESS (wo SOS2) (3.50)–(3.58) (3.49), (3.61), (3.62)

PC Condition (3.65) (3.63), (3.64)

DR Condition (3.68) (3.66), (3.67)

The objective and constraint equations of the full robust optimal control problem

are listed in Tables 3.4 and 3.5. Three robust optimization approaches are tested using

IBM ILOG CPLEX MILP solver with 3.4-GHz computing power. The control time
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Table 3.5: Objective and Constraint Equations of the Full Robust Optimal Control
Problem (Part 2)

Model Optimization Arguments

Non-Robust Pgb, Pgs, Pchg, Pdis, δg
Intuitive Pgb,1, Pgs,1, Pgb,2, Pgs,2, Pchg, Pdis, δg,1, δg,2, obj

ESS Power Partitioning Pcs, Pcu, Pcb, Pdb, Pdu, Pds, δbs,1, δbs,2, obj

Combined Constraint Pchg, Pdis, δD,+, δD,−

Simple ESS Pchg, Pdis, δchg, δdis, S

Extended ESS (w SOS2) Pchg, Pdis, δchg, δdis, θchg,l, θdis,l, S, δS,m, dE

Extended ESS (wo SOS2)
Pchg, Pdis, δchg, δdis, δchg,l, δdis,l,

θchg,l, θdis,l, S, δS,m, dE

PC Condition Pchg, Pdis, P fail
PC,g,buy, δPC,g,buy

DR Condition Pchg, Pdis, Efail
DR , δDR

horizon consists of 1-h-duration time steps. The operating data and DER information

of the real microgrid shown in Fig. 3.2 are applied to the simulation. Fig. 3.6 shows

the power usage patterns and unit power trading prices that are applied. The net de-

mand prediction error threshold in each time step is set as ±0.5 kW. The efficiency

map and external working condition are not applied in the initial simulation.

Fig. 3.7 shows the comparison between the computation times from different

approaches. The ESS power partitioning approach takes the longest time. The com-

bined constraint approach takes even a shorter time than the non-robust one. The

result shows that the number of constraints in a control problem has the largest effect

on the computation time.

Despite the identical worst case cost results of each approach, the real costs can

vary depending on an uncertain net demand. Fig. 3.8 presents two 48-h robust con-

trol schedules that are generated using the ESS power partitioning approach and
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Figure 3.6: Operating conditions of a grid-connected microgrid for the control prob-
lem input data. (a) Power usage patterns of the microgrid load, PV, and net demand.
(b) Unit power buying/selling prices of the power trade.

combined constraint approach. The first schedule tries to charge the ESS in 31 h.

The charge power must be bought from the main grid as +c31b P 31
chgdt

31 because an

uncertain net demand is definitely positive. By contrast, the second schedule tries

to charge the ESS in 32 h, when an uncertain demand can be either positive or

negative. The unit buying cost is same as the one in 31 h. If the real demand is
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Figure 3.8: Robust optimal control schedules where the worst case cost results are
the same but the real costs can differ depending on an uncertain net demand.

positive as the worst case, the charge power must be bought from the main grid,

too. If not, the charge power first cancels the selling demand as +c32s
(
−P 32

D

)
dt32

+c32b

(
P 32
chg + P 32

D

)
dt32. Two schedules are identical from the viewpoint of robust

optimization, however, the latter is better because of its possible lower real cost.
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3.6.2 Cost Robustness
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Figure 3.9: Yearly cost reduction for the main grid power usage as a result of the daily
robust optimal control. Each strategy targets a different net demand prediction error
threshold for the robust optimal control.

To demonstrate the control robustness in terms of cost reduction, robust optimal

control schedules are applied to uncertain net demand conditions. The uncertain net

demand in each time step contains a normally distributed proportional random noise

as the prediction error. It can reduce the economic benefit of a non-robust control

as a form of undesirable grid power buying/selling. Each robust control schedule is

generated with the consideration for a different net demand error threshold.

Fig. 3.9 presents the yearly cost reduction in the main grid power usage after

applying the daily robust control. The robust optimal control schedule can maintain a

robustly high level of cost reduction even if the prediction error increases within the

target threshold range. Therefore, it shows a better performance than the non-robust

one if the error is close to or larger than the threshold.
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3.6.3 Precise ESS Control
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(b) Optimal control result (nonlinear efficiency maps)

Figure 3.10: ESS SOC values in each time step after applying the optimal control
schedules. Each schedule is derived using the (a) constant efficiency value and (b)
charge and discharge efficiency maps.

The extended ESS model proposed in this study applies nonlinear efficiency maps

to its SOC calculation. Separable programming using the piecewise linearization

method enables the control problem to remain a mixed-integer linear form. Improved

accuracy of the model makes the controller precisely control the ESS without violat-

ing the SOC limitations.
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Fig. 3.10(a) presents the optimal ESS control schedule derived using the constant

efficiency value in the specification. The inaccuracy in the SOC calculation induced

by a constant efficiency value can make the real SOC violate its limitations. As a

result, the ESS hardware has to block the SOC violations in 9 h and 24 h, which

means the optimality of the derived schedule is disrupted. The precise control sched-

ule of Fig. 3.10(b) is free from this problem and can fully use the ESS capacity as

shown in 23 h. The charge power, discharge power, and SOC in each time step are

independently sampled four times for the piecewise linearized ESS model.

The application of the ESS efficiency maps to the optimization also has an ad-

vantage in terms of cost reduction. Fig. 3.11 shows the comparison of the optimal

control schedule and the heuristic one. As presented in Fig. 3.5, the charge/discharge

efficiency maps applied to the control problem show higher efficiency values un-

der higher power conditions. The optimal control schedule attempts to operate the

ESS under higher efficiency regions to minimize its energy loss and the correspond-

ing cost. Compared with the optimal one, the heuristic schedule only considers the

unit-price patterns and tries to evenly distribute the power without violating the SOC

limitation. It may fall into undesirable efficiency regions because it does not consider

the relationship between the efficiency and other conditions. The result presented in

Table 3.6 shows that the optimized control schedule effectively decreases the cost

by operating the ESS under higher efficiency regions only. By contrast, the heuris-

tic schedule fails to decrease the grid power usage cost because of it makes the ESS

operate under lower efficiency regions.
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Figure 3.11: An optimal control schedule versus a heuristic one. The optimal control
schedule tries to operate the ESS under higher efficiency conditions. By contrast, the
heuristic schedule only considers even distribution of the ESS power.

Table 3.6: Optimal Control Considering the ESS Efficiency Map
Control Schedule No ESS Heuristic Optimized

Averaged Efficiency (%) - 76.458 82.513

Cost Reduction ($/day) 0.000 −0.042 +0.336

3.6.4 External Working Condition

Grid ancillary services such as PC and DR can be applied to the robust optimal control

as external working conditions. Penalty constants with appropriate values can force

the controller to satisfy these conditions along with considering the cost optimization.

A harsh PC condition of 10-kW grid power limit is applied to the 24-h duration

robust optimal control from 16 h to 19 h time steps. Fig. 3.12 presents the resulting

ESS control schedule and the corresponding grid power usage. The controller tries

to robustly satisfy the PC condition by limiting the maximum possible grid power

usage within the PC limit. The ESS is charged in the lowest unit-price time steps to

additionally consider the cost optimization.
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Figure 3.12: PC result of the robust optimal control under a net demand prediction
error threshold of 0.5 kW. (a) ESS control schedule. (b) Main grid power usage sched-
ule with the prediction error threshold.

As shown in Fig. 3.12(b), the controller cannot fully satisfy the harsh PC con-

dition because of the insufficient energy capacity of the ESS. The time dependency

of the control penalty makes the controller satisfy the condition from earlier time

steps (16–18 h). It helps the microgrid administrator to gain some time to manage the

failure by delaying its occurrence.
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3.7 Conclusion

This chapter has proposed a robust optimal control strategy for an ESS of a grid-

connected microgrid. The prediction uncertainty of the microgrid net demand power

can reduce the economic benefit of a non-robust control in the form of undesirable

grid power buying/selling. The robust control approaches presented in this chapter

aim to maintain a high level of economic benefit regardless of the prediction uncer-

tainty. Three robust optimization approaches have been presented using MILP. The

intuitive approach provides a logical background for robust optimization. The ESS

power partitioning approach verifies its idea. The concise robust control problem

from the combined constraint approach enables a short computation time, which is

even shorter than the one of the non-robust control problem.

Along with cost robustness, this study has focused on the application of 2D ESS

efficiency maps to the optimization. Despite its complex problem structure, an accu-

rate ESS control schedule can be achieved by precisely calculating the SOC of the

ESS. It also enables the controller to benefit from cost reduction by operating the ESS

under higher efficiency regions only.

The proposed EMS structure can dynamically accommodate grid ancillary ser-

vices as external working conditions. Two different types of additional power lim-

itations have been proposed in this chapter: PC and DR. Proper penalty constants

can change the main objective of the EMS from reducing the power trading cost to

satisfying the external working conditions.

Comparison between robust optimal control schedules shows that the guarantee

for the same worst case cost do not result in the same real cost. There can be multiple

robust optimal control schedules that guarantee the same worst case cost under the
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same net demand uncertainty. Applying each schedule to the real net demand con-

dition may result in a different cost. Future study will focus on the development of

an extended control approach that considers not only the worst case but also the best

case of cost reduction.
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Chapter 4

Robust PV-BESS Scheduling for a Grid

with Incentive for Forecast Accuracy

This chapter proposes a robust cost-optimal scheduling of a battery energy storage

system (BESS) integrated with a solar photovoltaic power plant (PV). A power grid

with an incentive policy is considered. Power transactions between the grid and its

energy resources are normally charged according to the hourly time-of-use tariff. Ad-

ditional hourly incentive is provided as a reversed version of an imbalance tariff; the

owner of an energy resource can receive an incentive if the day-ahead grid-submitted

schedule is maintained during the real-time operation. Accurate forecasting and ro-

bust scheduling are essential for PV-BESS owners to maximize both the transaction

and incentive revenues. The PV power forecast model, which is based on a recurrent

neural network, uses a convolutional neural network discriminator to decrease the

gap between its open-loop one-step-ahead training and closed-loop multi-step-ahead

test dynamics. The application of this generative adversarial network concept to the

model training process ensures a stable day-ahead hourly forecast performance. The

robust BESS scheduling model handles the remaining forecast error as a box uncer-

tainty set to consider the cost-optimality and cost-robustness of the control schedule.
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The scheduling model is formulated as a concise mixed-integer linear programming

form to enable fast online optimization with the consideration for both transaction and

incentive revenues. The introduction of adversarial learning to the forecast model in-

creased the incentive revenue by 7.33%. Moreover, the online BESS scheduling with

the incentive consideration enhanced the overall revenue by 3.73%.

4.1 Background

Solar photovoltaic power plants (PVs) passively convert solar irradiance into electri-

cal power under the current weather condition. They are classified as uncontrollable

variable renewable energy resources (VREs) if there are no control components such

as inverters or battery energy storage systems (BESSs). Grid or electricity market op-

erators should consider non-dispatchable and fluctuating characteristics of VREs to

maintain power, voltage, and frequency balances of the electricity networks. Because

this requires additional efforts of grid or market operators, some operators try to pe-

nalize [130, 131, 132, 133] or incentivize [134, 135] VREs by an imbalance tariff to

indirectly control their deviations from predetermined or forecasted schedules.

This study presents economic scheduling of a VRE within a grid under an in-

centive policy. An integration of a PV and BESS is focused as a general form of a

VRE as presented in Fig. 4.1. Power transactions between the grid and its VREs are

normally charged according to the amounts of power supply and hourly unit prices.

Additional incentives are provided to VREs if they maintain day-ahead submitted

schedules. An energy management system (EMS) is required for a VRE to maximize

both the transaction and incentive revenues. A PV power forecasting algorithm of the

EMS helps to achieve a high incentive and provide a proper initial condition for op-
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Figure 4.1: A schematic diagram of a grid under an incentive policy.

timal power scheduling. An optimal BESS scheduling algorithm helps to maximize

the transaction revenue and adjust the power deviation from the forecasted schedule.

The contribution of this study consists of advances in both algorithms.

PV power forecasting has been studied using physical or statistical data-driven

models [136]. Autoregressive models including autoregressive integrated moving av-

erage (ARIMA) ones [76] have been generally used as a statistical data-driven model.

Recent studies focus more on neural network models. Zhang et al. [88] compared

the multilayer perceptron (MLP), convolutional neural network (CNN), and recur-

rent neural network (RNN) models for PV power forecasting. They concluded that

the long short-term memory (LSTM) RNN model with the CNN-encoded sky image

input outperforms the others. Lee et al. [79] and Gensler et al. [89] also proposed

LSTM models with numerical weather prediction (NWP) data input. Both studies

claimed that their models work better than conventional models such as persistent,
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physical, autoregressive, and MLP models.

There have been various RNN-based models for PV power forecasting. Structural

variations such as attention [80], CNN [137], and fuzzy-logic [138] have been applied

to enhance the forecast accuracy. Some studies introduced prediction intervals [139]

or probability outputs [140] to enhance the forecast reliability indirectly. In contrast

to such approaches in modeling and test, this study presents a modification in the

training process.

PV power forecast models generally focus on one-step-ahead forecasting on a

given time domain [88, 80, 140]. A real-world application of a data-driven fore-

cast model is operated in a rolling or moving horizon manner by updating the input

data with the newest historical ones. Training a model is done in a same open-loop

method; an RNN model with an autoregressive predictor is trained using the ground-

truth input data to accurately forecast one-step-ahead values.

However, grid or market operators generally request multi-step-ahead forecasting

such as day-ahead ones. The forecast model, which is trained using the ground-truth

input data, has to use the step-wise generated data as its input because the ground-

truth data of the future are unknown. The discrepancy between two data distributions

produces inaccurate and unstable forecast results. This study introduces the genera-

tive adversarial network (GAN) to decrease this exposure bias [141] problem. The

application of GAN as an RNN training framework robustly guarantees a similar

level of accuracy for training and test results [86]. Several GAN variants are ana-

lyzed to further improve the robustness: deep convolutional GAN (DCGAN) [142],

least squares GAN (LSGAN) [143], Wasserstein GAN (WGAN) [144], and WGAN

with grid penalty (WGAN-GP) [145].
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Despite the efforts to enhance the forecast accuracy, errors in forecast results are

unavoidable. The cost optimal control of the BESS integrated with a PV suffers from

uncertainties induced by forecast errors. Stochastic or worst-case control strategies

can be considered to robustly solve an optimization problem with uncertainties [146].

The latter is applied in this study for a conservative estimation of the cash flow.

Optimal scheduling of a dispatchable energy resource is generally formulated us-

ing mixed-integer linear programming (MILP) for both robust and non-robust prob-

lems. Morais et al. [113] studied non-robust economic scheduling of a virtual power

plant using MILP. Uncertainties in net demand have been additionally considered in

robust microgrid studies. Zhang et al. [147] assumed a polyhedral uncertainty set for

the worst-case cost optimal dispatch of a conventional generator within a microgrid,

whereas Choi et al. [148] considered a box uncertainty set for the BESS scheduling

problem. Malysz et al. [117] formulated a robust counterpart problem [127] using

MILP to employ both box and polyhedral uncertainty sets.

This study introduces box uncertainty sets of different sizes to the BESS schedul-

ing problem to deal with errors within a day-ahead PV power forecast schedule. The

size of an uncertainty set represents the trade-off between the robustness and opti-

mality. Weighted values of the forecasted PV power are tested as uncertainty bound

candidates. Historic high and low power data are also tested as the simplest solution.

The robust scheduling model proposed in this study considers not only the power

transaction revenue but also the incentive revenue as its cost-optimization objective.

The deviation between the real and forecasted PV power is adjusted using the BESS

operation to enhance the incentive revenue. Fast optimization speed of MILP enables

this online, rolling-horizon update of a control schedule [117]. To further decrease
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the computation time, a concise model form is developed by relaxing some integer

constraints into affine ones.

In summary, this study presents the following contributions:

• Several GAN variants are applied to the PV power forecast model training.

Training with a GAN discriminator ensures a stable day-ahead hourly forecast

performance by decreasing the gap between open-loop training and closed-

loop test dynamics of the RNN model.

• The robust BESS scheduling model focuses on the cost-optimization for both

the power transaction and incentive revenues. Errors in the PV power forecast

result are considered as a box uncertainty set during the robust optimization.

The model is formulated as a concise MILP form to enable online optimization

within a short computation time.

The rest of this chapter is organized as follows. The day-ahead hourly forecast

model for a PV is proposed in Section 4.2. Robust cost-optimal scheduling of a BESS

integrated with a PV is described in Section 4.3. The results and chapter summary are

presented in Sections 4.4 and 4.5, respectively.

4.2 PV Power Forecast Model

4.2.1 Data Preprocessing

Historical power data of a 700-kW PV located in South Korea were collected from

2019 to 2020. Intermittent fluctuations within the real-time data were hourly aver-

aged. An overview of the power and weather data are presented in Fig. 4.2.
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Figure 4.2: Overview of the training data. (a) Heatmap for the hourly power data. (b)
Correlations between the power and weather data at daily noon.

Nowcasted and forecasted weather data were provided by the national NWP ser-

vice of Korea. Five ordinal, categorical, and numerical parameters within the NWP

data were selected as the predictor variables for the PV power forecast model: cloudi-

ness, precipitation type (rain and snow), humidity, temperature, and wind speed. So-

lar irradiance is not used in this study because it is not provided by the NWP service.

Instead, the cloudiness is used with its strong relationship with the power data as

presented in Fig. 4.3. The difference between the real and NWP data may affect the

accuracy of the PV power forecast model; this effect is tested in Section 4.4.5.

The fundamental operation of a PV cell is determined by the global horizontal (or

tilted) irradiance and cell temperature with respect to its I-V curve. Hybrid physical-

statistical models can be developed to further consider these parameters [93, 136];

however, they are beyond the scope of this study. This study focuses on the training

process of a fully statistical forecast model and uses the given data themselves. It is

inherently assumed that the historical power data reflect these parameters under the

corresponding weather conditions.
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Figure 4.3: Two-day length sample data. (a) Power data and their hourly averages.
(b) Comparison between the real (nowcasted) and day-ahead forecasted cloudiness.

Power and weather values that exceeded valid ranges were eliminated as anoma-

lies. Constant values during a long time-interval were eliminated as well. Power xp

and weather xw data of each time index t are normalized with mean µ and standard

deviation σ at the end of the preprocessing stage:

xtp ←
(
xtp − µp

)
/σp; x

t
w ←

(
xtw − µw

)
/σw. (4.1)

4.2.2 RNN-based Sequence Generator

This study proposes a PV power forecast model as an RNN-based sequence generator.

An LSTM [82] cell in Fig. 4.4 stores autocorrelated information. The MLP layers

connect the RNN and affine output layers. Layer normalization [85] and Dropout

[149] are additionally applied for regularization.
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Figure 4.4: Network structure of the RNN-based sequence generator.

An autoregressive forecast model, including the proposed generator network G

of Fig. 4.4 and 4.5, is generally trained in an open-loop teacher forcing mode; model

parameters are optimized so that the inferred output yt−1 from the ground-truth input

data xt−1 matches with the ground-truth value xt as the forecasted value x̃t. This

method resembles the operation of an hour-ahead forecast model, and is therefore

suitable for it.

Open-loop hour-ahead forecasting of a basic sequence generator model can be

represented as

[x̃tp, x̃
t
w] = G

(
[xt−1

p , xt−1
w ], ct−1, ht−1

)
(4.2)

= G
(
[xt−1

p , xt−1
w ], [xt−2

p , xt−2
w ], ct−2, ht−2

)
(4.3)

= G
(
xt−1
p , xt−2

p , ..., xt−1
w , xt−2

w , ...
)
. (4.4)
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Figure 4.5: Adversarial training process of the RNN-based sequence generator net-
work with the CNN-based sequence discriminator.

Starting from this basic model, x̃tw in the left-hand side is removed because the fore-

cast model does not target weather forecasting. Moreover, x̃tw is used as a model input

because it is provided by the national NWP service as a forecasted value. The sym-

bol tilde is removed as xtw to represent that it is not an output of the forecast model.

The effect of xtw accuracy on the forecast performance is tested in Section 4.4.5. The

modified model is now represented as

x̃tp = G
(
xt−1
p , xt−2

p , ..., xtw, x
t−1
w , xt−2

w , ...
)

(4.5)

= G
(
xtw, [x

t−1
p , xt−1

w ], [xt−2
p , xt−2

w ], ..., [x0p, x
0
w]
)

(4.6)

= G
(
[xt−1

p , xtw], [x
t−2
p , xt−1

w ], ..., [x1p, x
0
w], x

0
p

)
(4.7)

≈ G
(
[xt−1

p , xtw], [x
t−2
p , xt−1

w ], ..., [x1p, x
0
w]
)
. (4.8)

There are two approaches to handle xtw as a model input. The model (4.6) uses it

as an additional input, e.g., the second input for an MLP layer. The model (4.8) just
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delays the power data to prevent this doubled weather data input. The oldest power

value is dropped with the assumption for its small correlation. The model proposed

in Fig. 4.4 and 4.5 takes the latter approach without comparing their performances.

4.2.3 CNN-based Sequence Discriminator

General open-loop training method for an hour-ahead forecast model is introduced

in Section 4.2.2. However, a day-ahead hourly forecast model has to be operated un-

der a closed-loop free-running mode; the model recursively uses the forecasted value

as its input. Discrepancy between the training and test dynamics may result in un-

expected behaviors. For example, a persistent model x̃t = xt−1, which belongs to

the first-order autoregressive model, can provide an acceptable open-loop forecast

performance if the time difference between xt and xt−1 is small. By contrast, the

closed-loop operation of this model only results in a fixed initial value x̃t = x0.

Complicated models can also present unexpected behaviors when the model encoun-

ters an unexposed erroneous power value during the inference. Moreover, open-loop-

optimized model parameters can comprise a feedback loop that amplifies the fore-

cast error or disturbs the forecasted value by saturation or oscillation. A closed-loop

training method cannot be a solution because of the poor [150] or inconsistent [151]

performance of the trained model.

A GAN-based training framework [86] is employed in this study to guarantee the

stable performance of the trained model. The generator is trained in such a way that

the discriminator fails to distinguish its training and testing dynamics.

The adversarial training process of the generator G and discriminator D is pre-

sented in Fig. 4.5. The forecast model G with the parameter θg outputs a power
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forecast data sequence x̃p in both the teacher forcing and free-running modes:

x̃tp,TF = G
(
[xt−1

p , xtw]; θg
)

(4.9)

x̃tp,FR = G
(
[x̃t−1

p,FR, x
t
w]; θg

)
(4.10)

x̃1p,either = G
(
[x0p, x

1
w]; θg

)
. (4.11)

Selected input, hidden, or output sequences from the generator operation are con-

catenated as the behavior sequence B. A CNN-based discriminator D tries to identify

whether the sequence comes from teacher forcing or free-running mode. It consists

of convolutional, batch or layer normalization, and leaky ReLU layers, following the

DCGAN guideline [142].

4.2.4 Training Objectives

The discriminator of a GAN is first trained nd times with its objective Ld for each

epoch. The generator is next trained with Lg+αL, where L is its original objective as

a forecast model, Lg is the GAN objective, and α is the weight. A robust regression

error metric is applied for L to decrease the effect of possible outliers within the

ground-truth data. Huber [152] and log-cosh losses are applicable for this purpose;

the latter is applied to this study because it does not require additional parameters:

L =

Tfinal∑
t=Tinit

log cosh
(
xtp − x̃tp,TF (θg)

)
(Tfinal − Tinit + 1)

. (4.12)

The discriminator tries to classify behavior sequences from teacher forcing BTF

and free-running BFR modes as 1 and 0, respectively. Therefore, the standard GAN
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objective of the discriminator D with the parameter θd is

Ld (θd) =− log [D (BTF (θg) ; θd)]− log [1−D (BFR (θg) ; θd)] . (4.13)

In contrast, the generator tries to fool the discriminator by maximizing (4.13). It

is converted into minimizing

Lg (θg) =− log [1−D (BTF (θg) ; θd)]− log [D (BFR (θg) ; θd)] . (4.14)

The second term of (4.14) makes the generator maintain its free-running behavior

similar to the teacher forcing one. The first term, which ensures the opposite, can be

neglected if needed.

Three variants of the GAN are additionally tested in this study to further im-

prove the robustness. LSGAN [143], which aims to maintain a stable gradient during

training, is applied by removing the sigmoid discriminator output and replacing the

cross-entropy loss with the quadratic one:

Ld (θd) = [D (BTF (θg) ; θd)− 1]2 /2 + [D (BFR (θg) ; θd)− 0]2 /2 (4.15)

Lg (θg) = [D (BTF (θg) ; θd)− 0]2 /2 + [D (BFR (θg) ; θd)− 1]2 /2. (4.16)

WGAN [144] also removes the sigmoid output and cross-entropy loss. Weights

of the discriminator are clamped with a box constraint [−c, c], which is normally

[−0.01, 0.01], to ensure the K-Lipschitz duality condition:

Ld (θd) = −D (BTF (θg) ; θd) +D (BFR (θg) ; θd) (4.17)
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Lg (θg) = +D (BTF (θg) ; θd)−D (BFR (θg) ; θd) (4.18)

θg ← clip (θg,−c, c) . (4.19)

Although WGAN remedies the vanishing gradient problem, its performance de-

pends on a value of the clipping parameter c. WGAN-GP [145] alternatively enforces

the 1-Lipschitz condition by introducing a penalty on the gradient norm that varies

from 1:

B́ (θg) =ϵBTF (θg) + (1− ϵ)BFR (θg) (4.20)

Ld (θd) =−D (BTF (θg) ; θd) +D (BFR (θg) ; θd)

+ λ
[∥∥∥∇B̂D

(
B́ (θg) ; θd

)∥∥∥
2
− 1

]2 (4.21)

Lg (θg) = +D (BTF (θg) ; θd)−D (BFR (θg) ; θd) (4.22)

where λ is the penalty weight with its usual value 10 and ϵ is the random variable

from the uniform distribution U [0, 1].

4.2.5 Training and Validation

Additive input noise, which has presented enhanced [153] or reduced [154] accuracy

for RNN model training, is tested as a data augmentation method for the power data.

It also works as an adversarial example [155] by providing unrealistic non-zero power

values for night times. Gaussian noise ξ ∼ N(0, Aσp) with the amplitude parameter

A ∈ {0, 0.005, 0.01} is added to the power value of each training time step:

x̃tp,TF = G
([
xt−1
p + ξ, xtw

]
; θg

)
. (4.23)
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Figure 4.6: Walk-forward cross-validation with an expanding window.

Walk-forward cross-validation illustrated in Fig. 4.6 is applied for the hyperpa-

rameter optimization. Training data of 386×24-hour length are divided into 7×24-

hour length ones to avoid the vanishing gradient problem. Temporal discontinuities

less than three days are neglected. Splitting is done without an overlap to avoid over-

fitting due to duplicated data.

Each model is trained under candidate hyperparameter values for validation. Day-

ahead forecast performance of the trained model is evaluated for ten different days.

Optimized hyperparameter values for each model are listed in Table 4.1.
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Table 4.1: Hyperparameter Optimization
GAN Parameter RNN DC LS W W-GP

G
RNN Hidden 49, Depth 2, Dropout 0.2

MLP Hidden 52, Depth 1, Dropout 0.5

D CNN Kernel 3x3, Depth 5, Dropout 0.2

Training Batch size 5, Epoch 300, Adam optimizer

Learning Rate 1e-3 1e-3 1e-3 1e-3 2e-4

Momentum 0.9 0.5 0.5 0.5 0.5

GAN
Lg Terms – Both 2nd only Both Both

(nd, α) – (1, 10) (1, 10) (1, 1) (1, 30)

4.3 Robust BESS Scheduling

4.3.1 Power Transaction Revenue

A grid that supplies power with the hourly buying price ctb and purchases with a

lower selling price cts is suggested. A standalone PV simply pays a negative hourly

settlement−ctsxtp to the grid. In case of a PV with a BESS, the net power supply xnet

from the grid must be considered:

xtnet = −xtp − xtdis + xtchg (4.24)

where xchg and xdis are the BESS charge and discharge powers, respectively. The

non-robust BESS scheduling problem to minimize the additional payment to the grid

is formulated as an MILP expression using the forecasted PV power x̃tp:

min
∑Tfinal

t=Tinit

rt (4.25)

s.t. rt =
(
ctbx

t
net,+ + ctsx

t
net,−

)
−
(
−ctsx̃tp

)
(4.26)
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xtnet,+ + xtnet,− = −x̃tp − xtdis + xtchg (4.27)

0 ≤ xtnet,+ ≤ PBESSδ
t
net (4.28)

− (PPV + PBESS)
(
1− δtnet

)
≤ xtnet,− ≤ 0 (4.29)

where rt is the additional payment during the scheduling time range Tinit and Tfinal.

The binary value δtnet indicates the sign of xtnet with xtnet,+ and xtnet,−. PPV and

PBESS are the power capacities of the PV and BESS, respectively. The degradation

of an energy resource is neglected.

BESS constraints for xtchg and xtdis are also applied as

0 ≤ xtchg ≤ PBESSδ
t
BESS (4.30)

0 ≤ xtdis ≤ PBESS

(
1− δtBESS

)
(4.31)

Einit −
∑t

k=Tinit

(
xkdis/η − xkchgη

)
≥ SminEBESS (4.32)

Einit −
∑t

k=Tinit

(
xkdis/η − xkchgη

)
≤ SmaxEBESS (4.33)

Einit −
∑Tfinal

k=Tinit

(
xkdis/η − xkchgη

)
= Efinal (4.34)

where δtBESS is the charge/discharge flag, EBESS is the BESS energy capacity, and

η is the efficiency. Einit and Efinal are the initial and final energy storage conditions,

respectively. Smin and Smax represent the state of charge (SOC) limitation with their

values between zero and one.

The deterministic problem of (4.25)–(4.29) is transformed into a nondeterminis-

tic one if the forecast error is considered. A box uncertainty set
[
xtp,min, x

t
p,max

]
is

applied as the error range for the real PV power xtp = x̃tp + ζ∆xtp with the maximum
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deviation ∆xtp and uncertainty ζt ∼ U [−1, 1]:

min
∑Tfinal

t=Tinit

rt (4.35)

s.t. rt =
(
ctbx

t
net,+ + ctsx

t
net,−

)
−
{
−cts

(
x̃tp + ζ∆xtp

)}
(4.36)

xtnet,+ + xtnet,− = −
(
x̃tp + ζ∆xtp

)
− xtdis + xtchg (4.37)

0 ≤ xtnet,+ ≤ PBESSδ
t
net (4.38)

− (PPV + PBESS)
(
1− δtnet

)
≤ xtnet,− ≤ 0. (4.39)

The worst-case cost-optimization version of this nondeterministic problem can

be intuitively derived as follows:

min
∑Tfinal

t=Tinit

rt (4.40)

s.t. rt ≥
(
ctbx

t
net1,+ + ctsx

t
net1,−

)
−
(
−ctsxtp,max

)
(4.41)

rt ≥
(
ctbx

t
net2,+ + ctsx

t
net2,−

)
−
(
−ctsxtp,min

)
(4.42)

xtnet1,+ + xtnet1,− = −xtp,max − xtdis + xtchg (4.43)

xtnet2,+ + xtnet2,− = −xtp,min − xtdis + xtchg (4.44)

0 ≤ xtnet1,+ ≤ PBESSδ
t
net1 (4.45)

0 ≤ xtnet2,+ ≤ PBESSδ
t
net2 (4.46)

− (PPV + PBESS)
(
1− δtnet1

)
≤ xtnet1,− ≤ 0 (4.47)

− (PPV + PBESS)
(
1− δtnet2

)
≤ xtnet2,− ≤ 0 (4.48)

The selection of a proper ∆xtp value for this optimization problem affects the trade-

off between the cost-optimality and cost-robustness of the resulting control schedule.
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This robust optimization problem has been reformulated as various MILP forms

to reduce the computation time [148, 117]. However, it is possible to derive a sim-

ple LP form from (4.35)–(4.39). It starts from splitting the cases with respect to the

integer value of δtnet. If δtnet = 1, xtnet,− = 0 and

rt =
(
ctbx

t
net,+ + ctsx

t
net,−

)
−
(
−ctsxtp

)
(4.49)

=
(
ctbx

t
net,+ + 0

)
−
(
−ctsxtp

)
(4.50)

=
(
ctbx

t
net,+ + ctbx

t
net,−

)
−
(
−ctsxtp

)
(4.51)

= ctb
(
−xtp − xtdis + xtchg

)
+ ctsx

t
p. (4.52)

Same steps can be applied to the remaining case for δtnet = 0. The resulting nonde-

terministic problem becomes

min
∑Tfinal

t=Tinit

rt (4.53)

s.t. rt ≥ ctb
(
−xtp − xtdis + xtchg

)
+ ctsx

t
p −M

(
1− δtnet

)
(4.54)

rt ≥ cts
(
−xtp − xtdis + xtchg

)
+ ctsx

t
p −Mδtnet (4.55)

− xtp − xtdis + xtchg ≤ PBESSδ
t
net (4.56)

− xtp − xtdis + xtchg ≥ − (PPV + PBESS)
(
1− δtnet

)
(4.57)

where M is a large enough number. Considering the sign of xtnet and following value

of δtnet, it is possible to conclude that δtnet terms are redundant; the initial assumption

ctb ≥ cts activates only the correct condition between (4.54) and (4.55):

min
∑Tfinal

t=Tinit

rt (4.58)
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s.t. rt ≥ ctb
(
−xtp − xtdis + xtchg

)
− cts

(
−xtp

)
(4.59)

rt ≥ cts
(
−xtp − xtdis + xtchg

)
− cts

(
−xtp

)
. (4.60)

The worst-case optimal version of this LP form is derived by applying the uncer-

tainty range for xtp:

min
∑Tfinal

t=Tinit

rt (4.61)

s.t. rt ≥ −ctbxtdis + ctbx
t
chg −

(
ctb − cts

)
xtp,min (4.62)

rt ≥ −ctsxtdis + ctsx
t
chg. (4.63)

The robust BESS scheduling problem of (4.30)–(4.34) and (4.61)–(4.63) reveals

a simple intuition. A PV without the BESS operation initially sells its power to the

grid. The BESS charge power that is definitely lower than the PV power maintains

the negative sign of xtnet and only decreases the selling revenue as (4.63). By contrast,

the charge power that may be higher than the PV power possibly changes the selling

behavior into the buying one as (4.62). Only the lower boundary value xtp,min of the

PV power forecast uncertainty is required for this worst-case optimization problem.

4.3.2 Forecast Accuracy Incentive

VREs can disturb the stability of an electricity network with their variable power

generation. Incentives or penalties for the VRE operators have been proposed by

some network operators to encourage them to submit forecasted generation sched-

ules, thereby decreasing uncertainties in the network management.

The forecast accuracy incentive in Korea [135] is applied to this study as a re-

102



versed version of an energy imbalance tariff [130]. A VRE operator can get an hourly

incentive with the price ci depending on the absolute error (AE) of the day-ahead

forecasted schedule submitted at yesterday 10 or 17 h. Following general conditions

are required:

• The normalized absolute error (NAE), the AE normalized by the VRE power

capacity, has to be less than 8%.

• The capacity utilization rate, the power normalized by the capacity, has to be

higher than 10%.

• The normalized mean absolute error (NMAE) for the hours that meet both

conditions should be less than 10% for each month.

• If a VRE consists of multiple energy resources (e.g., PVs and BESSs), the

operator can submit a net power generation schedule. However, the normaliza-

tion is done by an aggregate capacity of only the non-dispatchable resources to

prevent the distortion on the incentive policy.

A BESS integrated with a PV is day-ahead scheduled to maximize the power

transaction revenue. At the time of its operation, the BESS can decide to deviate

from the original schedule if the PV power forecast error significantly decreases the

incentive revenue. The BESS is first rescheduled for the current time step to adjust

the net power generation to be closer to the submitted schedule. It is then rescheduled

for the remaining hours. Fast optimization using the simple LP form of (4.61)–(4.63)

is helpful for this online control.

During the online optimization, the real PV power xtp is known for the current
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time. Therefore, robust optimization using the uncertainty set is not required for Tinit:

min
∑Tfinal

t=Tinit

(
rt − it

)
(4.64)

s.t. rt ≥


−ctbxtdis + ctbx

t
chg −

(
ctb − cts

)
xtp if t = Tinit

−ctbxtdis + ctbx
t
chg −

(
ctb − cts

)
xtp,min otherwise

(4.65)

rt ≥ −ctsxtdis + ctsx
t
chg (4.66)

where it is the incentive revenue. Nondeterministic constraints for it are derived ac-

cording to the incentive policy:

−x̂tnet = x̂tp + x̂tdis − x̂tchg (4.67)

εtmax = (0.92PPV + 2PBESS)
(
1− δtε

)
+ 0.08PPV (4.68)

εtmax ≥
(
xtp + xtdis − xtchg

)
−
(
−x̂tnet

)
(4.69)

εtmax ≥ −
(
xtp + xtdis − xtchg

)
+
(
−x̂tnet

)
(4.70)

xtp ≥ 0.1PPV δ
t
p (4.71)

it ≤ cix
t
pδ

t
ε (4.72)

it ≤ cix
t
pδ

t
p (4.73)

where −x̂tnet is the net power generation schedule that was day-ahead submitted to

the grid. Its fixed value consists of the day-ahead forecasted PV power x̂tp and the

day-ahead scheduled BESS power x̂tchg and x̂tdis.

The theoretical maximum error between the submitted and real generation sched-

ule is |(PPV +PBESS)−(−PBESS)| when (xtp, x
t
dis, x

t
chg) = (PPV , PBESS , 0) and
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(x̂tp, x̂
t
dis, x̂

t
chg) = (0, 0, PBESS), or vice versa. By contrast, the incentive policy de-

fines 0.08PPV as the error threshold. εtmax of (4.68)–(4.70) represents these error

restrictions with respect to the binary value of δtε. The binary value of δtp in (4.71)

indicates the remaining power restriction 0.1PPV . Monthly NMAE restriction is ne-

glected in this problem.

The robust counterpart of (4.69)–(4.73) for the deterministic optimization prob-

lem is derived as follows:

εtmax ≥


(
xtp + xtdis − xtchg

)
−
(
−x̂tnet

)
if t = Tinit(

xtp,max + xtdis − xtchg

)
−
(
−x̂tnet

)
otherwise

(4.74)

εtmax ≥


−
(
xtp + xtdis − xtchg

)
+
(
−x̂tnet

)
if t = Tinit

−
(
xtp,min + xtdis − xtchg

)
+
(
−x̂tnet

)
otherwise

(4.75)

xtp,min ≥ 0.1PPV δ
t
p (4.76)

it ≤ cix
t
p,minδ

t
ε (4.77)

it ≤ cix
t
p,minδ

t
p. (4.78)

The robust optimal control problem of (4.30)–(4.34), (4.64)–(4.68), and (4.74)–

(4.78) tries to maximize both the power transaction and incentive revenues. The on-

line optimization flow for the proposed problem is presented in Algorithm 1. The

control schedule is continuously updated for the receding time range [Tinit, Tfinal].

Tfinal is fixed as midnight because the transaction price cb and cs in Korea are up-

dated on a daily basis.

The online optimization flow of Algorithm 1 can also be applied to sub-hourly
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Algorithm 1: Online Optimization

1: Preprocess historical PV data xtp and NWP data xtw
2: Tinit ← 1 and Tfinal ← 24
3: Day-ahead forecast of xtp as x̃tp
4: Define

[
xtp,min, x

t
p,max

]
with the consideration about x̃tp

5: Solve (4.30)–(4.34) and (4.61)–(4.63) for xtchg and xtdis
6: x̂tp ← x̃tp, x̂tchg ← xtchg, and x̂tdis ← xtdis
7: for Tinit = 1, 2, . . . , Tfinal do
8: xTinit

p becomes a known value
9: Update xtchg and xtdis

by solving (4.30)–(4.34), (4.64)–(4.68), and (4.74)–(4.78)
10: Einit ← Einit − xTinit

dis /η + xTinit
chg η

11: end

scheduling in a minute or second basis. Receding horizon control can be considered

by defining Tfinal as a fixed offset from Tinit. The concise problem structure enables

to solve the problem for 3× 60 time steps within 300 ms, thereby enabling an online

adjustment for the net power generation. Detailed analysis for the computation time

is presented in Section 4.4.7.

4.4 Results

4.4.1 Benchmark Models for PV Power Forecasting

The proposed RNN models are developed using PyTorch [156]. Several benchmark

models are further introduced in this study to compare the day-ahead hourly forecast

performance.

• Persistent model, x̃tp = xt−24
p , is used as a naive baseline.

• Exponential moving average (EMA) is applied in an hourly manner, according
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to x̃tp = 0.9xt−24
p + 0.1x̃t−24

p = 0.9xt−24
p + 0.1(0.9xt−48

p + 0.1x̃t−48
p ) = · · · .

• Two seasonal ARIMA models are tested on behalf of statistical methods:

ARIMA(1, 0, 0)(1, 1, 0)24 from [76] and (0, 1, 0)(0, 1, 1)24 from the autocor-

relation analysis.

• Scheduled sampling (SS) [150], which selects the training input between the

ground-truth and predicted values for each step, is tested for the RNN model

with the ground-truth selection probability of 26/(25 + exp(t/25)).

4.4.2 Stability of the PV Power Forecast Results

The enhanced stability of an RNN model is analyzed by repeatedly evaluating the

day-ahead hourly forecast accuracy. Each model is independently trained and vali-

dated five time for each of the ten validation dates. The basic RNN model is trained

in a general open-loop mode with its optimal hyperparameters; others are trained with

the consideration for the close-loop forecast performance.
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Figure 4.7: Repeated stability test of RNN models for each validation date.
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Table 4.2: Stability Test for RNN Models
Stability (×10−2) RNN SS DC LS W W-GP

Avg(Q4-Q0) 7.49 9.36 9.19 6.48 8.49 3.16
Avg(Q3-Q1) 3.64 3.94 2.62 1.86 2.48 1.24

Avg(Q2) 6.98 4.85 4.86 6.04 5.40 5.78

Avg(Q4-Q0) wo the 7th 4.91 6.38 4.79 6.18 7.16 2.38
Avg(Q3-Q1) wo the 7th 1.66 3.54 1.72 1.54 1.91 1.07

Avg(Q2) wo the 7th 5.32 4.75 4.82 5.83 3.60 4.91

Fig. 4.7 presents the result as a box plot with whiskers from the minimum to the

maximum. In contrast to the stable and small training loss, the validation loss varied

significantly for some models. An averaged value of the validation loss deviation

is listed in Table 4.2 as a stability measure. Training the forecast model under the

WGAN-GP framework reported the most stable result.

It should be noted that every model presented a stability problem for the sev-

enth day, when the wind was uncommonly strong on a sunny day. Lack of similar

data within the training set made the trained model produce an unstable result. And

this instability might have diverged during the closed-loop inference for day-ahead

forecasting. WGAN-GP helped to restrict this instability.

The effect of the additive input noise as an adversarial example is also analyzed

as Fig. 4.8. DCGAN, LSGAN, and WGAN produced significantly improved results

with the noise amplitude 0.005. SS showed enhanced stability but slightly increased

median loss. WGAN-GP performed worse with the noise. Additive noise with ampli-

tude 0.005 was applied to every model except WGAN-GP for the following analyses.
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Figure 4.8: Effect of additive noise on validation loss.

4.4.3 Accuracy of the PV Power Forecast Results

The day-ahead forecast accuracy for the test dates with the nowcasted weather data

is evaluated by the mean absolute error (MAE) and root mean square error (RMSE).

Errors are normalized (N-) with the PV capacity [90] to produce a percentage-like

value. The result is presented in Table 4.3. Every RNN-based model outperformed

the benchmark models. DCGAN and WGAN-GP performed the best. Forecast results

for selected days are presented in Fig. 4.9.
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Figure 4.9: Forecast results for high, medium and low power generation dates.
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Table 4.3: Accuracy of the Forecast Models
Model MAE RMSE NMAE (%) NRMSE (%)

Persistent 50.20 99.59 7.17 14.23

EMA 52.49 94.30 7.50 13.47

ARIMA-1 53.32 96.54 7.62 13.79

ARIMA-2 51.47 97.13 7.35 13.88

RNN 35.44 64.99 5.06 9.28

SS 34.77 60.88 4.97 8.70

DCGAN 28.57 50.36 4.08 7.19
LSGAN 38.41 70.22 5.49 10.03

WGAN 33.03 58.12 4.72 8.30

WGAN-GP 31.59 54.58 4.51 7.80

4.4.4 Incentive Analysis for the PV Power Forecast Results

Table 4.4: Incentives for Hours with more than 10% Usage Rate

Model
NMAE NRMSE Elec. Gen. (%) with NAE under

(%) (%) 6% 8% 10% 15%

Real 0.00 0.00 90.95 90.95 90.95 90.95

Persistent 12.93 18.39 42.35 50.91 56.36 72.36

EMA 13.41 16.68 20.34 32.53 40.94 64.13

ARIMA-1 13.59 17.10 24.57 30.81 45.22 64.13

ARIMA-2 13.01 16.84 34.59 44.53 48.57 71.56

RNN 8.26 10.47 38.64 57.58 63.44 74.18

SS 9.63 12.05 27.90 44.14 53.77 69.27

DCGAN 7.27 9.07 41.34 55.09 71.75 85.60
LSGAN 9.53 13.35 41.25 48.38 66.03 71.36

WGAN 7.47 9.42 44.23 57.46 68.28 80.44

WGAN-GP 7.54 9.89 43.94 61.80 73.06 80.54
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The forecast accuracy incentive conditions in Section 4.3.2, i.e., hourly NAE less

than 8%, monthly NMAE less than 10%, and power higher than 10%, were applied

to the forecast results of Section 4.4.3. The result is presented in Table 4.4. The theo-

retical maximum of the incentive revenue was identified as 0.9095ciΣxtp because the

incentive is not provided for the hours with a low power generation.

Every benchmark model failed to satisfy the NMAE restriction. SS and LSGAN

models reported NMAE values close to it. Applying WGAN-GP to the RNN forecast

model enhanced the incentive revenue from 0.5758ciΣx
t
p to 0.6180ciΣx

t
p, which is

equal to the enhancement of 7.33%. If the 8% NAE threshold is relaxed as 10%, the

enhancement would be 15.2%.

4.4.5 Effect of Input Data Accuracy on Forecast Results

In addition to the model structure and training dynamics, the quality of input data can

affect the forecast accuracy as presented in Fig. 4.3 and Fig. 4.10. A generalized anal-

ysis is performed for the incentive revenue with schedule submissions at yesterday 10

h and 17 h. Each submission requires 38-hour or 31-hour length forecasting. More-
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Figure 4.10: Day-ahead PV power forecast results using real (nowcasted) and day-
ahead forecasted weather data inputs.
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over, the forecast model can only use the power and NWP data that are updated until

the submission time. It is expected that the accuracy of the first submission would be

lower than the accuracy of the second submission.

Two-month-length back test results are presented in Fig. 4.11. The persistent

model showed notable enhancement with the newly observed power data. However,

the monthly NMAE of an RNN-based model only improved by a maximum 0.42

percentage points with the updated power and weather data.

The concept of ensemble is further tested in this study. The ensemble model,

comprising a simple average of the results from DCGAN and WGAN-GP models,

effectively reduced the forecast error even lower than that of either model.

4.4.6 Robust BESS Scheduling for the Transaction Revenue

A BESS of 300-kW/300-kWh capacity and 95% efficiency is simulated with the en-

ergy storage constraint of 150 kWh at midnight and the full SOC range for others.
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The 700-kW PV used in the forecast study is assumed to be integrated with the BESS.

The hourly power transaction price is obtained from the Korean market for a par-

ticular date. The difference between hourly buying and selling prices, i.e., the grid

commission, is defined as approximately 4.8% of the maximum buying price.

The robust scheduling problem of (4.30)–(4.34) and (4.61)–(4.63) is day-ahead

hourly optimized at yesterday 10 h using CVXPY [157] along with CVXOPT [158]

and GLPK [159]. The lower uncertainty bound for the forecasted PV power, xp,min,

in (4.62) is defined by applying the weight variation from 0% to 100% to the follow-

ing forecast results:

• The real, perfectly forecasted PV power.

• The persistent-forecasted PV power.

• The ensemble-forecasted PV power of Section 4.4.5.

• The collection of the lowest PV power from the previous seven days of the

target forecast date for each hour.

The enhancement in the power transaction revenue is presented in Fig. 4.12. Non-

robust scheduling with the perfectly forecasted PV power provides the theoretical

maximum revenue. However, non-robust scheduling with an imperfectly forecasted

PV power resulted in a significantly low revenue because of the forecast error. Re-

sulting revenues were close to or even lower than the revenue from extreme robust

scheduling, which does not consider the forecast results and simply defines the lower

uncertainty bound as zero. The result demonstrates the importance of selecting a

proper uncertainty range for the robust optimization problem.
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Figure 4.12: Changes in the revenue enhancement with respect to the lower uncer-
tainty bound conditions for the robust optimization.

Collecting the historic low PV power values for each hour was identified as a

simple but effective method to estimate the uncertainty bound for the robust BESS

scheduling problem. Ensemble forecast result with 50% weight reported the best rev-

enue enhancement. The optimal weight which is less than 100% represents the exis-

tence of overestimated values within the forecasted schedule; the lower uncertainty

bound, which is defined as a value lower than the possibly overestimated schedule,

helps to robustly consider a real PV power which may be lower than the forecasted

one. By contrast, applying the weight variation to the perfectly forecasted schedule

just decreases the corresponding revenue. A toy example to provide a detailed expla-

nation for this result is presented in Appendix 4.6.1.

A case study for one day shown in Fig. 4.13 provides an idea of how the robust

scheduling works. The price signal of Fig. 4.13(a) matches with a typical load trend:

hourly electricity price is high during work hours and low at lunchtimes and night
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Figure 4.13: Robust BESS scheduling for cost optimization. (a) Hourly price condi-
tions and corresponding net generation schedules. (b) BESS control schedule with
respect to the PV power forecast uncertainty.

hours. Cost-optimal BESS control tries to schedule charge operations in low buying-

price hours. It further tries to utilize the PV power for the BESS charge, thereby

imitating the charge with a selling price. The BESS schedule at 5 h and 6 h in Fig.

4.13(b) shows this result. The BESS was robustly charged using the lowest uncertain

amount of the PV power; thus, it offset the selling revenue of the PV operation. The
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remaining charge was scheduled for 4 h with the lowest buying price. The underesti-

mation about the PV power at 6 h resulted in the loss of opportunity to charge more

power with a lower selling price; whereas the overestimation at 5 h resulted in the

partial failure of the robust control.

4.4.7 Computation Speed of the Scheduling Problems

The optimal BESS scheduling problem has been formulated as a non-robust MILP

form of (4.25)–(4.29), robust MILP form of (4.40)–(4.48), and robust LP form of

(4.61)–(4.63) along with common integer BESS constraints of (4.30)–(4.34). The

LP form for the power transaction revenue is further developed into an MILP form of

(4.64)–(4.68) and (4.74)–(4.78) with the consideration of forecast accuracy incentive.

Computation time for an optimal scheduling problem must be as short as possi-

ble to enable online optimization. The computation time of each problem form was

measured under a Linux environment using a single-thread of 2.90 GHz (boosted

4.30 GHz) CPU. Each measurement was independently executed 50 times and then

averaged.

The result in Fig. 4.14 identifies exponential growth of the computation time with

the number of optimization time steps. Four suggested forms of this study and two

reference forms from [148] and [117] were tested. The LP form reported the lowest

computation time with 12.3 ms for a 24-hour length time domain and 196 ms for

a seven-day length time domain. Adapting the incentive constraints just increased

the computation time by 5.40 ms for an one-day length domain and 20.7 ms for a

seven-day length domain, thereby enabling its application for online optimization.
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4.4.8 Online Optimization for the Incentive Revenue

Online optimization for cost-optimal BESS scheduling continuously updates a con-

trol schedule into a more precise one by using the real PV power value of the current

time step instead of a forecasted one. It can provide an enhanced revenue compared

to the one-time, offline optimization.

Revenue enhancement by applying the online optimization is presented in Fig.

4.15. Ensemble-forecasted PV power of Section 4.4.5 with 50% and 150% weights

are applied as the uncertainty bound for the robust optimization problem. Online

update of a forecasted PV power schedule is not considered to focus only on the BESS

control schedule. Incentive price is defined as approximately 3.8% of the maximum

buying price, which is a 1% point lower value than the grid commission.

Compared to the robust one-time optimization using (4.30)–(4.34) and (4.61)–

(4.63), the robust online optimization using the same model enhanced the power

transaction revenue −
∑

rt as presented in Fig. 4.15(a). However, the incentive rev-
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Figure 4.15: Change in revenues with respect to non-robust one-time optimization
(#1), non-robust online optimization (#2), robust one-time optimization (#3), robust
online optimization (#4), and robust online optimization with incentive consideration
(#5). (a) Enhancement in power transaction revenue. (b) Forecast accuracy incentive.
(c) Combined revenue enhancement.

enue
∑

it decreased as presented in Fig. 4.15(b) because of the change in a BESS

schedule. The non-robust one-time and online optimization using (4.30)–(4.34) and

(4.25)–(4.29) showed the same trend with a lower revenue.

The robust online optimization with the incentive consideration using (4.64)–

(4.68) and (4.74)–(4.78) slightly decreased the power transaction revenue but sig-

nificantly increased the incentive revenue. The total enhancement in both revenues∑(
−rt + it

)
reached 3.73% in average; the averaged revenue was increased from

7.88 $/day for the robust one-time optimization to 8.18 $/day for the robust online

optimization with the incentive consideration, as presented in Fig 4.15(c).
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4.5 Conclusion

This chapter proposed a method to enhance the revenue of a PV-BESS. A grid with a

forecast accuracy incentive was considered. Accurate forecasting and robust schedul-

ing algorithms are essential for the PV-BESS owners to maximize both the power

transaction and incentive revenues. Introducing GAN-based training to the RNN-

based PV power forecast model helped to decrease the gap between training and test

dynamics, thereby enhancing stability and accuracy of forecast results. Among four

types of GANs tested in this study, WGAN-GP reported superior performance. Addi-

tive noise as an adversarial example, or at least as a data augmentation method, also

increased the performance of some models, particularly the DCGAN model.

The robust cost-optimal BESS scheduling model of this study was formulated

as a concise one to achieve a short computation time. Online optimization with the

incentive consideration enhanced the overall revenue of the PV-BESS. Future studies

will focus on an approach to relax the remaining integer constraints into affine ones,

thereby ensuring online optimization under hardware limitations. Model predictive

control on the hardware level is one of the final goals of the future study.
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4.6 Appendix

4.6.1 A Toy Example for the Robust Optimization Result

(1) Initial nondeterministic problem (creal = 4 and cfcst ≥ 0):

min
x,y

max (2x, y − c) s.t. x+ y ≥ −4.

(2) Deterministic non-robust equivalent problem:

min
x,y

r s.t. r ≥ 2x, r ≥ y − cfcst, x+ y ≥ −4.

(3) Deterministic robust equivalent problem (with 50% weight):

min
x,y

r s.t. r ≥ 2x, r ≥ y − 0.5cfcst, x+ y ≥ −4.

Case 1-1: perfectly forecasted cfcst = 4, non-robust optimization.

⇒ xopt = −8/3, yopt = −4/3, ropt = −16/3, rreal = −16/3.

Case 1-2: perfectly forecasted cfcst = 4, robust optimization.

⇒ xopt = −2, yopt = −2, ropt = −4, rreal = −4.

Case 2-1: overestimated cfcst = 8, non-robust optimization.

⇒ xopt = −4, yopt = −0, ropt = −8, rreal = −4.

Case 2-2: overestimated cfcst = 8, robust optimization.

⇒ xopt = −8/3, yopt = −4/3, ropt = −16/3, rreal = −16/3.
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Chapter 5

Conclusion

This study presented statistical and control analyses for grid resources to enhance the

stability and efficiency on their operations.

Statistical analysis focused on the identification of errors within the grid resource

monitoring data. A massive monitoring system was developed to collect real-time

monitoring data for PVs distributed throughout Korea. Several types of errors were

found during the raw data analysis. Errors within the PV specification data were

categorized as missing, redundant, or conflicting ones. Human errors were the main

cause of these specification data errors, whereas errors within the monitoring data

were also caused by systematic problems. Corrupted values in monitoring data were

found as a result of software problems. Inconsistencies in data collection period were

originated from connection problems in communication hardware and software. This

type of error identification analysis is rare in engineering fields because of the lack of

data and the reluctance to share data among different grid resource owners.

The existence of errors within the raw data affects the accuracy of data-driven

analyses. The effect of typical errors on the data-driven analysis was particularly

evaluated for the statistical PV power forecast model. Value errors in the specification
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data exponentially decreased the forecast accuracy, thereby addressing the impact of

human errors. Randomly occurred value errors in the monitoring data also linearly

decreased the forecast accuracy. However, monitoring data with missing completely

at random situation did not affect much to the model accuracy if a proper imputation

method was applied during data preprocessing. It is recommended for a monitoring

system or EMS to drop every possibly corrupted value before applying monitoring

data to data-driven analyses.

The statistical PV power forecast model of this study was formulated as an RNN

sequence generator using LSTM. An RNN model is generally trained to optimize

its parameters for one-step-ahead forecasting. However, grid or electricity market

operators request multi-step-ahead forecasting such as day-ahead hourly ones. It was

identified that the discrepancy between the training and test dynamics resulted in

unexpected behaviors when the trained model encountered unexposed input values.

A GAN-based training framework was applied to the RNN model training process

to decrease the gap between training and test dynamics, thereby enhancing stability

and accuracy of forecast results. Among several types of GANs tested in this study,

WGAN-GP reported superior performance. Additive noise as an adversarial example,

or at least as a data augmentation, additionally increased the performance of some

training methods, particularly the DCGAN one.

Despite the efforts to enhance the forecast accuracy, errors in forecast results

are unavoidable. Control analysis of this study focused on robust and cost-optimal

scheduling for an ESS with the consideration for future uncertainty. A virtual power

plant or a microgrid with a commercial building load, PV, and ESS was targeted as

a behind-the-meter consumer-generator. Economic dispatch control problem under
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the electricity market condition was formulated as a mixed-integer linear program.

The ESS dispatch schedule was optimized with respect to the predefined time-of-use

tariff schedule and the forecasted load power consumption and PV power generation

schedules. The robust form of the control problem guaranteed the highest possible

market revenue even under the worst-case future uncertainties. Uncertainties in non-

dispatchable grid resource operations, which represent forecast errors, were applied

as box uncertainty sets of different sizes. Collecting the historic extreme power values

for each hour of the day from the previous seven days worked as a simple but effective

method to determine the size of the uncertainty set.

The robust cost-optimal control problem was reformulated as a concise equivalent

form to enable fast online optimization. The concise problem structure enabled to

solve a week-ahead hourly optimization problem within one fifth of a second, which

is approximately ten times shorter than the computation time of a benchmark model.

Grid ancillary services such as peak control and imbalance tariff were successfully

applied to the online optimization with the help of short computation time.

In summary, this study proposed the advances in power forecasting and dispatch

scheduling algorithm for grid resources. The result of this study would help enhance

the operation of an EMS, thereby contributing toward the realization of smart grid

and transactive energy.
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초 록

본논문에서는전력망내에너지자원들의운영에있어안정성과효율을향상시키

기 위한 통계분석 및 제어분석 방법과 그 결과를 서술한다. 더욱 상세하게는 인

공신경망기반발전량예측결과의불확정성을고려한가상발전소전력시장비용

최적화모델예측제어를목표로한다.

제2장에서는 대한민국 전역에 분포한 태양광발전소들의 모니터링 데이터에

대한 분석 결과를 서술한다. 원시 데이터 내에 존재하는 오류들이 목록화되며, 그

원인과 증상에 따라 분류된다. 일반적으로 발생 가능한 데이터 오류들이 통계분

석 결과에 미치는 영향을 확인하기 위해, 인공신경망 기반 통계적 태양광발전소

발전량예측모델의성능에대한오류데이터의영향이평가된다.

제3장에서는전력망내에너지저장장치에대한제어방법론을제시한다.상업

용건물부하,태양광발전소발전,에너지저장장치충방전운전을포함하는가상발

전소 또는 마이크로그리드가 계량기 후단에 위치한 전력 소비원이자 발전원으로

제시된다. 에너지저장장치를 위한 경제적 급전계획 문제는 혼합정수 선형계획법

형태로수식화된다.최적화목표는시간대별요금제하에서미래부하와발전량예

측불확실성을고려한마이크로그리드경제적이득최대화이며,피크제어에대한

목표역시보조서비스형태로적용가능하다.최적화문제해결을통해도출된충

방전제어스케줄은마이크로그리드내부하와발전량예측에대한불확실성에도

불구하고경제적이득을강건하게보장할수있다.

제4장에서는특수조건하에서의에너지저장장치하루전시간대별운전스케

줄도출방법론을제시한다.태양광발전소와에너지저장장치를물리적또는가상

으로연결한집합전력자원이고려된다.집합전력자원과전력망사이의전력거래

147



는 일반적인 시간대별 요금제하에서 이루어진다. 전력망 보조서비스에 해당하는

불균형 요금제가 대한민국 전력시장에서의 분산자원 중개사업자 인센티브 제도

형태로 추가 고려된다. 해당 제도 하에서 집합전력자원은 전일 예측 또는 결정된

운전스케줄과실제스케줄사이의오차율에따라추가적인인센티브를부여받을

수있다.집합자원을위한에너지관리시스템은시간대별요금제와인센티브각각

에따른경제적이득을최대화하기위하여정확한예측기능과강건한스케줄도출

기능을제공한다.

제안되는 RNN 기반 태양광발전소 발전량 예측 모델은 개방회로 형태의 학습

과정과 폐회로 형태의 사용 방식 사이의 차이를 줄이기 위해 CNN 기반 식별기를

적용한다. 모델 학습 과정에 적용되는 이 GAN 개념은 하루 전 도출한 시간대별

운전스케줄이안정적이도록지원한다.제안되는에너지저장장치를위한강건스

케줄도출모델은남아있는예측오차를박스형태의불확실성집합으로처리하여,

도출된 제어 스케줄의 경제적 최적성과 강건성을 보장한다. 스케줄 도출 모델은

간결한혼합정수선형계획법형태로수식화되어전력거래수익과인센티브수익

양쪽모두를고려한빠른실시간최적화가가능하다.

주요어:에너지관리,혼합정수선형계획법,인공신경망,비용최적화,예측,태양광

발전소,에너지저장장치.

학 번: 2019-30142
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