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Abstract

Convergence Guaranteed Untangling for
Clothing Simulation

Ick-Hoon Cha

Department of Electrical and Computer Engineering

The Graduate School

Seoul National University

For decades, methods have been proposed to solve the failure of self-collision

(intersection) that occurs during clothing simulation. But when applied in re-

ality, they report failure in various cases. In this paper, we divide these inter-

sections into two groups and propose a new discrete collision handling (DCH)

method for each to solve them properly in real situations.

The first method, Edge-Shortening / Epsilon-Finessing (ESEF), is a method

that guarantees convergence of six among seven intersection classifications ex-

cept for BLI. It performs intersection analysis of the clothing mesh at every

time step, and stores the result in the form of coloring the vertices, edges,

and triangles. Referring to the coloring, the method resolves the tanglements

in an out-to-in manner by applying the proposed operations, triangle shrink-

age and vertex pull. The operations reinterpret the traditional use of tolerance

value in continuous collision handling (CCH) methods, which were normally

used for defending round-off errors. It gives a second thought to that tolerance
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value, and proposes a new DCH method that uses the tolerance value for the

resolution purpose. Under certain conditions, ESEF turns out to guarantee the

resolution of the tanglements in a finite number of time steps.

The second method, BLI-Resolver, specifically targets BLI only. We an-

alyze how BLIs occur, and realize that the desired form of resolution (i.e.,

resolution style) can vary depending on the type or particular region of the

garment. Therefore, we identify the need for three resolution algorithms for

BLI, namely, Mesh-Tearing, Regional-Flip, Crease-Flip, in order to cover

the resolution styles. BLI-Resolver is the first to (1) identify the need for the

resolution styles for the case of BLI, (2) propose the actual algorithms to cover

each resolution style, and (3) demonstrate that the proposed resolution styles

and algorithms work stably for BLIs.

With the two methods, we can now cover the full spectrum of intersections.

Intersections are guaranteed to resolve, in a design-appropriate direction when

sufficient information of the clothing is given. Experiments report success in

various and practical clothing where previous methods failed to resolve.

Keywords: Clothing Simulation, Discrete Collision Handling, Intersection, Tan-

glement, Untangling

Student Number: 2014-21691
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Chapter 1

Introduction

Clothing simulation has been a popular research topic in the graphics field

for over decades. Starting from the early work of Terzopoulos et al. [60, 59,

58] which characterized cloth as a deformable surface, Carignan et al. [10]

adopted the work and created clothing by seaming 2D polygonal panels in 3D

and Provot [44] used a mass-spring model to lower the computation cost of

elastic models used in [60, 59, 58]. Baraff et al. [1] first proposed an implicit

numerical method to achieve stable and large time step simulation. After then,

research in clothing simulation flourished, expanding its research area. Various

time integration models were proposed to enhance the accuracy (IMEX [15,

4, 18], Runge-Kutta [21, 32]) or stability(BDF2 [11], FEM [26]), and at the

same time, linear models [13, 24, 25] were also considered as a trade off in

accuracy for speed. For more real-time application, studies stretched out from

mass-spring / energy-based constraints to geometric constraints. Position based

1



Chapter 1. Introduction 2

approaches [37, 16, 38, 35, 33, 34] directly worked on positions, thus avoid

overshooting problems in implicit methods. Projection based approaches [31,

3, 66, 39, 41, 5] were able to get a more global and physical behavior than

position based approaches.

Side by side, collision handling has also developed its own path. Clothing

is generally expressed as a deformable surface, it is vulnerable to self-collision,

and a small artifact can disrupt the whole simulation. Usually being an un-

oriented surface, its inside is unclear, thus a strict history-based approach is

a reasonable choice. Also called continuous collision detection (CCD), which

checks if there are any collisions between a time interval, was first studied

in [27, 43]. Both vertex-triangle CCD and edge-edge CCD were expressed as

solving a cubic equation that finds a contact time between the time interval,

and second checks if the collision was actually inside the triangle or between

the edges. The base work of CCD was later combined with exact and robust

response methods which include friction and impact zones [6, 19, 46, 40], or

air meshes [36].

As the computational amount increased due to the complexity of the cloth-

ing and the increase in dimensions, several techniques were introduced to ac-

celerate the collision handling. Some used spatial hashing [61, 50], volino di-

agram [47], GPU ray-tracing [29], or bounding volume hierarchy (BHV) [62,

22, 49, 68] to reduce triangle pairs that need to be checked in the high-level.

Other works employed the triangle structure [12, 49, 45, 52, 67] or energy

stored in the deformation [76] to cull the number of primitive tests, by its
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connectivity or removing the duplicate tests. Hardware approaches were also

made, use of multi-core architectures [4, 63, 53, 42] or GPU [51, 70, 54, 56,

68, 50, 57, 30] has been a promising work, as most collisions can be handled

in parallel.

As powerful as it seems, continuous collision handling (CCH), i.e. CCD

and its continuous collision response methods (CCR), has a critical weak spot.

CCH is powerful when defending collisions, but it works under the follow-

ing premise: when starting the current time step, the garment has to be in

a collision-free state. Unfortunately, when used in real world situations (e.g.,

in real-time virtual fitting systems or animation studios), even the simulators

equipped with a fully-functional CCH may produce anomalous results, due to

the following violations of the premise.

The most frequent case is when a garment is initially created. As the con-

stituent panels are seamed, the panels can interpenetrate each other, and also

with the avatar. Since the penetration has already happened when the garment

is born, the first frame of the simulation has to start carrying these problems.

The similar situation also occurs when studies try to transfer a pre-simulated

clothing to an another avatar [77, 14, 8, 28, 20, 23, 17]. In many cases, the

animation of the avatar is not clothing-friendly, the body intersects with itself

and creates a pinched area [2]. Clothing that is stuck between the pinching

may be impossible to perform a valid CCR as it oscillates between the pinched

area. Research [72] has been made to remove such a situation, but for the time

being, we will assume that pinching can still happen.
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Other than the above, sometimes the user can apply interactive manipula-

tions that have to be prioritized before the CCH while the simulation is being

performed. Also, system demands might have to override the CCH and call

an administrative quit. For example, if the simulation is required to run at a

certain fps, an administrative decision has to be made to move on to the next

time step even if the CCH is not complete yet.

Once a time step starts with some self-collisions unresolved (later also

called as tanglements), via the above sources, we cannot expect them to disap-

pear by the operation of CCH. Being history-based, CCH tries to preserve the

existing self-collisions instead of resolving them. The preceding discussions

imply that the simulator needs a discrete collision handling method (DCH)

regardless of how concrete the CCH is.
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Related Works

When a triangular mesh is given, DCH tries to reconfigure the mesh until all

intersections disappear. It is practically important for clothing simulation since,

for CCH to work properly, simulation of each time step should start from an

intersection-free configuration. In order for DCH to possibly untangle, it is

essential to know which region is tangled. A common assumption in most

DCH methods is the majority rule (i.e., the majority of the clothing vertices

are not tangled), which turns out to accord well with the real situations thus

solving most of the clothing cases.

2.1 Cloth Untangling: General

Baraff and Witkin [2] proposed global intersection analysis (GIA), which used

the flood-fill algorithm to color the primitives (vertices, edges, triangles) of

a smaller region based on the intersection analysis. After then, the coloring

5
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could guide to which direction each vertex should move to resolve tangle-

ment. Wicke et al. [71] pioneered the job of classifying intersections. Inter-

sections were classified into seven types, each named after their unique shape

in the uv-space (CLOSED, CROSS, EIGHT), or by a combination of B, L,

and I (LL, BIBI, BBII, BLI). In the latter cases, B indicates that the intersec-

tion meets the boundary of the mesh, I indicates that the intersection ends in

the interior of the mesh, and L indicates that the intersection passes a loop

vertex (first introduced in [2]). Volino and Magnenat-Thalmann [64] proposed

intersection contour minimization (ICM), which applied force/displacement to

vertices in a way that would shorten the intersection in each triangle. Their

work was further investigated by Ye and Zhao [75], who suggested some im-

provements such that the intersections can be resolved faster in a consistent

direction when at least one of the intersecting objects has an orientation. Ye et

al. [74] proposed a unified intersection resolver (UIR), which is a new pipeline

of collision handling by harmoniously combining some of the previous meth-

ods. UIR calculated the minimal displacements for resolving the penetrations

with the stencil-based formulation introduced in [73, 48]. Recently, Buffet et

al. [9] proposed a solution to untangle intersecting garment layers when each

garment is independently prepared to a single body. Each garment was ap-

proximated to a closed implicit surface, and with the user’s input of layering

order and rigidness, each surface was deformed to remove intersections.
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2.2 Cloth Untangling: Multi-Garment

As more and more works try to dress an avatar with a pre-simulated data set of

garments, the intersection between garments is inevitable. As a result, several

works have focused on resolving intersections that can occur when multiple

garments are worn on a single body. Zhong [77] projected the problematic area

of the inner-layer (i.e., the area that is protruding the outer-layer) onto the body

surface, then let the simulator relax the potential artifacts in the projection. Du

et al. [14] constructed an AABB structure to pull out the outer layer that has

penetrated inside. Brouet et al. [7] was able to transfer garments to different

types of body shape-preserving the garment design. Hu et al. [20] formulated

the problem into a minimization problem that searches for the optimal position

for intersection-free vertices while considering minimal vertices displacement

and smoothness of the corrected area. Buffet et al. [9] approximated garments

as implicit surfaces, and converted the problem of untangling garments into

resolving overlapping implicit surfaces. Han et al. [17] stratified garments such

that the initial positioning does not have any garment-to-garment intersection,

thus the conventional simulator could start from a sanitary configuration. All

works are powerful when applied to layered clothes. However, intersections

between different garments can generate only certain types of intersections,

i.e., BIBI, BBII, and CLOSED.
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2.3 Summary and Limitations

Type Initial State
Expected

(proposed method)

CLOSED

BBII

BIBI

Table 2.1 Initial state and expected solution of CLOSED, BBII, and BIBI.
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Type Initial State
Expected

(proposed method)

EIGHT

CROSS

Table 2.2 Initial state and expected solution of EIGHT and CROSS.

The limitation that the previous works have in common is first, the conver-

gence/coverage was often not explicit as the table in Figure 2.1 shows. (Ex-

perimental results shown in Table 2.4 and 2.5 back up the table.) Therefore,

with those methods, when a tanglement is persistent, it was difficult to judge

whether the method needs more iteration or if the method is unable to cover

the case. Second, for BLI, the majority rule is not valid and still remains most

un-studied. This is not surprising. As a matter of fact, BLI is not a type of in-
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Type Initial State
Expected

(proposed method)

LL

BLI

Table 2.3 Initial state and expected solution of LL and BLI.

tersection that can be met frequently. By its character, it can only occur when

a deformable, 2-manifold object self-intersects by folding. The experiments of

the prior works were either not complex enough to include BLIs, or even if

they included BLIs, they focused on the resolution itself, without addressing

in which fashion the resolution should be done (hereafter we will call it the

resolution style). Third, works that specifically target multi-garments have a

strict range of applications. As its main power is based on the information
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Type GIA Repulsive-ICM UIR

CLOSED

BBII

BIBI

Table 2.4 GIA, Repulsive-ICM, and UIR on CLOSED, BBII, and BIBI.
All tests were simulated up to 1000 time-steps, to show that the number of
iterations is not the cause of failure.

of layering order, the methods can only be applied to inter-garment intersec-

tions. It does not only unhandle intra-garment intersections, but also does not

defend intra-garment collisions that can occur during its process. Thus, it is

only a half-solution.
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Type GIA Repulsive-ICM UIR

EIGHT

CROSS

LL

BLI

Table 2.5 GIA, Repulsive-ICM, and UIR on EIGHT, CROSS, LL, and BLI.
All tests were simulated up to 1000 time-steps, to show that the number of
iterations is not the cause of failure.

2.4 Contribution of Proposed Work

This paper splits the intersections into two groups, the first group as (CLOSED,

BBII, BIBI, EIGHT, CROSS, LL), and the second as BLI only. We find that
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Figure 2.1 Coverage of previous methods in terms of categorization made in
Wicke et al. [71]. The table is prepared based on the coverage explicitly stated
in each paper or the theoretical limit of their methods. In the table, a circle
means a complete (or theoretical) solution, a triangle means an experimentally
shown partial solution, and a minus means that it is out of scope.

the two groups cannot be treated the same, thus requiring separate strategies.

For the first group, this paper proposes Edge-Shortening / Epsilon-Finessing

(ESEF) such that the method resolves them within a finite number of steps.

With the novel coloring method and taking a new perspective of the CCD for-

mulation, we make the simulator have the DCH capability by making simple

modifications to the conventional simulator that has a full-proof CCH.

For the second group, we propose Boundary-Loop-Interior Resolver (BLI-

Resolver). For example, see Figure 5.6. Figure 5.6(a) shows an initial state

where the collar has several BLIs, and Figure 5.6(b) ∼ 5.6(b) are three dif-

ferent styles of resolving Figure 5.6(a). When counting the remaining inter-

sections, all styles are valid, but from a practical point of view, resolving Fig-

ure 5.6(a) into Figure 5.6(b) would be most generally acceptable. People rarely

wear a shirt with the collar folded inwards shown in Figure 5.6(c). The col-

lar is not folded at all in Figure 5.6(d), which is not acceptable unless the
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wearer intended it. The above discussion implies that, the given initial state

(e.g., Figure 5.6(a)) alone is not a well-posed problem, but additionally needs

to specify the desired resolution style. BLI requires a new approach covering

starting from how to define the tangled region, which resolution styles to have,

and finally defining the resolution algorithms to apply in order to obtain each

of those resolution styles.

In common, both methods should operate under the premise addressed in

Section 1. The method of both groups are designed to be built on top of a

simulator equipped with a full-proof CCH as shown in Figure 2.2, such that

we can still rely on CCH on where there are no tanglements, and at the same

time, exploit its property and use it to aid the DCH process. In other words,

the proposed DCH method does not tamper with CCH in a safe region, such

that the simulation will not encounter any new tanglements by the resolution it-

self. But if new tanglements are generated continuously for extraneous reasons

(e.g., the user moves the cloth vertices sinusoidal way to generate tanglements

artificially, or the character lowers the arms and pinches the clothing at the

armpit) that violate the premise, it would be impossible to technically discuss

the completion of the resolution. We will assume this condition throughout

this paper.
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(a) (b)

Figure 2.2 Simulation flowcharts. (a) shows the conventional simulator, (b)
shows how the two proposed DCH methods (red boxes) fits into the conven-
tional simulator to form the new simulator.
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Chapter 3

Preliminary

In this paper, we consider only triangular meshes.

3.1 Edge-Shortening / Epsilon-finessing

We denote an edge which is composed of vertices xi and x j as E(xi,x j), and

a triangle composed of vertices xi, x j, and xk as T (xi,x j,xk). We assume that

a garment is comprised by seaming a number of (sewing) panels, each existing

separately in its own uv-space.

For resolving the first group (CLOSED, BBII, BIBI, EIGHT, LL), the

first step should be identifying the tangled regions1, which can be achieved by

1Determining the tangled regions from the partitioning (via the intersection analysis) of the
given clothing configuration cannot be done strictly. As most non-history-based DCH methods
do, the proposed method assumes that the majority of the clothing is on the right side (i.e., not
tangled). Of course, a case can be fabricated such that the majority is tangled. Often, it is not
a matter of right or wrong, but of the user’s intention. Therefore, throughout the paper, for the
sake of technicality of the discussions, we will assume that the clothing mesh is not tangled to

17
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analyzing the intersections the clothing mesh is currently making. We store the

result of the analysis in the form of coloring the vertices, edges, and triangles.

Note that our coloring, which is detailed below, is different from the previous

intersection analysis coloring ([2, 71]).

– Red vertices

If an intersection path divides the mesh into two separate regions, we clas-

sify the vertices in the smaller region (in terms of the number of vertices)

as red vertices.

– Red triangles

If any of the three vertices of the triangle is red, that triangle is a red tri-

angle. Additionally, the triangle Ti that intersects with another triangle Tj

is colored red regardless of whether the vertices of Ti are red or not. (Of

course, the above is mutual, thus Tj is also red in this case.) For example,

in Figure 3.1(a), even if all three vertices x0,x1,x2 are green, T (x0,x1,x2)

intersects with T (x3,x4,x5), so it is a red triangle.

– Red edges

If any of the two vertices making up the edge is red, it is a red edge. Ad-

ditionally, the edge Ei that penetrates a triangle is colored red regardless of

whether the vertices of Ei are red or not. For example, even if all four ver-

tices x1,x2,x3,x4 are green in Figure 3.1(b), both E(x1,x2) and E(x3,x4)

are red edges since they both penetrate a triangle.

the extent the majority is tangled.
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– Green vertices, edges, triangles

All vertices, edges, and triangles which are not colored as red are green.

Under the above definitions, we note a special subsets of the red vertices and

red triangles by giving more definitive names, since they play important roles

in the proposed method.

– Among the red vertices, the ones which are adjacent to at least one green

vertex are called out-most red vertices (e.g., x1 in Figure 4.1(a)).

– Among the red triangles, the ones which consist of three green vertices, but

in terms of edge coloring, which consist of two green edges and one red

edge are called red* triangles (e.g., T (x1,x2,x5) in Figure 4.1(e)).

If the coloring was done as introduced in this section, the coloring itself

contains the essential information in which direction the resolution should be

performed to all cases but BLI.

Tanglements can be classified into two elementary tanglements, i.e., vertex-

triangle and edge-edge tanglements, which are shown in Figure 3.1(a) and

Figure 3.1(b), respectively.

A segment of cloth mesh is said intrinsically planar if (1) it is comprised

of a single panel without any seam, or (2) in the case when it is comprised

by stitching multiple panels, the panels can be positioned in the uv-space such

that there is no gap or overlap.
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(a) (b) (c)

Figure 3.1 Two elementary tanglements. The intersection path is shown with
black dashed lines. The edges are colored according to the proposed color-
ing scheme. (a) vertex-triangle tanglement, (b) edge-edge tanglement. (c) is a
simplified drawing of (a), which is used when the discussion focuses on the
behavior of E(x3,x4) with respect to the triangle T (x0,x1,x2).

3.2 Boundary-Loop-Interior Resolver

For the second group (BLI), which is an open intersection, we cannot fol-

low the majority principle that is commonly applied for closed intersections.

Among open-loop intersections, recently, Ye et al. [74] pointed out a few prop-

erties of BIBI and BBII can be used to determine the region to resolve. How-

ever, BLI still remains unsolved.

3.2.1 Repulsive-ICM on BLI

In this section, we will repeat the formula introduced in [75], discuss a possi-

ble scenario when Repulsive-ICM can be stagnant, then show that BLI can be

that scenario case. Referring to Figure 3.3, [75] formulates a directional vector

G along which the edge E should move in order to shorten the intersection
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(a) (b)

Figure 3.2 A BLI intersection. (a) shows it in 3D. (b) shows intersection
analysis of (a) in 2D. Note that B and I coincide in 3D.

(a) (b)

Figure 3.3 Diagrams taken from [75]. Two red triangles that share E are
intersecting the green plane. (b) is the horizontal view of (a).
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path. G is defined as

G = R+T, (3.1)

where the two terms R and T are

R =
2

∑
i=1

RiT =−E ·R
E ·N

N (3.2)

The first term R is the sum of two unit vectors that point outwards from E

but are parallel to the surface E is penetrating. Therefore, if there is no fold

along E, then R = 0 and so becomes T. We will call this case the straight

intersection path case. In such a case, G would not be meaningful. Also, the

second term T becomes zero when E ⊥ R. In fact, the above observations

have been already pointed out in [75], but they did not explicitly address how

the Repulsive-ICM would behave in such degenerate or near-degenerate cases.

The above degenerate or near-degenerate case can be easily met when re-

solving a BLI case. Let’s suppose a typical BLI configuration shown in Fig-

ure 3.4, in which the tangled region takes approximately a cone-shape in 3D.

Use of color in Figure 3.4 is related to Figure 3.3. The green-colored triangles

in Figure 3.4 are doing the role of the green rectangular plane in Figure 3.3,

and vice versa.

Figure 3.4(a) shows that the intersection path is smooth; it is a nearly

straight intersection path case. Therefore R will be close to zero. Figure 3.4(b)

shows that, along the intersection path, the red triangles are almost orthogo-

nal to the green triangles, thus E · R will tend to have a small value and so
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(a) (b)

Figure 3.4 The behavior of the Repulsive-ICM for a cone-shaped BLI. (b)
is the side view of (a).

will T. In fact, as we run Repulsive-ICM, we observe that, whenever a cone-

shaped BLI is formed, the Repulsive-ICM loses its ability to create sufficient

directional vector to resolve and the configuration gets stuck.

3.2.2 New Approach for BLI

As we follow the classification of Wicke and use their acronyms, considering

the significance of BLI in this work, we review how the acronym BLI was

tokened. When observed in 2D (i.e., referring to Figure 3.2(b)), BLI starts

from the boundary (B) of a mesh, passes a loop vertex (L), and terminates at

an interior point (I) of a mesh. By its nature, the triangles around the loop

vertex have to be folded for the BLI to occur. The fold here does not need to

be sharp as in a crease, but as shown in Figure 3.2(a), it can be round-shaped.
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Hereafter, we will refer to each of them as sharp and round folds, respectively.

An interesting point we find is that, after the resolution of the BLI is com-

plete, the decision of whether the fold should unfold or remain is crucial. Al-

though the given case is the same, the two resolutions (i.e., fold-unfolding

and fold-remaining) produce different outcomes. Note that the method itself

should be different for the two resolutions.

In the later sections, we propose methods to resolve BLIs for both fold-

unfolding and fold-remaining cases. We name the cases the user chooses the

fold-unfolding and fold-remaining, in terms of the resolution algorithm, as

Mesh-Tearing and Regional-Flip or Crease-Flip, respectively. For the time

being, we will assume that the resolution style is given by the user. Later on,

we will show that to some extent, the resolution style can be inferred from

the garment input.
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Edge Shortening / Epsilon Finessing

4.1 Overview

In contrast to the previous works for untangling that applied external forces,

displacements ([2, 64, 71]), or constraints ([74]) in the world space, this work

resorts to some algorithmic modification of the mesh in the uv-space, then

let the simulator do the rest: due to the internal forces caused by the uv-

space mesh modification, the world-space mesh untangles by itself after it goes

through finite iterations of the simulation loop.

This section will refer to Figure 2.2(b) which shows how we obtain the

DCH capability from the conventional simulator of Figure 2.2(a) with full-

proof CCH capability. The simulation starts by performing the Intersection

Analysis, reporting which types of intersections are in place. Then, it performs

the UV-Space Mesh Update such that the simulation based on the resultant

25
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(a) (b) (c)

(d) (e) (f)

Figure 4.1 Operation of the proposed method in a cloth mesh fragment. (a)
to (f) chronologically show various stages of the resolution.

mesh has a tendency to resolve the tanglements. As detailed in Algorithm 1,

the UV-Space Mesh Update colors the mesh according to the report of the

Intersection Analysis, then updates the uv-space mesh with the operations tri-

angle shrinkage, vertex pull, and revoking of the shrinkage and pull (Lines

3, 6 and 8). The details of those operations will be presented in Section 4.2.1.

When the UV-Space Mesh Update is done, (1) Force and Jacobian Cal-

culation and (2) Linear System Solving (i.e., time-integration of physics by

one time step) is followed. Note that the results of the Force and Jacobian



Chapter 4. Edge Shortening / Epsilon Finessing 27

Algorithm 1 UV-Space Mesh Update
1: Color clothing mesh based on intersection analysis
2: for all red∗ triangles do
3: Apply red∗ triangle shrinkage by γ

4: end for
5: for all out-most red vertices do
6: Apply out-most red vertex pull by γ

7: end for
8: Revoke shrinkage and pull by 1/γ where needed

Calculation are affected by the updates made in the uv-space mesh; the resul-

tant world-space mesh after the Linear System Solving will tend to reflect the

uv-space updates.

The result of Linear System Solving goes through the modified CCD (m-

CCD), and if any collision is detected, the proposed simulator generates the

responses with the modified CCR (m-CCR). We will call the loop consisting

of CCD, branch based on whether any collision is detected, and CCR in Fig-

ure 2.2(a) as the CCH loop, and the counterpart in Figure 2.2(b) as m-CCH

loop. We will call the main loop (that includes all the steps described above

including the CCH/m-CCH) as the simulation loop.

Figure 4.1 focuses on the evolution of a uv-space mesh fragment as the

simulator designed as Figure 2.2(b) operates. In Figure 4.1(a), x1 is an out-

most red vertex, while x2 is not. Pulling x1 out of the intersection path (Line 6)

of of Algorithm 1) is achieved by applying the vertex pull operation (Sec-

tion 4.2.1), which moves x1 towards x0.

If an out-most red vertex has escaped the intersection path thus colored
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green, the above uv-space mesh update must be revoked in the neighborhood

of the was-red-now-green vertex, otherwise the resultant clothing would not

be identical to the original one. Figure 4.1(c) shows the situation when the

restoration is complete for all five was-red-now-green vertices.

The above process is continued to the remaining out-most red vertices (in

this case x2 only), which produces the situation shown in Figure 4.1(d), and is

revoked as shown in (Figure 4.1(e)). Then, through the intersection analysis,

T (x1,x2,x5) and T (x2,x3,x4) in Figure 4.1(e) are identified as red* triangles.

For red* triangles, triangle shrinkage is applied. The resultant fully untangled

mesh as shown in Figure 4.1(f).

4.2 Modifications to Conventional Simulator

Sections 4.2.1 and 4.2.2 describe more details of the UV-Space Mesh Update

(Algorithm 1) and m-CCH, respectively. Sections 4.2.3 and 4.2.4 explain how

the above two components work over the the simulation loop to resolve tan-

glements in elementary and cloth meshes, respectively.

4.2.1 UV-Space Mesh Update

Section 4.2.1 presents how we define the four operations (i.e., the vertex pull,

triangle shrinkage, and revoke of the two), postponing the details of their im-

plementation to Section 4.2.1. Throughout this paper, γ < 1 is a user-controlled

scale factor.



Chapter 4. Edge Shortening / Epsilon Finessing 29

(a) (b)

(c) (d)

Figure 4.2 (a) and (c) show the outcome in the world-space mesh (after
the World-Space Mesh Update) when the vertex pull and triangle shrinkage is
applied to the elementary vertex-triangle tanglement (Figure 3.1(c)) and edge-
edge tanglement (Figure 3.1(b)) , respectively. Note that (a) is shown with the
cross-sectional view. (b) and (d) show the outcome when the above operations
are repeatedly applied. The details of those processes will be explained in the
subsequent sections.

Definition of the Operations

– Vertex Pull: This operation can be executed to the out-most red vertex. It

moves the red vertex toward the green vertex; their distance after the op-

eration is scaled by γ . Therefore the vertex pull will be equivalently called

as edge shortening. In the vertex pull, we call the green vertex as the tar-
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get vertex, and the red vertex as the subject vertex and the edge between

the two as the subject edge. Figure 4.2(a) shows the edge E(x3,x4) before

(shown in dashed) and after (shown in solid) the vertex pull of x3.

– Triangle Shrinkage: This operation can be executed to the red* triangle

as shown in Figure 4.2(c). It shortens the two green edges; their lengths

after the operation are scaled by γ . Therefore, the triangle shrinkage opera-

tion can also be considered as edge shortening; in this case, two edges are

shortened. In the triangle shrinkage, we will call the two pulled green ver-

tices as the subject vertices, the third vertex as the target vertex, and the

two edges that connect the subject and target vertices as the subject edges.

Figure 4.2(c) shows the triangle T (x6,x7,x8) before (shown in dashed) and

after (shown in solid) the shrinkage.

– Revoke of the two operations: The revoking of the vertex pull and triangle

shrinkage can be executed to an edge if that edge is not subject to the vertex

pull or triangle shrinkage but its length has been changed from the original

uv-length. The revoking scales the edge(s) by 1/γ (thus extends).

Implementation of the Operations

For a more detailed discussion on the above four operations, we define the fan.

For a given mesh vertex xi, the fan of it (denoted as fan(xi)) is defined as the

set of all the vertices adjacent to xi in the uv-space. For example, in Figure 4.3,
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(a) (b) (c)

Figure 4.3 Shortening of the edge E(x0,x1), which has the original length l,
toward the target vertex x1 in the uv-space. (a) the mesh before the shortening.
(b) the mesh after the edge is shortened by γ-scaling. Note that it results in
modification of the whole fan(x0). (c) the mesh after another round of edge
shortening.

fan(x0) = {x1,x2, . . . ,x6}.1 In the context of pulling xi, we will call fan(xi)

as the subject fan. We extend the definition to an edge, thus, the fan of an

edge E(xi,x j) (denoted as fan(E(xi,x j))) is the set of all the vertices adjacent

to either of the edge vertices. For example, in Figure 4.8(a), fan(E(x0,x1))

consists of all the contour vertices.

We note that, to achieve the edge shortening in the uv-space mesh, the

operation should be in fact implemented as the subject fan re-meshing2 rather

than shortening the target edge alone. As shown in Figure 4.3, while the fan

contour remains the same, interior edges have to be extended or shortened to

conform to the shortening of the target edge (in this case E(x0,x1)).

1Note that the set does not include itself, i.e., x0.
2The phrase re-meshing normally includes the change of topology as well as the change of

vertex position. In this work, however, we use the phrase to mean only the change of vertex
position leaving the topology the same.
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(a) (b) (c)

Figure 4.4 Determining the target vertex for edge shortening. (a) before
shortening. (b) the shortened outcome when x1 is chosen as the target ver-
tex. (c) the shortened outcome when x2 is chosen as the target vertex, which
produces an inverted triangle.

An out-most red vertex can have multiple candidate green vertices for the

pull as shown in Figure 4.4(a). When the fan is convex, any green vertex can

be chosen for the subject vertex. However, when the fan is concave, the target

vertex needs to be selected after some checking, since an improperly chosen

target vertex (e.g., x2 in Figure 4.4(c)) can produce an inverted triangle.

To avoid this, we perform the triangle inversion test (TIT) for each candi-

date green vertex. TIT checks if any triangle is inverted as the subject vertex

is pulled to the extremity (i.e., when the subject vertex comes to the target

vertex). If so, the candidate green vertex did not pass the TIT. The test for

the triangle shrinkage is done in a similar way. If a fan has at least one TIT-

passable vertex, we will say the fan is TIT-passable.
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4.2.2 CCH vs. m-CCH

Before explaining how we modify CCH to obtain m-CCH, we briefly review

the properties of CCH. CCD examines two consecutive frames and finds out

(1) the penetration time and (2) the barycentric coordinate of the penetration

point if there was a collision. Both of the above require arithmetic operations

that are exposed to round-off errors, so [6] and [69] used some small tolerance

value εCCD to prevent false negatives. Some researchers used exact geometric

computation [7, 65] or Bernstein sign classification [55] that are free from

floating-point errors. This paper will not consider such approaches, but will

assume a conventional CCD that employs εCCD.

Until now, εCCD did not receive much attention and has been considered

only as a value that needs to be small but just large enough to be distinguished

from the round-off errors. In this work, we give a second thought to εCCD.

Assuming that there is no DCH in play (thus referring to Figure 2.2(a)),

if the CCH loop normally ends (i.e., not by the administrative quit) and the

control exits to the World-Space Mesh Update, we note the following two:

(1) The penetrating edge E(x3,x4) in Figure 4.5 cannot escape the triangle in

any means, by crossing the triangle edges or by either of its vertices crossing

the triangle T (x0,x1,x2), and (2) εCCD, which is used to defend the round-off

errors, further confines where the penetrating edge can exist. The vertices of

the penetrating edge are displaced at least εCCD from the triangle, i.e., neither

of x3 or x4 can come into the grey-shaded space in Figure 4.5(a). Also, the
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penetrating edge is displaced at least εCCD from the triangle contour, i.e., the

penetration point p cannot come to the grey-shaded region in Figure 4.5(b).

(a) (b)

Figure 4.5 Effect of εCCD after the execution of full-proof CCH. (a) and (b)
show the effect of εCCD acting as the thickness that prohibits elementary pairs
from approaching too close. Note that the thickness in (a) exists also in (b),
and vice versa.

We make the following two modifications to CCD and CCR to obtain m-

CCD and m-CCR:

– Allowing red-red elementary pairs to cross: The intersection path acts as

the border that distinguishes red and green regions. The idea behind allow-

ing only red-red elementary pairs to cross is to convert red vertices/edges

to green by making them cross the intersection path while prohibiting the

green vertices/edges from becoming red. (Allowing certain elementary pairs

to cross in CCH has been implicitly practiced in the previous DCH meth-

ods. For clarity, this work explicitly points out for which elementary pairs

the crossing is granted.) This modification applies to CCD.
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– Controlling the value of εCCD for resolution purpose: If it helps reso-

lution, we propose to use a larger value than the conventional round-off

defending value. We explain why using a larger εCCD can facilitate the res-

olution in Section 4.2.3. This modification (of εCCD value) applies to both

CCD and CCR.

4.2.3 Resolution of Elementary Tanglements over Simulation

Loop

A single application of vertex pull or triangle shrinkage may not resolve the

tanglement, but the repeated application of them (over the simulation loop)

can. The present section explains how the looping works for the elementary

tanglements.

When edge shortening is applied to E(x3,x4) as shown in Figure 4.2(a),

whereas x4 is defended by εCCD, the defense for the red vertex x3 is off.

Therefore, as we shorten the edge further (by repeating the simulation loop), x3

has to cross the intersecting triangle as shown in Figure 4.2(b) thus becomes

green. Note that εCCD (i.e., the grey shaded region beneath T (x0,x1,x2)) does

its role for the resolution. We will call the repeated application of vertex pull

until the subject vertex crosses the intersecting triangle as the VT-type εCCD-

finesse.

For the case of edge-edge tanglement, as Figure 4.2(c) shows, since the

εCCD defense is off for the red edge pair, as we shorten the two green edges
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further (by repeating the simulation loop), E(x9,x10) has to cross E(x7,x8)

thus both become green as shown in Figure 4.2(d). Note that εCCD (this time,

the grey shaded area inside T (x6,x7,x8)) does its role for the resolution. We

will call repeated application of the triangle shrinkage until the subject edge

E(x7,x8) crosses the penetrating edge E(x9,x10) as the EE-type εCCD-finesse.

We will call the VT-type εCCD-finesse and EE-type εCCD-finesse collectively

as the εCCD-finesse.

Discussion on the Value of εCCD

In the VT-type εCCD-finesse shown in Figure 4.2(a) and 4.2(b), using a larger

εCCD may expedite the finesse. The strategy regarding εCCD we find effective

is to use different εCCD values for different elementary pairs. For the green-

green elementary pairs, for normal round-off error defending, we use the orig-

inal εCCD, 10−6. But for red-green elementary pairs, we use a value (hereafter

referred as εRG) that is larger than εCCD. In the experiments reported in this

paper, for εRG, we used 0.1∗avg(l), where avg(l) is the average length of the

mesh edges. (Further discussion on the value of εCCD is given in Appendix D.)

Although the above discussion was made in regard to VT-type εCCD-finesse,

we note that the same applies to EE-type εCCD-finesse.

4.2.4 Working of εCCD-Finesses in a Cloth Mesh

In this section, we extend the explanation in Section 4.2.3 to the cloth mesh,

i.e., we explain how repeated execution of the simulation loop resolves tangle-
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ments in the cloth mesh. The following description is done referring to Fig-

ure 4.6.

Although the situation shown in Figure 4.6 for a cloth mesh may look

complex (compared to Figure 3.1), it is just a concatenation of a number of

elementary tanglements in a sequence. Therefore, we can use the two finesses

defined for the elementary tanglements.

Three possible VT-type εCCD-finesses (i.e., pulling x0 to x1, x0 to x2, and

x3 to x2, but no EE-type εCCD-finesse) can be considered in Figure 4.6(a) and

4.6(b). In this situation, the finesses need to be scheduled (which will be in-

troduced in Section 4.3). For now, let’s suppose that the scheduling algorithm

selected x0-to-x1 finesse. The VT-type εCCD-finesse makes x0 cross the in-

tersecting triangle T (x4,x5,x6), thus the situation is more clearly visualized

by Figure 4.6(a). (We will call this as the elementary view.) But x0 cross-

ing the intersecting triangle is equivalent to x0 crossing the intersection path,

(p0, p1, p2, p3, p4), which is more clearly visualized by Figure 4.6(b). The lat-

ter, which we will call the abstract view, is more convenient when consider-

ing the resolution in a cloth mesh. It is because the finesse can be described

in terms of only the intersection path (without referring to the intersecting

triangles). Note that the abstract view was already introduced in explaining

Figure 4.1.

By executing x0-to-x1 finesse to the configuration shown in Figure 4.6(b),

x0 crosses the intersection path, the result of which is shown in Figure 4.6(c).

(The restoration step will relocate x0 to its original position, but that part
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(a) (b)

(c) (d)

Figure 4.6 Applying εCCD-finesse to a cloth mesh. Black points represent
the penetration points, and black dashed lines represent the intersection paths.
Coloring of the vertices and edges is done based on the scheme described in
Section 3. For visual comfort, the color is not shown or shown in black for
some vertices/edges. (a) shows a typical intersection between 2- and 3-triangle
fans. (b) shows the same situation without visualizing the 3-triangle fan. (c)
and (d) show the results of applying the VT-type εCCD-finesse to x0 and x3,
respectively.

is omitted in the figure.) Now, in Figure 4.6(c), two possible VT-type εCCD-

finesses (pulling x3 to x2 and x3 to x0) can be considered. Let’s suppose that
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the scheduling algorithm selected x3-to-x2 finesse. That finesse results in Fig-

ure 4.6(d). Finally, all vertices are green and there is only one EE-type-finesse

left. Performing that finesse will fully untangle the two- and three- triangle

fans.

4.2.5 Possible Scenario of Edge Shortening Hindrance

One possible concern is that, even if an edge is shortened in the uv-space

mesh, that shortening in the world-space mesh may be hindered for some rea-

son. Then, the finesse may not proceed normally.

Figure 4.7 An exam-

ple when edge shortening

is caught between a sharp

feature of a body.

We note that such hindrances rarely occur in

practice. UV-Space Mesh Update is a local op-

eration; only neighboring two or three vertices

are involved. The only case we can imagine in

which such hindrance can occur is when a sharp

body part intervenes two cloth vertices as shown

in the drawing on the right. We can set up the

body such that the simulation does not need to

consider sharp features such as fingers/toes (e.g.,

by wrapping caps to hands/feet). Section 7 will

give an experimental report on this issue.
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4.3 Scheduling the Operations

Note that (1) a large number of pull, shrink, and revoke operations have to be

performed, and (2) the observation of their effect in the world-space is possible

only after the World-Space Mesh Update. Sequential processing of them (i.e.,

processing only one operation per simulation loop) will be inefficient, which

is why Algorithm 1 performs multiple operations at once.

Unfortunately, if we perform pulls and shrinks to all out-most red vertices

and red* triangles, respectively, it can introduce inverted triangles.3 This pa-

per finds that we should not perform simultaneous pulls/shrinks in the follow-

ing three cases, and proposes how to schedule the operations in those cases.

The significance of the classification below is that we can perform multiple

pulls/shrinks simultaneously as long as they do not belong to those three cases.

– Case 1 – When two out-most red vertices are adjacent: For example,

if E(x1,x2) and E(x0,x4) of Figure 4.8(a) are shortened simultaneously,

the two fans can interfere, which can result in an inverted triangle as

shown in Figure 4.8(b).4 The above interference can be avoided if we

shorten them sequentially, i.e., we propose that the pull should be per-

formed to only one of them (say E(x1,x2)) and the other (E(x0,x4))

should wait for its turn, until x1 escapes the intersection path and re-

3Note that, whereas the TIT discussed in Section 4.2.1 checks the inversion within the subject
fan, the inversions that are considered here are the ones when two neighboring fans are re-
meshed simultaneously.

4Note that if two subject vertices are not adjacent, the corresponding subject fans do not
overlap, thus do not interfere each other.
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(a) (b) (c)

Figure 4.8 Cases that call for scheduling. (a) shows an example of Case
1. (b) when the two red vertices x0 and x1 of (a) are simultaneously pulled
toward x4 and x2, respectively. (c) shows examples of Cases 2 and 3.

stores to its original uv-position.

– Case 2 – When two red* triangles are adjacent: In Figure 4.8(c), the

two red* triangles T (x0,x1,x2) and T (x2,x3,x4) share x2 thus adjacent.

If we shrink T (x0,x1,x2), x2 will move toward x1. But if we shrink

T (x2,x3,x4), x2 will move toward x3. In such a conflicting case, they

need to be sequentialized, i.e., either T (x0,x1,x2) or T (x2,x3,x4) has to

wait until processing of the other is complete.

– Case 3 – When an out-most red vertex and a red* triangle are neigh-

boring: An example case is the out-most red vertex x6 and the red* tri-

angle T (x5,x7,x8) in Figure 4.8(c). Note that the neighboredness here

does not mean adjacency, but means that the subject vertex of one op-

eration (pull or shrinkage) is included in the fan of the other operation.
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In the current example, fan(x6) includes x5 and x7, and fan(E(x5,x7))

includes x6. Since the pull of x6 and shrinkage of T (x5,x7,x8) can in-

terfere each other, we propose to sequentialize their processing. We give

more priority to red∗ triangles, i.e., the red* triangles ahead of the out-

most red vertices.

Algorithm 2 uv-space Mesh Update with Scheduling
Input: original uv-mesh and current uv-mesh
Output: updated uv-mesh

1: Color cloth vertices based on intersection analysis
2: for all red* triangles T (x∗i ,x∗j ,x∗k) do
3: if fan(E(x∗j ,x∗k)) is in its original uv-position then
4: if fan(E(x∗j ,x∗k)) passes the TIT then
5: Perform triangle shrinkage
6: end if
7: end if
8: end for
9: for all out-most red vertices xr do

10: if fan(xr) is in its original uv-position then
11: if fan(xr) passes TIT then
12: Perform vertex pull
13: end if
14: end if
15: end for
16: for all green vertices xg do
17: if xg is not in its original uv-position then
18: if xg is not a subject vertex then
19: Revoke any operations applied
20: end if
21: end if
22: end for
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Algorithm 2 is one possible implementation of the above sequentializations

and priority. If it is replaced with Algorithm 1, the pulls/shrinks can be per-

formed as simultaneously as possible without producing any anomalies. We

find the listing lacks readability, thus we give some explanations below.

By having Lines 2∼ 5 at the beginning, red* triangles are processed ahead

of out-most red vertices, observing the scheduling rule of Case 3. Note that

x∗i is the target vertex, x∗j and x∗k are the subject vertices. Line 3 checks if its

fan(E(x∗j ,x∗k)) is not interfered by other triangle shrinkage. By Line 4, if the

fan is not TIT-passable, it yields the turn to the next red* triangle. The shrink-

age in Line 5 is made to the current uv-mesh immediately so that the check

made in Line 3 is valid. We note that the for-loop in Line 2 of Algorithm 2

should not be parallelized, so that, if the shrinkage of a red* triangle already

started (by Line 5), for an adjacent red* triangle, its fan is not in the original

uv-position. So the shrinkage of that triangle is skipped by Line 3, observing

the scheduling rule of Case 2.

Similarly, the for-loops in Lines 9∼ 12 should not be parallelized. There-

fore Line 10 ensures that an out-most red vertex is not processed if it is ad-

jacent to another out-most red vertex or is neighboring to a red* triangle, ob-

serving the scheduling rule of Case 1 and Case 3. Line 11 is to yield to the

next TIT-passable out-most red vertex. Finally, Lines 16∼ 19 are for restoring

the green vertices that used to be red.
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4.3.1 Possible Scenarios when No Fan is TIT-Passable

We consider the exceptional cases in which no fan is TIT-passable.

– Coloring is performed by examining all existing intersection paths. A vertex

that was green after examining an intersection path can become red after

examining another intersection path. In an extreme case, the entire mesh

may turn out red, leaving no green vertex to role as the target vertex. But

it corresponds to the case in which the majority is tangled, which we assume

does not occur (see Section 3.1).

– In running Algorithm 2, we can imagine a case in which no TIT-passable

fan exists. In that case, the proposed DCH has to halt. A heuristic proce-

dure to evade such a case is described in Appendix C. However, this case

is very rare in clothing meshes. For this case to occur, the original uv-space

triangulation should be very irregular (e.g., the star-shaped triangulation di-

agrammed in Appendix C). We have never met such a case so far.

4.4 Soundness in Intrinsically Planar Cases

In this section, we show that the proposed DCH method is capable of resolving

tanglements in finite time steps in intrinsically planar cases. The scheduling

algorithm described in Section 4.3 enables multiple finesses to run without

interfering with each other. Proving that the algorithm is interference-free can

be tedious, thus this paper will take it without proof. Then, we can show the
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convergence of the proposed DCH method.

Theorem. The following is in regard to the given intrinsically planar cloth

mesh. For any given tanglement except for BLI, if it is colored according to

Section 3, the proposed DCH method resolves the tanglement within a finite

number of time steps under the following two conditions: throughout the DCH

resolution steps, (i) the edge shortening is not hindered (Section 4.2.5), and

(ii) there is at least one TIT-passable fan (Section 4.3.1).

Proof. As discussed in Section 4.2.5 and Section 4.3.1, it is difficult to en-

counter a case in which the two conditions of this theorem are not met. In

order to prove the theorem, it suffices to show that (1) during the resolution,

red elements do not increase, and (2) each finesse terminates in finite time

steps.

We prove the first part by showing that the red vertices, edges, triangles

do not increase. With the proposed modifications to CCH, m-CCH encour-

ages exiting red vertices/edges, but it does not necessarily prevent entering

red vertices/edges. To show the entering red vertices do not increase in the

total number, in Figure 4.2(a), imagine an additional red vertex xnew which

was originally below T (x0,x1,x2), after Linear System Solving, comes above

T (x0,x1,x2). According to its definition, m-CCH does not prevent that pene-

tration, since both xnew and T (x0,x1,x2) are red. But note that the total number

of red vertices does not increase, since that vertex was red before the penetra-

tion.5 A similar argument can be made for the red edges using Figure 4.2(c)
5In addition to the total number, we note that, by m-CCH, a red vertex can remain red or
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to show that the total number does not increase. By definition of the red tri-

angle, since a green vertex/triangle can never become red (the property of the

full-proof CCH), the number of red triangles does not increase.

(a) (b)

Figure 4.9 εCCD-finesse to vertex-triangle tanglement and edge-edge tangle-
ment. (a) VT-type εCCD-finesse. (b) EE-type εCCD-finesse, in which the black
dashed lines represent the intersection path.

Now we prove the second part. Let’s suppose that the VT-type εCCD-finesse

does not successfully pull an out-most red vertex out of the intersection path in

finite time steps. Figure 4.9(a) shows the situation, in which xa is the out-most

red vertex and xb is the target vertex, and E(xa,xb) with the original length

l is penetrating T (xi,x j,xk). The superscript z in xz
a represents the number of

vertex pull operations applied.

Since m-CCH prevents xb from entering the grey shaded area, by repeated

application of pull by γ < 1, xa has to move toward xb due to the shortened

edge length γnl. Since εRG is a constant, there exists an integer n such that

become green, but a green vertex can never become red.
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after n time steps,

γ
nl < εRG (4.1)

holds. At this point, it is certain that xa has crossed the triangle (thus the

intersection path), which is a contradiction to the original assumption.

Let’s suppose that the EE-type εCCD-finesse does not successfully push the

intersection path out of a red* triangle in finite time steps. Figure 4.9(b) shows

a red* triangle T (xi,x j,xk) with the original height h, in which E(xi,x j) is the

red edge. The superscript z in xz
i and xz

j represents the number of red* triangle

shrinks applied.

By repeated application of triangle shrinkage by γ < 1, xi and x j have to

move toward xk due to the shortened height γmh. Since εRG is a constant, there

exists an integer m such that after m time steps

γ
mh < h′

(
=

sin(0.5ω1 +ω2)

sin(0.5ω1)
εRG

)
(4.2)

holds, where the right hand side is the vertical distance to the bottom corner

of the shaded region measured from xk thus has a finite value. Since m-CCH

prevents any intersection path point p from entering the grey shaded area, at

this point, it is certain that the whole intersection path has crossed the red

edge, which is a contradiction to the original assumption.

Combining the two parts, we can conclude that the proposed method mono-

tonically resolves red elements, each in finite time steps, until all red elements
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become green thus the tanglements are completely resolved.

4.5 Extensions to Process Clothing

Figure 4.10 An example in

which the intersection path exists

across multiple panels.

For a pull/shrinkage, when the enclosing

fan exists within a single panel, the sub-

ject fan re-meshing is well-defined. As

for intrinsically planar cases, even if the

enclosing fan does not exist within a sin-

gle panel, we can straightforwardly ex-

tend the subject fan re-meshing to work

across multiple panels. However, the fan

re-meshing can be problematic for intrin-

sically non-planar cases.

Since a garment is constructed by

seaming multiple panels, the resultant

mesh is in general intrinsically non-planar and the intersection path can lie

over multiple panels as shown with the black dashed lines in Figure 4.10, in

which the blue dashed lines label the vertices being stitched, and the coloring

of the vertices and edges reflects the result of intersection analysis performed

in world-space.

In pulling out x0 in Figure 4.10, suppose that x2 has been chosen as the

target vertex. Note that x0 and x5 are identical in the world space mesh (and
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so are x1 and x8, x4 and x6). For shortening E(x0,x2), performing the fan

re-meshing only in the left panel will leave x5 at its original position in the

right panel, thus T (x5,x6,x7) and T (x5,x7,x8) can hinder the shortening of

E(x0,x2) in the world space simulation. This is violation of the condition (i)

of the theorem. To be able to use the proposed DCH method to clothing sim-

ulation, therefore, the subject fan re-meshing operation has to be extended to

cover non-planar cases.

For fan(x0) =
{

x1,x2,x3,x4
}

and fan(x5) =
{

x6,x7,x8
}

in Figure 4.10, it is

clear that not only fan(x0) but fan(x5) also needs to be considered in shorten-

ing E(x0,x2). The difficulty here is that, although the two panels are seamed

in world-space, they exist as two separate uv-space entities; The coordinate

systems associated with the left and right panels can have different origins

and orientations. For example, we cannot expect the uv-coordinates of x0 and

x5 to be the same.

In the above circumstance, we propose that (1) the fan re-meshing should

be performed separately for each panel (i.e., the re-meshing should be per-

formed to fan(x0) and fan(x5) separately), but (2) the two fan re-meshings

should be done in coordination such that shortening of E(x0,x2) is not hin-

dered by fan(x5) during the simulation. We put the detailed procedure in Ap-

pendix B. 6

The procedures presented in Appendices A and B are developed such that

6The two seamed edges can share a common vertex in the uv-space (e.g., in a dart), in which
case, the whole panel is represented in a single uv-coordinate system. This case has to be handled
differently from the method described in Appendix A, and is presented in Appendix B.
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they resemble the handling of intrinsically planar cases as much as possible.

For example, if the procedures are applied to an intrinsically planar mesh, they

will produce an identical result with the one produced with the algorithms pre-

sented up to Section 4.4. Here, we note that the extensions in Appendices A

and B are heuristic methods, for which this paper does not attempt to show

theoretical convergence. Experiments in the results section report that the pro-

posed heuristic methods work quite well.
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Boundary-Loop-Interior Resolver

5.1 Overview

Mesh-Tearing directly solves BLI, by editing the uv-mesh to unlock the mesh

biting into itself. It omits certain triangles to free the lock. On the other hand,

Crease-Flip and Regional-Flip is a rather more indirect approach, it converts a

BLI into a different type of path such that the study in Section 4 can resolve

the left-over. Crease-Flip is intuitive, by comparing the user-given crease angle

and the current angle during the simulation, it can distinguish which side is

folded in the opposite direction. Crease-Flip detects it and positions it at a

correct angle. Regional-Flip removes the flipped area between the coupled two

BLIs.

51
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5.2 Modifications to Conventional Simulator

This section will once again refer to Figure 2.2(b) and show which parts of

the simulation flow need to be modified to implement the three algorithms for

BLI. Mesh-Tearing deliberately omits certain triangles which are beneficial to

the resolution. Omitted triangles are reflected to the simulator by editing the

uv-mesh in the UV-Space Mesh Update. Same with ESEF, it is also essential

to allow crossing primitives when it is orchestrated by DCH. Crease-Flip and

Region-Flip resolve BLI by intentionally crossing over two regions, thus the

action should be allowed in the m-CCH Loop.

5.3 Mesh-Tearing

Once the user chooses fold-unfolding (i.e., B sliding towards L) for the given

BLI case, some non-physical operation should be allowed if it is critical to the

resolution. In this work, what we propose is to temporarily omit triangles along

the intersection path (as shown in Figure 5.1) that can benefit the untangling.

Chronological progress is visualized in Figure 5.1(a) ∼ 5.1(d), by coloring

the omitted triangles in sky blue. The sky blue triangle strip can be considered

as stitches holding the blue and red regions of the mesh. The blue and red

regions will be called as the wings hereafter. The remaining mesh colored in

white will be called as the body. If the triangle strip is omitted, each wing

will be free and independently unfold, and when it is unfolded enough, we let

the omitted strip be re-identified. We call the above operation as the Mesh-
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(a) (b) (c)

(d) (e) (f)

Figure 5.1 Operation of Mesh-Tearing. (a)∼(d) chronologically shows how
it works. (e) is a diagrammatic depiction of (a) in 2D, where the black dashed
line is the intersection path, and the sky blue triangles are the omitted triangles,
which enclose the intersection path from L to B. The green region in (f) shows
where the bending stiffness is increased, which facilitates the loop vertex to
slide out to B. In fact, (a) is identical to the third case in Figure 9 of [64].
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Tearing. Its details are as follows.

Mesh Tearing is achieved by the following two operations. First, triangles

that lie under the intersection path between B and L in Figure 3.2(b) are omit-

ted, thus are excluded in the collision handling process of the simulation as

shown in Figure 5.3. As the simulation proceeds, the wings slide out towards

L (as shown in Figure 5.1(a) ∼ 5.1(d)) and, as a consequence, the inter-

section path becomes shorter. The situation can change after every simulation

time step. As the fold unfolds and B slides out toward L (in Figure 3.2(a)),

L will move toward B (in Figure 3.2(b)). Then the previous BLI will not stay

the same anymore. Thus we update the set of omitted triangles accordingly.

By the update, triangles that used to be omitted may be no longer omitted.

We will call those triangles as the revived triangles.

Second, the physical property of triangles around the loop vertex is varied

to aid/accelerate the unfolding. If the unfolding relies entirely on the simu-

lation, the progress can be hindered by external factors (e.g., gravity, penalty

forces created by collision, etc...). To encourage the sliding out, we give a

boost in the bending stiffness to a few neighboring triangle rings around the

loop vertex. 1 In the remainder of this section, we will look a little more de-

tails of the operation of Mesh-Tearing.

1These rings are selected in proportion to the L-to-B intersection depth, in terms of the
number of the triangles the path is over.
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(a) (b) (c) (d) (e)

Figure 5.2 Operation of Mesh-Tearing in 2D. (a)∼(c) are the 2D version
of Figure 5.1(a) ∼ 5.1(c). The color indicates the winding direction, and the
color thickness indicates the bending curvature. In (e), the revived triangle is
shown in orange. Take a note of where the new loop vertex comes.

5.3.1 L-to-B Propagation

The main power that drives the fold to propagate downward in Figure 3.2(a)

is the boost in the bending stiffness around L. The above raises a question: if

the fold propagates downward, would the loop vertex L propagate toward B?

A BLI is created when a mesh is wound-up in opposite directions (in Fig-

ure 5.1, the red and blue wings). Therefore there must be a vertex where the

wings meet, known as the loop vertex. At that single point, we note that the

curvatures of the two wings are opposite in sign as shown in Figure 5.2(a)

∼ 5.2(c). (We will call that single point as the crossing point.) Therefore, as

the fold propagates as shown in Figure 5.1(a) ∼ 5.1(d), the crossing point L

propagate towards B.

An interesting fact here is that only the vertices of the omitted triangle strip

can be the new loop vertex. During Mesh-Tearing, history-based collision han-
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dling prevents wings from penetrating the body, which makes the intersection

path between L and B of the BLI to be kept inside the omitted triangle strip.

Therefore, the loop vertex propagates towards B via vertices of the omitted

triangle strip as shown in Figure 5.2(d) ∼ 5.2(e).

5.3.2 Revived Triangles

Referring to the simplified flowchart of the simulator shown in Figure 5.3,

during simulation, we note that Mesh-Tearing makes the intersection analy-

sis module and the collision handling module run with different meshes. The

intersection analysis module works with the un-omitted mesh, but the colli-

sion handling module receives the omitted version (i.e., the mesh without the

omitted triangle strip). The intersection analysis module is the only one that

is aware that the cloth has a BLI.

We let a triangle be revived only when the intersection analysis module

has found out that the triangle no longer participates in creating a BLI. It can

be surprising to the collision handling module as a triangle suddenly appears,

but the new intersection it creates is not of the BLI type. Since the other six

types of intersections can be resolved, the revived triangle does not cause any

significant complications.
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Figure 5.3 A simplified flowchart of the simulator. From the start of a new
time step, the Intersection Analysis module reports intersections, and applies
necessary measures to resolve them. Then, the simulator advances by ∆t, i.e.,
calculates the mesh accounting for the time flow. The History-Based Collision
Handling module verifies if the resultant mesh is valid, and if needed, resolves
collisions. The Intersection Analysis module works with un-omitted mesh, then
based on the BLI intersections present, it generates the omitted mesh for the
History-Based Collision Handling module.
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(a) (b)

(c) (d)

Figure 5.4 BLIs being resolved by Regional-Flip. (a) shows two BLIs on
a round fold. Assuming that the grey-side cloth should be above the red-side
cloth, (b) shows the situation in 2D, where purple and blue colored triangles
are those that need to be switched by the proposed method. (c) shows possi-
ble resultant intersections as the BLIs are approaching each other. (d) shows
another possible resultant intersection.
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5.4 Regional-Flip

When BLI paths exist as a pair (an example shown with black dotted lines

in Figure 5.4(a)), the region between the two paths needs to be resolved. If

fold-remaining is the resolution style, switching or flipping the position of the

two problematic areas (let’s call the area the cross-over region) in 3D (e.g.,

by applying attraction forces, make the outer surface go underneath the inner

surface and the inner come out of the outer) can be a simple solution. In

this work, we take that approach. We perform the resolution in two parts: (1)

defining the cross-over region, (2) performing flip for that region.

Let’s assume that the user selected two BLIs to be coupled as shown in

Figure 5.4(a). Then, the cross-over region is defined by creating a connecting

path between the two I’s of the BLI paths via the mesh triangles as shown

in Figure 5.4(b) (hereafter we will call it I-to-I connection), which produces

a closed area when combined with the coupled BLIs. Now, in 2D, the cross-

over region is divided into two, by creating a connecting path via triangle

edges between two L’s (hereafter we will call it L-to-L connection) as shown

in Figure 5.4(b), which produces purple and blue regions. Regional-Flip is not

sensitive to the choice of both L-to-L or I-to-I connection as long as they do

not meet, such that the cross-over region can be defined.

Flipping the cross-over region in a single step can be difficult; the two

regions can be distant in the 3D space, or the intersection path can be too

complex to define a feasible flip. So in our implementation, flip occurs over a
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number of simulation time steps, starting from the vertices near the intersection

path, such that the two BLI paths approach each other. Two exemplar results

are shown in Figure 5.4(c) and 5.4(d). Depending on where the BLI paths

meet, BLIs are converted into other types of intersection paths: BBII if the

two L’s meet first, LL if the two B’s meet first, and both BBII and LL if

the intersection meets at anywhere else. Notice that the above is an indirect

approach, converting a pair of BLIs into other type(s) of intersection path(s)

that can be resolved with the previous methods.

5.4.1 Crease-Flip

We sometimes encounter a special case of Regional-Flip. When fold-remaining

is the resolution style of the BLI, the fold can be supposed to be sharp (e.g.,

crease for the design purpose in which the rest angle with respect to the fold is

predefined) as shown in Figure 5.5(a). Fig 5.5(a) shows that, in 3D, the front

red wing needs to be flipped to behind the grey body. Since the fold should

remain, resolving this case (we call it Crease-Flip) has some similarities with

the Regional-Flip. A difference from the Regional-Flip is that for this case,

we do not need to define the cross-over region explicitly; the red sharp fold

in Figure 5.5(b) is comparable to the L-to-L connection of the Regional-Flip,

which can be identified by comparing the current fold angle and the predefined

fold angle at the rest state; Crease-Flip does not require I-to-I connection since

the step-by-step resolution is performed from the single BLI intersection path.

Other than the above differences, Crease-Flip proceeds similarly to the Regional-
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(a) (b)

(c) (d)

Figure 5.5 BLI being resolved by Crease-Flip. (a) shows the situation in 3D.
(b) shows the same situation in 2D; notice that compared to Regional-Flip, the
fold is significantly sharper. The horizontal lines in (b)∼(d) represent the fold;
the lines are colored in green if the current angle is close to the rest angle,
and in red if not. (c) and (d) show a possible progression after (b), in which
the BLI is converted into BIBI.

Flip. One possible step-by-step progression is shown in Figure 5.5(b) ∼ 5.5(d),

where the loop vertex translates through the red fold until it meets the end of
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mesh, the BLI possibly disappearing or converting into BBII or BIBI.

5.5 Selecting Resolution Style/Algorithm

(a) (b)

(c) (d)

Figure 5.6 Shirts with a collar on a transparent avatar. (a) shows the initial
situation in which multiple BLIs exist, (b) BLIs are all resolved with Regional-
Flip, (c) BLIs are resolved with Regional-Flip but the collar is folded inward,
(d) BLIs are resolved with Mesh-Tearing but the collar is raised upward. All
three resolutions are intersection-free, but (b) is in general considered most
appropriate.

In developing resolution algorithms for BLI, we assumed that the user se-

lects the style, i.e., one among {fold-unfolding, fold-remaining} and the al-

gorithm, i.e., one among {Mesh-Tearing, Regional-Flip, Crease-Flip}. In this

section, we consider the possibility that the selection of the style/algorithm can
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be done heuristically.

The most obvious case would be Crease-Flip, as its condition is clear. If a

BLI is over a sharp fold (we can judge this by examining if the clothing design

has a crease along the fold), Crease-Flip should be the algorithm to select.

The above means that if there is no crease defined along the fold, Crease-Flip

should not be selected (Figure 5.7).

The decision whether to apply Mesh-Tearing or Regional-Flip needs to be

made. The originally intended way of wearing the garment (which may involve

the cultural aspect) now matters. For example, in the case shown in Figure 5.6,

BLIs occur in the collar of the shirt. Therefore, among Figure 5.6(b) ∼ 5.6(d),

Figure 5.6(b) is what is conventionally expected. For that purpose, we will as-

sume that, where the intended way needs to be noted, the clothing data contain

some kind of label to transfer that information to the program. For example,

we assume that the red-colored sewing pattern in Figure 5.6 is labeled as ‘col-

lar’. The above means the Regional-Flip (rather than Mesh-Tearing) should

be selected as the resolution algorithm for this case. Note that Regional-Flip

can produce either folding-out (Figure 5.6(b)) and folding-in (Figure 5.6(c))

depending on which/how BLIs are coupled. Since folding-in rarely occurs in

wearing clothes, this work will assume folding-out is the correct choice for

every Regional-Flip case.2

Referring to the flowchart in Figure 5.7, we determine the resolution style/algorithm

2Although we have never met such a case, if a Regional-Flip case has to be folded in, the
situation should be somehow notified.
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in the following way. Any arbitrary two neighboring BLIs from the left overs3

(excluding BLIs that can be processed by Crease-Flip) are examined whether

they can be the BLI couple for the Regional-Flip. If applying Regional-Flip

to the BLI couple results in folding-out, we process that BLI couple by the

Regional-Flip. But if it results in folding-in, we process each of the two BLIs

by Mesh-Tearing. (How to find whether applying Regional-Flip to the BLI

couple results in folding-out or folding-in is explained in Appendix E.) The

above should be done to every possible BLI pair, until no further valid couple

is left. All remaining BLIs are now resolved by Mesh-Tearing.

Figure 5.7 Flowchart for determining the resolution algorithm.

3In normal situations, there will be a small number of left over pairs.
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Experiment Results

6.1 Overview

We built three types of simulators; all three simulators having the same basic

architecture, by a combination of prior simulation models ([1, 11, 6]), with

CCD acceleration methods ([43, 49, 12, 52, 67]). For reference, the first sim-

ulator was equipped with previous DCH methods ([2, 64, 75, 74]) with nec-

essary measures to fit into the force-based simulator. The second and third

simulator was each equipped with ESEF, ESEF & BLI-Resolver respectively.

We will refer to the first as SIM-PREV, second as SIM-ESEF and third as

SIM-BLIR later on. From Section 6.2 to Section 6.4, we compare the results

between SIM-PREV and SIM-ESEF. From Section 6.5 to Section 6.8, we com-

pare the results between SIM-PREV and SIM-BLIR.

We note two important points in SIM-BLIR. [75] is practically the only

65
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(a) CLOSED (3D) (b) CLOSED (2D)

(c) LL (3D) (d) LL (2D)

Figure 6.1 CLOSED & LL. In 3D, every edge that penetrates a triangle
is shown in red as in Figure 3.1(a) and Figure 3.1(b), which conspicuously
labels where the tanglements exist. In 2D, elements are colored according to
the scheme introduced in Section 3.

competitor to BLI-Resolver. Although [75] did not explicitly mention BLI, ex-

periments show that it is capable of taking care of some BLIs. So to be scien-

tific, we should compare [75] with BLI-Resolver only on BLIs. However, as
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(a) EIGHT (3D) (b) EIGHT (2D)

(c) CROSS (3D) (d) CROSS (2D)

Figure 6.2 EIGHT & CROSS. In 3D, every edge that penetrates a triangle
is shown in red as in Figure 3.1(a) and Figure 3.1(b), which conspicuously
labels where the tanglements exist. In 2D, elements are colored according to
the scheme introduced in Section 3.

the clothing simulation progresses, the situation cannot be controlled such that

only BLIs occur. Under the circumstances, resolving BLIs only can leave the

clothing tangled due to the other types of intersections, making the comparison
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(a) BBII (3D) (b) BBII (2D)

(c) BIBI (3D) (d) BIBI (2D)

Figure 6.3 BBII & BIBI. In 3D, every edge that penetrates a triangle is
shown in red as in Figure 3.1(a) and Figure 3.1(b), which conspicuously la-
bels where the tanglements exist. In 2D, elements are colored according to the
scheme introduced in Section 3.

itself difficult. This is why SIM-BLIR is not only equipped with BLI-Resolver,

but also ESEF. Other than the above, when running BLI-Resolver, the resolu-
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tion algorithms for BLIs were automatically selected according to the flowchart

in Figure 5.7 except for Section 6.8.

6.2 Rudimentary Cases

We set up a handkerchief (or two handkerchiefs) to produce the above six

cases as shown in Figure 6.1, 6.2 and 6.3. In the simulation, to facilitate the

observation, the gravity was set to zero and a few vertices were constrained

to stay at their initial position. As the accompanying video shows, the pro-

posed method resolved the six cases successfully. ESEF is supposed to handle

six out of seven cases (i.e., all the cases except for BLI) if the required con-

ditions of the theorem are met. Among the six covered cases, the first five

cases (CLOSED, LL, EIGHT, CROSS, BBII) divide the mesh such that the

red vertices are identifiable, and the remaining case (BIBI) produces only red*

triangles.

6.3 Exploded Handkerchief

In this experiment, a handkerchief consisting of 388 triangles was shuffled to

be in a tangled state. After positioning the handkerchief such that its center

comes to the origin, each vertex of the handkerchief was re-positioned to z =

(r,φ ,ψ) in spherical coordinates, where z was randomly chosen from [0,r0]×

[0,2π)×[−π,π] for some constant r0. We confined re-positioning to the central
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(a)

(b) (c)

Figure 6.4 Exploded handkerchief. (a) initial tanglement, (b) after running
the proposed method 75 time steps, (c) after running SIM-PREV additional
2,000 time steps after the first 75 time steps.



Chapter 6. Experiment Results 71

area to avoid the BLI cases occurring.

Intersection analysis performed at the first frame resulted in 7,801 inter-

section path fragments (intersection between two red triangles) across 163 red

triangles. On average, one red triangle intersected with 47 other red triangles.

The proposed method resolved tanglements without any failure (Figure 6.4(b))

in 75 time steps. With SIM-PREV, three LL cases were left unresolved even

after 2000 time steps as shown in Figure 6.4(c) and the accompanying video.

We can attribute the above failures to (1) GIA and UIR do not take any actions

for the LL cases, and (2) Repulsive-ICM may not produce correct/consistent

vertex movement direction for the resolution.

Figure 6.5 Plotting of the resolution time and red vertex count. The bar
graph represents the time taken for the resolution in log scale, and the red
curve represents the number of remaining red vertices.

Figure 6.5 shows how the proposed method performed in resolving the
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scene shown in Figure 6.4. The x-axis represents the frame number. Figure 6.5

shows two measurements at the same time, i.e., (1) the bar graph represents

the time taken in milliseconds for the collision resolution at each odd frame,

and (2) the red curve represents the number of remaining red vertices at that

frame. It shows that the proposed method monotonically reduces the number

of red vertices, which can be expected throughout this paper.

In all experiments reported in this paper, we used ∆t = 0.02s and γ = 0.8.

Obviously, a smaller γ will expedite the finesse. However, when γ is too small,

the force-based simulator can become unstable. A more detailed discussion

about the choice of the γ value is placed in Appendix D.

The exploded handkerchief is a manipulated experiment to fit to the theo-

retical range of the proposed method. Whereas the prior works may or may not

be able to handle the exploded handkerchief (depending on the given handker-

chief mesh configuration), the proposed method guarantees to fully untangle

the handkerchief no matter how complicated the tanglements are as long as

it contains no BLI case. We experimented tens of other handkerchief explo-

sions, and the proposed method resolved them without failure. By observing

the proposed method resolving this case, which is the straight implementation

of the theorem, we reassure that the theory works in practice.
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(a) (b) (c)

(d) (e)

Figure 6.6 Experiments on clothing cases. (a)∼(d) shows the initial tangle-
ments. (e) is a capture during a session of interactive tanglement generation
and resolution.

6.4 Clothes

Tanglements in four ensembles shown in Figure 6.6(a) ∼ 6.6(d) were cre-

ated by deliberately disabling self-collision handling for a few time steps. BLIs

could be introduced, which were manually removed before running SIM-ESEF

and SIM-PREV. As shown in Figure 6.7(a) ∼ 6.7(d), the proposed method re-

solved all cases successfully. With SIM-PREV, however, there were resolution
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(a) (b) (c)

(d) (e)

Figure 6.7 Experiments on clothing cases. (a)∼(d) show the results after
executing SIM-ESEF to Figure 6.6(a) ∼ 6.6(d), respectively. (e) shows the
results after 500 times steps of simulation with the proposed method.

failures in all four cases, as shown in Figure 6.8(a) ∼ 6.8(d), even after we

ran 1,000 additional time steps compared to those required for Figure 6.7(a)

∼ 6.7(d), respectively.

Figure 6.6(e) is a single garment case that consists of 4,183 vertices, for

which the user interactively generated tanglements by dragging the vertices

while the resolution is running. As shown in Figure 6.7(e), except for a single
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(a) (b) (c)

(d) (e)

Figure 6.8 Experiments on clothing cases. (a)∼(d) show the results after
executing SIM-PREV to Figure 6.6(a) ∼ 6.6(d), respectively. (e) shows the
results after 500 times steps of simulation with SIM-PREV.

BLI case at the corner of the front opening (which is out of scope of the

proposed method), the resolution of the proposed method was successful, at

the rate of 1.56 fps on average. The accompanying video contains the capture

of the interactive session. With SIM-PREV, however, some non-BLI cases were

left unresolved as shown in Figure 6.8(e). 1

1In this test, in which new tanglments were interactively generated while some were being
resolved, we could not run the proposed method and SIM-PREV in the strictly same condition.
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In the clothing examples, the failure included CLOSED, BBII, and BIBI

cases, as well as LL. Since the methods in SIM-PREV have upper bounds in

the force/displacement they can apply for the resolution, when there exists a

tanglement that calls for a larger force/displacement, the resolution can fail.

The above implies that the failure of SIM-PREV is not necessarily limited to

{LL, CLOSED, BBII, BIBI}. 2 Those failures do not occur in the proposed

DCH method, since the method applies the pull and shrinkage limitlessly until

they place the tangled vertex/edge to the other side of the intersection path.

Handling the clothing cases needed the heuristic methods presented in Sec-

tion 4.5. Let OffSeam represent the intrinsically planar edge shortening type

thus can be covered by the theorem, and OnSeam-A and OnSeam-B repre-

sent the edge shortening types in which the subject vertices lie on the seam

thus should be processed by the procedures described in Appendix A and B,

respectively. Table 6.1 summarizes the statistics for the three edge shortening

types. In the table, #(*) and %(*) represent the total number and percentage,

respectively, of the types, which were collected throughout the simulation of

the above ensembles. There was no frame at which condition (ii) of the the-

orem was not met, i.e., at every time step, there existed at least one TIT-

passable fan thus the convexification of Appendix C was never needed.

A curiosity here is whether the handling of the non-planar cases (i.e., OnSeam-

However, we note that, as we perform the test multiple times, if we exclude BLI, the proposed
method was always successful while SIM-PREV was not.

2If experimented in different conditions, SIM-PREV on the exploding handkerchief case may
also have produced CLOSED, BBII, BIBI (and possibly other new) failures.
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A and OnSeam-B, which we will collectively denote as OnSeam) is as good

as that of the intrinsically planar case OffSeam. One indicative measure would

be the number of time steps required for completing the εCCD-finesse from

the moment it is initiated. Let’s denote the average number of time steps for

completing the finesse of each type with t(*). As the last column of Table 6.1

shows, OnSeam took only about 1.76 additional time steps at most compared

to OffSeam. It experimentally indicates that the procedures proposed for On-

Seam emulated that for OffSeam quite well.

Scene vertex type #(*) %(*) t(*)
OffSeam 571 92.24 6.10

Figure 6.6(a) OnSeam-A 42 6.79 7.86
OnSeam-B 6 0.97 6.30
OffSeam 1390 91.27 9.88

Figure 6.6(b) OnSeam-A 121 7.94 10.57
OnSeam-B 12 0.79 11.01
OffSeam 898 90.25 7.53

Figure 6.6(c) OnSeam-A 75 7.54 7.10
OnSeam-B 22 2.21 6.90
OffSeam 1,451 91.09 6.84

Figure 6.6(d) OnSeam-A 68 4.27 7.02
OnSeam-B 74 5.64 6.59
OffSeam 2,192 82.81 5.76

Figure 6.6(e) OnSeam-A 357 13.49 5.90
OnSeam-B 98 3.70 5.11

Table 6.1 #(*), %(*) and t(*) represent the occurrences of each case, per-
centage, and average number of time steps required, respectively.
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6.5 Round Folds

A round fold in the collar is a vulnerable spot to collision failures, as shown

in Figure 5.6(a). According to Section 5.5, in such a case, Regional-Flip was

selected, and that algorithm successfully produced the result shown in Fig-

ure 5.6(b).

6.6 Sharp Folds

Lapel and collar are prone to create collision failures with the bodice. When

the avatar is suddenly switched to another avatar or the garment is switched

to another size (in the context of virtual try-on techniques such as [17]), the

situation shown in Figure 6.9(a) can occur, in which the lapel/collar intersects

with the bodice, creating multiple BLIs along with a number of other types

of intersections. With the provided design information (i.e., the crease along

the lapel and collar), the proposed method applied the Crease-Flip along the

lapel/collar fold line, and quickly produced the configuration shown in Fig-

ure 6.9(b).

6.7 User Interactions

In some cases, the user may grab and drag a part of the clothing (in order

to obtain a proper fit or to create more natural wrinkles), which can create

new intersections including BLIs. Figure 6.10 shows the case when the user
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(a)

(b) (c)

Figure 6.9 Crease-Flip applied to sharp-folded lapel and collar. (a) is the
given setup which contains multiple intersections including BLIs. (b) shows
the resolution with the SIM-BLIR, and (c) shows the resolution with the SIM-
PREV.

drags up a sleeve. 78 intersections were created, among which 7 were BLIs.

The panels apart from the sleeves were made to remain fixed to their ini-

tial draping, in order to provide a fair condition to this test. SIM-PREV left

3 BLIs unresolved (Figure 6.10(d)), but SIM-BLIR resolved all tanglements
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(Figure 6.10(b)). Throughout the execution of SIM-BLIR, for this particular

case, the program selected only the Mesh-Tearing (according to the flowchart

shown in Figure 5.7).

As we repeat the sleeve test, we note that it was not resolved as shown

in Figure 6.10(b) in all cases. This does not mean that the proposed method

failed (since there were no intersections left), but that the sleeve was not fully

extended to its original shape. As the implemented simulator has an asym-

metric bending model([11]), depending on which wrinkle is formed first, the

outcome had a little variance as shown in Figure 6.10(c).

As another user interaction case, the user pulled up the bottom of a skirt as

shown in Figure 6.11(a), which created 125 intersections including 12 BLIs.

As we ran the resolution programs, SIM-PREV left 4 BLIs unresolved (Fig-

ure 6.11(c)), while SIM-BLIR resolved all the tanglments including the BLIs

(Figure 6.11(b)). Throughout the execution of SIM-BLIR, again the program

selected only the Mesh-Tearing.

6.8 Exploded Handkerchief

In this experiment, a handkerchief consisting of 388 triangles was shuffled to

be in a tangled state. In contrast with Section 6.3, we now no longer need to

worry about BLIs, thus the re-positioning is not limited to the central area. All

vertices except for the two vertices on the top left and right corner were re-

positioned; intersection analysis performed at the first frame (Figure 6.12(a))
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resulted in 32 BLIs and 3549 other types of intersections. We fixed the reso-

lution algorithm to Mesh-Tearing for this particular case.

SIM-BLIR untangled the handkerchief completely (Figure 6.12(b)), whereas

SIM-PREV left 7 BLIs unresolved (Figure 6.12(c)). We repeated the Exploded

Handkerchief test with new randomized setups detailed in the video. SIM-

BLIR produced complete resolution with no exception, but SIM-PREV left

2 to 15 BLIs unresolved.
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(a) (b)

(c) (d)

Figure 6.10 Mesh-Tearing applied to sleeve. Panels in blue indicate that they
remain fixed during the test. (a) shows the initial state in which the sleeve is
dragged up. (b) shows the result with SIM-BLIR, which left no intersection.
(c) shows the result of another trial with SIM-BLIR, in which no intersection
is left but the sleeve is left folded up. (d) shows the result with SIM-PREV,
in which some BLIs are left unresolved.
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(a) (b)

(c)

Figure 6.11 Mesh-Tearing applied to the skirt. (a) shows the initial state in
which the bottom of the skirt is pulled up. (b) shows the result with SIM-
BLIR. (c) shows the result with SIM-PREV.
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(a)

(b) (c)

Figure 6.12 Exploded handkerchief. (a) shows the initial state, (b) with SIM-
BLIR (c) with SIM-PREV.
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Conclusion

In this paper, we split intersections into two groups (non-BLI and BLI), find

that they require different strategies, and proposed ESEF and BLI-Resolver

to handle each of them respectively. The first method ESEF resolves its target

group in finite time steps by re-meshing in the uv-space according to the novel

coloring method and taking a new perspective of the CCD formulation. The

key ideas of ESEF were to (1) utilize the tolerance value in the CCD formu-

lation (εCCD) for the purpose of tanglement resolution, and (2) re-mesh in the

uv-space to generate a sufficient size of force that pressures the simulation to

untangle.

By the coloring, ESEF starts untangling from the edge of the tanglement

in an out-to-in manner, thus the operation can be considered as if peeling the

tangled region. Based on the shape of the tangled region, it may require several

rounds of peeling. Compared with the previous DCH methods which try to
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resolve the whole tanglements at once, our method can be slower. But we

would like to note that the method does not require an impractically large

amount of computation. In typical clothing setup of Figure 6.6(a) ∼ 6.6(d),

it took 161 time steps in average for the complete resolution.

The theorem inside ESEF holds for intrinsically planar meshes, and is ex-

tended to non-planar cases with two heuristic procedures. We have never en-

countered a case in which condition (ii) of the theorem is not met. As for

condition (i), it is not sure whether there was any temporary violation. But as

we judge from the resolved results, even in a hazardously tangled case, there

seemed to be no prolonged violation of it.

The second method BLI-Resolver, resolves BLI by proposing three resolu-

tion algorithms and a decision-making flowchart of when to apply which al-

gorithm. The key idea of BLI-Resolver was to (1) deliberately ignore certain

triangles that were holding back the resolution, and (2) involve the clothing

design to provide the optimal resolution direction.

Certain types of clothing (jacket, shirt, suit, etc...) are easily exposed to

BLI, but yet the subject has not been studied much. With the premise that

ESEF is available for the other six types of intersections, BLI-Resolver can

fully focus on BLI. It analyzed how BLIs occur, and noted that the desired

form of resolution (i.e., resolution style) can vary depending on the type or

particular region of the garment. We identified there should be two resolution

styles for BLI, namely, fold-unfolding and fold-remaining, and developed three

resolution algorithms, namely, Mesh-Tearing, Regional-Flip, and Crease-Flip.
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In summary, with ESEF, we can guarantee the resolution of non-BLI tan-

glements for intrinsically planar cases in finite time steps, when shortening

operation is not hindered, and when there is at least one TIT-passable fan. In

addition to BLI-Resolver, resolution style/algorithms expand the DCH capa-

bility, when information is extracted from the clothing design. BLI-Resolver

covers the blind spot of ESEF. With the two combined, we can now say that

the whole spectrum of intersections is covered. Both methods can be imple-

mented with only a small modification to the conventional simulator (that has

a full-proof CCH). Under the assumption that the garments are given with

some necessary information that is relevant to the resolution styles/algorithms,

ESEF and BLI-Resolver can create conventionally plausible simulation results

unattended.
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Appendix A

Edge Shortening When Intersection

Path Exists Across Multiple Panels

When an out-most red vertex to be pulled lies on the seam, we can use the

procedure presented in this section for that pull by regarding the subject out-

most red vertex as x0 below. Note that the red* triangle shrinkage consists of

two vertex pulls. Therefore, if either (or both) of the target vertices lie on the

seam, we can process it (or them) with the same procedure.

Let’s suppose that three panels P0, P1, and P2 are seamed in a garment and

the vertex x0 needs to be pulled. Figure A.1(a) draws only the immediately

involved triangles of the panels, i.e., F0 = fan(x0), F1 = fan(x1), and F2 =

fan(x2). In the figure, the seamed line pairs are drawn in the same color. The

vertices of F0, F1, and F2 have been resolved in their own uv-coordinate sys-

tems C0, C1, and C2, respectively. To be more specific about the above pulling,
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let’s suppose that x0 needs to be pulled along the unit vector y0 by η in the

coordinate system C0.

We define the left and right as we look out the fan circumference from

the fan center. For example, in F0 of Figure A.1(a), we can say (1) the red

edge is on the right side of the yellow edge, and (2) the red edge is at the

right extreme, etc. (We will use the above definitions also in the sector forms

below.)

(a) (b)

Figure A.1 Handling of the case when three panels are seamed at the subject
vertex x0. (a) the triangle fans that are directly adjacent to x0. (b) the sector
form version of (a).

Now, referring to Figure A.1(a), let’s suppose that the angle y0 makes with

the right extreme edge of F0 is θ0. Then, the question is, to conform with the

pulling of x0 in F0, how x1 in F1 and x2 in F2 should move in their own

coordinate systems. We assume that the same length (i.e., η) is moved. Then,

we need to know only the moving direction.
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Figure A.1(b) is an abstraction of Figure A.1(a), which is constructed in

the following way:

1. Let’s call the angle made by the left and right extreme edges of a fan

as the span of the fan. We abstract Fi (i = 0,1,2) to the sector forms

S0, S1, and S2 shown in Figure A.1(b), in which only the span matters.

(The other details such as the number of triangles each fan is comprised

of does not make any difference.)

2. While preserving its orientation (of F0), translate S0 so that the corner x0

comes to the origin, as shown in Figure A.1(b). Note that the position

of S0 is fixed hereafter.

3. Let the spans of S0, S1, and S2 be α0, α1, and α2, respectively. The basic

idea here is to expand (or shrink) the spans so that they cover 360◦.

For that purpose, we will put some allowance in both sides of Si. The

resultant allowanced sector forms (shown with dashed lines in A.1(b))

will be denoted as S′0, S′1, and S′2, and their spans will be denoted as

α ′0, α ′1, and α ′2, respectively. We find a constant k such that k(α0+α1+

α2) = 360◦. Then, we use α ′i = kαi, for i = 0,1,2.

4. The allowances are calculated in the following way. For S′1 and S′2, we

calculate the left and right allowances as

AL
i = AR

i =
1
2

αi(k−1) (i = 1,2) (A.1)
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For S′0, however, we calculate the right allowance as

AR
0 =

θ0

α0
α0(k−1) (A.2)

and the left allowance as

AL
0 = (1− θ0

α0
)α0(k−1) (A.3)

Since the position of S0 has been fixed in Step 2, the above calculation

of AR
0 and AL

0 determines the position of S′0. Then, by referencing the

adjacency of the panels in 3D, we can now determine the position of S′1

and S′2 (since, together with S′0, they should fill up 360◦). Referencing

AL
i and AR

i (i = 1,2), we can now determine S1 and S2. The intuition

behind the above steps is we span-wisely expand (or shrink) S0, S1, and

S2 to create a planar situation. The reason we use different allowance

formulae for AL
0 and AR

0 is to make y0 point the same direction after the

expansion.

5. In terms of S′0, S′1, and S′2, the situation is planar. Thus in this expanded

configuration, as x0 is pulled along y0, we can make F1 and F2 conform

to it by making both x1 and x2 translated along that direction in Fig-

ure A.1(b). Since Figure A.1(b) is the result of applying transformations,

more useful information would be the angle θi that y0 makes with the

left extreme edge of each fan, which will have the same meaning in its
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own coordinate system. It is straightforward to derive

θ1 = AL
1 +AR

0 +θ0, (A.4)

θ2 = AL
2 +AR

1 +α1 +θ1. (A.5)

6. In summary, xi (i = 1,2) should be translated by η with angle θi from

the left extreme edge of the fan, measured in the counterclockwise di-

rection.

The above derivation was done for the three fan case, but can be straightfor-

wardly generalized to the case where the number of seamed fans is arbitrary.
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Appendix B

Edge Shortening When Intersection

Path Exists Across the Dart Opening

(a) (b) (c) (d)

Figure B.1 x1, x0, and x2 form a dart, in which E(x0,x1) is seamed with
E(x0,x2). We will call it the dart seam. (a) initial tanglement. (b) pulling x0

toward x1 without considering the dart seam. (c) pulling x0 downward while
keeping the length of E(x0,x1) and E(x0,x2) the same. (d) pulling x1 and x2

toward x0.

In the dart, seamed edges can share a common vertex in the uv-space (e.g.,

x0 in Figure B.1(a)). Let’s suppose that the fan center x0 needs to be pulled

out and E(x0,x1) is chosen as the subject edge. If we process this case naı̈vely,
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x0 will approach x1. However, note that E(x0,x1) and E(x0,x2) are identical

in 3D. Applying edge shortening to E(x0,x1) without accounting for that situ-

ation can lead to the configuration shown in Figure B.1(b), in which E(x0,x2)

can resist the shortening of E(x0,x1). This section presents how to cope with

this situation.

Until now, re-meshing of the subject fan (for pulling out the red vertex

at the center) has been done by changing the position of the center vertex

while leaving the fan vertices stationary. But in the current case, no matter

where we position the center vertex (i.e., x0), either (1) the other corresponding

seamed edge resists, or (2) if we shorten while maintaining the length of the

two edges the same, the shortening may not be done in the full extent as

shown in Figure B.1(c), since E(x0,x1) can shorten only up to the half of the

original x1-to-x2 distance.

In this case, we leave the center vertex stationary, but change the position

of the two circumference vertices. More specifically, as demonstrated in Fig-

ure B.1(d), shortening of E(x0,x1) (and E(x0,x2)) should be achieved by (1)

moving x1 toward x0, and at the same time (2) moving x2 toward x0 by the

same amount. The above edge shortening will not experience the resistance

discussed above.



Appendix C

Convexification

(a) (b)

Figure C.1 A case that needs the convexification heuristic. (a) fan(x6) is
not TIT-passable. (b) the result of convexification.

In the process of resolution, we can encounter an out-most red vertex xi

for which fan(xi) is not TIT-passable. In such a case, the scheduling algorithm

in Section 6 postpones the processing of xi and processes other TIT-passable

out-most red vertices, which may after all make fan(xi) TIT-passable. But in

a certain case, waiting cannot be an option. Figure C.1 is a case in which
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only one red vertex is left and the fan is not TIT-passable. This is a violation

of the condition (i) of the theorem, thus is out of the scope of the theorem.

However, we suggest a simple (but not complete) heuristic procedure that can

be used when such a case ever occurs.

The idea is to make the fan convex by re-positioning the vertices that cre-

ate the concavity, as shown in Figure C.1(b). x1 and x5 are the problematic

vertices, so we translate them outwards until they do not create concavity any-

more, i.e., to x̂1 and x̂5 in Figure C.1(b).

In an extreme case, we cannot rule out the possibility the new positioning

(e.g., x̂1 and x̂5) produces a triangle inversion, for which this paper does not

have a remedy. We report that, in the experiments performed so far, we have

not encountered any occasion that calls for the convexification heuristic in the

first place.

Note that the red* triangle shrinkage can be viewed as consisting of two

vertex pulls (let’s call those two vertices as xi and x j), thus the above proce-

dure can be modified to cover the red* triangle shrinkage by convexifying the

fan(E(xi, x j)).



Appendix D

Discussion on the Values of εRG and γ

The stability of the simulator was not considered in the theorem itself. As a

matter of fact, if the stability is not an issue, as long as εRG and γ are taken

from the range (0,1), the theorem holds regardless of the particular choice

of εRG and γ . But the stability has to be considered in the actual implementa-

tion, since we assume a typical force-based simulator that can become unstable

if (1) a vertex is abruptly displaced too far, or (2) an edge is shortened too

rapidly. In this section, we discuss which values of εRG and γ in the range

(0,1) do not cause simulation instability. Note that, the soundness of the pro-

posed resolution algorithm (Section 7) still holds if, for each of εRG and γ , we

can find a non-empty set within (0,1) which is free from simulation instability.

As explained in Section 5.3.1, we use εRG = 0.1∗avg(l) in the implemen-

tation. Using an even larger εRG may produce further speed up in the finesse,

but it may cause some instability in the simulation.
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When a red-red elementary pair turns into a red-green elementary pair, the

tolerance value abruptly increases, from zero to εRG, which causes the pair

to be separated by εRG, without accounting for how much internal energy the

re-positioning incurs. An example is shown in Figure D.1, which chronolog-

ically shows the changes in the world-space mesh. Figure D.1(a) shows the

situation just after the Intersection Analysis of time step n. You can see that

x5 is at least εRG away from T (x0,x1,x2) due to m-CCR performed for time

step n−1. x4 is then pulled toward x5,and Figure D.1(b) shows the situation

after the World-Space Mesh Update of time step n. x5 is still εRG away, but

εRG’s effect on that vertex is not shown since we now focus on the toler-

ance applied to x4. It turns out that x4 has crossed T (x0,x1,x2), but this fact

is not known to the simulator until it runs the Intersection Analysis of time

step n+1 which changes the color of x4 to green as shown in Figure D.1(c).

Since T (x0,x1,x2) is still red, the tolerance value εRG should be used between

T (x0,x1,x2) and x4. Therefore, after m-CCR of time step n+1, x4 experiences

a sudden displacement as shown in Figure D.1(d). Here, if εRG is too large,

instability can occur in the force-based simulation. According to experiments,

however, the instability never occurred as long as εRG ≤ 0.3∗ avg(l).12

1In terms of the stability range, the simulation is stable if we take εRG from the range
(0,0.3∗ avg(l)].

2We note that taking εRG from that range is just one way to avoid simulation instability
related to εRG. For example, for each was-green-now-red vertex, we may use the sequence
( 1

3 εRG,
2
3 εRG,εRG), i.e., gradually increasing εRG over three time steps. Then, we can use a

larger value for εRG. The essence of the proposed method is to apply unlimited shortening until
the given tanglement is resolved. In doing so, the tolerance/rate control (i.e., the control of εRG

and γ) for stability is an implementation-related issue.
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Apart from the simulation instability, the sudden tolerance value changes

(zero-to-εRG or εRG-to-εCCD) result in jerky movements in the cloth when watch-

ing the resolution process. We do not claim that our resolution is physical, but

still prefer the process to be as gentle as possible. For this reason, we picked

0.1∗ avg(l) for εRG for the implementation.

(a) (b)

(c) (d)

Figure D.1 The scenario in which εRG can produce a sudden vertex displace-
ment. (a) after the Intersection Analysis of time step n. (b) after World-Space
Mesh Update of time step n, (c) after Intersection Analysis of time step n+1,
(d) after m-CCR of time step n+1.

We now discuss the instability that can be caused by the value of γ . If

γ is too small, the uv-space deformation will occur rapidly. The world space
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result may not be able to catch up the uv-space deformation in the given time

step, and the out-date can accumulate as the simulation progresses. This leads

to extraordinarily large forces/accelerations in force-based simulators, making

the simulator unstable.

When using the time step ∆t = 0.02s, we found that γmin, the smallest value

of γ that is safe from instability, is 0.8 from experiments.3 Here, we note that

γmin depends on ∆t. Let γmin(∆t) be the γmin when the time step size is ∆t.

If the simulation should run with ∆t = 0.01s instead of 0.02s, then we note

that γmin(0.01s) should be γmin(0.01s) =
√

γmin(0.02s), so that the shortening

over two time steps with ∆t = 0.01s match the shortening in a single step with

∆t = 0.02s. For the general ∆t, the compensation should be

γmin(∆t) = (γmin(0.02s))
∆t

0.02 . (D.1)

3In terms of the stability range, with ∆t = 0.02s, the simulation is stable if we take γ from
the range [0.8,1).



Appendix E

Details of BLI Coupling for

Regional-Flip

Two cases are shown in Figure E.1, in which the black dotted lines represent

BLIs and the dark grey volumes in the back represent the human body. It vi-

sualizes the cut-away situation that omits the middle part of the BLI-to-BLI

interval, which enables us to see the surface normal along the cross-sectional

cut-edge, which curls out in Figure E.1(a) and curls in Figure E.1(b). Note

that, if the cross over regions are flipped, Figure E.1(a) and E.1(b) will result

in folding-in and folding-out, respectively. We conclude that, the curl analysis

(i.e., finding the curl of the surface normal along the cross-sectional cut-edge

of the cross-over region) can tell us whether applying Regional-Flip to the re-

gion between two BLIs results in folding-in or folding out. If it is out-curling,

it results in folding-in, and vice versa.
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(a) (b)

Figure E.1 Two different ways of coupling BLIs in Regional-Flip. Black
dotted lines are BLIs, which define the cross-over regions. Both figures show
the cut-away view, i.e., they do not show the middle parts to allow us to see
the cross-section of the mesh. In (a) and (b), if the cross-over regions are
flipped, it will result in folding-in and folding out, respectively. Note that, in
(a) and (b), the surface normal along with the cross-section curls out and in,
respectively.
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초 록

수십 년 동안 그래픽스 필드에선 의상 시뮬레이션 중에 발생하는 자가 충돌

처리 실패(엉킴)를 해결하기 위한 여러가지 방법이 제안되었다. 그러나 제안

된 방법들은 간단한 의상(티셔츠, 바지)에 대해서만 동작하고, 실제 가상 피

팅이나 에니메이션 제작에 등장하는 복잡한 의상에선 대다수가 엉킴 해결에

실패하였다. 본 논문에서는 엉킴을 두 그룹으로 나누고, 각각에 대한 새로

운 이산 충돌 처리 방법을 제안하며, 엉킴이 있는 복잡한 의상에 적용하는

실험을 통해 제안된 방법의 효용성을 입증한다.

첫번째 그룹, BLI를 제외한 6가지 엉킴에 대해서는 ESEF(변-압축 / 입

실론-압출)를 제안하였다. 6가지 엉킴은 잘못된 영역이 확정적으로 정의됨을

이용하며, 가장 바깥부분부터 서서히 해결하는 아웃투인 방식으로 엉킴을 점

진적으로 해결하였다. 이를 위해 매 타임 스텝마다 의상 메쉬의 엉킴 분석을

수행하고, 그 결과를 정점, 변, 삼각형을 채색하는 형태로 저장하였다. 이후

채색을 참조하여 메쉬의 필요한 영역에 두가지 기법 삼각형-수축과 정점-당

기기를 가하였고, 최종적으로 모든 엉킴이 없어질때까지 이를 반복적으로 적

용하였다. 삼각형-수축과 정점-당기기는 연속 충돌 처리에서 통상적으론 반

올림 오류를 보정하기 위해 사용되어 왔던 입실론 값의 의미를 재해석하였

다. 입실론의 효용을 반올림 오류 방어로 한정하지 않고, 더 나아가서 이산

충돌 처리에 응용하여 특정 조건에서 유한한 타임 스텝안에 엉킴 해결을 보

장할 수 있게 되었다.

두번째 그룹, BLI에 대해서는 BLI-Resolver를 제안하였다. 먼저 BLI의
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특징과 어떤 상황에서 발생하는지 분석하고, 이를 통해 원하는 엉킴 해결의

형태(스타일)가 의상의 분류 또는 특정 영역에 따라 달라져야 함을 보였다.

따라서 각각의 스타일에 대응하기 위해 BLI를 해결할 세 가지 알고리즘, 메

쉬-찢기, 영역-교차, 접힘-교차를 제안하였다. 메쉬-찢기는 의상 메쉬를 필요

에 따라 임시로 몇몇 삼각형들을 누락 후 재구성하여 엉킴 해결에 유리한

메쉬로 변경하였다. 영역-교차, 접힘-교차는 BLI를 직접적으로 해결하지 않

고, 다른 6가지 엉킴으로 변환하여, ESEF가 해결할 수 있게 해주었다.

제안된 두가지 방법(ESEF, BLI-Resolver)을 통합하여 엉킴의 스펙트럼을

모두 다룰 수 있게 되어, 의상 시뮬레이션 속의 이산충돌처리의 마침표를

찍게 되었다. 이 방법들은 기존의 연속 충돌 처리가 구현되어 있는 시뮬레이

터에 쉽게 통합이 가능하며, 시뮬레이터의 종류에 영향을 받지 않는 특징이

있다. 또한 의상의 복잡도나 종류에 구애받지 않고 유한한 타임스텝 내로

엉킴이 풀림을 보장할 수 있으며, 의상의 디자인에 대한 정보가 제공된 경우

엉킴이 디자인에 적합한 방향으로 해결된다. 최종적으로 실험을 통해 이전의

방법으로 해결할 수 없었던 다양하고 실용적인 의복에서의 엉킴이 해결됨을

보였다.

주요어: 의상 시뮬레이션, 이산 충돌 처리, 엉킴 풀기

Keywords: Clothing Simulation, Discrete Collision Handling, Intersection, Tan-

glement, Untangling

학 번: 2014-21691
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