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Abstract

This dissertation presents novel deep learning-based crowd density estimation meth-
ods considering the crowd congestion and scale of people. Crowd density estimation
is one of the important tasks for the intelligent surveillance system. Using the crowd
density estimation, the region of interest for public security and safety can be easily
indicated. It can also help advanced computer vision algorithms that are computationally
expensive, such as pedestrian detection and tracking.

After the introduction of deep learning to the crowd density estimation, most
researches follow the conventional scheme that uses a convolutional neural network
to learn the network to estimate crowd density map with training images. The deep
learning-based crowd density estimation researches can consist of two perspectives;
network structure perspective and training strategy perspective. In general, researches
of network structure perspective propose a novel network structure to extract features
to represent crowd well. On the other hand, those of the training strategy perspective
propose a novel training methodology or a loss function to improve the counting
performance.

In this dissertation, I propose several works in both perspectives in deep learning-
based crowd density estimation. In particular, I design the network models to be had
rich crowd representation characteristics according to the crowd congestion and the
scale of people. I propose two novel network structures: selective ensemble network
and cascade residual dilated network. Also, I propose one novel loss function for the
crowd density estimation: congestion-aware Bayesian loss.

First, I propose a selective ensemble deep network architecture for crowd density
estimation. In contrast to existing deep network-based methods, the proposed method
incorporates two sub-networks for local density estimation: one to learn sparse density

regions and one to learn dense density regions. Locally estimated density maps from



the two sub-networks are selectively combined in an ensemble fashion using a gating
network to estimate an initial crowd density map. The initial density map is refined as a
high-resolution map, using another sub-network that draws on contextual information
in the image. In training, a novel adaptive loss scheme is applied to resolve ambiguity
in the crowded region. The proposed scheme improves both density map accuracy and
counting accuracy by adjusting the weighting value between density loss and counting
loss according to the degree of crowdness and training epochs.

Second, I propose a novel crowd density estimation architecture, which is composed
of multiple dilated convolutional neural network blocks with different scales. The
proposed architecture is motivated by an empirical analysis that small-scale dilated
convolution well estimates the center area density of each person, whereas large-scale
dilated convolution well estimates the periphery area density of a person. To estimate
the crowd density map gradually from the center to the periphery of each person in a
crowd, the multiple dilated CNN blocks are trained in cascading from the small dilated
CNN block to the large one.

Third, I propose a novel congestion-aware Bayesian loss method that considers
the person-scale and crowd-sparsity. Deep learning-based crowd density estimation
can greatly improve the accuracy of crowd counting. Though a Bayesian loss method
resolves the two problems of the need of a hand-crafted ground truth (GT) density and
noisy annotations, counting accurately in high-congested scenes remains a challenging
issue. In a crowd scene, people’s appearances change according to the scale of each
individual (i.e., the person-scale). Also, the lower the sparsity of a local region (i.e.,
the crowd-sparsity), the more difficult it is to estimate the crowd density. I estimate
the person-scale based on scene geometry, and I then estimate the crowd-sparsity
using the estimated person-scale. The estimated person-scale and crowd-sparsity are
utilized in the novel congestion-aware Bayesian loss method to improve the supervising

representation of the point annotations.
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The effectiveness of the proposed density estimators is validated through com-
parative experiments with state-of-the-art methods on widely-used crowd counting
benchmark datasets. The proposed methods are achieved superior performance to the
state-of-the-art density estimators on diverse surveillance environments. In addition, for
all proposed crowd density estimation methods, the efficiency of each component is

verified through several ablation experiments.

keywords: crowd density estimation, crowd counting, scene understanding, visual

surveillance

student number: 2014-21714
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Chapter 1

Introduction

As a key component of the intelligent surveillance system, crowd counting has been
extensively developed to provide security and safety for both people and infrastructure.
Crowd counting has been utilized to detect abnormal surveillance situations and to
maintain adequate crowd density for public safety. In particular, a situation to be aware
of in visual surveillance is a high-congested situation. Such a situation could be a
target for terrorism or for crowd control such as population decentralization. It has
been applied to other computer vision-based tasks, such as cell counting [1], vehicle
counting [2], or bio-statistical research [3] to boost up process performance and quality
control. Usually, the crowd counting targets a high-congested situation like thousands
of people are represented in one image. When a high-congested situation causes severe
occlusions, however, a detection-based crowd counting algorithm often provides poor
estimation for such a situation. Furthermore, unevenly distributed crowds, variability in
pedestrian size, and diversity of surveillance environments make crowd counting more
difficult.

In contrast to the conventional methods based on detection, a regression-based
crowd counting algorithm has been introduced to resolve the aforementioned issues,
which regresses the number of people with local features extracted from the image.

Regression-based algorithms are mainly researched as following properties; the privacy-



preserving to counting target and the robustness for changing monitoring environment.

In the regression-based crowd counting, a crowd density map is regressed from local

features extracted from the input image. A density map is regressed rather than the count

itself, crowds can be counted in any region of the image by integrating the density map.

The regression-based approach can reliably count crowds in difficult situations such as
high congestion or heavy occlusion because it uses the appearance patterns of crowds
rather than individuals. A number of recent works train such density estimators to
perform crowd counting in difficult surveillance situations with huge scale and various
sparsity of the crowds.

As the recent introduction of deep learning, most of the crowd counting tasks
adopt the common scheme that trains a convolutional neural network with a pair of
images and their corresponding density maps. Datasets of the crowd counting generally
provide images and locations of people in a pixel. Conventional methods make a ground
truth (GT) density map by filtering the Gaussian kernel onto people’s location. And
if necessary, scene information such as geometric distortion or region-of-interest can
be utilized to generate a more informative GT. For example, some studies generate
GT by controlling the standard deviation of the Gaussian kernel to represent a scale of
pedestrian [4], or by using a human-like shaped kernel [5].

Although deep learning-based crowd density estimation researches increase the

level of understanding using properties of deep networks, there is still room for more

improvement counting performance with utilizing representation of crowd feature.

There are two key components for utilizing deep learning for a certain computer vision
task; network structure and training details (e.g., loss function or training order to train
multiple networks). On one hand, with a deep inspection of deep networks for crowd
density estimation, I propose two novel network structures for accurate crowd density
estimation. First, I propose a selective ensemble deep network architecture incorporating
two sub-networks for local density estimation: one to learn sparse density regions and

one to learn dense density regions. Second, I propose a composed network including



multiple dilated convolutional neural network blocks with different scales of person. On
the other hand, with an analysis of characteristics that make training of crowd density
accurate, I propose one novel loss function for accurate crowd density estimation. I
propose a novel congestion-aware Bayesian loss method that considers the scale of a

person (i.e., person-scale) and the sparsity of local crowd (i.e., crowd-sparsity).



Chapter 2

Related Works

As known as crowd counting, crowd density estimation based on images is one of
the fundamental problems in the visual surveillance [6]. The estimated crowd density
can help to profile the crowd flow and to detect the region of interest in a surveillance
scene [1]. However, due to the large variance in the appearance of crowds, enormous
occlusion patterns, and diverse illumination conditions, crowd counting is a challenging
problem to be solved. Crowd counting methods can be roughly classified into two

groups: detection-based and regression-based methods [6].

2.1 Detection-based Approaches

Detection-based methods directly identify each target of the count using appropriate
pedestrian detectors. When highly congested crowds are formed, however, the appear-
ance of individuals may not be preserved in images, which results in poor algorithmic
estimation. To resolve such occlusion issues, some studies use other types of detec-
tion targeting, such as faces [7] or the head and shoulders [8]. Despite such efforts, if
the surveillance environment is changed, missing or false detection might be caused.
Detection-based methods also have unnecessary computational costs that may not

require the exact location of people for the sole purpose of counting crowds. Khan et



al. [9] utilized the results of a conventional head detector to accurately count people
by warping the image patch according to the scale of a person. Also, Khan et al. [10]
proposed the method using multi-scale fusion module for conventional pedestrian

detection [11].

2.2 Regression-based Approaches

As rigorously reviewed in [6, 12], crowd counting has commonly employed regression-
based methods, which obtain the number of people by estimating and integrating a
pre-defined crowd density map. Regression-based methods are more frequently utilized
because they perform better than detection-based methods in high-congestion situations
or when there is severe occlusion. When regression-based methods were initially
proposed, many studies performed mapping of low-level features directly to the size of
the crowd [1, 13, 14]. However, these methods that use direct mapping to the count lack
spatial information of the crowd so they cannot determine where counting errors occur.

To resolve the limitation of losing spatial information, Lempitsky and Zisser-
man [15] proposed a method that conducts a mapping of local features to an intermediate
density map. The density-map regression method has since become the mainstream of
crowd counting, enabling the counting of individuals in any region by numerical integra-
tion over a density map. Pham et al. [16] proposed a non-linear mapping method using
the random forest algorithm. Wang and Zou [17] decreased ineffective computational

complexity by using subspace learning in the mapping of a density map.

2.3 Deep learning-based Approaches

Recently, deep learning-based methods [2, 4,5, 18-22] have significantly improved
counting accuracy using rich feature representation of deep features by comparison of

conventional methods that use hand-crafted features.



2.3.1 Network Structure Perspective

There have been several works for robustly coping with more complicated scenes
via a network structure combining various types of features. A convolutional neural
network (CNN) was first applied to estimate the crowd density map by Zhang et al. [4].
Motivated by this pioneering work, many studies have been conducted in which a deep
network has effectively learned given pairings of an image and its density map. Zhang et
al. [5] proposed a multi-column network to estimate crowds with varying scales trained
in each network column.

There have been several works that use multiple networks to address the multi-
scale problem. Sam et al. [19] proposed to switch a neural network that classifies
image patches according to scale and estimates the crowd density separately. Daniel et
al. [2] proposed a hydra-shaped network structure that resizes the image patch to
several scales and combines the estimated crowd density. Sindagi et al. [23] introduced
an auxiliary classifier to extract the scale features of an image patch then fused it
to a conventional density estimator. Jeong et al. [24] constructed multiple network
branches according to the sparsity of a local crowds and adopted multi-level refinement
network to improve the density estimation accuracy. Hossain et al. [25] defined ‘scale’
as the number of people in a local region and proposed a density estimator using
‘scale’ as an additional feature. Khan et al. [26] performed small- and large-scaled
crowd density estimation successively to improve the accuracy of density estimation.
Shang et al. [18] employed spatio-temporal features as contextual information to
estimate the crowd density map of an image. A spatio-temporal model for crowd
density estimation that utilizes the temporal correlation between neighboring frames
was proposed by Xiong et al. [20]. Li et al. [21] adopts dilated CNN to robustly estimate
crowd density even in the highly congested scenes. Shen et al. [22] proposed a novel
training method by dividing the image into grids and defining the adversarial loss
between the crowd density of the whole image and the that of grid images. Ranjan et

al. [27] improved counting performance by integrating feature maps from the estimation



on a low resolution to that on high resolution. Cao et al. [28] proposed multi-scale
aggregation method by aggregating convolution kernels of various sizes. As similar
to the proposed method, the aforementioned methods utilize the multiple networks to
improves counting performance.

Several approaches use novel network modules that differ from basic components
such as convolution and pooling layers. Li et al. [21] used a dilated convolution to
effectively extract features of a large field of view. Liu et al. [29] used spatial pyramid
pooling to adaptively encode the scale as contextual information. Ma et al. [30] used
human scale quantization at multiple scale levels and trained additional networks to

represent scale of a person with a combination of pre-defined scales.

2.3.2 Training Strategy Perspective

There have been several works that address the limitation of problem setting in crowd
density estimation. They tackle (1) the objective function for training and (2) the
generation process of the ground truth (GT) density map.

First, several studies pointed out the limitation of the L2 loss between the GT
density map and the estimated density map that there is a discrepancy that high-quality
representation of density map does not lead to accurate counting. Liu et al. [31] utilized
the fact that the number of people in a sub-region will always greater than that in the
region inside, and proposed what they described as a ranking loss. Shen et al. [22]
proposed a cross-scale consistency pursuit loss method by using the fact that there is
a relationship in which the entire density map is the sum of the partial density maps.
Cheng et al. [32] designed a spatial awareness loss method to generate a loss when the
number of people changes, not when the distribution of people is changed.

In contrast, some studies have tackled the limitations of the definition of the GT
density map. Zhao et al. [33] utilized auxiliary tasks, such as the estimation of depth,
along with the density map to improve the performance. Wan and Chan [34] proposed

an adaptive density map generation process that generates learnable density map rep-



resentations to create sub-optimal density maps. Some works employed segmentation
maps [35], the number of people as trainable sources [36], or pedestrian detection
results [37]. In particular, Ma et al. [38] successfully resolved issues for the training
objective and the need for the generation process of a GT density map. They proposed
a novel loss (i.e., the Bayesian loss) using the probability of indicating each pixel is

included in each point annotation or background.



Chapter 3

Selective Ensemble Network for Accurate Crowd Den-

sity Estimation

3.1 Overview

For intelligent surveillance systems, counting people in crowded areas is an important
task, as such places are the most common surveillance targets. People counting can
be used in various applications, such as abnormal behavior detection, retail analysis,
and security. One direct solution to count people is to detect all pedestrians and count
them [39,40]. However, in cases of low resolution or heavy occlusion, it is extremely
difficult to automatically detect all the people in a crowded scene. To overcome this
difficulty, an approach based on crowd density estimation has been actively studied
[1,2,5,14-16,41-45], in which crowd density is defined as the number of people per
unit area. However, crowd density estimation is challenging problem because of varying
characteristics of pedestrians like shape, size, and height/width ratio depending on
camera installation settings. Other factors that make crowd density estimation difficult
include occlusions, background clutter, and non-uniform distribution of people.

As reviewed in [6, 12], people counting has commonly employed regression-based

methods, which estimate number of people [1, 13] or crowd density [15, 16,41] by



regression from extracted image features. These methods are robust to occlusion because
they learn regression from image features rather than by counting people one by one.
The purpose of learning in regression-based methods is to learn a regression function
that estimates density values for each pixel in the extracted features, namely crowd
density map. Recently, deep learning-based methods [2,4, 5, 20, 42] have improved
counting accuracy using rich feature representation of deep features by comparison of
conventional methods that use hand-crafted features. Zhang et al. [5] have proposed
a multi-column neural network to extract features at multiple scales for image-wise
density map estimation. Similarly, a scale-aware network model called Hydra CNN
was proposed in [2] to resolve the scale issue. Shang et al. [18] have estimated the
crowd density map for a whole image through contextual information using recurrent
networks. Switching convolutional networks [42] has been proposed as a means of
learning crowd density map regression in various crowd environments. Xiong et al. [20]
proposed a spatio-temporal model for crowd density estimation that utilizes temporal
correlation between neighboring frames.

These CNN-based methods generally train the network with Lo loss between the
estimated density map and the ground truth density map. However, Lo loss training in
the density map is informed mainly by region with large density values, resulting in
biased with that values. Also, most of these networks incorporate a feature abstraction
step, such as a pooling layer. Although the feature abstraction step can improve counting
accuracy by excluding ambiguous features, the resolution of the estimated density map
is inevitably reduced, leading to inaccurate density estimation that undermines the
density map accuracy of people counting.

To address these limitations, we propose a novel deep network structure and a
training method to improve both counting accuracy and density map accuracy. The
design of the proposed network is based on three key ideas: the incorporation of a new
form of loss for more accurate density map estimation, the use of different sub-networks

depending on crowd density, and the cascading of a refinement sub-network to take

10



account of contextual information. The first idea is to use a counting loss in addition to
density map loss. To successfully leverage counting loss, we propose weighting scheme
in the loss function that is adjusted according to degree of crowdness and training epoch.
Second, in order to apply counting loss differently according to degree of crowdness, we
propose two sub-networks: a sparse sub-network (for sparse crowd regions) and a dense
sub-network (for dense crowd regions). These two sub-networks build an ensemble
by selectively utilizing one of the two, based on the output of a gating sub-network.
Finally, to increase the resolution of the estimated density map, we propose a refining
sub-network to improve both density map and counting accuracy.

Experiments conducted on various datasets show that the proposed method achieves

state-of-the-art performance in counting accuracy with reasonable localization quality.

3.2 Combining Patch-based and Image-based Approaches

Like Fig. 3.1, the CNN-based crowd density estimation methods can be categorized by
two directions: patch-wise regression and image-wise regression.

The patch-wise regression methods [46—49] estimate the crowd density maps of
local patches, which are aggregated to the final crowd density map of the entire image.
Because a lot of training patches can be obtained from one training image, the patch-
wise regression methods are able to describe the detail of the crowd density. However,
because the patch-wise methods concentrate on only the local patches, the semantic
context, such as impassable regions and occluded regions, cannot be considered. The
insufficient context information causes much noisy density on the background region
after the aggregation of the patch-wise crowd density map.

The image-wise regression methods [50,51] estimate the crowd density map directly
from the frame image. Contrary to the patch-wise regression methods, the semantic
context is easy to be trained because the results from the CNN would be different for

the various position in the image. However, when the entire image becomes an input

11



Count =41

(a) Patch-wise approach  (b) Image-wise approach (c) Proposed

Figure 3.1: Comparison of Image-based and Patch-based Crowd Density Estima-
tion. the arrow (a) represents a patch-wise approach, arrow (b) represents a image-wise

approach, and arrow (c) represents our algorithm
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of CNN, the details of the crowd density map can be suppressed by the insufficient
number of training data. The scale variance of crowds also cannot be resolved because
of a fixed receptive field of networks in these methods. Even though some works [51]
tried to solve the scale variance problem by integrating multiple networks of various
receptive fields, only the discrete size of receptive fields could be considered, and the
number of the weights associated with the entire network increases dramatically.

In this sub-chapter, we propose a novel deep architecture for CDE which conserves
the detail of the crowd density map, while minimizing the noisy density by considering
the semantic context. The proposed CNN architecture consists of two sub-networks:
Local Network (L-Net) which estimates local crowd density maps of patches and Global
Network (G-Net) to estimate the final crowd density map of the input image. L-Net
estimates local crowd density maps of the patches extracted from the entire image so
that the detail of the crowd density map is preserved. G-Net integrates the detail patch-
wise crowd density map by considering the semantic context by the recursive network.
In addition, due to the recursive structure of G-Net, the model complexity could be
reduced even with a deeper network structure, while the over-fitting problem caused
by many associated weights can be prevented. With several experiments, the proposed
network shows the state-of-the-art performance as well as represents a sophisticated
crowd density map. The main contributions of this sub-chapter are summarized as

below:

* We propose a novel network architecture Local-Global Cascade Network to
estimate accurate crowd density map with an accurate configuration of crowd

density map.

* By utilizing recursive network structure in G-Net, we can reduce model complex-
ity as well as can employ various receptive fields using outputs from intermediate

layers.

* We get better results over the prior state-of-the-art works and confirm the effec-

13



tiveness of the proposed method.

3.2.1 Local-Global Cascade Network

In general, crowd density estimation is formulated with mapping between images and
its pixel-wise density map like

F:X =D, (3.1)

where X is the feature extracted from the image and D is the corresponding density
map. Because density values of the crowd are hard to define, we use density map
convoluting with the representative crowd density mask to people locations of images
for the ground truth. Representative density mask we used is depicted in Fig. 3.3 (a) and
convoluted people location map is like Fig. 3.3 (b). By re-sizing the mask according to
the perspective map as shown in the lower right of Fig. 3.3 (b), the resulting ground truth
crowd density map is like Fig. 3.3 (c). We conduct CDE in the image considering two
objectives; the counting accuracy and the accuracy of crowd density map configuration.
Our proposed CNN model is designed cascade-connected two sub-networks like Fig. 3.2
to achieve the aforementioned two objectives. At first, Local Network (L-Net) estimates
partial crowd density of images using grid-cropped patches, then after patch aggregation,
Global Network (G-Let) estimates final crowd density map using initial crowd density
map. Though L-Net has chances to falsely estimate crowd density of patches’ such as
positive density values on background, G-Net can refine these flaws using semantic

reasoning.

Overall Framework

The main problem in Eq. 3.1 is that the image has various sizes of crowds. So, direct
mapping between an image and its crowd density map is not available. To overcome
this imbalance issue, we design a network with the collaboration of two sub-networks.

At first, an input image is cropped with the same size patches and passes through L-Net

14
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Figure 3.3: Generation process of the ground truth crowd density map The ground
truth crowd density map (c) is generated by convolution between representative density

map of a person (a) and its locations (b)

to estimate crowd density locally. The resulting crowd density maps of the patches are
aggregated to a crowd density map of the original input image through the process of
averaging the overlapping regions. We then refine the initial result in G-Net to amplify

true values of crowd density and to suppress false estimated ones.

Local Network (L-Net)

A perspective map of the specific scene is created using two bounding boxes of certain
two-person as shown in the lower right of Fig. 3.3 (b). Motivated by [13, 48], we
interpolate the width and height values of two bounding boxes to roughly approximate
the size of people bounding boxes in the entire region of the image. A square root value
of the perspective map is used in the generation process of the ground truth crowd
density map and cropping step to make image patches. Input patches in L-Net are

created by grid-wise cropping input image using the perspective map with overlapping

A & Tl 8} 3
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neighboring patches. In our work, we use the size of the input in L-Net as 100 x 100. In
more detail, the patch size on the location where the representative crowd density mask
is determined is 100 x 100 and that on the other location is re-sized by the ratio of values
of the perspective map. As in the upper part of Fig. 3.2, the base network structure
of L-Net is a revised version of a pre-trained model trained on image-classification
task [52] to express the crowd in highly expressive power. We revise the VGG-16
model [52] by adding one convolutional layer whose output has one channel at the end
of Conv 3-3. That is, additional layer has a size of 3 x 3 x 256 x 1. In optimization of
L-Net, we use loss function as Lo loss between ground truth and its estimated crowd

density as follows:
1 2112 5
Liocar(6) = Z;Hdp—dpu + A6l (32)
P

where 6 is network parameter, Z is normalization value, P is set of pixels in the patch,
and both d,, and dp are true and estimated pth pixel value of crowd density map. The
optimizer we used in L-Net is RMSProp optimizer [53]. To prevent over-fitting of L-Net,
we make up a mini-batch with the same number of positive and negative samples. Here,
a negative sample means a sample with few people in the patch. The resulting crowd
density maps of the patch are aggregated with averaging to be the initial crowd density
map to be the same size of the input image. The aggregation process is nothing but
summing all patch crowd density results at their location and dividing the summed

result by the number of overlapping times.

Global Network (G-Net)

In order to refine the initial crowd density map after L-Net, we use another sub-network
G-Net whose input is concatenated image with the initial crowd density map and the
original input image. Basically, G-Net should have a larger size receptive field than
one of L-Net because we should correct the initial crowd density map considering a

large portion of the image. For this reason, we need a deep network structure in G-Net.
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According to [54], we can design a deep network with low model complexity using
recursive network structure. Motivated by [55], we also use intermediate outputs of
recursive layers as another feature to reconstruct the final crowd density map of the
image so that the output of G-Net considers various receptive fields even in a single
network. As in the lower part of Fig. 3.2, G-Net consists of three groups of layers
like [54]; embedding layers, recursive layers, and reconstruction layers. All group of
layers is configured with two convolution layers except the final reconstruction layer.
The final reconstruction layer has a kernel whose size is 1 x 1 X (recursive time+1) x 1
in order to combine intermediate features of recursive layers and features at the end
of the recursive layer. The input channel size of this layer is (recursive time + 1)
because it also uses the initial feature after the embedding layers. In other words, the
result from the final reconstruction layer is equal to the weighted sum of the results
of each recursive layer, and we call this result an ensemble result. G-Net uses Lo loss
between the ground truth and its estimated crowd density map in both the results in

each recursive layer and the ensemble result as follows:

R

1 ~ 112

Linte’r(e) = R x ZZ Z Hdp - dp (33)
r=1 peP
1 - ’
Lensemble(e) = E Z dp - Z Wy X dp (3.4)
peEP r=1

Lglobal(e) = O‘Linter(e) + (1 - a)Lensemble(e) + AHGHQ (35)

where R is recursion times, Z is normalization value, P are set of pixels in the input
image, and both d,, and cfp are true and estimated pth pixel value of crowd density
map. w, is the weight of rth recursive layer and « represents the weight between the
two losses. Eq. 3.3 is the loss that makes the crowd density map reconstructed from
each intermediate layer equal to the final crowd density map. By ensuring that both the
ensemble crowd density map and the reconstructed crowd density map are equal to the
final crowd density map in the total loss like Eq. 3.5, the training process of G-Net is

done properly. The optimizer we used in G-Net is Adam optimizer [56].
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Implementation Detail

The detailed network configuration and its filter size are all illustrated in Fig. 3.2. In
the generation process of the patches in L-Net, we define the positive patch as the
patch containing more than 0.99 crowd density i.e. there is almost one person in the
patch, and the negative patch as the patch containing less than 0.01 crowd density i.e.
there are few people in the patch. In L-Net, the weights of all layers are initialized by
pre-trained one except the additional layer. The weights of the kernel in the additional
layer are initialized by truncated normal values with 0.1 standard deviations. The input
patches of L-Net are re-sized to 100 x 100 and the output patches are up-sampled 4
times using bicubic interpolation. It is because the VGG-16 model [52] up to Cony 3-3
has two pooling layers, resulting in 4 times being smaller than the input. In the training
process of L-Net, we iterate 1.2 x 10% images with a mini-batch consisting of 16 patch
images. Iteration is progressed in chronological order at first 6 x 100 iteration and after
6 x 10 iteration is progressed randomly. The learning rate of RMSProp optimizer is
planned to be reduced 10~! times from 10~7 to 108 by dividing the entire learning
process into two parts. In the patch aggregation process after L-Net, we use an overlap
ratio between patches as 0.3 i.e. 0.3 portions of neighboring patches are overlapped.
After L-Net is trained, we start to train G-Net. We concatenate the initial crowd density
map with the input image at the third channel and there is no channel normalization to
make it the input of G-Net. All weights of kernels in G-Net are initialized by Xavier
initialization [57] except recursive layers. The weights of kernels in recursive layers
are initialized by zeros. In the training process of G-Net, we iterate 8 x 10* times
with a mini-batch consisting of 5 images. Half the number of iteration is progressed
in chronological order and the other half is done randomly. The learning rate of Adam
optimizer is planned to be reduced 10~! times from 10~* to 10~ by dividing the entire
learning process into three parts and momentum value is set by 0. The « in Eq. 3.5 is
firstly set by 0.5 and planned to be decreased by 0.1 depending on the learning rate

schedule. We implement all of our proposed network with TensorFlow library [58].
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3.2.2 Experiments

We use the public dataset UCSD [13] to evaluate performance compared to the state-
of-the-art algorithms. UCSD dataset is a video taken on a university, which composed
2000 frame images including training frames whose frame numbers are [601:1400] and
test frames whose frame numbers are [1:600, 1401:2000]. It has people in the range of
12-45 passing by the sidewalk and In the first study that provided datasets [13] provides
region-of-interest (ROI). In order to compare counting accuracy between our work
to the state-of-the-art algorithms, we use commonly used evaluation metrics; mean

absolute error (MAE) and mean squared error (MSE). Two evaluation metrics are as

follows: N
lyi — Uil
MAFE = _ 3.6
;:1 N (3.6)
Y (yi — §:)°
MSE = § AN e 3.7
S N 3.7

i=1
where N is the number of frame images and y; and ; are true and estimated number
of people in the ith frame image. Both metrics represent the quantitative value of how
exactly the number of people is precisely estimated so we do not know the crowd
density maps are well estimated by these metrics. Also, other state-of-the-art algorithms
provide a few results as a type of crowd density map, we cannot compare the accuracy
of crowd density map configuration quantitatively. So in order to verify the accuracy
of crowd density map configuration, we conduct qualitative comparison experiments
in the proposed model, which compares the initial crowd density map at the end of
L-Net to the final crowd density map at the end of G-Net. We also show the efficiency

of recursive network structure in G-Net by ablation experiments.

Counting Performance

To evaluate the counting performance, we compare our algorithm to several state-of-the-

art algorithms with MAE and MSE metrics. Counting performance is summarized as
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Table 3.1: Counting performance comparison

MAE MSE
[59] 2,16  7.45
[1] 225  7.82
[13] 224 797
[14] 207 6.86
[48] 1.60  3.31
[51] 1.07 135

Ours (After L-Net) 2.79 14.68
Ours (After G-Net) 147 3.24

Table. 3.1 and the result graph for detail is shown in Fig. 3.4 Ours got the second-best
performance in both MAE and MSE metrics. Among CNN-based algorithms, ours
outperform the patch-wise approach [48]. It is because we consider various receptive
fields in a single network structure different from [48] so that the proposed network
could learn crowds of various sizes. However, ours got lower performance compared to
the image-wise approach [51]. We think that it is because ours uses consecutive sizes
of receptive fields from 2 to 10-pixel difference while [51] uses artificially-defined
receptive fields through experiments. These artificially-defined receptive fields might
improve the counting performance, though, they can lose practical applicability.
Table. 3.1 also shows the performance between L-Net and G-Net. Because L-Net
is similarly designed patch-wise approaches for CDE, we could verify what is the
difference ours to the patch-wise crowd density estimation. The result of L-Net is
improved by G-Net in a large margin. In Fig. 3.6, we confirmed where the performance
improvement comes from into two aspects. Firstly, false negatively estimated crowd
density like lower density in crowded areas is re-activated through G-Net. This fact

shows that G-Net improves performance by positive feedback to the crowded area.
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Second, false positively estimated crowd density like density in background area
is suppressed through G-Net. This shows that G-Net has improved performance by
negative feedback in the background. As a result, the final crowd density map is more
clearly represented after G-Net than the initial crowd density map. In short, mispredicted
crowd density can be corrected using semantic reasoning i.e. large receptive fields

through the whole network.

Analysis on Network Structure

In order to verify the efficiency of the proposed network structure of G-Net, we conduct
some ablation experiments. At first, we test the correlation between the recursion
times and the performance. We test our algorithm on 3, 5, 7 recursion times to see the
difference in counting performance. As Fig. 5.5, we show that performance is saturated
when the recursion time exceeds 5 times. It means that the representation of the crowd
is enough to express the crowd density of the specific scene. One important thing is that
there are no more parameters when the recursion time increase because all the recursive
layers shares parameters. However, the more recursion time, the more training time
required.

We also conduct experiments on our algorithm compared to the revised version
without recursive network structure. Unfortunately, in the cases of 5 and 7 recursive
times, the non-recursive network structure fails to learn because of exponentially many
parameters i.e. the model complexity is high. This shows that recursive structure has
the benefit that it can be a deeper network without increasing model complexity. Also,
in order to balance model complexity and the number of receptive fields, the recursive

network can be an adequate network structure.

3.2.3 Summary

In this chapter, we proposed Local-Global Cascade Network for CDE. We separated

the crowd density estimation task into two sub-tasks as the estimation of local crowd
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density with the image patches and the refinement initial crowd density map using
the semantic cue. As a result, we could improve counting accuracy. Through several
experiments, we confirmed that the refining process of the initial crowd density map
is suitably implemented with recursive structure in CNN. Also, at the end of this sub-
chapter, we discussed that there is a large room for improving actual performance
through additional experiments such as defining the size of receptive fields, and also we
discussed that the more efficient structure than our work can be proposed in the future

using the end-to-end connection.

3.3 Selective Ensemble Network with Adjustable Counting
Loss (SEN-ACL)

3.3.1 Overall Scheme

The proposed network architecture is depicted in Figure 3.7, which consists of four
sub-networks: Gating Network (G-Net), Sparse Network (S-Net), Dense Network (D-
Net), and Refinement Network (R-Net). Given image patches extracted from an input
image, G-Net evaluates the degree of crowdness and determines which network, S-Net
or D-Net, is appropriate to estimate the density of the given local patch. S-Net is trained
for sparse patches, whereas D-Net is for dense patches. After estimating a density map
for each patch, we aggregate every local patch density map to get an initial density map
for the whole input image. The aggregation step is performed by element-wise addition
and averaging overlapping regions. Then, an initial density map is refined by R-Net.
The input of R-Net is constructed by concatenating the input image, the perspective
map, and the initial density map. R-Net refines the initial crowd density map into a high

resolution map considering contextual information of the image.
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Figure 3.7: The overall scheme of the proposed Selective Ensemble Network (SEN).
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3.3.2 Data Description

The crowd density map ground truth D € R? corresponding to an input image [
represents the density of people appearing at each pixel as a real value. The number of
people C' € R in aregion D is obtained by integrating the density map. Our goal is to
train the network so that the estimated crowd density map D (or the estimated number
of people C) is close to the ground truth crowd density map D (or the actual number
of people C'). As in [4], we design the ground truth for counting the whole body with
different size depending on camera view angle. We apply Gaussian mask with different
standard deviation so that partially appeared pedestrians also can be considered. The
sizes of pedestrians in an image are depicted by the perspective map P € R?. We
generate P with linear assumption of the height of people as [4].

When extracting local patches from an image, we use P to decide the size of patch
so that the size of a pedestrian in that patch should be consistent, which resolves the
scale issue of pedestrians in various scenes. We extract local patches through sliding
windows with overlapping to reduce mismatches in boundaries of the patches. The
extracted patches are re-sized to a fixed size W), x H,, for the input of the proposed

network.

3.3.3 Gating Network

Gating Network (G-Net) decides which network (sparse or dense network) should be
chosen for more accurate people counting results. For the n-th patch in N, training
patches, the ground truth label /,, for crowdness is defined as: I,, = 1, for sparse
crowded image and [,, = 2 for dense crowded image. The desired output (™) of G-Net
is encoded by one-hot vector (1, 0) or (0, 1), respectively, and the soft-maxed output of
G-Net is denoted by (™). The loss of G-Net L is defined as the cross-entropy loss as

follows:

2
Lo=-> 3 4 log(iM), (3.8)

k meNp
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where m is the element index value of y. We design the network structure of G-Net
with the help of the pre-trained network in order to use the rich feature representation
of that network. In this work, we use VGG-16 [60] network structure up to conv 4 layer
and initialize with its pre-trained weights. Training patches are extracted in random
positions.

The crowdness of the extracted patches are initially labeled by one of dense or
sparse based on the number of people in those patches. In our case, when the maximum
number of people in the training patches is Nz, the patch is labeled by sparse if the
number of people in the patch is in [0 : %N ], and the patch is labeled by dense if it is
in [%N a : Nag]. Patches in the overlapped range [%N M %N ) are labeled randomly.
While, these initial labels are not strictly correct although it has a tendency toward
crowd density. Therefore, we train the networks with the initial crowdness labels first
and then re-assign labels every epoch after S/D-Net are almost (80% in our work)
trained. A crowdness label of the n-th patch [,, is re-assigned according to the counting

accuracy of each network (S-Net and D-Net) as follows:

cn— Y dP(z,y)|. (3.9)

'T’y

l, = arg mkin

®

¢, denotes the number of people and d;,” denotes the density map in S-Net (kK = 1) or

D-Net (k = 2) of n-th patch.

3.3.4 Sparse / Dense Network

Sparse / Dense Network (S/D-Net) regresses the density map of a given image patch.
As shown in Figure 3.8-(b), the structure of S/D-Net is same as that of G-Net except
last one convolution layer for density map regression. We design same architecture for
both S/D-Net in order to train both networks only with the proposed loss scheme. The
loss of the S/D-Net L, p is defined by considering both the density map accuracy and

the counting accuracy as follows:
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neN,

where NV, denotes the number of training patches. The first term of (3.10) indicates
the accuracy of the estimated density map for n-th patch, which is called ‘density
loss’. And the second term indicates the accuracy of people counting estimated by
the S-Net (k = 1) or D-Net (k = 2) for n-th patch, which is called ‘counting loss’.
When training S/D-Net, we set the weighting value )\, between the two loss terms by
considering the following two points. First, the counting loss interferes with training
the density map because it can be minimized without accurate estimation of density
map by canceling out the underly-counted and overly-counted region in integration of
the density map. To lessen this interference, the weighting factor A; of the counting
loss starts with a small value in the training phase before converging of density loss.
As the training progresses, we increase the weighting factor \; of the counting loss
gradually. Second, in the high crowded region, the features of pedestrian becomes
unclear because of severe occlusions. In this region, the counting loss becomes more
influential to counting accuracy than the density loss due to unclear features. Thus,
D-Net uses a larger increment of A than S-Net for each epoch.

At first training phase (less than 40% epochs in our work), both of S/D-Nets are
trained using all training patches regardless of the degree of crowdness. This is because
only using the dense crowd patches for D-Net is not enough to learn the appearance
features of pedestrians due to severe occlusions. Before training S/D-Nets, the ground

truth crowdness label [,, for n-th patch is reassigned with the output of G-Net as

l, = arg m]?x g),gn) 3.11)

Note that [, is re-assigned alternately by (3.9) and (3.11). That is, [,, is re-assigned on
the basis of the outputs of S/D-Nets for training of G-Net, and [,, is changed by using
the output of G-net for training of S/D-Nets. The entire training process is summarized

in 1.
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Algorithm 1: Training procedure of G/S/D-Net

Data: Training set with N, training patches, /N g training epoches
Result: Parameters of G/S/D-Net

1 Initialize G/S/D-Net

2 for:=1...Ngdo

3 A1 < A1 +0.01 // X for S-Net
4 Ay < Ao + 0.1 // X for D-Net
5 | ifi < ZNp then
6 Training S/D-Net with whole training patches with eq. (3.10)
7 elseif : < %NE then
8 Training G/S/D-Net using initial labels with eqgs. (3.8) and (3.10)
9 else
10 forn =1...N, do
1 ‘ Relabeling training patches with eq. (3.9)
12 end
13 Training G-Net with eq. (3.8)
14 for n = 1...N,, do
15 ‘ Relabeling training patches with eq. (3.11)
16 end
17 Training S/D-Net with eq. (3.10)
18 end
19 end
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3.3.5 Refinement Network

Through Refinement Network (R-Net), we recover the resolution of the initial crowd
density map with contextual information by regressing the undefined pixel values in
the high resolution map, and also rectifies the errors occurred in the patch aggregation
process. As shown in Figure 3.9, the input of R-Net is a tensor that concatenates initial
crowd density map, perspective map, and the original image itself. Then, R-Net yields
a refined crowd density map as the output. The structure of R-Net is motivated by the
network structure of Convolutional Neural Pyramids (CNP) [44] and U-shaped Network
(U-Net) [61]. The skip-connection for each scale [61] is utilized to preserve the details
of the density map by learning residuals. Also, by using the pyramidal scheme [44]
which learns the features with a wide range of scales efficiently, we combine the density
maps of multiple scales into a refined density map containing contextual information.

R-Net consists of three modules as shown in Figure 3.9: feature extraction, mapping,
and reconstruction. First, 64 channel features are extracted from the input tensor through
a feature extraction module which consist of two 3x 3 conv layers. The extracted feature
tensor passes through two paths: one goes directly to the nonlinear mapping module
composed of conv layers, and the other goes to the down-sampling (pooling) layers
to form a half-sized feature tensor. This procedure is repeated d times consecutively,
where d is called the scale pyramid level. The d-th level feature tensor has 2~ size
of the original feature tensor and goes directly to the nonlinear mapping module in
d-th lavel. The nonlinear mapped feature tensor in d-th level is reconstructed into
the lowest resolution density map. This density map passes the up-sampling layers
and is pixel-wisely added with the density map reconstructed in the upper lavel. This
reconstruction procedure is also repeated d-times and then the final crowd density map
is produced. We use up-sampling layers as 3 x 3 deconv layers.

In the n-th image in the N7 training frame images, when the crowd density map

and the number of people of the image are D,,, C),, respectively. The output of R-Net
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Table 3.2: Dataset description. N : the number of frames, /Vs: the number of scenes, R:

the resolution, V': the number of people in the image, T’p: the total number of people.

Dataset WorldExpo’10 UCSD Mall
Ny 4.44 million 2000 2000
N 108 1 1

R 576x720 158 %238 480x640
\%4 1~253 11~46 13~53
T, 199923 49885 62325

D,, denotes the refined crowd density map. The loss of R-Net Ly is given by

1 o
Lp = FIZHDn—Dn
neENy

1 A 2
, T A Dl (Cn—;Dn(x,y»- (3.12)

I neENy
3.4 Experiments

3.4.1 Implementation Details

In the process of making the initial density map, the size of the patch is empirically
determined to cover 3.5 x 3.5 (m?) in the actual scene and we set the overlapping ratio
of neighboring patches as 30% of width and height of the patch. All patches for training
and test are resized to 128 x 128 by bicubic interpolation for the input of G/S/D-Net
W), x Hp so its corresponding density map size is 16 x 16. As described in Section
3.3.4, the initial )\ in (3.10) is set to O for both S-Net and D-Net, and the increment
of A is set to 0.01 for S-Net and 0.1 for D-Net. For R-Net, we set the scale pyramid
level d to 2 and X in (3.12) starting at 0 with 0.05 increment for every epoch. We use

TensorFlow library to implement the proposed network.
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Table 3.3: Comparison errors (average MAE) for different settings on WorldExpo’10 [4]

G/S/D-Net | G/S/D-Net
BaseNet G/S/D-Net SEN-ACL

+ACL +ACL+RP

17.0 13.1 11.0 10.3 9.0

3.4.2 Dataset and Evaluation Metrics

Three publicly available datasets were used to evaluate the proposed network’s perfor-
mance: WorldExpo’10 [4], UCSD [13], and Mall [1], as described in Table 5.2. Both
Mean Absolute Error (MAE) and Mean Squared Error (MSE) between the estimated
number of people and the ground truth were used to evaluate counting performance.

These measure are widely used in crowd density estimation algorithms.

3.4.3 Self-evaluation on WorldExpo’10 dataset

An ablation study was performed to validate the effect of each element of the proposed
method. This section compares one baseline and four variants of the proposed method.
Each variant was derived by adding each element of the proposed method to the baseline

as follows.

» BaseNet: Baseline is a patch-based regression model. It uses a single network for

density map regression, and A in (3.10) is fixed to 1.

* G/S/D-Net: Image patches were classified as sparse or dense using G-Net, and
one counting result of the two networks (S/D-Net) was selected on the basis of
G-Net results. The loss function of G-Net is shown in (3.8), and A in (3.10) is

fixed to 1. The initial labels for G-Net remain unchanged.

* G/S/D-Net+ACL uses adjustable counting loss (ACL) when training G/S/D-Net,

that is, A in (3.10) increases for every epoch as described in Section 3.3.4.
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* G/S/D-Net+ACL+RP applies a re-labeling process (RP) described in 1 when
training G/S/D-Net+ACL.

* SEN-ACL (Proposed) includes R-Net in G/S/D-Net+ACL+RP.

Counting accuracy comparison for the various configurations above is compared
in Table 5.3. The self-evaluation findings were as follows: 1) The baseline network
is similar to the structure of [4] but differs in terms of the additional counting loss.
When counting loss is simply added to density loss at a fixed rate, baseline counting
accuracy is lower than that of [4] which archived 12.9 MAE on that dataset. 2) The
networks that learned differently by dividing crowdness showed reduce the counting
error as compared to the baseline, but the performance was still lower than [4]. This is
because, unlike [4], G/S/D-Net is not fine-tuned according to the target scene. 3) When
the weight of the counting loss was gradually increased rather than remaining fixed,
counting performance improved to state-of-the-art level. This confirms that it is more
effective to adjust the weight of counting loss according to crowdness and epochs than
to simply add the counting loss. 4) As the initial sparse or dense label used in training
G-Net was inaccurate, additional enhancement was achieved by re-labeling process. 5)
R-Net effectively reduced the errors that occur when resizing images and aggregating
patches for the initial density map.

Figure 3.10 presents examples of qualitative estimation results achieved by various
self-evaluation settings. The baseline network has griding artifacts and discontinuity in
density values as depicted in Figure 3.10-(b), which is caused by aggregating local patch
crowd density maps. Separating the degree of crowdness in the network structure can
mitigate griding artifacts as shown in Figure 3.10-(c). In Figure 3.10-(d,e), additional
counting loss and re-labeling process can improve the counting accuracy though there
is blurry effect in the crowded region. Finally, The crowd density map is refined to
higher resolution compared to the other settings with a help of R-Net as depicted in

Figure 3.10-(f).
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Table 3.4: Comparison errors on WorldExpo’10 [4]

Method S1 | S2 | S3 | S4 | S5 | Average MAE
CCNN [4] 9.8 | 14.1| 14.3] 22.2| 3.7 12.9
MCNN [5] 3.4 | 20.6| 12.9]| 13.0| 8.1 11.6
Switch-CNN [42] 42 | 15.7| 10.0| 11.0| 59 9.4
ConvLSTM [20] 6.8 | 14.5| 14.9] 13.5] 3.1 10.6
SEN-ACL (Init. density map) 49 | 159| 13.8| 10.2| 6.9 10.3
SEN-ACL 2.7 | 13.0| 10.5| 16.1| 2.9 9.0

Table 3.5: Comparison errors on UCSD [13]

Method MAE MSE
KRR [1] 2.16 7.45
CA-RR [14] 2.07 6.86
CCNN [4] 1.60 3.31
MCNN [5] 1.07 1.35
Hydra-CNN [2] 1.51 -
Switch-CNN [42] 1.62 2.10
ConvLSTM [20] 1.13 143
SEN-ACL 1.39 1.72

3.4.4 Comparative Evaluation with State of the Art Methods

The WorldExpo’ 10 dataset was first introduced in [4]. We conducted the experiment
with Zhang et al.’s settings [4]. The results in Table 3.4 show that the proposed method
achieves the best performance in terms of average MAE in Scenes 1, 2 and 5, and com-
petitive performance in the remaining scenes, as compared with recent deep learning-
based methods (CCNN [4], MCNN [5], Switch-CNN [42] and ConvLSTM [20]).

For the UCSD dataset, we followed the experimental settings in [13]. As the UCSD
dataset is a low-resolution video, it does not have enough room for 3 pooling layers

for G/S/D-Net, so we excluded one pooling layer and conv 4 layer in the proposed
2]

38



Table 3.6: Comparison errors on Mall [1]

Method MAE MSE

KRR [1] 3.15 3.96

CA-RR [14] 3.43 4.21
COUNT Forest [16] 2.50 -

ConvLSTM [20] 2.10 2.76

SEN-ACL 2.09 2.78

network structure. The results of the evaluation are summarized in Table 3.5. The
compared methods are hand-crafted feature regression-based methods (Kernel Ridge
Regression (KRR) [1], Cumulative Attribute Regression (CA-RR) [14]), and deep
learning-based methods (CCNN [4], MCNN [5], Hydra-CNN [2], Switch-CNN [42]
and ConvLSTM [20]). The proposed method was shown to perform competitively
against state-of-the-art methods. In the case of UCSD dataset, there are little difference
between sparse and dense density regions so that we got a little improvement over the
single network like CCNN [4]. Also, since UCSD dataset was collected in real-time
surveillance camera, it has high temporal consistency, which is suited to recurrent
networks like ConvLSTM [20].

In the Mall dataset, we used the same experimental settings [1]. The results are
reported in Table 3.6. The compared methods are Kernel Ridge Regression (KRR) [1],
Cumulative Attribute Regression (CA-RR) [14], and COUNT Forest [16], which are
hand-crafted feature regression-based methods; and ConvLSTM [20], which is a deep
learning-based method. The proposed method achieved best performance on MAE
metric and second best performance on MSE metric.

Note that, in the UCSD and Mall experiments, the value of A (representing a balance
of density map accuracy and counting accuracy) was of the same as in WorldExpo’10.
Because these datasets have different scene characteristics (such as number of people

and degree of crowdness), more improvement can be achieved by adjusting A for each
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b oot D20 2
(a) Scene 1 (b) Scene 2 (c) Scene 3 (d) Scene 4 (e) Scene 5
Figure 3.11: Example frame images of ShanghaiTech Part A dataset. If the dominant
crowd sparsity is denoted by S (Sparse) or D (Dense), ShanghaiTech Part A dataset can
be consisted of (a) Scene 1 (§), (b) Scene 2 (D), (c) Scene 3 (S, D), (d) Scene 4 (D),

and (e) Scene 5 (S)

dataset.

3.4.5 Analysis on the Proposed Components

We additionally conducted an experiment to verify each elements of the proposed
network as a motivation in this chapter. The experiment was conducted on ShanghaiTech
Part A dataset. In subsets of ShanghaiTech Part A dataset, Scenes 1-5, the dominant
sparsities of crowd are as shown in Fig. 3.11. As summerized in Table 3.7, the counting
loss is effective for a dense crowd as dense crowded scenes (e.g. Scene 2 and Scene 3)
were improved than the prior version, and the separation of S, D-Net is effective for a
sparse crowd as sparse crowded scenes (e.g. Scene 1 and Scene 5) were improved than
the prior version. In addition, as shown the results between version 4 and 5, the proposed
re-labelling process and R-Net improved the performance in all cases regardless of the

degree of congestion of crowd.

3.5 Summary

In this chapter, we proposes a novel CNN architecture for crowd density estimation
that selectively utilizes sub-networks with respect to crowdness. We also propose an

adjustable loss scheme for each sub-network that adjusts the balance of counting loss

3 A= o 8t w
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and density loss, depending on crowdness and training epochs. This adjustable loss
scheme can also handle the scale issue in which high-density regions are predominantly
learned. In addition, the proposed refinement sub-network effectively renders the density
map as high resolution map by taking account of contextual information. To the best of
our knowledge, this is the first attempt to resolve the trade-off between density map
accuracy and counting accuracy by considering both network architecture and loss
functions. As the comparative evaluation shows, our network exhibits state-of-the-art
performance for three publicly available datasets. The self-evaluation results confirm
the validity of the components of the proposed method (selective ensemble, adjustable

loss, alternating re-labeling, and refinement sub-network).
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Chapter 4

Sequential Crowd Density Estimation from Center to

Periphery of Crowd

4.1 Overview

The goal of crowd density estimation (CDE) task is to get the number of people or
to get their distribution from images acquired from a wide-view camera such as the
surveillance camera. Recently, the introduction of the intelligent surveillance system
and the growing interests in preventing terrorism leads to active research on the CDE.
However, the CDE is one of the most challenging computer vision tasks, because 1)
the occlusion is so severe that conventional detection methods (e.g. head or pedestrian
detection) cannot accurately count crowd, and 2) it is difficult to represent the features
of the crowd, which varies according to the various appearance of people and the degree
of congestion of the scene. Recently, with the impressive development of the deep
learning, many methods based on the convolutional neural network (CNN) have been
proposed with the state-of-the-art performance.

The CNN-based CDE methods [2,4,5, 18-22,62] conventionally estimate a crowd
density map where a person is represented as a small Gaussian kernel with a sum of 1.

That is, the summation of the crowd density map becomes the number of people in the
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CNN

Crowd Density Map

Figure 4.1: An illustration of the proposed method In this work, we have confirmed
that accurate crowd density can be obtained by estimating the center and periphery of
each person separately. The proposed network gradually estimates crowd density from

center to periphery of the crowd by each dilated CNN and integrates the results.
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entire image. To estimate the accurate crowd density map, we gradually estimate the
Gaussian kernel from its center to the periphery. The center of the Gaussian kernel can
be obtained by only considering a small region, while the other regions are easy to be
combined with neighbors so that it can be obtained with a wide field of view. From the
viewpoint of the network, the field of view of a network is defined by receptive field,
which implies that the network can better estimate the density map of a person if it has
various receptive fields. However, it is not desirable to train multiple neural networks
separately depending on the receptive fields.

To realize the integration of the various receptive field, we propose a novel CNN
structure using multiple dilated CNN blocks that have a variety of receptive fields and
is trained in cascading from small-scale dilated CNN block to large-scale dilated one.
As shown in Figure 4.1, the feature extracting CNN is shared and its following multiple
CNN blocks contain a dilated convolutional layer with different filter sizes. By utilizing
the dilated convolutional layers with different filter sizes, the receptive fields of the
multiple dilated-CNN blocks can avoid the overlapping. In addition, the memory usage
can be much reduced in spite of the multiple blocks. The multiple blocks are working
in cascading to estimate the crowd density map gradually from center to periphery of
each person area, and the final crowd density map is obtained by mutually integrating
all the results from the multiple network branches. We validate our proposed method in
real-world benchmark datasets, which shows the state-of-the-art performance for the
various surveillance environments.

In summary, the contribution of the proposed work is as follows,

* We propose a novel crowd density estimation method, which estimates each

Gaussian kernel for each person from center to periphery progressively.

* To mutually learn the different regions for the Gaussian kernels, we propose a
novel CNN structure using multiple dilated-CNN blocks with different scales.
The final crowd density map is obtained by integrating the results of the multiple

dilated-CNN blocks.

45



‘PIoY 2ANdoaoa1 931e] B Im YI0MISU Ay SUISN PIJBWINS? A[9JRINdJE 9q UBd pMOID Ay Jo uordar Areydurad ayy ur dew Kjsuap
9 JeY} WIGUOD AN “JOIIS UONBWINS 9} JO AJISUUI 3y} MOUS (3-9) "g pue ‘7 ‘T 918l pAJe[Ip Y} YIIM YIom)au aY) AqQ pajewnse sdeur
AKysuap Juowre (A[21eINdor PAJRWINS AJISUIP ) 9IoYM UOIZAI Ay} 9°T) JOLIQ IS9MO] ) YIIM UOIZAI 9y} 21edIpul (P-q) ‘UAIS ST 9Fewt

ndur oy} () USYAL SIJBI PIJR[IP S} PUE YI0MIIU 3Y) SUISN AdLINIIE UOIJBWIIISI UIIM)I( UONEB[I U0 SIsA[eue dpduuns :7 4 2131

©)

3

46



* In the experiments conducting on the challenging datasets including Shanghaitech-
PartA,B and UCF_CC_50, our proposed method achieves the state-of-the-art

performance.

4.2 Cascade Residual Dilated Network (CRDN)

In this section, we describe our proposed method named Cascade Residual Dilated
Network (CRDN). We first demonstrate the relationship between dilated convolution
and its effect on the receptive field. Then, we analyze how the multiple receptive fields
effect on estimating crowd density. Along with the above analysis, we describe how our

proposed method estimates accurate crowd density in detail.

4.2.1 Effects of Dilated Convolution in Crowd Counting

The 2D-dilated convolution is defined as following,

M N
y(m,n) = Y w(m+r-in+r-j)-wi,j), .1

i=1 j=1

where y(m, n) is the output obtained from the input z(-, -) and the weight w(-, -) with
the dilated rate r. The basic 2D convolution is the case of » = 1, that is, dilated
convolution functions to enlarge the convolution operation with offset r. Dilated con-
volution is one of the key factors that improve the accuracy of semantic segmentation
recently [63—68]. With the sparsely arranged kernel values, dilated convolution can
enlarge the receptive field of the neural network without increments of computational
complexity, and also can replace conventional pooling layers. As a result, the dilated
convolutional network is able to represent contextual information without the loss of
the resolution.

Figure 4.2-(b-d) is a binary map of the region where the correct prediction is made
according to the dilate rate. Note that with a wide range of contextual information

(e.g. with the network of large receptive field), the estimation of crowd density in the
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inter-personal region (also region that farther from neighboring people) is more accurate
than its counterpart. In a wide field of view, it can be seen that the density map in a
region between densely crowded regions is better estimated by the network with a
large receptive field. We have confirmed that by changing the receptive field using
dilated convolution, the amount of contextual information can be effectively controlled.
Figure 4.2-(e-g) show how accurately the crowd density is predicted in each region.
Each region is represented by being normalized after a division by the maximum value
of the error among the crowd density maps estimated by the network with dilated
rates 1, 2, and 8. As shown in the figure, when the dilated rate increases, the density
map of the region corresponding to the periphery of the crowd is accurately estimated.
The crowd density map is generated by combining the density map of each individual.
In general, the density map of each person is expressed by a Gaussian kernel with a
standard deviation depending on the scale of a person. Therefore, the density value is
inversely proportional to the distance from the center of the person. We can determine
the center of individuals with a distribution of the crowd density, and progressively the

periphery region is also designated.

4.2.2 The Proposed Network

Founded on the above finding and empirical cues, we propose a novel way to estimating
crowd density from center to the periphery of the crowd. As depicted in Figure 4.3,
our proposed network consists of Multi-Dilated Convolutional Blocks (MDBs) with
a various dilated rate. Each MDB estimates the crowd density under the guidance of
adjacent MDBs. In particular, each MDB is connected in cascades to its next block
so that all MDBs can be learned complementarily. In detail, the proposed network
is composed of two parts; Frontend and MDBs. The Frontend network is a fully
convolutional network acted as a feature extractor, which extracts high-level feature
maps from the RGB input image. The feature map extracted from the Frontend is

then fed to MDBs. MDB consists of convolution layers with pre-defined dilated rate
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and is followed by 1x 1 convolution to form the crowd density map. Crowd density is
progressively estimated by MDBs from the center to periphery of the crowd. Formally,
partial crowd density map Dy(k = 1,...,n — 1) is estimated by each MDB B, with the
dilated rate 7. At each step, only a partial attention region M}, of Dy, is left by masking
as follows,

Dy (m, n) = Di(m,n) ® Mg(m,n), 4.2)

where Mj, is binary mask indicating the region left in /k-th stage and Dy, is final crowd
density map of M. In the first stage, M indicates the most crowded region which has
density values of greater than J; after the normalization. The other partial regions M,
except for the n-th stage indicate regions with intermediate density values of less than
0r_1 and greater than 0. The remaining region M,, which has the least crowded is the
region with density values of less than d,,_1. Each partial attention region also effects
on the feature maps, which in next step erases the feature maps corresponding to the
partial attention map for complementary learning. By combining estimated regions at
all stages, we get the final crowd density map of the whole image. The above procedure
is summarized in Algorithm 2, where D indicates normalized density map.
Thresholds as the guidance to the input feature map in each MDBs are determined
according to the characteristics of the scene. In general, a crowd density map is defined
by convolving Gaussian kernel on dot annotation map of the people’s head locations so
that the range of density values is varied depending on the level of crowded of the scene.
We conduct normalization process and hard thresholding to represent attention region
M, regardless of the crowed level of the scene. Additionally, because the standard
deviation ¢ in Gaussian kernel for generating density maps is given depending on the
scene, we need a common rule to generalize the attention regions of each MDB. We
utilize reinforcement learning as post-processing to set thresholds for each dataset.
In this work, because of its low-dimentionality of thresholds, we use REINFORCE
algorithm [69] which simply uses immediate rewards to estimate the value of the policy

to determine the sub-optimal thresholds. We define a state as current threshold values,
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Algorithm 2: Estimation process of the proposed network
Data: Image [ and thresholds 91, ..., 0,1

Result: Crowd density map of I, D
1 ¢« fr(I;0F)
2 D1+ f1(D@;61)
3 My « I[Dy > 4]
4 ﬁ1 — Dy O M
5P DO (I— M)
6 fork=2ton—1do
7 | Dy <+ fr(®;0)
8 My < I[6)_1 > Dy > 6]
9 ﬁk — D © M
0 | &« oo (- M)

11 end
12 D,, fn(@;én)
13 My, + I[6,—1 > Dy

14 D, < D, ® M,
15 D+ Y, D;

an action as the difference of thresholds from its initial values, and a reward as a change
of the Mean Absolute Error (MAE) on validation samples. The actor is implemented by
multilayer perceptron with hidden nodes hpy,, which is parameterized 0. We train
the actor network by stochastic gradient ascent [69] to maximize the expected gain of

MAE as follows,
T

Olog p(at|st; Oactor
Abactor ¢ Y =2 pé,;' S L, (4.3)
t—1 actor

where p(a|s;) denotes the conditional action probability, 7" is the maximum number of

trial, and r; is the reward at each trial.
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4.3 Experiments

4.3.1 Datasets and Experimental Settings

We have evaluated the proposed method on three challenging crowd counting datasets:

* ShanghaiTech dataset Part A, B [S] contains 1,198 images with a total of 330,165
people and is divided into two parts: Part A containing 482 images of congested scenes
(300 images for training and 182 images for testing) and Part B containing 716 images
of sparse scene (400 images for training and 316 for testing).

* UCF_CC_50 dataset [70] contains 50 images downloaded from web. The number
of people per image ranges from 94 to 4,543 with an average of 1,280 individuals. Its
small number of images and large variance of people numbers make this dataset very
challenging. We use 5-fold-cross-validation setting as described in [70].

To evaluate our proposed method, we use both Mean Absolute Error (MAE) and

Mean Squared Error (MSE) as evaluation metrics.

1 & 1
MAEZNZ‘CZ-—CQLMSE: N;’Ci—d‘27 (44)

(2
i=1
where [V is the number of test images, c¢; is the number of people in the i-th image,
and ¢} is the estimated number of ¢;. The number of people in the image is obtained by

integration of the crowd density over whole image regions as follows,

ci=>_Y D (m,n). (4.5)

The estimated case is similar way of Eq.(5.13).

4.3.2 Implementation Details

As a conventional way, we generate the ground truth of crowd density map by blurring
dot annotation map on head locations using a Gaussian kernel with fixed standard

deviation.

DFT(zi) =Y 6z — 2;) * Gy (), (4.6)
=1
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Table 4.1: Network structure of the proposed network (the configuration of convolution

layer is briefly expressed as [kernel size]-[number of channels]-[dilated rate].)

Layer Frontend Layer | Backend (MDBs)

1-1,2 conv3-64-1 1-1 conv3-512-r
max pool 1-2 conv3-512-r

2-1,2 | conv3-128-1 1-3 conv3-512-r

max pool 2 conv3-256-r
3-1,2,3 | conv3-256-1 3 conv3-128-r

max pool 4 conv3-64-r
4-1,2,3 | conv3-512-1 5 convl-1-1

where z; is annotation point of head location, GG, is a Gaussian kernel whose standard de-
viation is ¢, and * indicates the convolution operation. We set o as 15 in ShanghaiTech-
Part B. In some dataset with high congested scenes such as ShanghaiTech-Part A and
UCF_CC_50, we use a geometry-adaptive kernel [5] which is a kind of a Gaussian
kernel with variable standard deviation depending on the person’s location, o; = (3d;,
where d; is the average distance of k nearest neighbors of i-th person. We use 3 = 0.3
and k = 3 asin [5].

We use the front part of VGG16 [71] as the Frontend of the proposed CRDN.
Specifically, the first 10 layers of VGG16 with three pooling layers are configured as
the Frontend. As the output density map is shrunk due to pooling layers, we expand the
resulted density map by bilinear interpolation of factor 8. As described in the Sec. 4.2.2,
the input of each MDB except for B is the erased feature map which is extracted
from the Frontend. The erasing mask is a binary mask that normalizes the density map
results from the previous MDB to a range of 0 to 1 and performs hard thresholding.
The network configuration of the Frontend and MDBs is summarized in Table 5.1.

We use dilated rates r, = {1,1.5,2,4, 8} in the experiment. » = 1.5 means that

dilated rates of first three layers are set to 1 and those of the others are set to 2. The loss
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Table 4.2: Estimation errors on ShanghaiTech and UCF_CC_50 dataset

SHT Part A SHT Part B | UCF_CC_50

Method MAE | MSE | MAE | MSE | MAE | MSE

CCNN [4] 181.8 | 277.7 | 32.8 | 49.8 | 467.0 | 498.5
MCNN [5] | 110.2 | 1732 | 264 | 41.3 | 377.6 | 509.1
SCNN [19] | 904 | 1350 | 21.6 | 33.4 | 318.1 | 439.2
CPCNN [23] | 73.6 | 106.4 | 20.1 | 30.1 | 298.8 | 320.9
ACSCP [22] | 75.7 | 102.7 | 17.2 | 27.4 | 291.0 | 404.6
CSRNet [21] | 68.2 | 115.0 | 10.6 | 16.0 | 266.1 | 397.5
ic-CNN [27] | 68.5 | 116.2 | 10.7 | 16.0 | 260.9 | 365.5
SANet [28] | 67.0 | 1045 | 8.4 | 13.6 | 258.4 | 334.9

Ours 65.2 | 103.7 | 10.7 | 18.2 | 230.9 | 326.3

used for training CRDN is L loss as follows:

N
1 -
S L
1=

2

The Adam optimizer is used, and the learning rate is attenuated 0.1 times at 1/3 and
2/3 over 1e~%. For the quick convergence of the training process, we first train each
branch separately, and then we fine-tuned with the whole structure of CRDN. When
training each branch, the input of the Backend is the overall feature map and the loss

Eq.(4.7) of the output density map is used.

4.3.3 Comparison with Other Methods

Shanghaitech Dataset ShanghaiTech-Part A consists of images randomly crawled from
the Internet. Since there are many challenging samples such as synthetic, gray-scale,
or watermarked images, it is suitable to compare the robustness of counting accuracy.

Different from Part A, images from Part B is taken from the streets in Shanghai so
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that these have similar scene characteristics such as camera installation environments,
and there is a relatively sparse crowd. Experimental results with eight recently work is
shown in Table 4.2. In both parts of the dataset, our proposed algorithm achieves the
lowest error in MAE compared to other methods and we get lower MAE than the state
of the art SANet [28]. Compared to CSRNet [21] which consists of a single dilated
convolutional network, it is confirmed that our proposed multi-dilated network and its
configuration improves the performance. Qualitative results are depicted in Figure 4.4.
The results show that the distribution of density values are similar to those of CSRNet
with some density values are enhanced to accurate, which show that each part of the

Gaussian kernel is accurately estimated.

UCF_CC_50 Dataset UCF_CC_50 dataset is a relatively small dataset consisting
of only 50 gray-scale images. Despite this, images of UCF_CC_50 dataset represent
hundreds to thousands of people, which can cause over-fitting of the network. To
prevent over-fitting due to the small size of the dataset, we fine-tuned the network from
the pre-trained one on ShanghaiTech-Part A. The counting performance comparison
with the eight recently reported algorithms is summarized in Table 4.2. The proposed
method showed the lowest MAE of 230.9 and also showed the lowest MSE of 326.3.

The qualitative results are shown in Figure 5.6.

4.3.4 Ablation Study
Comparison between Multi-Dilated Convolutional Blocks

We conducted an experiment to see how each of the proposed MDBs contributed to
overall performance. Table 4.3 summarizes the results of comparing the performance
of each MDB and the average of the density maps estimated by all MDBs. The results
show that when a single network is configured, the best performance is achieved when
the dilated rate is 2. This result is the same as reported by in [21]. One interesting

thing is that the images which achieve the best counting performances among MDBs
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Table 4.3: Estimation errors from ablation study (Oracle chooses the best result from

each MDB.)

MDB-1 MDB-1.5 MDB-2 MDB-4 MDB-8 AVG Oracle* MAE MSE
v 67.2 103.7

v 70.5 107.8

v 659 104.8

v 71.1  106.8
v 293.6 4029

v v v v 782 127.8

v v v v v 46.8 784
v v 70.7  108.2
v v v 65.8 103.6
v v v v 65.2 103.7
v v v v v 65.2 103.7

Number of Frames

1 1.5

Dilated Rate

Figure 4.6: Distribution of the images which achieved the best performances among

MDBs on ShanghaiTech-Part A dataset

58



are almost uniformly distributed except for the case of dilated rate 8, as shown in
Figure 4.6. Also, in the view of network selection, when we select the MDB which is
best performed with the image, MAE is reduced to 46.8, which is denoted by Oracle
in the table. We tested the case selecting a network with a classification network, but
we did not get a meaningful result. The reason is that there is no distinct correlation

between the contents of an image and the receptive field improving counting accuracy.

Configuration of Combination of Multi-Dilated Convolutional Blocks

We measured the performance with the addition of an MDB with a specific dilated
rate. The results summarized at the bottom of Table 4.3 show that the best performance
is achieved when {1,1.5,2,4} MDBs are considered, and there is no performance
improvement when MDB with a dilated rate greater than 4 is added. This is because
there is a trade-off between the receptive field of the network and the accuracy of the
density estimation, which show that as the receptive field of the network larger, the
final density estimation results in the lower performance because of using the sparse

information of the image.

Determining Residual Thresholds

In order to tune the residual thresholds § in Section-4.2.2, we use reinforcement learning
(RL) as post-processing. The action space is defined in a continuous real domain where
the action means the update value of the threshold with a fixed gap (£0.001 in this
chapter). The reward is set to the inverse of value changes of MAE on the validation
set. As depicted in Fig. 4.7, the trained agent adjusts the threshold to decrease MAE
and the threshold is set to the sub-optimal values in eight time steps. Applying the
RL as a post-processing improves the performance from 66.8 to 65.2 on MAE in the

Shanghaitech Part A dataset.
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Min. error map

1 2 3 4

1 024 | 000 | 0.07 | 0.07

Figure 4.8: Example figures for in-detail analysis (1). Given an input image, (a-d)
show both mask map M; and minimum error map of each MDB. The minimum error
map indicates region that lowest counting error among density estimation results of
MDBs. The table shows the correlation scores calculated by Intersection over Union

(I0U) of both mask map M and minimum error map of each MDB.
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Min. error map

1 2 |8 | @
1 | 024 | 000 | 0.10 | 0.12
001 | 010 | 0.08
0.04 *@jg& 0.15
0.18 | 0.02 | 0.19

Mask map

Min. error map

(d

Figure 4.9: Example figures for in-detail analysis (2). Given an input image, (a-d)

show both mask map M; and minimum error map of each MDB. The minimum error

map indicates region that lowest counting error among density estimation results of

MDBs. The table shows the correlation scores calculated by Intersection over Union

(I0U) of both mask map M and minimum error map of each MDB.
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4.3.5 Analysis on the Proposed Components

Additional experiments were conducted to confirm the effectiveness of the proposed
element in this chapter. Experiments were conducted on the ShanhaiTech Part A dataset.
As depicted in Figs. 4.8, 4.9, we illustrated the mask map and minimum error map
of each MDB, and then calculated correlation values between the two maps. The
minimum error map indicate the region with the lowest counting error among the
density estimation results of MDBs. The correlation values between the minimum
error map and the mask maps was calculated by the Intersection-over-Union (IoU)
score and summarized in the tables of the Figs. 4.8, 4.9. Through the experiments, it
was confirmed that the correlation between the mask map and the region estimated
accurately by each MDB was high except for the case of MDB-1.5 The reason is that,
as can be seen from Fig. 4.6, MDB-1.5 has the highest performance in the large number

of sample images.

4.4 Conclusion

In this chapter, we proposed a novel crowd density estimation method which gradually
estimates density from the center to periphery of each person. We first showed an empir-
ical finding that the accuracy of the density estimation for the centered or surrounding
region of individuals depends on the scale of dilated convolution. The centered region
can be estimated well by a small-scaled dilated convolution, while a large-scaled dilated
convolution makes small error for the surroundings. Based on the finding, we proposed
Cascade Reidual Dilated Network (CRDN) equipped with multiple dilated CNN blocks.
CRDN estimates the density of the center of each person with the small-scale dilated
CNN block first, and then subsequently estimates the remaining areas with the larger-
scale blocks. Extensive experiments show that the proposed method can accurately

estimate crowd density over the state-of-the-art.
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Chapter 5

Congestion-aware Bayesian Loss for Crowd Counting

5.1 Overview

Crowd density estimation can be accomplished with a computer vision-based algorithm
to count the number of people in an image, which is one of the challenging tasks for
an intelligent surveillance system. Using a crowd density estimation algorithm, we
can determine regions of interest where crowds are forming. We can then reduce the
computational resources of various algorithms of surveillance system [6, 72, 73] by
concentrating specifically on the detected crowd regions. Furthermore, a crowd density
estimation algorithm can also be utilized to count non-human objects, such as cells [1]
or vehicles [2].

A crowd density estimation algorithm mainly targets congested scenes, such as the
images shown in Fig. 5.1. In a congested scene, many people are occluded by others.
Furthermore, when a crowd is located at a far distance from the camera, each person
may only be represented by a few pixels in an image. Due to challenging issues like
occlusion and a small occupied region by individuals in a congested scene, it is hard to
count the exact number of people in a crowd. Unlike early detection-based methods
that counted individuals one by one, regression-based density estimation methods can

efficiently learn a crowd density map by using only point annotations that mark the
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- A \
(a) Unevenly distributed crowds (b) Variability in pedestrian size
Figure 5.1: Examples of target scenes for crowd counting. Crowd counting algorithms
mainly target highly congested scenes with (a) an unevenly distributed crowd and (b) a

distribution of pedestrians of various scales.

location of each person in the image [1, 13, 14].

Regression-based methods have show a large improvement with the advancement
of deep learning [12]. Among the deep learning-based methods, the Bayesian loss
(BL) method [38] shows impressive performance in training a deep network for crowd
density map estimation. Instead of the conventional method that evaluates loss with a
desired density value at each pixel, the BL method adopts a novel loss scheme using
only the positions of the head point annotations. In contrast to providing the desired
density map in conventional methods, the BL method uses a probability that each pixel
belongs to a person or background.

In the BL method, the background probability at a pixel is generated by using
a fixed distance between the pixel and the nearest head point annotation. However,
due to the fixed distance, this background probability model cannot adapt itself to the
variation of personal scales and the sparsity of individuals, as shown in Fig. 5.2. The
issue mentioned above results in the limited performance for the various sizes of people
from a few pixels to a full face or more, which depends on the scale of person. In
addition, the BL method cannot handle the varying degrees of occlusion that arise due

to the different sparsity of individuals in a certain region.

Ralks L
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(b) Bayesian Loss method

Figure 5.2: Comparison of background probability map from Bayesian Loss (BL)
method and the proposed method. Given a crowd image of (a), the yellow-colored
region in (b) and (c) represents the background region indicated by the background

probability.

In this chapter, to solve the issue above, we propose a congestion-aware Bayesian
loss method in which the estimated scale is used to set up a background probability
that is adaptable to personal scale variations. To this end, we have developed schemes
to estimate the scale of each person and the sparsity of a local region. These schemes
are designed under the assumption that the scale of a person is inversely proportional
to the distance the individual and the camera, whereas the sparsity of a region is
related to the ratio of the scale and the inter-person distance of the region. Unlike
the existing scale-aware schemes [4,9, 25, 30], the proposed scale inference method
targets the situation where only point annotations are given. Therefore, our method
is suitable for single-image crowd density estimation algorithms that provide training
images and corresponding point annotations. The estimated sparsity is used to reduce
or amplify the loss to adjust for the difficulty in heavily occluded regions. By using the
proposed loss, we can learn a diversity of crowd appearances in a weakly supervised
manner with only head point annotations instead of density map annotations. Because
a diversity of appearances dependent on scale and sparsity are learned in the training

phase, estimations of scale and sparsity are not needed at all in the testing phase, and
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therefore, additional inference costs are not accrued.

Through various experiments, we validate the proposed components including
the scale and sparsity estimations of the BL, which contribute to the performance
improvement of the proposed method in achieving the state of the art with various
benchmark datasets.

Contributions of this chapter are summarized as follows:

* We develop schemes to estimate the scale of each person (i.e., person-scale) and

the sparsity of a local crowd (i.e., crowd-sparsity) based on the scene geometry.

» Using the estimated person-scale and crowd-sparsity, we propose an extended

Bayesian loss method to learn a variety of appearances in a crowd.

* Using the proposed Bayesian loss method, we improve the supervising represen-

tation of the point annotations and achieve state-of-the-art performance.

5.2 Congestion-aware Bayesian Loss

In this section, we present the estimation procedures of the scale of a person (i.e.,
person-scale) and the sparsity of a local region (i.e., crowd-sparsity) and then describe
the proposed loss using the estimated person-scale and crowd-sparsity. First, the person-
scale estimation procedure is described in Sec. 5.2.1. The method for crowd-sparsity
estimation is then described in Sec. 5.2.2. With the estimated person-scale and crowd-

sparsity, the proposed loss is described in Sec. 5.2.3.

5.2.1 Person-Scale Estimation

To estimate a person-scale in an image, we use the following two scene characteristics.
First, the person-scale is represented as inversely proportional to the distance from the
person to the camera. We assume a typical surveillance situation where only one ground

plane exists, such as a scene without additional layers. In that situation, every person
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at the same image height is assumed to have the same scale. Also, the person-scale
is proportional to the image height that is generally defined in ascending order from
the top to the bottom of the image. That is, as shown in Fig. 5.3(a), people in the
bottom region of an image are represented in a large scale, and vice versa. Second, in a
congested scene, where people are distributed evenly, the person-scale is represented
by the nearest neighbor distance of each person..

Under the assumptions described above, we can estimate the person-scale s(h) at

the image height h using the inter-person distance as

P
1
s(h) = 5 D Ipi = P (5.1)
i=1

where P is the number of head points at the image height &, p; is the head position of
the i-th person, and p,r(;) is the head position of the nearest neighbor of the i-th person.

However, in some cases, if we directly estimate the person-scale using Eq. (5.1), the
scale estimation results can be noisy because outliers can exist with sparsely distributed
people. To resolve the outlier issue, we use a regression of the height-scale relationship,
as depicted in Fig. 5.3. From Fig. 5.3(b), it can be observed that our assumption on
the relation between person-scale and image height is valid. To fit the relationship
between person-scale and the image height, we (1) follow the aforementioned scene
geometry and (2) consider unevenly distributed crowds as outliers. Hence, we conduct
a second-order linear RANSAC (random sample consensus) operation without fitting
a constant of the first-order variable, in other words, find @ and b in ax? + b such that
most of the points of x are satisfied. The fitted curve in Fig. 5.3(b) for estimating the
person-scale is obtained by the RANSAC regressor, which models the observed data
with little influence of outliers. We utilize the estimated person-scale in designing the

congestion-aware Bayesian loss method in Sec. 5.2.3.
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5.2.2 Crowd-Sparsity Estimation

We can utilize the estimated crowd-sparsity to improve the learning capability of the
crowd density estimation network. When learning the crowd density map, in a densely
crowded region, it is difficult to distinguish the crowd from the background clutter. Thus,
regions of low crowd-sparsity will significantly affect the overall counting performance.
Motivated by the hard-negative mining in object detection algorithms [11], we reduce
the influence of loss on annotations in sparsely crowded regions, and amplify the
influence of loss on annotations in densely crowded regions.

To estimate crowd-sparsity, we utilize the estimated person-scale in Eq. (5.1). If a
person has a greater distance to his/her nearest neighbor than the estimated scale, we
can assume that the crowd in a local region around the person is sparsely distributed,
and vice versa. The crowd-sparsity around a person is then defined by the ratio of the

nearest neighbor distance of the person to the estimated person-scale, in other words,
Sp = S(hn)/sl(hn)v (5.2)

where h,, is the image height of the n-th person, s(h,,) is the distance to his/her nearest

neighbor given by [p, — par(n)|, and s'(hy,) is the estimated scale for the person. In the
region under the fitted curve in Fig. 5.3(b), the people are highly occluded, so S, is less
than one. In contrast, the people in the region above the curve are sparsely distributed,
so S, becomes larger than one. Hence, using the crowd-sparsity S, we can reduce or
amplify the influence of the annotations depending on the crowd-sparsity of a local

region. In Sec. 5.2.3, we describe the derivation of the proposed loss including the

estimated person-scale and crowd-sparsity.

5.2.3 Design of The Proposed Loss

Let z,, (m = 1,2,..., M) be a random variable that denotes the spatial location, where
M is the number of pixels. Given N number of people, z, (n = 1,2, ..., N) is a head

point annotation. The label for z,, is defined by a random variable y,,. Assuming that the
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(b) Ours

Figure 5.4: Dummy background annotation settings. For a pixel x,, of a density map,
(a) the Bayesian loss method adopts a dummy background annotation, z*, at a distance
d pixels from 2", which is the nearest neighbor head annotation of x,. In contrast, (b)
the proposed method adopts an adaptable distance d,, depending on the person-scale

instead of the fixed d.
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likelihood of the head point annotation follows a Gaussian distribution, the likelihood

probability of x,,, given label y,, is given by
p(xm‘yn) = N(Zna U2H2><2)7 (5.3)

where o is a parameter that controls a region that is affected by each head point
annotation and > 2 denotes an identity matrix. In addition, given background label vy,

the likelihood probability of x,, is set to a Gaussian kernel with a centroid z;* as
p(Tmlyo) = N (2", 0% Iax2). (5.4)

In this chapter, in contrast to the original Bayesian loss, we propose an adjustable
centroid z;' depending on the person-scale. As shown in Fig. 5.4, in the original
work [38], the centroid z;" is located at a distance d pixels from the nearest head
annotation. In our method, the adjusted centroid z{" is located at a distance d,, pixels
from the nearest head annotation, where d,, depends on the person-scale s’(h;,). To this

end, we define d,, by
s'(hn) — so

S0

dp =do - s1- exp( )7 (5.5)

where sj is the shorter side length of the image, dy (e.g., 0.15) is a fractional scale
of s7, and s is the average person-scale of the dataset. When the person-scale s'(hy,)
becomes larger than the average scale sqg, we set d,, to grow exponentially. The adjusted
centroid is then obtained by

m
Tm — 2
m __ _m m n
zy =z, +d

(5.6)

AT T
[zm — 271l
where 2" denotes the nearest annotation point of x,,.
Using the likelihoods, given the spatial position z,,, the posterior probability of

each head point annotation or background is given by

P(Yn)D(Tm|Yn)
S oW )Py )]

p(yn‘xm) = ) (57)

where p(y,) = ﬁ denotes the prior probability with label index n = 0,1,2,..., N,

including the background.
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If the posterior probability of each head point annotation in Eq. (5.7) is expressed
as a map, it represents the contributed region of each head annotation. Similarly, the
posterior probability for the background annotation can represent the background region,
as illustrated in Fig. 5.2(c). It can be seen that the proposed method more accurately
represents the background according to the person-scale of annotations than the original
work in Fig. 5.2(b).

If an estimated crowd density at location z,, is denoted as D®!(x,, ), the Bayesian
loss is derived as follows. Let ¢]' be a count at =, contributed by y,,, and ¢, is a count

of n-th annotation. Following [38], the expectation of ¢, is derived as

Elea) = E[Y )= El)]
m=1 m=1 (58)
M
=3 lyaln) D= )

The count value of each annotation ¢,, should be one and that of background cg
should be zero. Using the crowd-sparsity for each annotation in Eq. (5.2), the proposed
congestion-aware Bayesian loss (CBL) is proposed by

N

Lcpr :Z < |1 = Elen]| + |Eleo]|

n

3
—_

2
‘ -

51

M
= p(Ynlm) D (21) (5.9)
m=1

3
Il
—_

+ > p(yolwm) D (2m),

M=

1

3
I

where 5, reduces or amplifies the influence of the annotations depending on the crowd-

sparsity of a local region. At inference time, we can obtain the number of people without
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Table 5.1: Network structure. The configuration of the convolution layer is expressed as

[kernel size]-[number of channels].

Layer | Feature Extraction | Layer Regression
1-1,2 conv3-64 Bilinear Interpolation
max pool 1 conv3-256
2-1,2 conv3-128 2 conv3-128
max pool 3 conv3-1
3-1,2,3,4 conv3-256
max pool
4-1,2,3,4 conv3-512
max pool
5-1,2,3,4 conv3-512

the posterior label probability p(yy,|z.,) as follows:

M N
=D > plynlzm) D (x) (5.10)

where C' denotes the number of people in the entire image.

5.3 Experiments

In this section, we describe the evaluation of the effectiveness of the proposed compo-
nents and illustrate that our method was able to achieve the state-of-the-art on various

benchmark datasets.
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Table 5.2: Datasets for experiments

Dataset Images | Mean Resolution | Annotations

UCF_QNRF 1,535 2338x1607 1,007,316
ShanghaiTech Part A 482 873 %599 162,413
ShanghaiTech Part B 716 1024 x768 49,151
UCF_CC_50 50 2101x2888 63,974

5.3.1 Datasets

As summarized in Table 5.2, we have evaluated the proposed method on four challenging
crowd counting datasets: UCF_QNRF, ShanghaiTech Part A, ShanghaiTech Part B, and
UCF_CC_50.

* UCF_QNREF [70] is the latest and largest crowd counting dataset, which includes
1,535 images crawled from Flickr with 1.01 million point annotations. It is a challenging
dataset because it has a wide range of counts, image resolutions, light conditions, and
viewpoints. The training set has 1,201 images and the remaining 334 images are used
for testing.

* ShanghaiTech [5] contains 1,198 images with a total of 330,165 people and is divided
into two parts: Part A containing 482 images of congested scenes (300 images for
training and 182 images for testing), and Part B containing 716 images of sparse scenes
(400 images for training and 316 for testing).

* UCF_CC_50 [70] contains only 50 gray-scale images which are considered to be
challenging due to the high crowd density in the images. Its count value varies from 94
to 4,543. Due to its small quantity, experiments are conducted by 5-fold cross validation

followed by the original literature [70].
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5.3.2 Implementation Details

The proposed network consists of a VGG19 CNN model as described in Table 5.1.
We trained the network in an end-to-end fashion. The first 19 convolutional layers
were initialized with a pre-trained VGG19. For the data augmentation processes, we
performed random flipping and the cropping of the given images with a size of 512 x 512
for the UCF_QNRE, ShanghaiTech Part A and UCF_CC_50 datasets and 256 x 256 for
the ShanghaiTech Part B dataset. The parameters were updated by an Adam (adaptive
moment estimation) optimizer. All the experiments were performed on an NVIDIA

1080Ti GPU.

5.3.3 Evaluation Metrics

To evaluate our proposed method, we used both the mean absolute error (MAE) and

mean squared error (MSE) as evaluation metrics:

L
1 /
MAE:L;:l |Ci — ], (5.11)
1 L
_ | = (2
MSE = L1§1:’01 Cl?, (5.12)

where L is the number of test images, C; is the number of people in the i-th image, and
C! is the estimated number of C;. The number of people in the image is obtained by

the integration of the crowd density over all the image regions as

M
Ci=>_ D (). (5.13)

m=1

Similar to the approach used in Eq. (5.13), the estimated count is obtained as follows:

M
Ci="> D (xm). (5.14)
m=1
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Table 5.3: Experimental results for ablation study

Sparsity with varying dg
Base Scale

1.5 2 2.25 25 3

MAE | 68.7 736 685 683 618 657 664
MSE | 1147 1155 1053 1040 101.7 103.1 102.8

5.3.4 Ablation Study

In this section, we describe the conduct of several experiments to verify the extent
to which each proposed component contributed to performance improvement. The
ablation experiments were performed on the ShanghaiTech Part A dataset because it
could represent well the effectiveness of the proposed method due to its diversity of
person-scale and crowd-sparsity within a relatively small quantity of images. According

to the configuration of the proposed method, the following three cases were tested:

* Base was conducted the same way of Bayesian loss [38]. dg in Eq. (5.6) was set

to 0.15.

* Scale had the same setting as Base, including the proposed person-scale estima-

tion process.

» Sparsity trains the network with the proposed loss, including the proposed

crowd-sparsity estimation in Eq. (5.9).

The proposed method has only one hyper-parameter, dy, which is a guideline for
estimating the person-scale. If d varies, the represented scale also varies as the proposed
definition. Therefore, we also conducted a comparison experiments varying d after
adopting the Sparsity setting from the ablation study, which was named Sparsity-dy.

The qualitative results of the ablation study are depicted in Fig. 5.5, and the quantita-

tive results are summarized in Table 5.3. Among the testing cases, the best performance
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was achieved when dy was set to 2.25 while considering both the person-scale and

crowd-sparsity. The following analysis was derived from the ablation study.

* Scale improved the representation of individual’s locations but slightly lost
counting accuracy when compared with Base. As shown in Figs. 5.5(a) and
(c), estimated density map of a large-scaled person in the front is represented
by a point-shape in Scale (c). The point-shaped result means that the density
estimation network accurately estimated the location of a person; however, it
resulted in a slight loss of some of the counting performance. A strict restriction
of point annotation could lead to an inaccurate estimation of the density map
around a person. As depicted in Fig. 5.2(c), performing person-scale estimation
concentrates more on the location of the head point annotation than the original
work. It could falsely learn the density in more tightly crowded regions containing

noisy annotations.

* Sparsity-1.5 started to improve performance compared to Base. When dg in
Eq. (5.6) was set to be 10 times larger (i.e., dg = 1.5) than the original work, the
performance became similar. In other words, when dg was set to 1.5, the training
started to consider the diversity of the person-scale without losing the counting
performance. As shown in the first row of Figs. 5.5(c) and (d), false positives
were reduced at the top of the estimated map in Sparsity-1.5 (d), compared to
Scale (c). Also, Sparsity-1.5 successfully estimated the density at the bottom of

the first row of (d), which was incorrectly estimated as zero in (c) by Scale.

* Sparsity-2.25 showed the best performance. As depicted in the first row of
Fig. 5.5, a small-scaled individual at the bottom of the image was hard to represent
in the density map, except for Sparsity-2.25. We can observe the effect of the
proposed method through the third row of Fig. 5.5(f) in which the density in the
background region was successfully estimated to be zero; in the other cases, false

positives were shown in the background region.
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 Sparsity settings except for dy = 2.25 had similar density map representations.
We can see that every setting except for Sparsity-2.25 failed to learn the hard
cases mentioned above, such as missing small-scaled people and the falsely
estimated densities in the background region. From the results, we confirm that
only one parameter setting (dyp = 2.25) improved both counting accuracy and

representation capability.

In the remaining experiments, dg was set to 2.25 for all the datasets according to

the results from the ablation study.

5.3.5 Comparisons with State of the Art

For the four datasets (UCF_QNREF, ShanghaiTech Part A, ShanghaiTech Part B and
UCF_CC_50), we performed extensive comparison experiments with 16 state-of-the-art
algorithms, including the early deep-learning models (CCNN [4] and MCNN [5]),
models with novel network structures (CMTL [36], SCNN [19], CP-CNN [23], AC-
SCP [22], DCNet [74], IG-CNN [27], IC-CNN [73] , CL-CNN [75], DA-Net [75],
ISANet [76], and SDSP [26]), models with network layers specialized in the crowd
density estimation (SANet [28], SAAN [25], CSRNet [21] and CAN [29]), a model
based on detection scheme [10], and BL method [38]. As summarized in Table 5.4,
the proposed method CBL exhibited the best performance on the MAE metric and
also showed a competitive result on the MSE metric. A noticeable improvement was
found in the UCF_QNREF, ShanghaiTech Part A, and UCF_CC_50 datasets, in which at
least thousands of people were depicted in images. In contrast, it was limited in finding
a performance improvement in the ShanghaiTech Part B dataset, which consisted of
hundreds of people in relatively simple surveillance environments with few occlusions.
* UCF_QNREF: Fig. 5.6 illustrates the qualitative results for UCF_QNREF dataset. In the
first column, false positives in the background were removed more in our method com-
pared to the BL method. It was because the foreground and the background were well

separated by the proposed person-scale estimation. In the second and the fourth column,
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the B method provided an overestimation in a congested region, while such errors
were reduced in the proposed method. It is inferred that the propose method provided
more accurate learning in the congested region to improve the counting performance.
In the third column, however, the localization performance became degraded, resulting
in a reduced resolution of crowd density in the grandstand region. It is because people
that are densely crowded and severely occluded made the representation in the density
map worse.

» ShanghaiTech Part A: Fig. 5.7 depicts the qualitative results for the ShanghaiTech
Part A dataset. In the first and third column, the representation of the density map was
improved in the region where people were sparsely distributed. Density regions that
were not counted in the BL method were now expressed in detail, and the underesti-
mated regions were improved. In the second column, which was a highly congested
situation, our method more accurately counted the crowd compared to the BL. method
by improving the crowd’s representation and reducing overestimations. In the fourth
column, the accuracy was improved from the accurate separation of the foreground and
the background. The BL method often failed to count people near the top of the image
and on the railing with complex patterns because of the errors made in these regions.
Our method accurately recognized not only the people on the railing but also people in
the congested region.

* ShanghaiTech Part B: Fig. 5.8 shows the qualitative results from the ShanghaiTech
Part B dataset. Because the number of people was smaller than with the other datasets
and there were few crowded situation, performance improvement with the proposed
method was limited. There was no meaningful difference between the BL. method and
the proposed method. This was because the proposed method learns various surveillance
environments, while this dataset had almost the same scale distribution over the sample
images. A slight improvement was achieved in partially crowded regions, such as in the
first and the third columns of Fig. 5.8. Although the qualitative results looked similar,

the counting accuracy was improved for the whole case in the sample images in the
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second and fourth column of Fig. 5.8.

* UCF_CC_50: Fig. 5.9 shows the qualitative results from the UCF_CC_50 dataset.
Since the qualitative results can be slightly different depending on randomly selected
samples in the cross-validation setting of the UCF_CC_50 dataset, only the qualitative
results of the proposed method are presented. In the second column, the background
area is clearly represented by a small density value close to zero. The positions of
the people are accurately represented by a point-shape in the last column. In the high-
congested scene, such as third column, the estimated density map is blurred, as opposed

to the last column, where the estimated density is clearly represented.

5.3.6 Differences from Existing Person-scale Inference

We discuss distinctive aspects of the proposed person-scale inference in contrast to the
existing methods as follows.

First, there are methods using the built-in person-scale inference module similar to
the proposed method. These methods train the networks to infer the scale of a person
along with a learning crowd density. In [30], an additional network module is used
for data-driven person-scale inference that requires predefined scale-levels for training
scale-level-wise branches in the network. Unlike ours, [30] has a limitation that the
scale-level must be defined in advance. Also, the additional network module for person-
scale inference requires additional computational overhead. In [25], ‘scale’ is defined
by a value inversely proportional to the number of people in a local image patch. In
addition, the ‘scale’ has to be learned as additional feature. Since the ‘scale’ in [25] is
defined under the assumption that people are evenly distributed in the image patch, even
the same scale can be measured differently depending on the sparsity of a local region,
which leads to inaccurate scale estimation. In contrast, our person-scale estimation is
based on the distance from the person to the camera and so the estimation is robust to
the sparsity of a local region. Furthermore, [25] requires additional module for learning

person-scale, which increases computational overhead.
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Second, there are methods to obtain an accurate person-scale using external infor-
mation such as head detection results [9] or scene perspective information [4]. In [9],
the scale inference module is based on head detection results. In this detection-based
framework, the person-scale can be accurately inferred in the ideal case, but it is difficult
to apply the Bayesian loss framework if humans are falsely detected or undetected.
Even if detection performs well, scale inference can depend on the performance of
detector to affect crowd density estimation performance. [4] targets scenarios where
we provide scene information such as region-of-interest and perspective information.
However, in the single-image crowd density estimation settings, scene information is
usually not accessible in the training phase.

To sum up, the proposed scale inference method can be applied to various crowd
environments. The proposed person-scale inference method enables the scale to be
inferred even if a small number of point annotations are given. Also, we consider the
limitation of single-image crowd density estimation settings that only the position of

the annotation is given.

5.3.7 Analysis on the Proposed Components

An additional experiment was conducted to confirm the effect of crowd-sparsity on the
proposed loss. Experiments were performed on the UCF_QNRF dataset. We checked
how accurately each person’s count was learned for the calculated crowd-sparsity. In
the Fig. 5.10, the region with high crowd-sparsity should be trained to reduce the error
as much as possible. It can be seen that the area with low crowd-sparsity, that is, the
yellow-colored area in Fig. 5.10-(b), is similarly represented to the loss in the proposed
method than the existing method. This means that the learning proceeds with a large

loss in the regions with low crowd-sparsity as intended.
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(a) Image (b) Crowd-Sparsity (c) Error (BL) (d) Error (CBL)

Figure 5.10: Example figures for in-detail analysis. Given an input image (a), cal-
culated crowd-sparsities is shown by (b). The corresponding counting errors of both
Bayesian loss and our method are shown by (c, d). In all of figures, the bigger value is

colored by yellow.

S Eas kg
89 - A



5.4 Summary

In this chapter, we tackled the problem of estimating crowd density accurately on the
congested scene for the crowd counting. We proposed a novel congestion-aware loss
considering the scale and sparsity of people. The scale of a person (i.e. person-scale)
was estimated from scene geometry. The sparsity of a local region (i.e. crowd-sparsity)
was then estimated from the difference between the estimated scale and the nearest
neighbor distance. The estimated person-scale and crowd-sparsity was utilized to the
proposed congestion-aware loss. We verified the effect of the proposed components
through the ablation experiments. From the analysis on the ablation study, the person-
scale estimation helped to improve localization accuracy of crowd density, however,
degraded the counting performance. We found that the utilizing the crowd-sparsity
improves the counting performance while maintaining the localization accuracy. Based
on the results from the ablation study, we conducted comparative experiments between
the proposed method and the state-of-the-art methods. It was shown that the proposed
method showed the state-of-the-art performance. The proposed method showed that
the person-scale and crowd-sparsity are important for crowd density estimation. And
also, if these two properties are dealt with unified way, we can show that both the
counting performance and the localization accuracy could be improved. In future works,

additional performance improvement is expected if a unified method is developed.
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Chapter 6

Conclusion

In this dissertation, I proposed novel crowd density estimation algorithm in two major
directions; network structural perspective and learning strategy perspective.

First, I proposed a novel CNN architecture for crowd density estimation that se-
lectively utilizes sub-networks with respect to crowdness. I also propose an adjustable
loss scheme for each sub-network that adjusts the balance of counting loss and density
loss, depending on crowdness and training epochs. This adjustable loss scheme can
also handle the scale issue in which high-density regions are predominantly learned.
In addition, the proposed refinement sub-network effectively renders the density map
as high resolution map by taking account of contextual information. To the best of
our knowledge, this is the first attempt to resolve the trade-off between density map
accuracy and counting accuracy by considering both network architecture and loss
functions. As the comparative evaluation shows, our network exhibits state-of-the-art
performance for three publicly available datasets. The self-evaluation results confirm
the validity of the components of the proposed method (selective ensemble, adjustable
loss, alternating re-labeling, and refinement sub-network).

Second, I proposed a novel crowd density estimation method which gradually
estimates density from the center to periphery of each person. I first showed an empirical

finding that the accuracy of the density estimation for the centered or surrounding region
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of individuals depends on the scale of dilated convolution. The centered region can
be estimated I’'ll by a small-scaled dilated convolution, while a large-scaled dilated
convolution makes small error for the surroundings. Based on the finding, I proposed
Cascade Reidual Dilated Network (CRDN) equipped with multiple dilated CNN blocks.
CRDN estimates the density of the center of each person with the small-scale dilated
CNN block first, and then subsequently estimates the remaining areas with the larger-
scale blocks. Extensive experiments show that the proposed method can accurately
estimate crowd density over the state-of-the-art.

Third, I proposed improved Bayesian Loss taking into account the estimated scales
of crowd and the density level inferred by the estimated scales. In this research, I
tackled the problem of accurately estimating crowd density in congested scenes for
crowd counting. I proposed a novel congestion-aware loss method that considers the
scale and sparsity of people. The scale of a person (i.e., person-scale) was estimated
from scene geometry. The sparsity of a local region (i.e., crowd-sparsity) was then
estimated from the difference between the estimated scale and the nearest neighbor
distance. The estimated person-scale and crowd-sparsity was utilized for the proposed
congestion-aware loss. I verified the effect of the proposed components through ablation
experiments. From the analysis of the ablation study, the person-scale estimation helped
to improve the localization accuracy of the crowd density; however, it degraded the
counting performance. I found that utilizing the crowd-sparsity improved the counting
performance while maintaining the localization accuracy. Based on the results from the
ablation study, I conducted comparative experiments between the proposed method and
the state-of-the-art methods. It was shown that the proposed method also demonstrated
the state-of-the-art performance. The proposed method illustrated that the person-scale
and crowd-sparsity were important for crowd density estimation.

If these two properties were dealt with in a unified way, I could show that both the
counting performance and the localization accuracy could be improved. In future works,

additional performance improvement is expected if a unified method is developed.
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