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ABSTRACT

Neuromorphic computing using synaptic devices has been proposed to
efficiently process vector-matrix multiplication (VMM) which is a significant task
in DNN. Until now, resistive RAM (RRAM) was mainly used as synaptic devices
for neuromorphic computing. However, a number of limitations still exist for
RRAMs to implement a large-scale synaptic device array due to device nonideality
such as variation, endurance and monolithic integration of RRAMs and CMOS
peripheral circuits. Due to these problems, SRAM cells, which are mature silicon
memory, have been proposed as synaptic devices. However, SRAM occupies large
area (~150 F? per bitcell) and on-chip SRAM capacity (~a few MB) is insufficient
to accommodate a large number of parameters.

In this dissertation, synaptic architectures based on NAND flash cell strings
are proposed for off-chip learning and on-chip learning. A novel synaptic
architecture based on NAND cell strings is proposed as a high-density synapse

capable of XNOR operation for binary neural networks (BNNs) in off-chip learning.



By changing the threshold voltage of NAND flash cells and input voltages in
complementary fashion, the XNOR operation is successfully demonstrated. The
large on/off current ratio (~7x10%) of NAND flash cells can implement high-density
and highly reliable BNNs without error correction codes. We propose a novel
synaptic architecture based on a NAND flash memory for highly robust and high-
density quantized neural networks (QNN) with 4-bit weight. Quantization training
can minimize the degradation of the inference accuracy compared to post-training
quantization. The proposed operation scheme can implement QNN with higher
inference accuracy compared to BNN.

On-chip learning can significantly reduce time and energy consumption during
training, compensate the weight variation of synaptic devices, and can adapt to
changing environment in real time. On-chip learning using the high-density
advantage of NAND flash memory structure is of great significance. However, the
conventional on-chip learning method used for RRAM array cannot be utilized
when using NAND flash cells as synaptic devices because of the cell string structure

of NAND flash memory. In this work, a novel synaptic array architecture enabling

ii



forward propagation (FP) and backward propagation (BP) in the NAND flash

memory is proposed for on-chip learning. In the proposed synaptic architecture,

positive synaptic weight and negative synaptic weight are separated in different

array to enable weights to be transposed correctly. In addition, source-lines (SL) are

separated, which is different from conventional NAND flash memory, to enable

both the FP and BP in the NAND flash memory. By applying input and error input

to bit-lines (BL) and string-select lines (SSL) in NAND cell array, respectively,

accurate vector-matrix multiplication is successfully performed in both FP and BP

eliminating the effect of pass cells. The proposed on-chip learning system is much

more robust to weight variation compared to the off-chip learning system. Finally,

superiority of the proposed on-chip learning architecture is verified by circuit

simulation of a neural network.

Keywords: hardware-based neural network, NAND flash memory,

neuromorphic system, in-memory computing, binary neural network, on-chip

learning.

Student number: 2016-20951
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Chapter 1

Introduction

1.1 Background

Recently, deep neural networks (DNNs) have achieved remarkable fulfillment
for various intelligent tasks, such as speech recognition, computer vision, and
natural language processing [1]-[3]. However, recent state-of-the-art DNNs demand
a large neural network size and a huge volume of parameters, which need very fast
graphic processing units (GPUs), enormous memory-storage and large
computational power [4], [5]. In addition, the von Neumann bottleneck results in
enormous energy and time consumption when performing VMM operations due to
the large amount of moving data between the memory and processor. Neuromorphic
systems have been actively investigated as a solution to the von Neumann
bottleneck utilizing in-memory computing with a synaptic array architecture. When
an input voltage is applied to a synaptic array, the multiplication of the input voltage

and the conductance of the synaptic device gives the current, and the currents from



multiple synapses connected to one bit-line are summed up by Kirchhoff's current

law (KCL). Each current in each bit-line in the array is summed simultaneously.

Therefore, a synaptic device array can perform VMM in a single time step, which

is orders of magnitude more efficient than the conventional von Neumann

architecture [6].

Quantized neural networks (QNNs) significantly reduce the computing

resources and memory storage by quantizing the weight and activation [7]-[17].

Instead of a high-precision floating-point weight and activation, they enable a low-

bit weight in synaptic devices and low-bit activation in neuron circuits, providing a

promising solution to the implementation of neuromorphic systems [8], [12]. In

addition, recent studies have shown that QNNs could achieve a satisfying

classification accuracy on representative image datasets, such as MNIST (mixed

national institute of standards and technology), CIFAR-10 (Canadian institute for

advanced research) and ImageNet [9]-[12].

In previous studies, RRAMs were commonly utilized as a synaptic device in

neuromorphic systems [14], [15]. However, RRAMs require further research in



terms of parametric variability, stochastic programming, reliability, and integration

of selectors for large-scale integration [16]. Moreover, the IR drop of a metal wire

can result in an inaccurate VMM operation in an RRAM crossbar array [17]. In

addition, the small on/off current ratio of RRAM causes an error in the sum of

currents from many devices [18], [19].

Recent high performance DNN algorithms commonly require a vast parameter

size and large network size. To accommodate immense parameters, NAND flash

memory cells can be used as synaptic devices which have a huge advantage in cell

density and an enormous storage capacity per chip. NAND flash memory

technology has been well known as one of the most competitive solutions for

immense data storage. In addition, NAND flash memory has been demonstrated as

a technologically mature and cost-competitive technology among the various

nonvolatile memory technologies [20]-[22]. However, it is hard to utilize NAND

flash memory consisting of cell strings as synaptic architecture in neuromorphic

computing systems due to the characteristics of the string structure.

A novel synaptic architecture based on NAND cell strings is proposed as a



high-density synapse capable of XNOR operation for binary neural networks
(BNNGs) for the first time. By changing the threshold voltage of NAND flash cells
and input voltages in complementary fashion, the XNOR operation is successfully
demonstrated. The large on/off current ratio (~7x10°) of NAND flash cells can
implement high-density and highly-reliable BNNs without error correction codes.
It is shown that without conventional ISPP scheme, only 1 erase or program pulse
can achieve sufficiently low bit-error rate. Finally, the estimated synapse density of
VNAND memory with 128 stacks is ~100 times that of 2T2R synapse in RRAMs.

We propose a novel synaptic architecture based on a NAND flash memory for
highly robust and high-density quantized neural networks (QNN) with 4-bit weight
and binary neuron activation, for the first time. The proposed synaptic architecture
is fully compatible with the conventional NAND flash memory architecture by
adopting a differential sensing scheme and a binary neuron activation of (1, 0). A
binary neuron enables using a 1-bit sense amplifier, which significantly reduces the
burden of peripheral circuits and power consumption and enables bitwise

communication between the layers of neural networks. Operating NAND cells in



the saturation region eliminates the effect of metal wire resistance and serial

resistance of the NAND cells. With a read-verify-write (RVW) scheme, low-

variance conductance distribution is demonstrated for 8 levels. Vector-matrix

multiplication (VMM) of a 4-bit weight and binary activation can be accomplished

by only one input pulse, eliminating the need of a multiplier and an additional logic

operation. In addition, quantization training can minimize the degradation of the

inference accuracy compared to post-training quantization. Finally, the low-

variance conductance distribution of the NAND cells achieves a higher inference

accuracy compared to that of resistive random access memory (RRAM) devices by

2~T7 % and 0.04~0.23 % for CIFAR 10 and MNIST datasets, respectively.

A novel synaptic array architecture enabling forward propagation (FP) and

backward propagation (BP) in the NAND flash memory is proposed for the first

time for on-chip learning. In the proposed synaptic architecture, positive synaptic

weight and negative synaptic weight are separated in different array to enable

weights to be transposed correctly. In addition, source-lines (SL) are separated,

which is different from conventional NAND flash memory, to enable both the FP



and BP in the NAND flash memory. By applying input and error input to bit-lines

(BL) and string-select lines (SSL) in NAND cell array, respectively, accurate

vector-matrix multiplication is successfully performed in both FP and BP

eliminating the effect of pass cells. At a read voltage of 2 V, inference accuracy of

95.58 % which is comparable to that of 95.81 % obtained with perfect linear device

is achieved. The proposed on-chip learning system is much more robust to weight

variation compared to the off-chip learning system. Finally, superiority of the

proposed on-chip learning architecture is verified by circuit simulation of a neural

network.



Chapter 2
Binary neural networks based on NAND flash

memory

2.1 Synaptic architecture for BNN

A novel 2T2S (two transistors and two NAND cell strings) synaptic string
structure for XNOR operation is proposed in Fig. 2.1. Two NAND cell strings are
used for one synapse string consisting of serially connected synaptic cells with two
input transistors of which two input voltages are applied to each gate. The two input
transistors can be replaced by two NAND cells having gates (word-lines) isolated
from each other. For each synapse consisting of adjacent two NAND cells in two
cell strings, synaptic weight of +1 can be represented by the two cells of which the
left cell is on-state (Vi low) and the right cell is off-state (Vi high). For an input value,
the input value of +1 can be represented by complementary input voltages where
Vin1 1s turn-on voltage (Von) and Vinz is turn-off voltage (Vorr). Fig. 2.1 (a) and (b)

represent the cases when the input value is +1 and -1. Fig. 2.2 (a) and (b) explain



the read operation scheme where a read bias (Vread) 1s applied to a selected word-
line (WL) and a pass bias (Vpass) is applied to unselected WLs. In the proposed
scheme, the synaptic device in the A" row of synaptic string in Fig. 2.2 (a) is the
synapse connected to the £ post-synaptic neuron of the BNN in Fig. 2.2 (c). The
output for each post-synaptic neuron is generated when the read bias (Viead) is
applied to WL sequentially along the synapse string as shown in Fig. 2.2 (b). In this
scheme, the CSA sensing the current of synapse string is reused for all synapses in
the synapse string, which reduces the burden of circuit and increases the integration
density. In addition, the proposed 2T2S design is entirely digital, avoiding the need
of large area operational amplifiers or analog-to-digital converters (ADC) which
are needed in analogue vector-matrix multiplication. In Fig. 2.3, we propose block
diagrams for peripheral circuits and a circuit diagram of a synapse array architecture
consisting of 2T2S synapses. The encoded input vector is applied to the input vector
switch matrix, and WL decoder applies a read bias (Viead) to a selected WL and
applies Fpass to unselected WLs. The adder sums the number of +1s in the XNOR

operation outputs and the counted sum is passed to a digital comparator to generate



1-bit neuron output (+1 or -1). Therefore, for example, as read bias is applied to A"
WL, the output for ™ neuron in post-synaptic neuron layer is produced. Using this
proposed operation scheme, the adder and the comparator are reused for all neurons
in the neuron layer, thereby reducing the burden of CMOS circuits compared to the
previous study [19]. In addition, energy consumption is significantly reduced

because no multipliers are required.
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2.2 Measurement results

The 2-D NAND flash memory in this work was fabricated in the industry using
26 nm technology. One cell string consists of 64 cells and channel length and width
are 26 and 20 nm, respectively. Fig. 2.4 (a) and (b) show the DC bit-line current
(/sL) ~WL bias (Vwr) and IL-VBL curves measured in the NAND cell as a parameter
of programming voltage (Vpom) When Vpass is 6 V, respectively. As shown in Fig.
2.4 (b), the on/off current ratio which affects the bit-error rate and margin of the
sense amplifier can be modulated by Vpegm. Fig. 2.5 (a), (b) and (c) show DC Igi-
Vwr curves measured from the NAND cells in the array as a parameter of Vpgwm. Fig.
2.6 shows a cumulative distribution of XNOR output states measured in two
adjacent NAND flash cells as a parameter of V'pgm. Even at 14 V Vpgwm, the +1 and
-1 states differ by 4 orders of magnitude. Fig. 2.7 (a) and (b) show normalized
counts and Gaussian fittings of the XNOR outputs of +1 and -1 states measured in
NAND flash cells. In digital BNN systems, the bit-error rate is an important factor
as it affects the inference accuracy. The estimated bit error rates of NAND cells are

about 4.2x10® % and 2.3x10”7 % when the Vpgm is 16 V and 14 V, respectively, and
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the estimation is based on the statistical parameters from the measurement data and
the assumption of Gaussian distribution as shown in Fig. 2.7. The estimated bit-
error rate of NAND cells is sufficiently low compared to that of RRAM devices.
Fig. 2.8 shows the program and erase windows when the P/E (program/erase) cycle
is repeated up to 3x10%. The AVinpom (AVinby Vegm) increases and AViners (AVin
by Vers) decreases as the number of P/E cycles increases when the Vpgms are 16V
and 18 V. Since the decrement of AV grs is larger than the increment of AVinpam,
therefore, the memory window decreases with increasing P/E cycles. But the Vpom
of 14 V has no effect on the windows. SS increases by increasing the number of P/E
cycles only when the Vpgm is 18 V as shown in Fig 2.9. Fig. 2.10 shows the /L
behavior when only one P or E pulse is applied to write the weight during P/E cycles
under different P/E conditions. The on-current (/on) decreases due to the increase of
Vin and SS as the number of P/E cycles increases only when Vpgm is 18 V. When
Vpoum is below 16V, highly reliable BNN can be implemented regardless of P/E
cycling number without using conventional ISPP method. Therefore, the time and

energy can be greatly reduced compared to those of the ISPP method. If the ISPP
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method is used, it is confirmed that the /pr is almost the same regardless of the
number of P/E cycles even when Vpgm 1s 18V. Fig. 2.11 shows the retention
characteristic of fresh cell and 3x103 cycled cell. The Zon and Iogr of the 3x10° cycled
cell do not change until 10* s. The /gL increases as the Vpass increases from 3 V to
8 V as shown in Fig. 2.12. Unlike in NAND flash memory operation, a Vpass of 6
V is also appropriate because a lower /gL is allowed in the BNN. Fig. 2.13 (a) and
(b) show SS and /gL variations with the Vpass stress, respectively. SS and /gr. exhibit
ignorable variations regardless of the number of Vpass stress (6 V) as shown in Fig.
2.13. Thanks to lower Vpass than that of NAND flash memory, BNN is more robust

to Vpass disturbance.
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2.3 Binary neuron circuit

Fig. 2.14 shows a current-latch based CSA circuit [23] for BNNs. The circuit
is simulated using a 20-nm FinFET based BSIM-CMG model [24] and an Is.
(composed of /gLs) measured in this work. Fig. 2.15 (a) and (b) show transient
waveforms for the XNOR output of +1 and -1, respectively, when the o, and Zogr of
NAND cell are 590 nA and 0.1 pA. When the XNOR output is +1, the CSA senses
the Ion of the NAND cell and the read access time is 2 ns. On the other hand, when
the XNOR output is -1, the CSA senses the /rer and the read access time is 12ns.
XNOR operation is successfully demonstrated in 2T2S synapse based on two
adjacent NAND cell strings as shown in Fig. 2.16. Fig. 2.16 (a) shows the circuits
for measuring Isis for weights of +1 and -1. Fig. 2.16 (b) and (c) show the Is.
waveforms measured in synaptic strings with weights of +1 and -1 respectively.
Note that the time scale is long because input and read pulses are supplied from the

HP4145A.
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strings. (a) Circuits for measuring the /s.s for weights of +1 and -1. Measured Is.s
which are the results of XNOR operation when the weight is (b) +1 and (c) -1.

XNOR operation has been successfully demonstrated in 2T2S Synapse based on

NAND flash cell strings.
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2.4 Simulation results

Fig. 2.17 shows simulated inference accuracies for MNIST and CIFAR 10
patterns with the number of epochs. Fig. 2.18 compares the inference accuracy
versus bit error rate for the proposed NAND flash memory synapses and reported
RRAM synapses. The bit-error rate of our work is much lower than those of RRAM
synapses, while keeping much higher synapse density. Our work provides highly-
reliable BNNs that do not require error correction codes (ECC), which can reduce
the enormous time, energy and complex decoding circuitry required for the ECC.
Although cell density is high in 2-D NAND flash, cell density can be much higher
in vertical NAND (VNAND) flash than in 2-D case. Fig. 2.19 shows the effective
area per VNAND synapse and synapse density ratio of the VNAND synapse to
2T2R synapse with increasing number of stacks. Here, control is the area of one
2T2R-based synapse in RRAMs. The area occupied by the 2T2R synapse is
calculated to be 24300 nm? by assuming that two 22nm FinFETs under two RRAMs
determine the area of one synapse. As the number of stacks increases, the effective

area of one synapse in VNAND memory becomes smaller. The synapse density of
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VNAND at a stack number of 128 is about ~100 times higher than that of control

in RRAMs.
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Fig. 2.17. Simulated inference accuracies for MNIST and CIFAR 10 patterns with
the number of epochs. The final accuracies for both patterns are 98.12% and 87.11%.
MNIST and CIFARI10 are trained on binarized multi-layer and convolutional neural

networks, respectively.
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2.5 Differential scheme

2.5.1 Differential synaptic architecture

A novel 4T2S (four transistors and two NAND strings) synaptic string
structure for XNOR operations and a differential sensing scheme merged with the
NAND string are proposed in Fig.2.20. Two NAND strings are used for one
synaptic string consisting of serially connected synaptic cells with four input
transistors of which two input voltages are applied to each gate. In fact, the four
input transistors are merged with one sense amplifier, which is simpler than the
synaptic string and sense amplifier in Fig. 2.1. Fig. 2.20 (a) shows the synapse string
connected to a sense amplifier. As shown in Fig. 2.20 (b), the differential current
sense amplifier consists of two precharge PMOSFETS, a cross-coupled inverter pair,
and four input transistors. The four input transistors, of which Vini and Vinx are
applied to each gate, are reused for all synapses in one synaptic string, thereby
reducing the number of input transistors compared to the scheme in a previous study
[19]. The differential current sense amplifier compares the two bit-line currents

(IsL1, IB12) of the two NAND flash cells to generate an XNOR output. Due to its
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differential structure, this scheme has an intrinsically reduced bit-error rate by ~5.5

times than that using a fixed reference current in Fig. 2.1. In addition, the

differential scheme does not need circuits for a fixed reference current source which

is needed in the scheme shown in Fig. 2.1. To take advantage of the lower bit-error

rate and avoid using circuitry for a fixed reference current, we only consider the

differential sensing scheme in this work from now on. In addition, it is also possible

to extend the functionality of the sense amplifier to contribute to performing the

logic operation, and thus to reduce the CMOS overhead. The differential current

sense amplifier reads the current of the NAND flash cells, and at the same time,

performs an XNOR operation.

Fig. 2.21 shows the operation rule of the XNOR implementation. For each

synapse consisting of two adjacent NAND cells, a synaptic weight of +1 can be

represented by the two cells of which the left cell is the on-state (V¢ 1ow) and the right

cell is the off-state (Vnign). In contrast, a synaptic value of -1 can be represented by

the reverse pattern of the states of the two NAND cells. For an input value, the input

value of +1 can be represented by complementary input voltages where Vin1 is the
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turn-on voltage (Von) and Vinz is the turn-off voltage (Vofr). In contrast, the input

value of -1 can be represented by the reverse pattern of the two input voltages. By

using the above scheme, the XNOR output of the current sense amplifier is

determined by the combination of the complementary input voltages and the states

of the two adjacent NAND flash cells. Fig. 2.21 (a) represents the case when the

input value is +1. In this case, because /L1 is larger than /gr> for a weight of +1, the

voltage at node Q B drops to the trip-point voltage faster than node Q, raising node

Q toward VDD. As a result, XNOR remains at VDD while XNOR B drops to zero.

In contrast, because /gr2 is larger than /L1 for a weight of -1, the voltage at node Q

drops to the trip-point voltage faster than node Q B, raising node Q B toward VDD.

As a result, XNOR B remains at VDD while XNOR drops to zero. Fig. 2.21 (b)

represents the case when the input value is -1.

Fig. 2.22 shows a sequential operation scheme and a proposed parallel

operation scheme for a NAND flash-based synaptic architecture. Fig. 2.22. (a)

shows a schematic diagram of a binary neural network consisting of two neuron

layers as an example. Fig. 2.22. (b) shows a schematic diagram of the sequential
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operation scheme for a synaptic architecture. Synaptic devices in the k" (1 <k <L,
L: the number of neuron) row of the synaptic array in Fig. 2.22 (b) represent
synapses connected to the 4™ neuron in the /% neuron layer in Fig. 2.22 (a).
Therefore, the output for each neuron (Output 1 ~ Output L) in the /% neuron layer
is generated sequentially when the read bias (Vread) is applied to the word-line
sequentially along the synaptic string as shown in Fig. 2.22 (b). The adder sums the
number of +1s in the XNOR operation outputs and the counted sum is passed to a
digital comparator to generate the 1-bit neuron output (+1 or -1). Using the
sequential operation scheme, the adder and the comparator are reused for all
synaptic devices in the synaptic string, thereby reducing the burden of the CMOS
circuits compared to the sequential read scheme in a previous study [19].

On the other hand, Fig. 2.22. (c) shows a schematic diagram of the proposed
parallel read operation for a synaptic architecture. For the RRAM-based synaptic
devices, the currents of synaptic devices are summed through the bit-line, which
easily enables parallel read operation [19]. However, in NAND flash memory

structure, currents of NAND cells connected in the same cell string cannot be
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summed due to the string structure of NAND flash memory. To enable parallel
operation in NAND flash cell array, we propose a new architecture and its read
operation scheme. Synaptic devices in the /% row of the synaptic array in Fig. 2.22
(c) represent all of the synapses connected between the 0™ neuron layer and /*
neuron layer in Fig. 2.22 (a). The input vector from the 0" neuron layer is divided
from input 1 to input M and it is passed to the input-vector (IV) switch matrix. A
read bias is applied to the /*' row of all synaptic arrays, and the pass bias is applied
to the unselected rows of all synaptic arrays. Then, the adder counts the number of
+1s in the XNOR operation outputs and the counted sum is passed to a digital
comparator to generate the 1-bit neuron output (+1 or -1) for the /' neuron layer.
By using the parallel read operation, all of the neuron outputs (output 1~ output L)
of the 7*' neuron layer are produced at the same time as shown in Fig. 2.22 (c).
Therefore, the proposed parallel read scheme resolves the difficulty of applying
NAND flash to neural networks due to the specificity of the string structure. It
significantly reduces the read-out latency compared to the sequential read scheme

in Fig. 2.22 (b). As an example, let’s consider a case where there are N neuron layers
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in a neural network and L neurons on average in each neuron layer. When #eaq 1s the

time taken to obtain an output by applying a read voltage to a word-line in a synaptic

string, the processing time of one image in the sequential read scheme in Fig. 2.22

(b) 1S treadXNXL. On the other hand, when the parallel read scheme in Fig. 2.22 (¢)

is applied, the time to process one image decreases to freadXN. Estimating fread

requires further research, including measurement and circuit simulation of NAND

flash memory, which will be further explored in the future. In addition, registers,

which are required in the sequential read scheme to store sequentially generated

neuron outputs, are not needed in this parallel read scheme. Therefore, we can

reduce the required hardware resources compared to the sequential read scheme

[19].
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Fig. 2.22. (a) Schematic diagram of a neural network consisting of two neuron
layers. (b) Schematic diagram of the sequential read operation. (c) Schematic

diagram of the parallel read operation.
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2.5.2 Simulation results

Fig. 2.23 shows the simulated inference accuracy for MNIST with the number

of epochs as a parameter of the size of the binary multi-layer neural networks. As

shown in Fig. 2.23, the inference accuracy increases as the depth and width of the

binary neural networks increase. Therefore, an enormous number of synaptic

devices are needed to implement binary neural networks with a high inference

accuracy. As a way to accommodate this, NAND flash memory, which has a great

advantage in cell density and a large storage capacity per chip, appears to be very

promising in terms of providing dense and reliable synaptic devices.

Fig. 2.24 shows the simulated inference accuracy for the MNIST and CIFAR

10 patterns with the number of epochs. Note that, the proposed synaptic architecture

in this work utilizes an off-chip learning scheme. In off-chip learning scheme,

trained weights obtained using programming language are transferred to synaptic

devices. In this process, various flash transition layer (FTL) designs [25]-[27] can

be used to effectively find its physical address in the NAND flash memory based

on a logical address in a system file. The MNIST and CIFAR10 patterns are trained
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on binarized multi-layer and convolutional neural networks, respectively. The final
accuracy of both patterns is 98.16% and 87.2%, respectively. In addition, the effect
of bit-error rate on the inference accuracy is investigated. Fig. 16 compares the
inference accuracy versus the bit error rate using the proposed NAND flash memory
synapses and the reported RRAM synapses [9], [14] for MNIST and CIFARI0
patterns. The weights obtained by off-chip learning in Fig. 15 are transferred to the
synaptic array. This transfer is done by first erasing all cells with one erase pulse
and applying one pulse for programming to selected cells of which Vi needs to be
increased. Bit-errors can occur during this transfer process. To evaluate the effect
of the bit error rate, different bit error rates are applied to the simulation of the
neural networks. Black squares in Fig. 16 represent inference accuracy with respect
to bit error rates. In Fig. 16, our work! has a bit error rate of 4.2x10® % when the
sensing scheme using the fixed reference current shown in Fig. 1 is applied. Our
work? further reduces the bit error rate to 7.6x10° % by using the differential
sensing scheme shown in Fig. 2. The bit-error rates of our work»? are much lower

than those of the RRAM synapses in [12], [13], while keeping a much higher
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synapse density. For MNIST dataset, the inference accuracy with our work? is
98.16 % while the inference accuracies with RRAM synapses ([13]", [12], [13]) are
98.04, 97.95 and 97.87 %. For CIFAR 10 dataset, the inference accuracy with our
work? is 87.2 % while the inference accuracies with RRAM synapses ([13]", [12],
[13]) are 86.78, 86.02 and 85.2 %. Error correction codes (ECC) are not needed
because the bit-error rate is sufficiently low as shown in Fig. 16. ECC decoding
requires much more CMOS overhead. It demands logic circuits to detect whether
an error occurred and complex circuits to detect the location of the error to revise
it, requiring quite a large number of logic gates. Therefore, it puts a heavy burden
of circuits on the neuromorphic system, because ECC decoders would need to be
duplicated for each memory array in the system. By contrast, our method only uses
sense amplifier circuits that has no additional complexity compared to the current
sense amplifier used in conventional NAND flash memory. Therefore, our work
provides highly reliable BNNs that do not require ECC, which can reduce the

enormous time, energy and complex decoding circuitry required for the ECC.
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Fig. 2.23. Simulated inference accuracy for MNIST patterns with the number of
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on binarized multi-layer neural networks.

44



99

ol e '“-J""-\_f--f"—"11-"'1-"'y-‘-i""\.a-".'-="s'4"'-'“-"‘-ﬂ-v.ru-.f"\.;"-’-!"f'\i-’*“‘.-"-""-"‘a""""""ﬁ‘r'"‘."'
? 97 " {.j."‘-‘-‘."\_i. H
S o6l J MNIST
> o) f Multi-layer neural networks
S ol (784-2048-2048-2048-10)
= . ) .
3 0 100 200
< 90} e
. . e e Ty e
8 sol '-_.‘J'-_-'-"-"'-"""""-:-" ﬂ!uw‘_,--.n_-gﬁ.--j. '
5 ¥
s Tor | CIFAR 10
‘e 60} Convolutional neural networks
sof ! (6 conv, 3 fully connected layers)
0 50 100 150 200
# of Epochs

Fig. 2.24. Simulated inference accuracy for the MNIST and CIFAR 10 patterns with

the number of epochs.

45



o8| *— TTOn..,
96l "\ (131" (1213,
L (Our work') [13]:1T1Rin[13] |
> g|Differential CSA [13]*: 2T2R in [13] \
2
g sl (Our work?) MNIST |
8 gg 10° _10° 107 10° 10° 10* 10° 10° 10
L el TR
@ 86} % . [13]
o . [13112]
S 84} CSA with Igge .
5 82f (Our work?)
‘€ go| Differential CSA \
T ggf (Ourwork?) CIFAR 10 !

10° 10® 107 10°® 10° 10* 10° 10° 10"
Bit Error Rate

Fig. 2.25. Inference accuracy for the MNIST and CIFAR 10 patterns with respect
to bit error rates. The pentagon and star symbols represent our work 1 and 2,

respectively.

46



Chapter 3
Quantized neural networks based on NAND

flash memory

3.1 Synaptic architecture for QNN

Fig. 3.1 (a) shows a proposed synaptic architecture based on NAND flash
memory for quantized neural networks with differential sense amplifier (DSA).
Note that a floating-gate or a charge trap layer are used in the NAND flash memory
to store the charge, and the proposed synaptic architecture can be applied to both
structures. The synaptic architecture proposed in this work is preferably applied to
a vertical NAND flash memory composed of cells with a charge-trap layer. The
input voltages from the DSA circuits are applied to the string-select lines (SSL),
and the string current is summed through the bit-lines (BL) as shown in Fig. 3.1 (a).
In neuromorphic system, VMM is implemented in a hardware synaptic array by
mapping the input and weight in the DNN model to the input voltage and the

conductance of the synaptic device, respectively. Since the input voltage is applied
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to the SSL device, the /-V characteristics of the device need to be considered. Fig.
3.2 (a) and (b) show the measured BL current (/gr) versus the SSL voltage (Vsst)
curve in log scale and linear scale, respectively, which represents that /g has a
nonlinear relationship with Vss.. However, in the weighted sum equation of the
DNN model, the weighted sum output is linearly proportional to the input value.
Therefore, the amplitude of the input in the DNN model cannot be encoded as an
analogue amplitude of the input voltage in the neuromorphic system. We adopt a
binary activation of (1, 0) which can be applied to the nonlinear /- curve by
assuming that the input of 1 and 0 correspond to the turn-on (Von) and turn-off
voltage (Vofr) of the SSL device, respectively. In addition, binary activation can
reduce the burden of peripheral circuits and QNN with binary activation achieves
satisfying accuracy on various recognition tasks. Fig. 3.1 (b) and (c) show a
schematic diagram of quantized neural networks and a read pulse scheme as a
function of time, respectively. The NAND cells connected to the ™ WL in Fig. 3.1
(a) correspond to the synapses in the ™ synapse layer shown in Fig. 3.1 (b).

The read bias (Vread) is applied to a selected word-line (WL) sequentially, while
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a pass bias (Vrass) is applied to unselected WLs as shown in Fig. 3.1 (c). Weights
stored in cells connected to a selected WL where the read bias (Vread) 1s applied
determine the string current. In this scheme, input voltages are simultaneously
applied to all string-select lines (SSL) to sum the currents from multiple strings
connected to the BL. It is different from the operation of a conventional NAND
flash memory where the turn-on voltage is sequentially applied to each SSL to read
the states of the memory cell. Therefore, our scheme can reduce the latency
compared to the operation scheme of the conventional NAND flash memory.
Therefore, the output for a post-synaptic neuron layer is produced each time a read-
bias (Viead) is applied to word-line sequentially along the synapse string.

Fig. 3.3 explains the VMM operation using a unit synaptic string array with a
DSA circuit. To represent the negative weight value, two adjacent NAND cells in
the synaptic string are used as one synapse. The weight is represented by
W, (i, /) =G, (. /)~ G; (i.j) )

where subscript k represents the k™ weight layer, j represents the ;™ post-

synaptic neuron, and i represents the i synapse connected to the /™ post-synaptic
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neuron. G and G represent the positive and negative weights, respectively. Input
is 0 or 1 and if the input is 1, then the DSA circuit applies Von to the SSLs, which
contributes to the bit-line current (/gL) sum. On the other hand, if the input is 0, the
DSA circuit applies Vosr to the SSLs, which does not contribute to bit-line current
(/sL) sum. Synaptic devices which have a negative weight (G") are connected to an
odd BL, and synaptic devices which have a positive weight (G") are connected to
an even BL. In a post-synaptic neuron, the DSA circuit compares the current from
the odd BL (lopp) with the current from the even BL (/gven), and then produces a
binary output of (1, 0). If /even is larger than lopp, the DSA circuit produces VDD
which corresponds to a binary output of 1. If lopp is larger than /gven, the DSA
circuit produces 0 V which corresponds to a binary output of 0. Therefore, this
scheme can perform VMM considering positive and negative synaptic weights with
only a single input pulse, without additional logic operations. In addition, adopting
a differential sensing scheme combined with a neuron activation of (1, 0) instead of
(1, -1) is appropriately compatible with existing NAND flash memory architecture

to efficiently implement a QNN with binary activation without changing the
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memory architecture. The DSA circuits are reused for each neuron layer, which is

effective for reducing the area of the peripheral circuits. In addition, the function of

the sense amplifier can be extended to perform the neuron activation function,

thereby reducing the CMOS circuit overhead. In a neuromorphic system, analogue

current needs to be converted to digital outputs using an operational amplifier or an

analogue-to-digital converter (ADC) [28]. On the other hand, binary neuron

activation enables adopting a differential sense amplifier as a neuron circuit,

significantly reducing the burden of neuron circuits and power consumption

compared to an ADC. In addition, the binary activation reduces the number of bits

in digital communication between the network's layers compared to multi-bit

activation, reducing the burden of peripheral circuits and memory storage.
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architecture using 3D NAND flash memory architecture. Binary inputs are applied

to corresponding SSLs. (b) Schematic diagram of a neural network. (c) Read pulse

scheme as a function of time.
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3.2 Measurement results

To investigate the characteristics of the NAND cells, floating-gate 2D-NAND

flash memory cells fabricated at 26nm technology are measured. Fig. 3.4 represents

the BL current (/gL) versus BL voltage (VsL) curves as a parameter of the weight

level at a WL voltage (Fwi) of 0 V and Vpass of 6 V. Positive and negative weight

cells have 8 levels (3-bit) with target currents from 0 to 1.4 pA, resulting in a 4-bit

weight. When the input voltage is applied to the synaptic device array, the effective

voltage applied to the synaptic devices can be reduced due to the IR drop of the

metal wire, resulting in an inaccurate vector-matrix multiplication. Moreover, in the

cell string of the NAND flash memory, the channel resistance of the pass cells

connected in series to a selected cell where a read bias is applied decreases the

effective bias across the drain and source of the selected cell at a given BL bias.

Operating NAND cells in the saturation region can eliminate the effect of the IR

drop in the metal wire, the noise of the input and output voltages, and the serial

parasitic resistance from unselected pass cells to achieve an accurate weight sum.

Fig. 3.5 represents the cumulative distribution of /g measured in the NAND string
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array as a parameter of the weight level utilizing the RVW method. The RVW

method repeats the cycle of reading, verifying, and writing the conductance of the

synaptic devices to ensure that the weights of the pre-trained model are correctly

mapped to the synaptic devices. The current of the NAND cell is read by the read

voltage (Viead) after each program pulse is applied to the device to check that the

current of the device is within the target current range. If the measured current is

outside of the target current range, then an incremental program voltage pulse is

applied to the device. This process is repeated until the current of the device is

within the target current range. In this work, the program pulse starts from 11 V

with a width of 100 ps and ~40 pulses are needed to tune the conductance of each

cell precisely on average. As shown in Fig. 3.5, 8 levels are clearly distinguished

by the RVW scheme. In this measurement, 26-nm floating-gate NAND cells are

measured in the odd WLs (WL1, WL3, WLS5, ...) to prevent interference between

adjacent cells. Among the 8 levels, the W2 and W3 levels have the largest and

smallest device variation, respectively.

Fig. 3.6 (a) and (b) show the effect of the Vpass and Vread disturbance,
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respectively. In every read operation, Vpass is applied to the unselected word-lines,
so the Vpass disturbance needs to be investigated. In Fig. 3.6 (a), the solid square
symbols represent an /gL-Vwr curve measured in a fresh cell device, and the curve
measured after applying a Veass of 6 V to the cell 64x10* times is represented by
open circle symbols. Since these two /gL-VwL curves are almost the same, the
disturbance caused by Vpass appears to be negligible. The /gL-VwL curves measured
after the application of 10 Vpgm pulses with amplitudes of 12 and 13 V for the
programming of the fresh cell device are represented by solid triangle and diamond
symbols, respectively. The Igr exhibits a negligible change with a 64x10* Vpass
disturbance compared to Vpgm. In the read operation, it is necessary to investigate
the influence of hot carriers because hot carriers that can be generated in the channel
of the NAND cell operating in the saturation region can change the cell's threshold
voltage. In Fig. 6 (b), the solid square symbols represent an /gL-VwL curve measured
in a fresh cell device, and the curve measured after applying a Viead of 0 V to the
cell 64x10* times is represented by open circle symbols. Since these two Isr-VwL

curves are almost the same, the hot carrier effect appears to be negligible. In
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addition, as shown in Fig. 3.6, the off-current (/o) is below 10 pA and the on/off
current ratio is more than 10°, which provides a high bandwidth to sum the currents
in parallel from much more cells compared to the cells in RRAM [18], [19]. Fig.
3.7 shows the measured retention characteristics as a parameter of the weight level
at 7=300 K. IpLs in 8 levels exhibit excellent retention characteristics up to 10*s.
In the NAND cell string, since multiple cells are serially connected between the
bit-line and the source-line, the pass cells act as resistors in the read operation. As
a result, the effective voltage across the control gate and source of the selected cell
at a given read WL voltage depends on the location of the selected cell in the cell
string. Therefore, under the assumption that all cells in the string have the same
threshold voltage, a cell close to SL has a higher BL current than a cell close to BL
when the same WL bias is applied to the control gate for a read operation.
Consequently, the different BL current depending on the position of the cell results
in an inference error in the neuromorphic system. To address this problem, the read-
write-verify method is adopted. The method enables the same saturation current

regardless of the cell's position within the cell string by adjusting the threshold
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voltage of the cells. Fig. 3.8 shows the eight /g-VBL curves measured from two
cells at different positions in the cell string. WL 0 represents the cell near the SL
and WL 60 represents the cell near the BL. As shown in Fig. 3.8, the currents of
WLO and WL60 show almost the same value at the 8 levels of the target currents
by using the RVW method. In this way, the cell device in the NAND cell string can
be adjusted to have a target current regardless of its position.

We investigate device variation that affects the inference accuracy of neural
networks. Fig. 3.9 shows the /gL distribution measured from cells in a NAND string
array and Gaussian fitting curves at the 2™ weight level (W2) and 3™ weight level
(W3). The W2 and W3 levels have the largest and smallest device variation,
respectively, among the 8 weight levels shown in Fig. 3.5. The estimated device
variation (ow/pw) of the W2 and W3 levels are 3.04% and 1.88% respectively, based
on the measured data with the assumption of a Gaussian distribution [29]-[35]. Fig.
3.10 shows a demonstration of the VMM operation using a synaptic string. Viead 1S
applied to the first WL where the control electrodes of two cells are connected, and

the target currents of the left and right cells controlled by the first WL are the 1%

59



weight level (0.2 pA) and 2™ weight level (0.4 pA), respectively. When SSL1 turns
on and SSL2 turns off, the /gt is 0.21 pA. On the other hand, when SSL1 turns off
and SSL2 turns on, the /gt is 0.405 pA. When both SSL1 and SSL2 turn on, the /gL
is 0.615 pA, as shown in Fig. 3.10 (b). Therefore, the VMM operation is

successfully demonstrated in the proposed synaptic string array.
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3.3 Simulation results

Fig. 3.11 (a) represents a DSA circuit which serves as a binary neuron. The

DSA circuit is simulated utilizing a BSIM-CMG model based on a 20-nm FinFET.

Fig. 3.11 (b) and (c¢) show transient waveforms of the DSA circuit when the binary

output is 1 (/even>Iopp) and 0 (lopp>Ieven), respectively. In Fig. 3.11 (b), as Ieven

is larger than Jopp, the voltage at node P_B drops to the trip-point voltage faster than

node P, raising node P toward VDD. As a result, Vour B drops to zero while Vour

remains at VDD. On the other hand, in Fig. 3.11 (c), as lopp is larger than /gvEn, the

voltage at node P drops to the trip-point voltage faster than node P_B, raising node

P_B toward VDD. As a result, Vour drops to zero while Vour B remains at VDD.

Because synaptic devices have discrete conductance levels depending on the

application of the program pulse, weight quantization needs to be considered. Fig.

3.12 shows a simulated inference accuracy of the neural networks with post-training

quantization (PTQ) for the CIFAR 10 and MNIST datasets. Fully connected neural

networks consisting of 5 layers (784-1024-1024-1024-10) and convolutional neural

networks consisting of 6 convolution layers and 3 fully connected layers are used
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for training the MNIST and CIFAR 10 datasets, respectively. Post-training

quantization means that floating-point weights are obtained in training without fine-

tuning and then they are quantized. The fully connected and convolutional neural

networks with the floating-point weight and binary activation are trained without

fine-tuning for the MNIST and CIFAR 10 datasets, respectively. Then the trained

weights obtained in software with floating-point precision are quantized and

transferred to synaptic devices with the linear quantization method. Note that,

proposed synaptic architecture in this work utilizes an off-chip learning scheme. As

shown in Fig. 3.12, as the bit-width of the weights decreases, the inference accuracy

decreases because the quantization error becomes larger. Quantizing the floating-

point weights to low-bit values results in the variation of the weighted-sum output,

which leads to a decrease of the inference accuracy. As the bit-width of the weights

decreases from 9 to 4, the inference accuracy decreases by 1.35 % and 0.32 % with

PTQ for the CIFAR 10 and MNIST datasets, respectively.

To reduce the degradation of the inference accuracy, in off-chip training, we

adopt a quantization training (QT) method which uses fine-tuning during the
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training process [10]. Reported QT methods can cause overhead by adding extra

hyper-parameters or modifying the original training procedure. Recent works have

tried to reduce the overhead and redundancy in QT [36], [37]. In [9]-[11], QT

methods reduce the memory size and accesses, which leads to dramatic

improvement in power consumption and computation speed compared to the full-

precision model. In addition, they reduce the quantization error compared to PTQ.

Algorithm 1 describes the flow of QT [10]. As shown in Algorithm 1, quantized

weights and activations are used in the forward and backward propagation, but

floating-point gradients of the weights are accumulated in the floating-point

variables to ensure that minor gradient updates affect the update of the weight

values. Because the weighted-sum error caused by the quantization is reduced

during the training process by the QT, the QT reduces the degradation of the

inference accuracy by the quantization compared to the PTQ. Fig. 3.13 shows the

simulated inference accuracy of the neural networks with the QT method. The

quantized fully connected and convolutional neural networks with a 4-bit weight

and binary activation are trained for inference of the MNIST and CIFAR 10 datasets,

68



respectively. As shown in the inset, the QT increases the inference accuracy by 1.24 %

and 0.3 % for the CIFAR10 and MNIST datasets, respectively, compared to the

PTQ. The final accuracies with the QT method for the CIFAR 10 and MNIST

datasets are 88.27 and 98.32%, respectively, which is similar to those obtained in

the floating-point neural networks (FNN) with floating-point weights. Therefore,

by adopting a quantization training method, QNN can be implemented with a high

inference accuracy.

Because the resistance of the metal wire degrades the inference accuracy, we

investigate its effect through a simulation. Fig. 3.14 shows the effect of the metal

wire resistance as a parameter of the resistance of the synaptic device (Rs) assuming

that the resistance of the metal wire between adjacent synaptic devices is 2.5 Q [17].

As the size of array becomes larger, the effective voltage (VE) across the synaptic

device which is farthest from the voltage source decreases significantly when Rsis

5 kQ. On the other hand, when Rs is ~24 MQ which is the output resistance of a

NAND cell operating in the saturation region, the VE across the synaptic device

hardly decreases even if the array size increases. Therefore, Rs needs to be large to
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reduce the effect of the metal wire and to implement a reliable neuromorphic system.

To achieve a ratio of V& and input voltage (Vinput) more than 99 %, the Rs needs to

be more than 1 MQ when the number of rows or columns in the array is 64 or less

as shown in Fig. 3.14. However, when the resistance in the RRAM devices is greater

than 1 MQ, the device variation becomes large [38]. Fig. 3.15 shows the simulated

inference accuracy of the QNN with respect to the device variation (ow/pw) for the

CIFAR 10 and MNIST datasets. In our work, the device variation at the W2 level

is the largest, so it is used to evaluate the inference accuracy. The ow/pws of the

RRAM devices with a Rs larger than 1 MQ are used for the comparison. The device

variation of the NAND cells is much lower than that of the RRAM devices with a

variation of 25~48 % [39]-[41], resulting in a higher inference accuracy than the

RRAM devices by 2~7 % and 0.04~0.23 % for the CIFAR 10 and MNIST datasets,

respectively as shown in Fig. 3.15.
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Fig. 3.11. (a) Circuit diagram of the differential current sense amplifier. The
simulated transient waveforms of the circuits when the binary output is (b) +1

(Ileven>Iopp) and (¢) 0 (lopp>IEVEN).
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Fig. 3.12. Simulated inference accuracy of the neural networks with PTQ for the

CIFAR 10 and MNIST datasets. As the bit-width of the weights decreases to 4, the

inference accuracy decreases by 1.35 % and 0.32 % with the PTQ for the CIFAR

10 and MNIST datasets, respectively.
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Fig. 3.13. Simulated inference accuracy of the neural networks with the quantized
training (QT). The final inference accuracy for the CIFAR 10 and MNIST datasets
are 88.27 and 98.32%, respectively. The QT increases the inference accuracy by
1.24 % and 0.3 % for the CIFAR10 and MNIST datasets, respectively, compared to

the PTQ.
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Chapter 4
On-chip learning based on NAND flash

memory

4.1 Synaptic architecture for on-chip learning

Fig. 4.1 shows a synaptic device array where two adjacent cells which
represent the positive weight (G") and negative weight (G") of one synapse are
adjacently located to each other in a synaptic array. The FP can be correctly
performed in the synaptic array as shown in (1). However, as shown in (2), BP
cannot be performed in a single time step on the synaptic array. To perform BP in
the synaptic array, error inputl (31) is applied to the synaptic array first, then error
input2 (2) is applied to the synaptic array.

On the other hand, Fig. 4.2 shows a synaptic array where two cells which
represent the G* and G~ of one synapse are separated into different synaptic array.
In this array, BP can be performed in a single time step as shown in (3) ~ (6).

Therefore, G and G should be separated to reduce latency in BP.
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Figs. 4.3 and 4.4 show the proposed circuit operation of performing FP and BP
in the proposed synaptic architecture based on NAND flash memory, respectively,
to enable on-chip learning. In the conventional NAND flash memory, source-lines
(SL) are connected in a block [21], which impedes the backward propagation.
Therefore, in the synaptic architecture proposed to enable both FP and BP, SLs are
separated in a direction crossing the bit-line (BL). Two NAND cells which are
located in different synaptic weight array (G array and G array) are used as one
synapse to represent negative weight.

In FP, input biases are applied to the BLs and each weighted sum current is
read from a separated SL. In BP, error inputs (0) are applied to string-select line
(SSL) and each weighted sum current (o) is read from a BL. If error inputs are
applied to SLs and weighed sum current is read from BLs, which is the method used
in RRAM array [42], the current of the cell at a specific word-line (WL) location
can be changed by the resistance of the pass cells depending on the cell's location
in the string.

Therefore, error inputs need to be applied to SSLs and amplitude of Vst, VssL
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and VgL should be the same in both the FP and BP to make string currents in the FP
and BP equal. In this architecture, the input and error input are provided by the
PWM (pulse width modulation) circuit as width-modulated pulses with fixed
amplitude. Therefore, by applying the width-modulated pulses to VgL and Vsst in
FP and BP, respectively, accurate VMM can be performed in both propagations
eliminating the effect of pass cells in the NAND flash memory architecture. Note
that the BL currents (/gr) in FP and BP are in the same direction. In this scheme,
VssL is applied to all SSLs to accumulate the currents from NAND strings through
BL. On the other hand, in the operation scheme of conventional NAND flash
memory, Vssris applied to a selected SSL to read the information of a NAND cell.
Thus, the proposed operation scheme can increase throughput compared to that of
the conventional NAND flash memory. Fig. 4.5 shows the schematic diagram of
neural network which is composed of n weight layers and pulse diagram with the
time. The cells connected to the k™ WL of NAND flash memory in Figs. 4.3 and
4.4 represent synapses in the k™ weight layer in Fig. 4.5 (a). The read bias (Vread)

and pass bias are applied to a selected WL and unselected WLs, respectively, as
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shown in Fig. 4.5 (b) and (c). Applying Viead to the k™ WL produces the output of
all neurons in the A" neuron layer. In FP, the Viead is applied to from the /' to n™
WL to produce weighted-sum output. On the other hand, during BP, the Vicaq is
applied to from the n™ to 7% WL to produce summed error. By using this scheme,
the synaptic weights can be transposed, and FP and BP can be correctly performed

in NAND flash memory.
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Fig. 4.1. Synaptic array architecture consisting of two adjacent cells representing

G" and G". The weights cannot be transposed.
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Fig. 4.2. Synaptic array architecture where positive (G") and negative (G-) weights

are separated in different arrays.
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Fig. 4.3. Synaptic array architecture based on NAND flash memory for FP operation

of on-chip learning.
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Fig. 4.4. Synaptic array architecture based on NAND flash memory for BP

operation of on-chip learning.
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Fig. 4.5. (a) Schematic diagram of neural networks consisting of n weight layers.
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4.2 Measurement results

The 2-D NAND flash memory fabricated with 26 nm technology is measured

in this work to investigate the characteristics of the NAND cells as synaptic devices.

One cell string consists of 64 cells including an SSL transistor, a ground select line

transistor, and two dummy cells. Linearity of the conductance (G) response of the

NAND cell and the Gmax / Gmin of the response is investigated. Fig. 4.6 (a) shows

the measured BL current-to-WL voltage (/sL-VwL) curves in a NAND cell with

increasing number of program pulses (Vpgm) of 14 V. The Vi increases from the

initial Vi as the number of Vpgwm increases. The off-state voltage (Vofr) needs to be

0 V to avoid negative bias conditions which puts lots of burden on the peripheral

circuit. In addition, the off-current (/) needs to be kept low by increasing initial

Vin.

In on-chip learning, linearity of conductance response affects the learning

accuracy [43]. To analyze the effect of Viead On the linearity of conductance response

of the NAND cell, the normalized G responses shown in Fig. 4.6 (b) are obtained

from the /gLs measured at Vwr of from V' to Vs. The G responses of 5-bit represent
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the synaptic weight of 6-bit, as weight is represented by difference of G" and G".
The linearity improves as the Vwr increases from V1 to V5. However, Imax / Imin
(=Gmax / GmiN) decreases as Vwi increases from Vi to Vsas shown in Fig. 4.6 (a).

Fig. 4.7 (a) shows the cell’s IsL-Vwr curve (circle symbols) for Fpass
disturbance and the cell’s IgL-V'wL curves when the cell is programmed with Vpgwms
of 12 V and 13 V. The /gL exhibits a negligible change with a Vpass disturbance
compared to those (triangles) with V'pgm as shown in Fig. 4.7 (a). Fig 4.7 (b) shows
the cycle-to-cycle variation of a NAND flash cell. In 1 cycle, 31 Vpgms of 14 V and
1 Vers of -10 V are applied to a NAND cell. The variation of conductance response
is negligible up to 1k cycles.

Fig. 4.8 (a) shows the program (P) and erase (E) windows when the P/E cycle
is repeated up to 3x103. The AVinpom (AVinby Vegm) increases and AViners (AVin
by Vers) decreases as the number of P/E cycles increases when the Vpgm is 16 V.
On the other hand, the Vpom of 14 V has a very small effect on the program and
erase windows. Fig. 4.8 (b) shows retention characteristic of a NAND cell. Each

weight level hardly changes until 10* s as shown in Fig. 4.8 (b).
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To investigate the effect of pass cells on the NAND string current in the VMM

process, we measure /g using the on-chip learning method in RRAM array. Inputs

are applied to rows in forward pass and error inputs are applied to columns in

backward pass in previous on-chip learning method commonly used in RRAM array.

If it is applied to NAND flash memory array, inputs are imposed on BL in forward

pass and error inputs are imposed on SL in backward pass. Fig. 4.9 (a) and (b) show

circuits for measuring /sLs when V=2 V and Vst= 0 V and when VeL= 0 V and

Vsi=2 V, respectively. As shown in Fig. 9 (c), /gL measured in (a) is different from

that measured in (b) due to the channel resistance effect of pass cells. In the NAND

cell string, since multiple cells are serially connected between the BL and the SL,

the pass cells act as resistors in the read operation. As a result, when bias of VgL and

VsL interchanges, the effective voltage across the ground and control gate of the

selected cell changes, which causes the error in reading /L. Therefore, the on-chip

learning method used in RRAM array cannot be used in the NAND flash memory.

To solve this problem, we propose a novel architecture shown in Figs. 4.3 and 4.4.

In the proposed architecture, the input and error input are applied to BL and SSL,
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respectively, keeping /gL in FP and BP in the same direction. It allows the weight to

be transposed and eliminates the effect of pass cells.

In addition, as the cell current can be changed during the weight update process

due to the pattern loading effect, we propose a program scheme to solve this

problem. Fig. 4.10 (a) shows circuits for measuring /grs. All cells in the string

initially have a low threshold voltage (Vi ow), then the 8 cells in the middle of the

string are programmed one by one to have a high threshold voltage (Vinign). Fig.

4.10 (b) and (c) show the /gL-VBL curves measured in cells closest to BL and SL,

respectively. Fig. 4.10 (d) shows the current ratio of /gL and maximum current in

the cell (/max) with increasing number of programmed cells. /max is the current

measured when all cells in the string initially have a low threshold voltage (V,iow).

The Igr of the cell closest to the BL decreases more than that of the cell closest to

the SL with increasing number of programmed cells as shown in Fig. 4.10 (d). It is

because the effective voltage across the ground and the control gate of the selected

cell at a given read WL voltage changes depending on the location of the selected

cell in the cell string.
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Therefore, /s of the cell closest to the BL decreases when the number of
programmed cells in one string increases because the effective voltage across the
ground and control gate of the cell decreases. Thus, a program scheme is proposed
in which a program voltage (Vpcm) 1s sequentially imposed on from the cell closest
to the SL to the cell closest to the BL in the weight update process. The proposed

scheme can reduce the pattern loading effect during weight update.
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Fig. 4.6. (a) IsL-VeL curves with increasing number of program pulses. (b)

Normalized conductance (G) responses measured in ().
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Fig. 4.7. (a) IsL-V'wL curves measured in fresh, Vpass disturbed, and programmed

cell. (b) Conductance response of fresh and cycled cell.
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4.3 Neuron circuits

Fig. 4.11 (a) represents the neuron circuit consisting of two current mirrors and

one capacitor. The relationship between voltage of the capacitor (Vc) and the

difference of current from G" and G array represents a hard-sigmoid function,

which is the activation function. Fig. 4.11 (b) and (c) represent PWM circuit and

simulated results of it, respectively. The PWM circuit converts the voltage of

capacitor (Vc) to the width-modulated pulse (¥p). The width of output pulse (Vp)

has linear relationship with the amplitude of the input pulse (¥c). The PWM circuit

replaces analog to digital converter (ADC), which greatly curtail the burden of

neuron circuit and power consumption. Note that, in technologically mature and

commercial NAND flash memory, read time is 45 ps. This value is optimized read

time including precharge/discharge time and considering non-ideality of waveform.

In commercial NAND flash memory, a peripheral circuit controls the enormous size

of array with 16Kb page size. However, partitioning NAND flash blocks into

smaller array can significantly decrease read time compared to the commercial

NAND flash memory. It is because WL/SL loading is greatly decreased, which
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reduces RC delay time. On the other hand, on-current measured in NAND cells in

this work is ~1 pA. However, we can adopt an extremely thin body of 3 nm to

provide low on-current of ~2 nA. In addition, current mirrors in neuron circuit can

reduce the current which flows into the capacitor of the neuron circuit. Therefore,

capacitance of the capacitor can be significantly reduced.
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4.4 Simulation results

Fig. 4.12 (a) shows the on-chip learning scheme in this work. Hard-sigmoid

function is used in the on-chip learning scheme, as it can be implemented by the

simple circuit shown in Fig. 4.11 (a). In software-based algorithm, the amount of

weight change (AW) is the product of error (), activated neuron value, and learning

rate. However, if multiple Vpgms are required to update weight of synaptic devices,

we need to check the current value of conductance and calculate the number of

pulses to reach the target conductance, which imposes a big burden on the

peripheral circuitry. Furthermore, on-chip learning system requires a lot of weight

updates during training, so read-verify-write (RVW) method which consumes lots

of time and energy cannot be used for each weight update. Therefore, in the on-chip

learning scheme, the weights are updated based on the sign of AW (sgn(AW)). The

sgn(AW) is determined by the sign of error (8) and sign of activated neuron value.

When sgn(AW)>0, the G is decreased to increase weight. When sgn(AW)<O0, the

G" is decreased to decreases weight. In addition, we use the same single program

bias (Vpcm) in each weight update, greatly reducing the burden on the peripheral

93



circuit. Fig. 4.12 (b) represents the weight update method. To increase weight, G™ is

decreased by a Vpogm. However, when G is saturated to the minimum conductance

(Gmin), the weight cannot be increased. In this case, the G* is initialized to the

maximum conductance (Gmax) and decreased to a target value by applying a series

of program pulses sequentially as shown in Fig. 4.12 (b). In initialization process,

individual erase scheme is needed and we introduce an erase scheme to enable

individual cell erase as an illustration. A high bias is applied to a selected BL and a

selected SSL is turned off to provide gate-induced drain leakage (GIDL) to only

one selected cell string while a high bias is applied to other SSLs not to generate

GIDL in unselected cell strings. In this scheme, 0 V and high bias are applied to a

selected WL and unselected WLs, respectively, to make one cell erased, and

ground-select line (GSL) is turned off.

Fig. 4.13 (a) represents the inference accuracy of the proposed on-chip

learning system for the MNIST dataset on fully connected neural networks which

consists of 3 neuron layers (784-200-10) with 6-bit weight precision. The

conductance response in Fig. 4.6 (b) at V'wr of from V1 to Vsis used. The inset shows

94



the final inference accuracy after 100 epochs. Linearity of conductance response

improves as the Vwr increases from V1 to Vs, which increases inference accuracy.

The conductance response at a Vwr of V3 is used to obtain a Gmax / Gmin of ~5.1.

The final accuracy is 95.58 % at a Vwr of V3, which is comparable to 95.81 %

obtained with ideal linear conductance response.

Fig. 4.13 (b) shows the inference accuracy with respect to the number of

hidden layers. The inference accuracies are 95.58 %, 95.65 % and 95.56 % when

the number of hidden layers is 1, 3 and 5, respectively. Therefore, the proposed

scheme can be applied to deeper neural networks. The accuracy increases as the

number of hidden layers increases up to 3. On the other hand, the accuracy does not

increase, when the number of hidden layers increases from 3 to 5, because

regularization method does not used in this work. It needs proper regularization

method to improve accuracy in deep networks. However, it is beyond scope of this

work, and there are recent works which propose regularization method in

neuromorphic system. If the suitable regularization methods are applied, the

proposed scheme can achieve higher accuracy with deep networks.
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Fig. 4.14 (a) shows the effect of synaptic weight variation (oc/uc : standard

deviation / mean) on the inference accuracy in off-chip learning and on-chip

learning. As oc/uc increases from O to 1, the inference accuracy decreases by 0.7 %

in on-chip learning while 21.2 % in off-chip learning. Fig. 4.14 (b) shows the effect

of cycle-to-cycle variation on the inference accuracy in on-chip learning. The

variation is applied to the change of device conductance whenever an Vpgm is

applied. The accuracy of the on-chip training system hardly changes even if o/u

increases to 1.

To investigate whether on-chip learning is possible in the proposed

architecture, circuit simulations were performed using SPICE as shown in Fig. 4.15.

The reduced MNIST (8%8) data is trained in fully connected neural networks (64-

64-10). The NAND flash memory architecture with 2 WL layers is constructed to

have 16,384 synapses. NAND cells are modeled to have a conductance response of

Fig. 4.6 (b). The NAND flash memory architecture is trained using 1700 training

images. The designed circuit that performs the activation function and PWM can

be considered as a neuron circuit. The inset shows final inference accuracy after 8
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epochs. As shown in Fig. 4.15, the inference accuracy of the on-chip learning

system obtained from circuit simulation is 94.99 %, which is comparable to 95.604 %

obtained from system-level simulation. Furthermore, during on-chip learning

process, the neural networks correct the deviation caused by pass cells through

backward propagation. In Fig. 4.15, the difference between accuracy of system-

level simulation and SPICE simulation decreases as the number of epochs increases.

97



MNIST
training set

End of (b)

iteration

(@)

+
N
g

Gmin

Input voltage Update Update
transformation e )
welignis welignis|

41 G,V G, 4 G
Forward

propagation
N
h_ 11
5,0 =2 W;a™
1

=]

F*y

|||||||||||||?’?‘l—r’

pulse

Activation function

0ifs\” <—c, 1if s > ¢

0]
| sj / 2c else

S
8

Backward
propagation

M
é‘i(l*D = Z Bljgj(l) o f‘(si(lfl))
7

Fig. 4.12. (a) On-chip learning scheme. (b) Weight update method.

~_
o
~
—_
=2
-

90F

©
(=2

75}
60}
a5}

95}

il

Iccuracy after 100 epochs

e VwEVs vV v Y
0 1x10*2x10*3x10*4x10*5x10%6x10* 1 2 3 4 5
# of epochs # of Hidden Layers

=
o
=)

— V=V,
V=V,

15F | — V=V,
(1] 3 V= Vs

30F

9

®

94}

Accuracy (%)

Inference Accuracy (%)

S o o o

-]

Inference Accuracy (%)

©
w

Fig. 4.13. (a) Inference accuracy of the proposed on-chip learning system for
MNIST dataset using the G response in Fig. 4.6 (b). (b) Inference accuracy with

the number of hidden layers.

98



a b
é) (% 100
5100 —— X
o AGy41ie=AGigear*X

5 16 5 80 (.g X~N(1,6%)
C 8o} gl © g

- 1.2 — N
= & > =
Q = 0.8L N\ s O 60F £
SR L RN 8 E
< 60} 5 0 NS o 2
8 = T =3 o 40}
c 0.0 c
o 0 5 10 15 20 25 30 o # of pulses
5 40F # of Vo pulses o 201 MNIST
b= —=— Off-chip learning ‘= Fully connected neural networks
- 20 —e— On-chip learning (V= V;) = o (784:200-102 ) ) )

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

o6/ lg o6/Ms

Fig. 4.14. (a) Inference accuracy with synaptic weight variation (oc/uc). (b)

Inference accuracy with cycle-to-cycle variation.

100

&
3' 80F —s=— System-level simulation
© —e— SPICE simulation
3 Reduced MNIST (8x8)
(3 60 Il System-level simulation
< 96 { Il SPICE simulation
8 a0} 95|
c
() 94}
| .
g 20 03
£
92
0 » » » » »
0 2 4 6 8
# of Epochs

Fig. 4.15. Inference accuracy of the proposed on-chip learning system for reduced

MNIST dataset in fully connected neural networks (64-64-10).

99



Chapter 5

Conclusion

In this work, we have proposed a novel synaptic architecture based on NAND
cell strings and an operation scheme for high-density and highly-reliable BNN, for
the first time. Reliability has been verified from retention, endurance, and Vpass
disturbance measurement results. The bit-error rate (4.2x10°® %) of the proposed
synapses was 4 orders of magnitude lower than that of RRAMs. When Vpgm is
below 16V, single pulse is enough to write a weight without ISPP method. In 128-
stack NAND flash memory, the estimated synapse density is ~100 times higher than
that of RRAMs. Thus, the proposed architecture is very promising for high-density
and highly-reliable BNNSs.

A novel synaptic string architecture based on a NAND flash memory for
highly robust and high-density quantized neural networks (QNN) with binary
neuron activation was proposed, for the first time. The differential sensing scheme

and neuron activation of (1, 0) instead of (1, -1) are appropriately compatible with
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the conventional NAND flash memory architecture consisting of cell strings.
Moreover, a binary neuron enables adopting the 1-bit sense amplifier instead of the
multi-level sense amplifier or analog-to-digital converter (ADC), which serves as
the area-saving and energy-efficient peripheral circuits enabling bitwise
communication between the layers of the neural networks. Operating NAND cells
in the saturation region achieved a high synaptic resistance (24 MQ) eliminating
the effect of the IR drop in the metal wire and the serial resistance of the pass cells
in the NAND cell string. By using a read-verify-write scheme, a low-variance
conductance distribution was demonstrated for 8 levels, where the maximum device
variation (ow/pw) of the 8 levels is about 3.04 %. Vector-matrix multiplication
(VMM) of 4-bit weight and binary activation could be accomplished by only one
input pulse eliminating the need of multiplier and additional logic operations. High
on/off current ratio (>10°) and small L (<10pA) of the NAND cells can implement
a high bandwidth to sum the currents in parallel from many cells in a synaptic string
array. In addition, quantization training reduced the degradation of the inference

accuracy by 1.24 % and 0.3 % for the CIFAR 10 and MNIST datasets, respectively,
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compared to the PTQ. Finally, the low-variance conductance distribution (~3.04 %)

of the NAND cells achieves a higher inference accuracy compared to RRAM

devices.

We have proposed a novel synaptic architecture based on NAND flash

memory for on-chip learning. By separating SL and applying input and error input

to BL and SSL in NAND cell array, accurate vector-matrix multiplication is

successfully performed in both FP and BP eliminating the effect of pass cells. In

addition, weight update method in which a Vpgwm is sequentially applied from the

cell closest to the SL to the cell closest to the BL was proposed to eliminate the

effect of cell position on the string current. At an optimized read bias of 2 V, a

satisfying accuracy of 95.58 % is achieved which is comparable to that of 95.81 %

obtained with perfect linear device. It was shown that the inference accuracy

decreases by 0.7 % in on-chip learning while 21.2 % in off-chip learning when

weight variation (o¢/|lg) increases from 0 to 1. In addition, the superiority of the

proposed on-chip learning architecture was verified in circuit simulation. The

proposed synaptic architecture based on a technologically mature NAND flash
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memory in this work has great advantages when implementing a high-density and

highly reliable on-chip learning system.
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