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Abstract

Statistical Method Development of 16S rRNA
Metagenomics-based Association Analysis and

its Application

Background:
Increased availability of affordable sequencing technology and advances in

throughput technology have led to the birth and widespread development of a new
scientific discipline, metagenomics that includes large-scale analysis of microbial
communities. However, analysis with metagenomics data suffers from
compositional bias and zero-inflated problems, and the statistical methods available
for association analysis with 16S rRNA data is very limited, especially for the
repeatedly observed 16S rRNA data. Therefore investigation on the statistical

method and software development is necessary.

Objective:

The main goal is (1) to develop new methods with cross-sectional and
repeatedly observed 16S rRNA data that correct for the problems including
compositional bias, zero-inflation and package implementation that can unify the
preprocessing procedures; (2) to identify microorganisms which can be affect type-

2 diabetes (T2D)-related traits with repeatedly observed 16S rRNA data.

Methods:



To consider the characteristics of microbiome data and correct compositional
bias and zero-inflated problem, the phylogenetic tree based method, TMAT, and its
extension to the repeatedly observed 16S rRNA measurement, mTMAT, were
developed. I also implemented a new package that can generate both statistics, and
conduct OTU clustering with different databases. This package also allows the
comparison of different statistics. Furthermore, association analysis of
microorganisms with T2D were conducted by using repeatedly measured EV in urine
samples. EV-derived metagenomic (N = 393), clinical (N =5032), and metabolite (N
= 574) data were observed for a prospective and longitudinal Korean community-
based cohort (KARE) three times and genetic data was available. They were
analyzed with generalized linear mixed model to identify microbes associated with

T2D and their interaction with metabolites.

Results and Conclusions:

The proposed phylogenetic tree-based microbiome association test (TMAT)
normalized microbial abundances and pooled abundances based on the phylogenetic
tree structure was utilized for association analysis. Results from simulation studies
showed that TMAT correctly controls type-1 error rates, and statistically more
powerful. Second, | also implemented all-inclusive microbiome association analysis
(AMAA) package. AMAA package provides the analysis result of various methods
including TMAT under a unified preprocessing and allows comparison of the results
based on different databases or clustering methods. Third, mTMAT which is the
extended version of TMAT for repeatedly measured 16S rRNA data was developed.

It uses generalized estimating equations with robust variance estimator and can be



applied to repeated measured samples. Statistical power of mTMAT was superior to
existing methods in terms of controlling the type-1 error and minimizing the type-2
error, and it is robust against the compositional bias. Fourth, from the association
analysis with repeatedly measured EV-based metagenome data, it was found that
GU174097_g, an uncultured Lachnospiraceae, was associated with T2D (f =

—189.13; p = 0.00006). These results indicates that GU174097_g may decrease the

HbA1c level and the risk of T2D.

Keyword: statistical method, microbiome association test, longitudinal data
analysis, multi-omics.

Student Number: 2018-34334
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Chapter 1. Introduction

1.1. Study Background

Increased availability of affordable sequencing technology and advances in
throughput technology have led to the birth and widespread development of a new
scientific discipline, metagenomics that includes large-scale analysis of microbial
communities [1]. Recent investigation has identified pivotal roles of the bacterial
community in human diseases, including diabetes, obesity, Crohn's disease, and
irritable bowel syndrome (IBS). However, even though various associations have
been successfully discovered between microbial ecological patterns and host
diseases, the characteristic of microbiome data such as zero-inflated problem and
compositional bias complicates association analysis of microbiome. These issues, in
addition, make the modeling of longitudinal analyzes more difficult, where complex
correlations must be considered within repeated measurements. Heterogeneous
result of metagenome analysis due to preprocessing, OTU filtering, database and

clustering methods also can complicates association researches of microbiome.

Zero inflation

Metagenomic data have high variability [2]. The composition of the microbial
community greatly differs from person to person even for microbial communities
that function the same. Technical variability induced by insufficient sequencing
depth, sequencing errors, or calculation errors in gene quantification is substantial

[3]. Furthermore, microbial community consists of many species, and the small



sample size. In consequence, OTUs shares across individuals, which makes

microbial data very sparse and their statistical analysis complicated.

Compositional bias

In microbial data, the size of the sequencing depth varies from subject to subject,
and the total absolute abundance collected for each subject substantially differs. Thus,
relative abundance is generally utilized, but statistical analyses with relative
abundance suffer from several problems.

First, the compositionality effects can introduce false positive associations and
this bias stem primarily from their compositional characteristics [4] . | have fixed the
sum of the abundances of each microorganism in each subject. If the absolute
abundance of one taxon increases, the other taxa becomes decreased even though
their abundance still remains same. Therefore longitudinally observed relative
abundance of the same subject cannot be compared, and unless this so-called
compositional bias is correctly adjusted, a false negative correlation can occur [5].

Second, biological insight is often related to absolute abundance. For example,
absolute abundance of fecal microbiota in patients with Crohn's disease correlates
bacterial load with disease phenotype. However the association disappeared when
using relative abundance data [6, 7].

However, many association studies still do not adequately handled the
compositional bias and are affected by the limitations of the relative abundance data

and are potentially leading to false association results [7].

Heterogeneity of microbiome data



There are several reasons that make microbiome data heterogamous. The
abundances of microbial taxa are often sparse with excessive zeros at species level.
In detail, it is rare that any given taxa observed in all samples. Most of microbiota
were observed in a small proportion of samples. This makes heterogeneity between
samples and further, heterogeneity of dataset. Sample collection and storage can be
aimportant source of heterogeneity [8]. Preprocessing steps such as OTU clustering,
choice of OTU filtering threshold, rarefying can be another source of heterogeneity.
16S rRNA database contains the sequence of various taxa and those sequences were
utilized for taxonomic assignment. Thus, the results and interpretation of the
association analysis between taxa and host phenotypes can be affected by these pre-

processing before the construction of microbial count table [9].

Importance of longitudinally observed microbiome data

The gut microbiota substantially becomes changed along the host age, and the
effect of gut microbiota on the host phenotypes can be affected by age. Their risk on
the host phenotypes can substantially differ by his/her ages and longitudinally
measured microbiome data enables detecting their effect modification by age.
Moreover, the estimation of within-subject covariate effect is robust against the
between-subject confounders. However, in spite of such efficiency and validity, the
nature of sparseness and compositional bias of metagenomics data complicates the
statistical method development. Furthermore there are some correlations among
repeatedly observed measurements of the same subject. [10] Therefore statistical

method which is robust against those problems needs to be developed.
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1.2. Literature Review

Statistical methods of cross-sectional 16S rRNA association analysis
OTUs have the high inter-subject variation, and their sparsity prevented
application of linear/logistic regression. Many statistical methods have been
suggested for statistical analysis with OTUs. For instance, OTUs belonging to the
same genus or phylum can be pooled, and their relative proportions can be compared
between cases and controls. However, as such pooling does not consider the
heterogeneity among OTUs, several phylogenetic tree-based statistics have been
suggested to adjust for these differences. Standard pipelines such as QIIME and
mothur [11, 12] are used to cluster the 16S rRNA gene sequences of microorganisms
into OTUs. The phylogenetic distance between pairs of OTUs was weighted with the
UniFrac distance, and their weighted sums can be compared between cases and
controls. For instance, PERMANOVA calculates weighted UniFrac distances
between pairs of subjects and compares the average phylogenetic distances between
cases and controls [13]. MiRKAT calculates a kernel matrix based on one of the
various distance matrices, including weighted and unweighted UniFrac distances,
and uses it to weight generalized linear model-based score tests. Optimal MiRKAT
(oMiRKAT) combines the results of different distance matrix choices. The adaptive
microbiome-based sum of the powered score (aMiSPU) considers phenotypes as
responses for regression and uses the sums of weighted proportions for multiple taxa
as covariates [14]. Both methods can adjust for environmental effects by adding them
as covariates. In particular, the practical choice of the statistic is usually unclear, and
robust approaches, such as minimum p-values, have been proposed. Notably, the

optimal microbiome-based association test (OMIAT) considered the minimum p-

11



value between oMiRKAT and aMiSPU and was shown to perform better under
various scenarios [15]. The minimum p-value among multiple statistics generated
from different types of distance matrices can also be useful owing to the uncertainty

regarding the merit of the most efficient phylogenetic distances [16].

Statistical methods of longitudinal 16S rRNA association analysis
Longitudinal analysis for microbiome can be categorized into several parts. One
is the standard statistical models including generalized linear mixed model (GLMM)
or generalized estimating equations (GEE) and another is about zero-inflated mixture
models such as ZINBMM and ZIBR [17]. Recently a kernel based longitudinal

association test method GLMM-MIRKAT is also developed [18].

Methods to correct compositional bias

Compositional data is constrained to sum to a constant, naive traditional
statistical methods cannot be used for the compositional data [19]. Taking the
logarithm of microbial abundance is a transformation of the constituent data that can
preserve much of the usefulness of traditional statistical analysis in situations where
library size needs to be considered, such as relative abundance [19]. Taking the
logarithms has its problem in the choice of denominator. Additive log-ratio (alr) uses
a reference abundance for its denominator and centered log-ratio (clr) uses geometric
mean and both are well-known approach to consider compositional bias problem.
Network analysis including SPARCC and SPIEC-EASI are also can be considered

modeling the whole community in a statistical modeling.

12



Characteristics of 16S rRNA Databases and OTU picking methods

Many methods for defining OTUs have been proposed and they can be divided
into closed-reference methods and de novo methods. In closed-reference method,
each reference sequence in the database defines an associated closed-reference OTU.
The input sequence is aligned to a reference sequence, and this reference sequence
becomes a centroid of the OTU clusters. The taxonomy of OTU can be obtained
from the information in this reference sequence [20]. If the same database is used,
closed-reference OTU assignments from independently processed data sets can be
validly compared, a property referred to as consistent labeling. Therefore, if the same
reference database is used, the consistent labels can be pertained for independently
processed datasets. Then the OTUs can be validly compared. However, the input
sequences that failed to align to the reference database are lost. Therefore, the alpha-
diversity will be greatly affected by the database.

De novo method uses the distance between sequences to cluster sequences into
OTUs rather than the distance to a reference database. Therefore, there are no loss
of input sequences as long as the sequences are clustered at a given level of similarity.
This makes de novo method can estimate the maximal variance of microbiome
organisms and correctly estimate alpha diversity compared to closed-reference
method. However, the boundaries and members of clusters depend on a defined
dataset. As a result, it is conceptually impossible to compare de novo OTUs defined
on two different data sets [21, 22].

Amplicon sequence variants (ASVs) is recently suggested as an alternative
approach for taxonomy assignment. ASVs are inferred by the Poisson-based process

which assume biological sequences are more likely to be repeatedly observed than
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sequences containing observational errors [23, 24]. The ASV can be inferred for each
individual, and the ASV for each sample was consistent. This allows ASVs to be
used with consistent labeling [23]. Furthermore, ASV is not dependent on databases
and there is no loss of sequences depending on the choice of databases.

However, in spite of flexibility of ASV, it has some limitation. ASV calculates
the likelihood based on biological distance. However biological distance between
the sequences is confounded by other environmental factors or batch effects, and
their distance cannot consider such confounding. Also, ASVs cannot be merged if
the underlying sequence was derived from the different region of 16S rRNA gene
[23].

Taxonomy assignment depends on the database including ExTaxon, Silva,
Greengene and significant differences of taxonomy assignment among databases
have been reported [25, 26].

To examine the accuracy of the three public databases, the known taxonomies
for 60 strains from the mock community were compared to the outcome of
taxonomic assignment for each databases. To simplify the comparison, no
sequencing error or missing strain was assumed. The accuracy of each database was
evaluated with the number of true-positive, false-positive and false-negative taxa.
These measures can be affected by the number of reference sequences. ExTaxon
contained the smallest number of sequences among the compared databases and this
can deflate the number true-positives and false-positives and inflate false-negatives.
ExTaxon database found to be the most accurate database with the most highest
number of true positive and smaller number of false-positives and false-negatives

than those of other databases [26].

14



However the result is depend on the simulated mock community dataset which
consist of only 60 strains that were uniformly distributed. Most microbiome
communities are composed of more than thousands of species, and their constitution
is not uniform. The most accurate database can vary according to the samples

analyzed [26, 27].

1.3. Purpose of Research

The main purpose of my research is as follows.

1) Development of a statistical method for association analyses with cross-

sectionally observed microbiome data and package implementation.

2) Development of a statistical method for association analysis with

longitudinally observed microbiome data.

3) Identifying microorganisms associated with the type-2 diabetes with

longitudinally measured microbiome data.
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Chapter 2. Phylogenetic Tree-based Microbiome
Association Test and Package Development for

Microbiome Analysis

2.1. Introduction

The explosive accumulation of research data using advanced high-throughput
technologies such as microarrays and next-generation sequencing (NGS) has greatly
improved our understanding of the microbial world and has greatly improved our
understanding of biological research. Provided the underlying idea [28].

However, even though various associations have been successfully discovered
between microbial ecological patterns and host diseases, high inter-subject variation
complicates association analyses with microbiomes. For instance, most operational
taxonomic units (OTUs) are observed only in a few subjects, and the absolute
abundances of many OTUs are often 0, making the assumption of asymptotic
normality of the observed abundances unlikely. Thus, associations of OTUs with

host diseases are often tested with non-parametric approaches, such as the Mann-—

Whitney U-test and Wilcoxon rank-sum test [29]. However, non-parametric statistics
use the ranks of observed relative abundances for statistical inferences instead of the
observed relative abundances themselves, and the degree of difference between cases
and controls is neglected. Such information loss can increase the false-negative rates
of non-parametric statistics. Alternatively, the observed relative abundances can be
subjected to an arcsine-root transformation, but this has been shown not to correctly
control the type-1 error rates for low-abundance species [30].

Many analysis strategies have been suggested to adjust for the sparsity of

16



OTUs induced by the high inter-subject variation observed. For instance, OTUs
belonging to the same genus or phylum can be pooled, and their relative proportions
can be compared between cases and controls. However, as such pooling does not
consider the heterogeneity among OTUs, several phylogenetic tree-based statistics
have been suggested to adjust for these differences. Standard pipelines such as
QIIME and mothur [11, 12] are used to cluster the 16S rRNA gene sequences of
microorganisms into OTUs, and the phylogenetic distances between pairs of OTUs
can be calculated and weighted with the UniFrac distance, allowing their weighted
sums to be compared between cases and controls. For instance, PERMANOVA
calculates weighted UniFrac distances between pairs of subjects and compares the
average phylogenetic distances between cases and controls [13]. MiRKAT calculates
a kernel matrix based on one of the various distance matrices, including weighted
and unweighted UniFrac distances, and uses it to weight generalized linear model-
based score tests, and Optimal MiRKAT (oMiRKAT) combines the results of
different distance matrix choices. The adaptive microbiome-based sum of the
powered score (aMiSPU) considers phenotypes as responses for regression and uses
the sums of weighted proportions for multiple taxa as covariates [14]. Both methods
can adjust for environmental effects by adding them as covariates. In particular, the
practical choice of the statistic is usually unclear, and robust approaches, such as
minimum p-values, have been proposed. Notably, the optimal microbiome-based
association test (OMiAT) considered the minimum p-value between oMiRKAT and
aMiSPU and was shown to perform better under various scenarios [15]. The
minimum p-value among multiple statistics generated from different types of

distance matrices can also be useful owing to the uncertainty regarding the merit of

17



the most efficient phylogenetic distances [16].

Multiple investigations have found that different species or strains within the
same genus can differentially affect diseases, and the importance of intra-genus
mutations has been repeatedly highlighted [31]. However, because relative
abundances at the species level are often very sparse, association analyses at this
level have been limited. In this article, | propose the phylogenetic tree-based
microbiome association test (TMAT) to identify OTUs associated with host diseases.
TMAT considers the log-transformed read count per million (CPM) as the response,
and the log CPM is assumed to follow the normal distribution. TMAT tests whether
each internal node of a phylogenetic tree is associated with a host disease, and the
resulting statistics are combined into a single statistic. By the nature of the proposed
statistics, node statistics are independent, and internal nodes associated with host
diseases can be detected by aggregating those statistics. Here, | define the proposed
TMAT statistics and describe both real data and in silico experiments. The
superiority of the proposed methods over existing methods is demonstrated through
extensive simulations based on metagenomics datasets for colorectal carcinoma
(CRC) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). TMAT
was applied to these datasets, and significantly associated OTUs were identified.
Lastly, the distinctive features of TMAT and the main reason for its superiority over
existing methods are discussed.

In addition, All-inclusive Microbiome Association Analysis (AMAA), a
package that envelope a pipeline building microbial count tables based on different
databases and clustering method and the methods for metagenome-wide association

analysis will be introduced. It provides the convenient use of various methods for
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microbiome association analysis under a unified preprocessing and comparison the

results based on different databases or clustering method.

2.2. Materials and Methods

Ethics statement
The protocol used in this study was approved by the Institutional Review Board
(IRB No. E2108/001-001) in Seoul National University.
Phylogenetic tree
Let us assume that N subjects are sequenced, and M OTUs are observed. |
assume that a rooted binary phylogenetic tree is provided for these OTUs, and the
first M1 OTUs belong to a genus of interest for the analysis of its association with

host diseases, while the other M — M; OTUs belong to different genera. For the
genus with the first M1 OTUs, there are M1 — 1 internal nodes and M; leaf nodes.
Internal nodes are denoted by k, where k =1,..., M; — 1. Leaf nodes are denoted by

m, where m=1, ..., M. For each leaf node there is a corresponding single OTU; if
m=1, ..., or M1, m is the leaf node of the genus of interest, and otherwise m belongs
to a different genus. | assume that mutations that affect host diseases occur during
transmission from the internal node k to its left (or right) child node. These mutations
may be transmitted from the left (right) child node to all of its leaf nodes, and the
relative abundances of OTUs corresponding to those leaf nodes should significantly
differ between cases and controls. Under this assumption, the relative proportion of
leaf nodes of the left child node increases for cases if the mutation occurs during

transmission to its left child node, and it decreases if it does so during transmission
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to the right child node. If the association of an internal node k with a host disease of
interest is tested, let the internal node k and its leaf nodes represent a test node and
test leaf nodes, respectively. The left and right test leaf nodes further represent the
leaf nodes of the left and right child nodes of a test node, respectively.

For internal node k in the genus with My OTUSs, let Lx and Rk be the sets of its

left and right leaf nodes, respectively. Figure 2.1A and B illustrates these definitions.

A B. C

(cist...Fepg)

k=0
(1'10)
=1

m=1 m=2 m=3 m=4 m=1 m=2 m=3 m=4 m=1 m=2
GO I B B P S S S S St (r;1) (rin)
M;=4ke{l,23},me(1, 23 4} M,=4ke{1,2 3}, me (1,2 3, 4}
k=1=1L; ={mm=120r3}, R, = {mm=4} k=1=1L; = {m|m=1,0r2}, Ry = {m|m = 3,0r 4}
k=2=1L,={mm=1 or2}, R, = {mm = 3} k=2=1L, ={mm=1} R, = {m|m =2}
k=3=1L,={mm=1} R, ={mm =2} k=3 =Lz = {m|m = 3}, Ry = {m|m = 4}

Figure 2.1. Examples of rooted binary phylogenetic trees.
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Quasi-Score test statistic for TMAT
I denote the absolute abundance of OTU m in subject i by cim, the log-
transformed CPM, and rim, Which is used for the edgeR package (version 3.16.5), is

defined by

C;.
l Cim + 7
Tim = 1082 M
m=1Cim T Ci.

x 10+ 1 |.

Here, ci. is a pseudocount that is proportional to the total read count for subject
i, and it is calculated using the same method as is used in the edgeR package.

.
Cim+— . . .

ZMme—'Z-I—c'X 10° can be less than 1, and in such case its logarithm becomes

m=1*~im L

negative. Thus, | add 1 to make r;,, positive. Log-CPM transformation is widely
used in RNA sequencing data analyses [32]. Then, x¥ (i € L;), wherek=1, ..., M;

— 1, is defined by

K M, M;
k=1 Lo ck = m ' 1(m € L), DF = m - I(m €R
X 0g Dk [} Tim (m k)' i Tim (m k)-
L m=1 m=1

As all OTUs in the genus can be associated with the host disease, xl-(’ for such

case is defined by

My M
co
0_ i 0_ 0 _
X —log<m>:ci = Z Tim, Dy = z Tim -
12 m=1 m=M1+1

The phenotype of subject i is denoted by yi and is coded as 1 and O for cases and
controls, respectively. Their vectors and matrices for testing the association of the

genus of interest are defined by
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xf Y1
xk = : , X= (xo .ee le_l), y = : .
xp YN
Here, | assume that x°, ... , and x™1~1 are ordered according to the depth of

the internal nodes. x° is used for testing the association of all OTUs belonging to
the genus of interest by pooling them, and x! is for testing the root node of the
phylogenetic tree. If | denote an NxN identity matrix as Iy and let Z be a design
matrix for p covariates including the intercept,

| assume that

E(x*|1Z,y) = Zay + yBy, Var(x*|Z,y) = o4 Iy, k = 0,...,M; — 1.

Quasi-score functions for e, and B can be obtained by

Ug(ay, Bx) = Gikkzt(xk —Zay, — yBy),

1
Ug(ay, Bi) = G—kk}’t(xk — Zay, — yBy).

Under the null hypothesis Ho: B = 0, @, is estimated by
a, = (ZtZ2) 1Ztx*.
IfIlet A =1, —Z(Z'Z)~1Z¢, the quasi-profile score for B, becomes

si =¥ Uy — Z(22)7Zx" = ytaxk,

and it can be used for testing the null hypothesis. The covariance matrix of s
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can be obtained by
var(sy) = var(y*Ax*) = o, y' AA'y = oy Y Ay.

Oy 1S estimated by

~ Kkt p.k
= Ax".
Okk N — D X X
Therefore, the score test statistic of B, for the test node k can be defined as
1 t t -1 2
Ty = 6—sk(y Ay)~ sy~ x°(df = 1) under H,.
kk

If the sample size is small, normality of Ty under Ho may not be achieved, and
the assumption of the quasi-score test can be violated. If | apply the inverse normal
transformation to xX, ..., xX, then the same statistics can be obtained. This is denoted
by TINT. Rank-based inverse normal transformation with adjust parameter 0.5 is
used for the transformation and data with tie values were mapped to a same value in
the transformed data [33].

Statistics for Hy: B, =0 can be combined to test Hy:fy=p1 ==
Bm,-1 = 0 using the minimum p-value. If p-values for Tk are denoted by pTk, the
proposed statistics, TMATy and TMAT m, are defined by

TMATy, = min{pTo, - ,PTm,-1},
TMAT;y = min{pTg"", - ,pTil.}.

In particular, Tx and Tk« are sufficient and ancillary statistics for Sy,
respectively, and Ty, ..., Ty, -1 are shown to be independent (see Supplementary
Text 2). Therefore,

TMATy, TMAT;y, ~ beta(1,M;) under H,.
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Independence of score test statistics

| assume that there is a single internal node. In such a case, there are two leaf
nodes, and phylogenetic tree becomes the one in Figure 2.1C. | let the observed
absolute read counts of an j™ observation of subject i be r;; and r,, respectively.
Then, test statistics To and Tz are functions of 1, /(131 + 132), and ry; + ;5. Let the
observed absolute read counts of subject i be r;; and r;,, respectively. Then, test
statistics To and Ty are functions of r;;/(ry1 + 732), and 13; + 7y5. Let fi,(x,y) be
the joint probability density function (PDF) of x and y, and f,(x) and f,(y) be
their two marginal PDFs. | assume that r;; and r;, independently follow a Poisson
distribution with parameters p; and p,, respectively. If | set p; = uy/((1 + U2),
then ry1|(ry1 + 12) ~B(ry1 + 132, p1). Therefore, then the joint distribution of r;;

and r;, is equivalent to

10g f;'il,riz (rl'l' Ti2; M1, MZ) = 10gf1'i1|1'i1+1'i2 (rillril + Ti2; pl)

+10g fr iy 41, Tin + Tizs 1 + p2).

7i1/(ri1 + 12) and 71y + 13, are maximum likelihood estimators of p; and
Uy + Uy, respectively; and 912 /0p;0(uy + up) = 0. x° and x! are functions of
111/(rip +132) and 1y, + 715,, respectively. Thus, | can conclude that x° and x!
are asymptotically independent, which indicates that To and T. that are functions of
x% and x! respectively are also asymptotically independent.

| assume that there are M internal nodes, and statistics for those, T, ..., Ta, ,
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are asymptotically independent.

I consider the phylogenetic tree with M1+1 internal nodes. | assume that internal
nodes are sorted in the ascending order of their depth. Then internal node Mi+1 has
the largest depth. | decompose those into the first M; internal nodes and the last

internal node M+1. By the assumption (2), | can assume that Ty, ..., Ty, are
asymptotically independent. Let the leaf nodes of internal node M:+1 be 7y, 4, and
Tim,+2, and the other leaf nodes be 7y, , ..., 1y, . lassume that 7jp, 1 and 7ip, 42
independently follow a Poisson distribution with parameters w41 and py, 42,
respectively. Then if 1let py, 11 = ppr, 41/ (m,+1 + B, +2), | €an show that
logfriMlﬂ,riMlJrz(TiM1+1'TiM1+2;ﬂM1+1'ﬂM1+2)

= logfriM1+1|riM1+1+riM1+2 (TiM1+1|TiM1+1 + TiM1+z;.0M1+1)

+10g fr i 4ris (TiM1+1 + Timy+2; Umy+1 T+ #M1+2)-

Similar to what is shown above (1), | can conclude that 7y, +1/(Tim, +1 + Tim, +2)
and  7Tijm 41+ Tim,+2 are approximately independent, which indicates the
approximate independence between iy 1.1 /Tim, +1 aNd Tipg, 41 + Tim, +2- Therefore
(To, -, Ty,) and Ty, ., are asymptotically independent.
Constructing phylogenetic trees for TMAT and quality control

Statistical analysis with TMAT requires the construction of a phylogenetic tree,
and databases such as Silva (release 128) [34] and EzTaxon [35] were used for all
taxonomic assignments in the CRC and ME/CFS datasets. The Silva database was
used to generate reference trees, which were then used to calculate phylogenetic
distances. The EzTaxon database does not generate phylogenetic trees, and these

were therefore obtained through the SINA method [36] using the reference sequences
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available from the EzTaxon database. | used a de-novo picking method for
taxonomic assignment. The de-novo picking method can assign different OTUs to
the same species. OTUs assigned to the same species were considered the same OTU,
and their absolute abundances were pooled. Characteristics of the microbiome
community may be affected by filtering conditions. For each OTU, | calculated its
relative proportion among all OTUs and determined the mean value across all
subjects. If the resulting value was smaller than 0.001, the OTU was excluded from

the analysis [37].

Fecal microbiota data for early-stage detection of colorectal cancer

A microbiome profiling study conducted by Zeller et al. [38] examined the
potential utility of the fecal microbiota for early-stage detection of colorectal
carcinoma (CRC). The 16S rRNA amplicon sequencing data from the study are
available from the European Nucleotide Archive (ENA) database under project
accession number PRJEB6070. The paired-end sequence pairs for 225 individuals
targeted the V4 region of the bacterial 16S rRNA gene. The primers F357 (5'-
CCTACGGGAGGCAGCAG-3") and R519 (5-GTNTTACNGCGGCKGCTG-3),
which are widely used for amplifying the V4 region, were detected and removed
using CUTADAPT software with a minimum overlap of 11, maximum error rate of
10%, and a minimum length of 10. Sequences were merged using CASPER software

with a mismatch ratio of 0.27, resulting in sequences 230—270 base pairs in length

[39]. After merged sequences were dereplicated, chimeric sequences were detected
and removed using VSEARCH software with the Silva Gold reference database for

chimeras. A de novo picking method was used to obtain the resulting OTU table with
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a 97% sequence identity threshold. Information about the disease status was missing
for 109 subjects, who were excluded from the study, resulting in 41 CRC patients
and 75 controls being considered for following simulation studies and real data

analyses.

Fecal microbiota data for myalgic encephalomyelitis

Giloteaux et al. [40] used 16S rRNA gene sequencing to examine the
microbiome profiles of subjects with myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS). Data were downloaded under the ENA project
accession number PRJEB13092. The V4 region of the bacterial 16S rRNA gene was
targeted. The methods described above for the CRC data were applied for primer
detection, merging, length filtering, dereplication, and OTU picking. The final
dataset consisted of 49 ME/CFS patients and 39 controls, which were used for
simulations and real data analyses.
Simulation studies

I conducted extensive simulations to evaluate the performance of TMAT with
two datasets; one with 41 CRC patients and 75 controls, and the other with 49
ME/CFS patients and 39 controls. Detailed description for both datasets is provided
in Supplementary Text 3. For the simulation studies, the disease status of the subjects
was permuted, and specific numbers of cases and controls were randomly selected.
Then, I randomly selected a single test node from the internal nodes, and from their
test leaf nodes, either a single OTU, 50% of OTUs, or 90% of OTUs were randomly
selected as causal OTUs. These were denoted by p = 1 OTU, 50%, and 90%,

respectively. It should be noted that p = 1 indicates that there is a single OTU
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associated with the host disease, and thus, the phylogenetic tree structure does not
provide any useful information for TMAT. If | let the sample variances of c;,, for
causal OTUs be &,,m, 6 = Bdmm Was added to the observed absolute abundances
of the selected causal OTUs for only affected subjects, and the absolute abundances
of the other OTUs were used without any modification. § was set to 0, 0.01, 0.05,
0.1, 0r 0.2. B = 0 was considered for estimation of empirical type-1 error rates, and
the others were used for estimating statistical power. Type-1 error rates were
estimated at the 0.05, 0.01, 0.005, and 0.001 significance levels with 20,000
replicates. Empirical power was estimated at the 0.05 significance level with 2,000
replicates.

For the sake of comparison with TMAT, oMiRKAT (version 0.02), MiSPU
(version 1.0), OMIAT (version 5.1), ANCOM (version 1.1-3), edgeR (version
3.16.5), and the Wilcoxon test were considered. Association analyses were
conducted at the genus level. Wilcoxon, ANCOM, and edgeR were applied by
pooling all OTUs within each genus. Each genus consisted of multiple OTUs, and
OMIRKAT, MiSPU, and OMIAT were applied to OTUs belonging to each genus.

MiSPU, OMIAT, and oMiRKAT use permutation-based p-values, and they
were calculated with 5,000 and 20,000 permutated replicates for estimation of power
and type-1 error rates, respectively. oMiRKAT offers several distance metrics,
including Unifrac distance as a default choice, while MiSPU also uses Unifrac
distance as the default option. I considered the default choices; however, Unifrac
distance cannot be calculated if read counts are not observed. Thus, subjects with no
read counts were excluded from oMiRKAT and MiSPU. Furthermore, none of these

can analyze a genus with a single OTU; hence, such instances were not considered
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for statistical power estimations of such genera. The R package ANCOM provides a
“Multcorr” option for ANCOM function, and it was set to 2, which indicates “less
strict correction.” The negative binomial generalized log-linear model was used for
edgeR. All other options were set to default values.

Package and software used for AMAA

AMAA provides three main analyses: metagenome sequence data processing to
build microbiome count table, microbiome compositional analysis and metagenome-
wide association study (Table 2.1).

For the first step in data processing of metagenome sequence, adaptor
sequences are detected and removed using the CUTADAPT software
(https://cutadapt.readthedocs.io) with a default option as a minimum overlap of 11,
maximum error rate of 10%, and a minimum length of 10 [41]. Sequences will be
merged using CASPER (http://best.snu.ac.kr/casper) with a mismatch ratio of 0.27
and filtered by the Phred (Q) score, resulting in sequences with a certain range of

length according to the target region of 16S rRNA gene [42]. For example, 350-550

bp is the suitable range for V3-V4 region. After the merged sequences were
dereplicated, chimeric sequences will be detected and removed using VSEARCH
(https://github.com/torognes/vsearch) and the Silva Gold reference database for
chimeras. With a single command line, either of open-reference using UCLUST
(http://www.drive5.com/usearch), De-novo clustering, closed-reference, operational
taxonomical unit (OTU) picking methods using VSEARCH [43] and detection of
ASVs using DADAZ2 [24] or all of them depending on the chosen option, will be
conducted. For closed-reference and open-reference method, choice of database can

be Silva [44], Greengenes [45] and EzTaxon [46]. Lastly, taxonomies are assigned
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based on taxonomies of chosen database. The characteristic of each databases and
clustering methods are described in Table 2.2 and Table 2.3 respectively.

In microbiome compositional analysis, rarefying step using GUniFrac package
precede calculation of alpha or beta diversity. Rarefying step is needed for sample
quality control and normalization of total read counts for each sample. In
microbiome compositional analysis, normalized dataset can reduce the bias in alpha
and beta-diversity measurements. Alpha-diversities such as ACE, Chao 1, Shannon
and Simpson index will be calculated and described with boxplots or scatter plots
depending on the proper type of traits. For the choice of beta-diversity, the Bray-
curtis, weighted UniFrac and unweighted UniFrac distance are provided. With the
calculated beta-diversity, overall microbial variance can be described with Non-
metric Multi-dimensional Scaling (NMDS) plot and PERMANOVA determines the
associated-traits. For repeated measured data, pldist is used for consideration of
correlations in within-subject samples.

For metagenome-wide association test in AMAA, preprocessing step is
conducted such as filtering extremely sparse OTUs, dividing OTUs into certain
taxonomy group, rarefaction procedure if needed for testing, removing of the
samples with zero abundance. After the preprocessing step, community-level
association tests such as MiRKAT, MiSPU and OMIAT, non-parametric method,
Wilcoxon test, ANCOM, EdgeR and TMAT will be provided for cross-sectional
analysis. LMM with arcsine square root transformation, ZIBR, cSKAT and

FZINBMM is available for repeated measured data.
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Similarity measure for a pair of databases

The identifiers of specific microbial organisms vary from database to database.
There are multiple database and OTU clustering results depends on the database.
Thus, different OTUs can be generated according to the choice of database, and |
consider compositional dissimilarity between a pair of samples can be evaluated with
beta diversity. It was assumed that Unifrac distance that considers both of the
existence or abundance of OTUs and phylogenetic tree information is available.
Then if | let D; and D4, be the Unifrac distances based on database d and d’
respectively, similarity measure of D; and Dy, is constructed with a modified
version of correlation matrix distance [47] as follows:

tT(Sde,)
Salls > 11Sarllf

Saar =

Whel’e Sd =1- Dd’ Sd/ =1 _Dd'
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Table 2.1. Analyses available in AMAA

Main analyses
Sequence data processing

Sub-catecory
Removal of adaptor sequences

Description
Primers

Reference and software
Martin et al. (2011) - Cutadapt

Merging of sequences

Paired ends

Kwon et al. (2014) - Casper

Filtering unqualified sequences

Phred (Q) score/Sequence length filtering

Bokulich et al. (2013)

Remove chimeric sequences

Using Silva Gold reference database

Rognes et al. (2016) -VSEARCH

Building microbial count table

Open-reference OTU picking
Closed-reference OTU picking
De-novo OTU picking

Amplicon sequence variants (ASVs)

Edgar et al. (2010) - UCLUST
Rognes et al. (2016) -VSEARCH
Rognes et al. (2016) -VSEARCH
Callahan et al. (2016) - DADA2

Taxonomy assignment

Choice of database

Edgar et al. (2010) - UCLUST

Microbial composition
analysis

Rarefying

Normalized table

Chen et al. (2018) - GUniFrac

Alpha-diversity

ACE, Chao 1, Shannon, Simpson index

Oksanen et al. (2007) - vegan

Beta-diversity

Bray-curtis, Unifrac

Oksanen et al. (2007) - vegan
Chen et al. (2018) - GUniFrac

NMDS plot, PCA, Kernel PCA

Visualization of beta-diversity

Oksanen et al. (2007) - vegan / skikit-lean

Pldist Beta-diviersity for repeated data Plantinga et al. (2019) - pldist

PERMANOVA Find traits that explains microbial variance Anderson et al. (2013) - PERMANOVA
Metagenome-wide TMAT Phylogenetic tree-based Kim et al. (2020)
association analysis ANCOM Compositional bias correction Mandal et al. (2015)

MiRKAT Kernel based regression Wilson et al. (2020)

MiRKAT-s Extension of MiRKAT for survival data. Plantinga et al. (2017)

aMiSPU Generalized taxon proportion Wu et al. (2016)

OMIAT Combines oMiRKAT & aMiSPU Koh et al. (2017)

OMiSA Combines MiSALN & MiRKAT-s. Robinson et al. (2010)

EdgeR Method for RNA expression data Bauer et al. (1972)

Wilcoxon rank sum test
GLMM-MiRKAT

ZIBR

cSKAT

FZINBMM

LMM (arcsine square root, log)

Non-parametric approach
Extension of MiRKAT for longitudinal data.

Zero-inflated beta random effect (Only balanced data)
Small-sample kernel association test for correlated data

Zero-inflated negative binomial mixed model

Linear mixed model with arcsine root or log transformation.

Koh et al (2019)
Chen et al. (2016)
Zhan et al. (2018)
Zhang et al. (2020)
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Table 2.2. Databases available in AMAA

Database Country Sequences Lowest rank Description
Gl o X s e
Silva (C;\?[;Tan 190,000 Species Most of the strains are
Plank) unclassified.
EzTaxon %ﬁjﬁlab) 63,000 Species ﬁgetlhgaﬁ:;?s have species-
33
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Table 2.3. Characteristics of clustering methods available in AMAA.

De novo

Closed
reference
Open
reference

ASVs

Va.lldlt}.l of RobUSE0 Application across Guaranteed observation Meta- Computational
diversity change of . o :
environments & replication analysis costs
measurement references

Y Y Y N High
N N N Y Low
Y N N N High
Y Y Y Y High
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2.3. Results

Distribution of the relative proportion of log CPM

Proposed statistic assume that x* are normally distributed and that the

statistical scores for internal nodes are independent. To verify the normality of x%,
their skewness and kurtosis were calculated using the OTUs in the CRC and ME/CFS
datasets. Figure 2.2A and 2.2B show boxplots of skewness and kurtosis for x¥ for
the OTUs in the CRC and ME/CFS datasets after using the Silva database for OTU
clustering. The results showed that the median values of skewness and kurtosis of
the relative abundances were substantially greater than 0. However, the medians of

skewness and kurtosis of x{‘ were much closer to 0, and thus | can conclude that the

distribution of x¥ is much closer to a normal distribution. Figure 2.3 shows scatter

plots of each pair of score statistics for internal nodes. The scatter plots in Figure
2.3Aand 2.3B do not show any significant patterns, and the correlations were 0.0250
(p-value = 0.4966) and 0.0189 (p-value = 0.553). The results based on EzTaxon are
shown in Figure 2.3C and 3.3D. Therefore, the statistical scores for internal nodes

are approximately independent.
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A. CRC dataset, Silva database
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C. CRC dataset, EzTaxon database
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Figure 2.2. Skewness and Kurtosis of relative abundances and x%., .
Skewness and kurtosis were calculated for relative abundances and x%,,, in the
CRC and ME/CFS datasets. Skewness and kurtosis for normal distributions are
0, represented by vertical lines. Results are based on Silva and EzTaxon

databases.
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B. ME/CFS dataset, Silva database
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D. ME/CFS dataset, EzTaxon database
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A. CRC dataset, Silva database B. ME/CFS dataset, Silva database
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C. CRC dataset, EzTaxon database D. ME/CFS dataset, EzZTaxon database
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Figure 2.3. Scatter plots for pairs of p-values of internal nodes. Each pair of p-

values for each internal node was used to create scatter plots. Solid and dashed lines

represent a simple linear regression line and LOWESS smooth line [48], respectively.
LOWESS smooth line was fitted with the function ‘lowess’ in R with default options.

Results are shown for CRC and ME/CFS with OTUs clustered by Silva and EzTaxon

databases.

37



Results from simulated data

| first calculated the empirical type-1 error estimates using simulated data based on
the CRC and ME/CFS datasets. Table 2.4 shows the characteristics of each dataset,
including species richness and Pielou's evenness [49].

| generated simulated data by modifying the CRC and ME/CFS datasets and
conducted extensive simulations to evaluate the performance of TMAT. | used the Silva
and EzTaxon databases for OTU clustering, and the results from EzTaxon database is
provided in Table 2.5. These results indicated that the results from edgeR were
substantially inflated for both databases. TMAT and the other methods except edgeR
preserved the nominal type-1 error rate at the 0.05, 0.01, 0.005, and 0.001 significance
levels if the sample sizes were more substantial than or equal to 50. However, the proposed
methods became more conservative as the sample size decreased, and a inverse normal
transformation made them less conservative. No significant differences in OTU clustering
were observed between the Silva and EzTaxon databases.

| also considered the effect of library size on type-1 error rates, and the results are
provided in Table 2.6. Results showed that the TMAT statistics were not affected by the
total read counts. The type-1 error rates of edgeR tended to increase as the library sizes
increased, but other approaches were robust to the library size. Upon evaluating the effect
of the number of leaf nodes (Table 2.7), results showed that TMATwm became slightly
conservative if the number of leaf nodes was larger than 30 but that TMAT m was less
affected. Table 2.8 shows the effect of sparsity on the type-1 error rate. For each genus, |
calculated its sparsity, defined as the proportion of subjects with no abundance, and type-

1 error rates were calculated. Results showed that the type-1 error rates of edgeR were the
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most inflated and that some inflation was observed for OMIAT when the mean sparsity is

greater than 10%. Slight inflation was shown for oMiRKAT when the mean sparsity was

larger than 30%. oMIRKAT is based on the permutation, and the permutation-based p-

value is generally robust to the non-normality. However, if there exists heteroscedasticity,

its statistical validity can be impaired. A substantial amount of sparsity may induce the

heteroscedasticity, which may explain the type-1 error inflation. The type-1 error rates for

ANCOM became deflated. Some deflation was also observed for TMAT v, but rates for

TMAT m were less deflated.

Table 2.4. Characteristics of CRC and ME/CFS datasets. Species richness and Pielou's

evenness were calculated using the R package vegan 2.4-3 [49].

Dataset Database Nu(l)n%)&l; of Rlchnes;i§mean - Evenness (mean + sd)
CRC Silva 129 115.0259 + 7.1608 0.6522 £0.1017
EzTaxon 152 137.7586 £ 7.1913 0.6567 £ 0.0990
ME/CFS Silva 118 91.6092 + 10.4139 0.6121 £0.1108
EzTaxon 133 107.0920 + 10.7418 0.6138 £ 0.1086
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Table 2.5. Type-1 error estimates with OTUs clustered by EzTaxon database. The numbers of cases and controls were assumed to be
the same. The total sample size is denoted by N, and I considered N =20, 30, 50, and 70. All subjects were selected without replacement.

Type-1 error estimates were calculated with 2,000 replicates at the significance level 0.05, 0.01, 0.005 and 0.001.

N=20
Data Method ‘

N=30 N=50 N=170

CRC | TMATy [0.03029]0.00237|0.00075{0.00003|0.03468|0.00424(0.00158(0.00012]0.04153]0.00612{0.00265(0.00030{0.04499(0.00730{ 0.00323 | 0.0004 1
TMAT [0.03715{0.00384[0.00110{0.00002|0.04054(0.00558{0.00218|0.00016|0.04498]0.00730{0.00323{0.00042|0.04673|0.00827| 0.00378 | 0.00053
Wilcoxon |0.043240.00892{0.00390|0.00070|0.04463|0.00962|0.00475]0.00089(0.04977{0.00983|0.00492|0.00101{0.04971|0.00976| 0.00488 | 0.00091
oMiRKAT [0.05360]0.01497(0.00803|0.00440(0.04897(0.00972|0.00492(0.00098 [0.04951(0.00992{0.00497|0.00104|0.05096|0.01052( 0.00530 | 0.00104

OMIAT [0.06426]0.02164]0.01589(0.01059(0.06320(0.01758{0.01110]0.00504|0.05208|0.01205|0.00682(0.00248(0.05169(0.01162| 0.00673 | 0.00245
aMiSPU [0.05611{0.02399(0.01928(0.01400(0.05576|0.01734(0.01274{0.00187|0.04351{0.00938|0.00458|0.00108]0.04604(0.00916| 0.00488 | 0.00098

edgeR  ]0.24591]0.14590(0.12365|0.09419|0.12881]0.04785|0.02892{0.01259|0.21783]0.12601|0.11151{0.08692|0.23542|0.13926| 0.11501 | 0.07729
ANCOM [0.03185|0.00515(0.00088|0.00000{0.06246|0.01005|0.00377{0.00021|0.06238]0.01539]0.00763]|0.00086|0.06759(0.01724| 0.00845 | 0.00114
IME/CFS| TMATwMm [0.02884(0.00223|0.00065{0.00003 (0.03485|0.00372(0.00124{0.00009{0.03959{0.00558|0.00218|0.00022|0.04340(0.00712| 0.00305 | 0.00047
TMAT [0.03547]0.00362(0.00103|0.00002{0.04070]0.00545{0.00204{0.00015(0.04370(0.00712(0.00298|0.00038]0.04547|0.00790| 0.00358 | 0.00053
Wilcoxon [0.042830.00819(0.00365|0.00068|0.04574(0.00965|0.00470{0.00090(0.04901{0.00918|0.00456|0.00085|0.04870|0.00967| 0.00478 | 0.00089
oMiRKAT [0.07647]0.03454(0.03008]0.02372|0.05255(0.01237]0.00678(0.00280(0.05149(0.01285]0.00771{0.00374|0.05043]0.01064| 0.00567 | 0.00170

OMIAT [0.07933]0.02646|0.01947]0.01237|0.06282|0.02025]0.01448]|0.00902|0.05212|0.01113|0.00586{0.00136(0.06041{0.01266| 0.00682 | 0.00158
aMiSPU |0.03857(0.00737{0.00397(0.00087{0.05228|0.00977|0.00516{0.00178|0.04294|0.00856|0.00419|0.00093{0.04541{0.00947| 0.00540 | 0.00095

edgeR 0.25105|0.13340(0.11478|0.07147|0.18830(0.09199|0.06348(0.01936|0.18910{0.09792|0.07946|0.04741|0.17870(0.07611| 0.05310 | 0.02313
ANCOM |0.06383|0.00804|0.00226{0.00000(0.07943|0.01518|0.00486|0.00026|0.05472{0.01073|0.00432{0.00037(0.05799{0.01185| 0.00453 | 0.00033
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Table 2.6. Effect of total read counts on type-1 error estimates. Subjects were sorted by
total read counts and categorized into four groups, and for each group, the type-1 error
rates were calculated separately. G1 consisted of subjects below the 25th percentile for
total read counts, and G2, G3, and G4 consisted of those in the next three quartiles. I
generated simulation data based on read counts from the CRC dataset clustered by the Silva
database and assumed total sample size (N) is equal to 50.

Group by total Significance level

GO reacll) co);mts o= 0.%1 \ a=0.005 a=0.001
TMATwMm Gl 0.03617 0.00403 0.00144 0.00009
G2 0.03881 0.00455 0.00161 0.00016

G3 0.03615 0.00411 0.00151 0.00009

G4 0.03716 0.00431 0.00159 0.00014

TMAT v Gl 0.04178 0.00572 0.00223 0.00016
G2 0.04170 0.00566 0.00221 0.00022

G3 0.04166 0.00590 0.00234 0.00020

G4 0.04231 0.00603 0.00238 0.00020

Wilcoxon Gl 0.04597 0.00893 0.00414 0.00084
G2 0.04590 0.00888 0.00427 0.00083

G3 0.04635 0.00900 0.00436 0.00091

G4 0.04637 0.00928 0.00445 0.00096

OMIAT Gl 0.06126 0.01568 0.00928 0.00340
G2 0.06122 0.01674 0.01074 0.00504

G3 0.05944 0.01602 0.01007 0.00495

G4 0.05685 0.01841 0.01338 0.00894

OMiRKAT Gl 0.05312 0.01382 0.00876 0.00405
G2 0.04814 0.00960 0.00501 0.00107

G3 0.05129 0.01129 0.00592 0.00142

G4 0.05415 0.01451 0.00965 0.00535

aMiSPU Gl 0.04253 0.00866 0.00431 0.00093
G2 0.04244 0.00898 0.00408 0.00094

G3 0.04235 0.00907 0.00449 0.00088

G4 0.04334 0.00881 0.00423 0.00083

edgeR Gl 0.12434 0.04056 0.02528 0.01122
G2 0.16231 0.06906 0.04895 0.02219

G3 0.27072 0.18366 0.16007 0.11443

G4 0.27333 0.15392 0.10788 0.05577

ANCOM Gl 0.04185 0.00753 0.00192 0.00010
G2 0.03449 0.00613 0.00237 0.00007

G3 0.03382 0.00526 0.00157 0.00011

G4 0.03700 0.00592 0.00250 0.00006
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Table 2.7. Effect of numbers of leaf nodes on type-1 error estimates. Families were
categorized into four different groups according to the number of leaf nodes, and for each
taxon, type-1 error rates were estimated. Simulation data were generated with read counts
from the CRC and ME/CFS datasets. OTUs were clustered by the Silva database, and I
assumed the total sample size (N) is equal to 50.

Number of Significance level

leaf nodes 4 b 4 a=0.001

TMATwMm 2-9 0.04205 0.00666 0.00271 0.00036
10-19 0.03468 0.00445 0.00193 0.00018

20-29 0.03028 0.00415 0.00153 0.00013

>=30 0.02198 0.00228 0.00073 0.00003

TMAT v 2-9 0.04389 0.00738 0.00323 0.00043
10-19 0.03685 0.00550 0.00258 0.00030

20-29 0.03458 0.00520 0.00220 0.00020

>=30 0.03240 0.00463 0.00155 0.00010

Wilcoxon 2-9 0.04991 0.00964 0.00492 0.00099
10-19 0.04990 0.00973 0.00523 0.00105

20-29 0.04990 0.00940 0.00465 0.00108

>=30 0.04955 0.00993 0.00455 0.00100

OMiRKAT 2-9 0.05012 0.01011 0.00513 0.00095
10-19 0.05005 0.00970 0.00523 0.00130

20-29 0.05088 0.01020 0.00533 0.00083

>=30 0.04975 0.00950 0.00523 0.00113

OMIAT 2-9 0.05099 0.01083 0.00567 0.00159
10-19 0.06615 0.01535 0.00938 0.00228

20-29 0.07028 0.01773 0.01020 0.00275

>=30 0.03670 0.00648 0.00283 0.00060

aMiSPU 2-9 0.04649 0.00921 0.00523 0.00124
10-19 0.05090 0.00900 0.00503 0.00110

20-29 0.05005 0.01090 0.00588 0.00138

>=3() 0.05143 0.01008 0.00528 0.00088

edgeR 2-9 0.17653 0.07416 0.05214 0.02360
10-19 0.15088 0.04013 0.02175 0.00518

20-29 0.01125 0.00090 0.00043 0.00005

>=3() 0.09413 0.02580 0.01235 0.00160

ANCOM 2-9 0.03831 0.00878 0.00393 0.00058
10-19 0.03335 0.00790 0.00345 0.00055

20-29 0.03178 0.00665 0.00325 0.00065

>=3(0 0.02893 0.00883 0.00378 0.00058
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Table 2.8. Effect of sparsity on type-1 error estimates. For each genus, | calculated its
sparsity as the proportion of subjects with no abundance. Genera were sorted by their
sparsity and categorized into three different groups, and for each taxon, type-1 error rates
were estimated. Simulation data were generated by using read counts from the CRC
dataset. OTUs were clustered by the Silva database, and I assumed the total sample size
(N) is equal to 50.

Mean Mean Significance level

P ;‘:Iylelf:el 'l‘:a';‘zﬁfi:sf @=0.05 =001 a=0.005 a=0.001

TMATwMm 0-10% 2.58 0.03983 | 0.00540 | 0.00223 0.00021
10-30% 4.00 0.04207 | 0.00635 | 0.00265 0.00033

30-100% 2.75 0.04339 | 0.00666 | 0.00313 0.00030

TMAT M 0-10% 2.58 0.04524 | 0.00751 0.00347 0.00044
10-30% 4.00 0.04366 | 0.00744 | 0.00326 0.00043

30-100% 2.75 0.04576 | 0.00744 | 0.00294 0.00044

Wilcoxon 0-10% 2.58 0.04908 | 0.00913 0.00467 0.00095
10-30% 4.00 0.04844 | 0.00914 | 0.00459 0.00090

30-100% 2.75 0.04799 | 0.00901 0.00440 0.00084

OMiRKAT 0-10% 2.58 0.05064 | 0.01052 | 0.00524 0.00125
10-30% 4.00 0.04963 | 0.00980 | 0.00484 0.00086

30-100% 2.75 0.05645 | 0.01158 | 0.00599 0.00188

OMIAT 0-10% 2.58 0.05332 | 0.01432 | 0.00917 0.00458
10-30% 4.00 0.06285 | 0.01481 0.00802 0.00193

30-100% 2.75 0.06271 | 0.01508 | 0.00844 0.00279

aMiSPU 0-10% 2.58 0.04346 | 0.00900 | 0.00476 0.00096
10-30% 4.00 0.04444 | 0.00897 | 0.00474 0.00092

30-100% 2.75 0.04205 | 0.00813 0.00398 0.00079

edgeR 0-10% 2.58 0.19448 | 0.11181 0.09343 0.07026
10-30% 4.00 0.25196 | 0.13918 | 0.11599 0.07272

30-100% 2.75 0.15773 | 0.07364 | 0.05633 0.03068

ANCOM 0-10% 2.58 0.03254 | 0.00689 | 0.00265 0.00021
10-30% 4.00 0.03498 | 0.00727 | 0.00279 0.00022

30-100% 2.75 0.01501 | 0.00306 | 0.00116 0.00009
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| also calculated statistical power estimates with 2,000 replicates at the 0.05
significance levels, and these were compared with those of other statistical methods.
| considered genera consisting of two or more OTUs. OTU clustering was conducted
using the EzTaxon database (Figure 2.4).

In summary, I confirmed that TMAT is generally the most efficient among the
available methods in the simulations. TMAT considers phylogenetic tree structures
and uses log CPM transformation, which may lead to its superiority over other
methods. OMIAT is the second most powerful, but its power substantially decreases
if a genus has a single OTU. Furthermore, while OMIAT, oMiRKAT, and aMiSPU
are based on permutation approaches, which can be computationally very intensive
if the significance level is small, TMAT utilizes a distribution-based p-value and is

therefore computationally fast (Figure 2.5).

Real data analysis

The CRC and ME/CFS datasets were analyzed with TMAT and the other
methods. The CRC dataset includes the age, sex, and body mass index (BMI) of the
subjects, and the ME/CFS dataset contains the age and gender. It has often been
shown that OTUs are affected by factors such as age and gender and that such factors
consequently affect disease outcomes. Table 2.9 show that TMATw resulted in the
greatest number of significant genera: Fusobacterium, Lysinibacillus, Anaerostipes,
and Streptococcus. Figure 2.6 shows the internal nodes for Fusobacterium and their
relative proportions. Fusobacterium has a single internal node with two different leaf
nodes. The data showed that the relative abundances of leaf node m = 0 were much

higher in controls and that those of m = 1 were higher in specific cases.
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Fusobacterium nucleatum has been reported to be an opportunistic and commensal
anaerobe related to periodontitis and appendicitis, and it is significantly associated
with CRC. Interestingly, a recent study indicated that the relative ratio of F

nucleatum to probiotics plays an essential role in the detection of CRC [50]. Figure

2.7A shows that Lysinibacillus has a single internal node and two different leaf nodes.

The results showed that the significance of Lysinibacillus was driven by internal
node k = 1, with controls tending to have much higher abundances of m = 1 than
cases. The antimicrobial potential of Lysinibacillus has been reported, and its
bacteriocin can be used in foods to protect against cancer-inducing food-borne
bacterial and fungal pathogens [51]. Thus, the negative correlation of Lysinibacillus
with CRC is a credible result. These results confirm that the genera identified using
TMAT may be associated with CRC. Thus, it can be concluded that TMAT
successfully detected genera associated with host diseases.

Table 2.9. Association analysis results of CRC dataset with genera clustered

by Silva database. OTUs were clustered with the Silva database, and associations
of genera with CRC were tested. Results for genera significantly associated with at

least one method at the FDR-adjusted 0.05 significance level were summarized.
Genus TMATv TMATiv  oMiRKAT OMIAT  aMiSPU |

Fusobacterium 0.00169 0.01200 NA 0.69875 NA
Lysinibacillus 0.01288 0.01884 NA 0.28178 NA
Anaerostipes 0.04380 0.04540 NA 0.14308 NA

Roseburia 0.04380 0.09218 0.06752 0.11131 0.10439
Streptococcus 0.05028 0.04540 0.06752 0.19117 0.10149
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Figure 2.4. Power estimates for genera consisting of more than one OTU
clustered by EzTaxon database. Power estimates at the significance level of 0.05
were calculated with 2,000 replicates. I generated simulation data based on read
counts from CRC and ME/CFS datasets and considered genera with more than one
OTU. OTUs were clustered by EzTaxon database.
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Figure 2.5. Comparison of computational costs. For CRC dataset, computational
costs of TMAT, optimal oMiRKAT, aMiSPU, OMiAT, Wilcoxon, edgeR, and
ANCOM were compared. The number of permutation-based p-values for MiRKAT,
aMiSPU, and OMiAT was set to 1,000. Means of the computational time required
for 15 different CRC datasets and their 95% confidence intervals are provided.
Analyses were conducted using the R package microbenchmark (version 1.4-4) with
an Intel(R) Xeon(R) CPU E3-1230 v3 @ 3.30GHz processor.
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Figure 2.6. OTU distributions of Fusobacterium. Relative proportions of OTUs
belonging to Fusobacterium were calculated. The blue internal node indicates that
OTUs are more abundant in cases than controls. Each OTU has its corresponding
leaf node, and leaf nodes in green and red indicate that they are more frequently
observed in cases and controls, respectively. For exp(B), B indicates the maximum
likelihood estimate by the quasi-likelihood method, and exp(P) indicates the mean
difference of C*/D¥ between cases and controls after adjusting for covariates. OTUs
were clustered by the Silva database.
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Figure 2.7. OTU distributions of significantly associated genera for CRC
dataset based on Silva database. Relative proportions of OTUs belonging to
significantly associated genera according to TMATwm were calculated. The blue
internal node indicates that OTUs are more abundant in cases than in controls.
Each OTU has its corresponding leaf node, and leaf nodes in green and red
indicate that they are more frequently observed in cases and controls, respectively.
For exp (B), B indicates the maximum likelihood estimate for the quasi-
likelihood, and exp(B) indicates the mean difference of C/D¥; between cases and
controls after adjusting for covariates. OTUs were clustered by the Silva database.
Roseburia was omitted for the resulting plot.
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Input and output of AMAA

AMAA supports two types of data input files: fastq files, and microbial count
table. When fastq file is given, only four mandatory inputs are needed. A path to the
fastq folder, the adaptor sequences, a range of length for 16S rRNA gene target region
and meta file. Other options for Cutadapt, Casper, VSEARCH, UCLUST and
DADAZ2 will be synchronized with analysis environment file, env.ini, and can be
easily edited. The analysis can be separately conducted with the option of range of
sub-analysis to be conducted. Output of processing sequence data is OTU/ASV table.

For microbiome compositional analysis, output will be microbial compositional
plot, alpha- and beta- diversity output, result of PERMANOVA and plots based on
NMDS, PCA and Kernel PCA. Metagenome-wide association analysis will be
conducted at genus level as a default option and can be changed. The final output
will be p-values for each method, effect size if available, and FDR adjusted p-values.
The result file will be generated for each combination of clustering method and

database.

Specification of strength and weakness of methods in microbiome
association analysis

Metagenome-wide association study in AMAA, provides the different methods

for microbiome association analyses depending on the types of trait data (binary or

continuous), robustness to compositional bias, availability of covariate adjustment,

set based analysis and OTU level analysis. By integrating different types of

association methods designed for specific research characteristics into a common

interface, AMAA enables more extensive and systematic microbiome association
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analyses. In Tables 2.10, | summarized the characteristics of each methods and
proper situation to use for the microbiome association test available in AMAA.
Detailed procedure including input file achievement user can get for each analysis

step is described in Figure 2.8.

Similarity of databases based on CRC dataset
OTU count table were generated based on Silva, EzTaxon and Greengene
databases using CRC dataset. For each OTU, the relative proportion was calculated
and determined the mean value across all subjects. If the resulting value was smaller
than the cutoff value, the OTU was excluded for the calculation of similarity. All
the OTU count tables were rarefied with the minimum library size across all the
samples of all the count tables. Similarity was calculated between any possible pairs
of database, and is shown in Figure 2.9. The cutoff, 103, which is often used for
quality control of OTUs is shown with vertical black dashed line [18, 37, 52]. The
similarity for every pairs of databases monotonically increased when logio cutoff
increases from -7 to -3.30 (from 107 to 5x10* for raw cutoff value). The mean
value of the number of remained OTUs decreased according to cutoff values and
the similarities started to up and down irregularly when cutoff is more than -2.70
(cutoff = 2x107%) and the logio mean number of OTUs is less than 1.83 (The mean
number of OTUs = 67) (Figure 2.9). The similarity of the databases were

maximized near the cutoff, 103, when the mean number of OTUs is more than 67.
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Table 2.10. Availability of different variable types, covariates, information and analyses support in association analyses in AMAA.

TMAT
ANCOM
MiRKAT

MiRKAT-s
aMiSPU
OMIAT
OMiSA
EdgeR

Wilcoxon

GLMM-
MiRKAT

ZIBR
cSKAT

FZINBMM

binary

Trait type

continuous

censored
time-to-
event

z

Covariate
adjustment

Single
OTU
analysis

Effect
size and
direction
provided

Compositional
bias corrected

Repeatedly
measured

Reference and
software

Kim et al. (2020)

Mandal et al. (2015)

Wilson et al. (2020)

Plantinga et al. (2017)

Wu et al. (2016)

Koh et al. (2017)

Koh et al. (2018)

Robinson et al. (2010)

Bauer et al. (1972)

Koh et al. (2019)

Chen et al. (2016)

Zhan et al. (2018)
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2.4. Discussion

The importance of microbiome-host interactions has been known for more than a
century [53], and it has been shown that the occurrence of many human diseases is related
to bacterial communities. However, the abundances of many OTUs are very low, and inter-
subject variation is high, complicating statistical analyses. Here, | propose a new method
for detecting OTUs associated with host diseases. TMAT statistics are based on quasi-
scores for internal nodes in a phylogenetic tree, and those statistics are combined into a
single statistic with a minimum p-value. By using such quasi-score statistics, TMAT can
identify differences among OTUs significantly associated with host diseases, while
existing statistical methods, such as aMiSPU, OMIAT, and oMiRKAT, cannot.
Furthermore, by the nature of the proposed statistics, the statistical scores for internal nodes
are independent, and the minimum p-value can be directly calculated. | compared the
performance of TMAT with those of oMIRKAT, aMiSPU, and OMIAT under various
simulation scenarios. According to the results, TMAT correctly controlled the nominal
type-1 error rate and was statistically the most powerful method for detecting associations
with host diseases in the simulation studies. Furthermore, TMAT is computationally less
intensive than the other methods, allowing the completion of statistical analyses within a
few minutes. It should be noted that previous methods, such as OMIAT, can require several
days when the sample size is larger than 1,000. | implemented TMAT using the R package
with multiple functions for association analyses, and this implementation is available at
http://healthstat.snu.ac.kr/software/tmat.

However, despite the flexibility of TMAT, the proposed method has several

limitations. First, there are multiple software programs available for OTU clustering and
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multiple 16S rRNA gene sequence databases, and the statistical properties of TMAT
ultimately depend on which method is used. The statistical power of TMAT should be
maximized when the OTU clustering results are the most accurate, but the best strategy for
OTU clustering remains unclear. Multiple studies have compared the accuracy of databases
by using a mock community whose microbial composition is known, and the EzTaxon
database was reported to be the most accurate among the existing databases, including the
Silva and Greengenes databases [25, 26]. Thus, | considered the EzTaxon database for the
simulation. However, the most accurate database can vary according to the samples
analyzed. This issue can be handled statistically with a simple modification of the proposed
statistics. For instance, OTUs can be clustered under multiple conditions, and the statistics
for association analyses with OTU clustering can be combined with Fisher’s combination
method or minimum p-value approaches. Second, | showed that TMAT outperforms
existing methods using extensive simulations. If a single OTU is associated with disease
status, a single statistic corresponding to the OTU is expected to be significant, while the
others should not be significant. If most of the OTUs are associated with disease status, T,
or T; isexpected to be significant, and the others not significant. In both scenarios, a single
p-value is significant, and the minimum p-value method is known to be the most powerful
for combining p-values. This is why | considered the minimum p-value method. However,
the results depend on the simulation settings and cannot be generalized to different
simulation scenarios. For instance, the minimum p-value approach is less efficient when
most of T, within the same genus are significant. For Figure 1 B, | assume that two OTUs,
m = 1 and 3, affect the host diseases while the other two OTUs do not. Next, the score

statistics for the internal nodes for k = 2, 3 become significant. In this case, Fisher’s method
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is expected to be more powerful and can be a valuable alternative. Further extensive
simulation studies are still necessary. Third, statistical power and type-1 error of TMAT
are affected by the number of leaf nodes. In case the latter is significant, TMAT becomes
conservative and loses statistical power. In the simulation studies, | found that TMAT is
uniquely conservative, but it can be adjusted by using permutation used for other methods.
Power loss is observed for all methods. If the number of nodes is large, the effect of OTUs
on host diseases can be heterogeneous, and statistical analyses should be conducted
carefully. Fourth, I assumed that the absolute read count for each leaf node follows Poisson
distribution and showed that scores for internal nodes are independent. | found that the
independence is preserved in the real datasets. However, this can be violated in some
scenarios. In such case, I suggest to test their independence by using Kolmogorov Smirnov
test, etc, and if it is violated, | recommend to use a robust method such as permutation.
Lastly, 16S rRNA gene sequencing clustering enables the identification of taxa associated
with host diseases at the genus or phylum levels, but the accuracy of OTUs at the species
level remains controversial. Besides, recent improvements in sequencing technology have
enabled the detection of functional genes using metagenomics shotgun sequencing, and
several approaches have been proposed to handle such data. However, the current version
of TMAT cannot be applied to the detection of functional genes in metagenomics data.
Future work will aim to further develop the method to extend its applicability to such data.

AMAA enables a researcher to perform many of the microbiome association analysis
with different choice of input file, database, clustering methods and test statistics. AMAA
supports both of two common types of data input files, fastq and microbial count table. It

provides a unified preprocessing procedures for association methods and a rich choice of
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methods for association analysis based on different database and clustering methods. This
enables a researcher can get comprehensive information for viable associations depending
on the choice of database and clustering methods. Similarity measure between a pair of
databases can evaluate the similarity between a pair of databases based on a certain dataset.
AMAA also has a limitation. As reference sequences of microbial clusters are different
based on the choice of clustering methods and databases, comparison of the results across
different clustering methods and databases are limited. Similarity measure of databases is
limited in that it is based on beta diversity rather than similarity of reference sequences,
and results may vary across datasets.

Over the last decades, it has been expected that bacterial communities may be
associated with many disease conditions in humans; however, association analyses have
not met with expectations owing to the absence of a standard analysis toolset with efficient
and reproducible statistics. The proposed TMAT methods and AMAA package allow non-
experts to efficiently conduct statistical analyses with small computational costs, which
may lead to an improved understanding of the complex interplay between bacterial

communities and hosts.
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Chapter 3. Longitudinal Microbiome Association Test

based on Phylogenetic Tree

3.1. Introduction

Recent advance of high-throughput technologies such as microarrays and next-
generation sequencing has greatly increased our understanding of the microbial world. For
instance, it has been shown that intestinal microbiota plays essential roles in host by
affecting energy homeostasis, body adiposity, blood sugar control, insulin sensitivity and
hormone secretion [54-56]. However, the abundances of microbial taxa are often sparse
with excessive zeros, and taxa observed in all samples are usually rare. Most of microbiota
were observed in a small proportion of samples and this makes statistical testing hard to
control the type-1 and type-2 errors. In addition, microbiota are highly variable because
they are affected by various factors, such as age and sex. Therefore, caution should be
taken when inferring causal relationships through statistical analysis of microbiota data.

Longitudinal microbiota studies are useful to detect microorganisms related to the
progression of disease and identify the change along the time, and provides more evidence
for the causal relationship than cross-sectional studies [57]. Furthermore the estimation of
within-subject covariate effects is robust against between-subject confounders, and
longitudinally measured microbiome data enable the robust identification of microbiota
effects on the risk of diseases in the host. Statistical analyses with repeatedly observed 16S
rRNA requires the adjustment of similarity among the measurements of the same subjects.
However existing methods which can be applied to repeatedly observed 16S rRNA data

are limited, and statistical method development for longitudinal studies are needed to
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investigate the association between the human microbiome and diseases.

Statistical methods of longitudinal data analysis in microbiome studies has been
comprehensively reviewed by Xia et al [58]. Those can be categorized into several
categories: (1) standard longitudinal model, (2) overdispersed and zero-inflated
longitudinal models (3) multivariate distance/kernel-based longitudinal models. First,
standard longitudinal model includes such as linear mixed effect model (LMM) with
generalized estimation equation (GEE) and generalized linear mixed effect model
(GLMM). Class LMM method provide a standardized and flexible approach to model both
fixed and random effects. However, OTU abundances should be transformed or
normalized to avoid the violation of distribution assumptions and cannot address the
sparsity issue. Second, overdispersed and zero-inflated longitudinal models include zero-
inflated Gaussian (ZIG) mixture model, extensions of negative binomial mixed-effects
(NBMM) [59] and zero-inflated negative binomial models (FZINBMM) [60]. Two-part
zero-inflated beta regression model with random effects (ZIBR) extends zero-inflated beta
regression model to longitudinal data setting [10]. FZINBMM and ZIBR can analyze
overdispersed and zero-inflated longitudinal metagenomics data. Last, multivariate
distance/kernel-based longitudinal model includes correlated sequence kernel association
test (cSKAT) for continuous outcome and generalized linear mixed model and its data-
driven adaptive test (GLMM-MiRKAT) for non-normally distributed outcome such as
binary traits. However all of those methods are vulnerable to compositional bias [18, 61].

In this article, | propose longitudinal microbiome association test based on
phylogenetic tree (NTMAT) which is an extended version of TMAT. mTMAT pools the

abundance of OTUs based on the phylogenetic distance which corrected zero-inflated
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problems. With extensive simulation and real data analyses, | prove its robustness against
compositional bias and misclassified variance covariance structures, and statistical power

improvement compared to other methods.
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3.2. Materials and Methods

Ethics statement
The protocol used in this study was approved by the Institutional Review Board (IRB No.
E2108/001-001) in Seoul National University.
Phylogenetic tree
The same notations and assumptions as TMAT was implemented [52]. Let us denote
that the absolute abundance of OTU m of subject i at time point j as Cijm, Wherei=1, ...,
N,j=1,..,Ni,m=1,..., M. | assumed that OTUs are clustered by profiling sequence
of all subjects at all the time points simultaneously and a rooted binary phylogenetic tree
was provided for these OTUSs. The first M; OTUs belong to a taxonomy of interest for the

analysis of its association with host diseases, while the other M — M; OTUs belong to
other taxonomy. For the genus with the first M1 OTUs, there are M; — 1 internal nodes
and M1 leaf nodes. Internal nodes are denoted by k, where k =1, ..., My — 1. Leaf nodes

are denoted by m, where m = 1, ..., M. For each leaf node there is a corresponding single
OTU; if m=1, ..., or M1, m is the leaf node of the genus of interest, and otherwise m
belongs to a different genus. The absolute abundance of OTU m of subject i at time point
j is denoted by cijm. Under the assumption that mutations be transmitted from the left (right)
child node to all of its leaf nodes, the relative proportion of leaf nodes of the left child node
increases for cases if the mutation occurs during transmission to its left child node, and
decreases if it does so during transmission to the right child node. If the association of an
internal node k with a host disease of interest is tested, I let the internal node k and its leaf

nodes represent a test node and test leaf nodes, respectively. The left and right test leaf
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nodes further represent the leaf nodes of the left and right child nodes of a test node,
respectively.
For internal node k in the genus with M1 OTUs, | let Ly and R« be the sets of its left

and right leaf nodes, respectively. Figure 3.1 illustrates these definitions.

k=0

(cg_.; +.. .+c,-jM)

m=1 m=2 m=3 m=4

(c51) (c;2) () (¢j0)
M, =4,k €{0,1,2,3},m€ {1,2,3,4}
k=0=Ly={mm=1,2,3,or4},Ry, = {m|m =5,..., M}
k=1=L, ={mm=1,2,0or3},R, = {m|m = 4}

k=2=1L,={mm=1,or2},R, = {m|m = 3}
k=3=L;={mm=1},R; = {m|m = 2}

Figure 3.1. Examples of rooted binary phylogenetic trees.
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Quasi-likelihood

The log-transformed CPM rijm, which is used for the edgeR package (version 3.16.5),

is defined by as follows.

U2 106 +1

o .
Cijm + Cij-
m=1

Tijm = 108>

xl5, wherek=1, ..., My — 1, is defined by

My My

k
xk =1lo i ck = Tiim - 1(m € L), D = Tiim - (M € Ry)
ij — g D-k- el ijm k) Hij — ijm kJ:
2 m=1 m=1

As all OTUs in the genus can be associated with the host disease, xl-0 for such case is

defined by
CO Ml M
x?] = log <D_lé>’cl(_)] = z TijmrDin = Z Tijm-

The phenotype of subject i at time point j is denoted by yjj and is coded as 1 and O for cases
and controls, respectively. Their vectors and matrices for testing the association of the

genus of interest are defined by

k

. X11
Xi1 ;

— : k _ _
X; = oL xt =] N, |, X=(° xMi-1),

xk :
iNl' k‘

XNNy
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Here, | assume that x°, ... , and xM1~1 are ordered according to the depth of the internal

nodes. x° is used for testing the association of all OTUs belonging to the genus of interest
by pooling them, and x* is for testing the root node of the phylogenetic tree.

If 1 denote R; and gy, as working correlation matrix and over dispersion parameter
and define D;;, as diagonal matrix with its diagonal entries are var(x{-‘j) j=1,..., Nj, the

covariance matrix for the observations of subject i is defined by
k _ 1/2 1/2

Then the covariance matrix £¥ can be defined as

k0 o0
k=10 -~ o0
0 0 ¥

If | let Z be a design matrix for p covariates including the intercept, | assume
E(x*|1Z2,Y) = Zay, + yB,, var(x*|Z,y)=ZX%,  k=0,..,M;—1

Therefore, quasi-score functions for a; and f, can be denoted by

_(Ualar, Br)\ _ (Z2(E) (& — Zay — yBy)
U@, B = (Up(ak, ,Bk)> B <yt(2")‘1(x" —Zay — y,Bk)>

Quasi-fisher information can be denoted by
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Score test with small sample adjustment
The null hypothesis can be denoted as
Ho: L [“"] =0
B
where L is a matrix of linear constraints with ¢ rows and number of columns equal to the

length of [‘;:] and 0 is the zero vector of matching dimension. To test the null hypothesis

Ho: By = 0, the generalized score statistics by Boos can be provided [62] by setting L =

[0t 1] as follows:
Ty = U(ay, 0) ALY (LH\BA1LY)  LH U (ay, 0)~ x2(df = 1)
where
H=73 -D!37'D, D;=[Z; i,

B=Y" Ulaw0)U(a0) [63].
To adjust the small sample bias, B is further updated by
B N et .Y e ¢t pt) Iy-1
B,aj = ZileiZi (I, = Py) s:8i{(I;— P;) "X7'D;
where
S; = xf — (Z;ar +yiB,)

Py=D,(I- FrlLt(LFI—lLt)‘lL) H1DIY! [64].
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Wald test with small sample adjustment
The Wald statistic with sandwich estimator with correction of small sample bias was
considered [63]. B) can be estimated by solving the estimating equation Ug(ay, Bx) =

0 as
~ ary-1 \ 71 a1 N
B =(y(E) ) (yt(z") (x* — Zak))-
For the estimation of variance of B, | consider robust variance estimator with small

sample adjustment as

-1

7% N eyl B N el
Vi= (z 1}’1'(21') }’i) B qj (2 1yi(zi) Yi>
L= =

-1

where

N —_— — o~ —
Badj = Zi=1y§(z£{) 1COV(X{{)robu5t(z£{) 1yi-

Co/v(\xf)robust = (INi - ﬁij)_l(x{'( - Ziak)(x{'( - Ziak)t(INi - Pij)—l

Pij=y; (Z 1)’%(2&{) J’i) Jﬁ(z}{)
1=
Therefore, the robust Wald statistic of g, for the test node k is defined as

~tres \—1a
Tk wala = B]L;(Vk) B~ x*(df = 1) under H,.

Model selection with quasi-information criterion
Quasi-information criterion (QIC) for generalized estimating equation [65] can be
used to find the best working correlation matrix by achieving the minimum QIC, and is

defined as
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QIC(R) = —2¥(B(R); 1) + 2trace(RfV))
where W(A(R);1) and 2F are the sum of quasi likelihood and a variance component

under the independence working correlation assumption and V%, is a covariance matrix of

£ under the hypothesized working correlation R; defined by [66].

mTMAT
Statistics for Hy: 5 = 0 can be combined to test Hy: o = 1 = -+ = By,-1 =0

using the minimum p-value. If p-values for Ty are denoted by pTy, the proposed statistics,

MTMAT, is defined by
mTMATy, = min{pTo, - ,0Ty,-1}.

It should be noted that pTo, -+ ,PTm,-1 are asymptotically independence [52].

Therefore, I can conclude
mTMAT, ~ beta(1,M;) under H,.

If the sample size is small, normality of T« under Ho may not be achieved, and the
assumption of the quasi-score test can be violated. If | apply the inverse normal
transformation to x¥,, ...,x,’f,NN, then the same statistics can be obtained. This is denoted
by T/NT. Rank-based inverse normal transformation with adjust parameter 0.5 is used for
the transformation and data with tie values were mapped to a same value in the transformed

data [33]. Then, mTMAT v is defined by

mTMAT,, = min{pTs"", - ,pTy\_1}~beta(1,M,) under H,.
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KARE Cohort data

The KARE cohort is a prospective study cohort involving subjects from the rural
community of Ansung and the urban community of Ansan in South Korea. It began in
2001 as part of the Korean Genome Epidemiology study [67], and I used data from 2,072
urine samples from 691 subjects participated in 2013, 2015, and 2017. Their 16S rRNA
amplicon sequencing data from the study were available from the NCBI Sequence Read
Archive database under project accession number PRINA716550. Paired-end sequencing
of the V3-V4 region of the bacterial 16S rRNA gene used the widely used primers
16S_V3_F (5- TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAC-
GGGNGGCWGCAG -3) and 16S_V4_R (5'- GTCTCGTGGGCTCGGAGATGTGTAT-
AAGAGACAGGACTACHVGGGTATCTAATCC-3"). Adaptor sequences were detected
and removed using the CUTADAPT software with a minimum overlap of 11, maximum
error rate of 10%, and a minimum length of 10 [41]. Sequences were merged using
CASPER with a mismatch ratio of 0.27 and filtered by the Phred (Q) score, resulting in

sequences 350-550 bp in length [42, 68]. After the merged sequences were dereplicated,

chimeric sequences were detected and removed using VSEARCH and the Silva Gold
reference database for chimeras [43]. The open-reference Operational Taxonomic Units
(OTU) picking was conducted based on the EzTaxon database using UCLUST [46, 69].
Phylogenetic trees based on EzTaxon database were obtained through the SINA method
[36] using the reference sequences available from the EzTaxon database. For each OTU, |
calculated its proportion among all OTUs and determined the mean value across all

subjects. If the resulting value was <0.001, the OTU was excluded [70]. Among the 691
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subjects, those with a read count <3,000 or for whom genomic data were not available in
any phase were excluded. As a result, 1179 samples from 393 subjects, including 70 genera,

were used for the simulation analysis.

Simulation studies

| conducted extensive simulations to evaluate the performance of mMTMAT with two
datasets; one with 393 subjects participated in all the three phases from KARE cohort and
generative dataset based on microbiomeDASIm [71]. The disease status of the subjects
was permuted, and certain numbers of cases and controls were assumed to be missing to
identify the effect of the unbalancedness. The randomly selected a single test node from
the internal nodes, and from their test leaf nodes, either a single OTU, 50% of OTUs, or
90% of OTUs were randomly selected as causal OTUs. These were denoted by p=1 OTU,
50%, and 90%, respectively. It should be noted that p = 1 indicates that there is a single
OTU associated with the host disease, and thus, the phylogenetic tree structure does not
provide any useful information for mTMAT. If | let the sample variances of c;,,, for causal
OTUs be G,,,,, the observed absolute abundances of the selected causal OTUs for only
affected subjects was assumed to be § = $6,,,, Where g = 0, 0.01, 0.02, or 0.04, and the
absolute abundances of the other OTUs were used without any modification. f = 0 was
considered for estimation of empirical type-1 error rates, and the others were used for
estimating statistical power. Type-1 error rates were estimated at the 0.1, 0.05, 0.01 and
0.005 significance levels with 5,000 replicates. Empirical power was estimated at the 0.05
significance level with 500 replicates.

For the comparison with mTMATw and mTMATm, GLMM-MIiRKAT (version 1.2),
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FZINBMM (version 1.0), linear mixed model (LMM) with arcsine square root
transformation (LMM-arcsine) and LMM with log transformation (LMM-log) with nlme
package (version 3.1) were considered. TMAT (version 1.01), oMiRKAT (version 0.02),
MiSPU (version 1.0) and the Wilcoxon test were also considered for the comparison with
cross-sectional methods. Association analyses were conducted at the genus level.
FZINBMM, LMM models and Wilcoxon were applied by pooling all OTUs within each
genus. Each genus consisted of multiple OTUs, and oMiRKAT and MiSPU were applied
to OTUs belonging to each genus.

For mTMATw and mTMAT v, robust wald and score statistics with four different
choices of working correlation matrix, identity, compound symmetry (CS), autoregressive
with order 1 (AR1) and unstructured, were considered. MiSPU and oMIiRKAT use
permutation-based p-values, and they were calculated with 500 and 5,000 permutated
replicates for estimation of power and type-1 error rates, respectively. GLMM-MiRKAT
and oMiRKAT offer several distance metrics, including Unifrac distance as a default
choice, while MiSPU also uses Unifrac distance as the default option. | considered the
default choices; however, Unifrac distance cannot be calculated if read counts are not
observed. Thus, subjects with no read counts were excluded from GLMM-MIiRKAT,
OoMIRKAT and MiSPU. Furthermore, none of these can analyze a genus with a single OTU;
hence, such instances were not considered for statistical power estimations of such genera.

With the simulation with the generated dataset with microbiomeDASiIm, Identity, CS
and AR1 with different value of parameter is assumed for the simulation and type-1 error
estimates were compared for different use of working correlation matrices for mTMAT .

Mean value of relative abundance and proportion of zeros count samples were estimated
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from KARE cohort study for all the genera and the genera with first quantile, median and
third quantile sparsity level were chosen for the simulation. The value was 52%, 64% and
73%.

| also evaluate the robustness of the proposed method against the compositional bias.
KARE dataset was simulated 2000 times with simulation parameters N and the ratio of
cases and controls equal to 50 and 1:3, respectively. Then a genus containing more than
one OTU is chosen and assumed to be associated with phenotype with g = 0.15 and p
=50%. Then an OTU that is not contained in the chosen genus was selected and set to be
associated to phenotype with the same . Then, the abundance of the selected OTU that is
not in the chosen genus was added by its standard deviation multiplied by the multiplier O,
1, 5, 10, 50 and 100. Then the power estimate of the chosen genus was compared with

different value of the multiplier.

Pregnant microbiome data

| used a publicly available datasets from Romero [72]. It is a retrospective case—
control longitudinal study was designed and included non-pregnant women (n = 32) and
pregnant women who delivered at term (38 to 42 weeks) without complications (n = 22)

using pplacer and version 0.2 of the vaginal community 16S rRNA gene reference tree [73]
for the taxonomically classification and phylogenetic tree [72]. The pregnant dataset
includes the race, days after the first visit (GDColl), house hold income, maternal

education, gender of baby.
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3.3. Results

With simulated data, the performance of mMTMATw and mMTMATm were evaluated.
Figure 3.2 shows the overall distribution of microbial composition. Table 3.1 shows that
inflation of type-1 error was observed when the number of case sample and total sample
size increases. There seems no notable difference of type-1 error rates for the choice of
working correlation matrix. On the other hand, mTMAT m preserved nominal type-1 error
well with a slight inflation when unstructured correlation and robust Wald statistic is used
(Table 3.2). Robust Wald statistic tend to have higher type-1 error rates than robust score
statistic no matter what correlation structure or type of mMTMAT is used. A slight inflation
is observed when 10% of samples were randomly excluded comparing to the complete
dataset.

GLMM-MIiRKAT, FZINBMM and LMM models are designed to be used longitudinal
microbiome data and can be compared with mTMATm and mTMATn. FZINBMM and
GLMM-MIiRKAT could not preserve type-1 error rates with extremely high type-1 error
estimates for FZINBMM. GLMM-MIRKAT suffered singular matrix problem during
calculating the test statistics (Table 3.3). In this case, the resulting p-value were excluded
for the estimation of type-1 error rate and power.

The type-1 error estimates for cross-sectional methods were also compared to
consider the effect of correlation within subjects on type-1 error rates (Table 3.3). When
case is three times smaller than control, type-1 errors are well preserved for all the cross-
sectional methods. However, inflation was observed when the sample size is large and the

number of cases is the same as the control group.
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relative abundances of bacterial taxa at different taxonomic level

74

b ar ]

{ ';I.".-rJ ”3‘1 EEH ELF—

SECHRIL MATIOMAL LIMMVERSTY



Table 3.1. Type-1 error estimates of mTMATy with genera from longitudinal dataset. The values 1:1 and 1:3 were assumed for the
ratio of cases and controls. The total sample size is denoted by N, and I considered N = 30, 50, and 100. All subjects were selected
without replacement. Type-1 error estimates were calculated with 2,000 replicates at the significance level 0.1, 0.05, 0.01 and 0.005.

Balanced data (Missing rate = 0%) Unbalanced data (Missing rate = 10%)

Working Case : Control=1:1 Case : Control=1:3 Case : Control=1:1 Case : Control=1:3
Methods A
Correlation

Identity
Robust Score CS 0.1034 0.1210 0.1518 0.1036 0.1159 0.1073 0.0945 0.1266 0.1409 0.1041 0.0970 0.0934
ARI 0.1058 0.1277 0.1602 0.1009 0.1157 0.1082 0.0964 0.1314 0.1495 0.1045 0.0977 0.0948
=0.1 Unstructured 0.1007 0.1196 0.1443 0.1009 0.1154 0.1096 0.0968 0.1236 0.1375 0.1068 0.0977 0.0970
U=k Identity 0.1106 0.1297 0.1634 0.1088 0.1232 0.1105 0.1318 0.1396 0.1496 0.1445 0.1347 0.1105
Robust Wald CS 0.1159 0.1284 0.1563 0.1168 0.1261 0.1107 0.1426 0.1452 0.1493 0.1588 0.1410 0.1116
ARI1 0.1168 0.1356 0.1649 0.1159 0.1257 0.1121 0.1422 0.1478 0.1522 0.1538 0.1390 0.1119
Unstructured 0.1291 0.1393 0.1567 0.1318 0.1346 0.1175 0.1722 0.1586 0.1566 0.1832 0.1552 0.1188
Identity 0.0493 0.0662 0.0940 0.0540 0.0617 0.0587 0.0448 0.0652 0.0793 0.0552 0.0482 0.0439
Robust Score CS 0.0487 0.0644 0.0859 0.0535 0.0579 0.0587 0.0452 0.0655 0.0739 0.0552 0.0505 0.0443
ARI 0.0490 0.0689 0.0939 0.0527 0.0590 0.0587 0.0448 0.0675 0.0795 0.0557 0.0493 0.0439
o= Unstructured 0.0479 0.0613 0.0809 0.0530 0.0576 0.0562 0.0491 0.0655 0.0702 0.0577 0.0507 0.0452
0.05 Identity 0.0587 0.0722 0.0968 0.0656 0.0731 0.0628 0.0733 0.0812 0.0807 0.0904 0.0789 0.0596
Robust Wald CS 0.0624 0.0732 0.0913 0.0700 0.0744 0.0624 0.0829 0.0855 0.0829 0.1010 0.0834 0.0615
ARI 0.0623 0.0764 0.0987 0.0696 0.0747 0.0642 0.0804 0.0867 0.0856 0.1015 0.0837 0.0614
Unstructured 0.0742 0.0787 0.0914 0.0807 0.0806 0.0642 0.1060 0.0953 0.0871 0.1248 0.0962 0.0662
Identity 0.0085 0.0151 0.0266 0.0157 0.0166 0.0118 0.0084 0.0143 0.0180 0.0141 0.0102 0.0093
Robust Score Cs 0.0084 0.0137 0.0222 0.0146 0.0153 0.0119 0.0080 0.0127 0.0145 0.0145 0.0107 0.0089
ARI 0.0081 0.0156 0.0259 0.0143 0.0150 0.0117 0.0080 0.0139 0.0175 0.0132 0.0109 0.0091
o= Unstructured 0.0084 0.0128 0.0199 0.0135 0.0151 0.0114 0.0084 0.0123 0.0141 0.0120 0.0100 0.0080
0.01 Identity 0.0158 0.0209 0.0310 0.0275 0.0247 0.0153 0.0225 0.0234 0.0218 0.0427 0.0282 0.0153
Robust Wald Cs 0.0179 0.0212 0.0273 0.0297 0.0255 0.0164 0.0252 0.0253 0.0204 0.0460 0.0311 0.0155
ARI 0.0184 0.0223 0.0307 0.0288 0.0253 0.0160 0.0251 0.0249 0.0227 0.0462 0.0300 0.0159
Unstructured 0.0230 0.0232 0.0259 0.0345 0.0284 0.0179 0.0370 0.0297 0.0207 0.0575 0.0351 0.0160
Identity 0.0040 0.0080 0.0156 0.0080 0.0092 0.0064 0.0027 0.0075 0.0082 0.0055 0.0050 0.0043
Robust Score CS 0.0041 0.0074 0.0130 0.0074 0.0082 0.0064 0.0039 0.0064 0.0066 0.0052 0.0057 0.0039
ARI1 0.0043 0.0081 0.0150 0.0076 0.0084 0.0065 0.0032 0.0061 0.0077 0.0050 0.0055 0.0041
o= Unstructured 0.0037 0.0072 0.0112 0.0070 0.0082 0.0061 0.0030 0.0052 0.0070 0.0043 0.0055 0.0039
0.005 Identity 0.0099 0.0126 0.0195 0.0210 0.0190 0.0085 0.0144 0.0153 0.0133 0.0321 0.0193 0.0092
Robust Wald Cs 0.0110 0.0128 0.0167 0.0233 0.0176 0.0094 0.0171 0.0153 0.0125 0.0347 0.0211 0.0100
ARI 0.0104 0.0133 0.0193 0.0219 0.0181 0.0085 0.0152 0.0160 0.0130 0.0325 0.0210 0.0092
Unstructured 0.0150 0.0139 0.0161 0.0263 0.0203 0.0102 0.0247 0.0184 0.0133 0.0430 0.0245 0.0092
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Table 3.2. Type-1 error estimates of mTMAT v with genera from longitudinal dataset. The values 1:1 and 1:3 were assumed for
the ratio of cases and controls. The total sample size is denoted by N, and I considered N = 30, 50, and 100. All subjects were selected
without replacement. Type-1 error estimates were calculated with 2,000 replicates at the significance level 0.1, 0.05, 0.01 and 0.005.

Balanced data (Missing rate = 0%) Unbalanced data (Missing rate = 10%)

‘Working Case : Control=1:1 Case : Control=1:3 Case : Control=1:1 Case : Control=1:3

Methods Correlation N=30 N=50 N =100 N=30 N=50 N=100 N=30 N=50 N=100 N=30 N=150 N =100

Identity
Robust Score CS 0.0882 0.0957 0.0915 0.1004 0.0938 0.1039 0.0920 0.1214 0.1375 0.0952 0.1000 0.0980
ARI 0.0893 0.0959 0.0923 0.0990 0.0943 0.1036 0.0923 0.1243 0.1414 0.0957 0.0975 0.0959
a=0.1 Unstructured 0.0901 0.0954 0.0905 0.1003 0.0941 0.1039 0.0925 0.1198 0.1325 0.0955 0.0995 0.0957
. Identity 0.0933 0.0988 0.0945 0.1066 0.0959 0.1064 0.1226 0.1362 0.1400 0.1377 0.1362 0.1079
Robust Wald CS 0.1014 0.1031 0.0959 0.1146 0.1016 0.1086 0.1338 0.1426 0.1407 0.1512 0.1421 0.1123
ARI 0.1004 0.1022 0.0961 0.1146 0.1026 0.1090 0.1334 0.1442 0.1442 0.1497 0.1378 0.1105
Unstructured 0.1177 0.1113 0.0990 0.1335 0.1131 0.1144 0.1626 0.1578 0.1475 0.1796 0.1592 0.1156
Identity 0.0413 0.0493 0.0451 0.0463 0.0458 0.0495 0.0391 0.0618 0.0741 0.0473 0.0455 0.0427
Robust Score CS 0.0421 0.0503 0.0454 0.0446 0.0451 0.0498 0.0409 0.0593 0.0698 0.0436 0.0445 0.0443
ARI 0.0413 0.0499 0.0454 0.0460 0.0449 0.0498 0.0398 0.0627 0.0732 0.0459 0.0436 0.0416
a=0.05 Unstructured 0.0397 0.0478 0.0447 0.0476 0.0453 0.0499 0.0434 0.0595 0.0655 0.0457 0.0475 0.0443
. Identity 0.0484 0.0533 0.0470 0.0578 0.0535 0.0536 0.0685 0.0770 0.0784 0.0832 0.0753 0.0562
Robust Wald Cs 0.0541 0.0576 0.0484 0.0626 0.0551 0.0555 0.0762 0.0823 0.0801 0.0916 0.0811 0.0597
ARI 0.0539 0.0566 0.0482 0.0616 0.0560 0.0556 0.0773 0.0827 0.0815 0.0910 0.0805 0.0579
Unstructured 0.0653 0.0610 0.0508 0.0769 0.0624 0.0602 0.1016 0.0948 0.0814 0.1160 0.0932 0.0653
Identity 0.0057 0.0096 0.0092 0.0057 0.0061 0.0094 0.0084 0.0123 0.0141 0.0120 0.0100 0.0080
Robust Score CS 0.0065 0.0091 0.0091 0.0056 0.0063 0.0090 0.0066 0.0127 0.0159 0.0077 0.0075 0.0055
ARI 0.0065 0.0097 0.0093 0.0054 0.0064 0.0088 0.0070 0.0107 0.0127 0.0068 0.0070 0.0055
_ Unstructured 0.0060 0.0095 0.0090 0.0064 0.0066 0.0086 0.0073 0.0125 0.0161 0.0068 0.0086 0.0059
=001 Identity 0.0119 0.0138 0.0108 0.0169 0.0131 0.0121 0.0189 0.0223 0.0193 0.0273 0.0222 0.0137
Robust Wald Cs 0.0138 0.0147 0.0112 0.0198 0.0141 0.0127 0.0219 0.0247 0.0181 0.0319 0.0240 0.0125
ARI1 0.0136 0.0150 0.0113 0.0197 0.0144 0.0126 0.0216 0.0241 0.0199 0.0319 0.0241 0.0136
Unstructured 0.0184 0.0167 0.0124 0.0267 0.0177 0.0136 0.0359 0.0301 0.0199 0.0445 0.0311 0.0136
Identity 0.0024 0.0040 0.0044 0.0022 0.0019 0.0037 0.0030 0.0052 0.0070 0.0043 0.0055 0.0039
Robust Score CS 0.0024 0.0035 0.0044 0.0024 0.0024 0.0037 0.0027 0.0048 0.0077 0.0034 0.0027 0.0030
ARI 0.0024 0.0039 0.0046 0.0025 0.0024 0.0039 0.0027 0.0041 0.0075 0.0030 0.0030 0.0027
Unstructured 0.0021 0.0038 0.0048 0.0025 0.0030 0.0037 0.0030 0.0050 0.0082 0.0027 0.0025 0.0032
a=0.005 Identity 0.0064 0.0074 0.0059 0.0094 0.0073 0.0064 0.0127 0.0142 0.0096 0.0189 0.0147 0.0067
Robust Wald Cs 0.0078 0.0083 0.0061 0.0113 0.0081 0.0066 0.0156 0.0153 0.0108 0.0221 0.0151 0.0066
ARI1 0.0082 0.0087 0.0061 0.0104 0.0079 0.0068 0.0155 0.0158 0.0112 0.0211 0.0145 0.0071
Unstructured 0.0110 0.0100 0.0067 0.0160 0.0107 0.0073 0.0251 0.0200 0.0123 0.0314 0.0201 0.0073
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Table 3.3. Type-1 error estimates of the methods for comparison with genera. The values 1:1 and 1:3 were assumed for the ratio of
cases and controls. The total sample size is denoted by N, and I considered N = 30, 50 and 100. All subjects were selected without
replacement. Type-1 error estimates were calculated with 2,000 replicates at the significance level 0.1, 0.05, 0.01 and 0.005. For
unbalanced data, I applied 10% missing rate to phenotype for each time points.

Balanced data (Missing rate = 0%) Unbalanced data (Missing rate = 10%)
Working Case : Control=1:1 Case : Control=1:3 Case : Control=1:1 Case : Control=1:3
Methods q |
Correlation N =100
GLMM-MIRKAT | 0.1320 0.1377 0.1301 0.1450 0.1466 0.1347 0.1383 0.1770 0.1815 0.1380 0.1495 0.1392
Longitudinal FZINBMM 0.4882 0.4548 0.4770 0.4778 0.4625 0.4411 0.4580 0.4405 0.4616 0.4311 0.4207 0.4282
LMM-arcsin 0.1094 0.1328 0.1482 0.0926 0.0982 0.0994 0.1074 0.1318 0.1502 0.0887 0.0994 0.1060
LMM:-log 0.1021 0.1115 0.1223 0.0922 0.0934 0.0905 0.1032 0.1118 0.1275 0.0918 0.0944 0.0991
a=0.1 TMATm 0.0988 0.1085 0.1235 0.1342 0.0927 0.0929 0.1030 0.1314 0.1466 0.0907 0.0957 0.0900
Cross- TMATM 0.0978 0.1132 0.1289 0.1336 0.1042 0.0944 0.0961 0.1252 0.1466 0.1002 0.1016 0.0977
sectional Wilcoxon 0.1034 0.1174 0.1337 0.1320 0.0947 0.0938 0.0857 0.0978 0.0948 0.0926 0.0852 0.0800
OoMiRKAT 0.1041 0.1141 0.1298 0.1308 0.0950 0.0945 0.0955 0.1160 0.1285 0.1210 0.1035 0.0970
aMiSPU 0.0839 0.0973 0.1108 0.1056 0.0800 0.0691 0.1009 0.1393 0.1611 0.0952 0.1045 0.1009
GLMM-MIRKAT | 0.0914 0.0889 0.0875 0.0922 0.0974 0.0846 0.0958 0.1273 0.1286 0.0914 0.0988 0.0989
Longitudinal FZINBMM 0.4209 0.3915 0.4162 0.4055 0.3908 0.3786 0.3866 0.3732 0.3934 0.3670 0.3516 0.3605
LMM-arcsin 0.0537 0.0681 0.0804 0.0449 0.0497 0.0467 0.0585 0.0702 0.0774 0.0409 0.0492 0.0510
7= LMM-log 0.0466 0.0529 0.0613 0.0421 0.0475 0.0436 0.0518 0.0566 0.0681 0.0414 0.0496 0.0521
TMATm 0.0489 0.0580 0.0660 0.0613 0.0448 0.0456 0.0516 0.0670 0.0780 0.0436 0.0493 0.0434
0.05 Cross- TMATM 0.0463 0.0564 0.0642 0.0660 0.0505 0.0448 0.0468 0.0648 0.0814 0.0491 0.0482 0.0473
sectional choxon 0.0496 0.0558 0.0635 0.0631 0.0488 0.0449 0.0413 0.0543 0.0591 0.0517 0.0470 0.0426
OMiRKAT 0.0509 0.0514 0.0585 0.0678 0.0527 0.0436 0.0515 0.0565 0.0705 0.0620 0.0500 0.0480
aMiSPU 0.0435 0.0471 0.0536 0.0568 0.0426 0.0335 0.0509 0.0725 0.0893 0.0425 0.0514 0.0505
GLMM-MiRKAT | 0.0539 0.0509 0.0491 0.0546 0.0607 0.0544 0.0684 0.0720 0.0750 0.0628 0.0665 0.0657
Longitudinal FZINBMM 0.3182 0.2961 0.3162 0.2990 0.2990 0.2807 0.2902 0.2620 0.2855 0.2677 0.2495 0.2577
LMM-arcsin 0.0115 0.0126 0.0221 0.0099 0.0109 0.0100 0.0125 0.0146 0.0231 0.0082 0.0089 0.0100
7= LMM:-log 0.0085 0.0100 0.0150 0.0104 0.0127 0.0113 0.0089 0.0109 0.0150 0.0082 0.0102 0.0116
TMATm 0.0085 0.0088 0.0100 0.0139 0.0073 0.0100 0.0100 0.0143 0.0177 0.0084 0.0105 0.0086
0.01 TMATMm 0.0077 0.0094 0.0107 0.0132 0.0097 0.0105 0.0105 0.0150 0.0173 0.0091 0.0116 0.0084
seccrt(i);;;l Wilcoxon 0.0084 0.0099 0.0113 0.0130 0.0084 0.0078 0.0117 0.0152 0.0113 0.0143 0.0109 0.0100
OoMiRKAT 0.0082 0.0073 0.0083 0.0114 0.0077 0.0114 0.0125 0.0145 0.0180 0.0160 0.0140 0.0105
aMiSPU 0.0057 0.0102 0.0116 0.0161 0.0070 0.0061 0.0109 0.0161 0.0241 0.0100 0.0091 0.0098
GLMM-MiRKAT | 0.0504 0.0477 0.0446 0.0496 0.0552 0.0492 0.0661 0.0696 0.0724 0.0628 0.0665 0.0657
Longitudinal FZINBMM 0.2864 0.2657 0.2812 0.2659 0.2703 0.2510 0.2593 0.2282 0.2525 0.2320 0.2207 0.2273
LMM-arcsin 0.0051 0.0071 0.0121 0.0048 0.0048 0.0054 0.0057 0.0071 0.0128 0.0034 0.0046 0.0055
o= LMM:-log 0.0033 0.0044 0.0086 0.0051 0.0067 0.0063 0.0034 0.0039 0.0089 0.0039 0.0059 0.0055
TMATm 0.0047 0.0047 0.0054 0.0072 0.0042 0.0051 0.0030 0.0070 0.0109 0.0034 0.0052 0.0045
0.005 Cross- TMATM 0.0041 0.0045 0.0052 0.0076 0.0058 0.0052 0.0061 0.0077 0.0086 0.0050 0.0055 0.0034
sectional Wilcoxon 0.0044 0.0035 0.0040 0.0071 0.0034 0.0045 0.0117 0.0148 0.0113 0.0139 0.0109 0.0100
OoMiRKAT 0.0045 0.0034 0.0038 0.0048 0.0045 0.0064 0.0035 0.0050 0.0060 0.0045 0.0050 0.0035
aMiSPU 0.0026 0.0037 0.0043 0.0098 0.0017 0.0043 0.0048 0.0082 0.0148 0.0041 0.0055 0.0061




Sensitivity analysis of type-1 error rates was conducted to consider the effect of
a violation of statistical assumption, the statistical characteristic of the abundance
and phylogenetic tree for each genera. This includes investigating the effect of the
number of leaf node, sparsity level, mean relative abundance level and assumed
correlation matrix on type 1 error rates.

The effect of the number of leaf nodes (Table 3.4), results showed that
mTMATwm became slightly conservative if the number of leaf nodes was larger than
5 but that mTMAT m was less affected. The result with more than 15 number of leaf
nodes can be dependent on specific genera chosen with small number of genera.

Table 3.5 shows the effect of sparsity on the type-1 error rate. For each genus,
| calculated its sparsity, defined as the proportion of subjects with no abundance, and
type-1 error rates were calculated. Results showed that the type-1 error rates of
FZINBMM were the most inflated and that some inflation was observed for GLMM-
MIRKAT when the mean sparsity is greater than 20%. GLMM-MIRKAT is based on
the permutation, and the permutation-based p-value is generally robust to the non-
normality. However, if there exists heteroscedasticity, its statistical validity can be
impaired. A substantial amount of sparsity may induce the heteroscedasticity, which
may explain the type-1 error inflation. Some inflation was also observed for TMAT v,
but rates for TMAT m were preserved well.

The effect of mean relative abundance on the type-1 error rate result showed
that mMTMAT m, GLMM-MIRKAT, LMM-arcsin and LMM-log preserved type-1
error rates for all the genera groups with different mean relative abundance. Inflation
of FZINBMM were more severe in the group with mean relative abundance less than

10% quantile for all genera (Table 3.6).
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The effect of assumed correlation matrix for different scenarios was evaluated
with the use of microbiomeDASIm [71]. Identity, CS and AR1 with different value
of parameter is assumed for the simulation with different use of working correlation
matrix, robust score statistic and for mTMAT u (Table 3.7). The result shows that
mMTMAT m preserved type-1 error for the most of the scenarios. Slight inflation was
observed for the statistic using identity working correlation was used when the

assumed correlation is CS or AR1.

79



Table 3.4. Effect of numbers of leaf nodes on type-1 error estimates. Families
were categorized into four different groups according to the number of leaf nodes,
and for each taxon, type-1 error rates were estimated. Simulation data were
generated with read counts from dataset. I assumed the total sample size (N) is
equal to 50. The values 1:3 was assumed for the ratio of cases and controls. Identity
working correlation matrix and robust score statistic are used for mTMAT.

Numbe | Numbe Significance level

Method r of leaf r of _ _ _ o=
nodes Family %~ 0.1 =005 a=001 s
1 22 0.1050 | 0.0508 | 0.0102 | 0.0047
2-5 12 0.0917 | 0.0411 | 0.0042 | 0.0014
mTMAT M 6-15 5 0.0733 | 0.0211 | 0.0000 | 0.0000
>15 2 0.0700 | 0.0267 | 0.0017 | 0.0017
1 22 0.1147 | 0.0641 | 0.0182 | 0.0112
2-5 12 0.1014 | 0.0442 | 0.0078 | 0.0039
mTMATy 6-15 5 0.0833 | 0.0433 | 0.0044 | 0.0022
>15 2 0.0700 | 0.0267 | 0.0033 | 0.0017

1 22 NA NA NA NA
GLMM- 2-5 12 0.0972 | 0.0519 | 0.0108 | 0.0047
MiRKAT 6-15 5 0.1011 | 0.0467 | 0.0100 | 0.0044
>15 2 0.0850 | 0.0417 | 0.0033 | 0.0000
1 22 0.5683 | 0.5092 | 0.4035 | 0.3717
2-5 12 0.2806 | 0.2147 | 0.1228 | 0.0997
FZINBMM 6-15 5 0.1133 | 0.0633 | 0.0167 | 0.0111
>15 2 0.1000 | 0.0333 | 0.0033 | 0.0000
1 22 0.0549 | 0.0315 | 0.0067 | 0.0042
[ MMoarosine |23 12 0.0947 | 0.0450 | 0.0101 | 0.0054
6-15 5 0.1211 | 0.0589 | 0.0133 | 0.0034
>15 2 0.1633 | 0.1017 | 0.0267 | 0.0133
1 22 0.0920 | 0.0414 | 0.0118 | 0.0059
2-5 12 0.991 | 0.0509 | 0.0095 | 0.0048
LMM:-log 6-15 5 0.0971 | 0.0426 | 0.0123 | 0.0045
>15 2 0.1117 | 0.0687 | 0.0067 | 0.0050
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Table 3.5. Effect of sparsity on type-1 error estimates. For each genus, I
calculated its sparsity as the proportion of subjects with no abundance. Genera
were sorted by their sparsity and categorized into three different groups, and for
each taxon, type-1 error rates were estimated. Simulation data were generated by
using read counts from dataset. [ assumed the total sample size (N) is equal to 50.
The values 1:3 was assumed for the ratio of cases and controls. Identity working
correlation matrix and robust score statistic are used for mTMAT.
Mean Mean
sparsity | number Number

Significance level

REL level of = ofleaf | of genus a=01 a=0.05 a=0.01 a=
genera | nodes 0.005
<=20% | 1 3 0.0989 | 0.0522 | 0.0056 | 0.0022
mIMAT | 50500 | 2.25 12 | 00883 | 0.0417 | 0.0061 | 0.0019
>50% | 1.66 58 | 0.1032 | 0.0496 | 0.0090 | 0.0039
<20% | 1 3 0.1200 | 0.0600 | 0.0111 | 0.0067
mIMATM | 50.509% | 2.25 12 | 00989 | 0.0447 | 0.0072 | 0.0042
>50% | 1.66 58 | 0.1180 | 0.0620 | 0.0152 | 0.0093

o | 2% | 3 NA NA NA NA
MIiRKAT | 20-50% | 2.25 12| 01225 | 0.0625 | 0.0100 | 0.0025
>50% | 1.66 58 | 0.1526 | 0.1047 | 0.0611 | 0.0584
<20% | 1 3 02067 | 0.1333 | 0.0500 | 0.0367
FASPM 1 20.50% | 2.5 12| 02600 | 0.1900 | 0.1083 | 0.0858
>50% | 1.66 58 | 04961 | 04351 | 0.3297 | 0.2964
<20% | 1 3 0.1013 | 0.0491 | 0.0045 | 0.0067
;ﬁﬁe 20-50% | 2.25 12| 00973 | 0.0482 | 0.0132 | 0.0047
>50% | 1.66 58 | 0.0828 | 0.0381 | 0.0084 | 0.0051
<20% | 1 3 0.0956 | 0.0501 | 0.0043 | 0.0032
LMM-log | 20-50% | 225 12| 00962 | 0.0434 | 0.0078 | 0.0041
>50% | 1.66 58 | 0.0972 | 0.0499 | 0.0112 | 0.0063
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Table 3.6. Effect of mean relative abundance on type-1 error estimates. Genera were
categorized into four different groups according to the quantile of mean relative
abundance, and for each taxon, type-1 error rates were estimated. Qoi, Qos, Qoo
represents 10%, 50%, 90% quantile Qo1 = 1.19x1073 , Qo5 = 2.40x10 and Qoo =
7.41x10%) Simulation data were generated with read counts from dataset. I assumed
the total sample size (N) is equal to 50. The values 1:3 was assumed for the ratio of
cases and controls. Identity working correlation matrix and robust score statistic are
used for mMTMAT.

Mean Mean Significance level
Method Relative number of ~ ~ _ o=
Abundance leafnodes %= 0.1 a=0.05 a=0.01 0.005
<=Qu.1 1 0.1060 | 0.0480 | 0.0087 | 0.0040
Qo.1- Qos 131 | 0.0879 | 0.0427 | 0.0075 | 0.0035
TMAT
o M Qos- Qoo 235 | 0.0930 | 0.0418 | 0.0078 | 0.0042
> Qoo 175 | 0.1011 | 0.0511 | 0.0056 | 0.0022
<=Qu, 1 0.0913 | 0.0453 | 0.0093 | 0.0047
Qo.1- Qos 131 | 0.0902 | 0.0454 | 0.0083 | 0.0040
TMAT
o M Qos- Qoo 235 | 0.1007 | 0.0474 | 0.0093 | 0.0045
> Qus 175 | 0.1145 | 0.0522 | 0.0089 | 0.0033
<=Qu. 1 0.1110 | 0.0670 | 0.0100 | 0.0060
GLMM- Qo.1- Qos 131 | 0.0843 | 0.0386 | 0.0086 | 0.0043
MiRKAT Qos- Qoo 235 | 0.1192 | 0.0667 | 0.0305 | 0.0266
> Qoo 175 | 0.0940 | 0.0494 | 0.0090 | 0.0047
<=Qu, 1 04050 | 0.3640 | 0.2910 | 0.2680
Qo.1- Qos 131 | 02721 | 02174 | 0.1497 | 0.1303
FZINBMM
N Qos- Qoo 235 | 0.1616 | 0.1027 | 0.0469 | 0.0378
> Qus 175 | 02000 | 0.1514 | 0.0843 | 0.0800
<=Qu, 1 0.0675 | 0.0338 | 0.0163 | 0.0050
. Qo.t- Qos 131 | 0.0890 | 0.0414 | 0.0093 | 0.0062
LMM-
AESIe T 005 Qoo 235 | 0.0955 | 0.0485 | 0.0126 | 0.0072
> Qoo 175 | 0.1018 | 0.0441 | 0.0088 | 0.0050
<=Qu, 1 0.0816 | 0.0415 | 0.0126 | 0.0063
Qo.1- Qos 131 | 0.0937 | 00432 | 0.0090 | 0.0041
LMM-I
05 Qu.s- Qoo 235 | 0.1080 | 0.0524 | 0.0111 | 0.0068
> Qoo 175 | 0.1075 | 0.0450 | 0.0075 | 0.0038
8 2
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Table 3.7. Effect of assumed correlation structure on type-1 error estimates.
For each taxon, type-1 error rates were estimated. Simulation data were generated
by using read counts from simulation dataset with microbiomeDASim package. I
assumed the total sample size (N) is equal to 50. Identity working correlation
matrix and robust score statistic are used for mTM AT v. The number of time points
was set to be 6.

Assumed Working Significance level
Correlation Assumed Correlation o=
Structure rho Structure o e 0.005
Identity 0.1045 0.0473 0.0078 0.0033
Identity 0 CS 0.1045 0.0503 0.0103 0.0035
AR1 0.1035 0.0515 0.0100 0.0040
Unstructured | 0.1043 0.0515 0.0100 0.0040
Identity 0.1020 0.0520 0.0095 0.0048
02 CS 0.0998 0.0493 0.0085 0.0030
AR1 0.0983 0.0488 0.0080 0.0030
Unstructured | 0.0995 0.0505 0.0070 0.0033
Identity 0.1028 0.0455 0.0090 0.0053
cs 0.5 CS 0.0953 0.0463 0.0083 0.0043
AR1 0.0970 0.0445 0.0078 0.0048
Unstructured | 0.0955 0.0453 0.0080 0.0045
Identity 0.0988 0.0483 0.0095 0.0050
0.8 CS 0.0980 0.0488 0.0073 0.0033
AR1 0.0973 0.0493 0.0073 0.0033
Unstructured | 0.0958 0.0478 0.0075 0.0033
Identity 0.1013 0.0523 0.0123 0.0068
02 CS 0.0983 0.0465 0.0073 0.0035
AR1 0.0975 0.0463 0.0080 0.0035
Unstructured | 0.0958 0.0475 0.0070 0.0033
Identity 0.1000 0.0510 0.0100 0.0045
ARL 0.5 CS 0.0993 0.0505 0.0083 0.0035
AR1 0.0993 0.0510 0.0090 0.0033
Unstructured | 0.1005 0.0480 0.0078 0.0033
Identity 0.1015 0.0468 0.0060 0.0015
0.8 CS 0.0913 0.0405 0.0083 0.0038
AR1 0.0913 0.0395 0.0080 0.0035
Unstructured | 0.0923 0.0398 0.0065 0.0038
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| also calculated statistical power estimates with 2,000 replicates at the 0.05
significance levels, and these were compared with those of other statistical methods. .
The significance levels for each methods were adjusted based on the statistics from
the simulation to calculate type-1 error to give a valid performance comparison. The
threshold is determined as the percentiles of the p-values calculated in the type-1
error simulation under null hypothesis. | considered genera consisting of two or more
OTUs. In Figure 3.3, mTMATm usually outperformed the other methods. The
performance of GLMM-MIRKAT was comparable with mTMATw. FZINBMM and
LMM-log had a much smaller power than other methods.

Figures 3.4 show the results when genera consisted of one or more OTUs.
GLMM-MIiRKAT can only be calculated if more than one OTU available. Thus, it
was excluded from this comparison. mTMAT v and mTMAT u can be applied in such
scenarios, and the results showed that the proposed method was the most efficient.

The comparison with methods for cross-sectional analysis (Figure 3.5) shows
that TMAT M, TMATIM and mTMAT m showed high statistical power. aMiSPU had
highest power estimate when beta is 0.02.

For the sensitivity analysis of power estimates, Figure 3.6 shows the statistical
power estimates according to the number of leaf nodes. The number of causal OTUs
was assumed to be the same, and statistical power estimates decreased according to
the number of leaf nodes. The best performance was found for mTMATIM except
that GLMM-MIRKAT had high level of type-1 error rate with the leaf node is
between 6 and 15. | also evaluated the effect of sparsity on statistical power. For each
genus, sparsity was defined by the proportion of subjects with no reads from that

genus. As shown in Figure 3.6, mMTMATm was always comparable with other
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methods that failed to preserve type-1 error rates. Sparsity level and the level of
missing rate were also considered and statistical power estimates were compared.
Power estimates were maximized in the middle-group sparsity level (Figure 3.7) and
there was slight decrease of power estimate for overall methods when missing rate
increases (Figure 3.8). In Figure 3.9, the effect of mean relative abundance on power
estimate was evaluated. mMTMAT » and FZINBMM had the highest power estimate
when mean relative abundance is lower than its 10% quantile. There were no
consistent trend for the effect. Figure 3.10 shows the effect of compositional bias on
the power estimate. For genera with more than one OTU, the power estimates of
MTMATm and mTMATwm were not affected by compositional bias.

In summary, | confirmed that mTMAT m is generally the most efficient among
the available methods in the simulations. mMTMAT v considers phylogenetic tree
structures, uses log CPM transformation, correction of compositional bias with
taking a proportion among OTUs and consider correlations among repeatedly
measured samples, which may lead to its superiority over other methods. Overall
result for power comparison among the methods cross-sectional is consistent on
previous paper for TMAT [52], but type-1 error rate for TMAT had inflated with
correlated data. GLMM-MIRKAT is the second most powerful, but it failed to
preserve type-1 rates and cannot be applied with analysis with single OTU.
Furthermore, GLMM-MIRKAT is based on oMiRKAT and they both used kernel
method and permutation approaches, which can be computationally very intensive

especially if the number of sample size increases [52].
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Figure 3.3. Power estimates for genera consisting of more than one OTU. Power
estimates at the significance level 0.05 were calculated with 500 replicates. I
generated simulation data based on read counts from datasets, and considered genera
with more than one OTU. The significance levels for each methods were adjusted
based on the statistics from the simulation to calculate type-1 error to have the similar
value of type-1 error. I assumed the total sample size (N) is equal to 50 and the ratio
of cases and controls is set to be 1:3 at missing rate 10%. Identity working correlation
matrix and robust score statistic are used for mTMAT.
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Figure 3.4. Power estimates for genera consisting of one or more OTUs. Power
estimates at the significance level 0.05 were calculated with 500 replicates. I
generated simulation data based on read counts from datasets, and results from
GLMM-MIRKAT were excluded because they cannot be applied to genera
consisting of a single OTU. The significance levels for each methods were adjusted
to have the level of type-1 error rates based on the statistics from the simulation
under null hypothesis. I assumed the total sample size (N) is equal to 50 and the ratio
of cases and controls is set to be 1:3 at missing rate 10%. Identity working correlation
matrix and robust score statistic are used for mTMAT.
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Figure 3.5. Power estimates comparison with the methods for cross-sectionally
observed data. Power estimates at the significance level 0.05 were calculated with
500 replicates. I assumed the total sample size (N) is equal to 50 and the ratio of
cases and controls is set to be 1:3 at missing rate 10%. Identity working correlation
matrix and robust score statistic are used for mTMAT.
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Figure 3.6. Effect of numbers of leaf nodes on power estimates. Families were
categorized into four different groups according to the number of leaf nodes, and for
each taxon, power estimates at the 0.05 significance level were calculated with 500
replicates. I generated simulation data based on read counts from datasets, and the
results were combined. I considered families with more than one OTU. I assumed
the total sample size (V) = 50 at missing rate 10%, p =50%, B = 0.02 and the ratio
of cases and controls is set to be 1:3 at missing rate 10%.
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Figure 3.7. Effect of sparsity on power estimates. For each genus, I calculated its
sparsity as the proportion of subjects with no reads (abundance of 0). Genera were
sorted by their sparsity and categorized into three different groups, and for each taxon,
power estimates at the 0.05 significance level were calculated with 500 replicates. |
generated simulation data based on read counts from the dataset and considered
genera with more than one OTU. I assumed the total sample size (N) = 50 at missing
rate 10%, p = 50%, B = 0.02 and the ratio of cases and controls is set to be 1:3 at
missing rate 10%.
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Figure 3.8. Effect of missing rate on power estimates. For each genus, power
estimates at the 0.05 significance level were calculated with 500 replicates and
compared in the different level of missing rates. I generated simulation data based
on read counts from the dataset and considered genera with more than one OTU. I
assumed the total sample size (N) = 50, p = 50%, B = 0.02 and the ratio of cases
and controls is set to be 1:3.

91



o
N
1

Power estimates
o
[x%]

i

{d[}.l Qo.l'lQo.s Qo.5:Qo.9 >éo.1
Mean Relative Abundance

. LMM_arcsin . LMM_log

Figure 3.9. Effect of mean relative abundance on power estimates. For each
genus, power estimates at the 0.05 significance level were calculated with 500
replicates and compared in the different level of mean relative abundance. I
generated simulation data based on read counts from the dataset and considered
genera with more than one OTU. I assumed the total sample size (N) = 50, p = 50%,
B =0.02 and the ratio of cases and controls is set to be 1:3.
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Figure 3.10. Effect of compositional bias on power estimates. Power estimates at
the 0.05 significance level were calculated with 500 replicates with different level of
multiplier. I assumed the total sample size (V) =50, p=50%, B =0.15 and the ratio
of cases and controls is set to be 1:3 at missing rate 10%.
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Real data analysis

The pregnant datasets were analyzed with mTMAT, GLMM-MiRKAT,
FZINBMM, LMM with the arcsine square root transformation and LMM with log
transformation. The pregnant dataset includes the race, days after the first visit
(GDCaoll), house hold income, maternal education, gender of baby. Overall
composition is described in Figure 3.11 and the overall composition change was
clear when 300 and more days has passed. Figure 3.12 shows that the change can be
related with the pregnancy state. PERMANOVA analysis result shows the associated
phenotype that explained microbiome variability. Race was the most significant
covariates with p-value = 0.06 (Figure 3.13). Table 3.8 show that mTMATu found
11 significant genera. FZINBMM, LMM-arcsine and LMM-log found 16, 14 and 14
significant genera respectively. As shown in simulation study, most of detected
genera as significant only by FZINBMM can be false positives. mMTMAT u shared
most of significant genera with other methods. The most significant genera was
Lactobacillus, which was consistent with the original paper [72]. Figure 3.14 shows
a Venn diagram comparing the numbers of significant genera implicated by the
various applied methods. As LMM-arcsine and LMM-log differ only in their
transformation, those two methods shared all the 16 detected genera. FZINBMM
detected two more genera that was no detected by any other methods. mTMAT m
shared all the 12 detected genera with other methods.

Figure 3.15 shows the distribution of OTUs under Lactobacillus. Lactobacillus
has five leaf nodes and the relative abundances of all the leaf node m=1, 2, 3, 4 and
5 were higher in pregnant group. Lactobacillus has been found to be more abundant

in pregnant group than in healthy group and the absence of vaginal Lactobacillus
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species can increases the risks of preterm delivery [74]. Figure 3.16-22 showed the
OTU distributions of other associated genera. These results confirm that the genera
identified using mMTMAT may be associated with delivery. Thus, it can be concluded

that mTMAT successfully detected associated genera.
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Figure 3.11. Change of microbial composition. Krona plots showing the mean

relative abundance of bacterial taxa with different time range at the species level.
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Figure 3.13. The relative importance of variables. Relative proportions of
variance attributable to each variable were calculated with PERMANOVA. Pldist
and bray-curtis distance is used for the calculation of beta-diversity.



Table 3.8. Association analysis results of Pregnant dataset. Results for genera significantly associated with at least one method at the FDR-

adjusted 0.05 significance level were summarized

mTMATMm

FZINBMM

LMM
arcsine

LMM

log

F:Campylobacteraceae Campylobacter 0.01984 0.02275 NA 1.90E-26 5.A45E-22 | 5.40E-11
F:Veillonellaceae Dialister 0.01984 0.02275 0.06983 4.21E-32 2.51E-21 | 2.02E-13
F:[Tissierellaceae] Finegoldia 0.01984 0.02110 NA 4.13E-29 2.55E-15 | 6.81E-11
F:Lactobacillaceae Lactobacillus 0.01984 0.01549 0.00416 2.58E-44 9.01E-76 | 1.65E-73
O:Clostridiales O:Clostridiales 0.01984 0.02110 NA 1.88E-40 1.77E-23 | 8.57E-08
F:[Tissierellaceae] Peptoniphilus 0.01984 0.02110 0.00416 1.40E-22 7.75E-30 | 5.09E-24
F:Porphyromonadaceae Porphyromonas 0.01984 0.02522 NA 3.56E-36 1.18E-12 | 2.20E-06
F:Streptococcaceae Streptococcus 0.01984 0.02110 NA 1.30E-61 2.37E-23 | 8.87E-13
F:Actinomycetaceae Varibaculum 0.01984 0.02110 NA 1.89E-18 2.63E-09 0.00612
F:[Tissierellaceae] Anaerococcus 0.02110 0.02275 0.01247 3.87E-44 5.24E-42 | 3.44E-30
F:Prevotellaceae Prevotella 0.02599 0.02110 0.00416 1.88E-40 1.75E-31 | 6.82E-29
F:[Tissierellaceae] 1-68 0.04797 0.04647 NA 2.23E-20 8.12E-09 | 1.43E-05
F:[Tissierellaceae] WAL 1855D 0.05706 0.03594 NA 1.18E-18 2.08E-11 | 3.68E-09
F:Actinomycetaceae Mobiluncus 0.09401 0.05409 NA 4.13E-17 3.71E-12 | 6.16E-07
F:Coriobacteriaceae Atopobium 0.13031 0.10538 NA 5.08E-28 1.07E-10 | 4.75E-09
F:Mycoplasmataceae Ureaplasma 0.53138 0.85988 NA 0.38339 0.40960 0.09996
F:Corynebacteriaceae Corynebacterium 0.55456 0.34057 NA 6.83E-06 0.28831 0.93412
F:Bifidobacteriaceae Gardnerella 0.84255 0.67380 NA 5.59E-05 0.00165 0.00171
F:Actinomycetaceae Actinomyces 0.96391 0.79316 NA 0.11827 0.82055 0.70798
F:Staphylococcaceae Staphylococcus 0.99925 0.79316 NA 0.00014 0.53031 0.59088
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Figure 3.14. Comparison of significantly associated genera among different
statistical methods. The number of significantly associated genera at the FDR-
adjusted 0.05 significance level are compared among different methods.
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Figure 3.15. OTU distributions of significantly associated genus
Lactobacillus. Relative proportions of OTUs belonging to significantly associated
genera according to mTMATv were calculated. The blue internal node indicates
that OTUs in left test leaf nodes are more abundant in category in blue than the
category in red. Each OTU has its corresponding leaf node, and leaf nodes in blue
and red indicate that they are more frequently observed in the category in blue and
red, respectively. For exp(f8), indicates the maximum likelihood estimate for the
quasi-likelihood, and exp(f) indicates the mean difference of C*;/DF; between
cases and controls after adjusting for covariates.
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Figure 3.16. OTU distributions of significantly associated genus
Anaerococcus. Relative proportions of OTUs belonging to significantly
associated genera according to mMTMAT v were calculated. The blue internal node
indicates that OTUs in left test leaf nodes are more abundant in category in blue
than the category in red. Each OTU has its corresponding leaf node, and leaf nodes
in blue and red indicate that they are more frequently observed in the category in
blue and red, respectively. For exp(f8), indicates the maximum likelihood estimate
for the quasi-likelihood, and exp(f) indicates the mean difference of C*;/D%;
between cases and controls after adjusting for covariates.

103



exp(B) Peptoniphilus logCPM of m=1,2,3

7| log {(————————") for the most significant node k=0

™4 9 logCPM of m=0 ) 9

) Pvaie: 0.004541

Pvalue: 0.030864
14
13
Povae: 0004341 H

12 5
g .
P et N\

11 5 X 'g o~
ot !‘.‘...
3 B .

0o £ PT Y
g

o]

07]

05

=] 7 7 7 ;
lag of days from first visit
[
= =) groups [+ pragnant [ ] unpregnant
logCPM for each leaf node
) o ] o= ] s ] o123 ]
175 : s
ok L
Y igs a0

: Other Genera
: Peptoniphilus
: Peptoniphilus
: Peptoniphilus
,2,3: [Genus] Peptoniphilus

logCPM

o] R
L, 2

- ﬂ!!..}m"}*ﬁ

-| O
33333
11000

i ] G H
log of days from first visit

groups [+ pregnant [+ unpregnant

Figure 3.17. OTU distributions of significantly associated genus
Peptoniphilus. Relative proportions of OTUs belonging to significantly
associated genera according to mMTMAT v were calculated. The blue internal node
indicates that OTUs in left test leaf nodes are more abundant in category in blue
than the category in red. Each OTU has its corresponding leaf node, and leaf nodes
in blue and red indicate that they are more frequently observed in the category in
blue and red, respectively. For exp(8), indicates the maximum likelihood estimate
for the quasi-likelihood, and exp(f) indicates the mean difference of C*;/D%;
between cases and controls after adjusting for covariates.
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Figure 3.18. OTU distributions of significantly associated genus Dialister.
Relative proportions of OTUs belonging to significantly associated genera
according to mTMAT were calculated. The blue internal node indicates that
OTUs in left test leaf nodes are more abundant in category in blue than the
category in red. Each OTU has its corresponding leaf node, and leaf nodes in blue
and red indicate that they are more frequently observed in the category in blue and
red, respectively. For exp(f8), indicates the maximum likelihood estimate for the
quasi-likelihood, and exp() indicates the mean difference of C*;/D"; between
cases and controls after adjusting for covariates.
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Figure 3.19. OTU distributions of significantly associated genus Finegoldia.
Relative proportions of OTUs belonging to significantly associated genera
according to mTMAT were calculated. The blue internal node indicates that
OTUs in left test leaf nodes are more abundant in category in blue than the
category in red. Each OTU has its corresponding leaf node, and leaf nodes in blue
and red indicate that they are more frequently observed in the category in blue and
red, respectively. For exp(f8), indicates the maximum likelihood estimate for the
quasi-likelihood, and exp() indicates the mean difference of C*;/D"; between
cases and controls after adjusting for covariates.
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Figure 3.20. OTU distributions of significantly associated unclassified
Clostridiales. Relative proportions of OTUs belonging to significantly associated
genera according to mTMAT v were calculated. The blue internal node indicates
that OTUs in left test leaf nodes are more abundant in category in blue than the
category in red. Each OTU has its corresponding leaf node, and leaf nodes in blue
and red indicate that they are more frequently observed in the category in blue and
red, respectively. For exp(f8), indicates the maximum likelihood estimate for the
quasi-likelihood, and exp() indicates the mean difference of C*;/D"; between
cases and controls after adjusting for covariates.
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Figure 3.21. OTU distributions of significantly associated genus
Streptococcus. Relative proportions of OTUs belonging to significantly
associated genera according to mMTMAT v were calculated. The blue internal node
indicates that OTUs in left test leaf nodes are more abundant in category in blue
than the category in red. Each OTU has its corresponding leaf node, and leaf nodes
in blue and red indicate that they are more frequently observed in the category in
blue and red, respectively. For exp(), indicates the maximum likelihood estimate
for the quasi-likelihood, and exp(B) indicates the mean difference of C%/D%;
between cases and controls after adjusting for covariates.

108 ”

H 2-r



exolf) Prevotella

k1)

Pvalue: 0.011503
Pvakie: 0.995743

13 Povabse: 0546195

P-value: 0.116988

logCPM for each leaf node

logCPM

3 I ]
log of days from first visit

groups [+ pregnant [+ unpregnant

Log ratio of logCPM

logCPM of m=1,2,3,4, o
) for the most significal

log ( logCPM of m=0

nt node k=0

2 4
log of days from first visit

groups [ megnant [5] unpregnant

: Other Genera

: Prevotella

: Prevotella

Prevotella

: Prevotella

m=1,2,3,4: [Genus] Prevotella

Figure 3.22. OTU distributions of significantly associated genus Prevotella.
Relative proportions of OTUs belonging to significantly associated genera
according to mTMAT were calculated. The blue internal node indicates that
OTUs in left test leaf nodes are more abundant in category in blue than the
category in red. Each OTU has its corresponding leaf node, and leaf nodes in blue
and red indicate that they are more frequently observed in the category in blue and
red, respectively. For exp(f8), indicates the maximum likelihood estimate for the
quasi-likelihood, and exp() indicates the mean difference of C*;/D"; between

cases and controls after adjusting for covariates.
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3.4. Discussion

The importance of microbiome-host interactions has been known for more than
a century [53], and it has been shown that the occurrence of many human diseases is
related to bacterial communities.

Microbiome data is phylogenetic number structured and has some unique
properties, including high dimensionality, rarity and heterogeneity beyond
composition. These unigque properties cause multiple statistical problems when
analyzing data across microbial composition and integrating multi-omics data such
as large p and small n, dependencies, over-dispersion and zero inflation.

On the other hand, the classical correlation and related methods in the whole
microbial association study are still applied in the actual study and used in the
development of new methods. But by the problems of metagenomic analysis , the
performance traditional approaches is normally low especially for more complex
models such as longitudinal models including linear mixed models and generalized
linear mixed model.

Here, | propose a new method for detecting OTUs associated with host diseases.
mTMAT statistics are based on quasi-scores for internal nodes in a phylogenetic tree.
In addition to this, mTMAT includes non-independent correlation structure and
various correlation structure and the robust estimation is considered. The use of log
CPM transformation and integrating abundances using phylogenetic tree helps the
convergence of GEE approaches of mTMAT.

Then those statistics are combined into a single statistic with a minimum p-
value. By using such quasi-score statistics, mTMAT can identify differences among

OTUs significantly associated with host diseases, while existing statistical method,
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such as GLMM-MIRKAT cannot. Furthermore, by the nature of the proposed
statistics, the statistical scores for internal nodes are independent, and the minimum
p-value can be directly calculated. I compared the performance of mMTMAT with
those of GLMM-MIRKAT, LMM-arcsine, LMM-log and FZINBMM under various
simulation scenarios. According to my results, mTMAT correctly controlled the
nominal type-1 error rate and was statistically the most powerful method for
detecting associations with host diseases in my simulation studies. Also,
methodologies using permutation-based p-values, such as GLMM-MiRKAT, are
computationally very slow compared to mTMAT.

However, despite the flexibility of mMTMAT, the proposed method has several
limitations. First, mTMAT combines the statistics for each test internal nodes and
multiple comparison occurs when the number of leaf nodes is large. Also, the
performances of the methods described in this paper can be dependent on the
simulation setting even though the simulation tried to reflect the characteristics of
metagenome dataset and used a the real microbial count data. The choice of database
and OTU clustering methods can affect the statistical properties of mMTMAT.
MTMAT can help researchers easily perform fast and effective microbiome-wide
association analysis, which provides a comprehensive understanding of how the

entire microbiota interacts with the human body.
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Chapter 4. Longitudinal Measurement of Urine
Microbiome Reveals the Role of uncultured

Lachnospiraceae on Type-2 Diabetes Pathogenesis

4.1. Introduction

Recent studies have revealed that the intestinal microbiota plays essential roles
in host energy homeostasis, body adiposity, blood sugar control, insulin sensitivity,
hormone secretion, and metabolic diseases, such as type 2 diabetes (T2D) and
obesity [54-56]. However, most of these studies utilized stool samples and therefore
provide limited information when compared to those from the direct sampling of the
intestinal mucosa which is not possible in most cases. In addition, the composition
of microbial communities in stool samples is affected by the compartment they reside
in, such as the mucous membrane [75]. Moreover, microbial communities differ
based on their source, ranging from the intestines, skin, and airways, which are
frequently studied, to urine and blood, which are normally sterile environments [76].
Therefore, it is important to understand the function of not only the intestinal
microbiota, but also the entire whole-body microbiota.

Extracellular vesicles (EVs) have been recently suggested to be the main
messengers between intestinal microorganisms and the host. EVs have been shown
to travel long distances within the body [77], and have been used as biomarkers of
atopic dermatitis, alcoholic hepatitis, and asthma [78-81]. Microbiota-derived EVs
can enter the circulatory system through the intestinal barrier and are expected to
play a key role in the development of insulin resistance, and thus may provide

important clues into T2D pathogenesis. For example, EVs derived from
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Pseudomonas panacis present in the stool samples of high-fat-diet-fed mice
infiltrated the gut barrier and blocked the insulin pathway in skeletal muscle and
adipose tissue, and induced the development of insulin resistance and glucose
intolerance [82]. However, microbiota-derived EVs are highly variable because they
are affected by various factors, such as age and sex. Therefore, caution should be
exercised when inferring causal relationships through statistical analysis of
microbiota data. Longitudinal microbiota studies can allow stronger inferences than
cross-sectional studies [57] and the detection of microorganisms related to the
progression of T2D among healthy subjects. However, the existing studies are
predominantly cross-sectional in nature and are based on correlation analyses, and
therefore are limited with respect to providing an understanding of the exact roles of
the intestinal microbiota and EVs in the development of metabolic diseases.
Therefore, in this study, | investigated the prospective Korean Association
REsource project (KARE) cohort [83]. | used a cohort of Korean adults of 40 years
of age or older for tracking the changes during different stages of T2D progression.
By tracking changes in microbiota-derived EVs in urine samples collected three
times over four years, | investigated the microorganisms potentially associated with
T2D. Furthermore, using genomic and metabolite data from the KARE cohort, |
conducted a multi-omics analysis to investigate the role of microorganisms
potentially involved in the pathogenesis of T2D. | expected my findings to provide
clues as to how microbes, the substances they produce, and their by-products interact
with the human body and affect the development of metabolic diseases. In addition,
using genomic data, | evaluated the causal relationships among microbial organisms,

and clinical measures, with the aim of clarifying the relationship between T2D and
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microorganisms.

4.2. Materials and Methods

Ethics statement
The protocol used in this study was approved by the Institutional Review Board
(IRB No. E1801/001-004) in Seoul National University.
Cohort and study design
The KARE cohort is a prospective study cohort involving subjects from the
rural community of Ansung and the urban community of Ansan in South Korea. The
KARE project began in 2001 as part of the Korean Genome Epidemiology study

[67]. I used data from urine samples taken, and stored at —80°C from 2013, 2015,

and 2017, which | refer to as phases 1, 2, and 3 in this study. For 1,891 subjects for
whom urine samples were available, age, sex and BMI were matched by 2:1:1
propensity score matching. As a result, healthy group (healthy in all phases, N = 328),
a T2D-at-risk group (T2D-at-risk in all phases, N = 164), and a T2D group (T2D in
any of the three phases, N = 164) were selected. From the remaining unmatched
subjects, 35 T2D subjects were also included. Consequently, 691 subjects were
finally included, and their 2,072 urine samples were utilized for microbiota analysis.
Metagenomic, metabolite, clinical, and genomic data were used for analyses (Figure
4.1). This study was approved by the Institutional Review Board of the Korea
University Ansan Hospital, and written informed consent was given by all study

subjects.
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Figure 4.1. Summary chart of data analysis.

Operational definition of T2D and related phenotypes

Participants were categorized into controls, T2D-at-risk patients, and T2D
patients. T2D and T2D-at-risk patients were diagnosed on the basis of criteria
provided by the American Diabetes Association. The detailed criteria are provided
in Table 4.1. T2D status was then stratified into T2D-at-risk/T2D (0 for healthy; 1
for T2D-at-risk and T2D) and binary_T2D (0 for healthy and T2D-at-risk; 1 for T2D).
In addition, | considered other T2D-related phenotypes, such as body mass index
(BMI), HbA1c, fasting glucose and insulin, 60- and 120-minute plasma glucose, and
insulin levels after a 75 g oral glucose tolerance test for the analysis. Age, total
cholesterol, high-density lipoprotein (HDL) cholesterol, triglyceride, kidney- and

liver-related disease indicators—such as levels of blood urea nitrogen (BUN),
creatinine, aspartate aminotransferase (AST), and alanine aminotransferase (ALT)—

C-reactive protein (CRP), white blood cell (WBC) count, red blood cell (RBC) count,

hemoglobin, hematocrit, and platelet count were also collected. The homeostatic
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model assessment for insulin resistance (HOMA-IR) was calculated using fasting

glucose and fasting insulin levels [84]. Descriptive statistics for all variables were

generated using the Rex software (RexSoft Inc., Seoul, Korea) (Table 4.2) [85].

Table 4.1. Criteria used in this study for the diagnosis of T2D and T2D-at-risk
patients

. . Fasting 120 min HbA1 Diabetic
Diagnosis o
Condition glucose glucose c medicine

(mg/dL) (mg/dL) (%) taken
'Without Diabetes| <100 <140 <5.7 No
T2D-at-risk
(Prediabetes) 100-125 140-199 5.7-6.4 No
T2D (Diabetes) >126 =200 >6.5 Yes
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Table 4.2. Descriptive statistics for KARE cohort subjects

Phase 1

Phase 2

Phase 3

Variable Category Statistics (N=393) (N=393) )
Male n(%) 192(48.85%) 192(48.85%) 192(48.85%) 576(48.85%)
Female n(%) 201(51.15%) 201(51.15%) 201(51.15%) 603(51.15%)
Total n(%) 393(100.00%) 393(100.00%) 393(100.00%) 1179(100.00%)
Age
n 393 393 393 1179
mean + Std 57.23+£5.88 59.20+5.91 61.29+£593 59.24 £6.13
Q1,Q3 53.00, 60.00 55.00, 62.00 57.00, 64.00 55.00, 63.00
min ~ max 49.00 - 77.00 51.00 —79.00 53.00 - 81.00 49.00 - 81.00
Hemoglobin
n 393 393 393 1179
mean + Std 5.55+0.42 5.55+0.45 5.67+0.60 5.59+0.50
Q1,Q3 5.30,5.80 5.30,5.80 5.30,5.90 5.30,5.80
min ~ max 4.10-7.40 4.20-7.90 430-11.10 4.10-11.10
Glu0
n 393 393 393 1179
mean + Std 92.52+9.47 92.06 + 11.58 94.80 + 14.44 93.12 + 12.05
Q1,Q3 86.00, 97.00 85.00, 96.00 87.00, 99.00 86.00, 98.00
min ~ max 71.00 — 141.00 62.00 — 159.00 71.00 —224.00 62.00 — 224.00
Glu60
n 372 364 344 1080
mean + Std 161.60 + 46.01 164.50 + 49.51 172.60 + 48.88 166.08 £48.30
Q1,Q3 127.00, 194.00 127.00, 199.00 140.00, 204.00 130.00, 200.00
min ~ max 50.00 —304.00 66.00 —373.00 54.00 — 423.00 50.00 — 423.00
Glul20
n 372 364 344 1080
mean + Std 136.10 £40.59 141.66 £ 43.85 144.25 £ 53.05 140.57 £46.04
Q1,Q3 105.75, 158.25 112.00, 166.00 106.75, 173.25 107.00, 166.00
min ~ max 47.00 —287.00 58.00 —331.00 61.00 —447.00 47.00 —447.00
(Continued)
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Table 4.2. Continued

Variable Category Statistics
n 393 393 393 1179
mean + Std 15.37+3.90 15.71+3.93 15.90 +3.83 15.66 + 3.89
Q1,Q3 12.60, 17.60 12.90, 18.20 12.90, 18.10 12.90, 18.00
min ~ max 6.70 — 32.00 7.40 -32.20 7.80—32.10 6.70 —32.20
Creatinine
n 393 393 393 1179
mean + Std 1.00£0.18 1.00 £0.17 0.96 £0.18 0.99 £0.18
Q1,Q3 0.85,1.12 0.87, 1.11 0.82, 1.08 0.85, 1.11
min ~ max 0.59-1.72 0.67-1.97 0.50-1.79 0.50-1.97
AST
n 393 393 393 1179
mean + Std 25.60+7.18 24.41 £8.03 25.78 £11.99 25.26 £9.32
Q1,Q3 21.00, 28.00 20.00, 27.00 21.00, 27.00 21.00, 27.00
min ~ max 14.00 — 72.00 13.00 - 121.00 14.00 — 181.00 13.00 — 181.00
ALT
n 393 393 393 1179
mean + Std 24.48 £11.96 22.61£10.27 24.08 +£13.46 23.72£11.98
Q1,Q3 17.00, 28.00 16.00, 26.00 16.00, 27.00 16.00, 27.00
min ~ max 6.00 —118.00 8.00 — 74.00 10.00 — 158.00 6.00 — 158.00
Total_cholesterol
n 393 393 393 1179
mean + Std 200.81 +37.31 196.22 +33.81 193.37 + 36.05 196.80 + 35.85
Q1,Q3 175.00, 226.00 173.00, 218.00 169.00, 215.00 172.00, 219.00
min ~ max 116.00 —330.00 109.00 —313.00 95.00 —341.00 95.00 —341.00
HDL_cholesterol
n 393 393 393 1179
mean + Std 49.38 +12.86 47.58 +£12.34 46.89 +12.53 47.95+12.61
Q1,Q3 40.00, 58.00 39.00, 55.00 38.00, 54.00 39.00, 55.00
min ~ max 25.00 ~ 102.00 19.00 ~ 100.00 24.00 ~ 123.00 19.00 ~ 123.00
(Continued)
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Table 4.2. Continued

Variable Category Statistics Phase 1 Phase 2 Phase 3 Total
(N=393) (N=393) (N=393) (N=1179)
Triglyceride
n 393 393 393 1179
mean + Std 136.87 + 81.85 132.22 £ 81.01 130.86 + 79.97 133.32 £ 80.92
Q1,Q3 85.00, 162.00 84.00, 156.00 83.00, 151.00 84.00, 157.00
min ~ max 34.00 — 878.00 37.00 —901.00 35.00 — 714.00 34.00 - 901.00
CRP
n 393 393 393 1179
mean + Std 1.40 £ 4.46 1.30+£2.47 1.25+2.52 1.32+£3.28
Q1,Q3 0.39,1.23 0.40, 1.12 0.37,1.14 0.39, 1.15
min ~ max 0.01-77.37 0.04 -23.36 0.08 —33.92 0.01-77.37
WBC
n 393 393 393 1179
mean + Std 5.15+1.64 4.98+1.43 530+ 1.53 5.14+1.54
Q1,Q3 420, 5.80 4.00, 5.60 4.30, 5.90 4.20,5.80
min ~ max 2.10-22.80 2.30-12.50 2.00-17.90 2.00 —22.80
RBC
n 393 393 393 1179
mean + Std 4.60 + 0.44 4.60 £0.42 4.45+0.40 4.55+043
Q1,Q3 4.29,4.86 431,491 4.17,4.73 4.26,4.85
min ~ max 3.55-7.04 3.40-6.24 3.41-5.70 3.40-7.04
Hematocrit
n 393 393 393 1179
mean + Std 42.88 £4.25 43.67 +3.89 42.35+3.86 42.97 +4.04
Q1,Q3 40.10, 45.40 41.10, 46.40 39.50, 44.70 40.20, 45.60
min ~ max 32.80 — 64.90 33.30-56.10 33.50 - 52.50 32.80 — 64.90
Platlet
n 393 393 393 1179
mean + Std 240.83 +£ 55.77 237.89 + 53.00 24741 +£57.25 242.04 + 55.46
Q1,Q3 201.00, 273.00 201.00, 273.00 212.00, 281.00 203.00, 275.00
min ~ max 104.00 — 492.00 86.00 — 453.00 88.00 — 471.00 86.00 — 492.00
(Continued)
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Table 4.2. Continued

Variable Category Statistics Phase 1 Phase 2 Phase 3 Total
(N=393) (N=393) (N=393) (N=1179)
InsO
n 393 393 393 1179
mean + Std 8.33+£3.85 8.88 £4.05 9.14 £3.70 8.78 £3.88
Q1,Q3 6.20,9.30 6.40, 10.50 6.50, 11.20 6.35,10.45
min ~ max 1.60 —33.00 1.60—29.10 2.10-25.90 1.60 —33.00
Ins60
n 372 364 344 1080
mean + Std 53.37 +43.47 50.95 +37.41 34.65 +£24.76 46.59 £37.19
Q1,Q3 26.88, 63.90 26.18, 62.00 18.68, 42.05 24.00, 57.30
min ~ max 2.40-345.90 2.50 —248.40 2.10-185.40 2.10 —345.90
Ins120
n 372 364 343 1079
mean = Std 50.94 + 44.81 49.63 £42.07 41.41+£47.13 47.47 £44.82
Q1,Q3 23.15,61.10 19.70, 65.80 17.60, 49.75 20.20, 60.35
min ~ max 1.60 —343.00 2.40 —227.00 1.00 — 670.00 1.00 - 670.00
BMI
n 393 393 393 1179
mean + Std 25.01 £2.93 24.87+2.93 24.84 +3.01 24.90 £2.96
Q1,Q3 23.25,26.75 23.11,26.72 23.03, 26.64 23.10,26.72
min ~ max 17.05 —34.60 16.95-35.15 15.33 -34.99 15.33 -35.15
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EV isolation and DNA extraction

Urine samples were subjected to differential centrifugation at 10,000 x g, 4 °C for 10
min using a microcentrifuge (Labogene 1730R; Bio-Medical Science, Seoul, Korea) to
isolate EVs [86]. To remove bacteria, foreign particles, and waste, the supernatant was
filtered through a 0.22-micrometer filter (Inchpor2 Syringe Filter; Inchemtec, Seoul,
Korea). The isolated EVs were boiled at 100 °C for 40 min and centrifuged at 18,214 x g,
4 °C for 30 min to eliminate the floating particles and impurities. The supernatant was
collected and subjected to DNA extraction using a PowerSoil® DNA Isolation Kit (MO
BIO Laboratories, Carlsbad, CA, USA) according to the manufacturer’s protocol. DNA

was quantified using the QIAxpert system (Qiagen, Hilden, Germany).

16S rRNA sequence data processing

Paired-end sequencing of the V3-V4 region of the bacterial 16S rRNA gene were
conducted at MD Healthcare (Seoul, Korea) with the MiSeq Reagent Kits v3 (600 cycles,
lllumina, San Diego, CA, USA) using the widely used primers 16S V3 F (5-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG-GNGGCWGCAG -
3) and 16S_V4 R (5'- GTCTCGTGGGCTCGGAGATGTGTA-
TAAGAGACAGGACTACHVGGGTATCTAATCC-3"). Adaptor sequences were detected
and removed using the CUTADAPT software (https://cutadapt.readthedocs.io) with a
minimum overlap of 11, maximum error rate of 10%, and a minimum length of 10 [41].
Sequences were merged using CASPER (http://best.snu.ac.kr/casper) with a mismatch

ratio of 0.27 and filtered by the Phred (Q) score, resulting in sequences 350—550 bp in
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length [42, 68]. After the merged sequences were dereplicated, chimeric sequences were
detected and removed using VSEARCH (https://github.com/torognes/vsearch) and the
Silva Gold reference database for chimeras [43]. The open-reference Operational
Taxonomic Units (OTU) picking was conducted based on the EzTaxon database using
UCLUST (http://www.drive5.com/usearch) [46, 69]. For each OTU, | calculated its
proportion among all OTUs and determined the mean value across all subjects. If the
resulting value was <0.001, the OTU was excluded [70]. Among the 691 subjects, those
with a read count <3,000 or for whom genomic data were not available in any phase were
excluded. As a result, 1179 samples from 393 subjects, including 70 genera, were used for

subsequent analyses.

Prediction of functional profiles from 16S rRNA metagenomic data

The functional potential of microbial communities can be predicted from their
phylogeny. Tax4fun uses evolutionary modeling to predict metagenomes based on 16S
data using the SILVA reference genome database. The SILVA-based 16S rRNA profile was
used to estimate a taxonomic profile of prokaryotic Kyoto Encyclopedia of Genes and
Genomes (KEGG) organisms. The estimated abundances of KEGG organisms were
normalized using the 16S rRNA copy number obtained from National Center for
Biotechnology Information (NCBI) genome annotations. Finally, the normalized
taxonomic abundances were used to linearly combine the precomputed functional profiles
of the KEGG organisms to predict the functional profile of the microbial community [87].
Similar to the analysis of OTUs, I calculated the mean of the relative proportions across

all subjects for each functional profile. If the resulting value was <0.001, the functional
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profile was excluded from the analysis. As a result, 238 functional profiles were retained

for analysis.

Analysis of bacterial composition and microbial variance

| calculated alpha- and beta-diversity indices using R (v3.6.2) after read number
normalization with the Rarefy function in the R package GUniFrac (v1.1). The R package
Fossil (v0.4.0) was used to obtain Chaol and ACE diversity indexes. Shannon index and
Simpson's index of diversity were calculated using the Vegan package in R (v2.5.6).
Taxonomy-based ring-charts were created using the Krona tool [88]. PERMANOVA is a
non-parametric multivariate analysis of variance method based on pairwise distances [89].
The R package pldist was used to obtain the microbial variance for individuals in repeated
measurements of microbial profiles. pldist summarizes within-individual shifts in the
microbiome composition and compares these compositional shifts across individuals. It
calculates dissimilarities depending on a novel transformation of relative abundances,
which then are extended to more than two time points and are incorporated into a chosen

beta-diversity, in this case, Bray—Curtis dissimilarity. PERMANOVA was performed for

biochemistry-related KARE phenotypes using the adonis function in R. PERMANOVA
can be applied to the cross-sectional data, and thus the phenotypes were averaged for phase

1,2 and 3.

Statistical analysis of the effect of the microbiome on T2D and diabetes-risk
indicators

For each taxon and functional profile, a generalized linear mixed model (LMM) with
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logit link function was used to find associations with binary_T2D and T2D-at-risk/T2D,
whereas a LMM was used for log-transformed diabetes-risk indicators. Random effect
with compound symmetry structure for each time point was incorporated to adjust the
similarity of the T2D status of the same subject at different time points, and the sandwich
estimator was used to find a robust estimate against the misspecified covariance matrix.
To accommodate the multiple testing problem, p-values were adjusted for the false

discovery rate (FDR) using the Benjamini—Hochberg method [27].

Network analysis of a T2D-related taxon based on multi-omics data

To assess overall associations using repeatedly measured multi-omics data, | first
modeled a LMM using the log-transformed diabetes-risk indicators as response variables
and age in phase 1 and sex as explanatory variables with a compound symmetry structure
for its covariance structure. Then, | modeled a LMM with a T2D-related taxon as response
variables with the same covariates and covariance structure. For each combination of
diabetes-risk indicators and a T2D-related taxon, two different set of residuals were
obtained, and Spearman correlations between the residuals were calculated.

To calculate simple correlations among diabetes-risk indicators and a chosen taxon,

network analysis was conducted. Edge width was calculated as —logie of the p-value. The

network was visualized using the R package visNetwork (v2.0.8).

Genotyping, imputation, and quality control
Quality control and genotype imputation were performed according to the standard

quality control and imputation protocols for the genotypes of 8,842 KARE cohort
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participants [90]. After quality control, 8,216 subjects with 17,716,215 SNPs were
included in the analysis. In total, 351 subjects with a read count <3,000 or non-missing
T2D status for all phases were used for a genome-wide association study (GWAS) of
metagenomic data. Among the subjects not included in metagenome GWAS, 3,542
subjects had KARE phenotypes for the three phases and they were used for a GWAS of
KARE phenotypes. The subjects in metagenome GWAS were excluded for the purposes

of a two-sample MR study. Details are provided in Figure 4.1.

Mendelian randomization (MR) analysis

MR uses genetic variants, which are not associated with conventional confounders of
observational studies, and therefore is considered analogous to randomized controlled
trials [91]. There are two types of MR: two-sample MR and one-sample MR. Two-sample
MR uses two independent datasets with non-overlapping samples for the associations of
SNP-exposure and SNP-outcome (as opposed to one-sample MR) and is less likely to lead
to inflated type 1 error rates and false-positive findings when compared to one-sample MR.
Two-sample MR was conducted to identify effect of a microbial taxon on KARE
phenotypes by using no overlapping samples.

For two-sample MR, the average F-statistic was used to avoid weak instrument bias.
The inverse-variance-weighted (IVW) method, Cochran’s Q test, and MR-PRESSO global
test were used to confirm the heterogeneity assumption, and 12 was used for the no
measurement error (NOME) assumption. To enhance the validity of the MR analysis, |
considered the extensive range of existing MR methods, including IVW, MR-egger, MR-

egger with SIMEX correction, median-weighted method, and MR-PRESSO, and | selected
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the recommended MR method based on the violations of MR assumptions [92].

4.3. Results

Longitudinal changes in the urine microbial composition over 4 years

Alpha diversity of urine microbiome decreased during the follow-up period, which
may have been an effect of aging (Figure 4.2). An Nonmetric Multi-Dimensional Scaling
plot based on beta diversity also revealed a gradual change in the composition of
microbiota according to age (Figure 4.3). The overall microbiome composition is
presented in Figure 4.4 Akkermansia muciniphila was the most abundant taxon in all
phases. Figure 4.5 shows that the abundance of two major genera, Bacteriodes and

Akkermansia, decreased during the follow-up period.

T2D and other clinical traits explained by microbial variance

I investigated the associations between various clinical phenotypes and microbial
composition using PERMANOVA (Figure 4.6). HbAlc, WBC, hematocrit, binary T2D,
and age in phase 1 significantly explained the changes in the microbial composition during
the follow-up period (p = 0.0061, 0.0107, 0.0110, 0.0409, and 0.0290, respectively; FDR-
adjusted p = 0.1027, 0.1027, 0.1027, 0.2290, and 0.2030, respectively). HbAlc and
binary_T2D explained a certain amount of variance in the microbial changes in the study
cohort during the 4 years, indicating that the longitudinal change in microbiome
composition may be more closely associated with T2D-related phenotypes than with other

clinical traits.
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Figure 4.2. Box plots of alpha diversity indices for phases 1, 2, and 3.
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Figure 4.3. NMDS plot of Bray—Curtis beta diversities for phases 1, 2, and 3.

128 . (=)
A A



A. Phase 1

:
S?; H
i i
o
e
%"‘fq% »“"dﬁ
S,
S . e % d
EA TN
BRI
] k Unassigned  0.3% .
{ o
B. Phase 2
§ 3 %
\‘ Unassigned  0.1% -
U |
C. Phase 3

unassigned 02% [

achaea 03% [l

Figure 4.4. Taxonomic composition. The mean relative abundances of bacterial taxa at
different taxonomic levels are shown with Krona plot for phase 1, 2, and 3

129

2N e et

SECHRIL MATIOMAL LIMMVERSTY
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Figure 4.5. Mean relative abundances of genera in urine samples from healthy
and T2D-at-risk subjects and T2D patients during a four-year follow-up (2013-
2017). Genera whose relative abundance significantly decreased or increased (p <
0.01) are shown. p-values were calculated and are presented in Table 4.2. under the
repeated measurement ANOVA model with compound symmetry correlation
structure among the same subjects.
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Figure 4.6. Relative importance of variables. Relative proportions of variance
attributable to each variable were calculated with PERMANOVA using pldist based
on Bray—Curtis beta-diversity. Every trait was categorized into four groups,
including pre-defined diabetes-risk indicators, general information (age and sex),
T2D outcomes (Binary T2D and T2D-at-risk/T2D), and others.
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Table 4.2. Microbial profiles and time effects in a repeated-measures ANOVA

model

F-statistic ~ p-value | Phasel Phase2 Phase3
Hafhia 174.65565 | 0.00000 | 0.00001 | 0.01117 | 0.03280
Pseudomonas 162.59098 | 0.00000 | 0.00870 | 0.01858 | 0.03294
Bacteroides 132.10006 | 0.00000 | 0.13790 | 0.11525 | 0.08394
Mucispirillum 84.96168 | 0.00000 | 0.01282 | 0.00728 | 0.00345
Eubacterium_g23 84.65617 | 0.00000 | 0.02102 | 0.01629 | 0.00872
Parabacteroides 76.27374 | 0.00000 | 0.00930 | 0.00801 | 0.00291
EU622770 g 74.78402 | 0.00000 | 0.00701 | 0.00444 | 0.00214
FEisenbergiella 74.30869 | 0.00000 | 0.00695 | 0.00414 | 0.00213
Propionibacterium 72.51276 0.00000 | 0.00279 | 0.00393 | 0.00917
Bifidobacterium 72.35795 0.00000 | 0.01594 | 0.01785 | 0.03705
Stenotrophomonas 64.22521 0.00000 | 0.00608 | 0.00864 | 0.02140
Akkermansia 52.73753 | 0.00000 | 0.14830 | 0.16070 | 0.10442
Oscillibacter 51.21245 | 0.00000 | 0.00565 | 0.00441 | 0.00203
EU006213 g 49.79571 0.00000 | 0.00437 | 0.00301 0.00157
Streptococcus 45.45609 0.00000 | 0.01224 | 0.01224 | 0.02345
Bacillus 44.95760 0.00000 | 0.00005 | 0.00085 | 0.00231
Subdoligranulum 44.12874 | 0.00000 | 0.00630 | 0.00866 | 0.01310
Corynebacterium 40.86407 | 0.00000 | 0.00323 | 0.00510 | 0.00951
Faecalibacterium 39.78100 0.00000 | 0.00709 | 0.01036 | 0.01406
Dorea 36.51705 0.00000 | 0.00138 | 0.00126 | 0.00435
KE159538 g 36.11301 | 0.00000 | 0.00380 | 0.00277 | 0.00163
JN713389 ¢ 29.40586 | 0.00000 | 0.03234 | 0.02888 | 0.02289
Salmonella 27.69458 | 0.00000 | 0.00615 | 0.00872 | 0.01110
Pseudoflavonifractor 26.63656 0.00000 | 0.00278 | 0.00180 | 0.00123
Lactobacillus 23.31283 0.00000 | 0.02182 | 0.01582 | 0.01435
Prevotella 21.74107 | 0.00000 | 0.00453 | 0.00504 | 0.00848
Diaphorobacter 21.42170 | 0.00000 | 0.00490 | 0.00536 | 0.00197
Acinetobacter 20.57114 | 0.00001 | 0.01888 | 0.01843 | 0.03170
Peptoniphilus 19.47782 0.00001 0.00068 | 0.00057 | 0.00283
Agathobacter 17.92011 0.00003 | 0.00547 | 0.00429 | 0.01108
ABI185816 g 17.69532 | 0.00003 | 0.00080 | 0.00063 | 0.00196
AF349416 g 16.04020 | 0.00007 | 0.00219 | 0.00143 | 0.00101
Ruminococcus 15.89541 | 0.00007 | 0.00284 | 0.00151 | 0.00126
Alistipes 15.71696 0.00008 | 0.00104 | 0.00181 0.00300
Megamonas 14.32393 0.00017 | 0.00320 | 0.00141 0.00152
FJ951890 g 13.66239 | 0.00023 | 0.00345 | 0.00264 | 0.00191
Clostridium_g21 13.46607 | 0.00026 | 0.00436 | 0.00296 | 0.00255
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Table 4.2. Continued

~ F-statistic Phasel Phase2 Phase3

KE159600 g 12.42524 0.00045 | 0.00566 | 0.00582 | 0.00352
Turicibacter 12.12757 0.00052 | 0.00362 | 0.00235 | 0.00217
Blautia 10.26543 0.00141 | 0.00306 | 0.00272 | 0.00491
Sphingomonas 10.21799 0.00145 | 0.00259 | 0.00315 | 0.00540
CP009312 g 9.56734 0.00205 | 0.00074 | 0.00085 | 0.00201
Staphylococcus 8.43551 0.00378 | 0.01916 | 0.01962 | 0.02466
Eubacterium_g8 7.07873 0.00796 | 0.00222 | 0.00148 | 0.00135
Klebsiella 6.65326 0.01008 | 0.00819 | 0.00893 | 0.01147
Phascolarctobacterium 5.25604 0.02213 0.00156 | 0.00205 0.00080
GUI174097 g 4.79592 0.02882 | 0.00295 | 0.00211 | 0.00210
Moraxella 4.45083 0.03520 | 0.00222 | 0.00429 | 0.00373
Collinsella 4.33469 0.03767 | 0.00963 | 0.00646 | 0.01270
Methanobrevibacter 3.53503 0.06046 | 0.00092 | 0.00205 | 0.00213
Actinomyces 3.26329 0.07123 | 0.00138 | 0.00286 | 0.00248
Cloacibacterium 3.02431 0.08242 | 0.00302 | 0.00300 | 0.00216
Micrococcus 2.13212 0.14464 | 0.00131 | 0.00118 | 0.00175
Enterococcus 2.08498 0.14915 | 0.00202 | 0.00224 | 0.00302
Fusobacterium 2.02367 0.15526 | 0.00100 | 0.00570 | 0.00206
Lactococcus 1.96258 0.16163 | 0.00203 | 0.00268 | 0.00147
Rhodococcus 1.93296 0.16483 | 0.00061 | 0.00124 | 0.00101
Anaerotruncus 1.79365 0.18087 | 0.00120 | 0.00134 | 0.00084
Romboutsia 1.77354 0.18333 | 0.00872 | 0.00711 | 0.00772
Haemophilus 1.59476 0.20702 | 0.00296 | 0.00223 | 0.00362
Paracoccus 1.56925 0.21069 | 0.00059 | 0.00154 | 0.00155
Megasphaera 1.46126 0.22709 | 0.00075 | 0.00171 | 0.00141
Escherichia 1.29997 0.25457 | 0.02143 | 0.02220 | 0.02491
Clostridium 1.10265 0.29401 0.00522 | 0.00738 | 0.00380
Unassigned 0.81100 0.36810 | 0.00186 | 0.00069 | 0.00131
Neisseria 0.41556 0.51935 | 0.00114 | 0.00090 | 0.00135
Ruminococcus g2 0.34225 0.55870 | 0.00539 | 0.00434 | 0.00580
Gardnerella 0.11903 0.73018 | 0.00133 | 0.00950 | 0.00189
Veillonella 0.07176 0.78886 | 0.00105 | 0.00120 | 0.00100
EU842423 ¢ 0.03733 0.84684 | 0.00122 | 0.00195 | 0.00130
Dialister 0.03148 0.85922 | 0.00153 | 0.00151 | 0.00147

A compound symmetry correlation structure among the same subjects was applied.
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Taxa and functional profiles associated with T2D and diabetes-risk
indicators

In an association analysis of 70 genera with binary_T2D and T2D-at-risk/T2D
phenotypes, GU174097_g, an unclassified Lachnospiraceae, was found to exhibit a
significant association with these phenotypes and was identified to be more abundant
in healthy subjects than in diabetic and prediabetic patients (Table 4.3). Box plot and
box plot of relative proportion in Figure 4.7 show that GU174097 g is slightly less
observed in case group than control group in phase 1 and 3. In Figure 4.8, subjects
were grouped according to their T2D status. Healthy on Phase 1-3 group
comprised subjects who were healthy in phases 1, 2, and 3; T2D on Phase 1-3 group
comprised subjects who had T2D in phases 1, 2, and 3; Healthy to T2D-at-risk/T2D
group included the subjects who were healthy in phase 1 and became T2D patient or
T2D-at-risk in phase 3. T2D-at-risk/T2D to Healthy group included subjects who
were T2D-at-risk/T2D in phase 1 and healthy in phase 3. The relative abundance of
GU174097_g of Healthy to T2D-at-risk/T2D subjects decreases as the development
of T2D occurs. Conversely, Healthy to T2D-at-risk/T2D group had increased
abundance when they become healthy. In summary, GU174097_g seems to move in
clear association with the progression of diabetes over time, not simply whether or
not diabetes.

To investigate T2D-associated microbial functional profiles, 238 functional
profiles were evaluated, and significant associations at an FDR-adjusted significance
of 0.1 are presented in Table 4.4. The T2D-at-risk/T2D phenotype was related to

cationic antimicrobial peptide (CAMP), and the biosynthesis of fatty acids,

134



coenzyme A (CoA), and secondary metabolites, and oxidative phosphorylation were
significantly associated with the Binary T2D phenotype at an FDR-adjusted
significance of 0.1.

Next, | investigated the associations of log-transformed diabetes-risk indicators
with genera, and significant associations at an FDR-adjusted significance of 0.1 were
identified. Twelve, four, and twenty genera were significantly associated with
HbAlc, glucose levels, and insulin levels, respectively. Particularly, Hafnia was
associated with HbAlc and 60- and 120-minute insulin levels, and AB185816_g and
Akkermansia were associated with HbAlc, fasting glucose, and 60-minute insulin
levels (Table 4.5).

Table 4.3. Association analysis of T2D with bacterial genera

Phenotype Genus \ Estimate StdErr DF p-value FDR

T2D-at-risk/T2D| GUI174097 g —189.13 46.63| 735 | 0.00006 | 0.00393
Binary T2D JN713389 g —13.07 5.31] 735 | 0.01411 | 0.38195
Binary T2D Akkermansia —3.49 1.43] 735 | 0.01489 | 0.38195
Binary T2D Dialister —86.44 37.49] 735 | 0.02140 | 0.38195
Binary T2D |Ruminococcus g2 —25.38 11.70] 735 | 0.03039 | 0.38195
Binary T2D KE159538 g —48.29 22.95 735 | 0.03568 | 0.38195
Binary T2D | Bifidobacterium 6.71 3.21] 735 | 0.03669 | 0.38195
Binary T2D | Eubacterium g8 —71.10 34.46/ 735 | 0.03944 | 0.38195
Binary T2D Megamonas —65.20 32.53] 735 | 0.04538 | 0.38195
Binary T2D Pseudomonas 7.74 3.91] 735 | 0.04842 | 0.38195
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Table 4.4. Association analysis of T2D with functional profiles predicted using

tax4fun
Phenotype KEGG Pathway Esilema StdErr DF
Cationic
T2D-at- antimicrobial
oD | peptide (Catpy [10577] 2899 920 | 0.00028 | 0.03735
resistance
Binary_T2D Ba““;;;‘;;f;ret“’n 10443 3402 | 920 | 0.00221 | 0.09027
Binary T2D |Base excision repair|-236.06] 79.69 920 | 0.00313 | 0.09027
Binary T2D Taurine and
hypotaurine  |378.99 | 129.15 | 920 | 0.00342 | 0.09027
metabolism
Binary T2D - |Glycerophospholipi| 4, 59l 6615 | 920 | 0.00374 | 0.09027
d metabolism
Binary T2D | Pantothenate and |, 51 39 g5 920 | 0.00404 | 0.09027
CoA biosynthesis
Binary_T2D Fattyacid =} o5 06| 5760 920 | 0.00611 | 0.09528
biosynthesis
Binary T2D | beta-Lactam | s 551 54 46 920 | 0.00715 | 0.09528
resistance
Binary_T2D Oxidative | g1 71| 3408 | 920 | 000726 | 0.09528
phosphorylation
Binary T2D Biosynthesis of
secondary | —22.08| 832 920 | 0.00806 | 0.09528
metabolites
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Table 4.5. Association analysis of genera with diabetes-risk indicators

Phenotype \ Genus Estimate \ p-value FDR
Ins120 Diaphorobacter 8.7235 4.32E-06 0.000302
Hbalc Fusobacterium -0.6144 5.30E-06 0.000371
Hbalc Gardnerella -0.2588 3.31E-05 0.000772
Hbalc Hafnia 0.1691 2.59E-05 0.000772
Hbalc Akkermansia -0.08445 4.69E-05 0.000822

InsO Bacteroides -0.563 1.89E-05 0.001325
Glu60 Faecalibacterium 1.7566 2.37E-05 0.001351
Ins120 Mucispirillum 4.6197 4.77E-05 0.001668

Glu0 AB185816 g 1.9868 3.25E-05 0.002274

Ins60 Paracoccus -3.1448 0.000117 0.008211
Hbalc AB185816 g 1.184 0.000591 0.008271
Ins60 Akkermansia 0.8599 0.000644 0.014056
Ins60 Bacillus -10.4746 0.000525 0.014056
Ins60 Hafnia -2.1636 0.000803 0.014056
Ins60 Eubacterium g23 3.3619 0.001052 0.014733

Glu0 Gardnerella -0.2234 0.000428 0.014985
Hbalc KE159538 g -0.8552 0.001459 0.017027
Ins120 Hafnia -2.996 0.000824 0.019217

Ins60 Bifidobacterium -2.2198 0.001773 0.020682
Ins60 AF349416 g 11.2469 0.003463 0.030304
Ins60 Clostridium 2.7748 0.003281 0.030304
Ins60 EU622770 g 6.3967 0.005 0.03889
Ins60 Subdoligranulum -4.5438 0.005617 0.039319
Glu0 Akkermansia -0.08067 0.001739 0.040583
Ins60 AB185816 g -13.129 0.008131 0.047429
Ins60 Parabacteroides 4.5801 0.008032 0.047429
Hbalc Collinsella 0.182 0.005517 0.048343
Hbalc Pseudoflavonifractor -0.7954 0.005525 0.048343

InsO Acinetobacter 0.532 0.001467 0.050619

InsO Fusobacterium 2.5293 0.002169 0.050619
Hbalc Prevotella 0.3263 0.008377 0.065156
Hbalc Agathobacter 0.1971 0.014171 0.082664
Hbalc Bifidobacterium 0.1111 0.012478 0.082664
Hbalc Faecalibacterium 0.2225 0.013039 0.082664
Ins120 Oscillibacter 7.0022 0.004943 0.086495

Ins60 Methanobrevibacter -3.4821 0.017655 0.095066
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Associations of T2D-related unclassified Lachnospiraceae with diabetes-
risk indicators

To confirm the association of GU174097 g with T2D, | performed an extensive
validation analysis using clinical data. | first conducted an association analysis
between GU174097_g and clinical variables to investigate the correlations among
GU174097_g and diabetes-risk indicators (Table 4.6). GU174097_g was
significantly and positively associated with the 60-minute insulin level among all
glucose- and insulin-related variables.

Second, | established an association network of the diabetes-risk indicators. An
association network of diabetes-risk indicators is important because the same
observed correlations can imply completely different biological processes. For
example, if high levels of glucose or HbAlc tend to appear with high levels of insulin,
insulin resistance may be present. However, if high levels of glucose or HbAlc tend
to appear with low levels of insulin, insulin secretion may have reduced the glucose
or HbAlc levels. Network analysis indicated strong associations among the diabetes-
risk indicators (Figure 4.9). Particularly, the 60-minute insulin level exhibited a
strong negative correlation with the HbAlc level, suggesting that the former can
decrease the latter.

Lastly, I investigated the association of diabetes-risk indicators and the
progression of T2D. Healthy to T2D-at-risk/T2D group showed increase of 60 min
glucose and insulin level as T2D progress. Fasting glucose and insulin were more
associated with the cross-sectional status of T2D not the progression of T2D (Figure

4.10).
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Table 4.6. Association analysis of T2D-related phenotypes with GU174097 g

Phenotype \ Rho p-value FDR
Ins60 0.0950 0.0018 0.0026
HbAlc —0.0434 0.1548 0.1872
Glu0 0.0306 0.3165 0.3647
Ins0 —0.0301 0.3236 0.3721
HOMA-IR —0.0270 0.3756 0.4255
Glu60 —0.0229 0.4536 0.5045
Ins120 0.0177 0.5622 0.6096
Glul20 0.0072 0.8138 0.8424
BMI —0.0070 0.8186 0.8469
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Figure 4.9. Network of GU174097_g and KARE phenotypes. When FDR < (.05,
edge width is in bold; otherwise, edge width is not included. When rho is positive,
edges are colored red; otherwise, they are colored blue. Blue, green, and red nodes
represent KARE phenotypes, Homeostatic Model Assessment for Insulin Resistance
and GU174097 g, respectively.
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Causal relationship between the T2D-related taxon and diabetes-risk
indicators

To verify whether a causal relationship existed between the abundance of
GU174097_g on diabetes-risk indicators, a two-sample MR analysis was performed.
Extensive assumption checks were conducted to enhance the validity of two-sample
MR analysis (Table 4.7). No weak instrument bias was observed (F-statistic > 10).
However, NOME assumptions were violated for all tests because GU174097_g had
7 SNPs as their instrument variables, and this value was not sufficiently large for I?
> 90. In this case, if heterogeneity exists, MR-Egger (SIMEX) is recommended:;
otherwise, IVW is recommended. Because the InSIDE assumption cannot be

statistically tested [93], the weighted median method—a robust method used in case
of violation of InSIDE assumption—nhas to be considered with each recommended

method [92]. Therefore, the IVW method was used to estimate all causal effects.

There was no significant causal association at an FDR-adjusted significance of 0.05.
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Table 4.7. Statistical analysis to check the assumption required for two-sample Mendelian randomization

GUI74097 g |
N=7
F=10.45
(0)¢ RSS Suggested MR method
HbAlc 0* 0.533 0.644 0.651 VW
Glu0 0* 0.372 0.181 0.183 VW
Glu60 0* 0.660 0.686 0.694 VW
Glul20 0* 0.355 0.457 0.473 VW
Ins0 0* 0.542 0.668 0.666 VW
[ns60 0* 0.117 0.174 0.184 VW
Ins120 0* 0.463 0.257 0.271 VW
BMI 0* 0.758 0.840 0.846 VW

, heterogeneity test from : Q’, P-value for Cochran’s Q test; , P for MR- obal test, F, mean F statistic; 1%, 1> value from
Q, heterogeneity test from IVW; Q’, P-value for Cochran’s Q test; RSS, P for MR-PRESSO global test, F F statistic; 12, 12value f

MR-Egger. F-test checks weak instrument bias, 1° checks the NOME assumption and Q and Q, and RSS checks the heterogeneity assumption.
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Table 4.8. Two-sample Mendelian randomization causal effect.

Outcome

MR methods

GU174097 g

Estimate (95% CI)

|Weighted Median 0.632 (~1.7011, 2.965)
IMR-Egger [-0.997 (7212, 5.2179) 0.753
[HbAlc IMR-Egger (SIMEX) 0.7775 (~1.0014, 2.5564) 0.431
VW 0.0695 (—1.7213, 1.8604) 0.939
IMR-PRESSO 0.0695 (—1.436, 1.5751) 0.931
|Weighted Median [-0.0985 (—3.5584, 3.3613) 0.955
IMR—Egger I-7.8089 (—16.9558, 1.338) 0.141
IGlu0 IMR—Egger (SIMEX) .4721 (-0.1467, 5.0909) 0.185
vw 0.2604 (—2.8322, 3.353) 0.869
IMR-PRESSO 0.2604 (—2.8322, 3.353) 0.874
|Weighted Median [-2.7662 (—8.5932, 3.0608) 0.919
IMR-Egger [-8.4801 (—24.0515, 7.0914) 0.658
IGlu60 IMR-Egger (SIMEX) [-1.5038 (—6.3334, 3.3259) 0.708
vw [-2.2526 (6.749, 2.2438) 0.530
IMR—PRESSO [-2.2526 (-5.8922, 1.387) 0.471
[Weighted Median [-3.1981 (-9.4609, 3.0647) 0.490
IMR-Egger [-7.5848 (—24.8455, 9.6759) 0.455
Glu120 IMR-Egger (SIMEX) [-3.7682 (~10.031, 2.4945) 0.437
A -4.2316 (-8.9665, 0.5034) 0.240
IMR-PRESSO -4.2316 (—8.8492, 0.3861) 0.368
|Weighted Median 0.0809 (~6.646, 6.8077) 0.981
IMR-Egger 0.1588 (~17.656, 17.9735) 0.986
lInsO IMR-Egger (SIMEX) 3.0289 (20456, 8.1034) 0.442
A 1.1125 (—4.0195, 6.2444) 0.829
IMR-PRESSO 1.1125 (-3.1119, 5.3368) 0.780
|Weighted Median 7.518 (-6.0625, 21.0984) 0.468
IMR-Egger 10.0106 (—33.5852, 53.6064) 0.787
lns60 IMR-Egger (SIMEX) 8.2196 (~5.8634, 22.3025) 0.457
vw 13.2629 (-8.3365, 14.8623) 0.859
IMR-PRESSO 3.2629 (—8.3365, 14.8623) 0.807
|Weighted Median [-11.4001 (-26.8887, 4.0885) 0.447
IMR-Egger 24.9815 (—13.0067, 62.9696) 0.399
Ins120 IMR-Egger (SIMEX) -11.541 (=27.7749, 4.6929) 0.324
VW [-7.7912 (—20.2658, 4.6835) 0.663
IMR-PRESSO [-7.7912 (—20.2658, 4.6835) 0.551
|Weighted Median 0.5582 (—1.772, 2.8884) 0.639
IMR-Egger -1.1856 (=7.5103, 5.139) 0.890
IBMI IMR-Egger (SIMEX) 0.4651 (—0.9768, 1.907) 0.833
VW -0.1097 (—1.9344, 1.715) 0.906
IMR-PRESSO [-0.1097 (—1.3438, 1.1245) 0.867

The recommended MR method is highlighted in bold letters.

146

3}
1

kTl



4.4. Discussion

Recent microbiome studies have shown that T2D is associated with gut
microbial dysbiosis [94-96], which can result in altered intestinal barrier functions
and remodeled host metabolic and signaling pathways [97]. Intestinal bacteria can
affect insulin resistance by triggering inflammation via lipid polysaccharides, which
are a component of gram-negative bacterial cell walls [98]. In addition, microbiota-
derived EVs are expected to affect insulin resistance and may help understand the
pathogenesis of T2D [82]. Various bacterial metabolites, such as short-chain fatty
acids (SCFAs), can modulate the functioning of multiple signaling pathways
involved in the maintenance of human health and can protect against insulin
resistance [98, 99].

The human microbiota is highly variable, and this variability can be explained
by the effect of various external factors, such as diet, exercise, mobility, medication,
and cohabitation patterns. Many of these external factors affect the risk of developing
metabolic diseases and are age-related [100]. In other words, the intestinal
microbiota and the host phenotype alter substantially with aging, and the effect of
the intestinal microbiota on the host phenotype is dependent on the age of the host.
The estimation of within-subject covariate effects is robust against between-subject
confounders, and longitudinally measured microbiome data enable the identification
of microbiota effects on the risk of diseases in the host. As most existing studies are
cross-sectional in nature, the validity and interpretation of their results are limited.
Therefore, longitudinal studies are needed to investigate the association between the
human microbiome and diseases.

My longitudinal study revealed that a low abundance of GU174097_g can be a
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risk factor for T2D development. To date, GU174097_g has not been cultured. Multi-
omics data, including host genomic data, T2D-related metabolites, clinical
information, and predicted functional meta-genomic profiles, were utilized to
extensively validate my results. GU174097 g is a member of the family
Lachnospiraceae, and the association between Lachnospiraceae and T2D risk has
been reported in several studies [101, 102]. SCFA pathways, including the
propanediol and acrylate pathways in Lachnospiraceae play important roles in
mediating the effects of Lachnospiraceae on T2D, and microbial organisms
producing SCFAs affect epigenetic regulation in T2D patients and reduce the risk of
developing T2D [99, 103]. I found that GU174097_g is positively correlated with
the 60-minute insulin level, which in turn is negatively correlated with the HbAlc
level. This indicates that GU174097 g reduces the HbAlc level and thus, the risk of
developing T2D, by stimulating insulin secretion.

Next, | aimed to elucidate how GU174097 g affects T2D through 60-minute
insulin and HbA1c. Multiple mechanisms for these associations, including various
metabolites produced by the microbiome, such as SCFAs, have been previously
suggested. [103, 104].

Interestingly, Coprococcus, a member of the Lachnospiraceae family, is one of
the major butyrate-producing bacteria. It uses metabolic intermediates essential to
produce butyrate, a type of SCFA. SCFAs are considered to be beneficial for health
and to protect against T2D [105]. Thus, | hypothesize that GU174097_g produces
SCFAs, which can increase insulin secretion and decrease the HbAlc level,
ultimately reducing the risk of developing T2D.

This study had several limitations. First, as it was based on the metagenomic
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profiles of EVs, the microbial compositions observed can differ from—and need to
be further compared with—those of the intestinal microbiota. Second, as the genus-

level taxonomy of GU174097_g is unknown, ecological and biological information
is limited. Third, the causal relationship found in the discovery MR analysis failed
to replicate. The published summary statistics of microbial GWAS are limited
especially for EV, and the sample size in the microbial GWAS in this study was small.
Therefore, the number of SNPs used as instrument variables in the MR analysis was
small. Future studies should include a large sample size to identify more associated
SNPs and increase the power of MR analysis. In this way, more mechanisms
underlying T2D pathogenesis would be identified. Fourth, although extensive
methods were used to validate the assumptions in the MR analysis and enhance the
validity of the causal analysis, the MR results were not easy to interpret because
diabetes-risk indicators are highly correlated and interact with each other. Additional

in-vivo and in-vitro experiments may clarify the associations identified in this study.

Conclusions

This study revealed that GU174097_g, an unclassified Lachnospiraceae, is
associated with T2D. This findings indicate that GU174097_g is associated with the
progression of T2D and may lower the risk of developing T2D. Although the
mechanism by which GU174097_g affect T2D development has not been elucidated,
the results suggest that large-scale longitudinal studies and in-vivo and in-vitro

experiments should be employed to unravel the underlying biological mechanisms.
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Chapter 5. Conclusions

The statistical method TMAT integrates and normalized abundances of
microorganisms based on phylogenetic tree information and hence corrected zero-
inflated problems. Compositional bias is also handled because the abundance is
based on a proportion between two OTUs. | developed AMAA package for
microbiome association analysis that include the procedures of making microbial
count table with different clustering methods and databases, unifying the
preprocessing steps for various microbiome association test statistics, conducting
metagenome-wide association analysis and comparison of the results. However, the
comparison of the results are limited because it is hard to identify OTUs or ASVs
based on different dataset, clustering method and databases. In further research, more
sophisticated strategy to combine consensus sequences from different microbial
clusters need to be applied.

The statistical method mTMAT implements TMAT and it also corrected zero-
inflated problems and compositional bias with integration based on phylogenetic tree
and taking a proportion between two OTUs. mTMAT also considers correlatation
between repeatedly measured samples and developed for longitudinal microbiome
analysis. The performance of the statistical method can be influenced by the
simulation setup, and further validation of mMTMAT can be improved in simulation
setups with different properties.

Longitudinal analysis to find type-2 diabetes-associated microorganisms was
conducted and provided evidences including estimated functional genes, network
analysis, analysis of metabolomics, GWAS, mendelian randomization analysis and
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meta-analysis. These findings indicate that GU174097_g may lower the risk of
developing T2D. Large-scale longitudinal studies and in-vivo and in-vitro

experiments should be employed to unravel the underlying biological mechanisms.
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