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Abstract 

Image classification of Very High Resolution (VHR) images is a 

fundamental task in the remote sensing domain for various applications such 

as land cover mapping, vegetation mapping, and urban planning. In recent 

years, deep convolutional neural networks have shown promising 

performance in image classification studies. In particular, semantic 

segmentation models with fully convolutional architecture-based networks 

demonstrated great improvements in terms of computational cost, which has 

become especially important with the large accumulation of VHR images in 

recent years. 

However, deep learning-based approaches are generally limited by the need 

of a sufficient amount of labeled data to obtain stable accuracy, and acquiring 

reference labels of remotely-sensed VHR images is very labor-extensive and 

expensive. To overcome this problem, this thesis proposed a semi-supervised 

learning framework for VHR image classification. Semi-supervised learning 

uses both labeled and unlabeled data together, thus reducing the model’s 

dependency on data labels. To address this issue, this thesis employed a 

modified CycleGAN model to utilize large amounts of unlabeled images. 

CycleGAN is an image translation model which was developed from 

Generative Adversarial Networks (GAN) for image generation. CycleGAN 

trains unpaired dataset by using cycle consistency loss with two generators 

and two discriminators. Inspired by the concept of cycle consistency, this 

thesis modified CycleGAN to enable the use of unlabeled VHR data in model 

training by considering the unlabeled images as images unpaired with their 

corresponding ground truth maps. 

To utilize a large amount of unlabeled VHR data and a relatively small 

amount of labeled VHR data, this thesis combined a supervised learning 

classification model with the modified CycleGAN architecture. The proposed 

framework contains three phases: cyclic phase, adversarial phase, and 
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supervised learning phase. Through the three phase, both labeled and 

unlabeled data can be utilized simultaneously to train the model in an end-to-

end manner. 

The result of the proposed framework was evaluated by using an open-

source VHR image dataset, referred to as the International Society for 

Photogrammetry and Remote Sensing (ISPRS) Vaihingen dataset. To validate 

the accuracy of the proposed framework, benchmark models including both 

supervised and semi-supervised learning methods were compared on the 

same dataset. Furthermore, two additional experiments were conducted to 

confirm the impact of labeled and unlabeled data on classification accuracy 

and adaptation of the CycleGAN model for other classification models. These 

results were evaluated by the popular three metrics for image classification: 

Overall Accuracy (OA), F1-score, and mean Intersection over Union (mIoU).  

The proposed framework achieved the highest accuracy (OA: 0.796, 0.786, 

and 0.784, respectively in three test sites) in comparison to the other five 

benchmarks. In particular, in a test site containing numerous objects with 

various properties, the largest increase in accuracy was observed due to the 

regularization effect from the semi-supervised method using unlabeled data 

with the modified CycleGAN. Moreover, by controlling the amount of 

labeled and unlabeled data, results indicated that a relatively sufficient 

amount of unlabeled and labeled data is required to increase the accuracy 

when using the semi-supervised CycleGAN. Lastly, this thesis applied the 

proposed CycleGAN method to other classification models such as the feature 

pyramid network (FPN) and the pyramid scene parsing network (PSPNet), in 

place of UNet. In all cases, the proposed framework returned significantly 

improved results, displaying the framework’s applicability for semi-

supervised image classification on remotely-sensed VHR images. 

 

Keyword : Semi-supervised Deep Learning, CycleGAN, Very High 

Resolution Image Classification, Semantic Segmentation  

Student Number : 2019-24705  
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Chapter 1. Introduction 

With recent advancements in remote sensing technology, Very High 

Resolution (VHR) images from various satellite and airborne sensors have 

become more accessible. VHR images provide detailed information on the 

observed land surface which can be used to improve our understanding of the 

Earth’s environment. In particular, image classification using VHR images is 

a fundamental task to address many practical applications such as land-

use/land-cover (LULC) mapping, urban planning, and vegetation mapping 

(Van de Voorde et al., 2007; Bellen et al., 2008; Feng et al., 2015). Given the 

rich spatial information and the fine-grained detail in VHR images, a diverse 

number of classification studies have been conducted. Stemming from this 

demand, there is a more pressing need to develop automatic VHR image 

classification algorithms in light of the rapidly increasing volume of VHR 

data amassed in recent years. 

Recently, Deep Learning (DL) techniques have shown state-of-the-art 

performance in various Computer Vision (CV) tasks through the use of 

deeper network structures to hierarchically extract high-level features, 

while conventional image classification methods depend on hand-crafted 

features leading to poor performance of classification. Especially, 

Convolutional Neural Network (CNN) has yielded breakthrough results in 

CV-based image classification due to the use of deep convolutional layers 

that can capture spatial features effectively through weight sharing and 

sparse connections. Based on the promising results from CNN-based 

classification methods, CNN models have been readily applied for 

remotely-sensed VHR image classification with demonstrating superior 

classification accuracy. 

Remote sensing image classification methods can be divided in terms of the 

model’s output: traditional sliding window CNN-based and fully 

convolutional architecture-based (Vigueras-Guillén et al., 2019). The sliding 
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window CNN-based method classifies each pixel by moving the window 

across the image, and the classification model outputs the input image as a 

single class. However, this approach is limited by expensive computational 

cost and redundancy issues due to the use of overlapping windows (Vigueras-

Guillén et al., 2019). In contrast, the fully convolutional architecture-based 

approach can solve the computational cost of the sliding window CNN-based 

approach, since the architecture outputs a resulting image that is the same size 

as the input image without using the fully-connected layer included in 

conventional CNNs. This particular method can reduce redundant 

computation and exploit global information in an image, making this 

approach more computationally efficient than the sliding window CNN-based 

approach. 

For VHR image classification, semantic segmentation based on fully 

convolutional models has been widely used. Semantic segmentation is a 

process to assign a specific semantic class label to each pixel in the image. 

For remotely-sensed VHR images, semantic segmentation using fully 

convolutional models is more efficient to process the large accumulation of 

VHR images in recent years, and has therefore been utilized in a wide range 

of applications such as road extraction (Zhang et al., 2018-b; Zhou et al., 

2018), building footprint extraction (Van Etten et al., 2018; Shi et al., 2018; 

Bischke et al., 2019), change detection (Daudt et al., 2018; Peng et al., 2019), 

and multi-class image classification. In particular, since VHR image 

classification for multiple classes greatly increases data heterogeneity and 

required complexity of the used DL model, many sophisticated semantic 

segmentation models have been proposed in recent years (Kampffmeyer et 

al., 2016; Sherrah, 2016; Audebert et al., 2016; Iglovikov et al., 2017; Dong 

et al., 2019; Diakogiannis et al., 2020; Bai et al., 2021). 

However, for achieving the stable classification results using DL-methods 

such as semantic segmentation, the models typically require a large amount 
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of labeled data, but acquiring the ground truth labels of multiple classes in 

remotely- sensed images is labor-intensive and expensive (Foody, 2002; Jin 

et al., 2014). Since an insufficient amount of training data can lower the 

performance and robustness of DL models, various strategies to overcome the 

high dependency on training data have been explored. Among these 

advancements, semi-supervised learning utilizes a small amount of labeled 

data and a relatively large amount of unlabeled data during model training. In 

semi-supervised methods, unlabeled data is used to provide additional 

information of the used dataset distribution or supplement pseudo labels, 

inducing the models to be regularized. Given the continuous accumulation of 

remotely-sensed VHR images being produced over time and the difficulty of 

manually labeling each image, semi-supervised learning can be a practically 

meaningful approach for image classification. 

Meanwhile, Generative Adversarial Networks (GAN) were proposed by 

Goodfellow et al. (2014) for image generation and had been receiving 

extensive attention in various fields, especially for unsupervised learning. 

One of the representative applications of GAN is image-to-image translation 

which maps an image from the source domain to the target domain and 

produces a synthetic image. In particular, CycleGAN proposed by Zhu et al. 

(2017) translated “unpaired” images in the source and target domain. Here, 

“unpaired” refers to two image domains that are dissimilar and cannot be 

matched with each other. Unpaired images with spatially unmatched features 

cannot be trained directly using previous supervised learning approaches. To 

address this issue, cycle consistency loss was proposed by Zhu et al. (2017) 

and is based on the intuition that when an image is translated from one domain 

to another domain and back again to the initial domain, the resulting 

translated image is similar to the original image. To reduce the loss, two 

translators are trained toward preserving the input image’s features, while this 

process requires only input data without paired data to train the model. 
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Inspired by the cycle consistency, this thesis modified the CycleGAN 

architecture to enable the use of unlabeled VHR data for model training. This 

approach considered the two image domains as the original remotely-sensed 

image domain and the class map domain. From this perspective, unlabeled 

images can be considered as a VHR image unpaired with its corresponding 

ground truth map, which allows the unlabeled images to train the 

classification model.  

This thesis aims to establish a semi-supervised learning framework to 

improve the classification accuracy of remotely-sensed VHR images. For this 

purpose, this thesis combines a supervised learning-based classification 

model with the modified CycleGAN architecture to utilize both a large 

amount of unlabeled data and a relatively small amount of labeled data. The 

classification model is trained to map an image from the remotely-sensed 

VHR image domain to the prediction map domain in the CycleGAN model 

by using labeled data in a supervised learning manner. At the same time, the 

cycle consistency and adversarial competition nature of CycleGAN are used 

to additionally train the model by using a large amount of unlabeled data in a 

semi-supervised learning manner. The main contributions of this thesis are as 

follows: 

 

 An end-to-end semi-supervised learning framework is proposed 

which integrates the cycle consistency loss from CycleGAN, to 

enable the training of both labeled and unlabeled data. Through the 

application of CycleGAN’s cycle consistency loss and 

reconstructed images for additional learning, this thesis confirms 

that applying unlabeled data in a semi-supervised learning manner 

aids model training by significantly improving classification 

accuracy. 

 The proposed framework performed multi-class image 
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classification on 9cm very high resolution aerial images. To 

improve classification accuracy, this thesis replaced the translation 

model in CycleGAN with a UNet structure containing the pre-

trained EfficientNet backbone. The classification results were 

evaluated with a comparison to five different benchmarks, which 

include both supervised and semi-supervised learning methods. 

 This thesis conducted two in-depth experiments on data 

configuration and model implementation. First, the impact of 

different number of labeled and unlabeled data was investigated for 

the proposed semi-supervised framework. Second, the modified 

CycleGAN for semi-supervised classification was extended for use 

with three different classification models. 

 

The remainder of this thesis is organized as follows: Chapter 2 introduces 

the background theory of this thesis with a review of related studies. Chapter 

3 describes the proposed semi-supervised learning framework for VHR image 

classification, where the three phases of the framework, loss function for 

back-propagation, and network architecture are described. In Chapter 4, the 

detailed experimental design is explained. Chapter 5 provides the 

experimental results and discussion on the classification accuracy and 

resulting maps in comparison to benchmark studies. This section also 

includes an analysis of the impact of labeled and unlabeled data, the effect of 

cycle consistency loss, and the adaptation of the CycleGAN method for other 

classification models. Lastly, the conclusion of this thesis is given in Chapter 

6.  
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Chapter 2. Background and Related 

Works 

2.1. Deep Learning for Image Classification 

2.1.1. Image-level Classification 

In early deep learning-based approaches, deep neural networks were 

designed to obtain an image-level prediction corresponding to a single class. 

With the introduction of massive deep learning datasets such as ImageNet 

(Deng et al., 2009), more complex and deeper models have been proposed 

and reached higher classification accuracy. In 2016, the Residual Neural 

Network (ResNet) proposed by He et al. (2016) won the 2015 ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) by using shortcut 

connections through identity mapping to avoid the gradient degradation 

problem in deeper networks. This connection allowed models to be built 

deeper and to extract higher-level features without forfeiting a loss in 

accuracy. 

More recently, Tan and Le (2019) proposed EfficientNet which has shown 

superior classification results through compound model scaling of three 

factors: network width, network depth, and resolution (figure 1). While 

conventional methods scale only one of these three factors or scale at random. 

Tan and Le (2019) argued that these factors could be uniformly scaled with a 

set of fixed coefficients. In more detail, the basic building blocks of 

EfficientNet consist of several mobile inverted bottleneck convolutions 

(MBConv), which greatly reduce the computational cost by employing 

depthwise separable convolution (figure 2 (a)) and inverted residuals (figure 

2 (b)). EfficientNet controls the depth, width, and resolution of MBConv 

blocks with fixed scale and balances the network factors, enabling the 

network to achieve state-of-the-art image classification accuracy. 
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Figure 1. Model scaling for width, depth, resolution and compound scaling 

(Tan and Le, 2019). 

 

 

 

 

(a) (b) 

Figure 2. Depthwise separable convolution (a) and inverted residual block 

in the MBConv of EfficientNet (Sandler et al., 2018). 

 

2.1.2. Fully Convolutional Architectures 

To extend image-level prediction to pixel-level, early studies used the 

conventional CNN with a sliding window method so that the deep model 

predicts a class label for a target pixel from a patch of the image. However, 

this strategy is computationally expensive and faces pixel redundancy 

between overlapping patches (Vigueras-Guillén et al., 2019). As a solution to 

this issue, Fully Convolutional Network (FCN) proposed by Long et al. (2015) 

performed pixel-level classification by replacing the fully connected layer of 
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conventional image classification networks with deconvolution layers. 

Unlike the dense layer, this fully convolutional structure enabled the 

preservation of the original image’s spatial information and generated a 

segmented output image with the same size as an input image. To elaborate 

on the model architecture, FCN consists of downsampling and upsampling 

stages. Repetitive convolution and pooling layers in the downsampling reduce 

the size of the feature map, thus saving computational cost and preserving the 

size of the receptive field. Subsequently, the upsampling stage restores the 

resolution of the feature map to the size of the original input image. Although 

FCN has some limitations such as generating poor boundaries and losing 

detailed spatial information when producing feature maps, the 

downsampling-upsampling structure has served as the driving inspiration 

behind the design of most modern semantic segmentation models. 

UNet was first proposed by Ronnerberger et al. (2015) for the segmentation 

of biomedical images. The structure of UNet can be divided into a contracting 

path and an expansive path, and is also referred to as an encoder-decoder 

which resembles a U-shaped architecture (figure 3). To address the blurring 

problem faced by the FCN, UNet employed skip connections to combine fine 

location information in shallow layers with global semantic features in the 

deep layers. Through the U-shaped architecture, UNet alleviated the trade-off 

between localization accuracy, while the use of context information was able 

to help yield more sophisticated segmentation results. 
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Figure 3. The architecture of UNet (Ronnerberger et al., 2015). Blue boxes 

indicate feature maps with different size 

 

2.1.3. Semantic Segmentation for Remote Sensing Images 

Semantic segmentation methods using the fully convolutional architecture 

are computationally more efficient compared to methods that use sliding 

window CNNs, especially for large VHR remote sensing images. Semantic 

segmentation models such as FCN and UNet have been implemented for 

multi-class classification using VHR images. Kampffmeyer et al. (2016) first 

applied FCN to perform multi-class semantic segmentation for VHR remote 

sensing images. Both sliding window-based and FCN-based classification 

approaches were used, and the study developed a combination of these 

models with median frequency balancing to achieve better overall 

classification accuracy for small objects. In addition, Iglovikov et al. (2017) 

employed UNet to classify VHR satellite multispectral images. To modify the 

model for VHR satellite images, Iglovikov et al. (2017) added a cropping 

layer to the output layers of U-Net to address boundary effects near the edge 

of each patch. The proposed UNet model was first applied to a WorldView-3 
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satellite image containing one panchromatic band, eight multispectral bands, 

and eight SWIR bands. 

Recently, different feature extractors have been used in place of simple 

CNN-based encoders in the contracting path of segmentation networks as 

many sophisticated feature extractors based on image classification task have 

been developed. Firstly, Sherrah (2016) and Audebert et al. (2016) 

successfully applied VGG-16 (Simonyan and Zisserman, 2014) pre-trained 

by ImageNet for semantic segmentation of a remotely-sensed VHR image. 

Sherrah (2016) utilized a pre-trained VGG-16 network in FCN to make better 

use of robust features and achieved better VHR image classification accuracy 

compared to benchmark models. To address the limitation that pre-trained 

networks can only utilize three input channels, Audebert et al. (2016) 

combined two pre-trained encoders. In more detail, the first encoder receives 

three bands from the original image, and the second encoder receives 

additional input data, including DSM, nDSM, and NDVI as input bands. 

Following this dual-encoding path, two kinds of feature maps are merged 

together in the decoding path to output a single classified map. 

However, employing the pre-trained model can face some limitations when 

the model is applied to domains that differ from the computer vision domain 

image used in pre-training. Due to this issue, feature extractors are often 

applied in the remote sensing domain without using pre-trained weights. 

Dong et al., (2019) employed the idea of dense connection in the encoding 

path of UNet structure. The encoder consists of several down-sampling 

blocks based on dense connection, which is illustrated in figure 4. In a dense 

block, all layers in a block are fully connected, or “densely” connected, to 

maximize the flow of information and gradient. After the dense connection, 

feature maps pass two paths composed of a max-pooling layer to reduce the 

dimension of feature maps and an up-sampling block of the decoder. In 

addition to improving the encoder’s structure, a focal loss function weighted 
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by median frequency balancing is employed to address class imbalance. 

Ultimately, Dong et al., (2019) demonstrated that the proposed methods 

achieved better accuracies compared to those of the original UNet and 

especially for small objects. 

 

Figure 4. The dense DownBlock (left) and UpBlock (right). 

 

Diakogiannis et al. (2020) proposed ResUNet-a using a UNet encoder-

decoder backbone and the residual structure of ResNet. The deeper 

convolutional structures with residual connections allowed the model to 

achieve consistent training in the encoding path and remove gradient 

vanishing. With additional improvements such as applying an atrous 

convolution and a dice loss function, Diakogiannis et al. (2020) achieved top 

rank accuracy using VHR images, demonstrating significant improvement 

over state-of-the-art results. In this thesis, Sherrah (2016), Audebert et al. 

(2016), Dong et al., (2019), and Diakogiannis et al. (2020) are used as 

benchmarks to compare the proposed framework, especially under the 

condition of using limited labeled data. 
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2.2. Generative Adversarial Networks (GAN) 

2.2.1. Introduction to GAN 

GAN was proposed by Goodfellow et al. (2014) for image generation task 

and was trained by implementing a minimax game between the generator and 

discriminator (figure 5). 

 

 

Figure 5. Overview of GAN structure. Fake data is generated from latent 

vector z by the generator. The discriminator tries to distinguish the fake data 

and real data as real or fake. 

 

The objective function of GAN is defined as follows: 

 

 

min
𝐺

max
𝐷

𝑉𝐺𝐴𝑁(𝐷, 𝐺) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] 

+𝔼𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] 
(1) 

where D and G denote the discriminator and generator, respectively. The 

generator map input variables z to fake image, and the fake image and real 

image x are fed into the discriminator. To maximize the objective function, 

the discriminator tries to map the real data to a value of one, and the fake 

image to a value of zero. In other words, the generator tries to make the 

discriminator fail by minimizing the objective function. In practice, the 
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function may not give sufficient gradient to train the generator, since the 

generator performs more poorly in comparison to the discriminator during the 

early few epochs. To address this problem, a modified function is practically 

employed for the generator: 

 

 max
𝐺

𝑉𝐺𝐴𝑁(𝐺) = 𝔼𝑧~𝑝𝑧(𝑧) [log (𝐷(𝐺(𝑧)))] (2) 

Since GAN models are hard to train as evidenced by problems such as mode 

collapse, gradient vanishing and imbalanced training (Goodfellow, 2016), the 

modification of objective functions and network structure is a very active 

research area in an effort to overcome these problems. In particular, one 

representative research proposed alternate objective functions: Least Squares 

GAN (LSGAN) (Mao et al., 2017). LSGAN changes the original objective 

function based on binary cross entropy to a least squares-based function as 

follows: 

 

 

min
𝐷

𝑉𝐿𝑆𝐺𝐴𝑁(𝐷) =
1

2
𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[(𝐷(𝑥) − 𝑏)2] 

+
1

2
𝔼𝑧~𝑝𝑧(𝑧) [(𝐷(𝐺(𝑧)) − 𝑎)

2
] 

(3) 

 min
𝐺

𝑉𝐿𝑆𝐺𝐴𝑁(𝐺) =
1

2
𝔼𝑧~𝑝𝑧(𝑧) [(𝐷(𝐺(𝑧)) − 𝑐)

2
] (4) 

where, a and b are the labels for fake data and real data, c is the value that the 

generator tries to make the discriminator “believe” in. The least squares 

function can penalize data to a greater extent from real samples, which pulls 

the data closer toward the decision boundary. This also allows the model to 

alleviate the gradient vanishing problem that occurs when learning with the 

original objective function. 

In the original GAN model, the modes of the generated images cannot be 

controlled due to the unsupervised nature of GAN, thus resulting in poor 

quality and mode-collapsed outputs. In response to this problem, Mirza and 
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Osindero (2014) proposed Conditional GAN (CGAN) where additional 

information such as the class label of the image is added in the generator and 

the discriminator to control the generation process. The objective function of 

CGAN is defined as: 

 

 

min
𝐺

max
𝐷

𝑉𝐶𝐺𝐴𝑁(𝐷, 𝐺) =  𝔼𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥|𝑦)] 

+𝔼𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑦)))] 
(5) 

where y is ancillary information, inducing the generator to produce a fake 

image based on the extra information. CGAN introduced the first attempt to 

use class labels with GAN, consequently leading to the widespread usage of 

class information in many GAN applications including image translation. 

 

2.2.2 Image Translation 

GAN networks are continuously being used for a diversity of applications. 

One of the most popular tasks using GAN is image translation, which aims to 

map an image from a source domain to a target domain. For example, there 

are translations between edge-to-photo, aerial image-to-map, and real image-

to-segment (figure 6). In image translation methods using GAN, there are two 

representative networks: the supervised learning-based Pix2Pix and the 

unsupervised learning-based CycleGAN. Isola et al. (2017) proposed Pix2Pix 

where the GAN architecture was applied for image translation in a supervised 

manner (figure 7). Since the conventional CNN-based image translation 

methods were used to formulate the task via a per-pixel regression, the outputs 

appeared to be blurred and unrealistic. To address this issue, Pix2Pix 

employed the adversarial loss of GAN to generate more realistic outputs. Also, 

supervised reconstruction loss using the L1 norm was employed with the 

adversarial loss to further train the model toward generating more similar 

results to the real samples. 
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Figure 6. Example images for the image-to-image translation task (Isola et 

al., 2017). 

 

 

Figure 7. The structure of Pix2Pix to translate edges-to-photo (Isola et al., 

2017). An image from the edges domain is translated to a fake photo image 

by the generator, while the discriminator tries to distinguish the two images. 

 

One caveat is that Pix2Pix can only be trained by “paired” samples, but 

obtaining paired samples is difficult and sometimes impossible. To answer 

this issue, Zhu et al. (2017) proposed a novel method to train “unpaired” 

images using CycleGAN. To train an unpaired image for image translation, 

Zhu et al. (2017) exploited “cycle consistency loss”. The structure of 

CycleGAN is illustrated in figure 8. CycleGAN consists of two mapping 

functions (G: X → Y, F: Y → X) and two discriminators (𝐷𝑋 , 𝐷𝑌). Zhu et al. 

(2017) introduced the cycle consistency loss from the intuition that if an 

image from a domain translated to the other and back again, the model should 
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be able to reconstruct the output at where the original image started. There 

are two cycle consistency losses: forward cycle consistency loss ( X →

G(X) → F(G(x)) ≈ X ) and backward cycle consistency loss (Y → F(X) →

G(F(Y)) ≈ Y ). The generators are trained toward reducing the cycle 

consistency losses, where paired images are not required. In addition, the 

adversarial loss of GAN is employed together for that the translated fake 

images cannot be distinguished from real images of the target domain. While 

CycleGAN outputs poor results when compared to supervised models, the 

model has inspired many researches in that unpaired images were utilized for 

model training in image translation studies. 

 

 

Figure 8. The workflow of CycleGAN (Zhu et al., 2017). CycleGAN 

contains two mapping functions (G and F) and two discriminators. The 

generators are trained so that the cycle consistency loss is minimized and 

the model calculates the difference between original data and 

reconstructed data. 

 

2.2.3. GAN for Semantic Segmentation 

The unique adversarial structure of GAN inspired many segmentation-

based researches, since the generator (also referred to as the “translator”) can 

play a similar role to the classifier used in segmentation with models such as 

CNN. GAN has also been applied as an attached module in the adversarial 

function of conventional CNN-based classifiers or FCN-based segmentation 

models. Luc et al. (2016) first proposed a semantic segmentation model using 
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adversarial networks, where the discriminator encourages the generator to 

produce prediction maps that are hard to distinguish from ground truth maps 

(figure 9). Their results showed that the adversarial method improved 

semantic segmentation accuracy on the CV-based segmentation dataset. This 

segmentation method combining adversarial learning has also been applied to 

remotely-sensed imagery (Lin et al., 2017-a; Shi et al., 2018; Zhang et al., 

2019;). In more detail, Shi et al. (2018) and Zhang et al. (2019) employed 

adversarial learning for binary segmentation of building footprint and roads, 

respectively, while Lin et al. (2017-a) conducted segmentation for a multi-

class dataset. In these model architectures, the generator produces predicted 

images from remotely-sensed VHR images, while the discriminator tries to 

distinguish if the single class map is real with respect to the generated output 

and real label data. 

 

 

Figure 9. Overview the semantic segmentation approach using adversarial 

networks (Luc et al., 2016) 

 

Beyond the simple application of the adversarial structure, modified GAN 

architectures have been studied for various applications of semantic 

segmentation. Zhang et al. (2018-a) proposed SegGAN where a pre-trained 

segmentation network was fitted into the GAN framework. They were 
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motivated by the fact that a predicted map from a segmentation network 

should have a strong correlation with the original image. For this purpose, the 

segmentation model predicted segmented images from the original image, 

and subsequently, the generator produced images from the predicted layers, 

while discriminator was used to distinguish original and fake images in 

competition with the generator. They originally utilized the GAN to reflect 

the correlation between the original image and label and achieved promising 

accuracy for semantic segmentation.  

One of the main advantages of GAN is that the model can be trained using 

unlabeled images. Recent studies inspired by this advantage combined 

conventional supervised classification methods with the GAN structure to 

employ unlabeled data. Hung et al. (2018) proposed adversarial learning for 

semi-supervised semantic segmentation (figure 10). They designed a fully 

convolutional discriminator which enables semi-supervised learning through 

self-taught labeling. The semi-supervised loss is defined as: 

 

 ℒ𝑠𝑒𝑚𝑖 = − ∑ ∑ 𝐼(𝐷(𝑆(𝑋𝑛))
(ℎ,𝑤)

> 𝑇𝑠𝑒𝑚𝑖) ∙ 𝑌̂𝑛

(ℎ,𝑤,𝑐)
log (𝑆(𝑋𝑛)(ℎ,𝑤,𝑐))

𝑐~𝐶ℎ,𝑤

 (6) 

where, I is an indicator for pseudo labeling based on threshold 𝑇𝑠𝑒𝑚𝑖, and 𝑌̂ 

is a self-taught label. The loss function is based on categorical cross-entropy 

for classification. Hung et al. (2018) argued that the confidence map produced 

by the discriminator from the unlabeled data provided a self-taught signal, 

and which led to refined segmentation results. 

 

 



 

１９ 

 

 

Figure 10. Overview of the semi-supervised semantic segmentation system 

with adversarial learning (Hung et al., 2018) 

 

Meanwhile, Mondal et al. (2019) proposed semi-supervised segmentation 

algorithms using the unpaired image transfer capabilities of CycleGAN. This 

study employed the cycle consistency mapping for semantic segmentation 

and achieved improved segmentation performance in CV-based segmentation 

datasets such as PASCAL VOC and Cityscapes. However, in a study by Peng 

et al. (2020), the model by Mondal et al. (2019) was found to have some 

limitations that may lead to mode collapse problems leading to poor 

classification accuracy when applied to remote sensing image with different 

object properties. The semi-supervised framework proposed in this thesis 

modified the CycleGAN networks to adapt for remotely-sensed VHR images 

and the classification performance was compared to upper semi-supervised 

benchmarks (Hung et al., 2018 and Mondal et al., 2019). 
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Chapter 3. Proposed Framework 

This thesis proposed the VHR remote sensing image classification 

framework based on semi-supervised learning using a modified CycleGAN. 

The proposed models consist of two generators and two discriminators (figure 

11): image-to-class generator 𝐺𝐼2𝐶 , class-to-image generator 𝐺𝐶2𝐼 , image 

discriminator 𝐷𝐼 , class discriminator 𝐷𝐶  . These four networks pass 

information of input data through feed-forward paths and are trained by back-

propagation. The proposed framework can be divided into two parts including 

image-reconstructed cycle and class-reconstructed parts. In the respective 

parts, three phases are included: supervised learning phase, cyclic phase, and 

adversarial phase. 

Section 3 is organized as follows: in Section 3.1., the modification of the 

original CycleGAN for semi-supervised VHR image classification is 

explained. In Section 3.2., the feed-forward path of the proposed framework 

is described. Section 3.3. presents the loss functions used to train the models 

through back-propagation. In Section 3.4., four network architectures using 

modified CycleGAN are explained. 
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(a) 

 
(b) 

Figure 11. The proposed semi-supervised framework using the modified 

CycleGAN. The framework includes two parts: (a) the image-reconstructed 

part and (b) class-reconstructed part. When displaying the structure, (a) 

shows the three phases of this framework and (b) shows the back-

propagation process. 
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3.1. Modification of CycleGAN 

This thesis was inspired by the cycle consistency concept of CycleGAN 

(Zhu et al., 2017) to establish a semi-supervised learning image classification 

framework. However, there are some gaps between the original CycleGAN 

and the purpose of this thesis. First, the original CycleGAN is only trained by 

unpaired data in an unsupervised manner, without employing the labeled data. 

While this can be a significant approach that the labeled data is not required, 

unsupervised learning for image classification is still challenging to obtain a 

stable accuracy. Second, the purpose of the original CycleGAN is image 

translation, while this thesis aims to perform image classification. Generators 

of CycleGAN are based on a style transform network that has different 

structure and loss function from image classification methods. 

To tackle these two gaps, this thesis combined the supervised learning-based 

classification method and the structure of original CycleGAN based on cycle 

consistency employing unpaired images. In the cyclic and adversarial phases 

from the original CycleGAN, unlabeled images and unpaired class maps can 

be employed by an unsupervised manner. Additionally, in this thesis, labeled 

images and paired class map train the two generators in the supervised 

learning phase through the cross-entropy loss for image classification. With 

the modification in the framework’s architecture and loss function, this thesis 

replaced the generator network which acts as an image classifier with a UNet-

based segmentation network for image classification. Since remotely-sensed 

images contain many homogeneous and small-sized objects, skip-connection 

of UNet helps the generator to consider detailed spatial information leading 

to accurate classification in small objects. Consequently, supervised learning-

based image classification network and cross-entropy loss were combined 

with the unpaired data-based CycleGAN for remotely sensed VHR image 

classification. 
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3.2. Feed-forward Path of the Proposed Framework 

3.2.1. Cyclic Phase 

First, in the image-reconstructed cycle part, both an unlabeled image set 

𝑋𝑢𝑛𝑙𝑎  and a labeled image set 𝑋𝑙𝑎  are used. Respectively, the real VHR 

images (𝑥𝑟𝑒𝑎𝑙 ) are fed into 𝐺𝐼2𝐶  to generate fake class maps (𝑦𝑓𝑎𝑘𝑒 =

𝐺𝐼2𝐶(𝑥𝑟𝑒𝑎𝑙)), and thereafter, the fake class maps generated from 𝐺𝐼2𝐶 pass 

through 𝐺𝐶2𝐼  translating to reconstructed images ( 𝑥𝑟𝑒𝑐𝑜𝑛 =

𝐺𝐶2𝐼(𝐺𝐼2𝐶(𝑥𝑟𝑒𝑎𝑙)) ). Since this cyclic feed-forward path does not require a 

ground truth map, unlabeled images can be fed into the two generators. Also, 

the labeled image set is used in this cycle without ground truth to retain more 

training images and to integrate with the supervised learning phase. Second, 

only the class map 𝑌𝑙𝑎 belonging to the labeled dataset are used in the class-

reconstructed cycle path, because there is no class map in the unlabeled 

dataset. Reversely, 𝐺𝐶2𝐼 first feeds real class maps (𝑦𝑟𝑒𝑎𝑙) generating fake 

images (𝑥𝑓𝑎𝑘𝑒 = 𝐺𝐶2𝐼(𝑦𝑟𝑒𝑎𝑙) ), and then, the fake images are translated to 

reconstructed class map (𝑦𝑟𝑒𝑐𝑜𝑛 = 𝐺𝐼2𝐶(𝐺𝐶2𝐼(𝑦𝑟𝑒𝑎𝑙))) through 𝐺𝐼2𝐶. 

 

3.2.2. Adversarial Phase 

Fake images and class maps produced in the cyclic phase are used to train 

in an adversarial learning way with the real images and class maps. The 

adversarial phase aims to set the generator and discriminator so they compete 

against each other to produce more real samples. For the image domain, 𝐷𝐼 

receives both the real images (𝑥𝑟𝑒𝑎𝑙) and the fake images from 𝐺𝐶2𝐼 (𝑥𝑓𝑎𝑘𝑒) 

to produce a prediction score that can be used to assess real or fake images. 

Likewise, receiving the real class maps (𝑦𝑟𝑒𝑎𝑙) and the fake class maps from 

𝐺𝐼2𝐶 (𝑥𝑓𝑎𝑘𝑒), 𝐷𝐶  tries to distinguish whether inputs are real or fake class 

maps. 
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3.2.3. Supervised Learning Phase 

In the supervised learning phase, only labeled images and their 

corresponding ground truth labels are used. 𝐺𝐼2𝐶  which acts as the main 

classifier receives the real images, generating the same prediction maps as the 

fake class maps (𝑦̂ = 𝐺𝐼2𝐶(𝑥𝑙𝑎
𝑟𝑒𝑎𝑙) = 𝑦𝑙𝑎

𝑓𝑎𝑘𝑒
 ). Generated prediction maps 𝑦̂ 

and real class maps 𝑦𝑙𝑎
𝑟𝑒𝑎𝑙  are used in back-propagation by reducing 

supervised loss between the two maps. At the same time, 𝐺𝐶2𝐼 translates the 

real class maps to the fake images x𝑙𝑎
𝑓𝑎𝑘𝑒

= 𝐺𝐶2𝐼(𝑦𝑙𝑎
𝑟𝑒𝑎𝑙). This feed-forward 

path in the supervised learning phase is computationally included in the front 

section of the cyclic phase.  
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3.3. Loss Function for Back-propagation 

Similar to the feed-forward path, the loss function for back-propagation can 

be divided into three parts: cycle consistency loss, adversarial loss, supervised 

learning loss. First, the supervised loss is defined as follows: 

 

 ℒ𝑠𝑢𝑝(𝐺𝐼2𝐶 , 𝐺𝐶2𝐼) = 𝜆𝐶
𝑠𝑢𝑝ℒ𝐶

𝑠𝑢𝑝 + 𝜆𝐼
𝑠𝑢𝑝ℒ𝐼

𝑠𝑢𝑝
 (7) 

   

 ℒ𝐶
𝑠𝑢𝑝(𝐺𝐼2𝐶) = 𝔼𝑥~𝑋𝑙𝑎,𝑦~𝑌𝑙𝑎

[𝐶𝐸𝐸(𝑦, 𝐺𝐼2𝐶(𝑥))] (8) 

 ℒ𝐼
𝑠𝑢𝑝(𝐺𝐶2𝐼) = 𝔼𝑥~𝑋𝑙𝑎,𝑦~𝑌𝑙𝑎

[|𝑥 − 𝐺𝐶2𝐼(𝑦)|1] (9) 

where, λ  is a weight coefficient for the corresponding loss term, and is 

determined experimentally. The total supervised loss ℒ𝑠𝑢𝑝 is defined as the 

weighted sum of two losses, ℒ𝐶
𝑠𝑢𝑝

  and ℒ𝐼
𝑠𝑢𝑝

 . Here, ℒ𝐶
𝑠𝑢𝑝

  is a supervised 

classification loss between the real class and predicted maps, where 

categorical cross-entropy is employed to compute the error between the two 

maps. Categorical cross-entropy is defined as: 

 

 𝐶𝐶𝐸(𝑦, 𝑦̂) =  − ∑ 𝑦𝑖 log(𝜎(𝑦𝑖̂))

𝐶

𝑖

 (10) 

 

where C is the number of classes and σ is the sigmoid activation function. 

ℒ𝐼
𝑠𝑢𝑝

 is the supervised image generation loss defined as L1 norm difference 

between the real images and generated images. Since the pixel values of 

generated and real images do not denote prediction probability like class maps 

but the brightness of the specific channel, the L1 norm difference is employed 

rather than categorical cross-entropy to measure the error between those two 

images. With the supervised loss, the two generators are trained toward 

generating results more similar to the reference data. 

Second, cycle consistency loss is employed to train the two generators to 
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reconstruct the original image or class maps in an unsupervised manner. The 

loss is the weighted sum of the three losses with the labeled image set, 

unlabeled image set, and ground truth maps. The three losses are described as 

follows:  

 

 
ℒ𝑐𝑦𝑐𝑙𝑒(𝐺𝐼2𝐶 , 𝐺𝐶2𝐼) = 𝜆𝐶

𝑐𝑦𝑐𝑙𝑒
ℒ𝐶

𝑐𝑦𝑐𝑙𝑒
+         

            𝜆𝑙𝑎
𝑐𝑦𝑐𝑙𝑒

ℒ𝑙𝑎
𝑐𝑦𝑐𝑙𝑒

+ 𝜆𝑢𝑛𝑙𝑎
𝑐𝑦𝑐𝑙𝑒

ℒ𝑢𝑛𝑙𝑎
𝑐𝑦𝑐𝑙𝑒

 
(11) 

   

 ℒ𝑙𝑎
𝑐𝑦𝑐𝑙𝑒(𝐺𝐼2𝐶 , 𝐺𝐶2𝐼) = 𝔼𝑥~𝑋𝑙𝑎

[|𝑥 − 𝐺𝐶2𝐼(𝐺𝐼2𝐶(𝑥))|
1

] (12) 

 ℒ𝑢𝑛𝑙𝑎
𝑐𝑦𝑐𝑙𝑒(𝐺𝐼2𝐶 , 𝐺𝐶2𝐼) = 𝔼𝑥~𝑋𝑢𝑛𝑙𝑎

[|𝑥 − 𝐺𝐶2𝐼(𝐺𝐼2𝐶(𝑥))|
1

] (13) 

 ℒ𝐶
𝑐𝑦𝑐𝑙𝑒(𝐺𝐼2𝐶 , 𝐺𝐶2𝐼) = 𝔼𝑦~𝑌𝑙𝑎

[𝐶𝐸𝐸 (𝑦, 𝐺𝐼2𝐶(𝐺𝐶2𝐼(𝑦)))] (14) 

Cycle consistency loss aims to measure the error between original images 

or class maps and reconstructed images or class maps. Since the losses use 

original inputs and reconstructed outputs passing through two generators 

successively without ground truth data, unsupervised learning can be 

implemented. 

To reduce the cycle consistency loss, the two generators try to preserve 

information from the original inputs though the corrected reference for 

respective networks is unknown. For error-measuring functions, categorical 

cross-entropy is used for class maps, while the L1 norm is used for the images. 

Lastly, the adversarial loss is propagated backward in the networks for the 

generator and discriminator to compete with each other. The loss is described 

as follows: 

 

 ℒ𝑎𝑑𝑣(𝐺𝐼2𝐶 , 𝐺𝐶2𝐼 , 𝐷𝐶 , 𝐷𝐼) = 𝜆𝐶
𝑎𝑑𝑣ℒ𝐶

𝑎𝑑𝑣 + 𝜆𝐼
𝑎𝑑𝑣ℒ𝐼

𝑎𝑑𝑣 (15) 
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ℒ𝐶
𝑎𝑑𝑣(𝐷𝐶) = 𝔼𝑦~𝑌𝑙𝑎

[(1 − 𝐷𝐶(𝑦))
2

] 

+𝔼𝑥~𝑋𝑙𝑎,𝑋𝑢𝑛𝑙𝑎
[(𝐷𝑐(𝐺𝐼2𝐶(𝑥)))

2

] 

(16) 

 ℒ𝐶
𝑎𝑑𝑣(𝐺𝐼2𝐶) = 𝔼𝑥~𝑋𝑙𝑎,𝑋𝑢𝑛𝑙𝑎

[(1 − 𝐷𝑐(𝐺𝐼2𝐶(𝑥)))
2

] (17) 

 

ℒ𝐼
𝑎𝑑𝑣(𝐷𝐼) = 𝔼𝑥~𝑋𝑙𝑎,𝑋𝑢𝑛𝑙𝑎

[(1 − 𝐷𝐼(𝑥))
2

] 

+𝔼𝑦~𝑌𝑙𝑎
[(𝐷𝐼(𝐺𝐶2𝐼(𝑦)))

2

] 

(18) 

 ℒ𝐼
𝑎𝑑𝑣(𝐺𝐶2𝐼) = 𝔼𝑦~𝑌𝑙𝑎

[(1 − 𝐷𝐼(𝐺𝐶2𝐼(𝑦)))
2

] (19) 

The adversarial losses are based on the least square loss function of LSGAN 

which tries to improve learning stability in the CycleGAN. To reduce the 

losses, discriminators are trained toward mapping the real inputs to a value of 

one and the fake inputs generated by generators to zero value. Simultaneously, 

the generators try to generate fake samples that are mapped to a value of one 

by the discriminators. The total adversarial loss can be divided into two losses 

in the class map domain and image domain. In the class map domain, 𝐷𝐶  and 

𝐺𝐼2𝐶 try to minimize the respective loss functions, allowing to generate more 

plausible prediction maps from the generator. Likewise, 𝐺𝐶2𝐼  tries to 

generate more realistic images to deceive 𝐷𝐼  in the image domain. In 

addition, unlabeled images are used when 𝐷𝐼 maps real images to a value of 

one and 𝐷𝐶   maps fake class map from 𝐺𝐼2𝐶  to a value of zero. For 

unlabeled images, cycle consistency loss is used in model training and 

supervised loss cannot be used. Since the cycle consistency loss only 

considers errors from reconstructed data, the adversarial loss is employed to 

control fake data in the middle of the cycle path. 
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3.4. Proposed Network Architecture 

3.4.1. Generator Architecture 

The model architecture of an image-to-class generator which acts as a 

classifier is illustrated in figure 12. In this thesis, UNet is introduced in the 

𝐺𝐼2𝐶  architecture and the backbone of the encoder is replaced with an  

EfficientNetB1 network. The EfficientNetB1-based encoder includes one 

stem block and seven MBConv blocks, containing the depthwise separable 

convolution and inverted residual block. After the contracting path through 

the EfficientNet-based encoder, the reduced resolution of the feature map is 

recovered using up-sampling operators with concatenating encoder blocks. 

Skip connections enable the combination of coarse high-level features and 

fine low-level features. The input size of 𝐺𝐼2𝐶 is defined as (2, 256, 256, 3), 

which denotes a batch size of 2, the patch window size of 256, and channels 

corresponding to 3 bands. At the end of the encoder, input images are 

contracted to (2, 64, 64, 1024) while the feature map is recovered to a size of 

(2, 256, 256, 𝑛𝑐) through the decoder, where 𝑛𝑐 represents the number of 

classes. The softmax activation function (Equation 20) is assigned to the last 

layer to output a classification probability vector using the features from the 

preceding layer. 

 

 𝜎𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦⃗)𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝑛𝑐

𝑗

 (20) 

The overall architecture of the class-to-image generator is similar to the 

former generator. While 𝐺𝐶2𝐼 also introduces the EfficientUNet architecture, 

input class maps have six channels which is the same as the number of classes, 

but differs from the size of the input channel of 𝐺𝐼2𝐶. Since the encoder uses 

pre-trained weights, the encoder is restricted to inputting only 3channels. To 

address this limitation, two EfficientNet-based backbones are combined 

before decoding in 𝐺𝐶2𝐼. On the contrary, the output size of 𝐺𝐶2𝐼 is (2, 256, 
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256, 3) to translate class maps to the real image domain having three bands. 

The sigmoid function (Equation 21) is employed as the last activation 

function to map values from a range of zero to one like real images. 

 𝜎𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
1

1 + 𝑒𝑧
 (21) 

 

3.4.2. Discriminator Architecture 

For the discriminators architecture, this thesis used the PatchGAN 

discriminator introduced in Pix2Pix as depicted in Figure 13. PatchGAN aims 

to distinguish if each N × N patch from an input image is real or fake, while 

the previous discriminator tries to distinguish if the whole image is real or 

fake. Instead of using the entire image, the discrimination of a patch unit 

allows the model to capture more high frequency information while using 

smaller training parameters. The two discriminators, 𝐺𝐶 and 𝐺𝐼, possess the 

same architecture, but differ by their number of input channels, where 𝐺𝐶: (2, 

256, 256, 6), 𝐺𝐼: (2, 256, 256, 3). The output size of the two discriminators 

is (2, 30, 30, 1), which output a probability to determine whether each patch 

is real or fake. 
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Figure 12. EfficientUNet architecture employed in this thesis. It includes EfficientNet-based encoder and upsampling-based 

decoder. The window size of input is 256 pixels, and the feature maps of encoder and decoder are connected by skip connection. 

 

Figure 13. PatchGAN-based discriminator architecture employed in this thesis.
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Chapter 4. Experimental Design 

In this section, the detailed experimental design for the proposed framework 

is explained. First, in Section 4.1., An overall workflow (figure 14) is 

described including the explanation of three experiments. In Section 4.2., a 

description of the VHR image dataset used in the proposed framework is 

given. Section 4.3. outlines the details with regards to model and data 

implementation, including experimental data settings, data augmentation, and 

model training parameters. Lastly, Section 4.4. provides the metrics used to 

evaluate the accuracy of the proposed framework. 
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Figure 14. Overall workflow of this thesis including data setting and three experiments. 
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4.1. Overall Workflow 

An overall workflow is described in figure 14. First, the full dataset is 

divided into train and test datasets based on fixed test sites. Thereafter, the 

train dataset goes through pre-processing including data setting, random crop, 

random shuffle, and data augmentation. Pre-processed train dataset is used in 

the tree experiments conducted in the proposed framework.  

 

(1) Experiment 1: Classification Performance of the Proposed 

Framework with Other Benchmarks. 

First, the proposed semi-supervised framework is trained and evaluated in 

comparison to five other benchmark models and the supervised learning 

method. In this experiment, a fixed number of labeled (one patch) and 

unlabeled data (thirteen patches) are used in the proposed framework and 

other benchmarks. The benchmarks consist of three supervised methods for 

remote sensing image classification and two semi-supervised classification 

methods based on GAN. The three supervised learning-based methods 

including multi-scale VGG with UNet (Audebert et al., 2016), DenseUNet 

(Dong et al., 2019), ResUNet-a (Diakogiannis et al., 2020) had used the same 

dataset as this thesis and performed the VHR image classification. For two 

semi-supervised benchmarks (Hung et al., 2018 and Mondal et al., 2019), 

GAN-based approach was utilized for image classification by semi-

supervised learning manner. 

While Hung et al. (2018) utilized GAN for additionally labeling to 

unlabeled data based on the discriminator’s confidence signal, Mondal et al. 

(2019) employed GAN for regularization of limited train dataset based on a 

large amount of unlabeled data. For this purpose, Mondal et al. (2019) used 

CycleGAN which is same approach as this thesis. However, there are some 

degradation in classification performance of this method when applied to 

remote sensing data due to its unique characteristics including small-sized 
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objects, inter-class similar spectral properties, and extremely fewer train 

samples. These features can lead to unstable model training and mode 

collapse in complex models such as GAN. This thesis is advantageous in 

terms of the model’s efficiency and training stability than Mondal et al. 

(2019)’s method.  

Table 1 shows the difference between the two methods utilizing CycleGAN. 

Mondal et al. (2019)’s study performed CV-based image classification, where 

the minimum number of train data is 899 patches. Since labeling ground 

truths for the small-sized and heterogeneous objects containing in VHR 

remote sensing imagery is very difficult and time-consuming, the minimum 

number of training data cannot be easily attained and much fewer training 

samples were usually available. The small amount of remote sensing training 

image leads the complex GAN model to be trained unstably and produce 

deteriorated classification results. To address this problem in remote sensing 

domain, this thesis replaced the ResNet-based image translation network of 

Mondal et al. (2019) with EfficientNet-based generator, which can greatly 

lower the model complexity through efficient model design. The total number 

of the EfficientNet-based network’s parameters is 12,577,862 which is 

smaller than Mondal et al. (2019)’s generator (51,506,409). A Simple and 

efficient model is suitable for remote sensing images that are hard to obtain a 

large amount of data and have inter-class similar properties. With the high 

model efficiency, two detailed modifications are applied to improve training 

stability. In this thesis, labeled images were together used in the cyclic phase 

with unlabeled data. It allows assisting the cyclic training which is unguided 

by ground truth. In addition, image loss is calculated by L1 norm that is stable 

to outlier samples, while Mondal et al. (2019) uses L2 loss. It can alleviate 

the effect of errors in tree’s texture, shadow, and details in small objects 

frequently generated by class-to-image translator. 
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Table 1. Comparison of the proposed framework and Mondal et al. (2019)’s 

method 

 Mondal et al. (2019) Proposed Framework 

Generator ● ResNet-based transform network ● EfficientUNet 

Network’s 

Parameter 
● 51,506,409 ● 12,577,862 

Stability 

● Unlabeled data only is used in 

cyclic phase. 

● L2 loss in image loss 

● Both Labeled and Unlabeled Data 

are used in cyclic phase. 

● L1 loss in image loss 

 

(2) Experiment 2: Impact of Labeled and Unlabeled Data. 

In the second experiment, the impact of labeled and unlabeled data is 

confirmed by controlling the number of labeled and unlabeled data. For the 

train dataset containing sixteen patches, three patches are used with the paired 

ground truth maps, while the other thirteen patches are used for unlabeled 

image patches. The number of the labeled data increase from only one patch 

to three patches. At the same time, the number of unlabeled data is selected 

as the total patches of thirteen or half of them, six patches. The controlled 

train data is used to train the EfficientUNet (supervised) and EfficientUNet + 

modified CycleGAN (semi-supervised). This experiment aims to investigate 

the difference according to the various composition of labeled and unlabeled 

data for the proposed semi-supervised framework. 

 

(3) Experiment 3: Adaptation for Other Classification Model. 

Lastly, to see whether the proposed semi-supervised methods can improve 

classification performance of other segmentation networks besides UNet, two 

other networks, feature pyramid network (FPN) and pyramid scene parsing 

network (PSPNet), are also applied. The image-to-class translator of the 

modified CycleGAN is replaced with FPN and PSPNet, while EfficientNet 

backbone is fixed. The three results from UNet, FPN, and PSPNet using the 
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proposed semi-supervised framework are compared to the results of 

supervised UNet, FPN, and PSPNet. This experiment aims to confirm the 

adaptation of the proposed framework for other classification models, and 

consequently, to validate that the proposed semi-supervised CycleGAN 

module is not over-fitted to a specific UNet model and robust to the selection 

of classification networks. 

FPN proposed in Lin et al. (2017-b) aims to leverage a pyramidal feature 

hierarchy of convolution layers. The construction of FPN includes a bottom-

up path and a top-down path with connecting paths between them in order to 

link the bottom-up high-resolution features with the bottom-up high-level 

feature maps (figure 15). Feature maps of different resolutions in the top-

down path are resampled to the same size and then merged into one prediction 

layer. This multi-scale kernel allows FPN to perform segmentation which is 

robust to the size of objects. 

 

 

Figure 15. Overview of FPN architecture (Lin et al., 2017-b). 

 

In Zhao et al. (2017), PSPNet was proposed to incorporate global features 

extending the pixel-level features to the global pyramid pooling features 

(figure 16). When pooling with a large size of kernel, the layer can extract 

global contextual information. By applying the pyramidal pooling, the size of 

the receptive field can be expanded, which can help to alleviate issues of 
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misunderstanding relationship and confusion categories. 

 

Figure 16. Overview of PSPNet architecture (Zhao et al., 2017). 

 

In this thesis, FPN and PSPNet were also applied with U-Net in the semi-

supervised CycleGAN architecture to validate the applicability of the 

proposed framework to other classification models. Figure 17 shows the 

modified classification models to apply the proposed GAN module. Like 

UNet, EfficientNet was used as the encoder for additional two classification 

models, and all models were compared using the supervised and semi-

supervised methods. 

Figure 17. The modified architectures of FPN and PSPNet employed in 

this thesis. In the encoder of two models, EfficientNet is used like UNet. 

  
(a) FPN architecture (b) PSPNet architecture 
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4.2. Vaihingen Dataset 

To evaluate the performance of the proposed framework, this thesis used a 

remotely-sensed VHR image dataset acquired using airborne sensors. The 

dataset was taken over the city of Vaihingen (Germany), which was 

disseminated for the 2D Semantic Labeling Contest by the International 

Society for Photogrammetry and Remote Sensing (ISPRS). The dataset is 

composed of ground truth maps and true ortho-photos with a spatial 

resolution of 0.09 m and three bands of near-infrared, red, and green channels. 

Ground truth data consists of six classes including impervious surfaces, 

building, low vegetation, tree, car, and clutter/background. The 

clutter/background class contains water bodies, containers, tennis courts, and 

swimming pools and is usually not of interest for segmentation in urban areas. 

Further, clutter/background and car classes are scarce compared to building, 

tree, and low vegetation classes. 

The full dataset consists of nineteen image patches: areas 1, 3, 4, 5, 7, 10, 

11, 13, 15, 17, 21, 23, 24, 26, 28, 30, 32, 34, 37. These patches are divided 

test dataset and train datasets. Among the patches, the three image patches of 

area 1, 15 and 23 are used for testing which contain different properties of 

objects with each other, especially in area 1. The false color images and 

ground truth maps of the test sites are illustrated in Table 2. Through the 

ground truth map of the Table 2, small-sized buildings are visible in area 15 

and area 23, while area 1 contains many large-sized buildings. Tree and low 

vegetation classes constitute a large proportion of test sites, especially in area 

15 and area 23. Also, in the middle left of area 15, tree and low vegetation 

classes appear to be heterogeneously mixed. While area 23 contains fewer 

samples from car class, area 1 includes the most cars and even a small parking 

lot. 
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Table 2. Real images of false color and ground truth maps in the three 

test sites: Area 1, Area 15, Area 23. 

Sites Real Image Ground Truth 
 

Area 1 

  

 

Area 15 

  

 

Area 23 
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4.3. Implementation Details 

Data augmentation is used to increase the training dataset and improve the 

diversity of the dataset. Random scaling, flipping, brightness/contrast, and 

random cropping are performed. Since the generator model’s input size sets 

as 256 x 256 pixels, the original image needs to be cropped into training 

patches. Instead of simply dividing images in the training dataset to the 

identical 256 x 256 patches, this thesis crops the original image into 512 x 

512 patches and then crops randomly to sub-patches of 256 x 256 pixels in 

the data augmentation process. As a consequence, models receive subtly 

different images and labels, leading to better model generalization and 

superior performance in the test step. 

For this thesis, the configurations of the experimental environment are as 

follows: CPU: Intel® Core™ i5-6600 CPU @ 3.30GHz, GPU: an NVIDIA 

GeFORCE RTX 2070 SUPER with 8GB of memory, system: Cuda-10.0. and 

Cudnn-7.6.3, deep learning library: Tensorflow-gpu: 2.0.0. The adaptive 

moment estimation (Adam) optimizer was used. Different learning rates for 

generators and discriminators were used to balance the four networks with an 

exponential decay rate scheduling method (Table 3). 

 

Table 3. Learning rate schedules of the four networks  

Networks 
Initial 

Learning Rate 

Exponential 

Decay Rate 
Decay Steps 

Image-to-Class 

Generator 
0.0005 0.96 500 

Class-to-Image 

Generator 
0.0003 0.96 500 

Image 

Discriminator 
0.0001 - - 

Class 

Discriminator 
0.0001 - - 
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4.4. Metrics for Quantitative Evaluation 

This thesis used the overall accuracy (OA), intersection over union (IoU), 

and F1 score, which are conventional metrics for multi-class image 

classification. OA is defined as: 

 

 OA =  
∑ 𝑃𝑖𝑥𝑒𝑙𝑠𝑖

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑𝐶
𝑖

𝑃𝑖𝑥𝑒𝑙𝑠𝑎𝑙𝑙
 (22) 

where, C is the number of classes. OA denotes the proportion of pixels that 

are correctly classified in the image. OA is an intuitive measurement and is 

easy to calculate, but is a poor indicator providing limited information for 

performance. This thesis, therefore, included F1-score and IoU which are 

popular metrics for evaluating semantic segmentation performance. F1-score 

and IoU are defined as follows: 

 

 𝐹1 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (23) 

 𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎(𝐴 ∩ 𝐵)

𝐴𝑟𝑒𝑎(𝐴 ∪ 𝐵)
 (24) 

where A  and B refers to reference and predicted regions, respectively. 

Precision and recall for F1-score can be calculated as: 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (25) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (26) 

where TP, FP and FN denote the number of true positive pixels, false 

positive pixels and false negative pixels, respectively. F1-score and IoU were 

calculated for each class, and the class-weighted averages of F1-score and 

IoU were also measured. 
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Chapter 5. Results and Discussion 

In this chapter, the results and discussion of the proposed framework from 

the comparative experiments are presented. Section 5.1 presents the 

classification results of the proposed framework in three test sites. In Section 

5.2, the overall classification results are introduced to compare the proposed 

framework with other benchmarks including supervised and semi-supervised 

methods. Section 5.3 discusses the impact of labeled and unlabeled data 

composition for semi-supervised learning. In Section 5.4, the effect of the 

semi-supervised CycleGAN module is validated in terms of cycle consistency. 

Lastly, Section 5.4 investigates the influence of using the proposed GAN 

method for other common classification models including FPN and PSPNet. 

 

5.1. Performance Evaluation of the Proposed 

Framework 

Figure 18 shows the overall classified maps from the proposed semi-

supervised framework and ground truth maps in the three test sites. In 

addition, Table 4 shows the confusion matrix including the number of the 

predicted and true pixels for each class with recall and precision scores. First, 

it was visually confirmed that the boundaries and shapes of buildings were 

classified properly in three test sites with showing the quantitatively highest 

recall and precision scores (0.866 and 0.877) among the six classes. 

Especially, even if there are unique buildings having various shapes and sizes 

in area 1, the predicted results were obtained stably regardless of the spatial 

features. In the Vaihingen dataset, buildings and their rooftop spectrally have 

high inner-class spectral homogeneity, resulting in consistent classification 

performance. Also, the most misclassified class of true building pixels was 

impervious surface which has more similar spectral information than other 

classes. 
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(a) Result in Area 1 (b) Ground truth in Area 1 

  

(c) Result in Area 15 (d) Ground truth in Area 15 

  

 (e) Result in Area 23 (f) Ground truth in Area 23 

Figure 18. The predicted maps by the proposed semi-supervised 

framework and ground truth map in three test sites. 
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Table 4. Confusion matrix including the number of the predicted and true 

pixels for each class with recall and precision scores. 

 

 

Unlike the building class, results of low vegetation and tree class visually 

represented obscure boundaries with recording the lower precision scores 

(low vegetation: 0.737, tree: 0.784). In particle, two classes were mixed each 

other due to their similar spectral properties, also quantitatively confirmed in 

Table 4. Among the 637,901 pixels misclassified to low vegetation, 427,155 

pixels (67.0%) were misclassified to tree. Also, Among the 863,461 pixels 

misclassified to tree, 699,805 pixels (81.0%) were misclassified to low 

vegetation. The heterogeneity and spectral similarity between the two classes 

lead to this mixed misclassification. While the proposed model is robust to 

the spatial properties such as shape and size, it is dependent on the spectral 

features resulting that the accurate decision boundary between low vegetation 

and tree is not obtained. Also, even if the car class has a very small size, many 

objects were properly classified. The main errors were omission errors to 

impervious surfaces, and it is induced by shadows of surrounding buildings 

leading the impervious surface and car to have similar spectral characteristics. 

The results of the clutter class were totally misclassified (precision: 0, recall: 

0), since it has very low inner-class homogeneity and produces fewer train 
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samples. These unique true clutter pixels were mainly misclassified to 

impervious surfaces or buildings, and also disturbed the classification 

performance of the two classes leading to some commission errors.  

 

5.2. Comparison of Classification Performance in the 

Proposed Framework and Benchmarks 

The classification results of the proposed framework, supervised, and semi-

supervised benchmarks were evaluated in the three test areas by three metrics: 

OA, F1-score and mIoU. Table 5 shows the classification results of ResUNet-

a (Diakogiannis et al., 2020), DenseUNet (Dong et al., 2019), Multi-scale 

VGG with UNet (Audebert et al., 2016), EfficientUNet, EfficientUNet + 

CycleGAN, Hung et al. (2018), and Mondal et al. (2019). To elaborate on the 

configuration of the experiments, Audebert et al. (2016), Dong et al. (2019), 

Diakogiannis et al. (2020), and EfficientUNet methods are conducted using 

supervised learning, while the others are based on semi-supervised learning. 

In all experiments, the number of used labeled patches was fixed to one patch. 

And in the cased of semi-supervised learning, thirteen unlabeled patches were 

used with the labeled patch. The highest score among the supervised or semi-

supervised methods is highlighted in bold text, and the second is underlined. 



 

４６ 

 

Table 5. Overall classification accuracy in OA, F1-score, mIoU of benchmarks and the proposed framework 

 

Leaning Model 
Area 1 Area 15 Area 23 

OA F1 mIoU OA F1 mIoU OA F1 mIoU 

Supervised 

ResUNet-a 

(Diakogiannis et al., 2020) 
0.728 0.720 0.569 0.732 0.718 0.575 0.677 0.670 0.511 

DenseUNet 

( Dong et al., 2019) 
0.737 0.729 0.582 0.721 0.717 0.568 0.715 0.715 0.564 

Multi-scale VGG with UNet 

( Audebert et al., 2016) 
0.731 0.724 0.572 0.735 0.723 0.582 0.727 0.719 0.570 

EfficientUNet 0.730 0.724 0.573 0.767 0.759 0.625 0.743 0.737 0.594 

Semi-

supervised 

EfficientUNet 

+ CycleGAN 
0.796 0.795 0.666 0.786 0.782 0.651 0.784 0.780 0.647 

Mondal et al., 2019 0.777 0.778 0.642 0.747 0.747 0.604 0.738 0.738 0.590 

Hung et al., 2018 0.763 0.760 0.617 0.784 0.781 0.647 0.772 0.768 0.630 
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In the three test sites, the proposed semi-supervised framework achieved the 

highest score of OA, F1-score, and mIoU in comparison to the benchmark 

models. The combined EfficientNet backbone and UNet structure proposed 

in this thesis for VHR image classification yielded an OA of 0.681 in area 1, 

0.756 in area 15, and 0.723 in area 23. The baseline model was improved by 

the proposed semi-supervised CycleGAN method. The use of the proposed 

semi-supervised learning increased OA by 0.066 in area 1, 0.019 in area 15, 

and 0.041 in area 23. 

Among the supervised methods, the highest OA was recorded by 

DenseUNet in area1, while EfficientUNet was superior in area 15 and area 

23. The poor results in supervised learning-based benchmarks were caused 

primarily by the limited amount of training data which is an inherent problem 

of VHR image classification, suggesting that the model may not have been 

trained sufficiently and could indicate overfitting. Since dense connections in 

the DenseUNet allow the model to be trained by connecting the gradient for 

back-propagation directly, relatively better classification results were 

achieved in area 1 having some different characteristics from the training 

dataset such as large-sized buildings well as a small amount of trees and low 

vegetation. For this problem, the use of semi-supervised learning vastly 

improved the accuracy in area 1 by regularizing the classifier through a large 

number of unlabeled data. 

The three semi-supervised learning-based methods mostly yielded higher 

accuracy scores in the three test sites. In more detail, the method proposed by 

Mondal et al. achieved better classification results than that of Hung et al. 

when applied in area 1, whereas the opposite results occurred in area 15 and 

area 23. The method by Mondal et al. (2019) is based on consistency for 

regularization, while the method by Hung et al. (2018) employs pseudo 

labeling to create additional labels with high confidence. On the other hand, 

this thesis confirmed that the proposed semi-supervised framework achieved 
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the highest scores compared to the other two semi-supervised methods in all 

test sites. 

Figure 19~21 respectively shows the close-up view of the three test sites. 

Upon visual inspection on buildings in the results, the predicted building 

segmentation results generated by the proposed framework are filled in and 

have sharper boundaries compared to other benchmark models. Besides 

generic building shapes in area 15 and area 23, buildings of unique shapes or 

sizes present in area 1 also were better segmented by using the proposed 

framework in comparison to the other benchmarks.  

 

Figure 19. Close-up view of ground truth, the results map by benchmarks, 

and the proposed framework in Area 1 
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Additionally, while generic building shapes were better predicted by using 

the EfficientUNet method (figure 21), DenseUNet yielded more similar 

predictions of buildings in area 1 to the ground truth over the EfficientUNet 

methods due to the dense connections (figure 19). 

 

Figure 20. Close-up view of ground truth, the results map by benchmarks, 

and the proposed framework in Area 15 

 

In the case of small-sized classes such as cars, MS+VGG, Hung et al, 

EfficientUNe,t and the proposed semi-supervised framework generally 

exhibited satisfactory prediction maps. Moreover, DenseUNet yielded poorer 

results, and MS+VGG achieved better results than both the DenseUNet and 

ResUNet-a. This result can be attributed to the multi-scale ensemble in the 
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MS+VGG method, which helped to consider different sizes of spatial context 

and smoothen the shapes of segments. EfficientUNet also correctly extracted 

a large number of cars, also achieving similar results using additional 

CycleGAN method. 

 

Figure 21. Close-up view of ground truth, the results map by benchmarks, 

and the proposed framework in Area 23 

 

 

Since low vegetation and tree share many similar spectral features, those 

two classes were often misclassified for each other. Especially in the 

heterogeneous mixture of low vegetation and trees in area 23, the prediction 
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results returned several significant differences (figure 21). On the other hand, 

Hung et al. (2018)’s method and the proposed framework showed better 

classified maps in comparison to other benchmarks for regions of relatively 

homogeneous distribution of low vegetation and tree classes. 
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5.3. Impact of Labeled and Unlabeled Data for Semi-

supervised Learning 

Table 6 and figure 22 show the experimental results according to the 

composition of labeled and unlabeled data. The number of used labeled 

patches was set from one patch to three patches, while six or thirteen 

unlabeled patches were used. Figure 22 shows mIoU scores as a graph, and 

Table 4 shows F1-score and OA results from the experiments. In Table 4, 

“supervised” refers to the EfficientUNet model, while "semi-supervised” 

refers to the EfficientUNet + modified CycleGAN model. As illustrated in 

figure 22, the semi-supervised method achieved better mIoU scores than the 

supervised method. Among the semi-supervised methods, better results were 

obtained when using six unlabeled patches than when using 13 unlabeled 

patches. Notably, there was a smaller increase in mIoU when utilizing more 

unlabeled patches in comparison to when using more labeled data. When only 

one labeled patch was used, increasing in the number of unlabeled patches 

from 6 to 13 improved mIoU score by 0.030 (area 1), 0.023 (area 15) and 

0.029 (area 23). In contrast, when 2 or 3 labeled patches were used, the 

increase in mIoU was relatively smaller from 0.007 to 0.018. This result 

showed that the proposed semi-supervised method achieves a clear increase 

in accuracy given the sufficient amount of unlabeled data compared to labeled 

data. 

In terms of the number of labeled data used for the experiments, the 

classification accuracy can be assumed to increase as the number of labeled 

patches increases. However, in the case of using 2 to 3 labeled patches, 

especially in area 15, there was no increase in classification accuracy. This 

result can be explained since the third labeled patch was biased to other 

labeled patches, the result suffered from over-fitting with poor classification 

performance in some areas. 
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Figure 22. mIoU in three test sites according to the number of labeled and unlabeled data. 
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Table 6. F1-score and OA in three test sites according to the number of 

labeled and unlabeled data. 

Area 1 

Labeled 

1 patches 

Labeled 

2 patches 

Labeled 

3 patches 
F1 OA F1 OA F1 OA 

Supervised 0.724 0.730 0.769 0.794 0.840 0.838 

Semi 

Supervised 

Unlabled 

6 patches 
0.772 0.770 0.813 0.813 0.844 0.844 

Unlabled 

13 patches 
0.795 0.796 0.820 0.819 0.851 0.850 

 

 

Area 15 

Labeled 

1 patches 

Labeled 

2 patches 

Labeled 

3 patches 
F1 OA F1 OA F1 OA 

Supervised 0.759 0.767 0.797 0.798 0.789 0.792 

Semi 

Supervised 

Unlabled 

6 patches 
0.764 0.766 0.821 0.822 0.808 0.807 

Unlabled 

13 patches 
0.782 0.786 0.831 0.829 0.817 0.818 

 

 

Area 23 

Labeled 

1 patches 

Labeled 

2 patches 

Labeled 

3 patches 
F1 OA F1 OA F1 OA 

Supervised 0.737 0.743 0.784 0.784 0.786 0.787 

Semi 

Supervised 

Unlabled 

6 patches 
0.757 0.762 0.820 0.820 0.811 0.809 

Unlabled 

13 patches 
0.780 0.784 0.827 0.825 0.824 0.824 
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5.4. Cycle Consistency in Semi-supervised Learning 

Unlabeled images were mainly employed in the cyclic phase of recovering 

the information in original images through a sequence of two generators 

without labels. Figure 23 shows the difference between the supervised and 

semi-supervised methods during model training. X-axis means epoch number 

in the training process, and Y-axis is the validation accuracy of mIoU. The 

two graphs show a clearly different trend, where the accuracy of the semi-

supervised method appears to fluctuate more, but reaches higher accuracy 

values than the supervised method. While the supervised model was more 

over-fitted to the training data yielding a limited and stable validation 

accuracy, the semi-supervised model strived to learn the properties of the 

numerous unlabeled data and reached higher accuracy maxima, albeit through 

a fluctuating trend. 

 

 

Figure 23. The validation accuracy graph during model training of 

EfficientUNet (supervised) and EfficientUNet + modified CycleGAN (semi-

supervised). 
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Table 7. The real image, fake class map, reconstructed image from 

semi-supervised method, and fake class map from supervised method 

with ground truth according to epoch. 
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Figure 24. The cycle consistency loss graph of two cycle parts, image-

class-image cycle (image-reconstructed cycle) and class-image-class cycle 

(class-reconstructed cycle) during model training of the proposed 

framework. 

 

Table 7 shows the outputs of the image-class-image cyclic phase including 

real images, fake class maps, the reconstructed image of the semi-supervised 

method, and the fake class maps of the supervised method for several epochs. 

As model training progresses, the features of the reconstructed image such as 

color, shape, texture, and shadow grow to be more similar to those of the 

original image. Especially in the best epoch, the texture of trees, the color of 

building, and the shadows on the rooftop were better represented in 

comparison to the early epochs. For better recovery of the original image, the 

image-to-class generator was trained to preserve the information of the 

original image leading to highlighted edges of the segments and generated 

clearer segments. In table 7, the building segments were gradually filled with 

sharp edges, and the segmented results from the semi-supervised method 

were more similar to the ground truth in comparison to those produced from 

the supervised method. Similarly, when using the cycle consistency loss, it 

can be confirmed that both image-class-image and class-image-class cycle 

consistency losses gradually decreased during model training (figure 24), 
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meaning that both image and class map were increasingly better reconstructed 

by the two generators. 
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5.5. Adaptation of the GAN Framework for Other 

Classification Models 

In this thesis, additional classification models, FPN and PSPNet, were 

applied to the proposed framework to replace the UNet backbone. Table 8 

shows the F1-score and mIoU results of the three classification models and 

the results from adding the modified CycleGAN. The results demonstrated 

that the proposed framework can be adapted to the three classification models 

successfully and can improve classification accuracy. In particular, results 

from area 1 improved for all three models by about 0.090. In more detail, 

varying levels of increases in accuracy were observed based on the choice of 

the classification model. The increase in accuracy was less for PSPNet in 

comparison to that of UNet and FPN for area 15 and area 23. 

 

Table 8. F1-score and mIoU of three classification models in supervised 

and semi-superivsed learning. 

 Area 1 Area 15 Area 23 

 F1 mIoU F1 mIoU F1 mIoU 

UNet 0.724 0.573 0.759 0.625 0.737 0.594 

+ modified CycleGAN 0.795 0.666 0.782 0.651 0.780 0.647 

FPN 0.701 0.546 0.744 0.607 0.731 0.587 

+ modified CycleGAN 0.774 0.638 0.772 0.635 0.764 0.625 

PSPNet 0.703 0.547 0.734 0.589 0.719 0.569 

+ modified CycleGAN 0.772 0.637 0.734 0.592 0.729 0.587 
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Figure 25. mIoU graph for each class by the three classification models and the proposed framework. 
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Figure 25 shows the mIoU scores by each class for the three classification 

models as well as for the inclusion of the proposed CycleGAN with the three 

classification models. Comparing results of the supervised classification 

models, UNet achieved the highest scores in all classes except for building. 

In the case of the building class, FPN recorded the best performance at 0.584, 

which can be explained by that multi-scale kernel in the model helps to 

capture information on the differently-sized buildings. PSPNet yielded better 

predictions than FPN for classes other than building and car. In particular, the 

pyramid pooling in PSPNet led the model to consider global contextual 

information, resulting in poor classification results of small-sized class like 

car. For the semi-supervised method, the mIoU score for the car class was 

greatly improved when using PSPNet by complementing insufficient local 

information derived from small objects with numerous unlabeled data. In 

general, the semi-supervised method improved the classification accuracy of 

the three classification models for the majority of the classes. In particular, 

the mIoU scores of the building class comprised of different sizes and shapes 

in test sites were greatly enhanced. However, since the CycleGAN module 

may lead to difficulty in model training, the accuracy results in some cases 

can be found to decrease. As an example, the mIoU score of the car class 

using FPN decreased from 0.432 to 0.304. 
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Chapter 6. Conclusion 

This thesis proposed a semi-supervised framework using the EfficientNet 

backbone, UNet-based classification model, and a modified CycleGAN for 

remote sensing image classification. The proposed framework was 

established to address the problem of limited training data by employing the 

unlabeled images together with the labeled images. For this purpose, this 

thesis applied the cycle consistency loss of CycleGAN to help the generators 

preserve the information of the original image without the need for reference 

data. In addition, the recent EfficientNet was used based on its remarkable 

feature extraction performance and high training efficiency alleviating the 

mode collapse problems in limited remote sensing data. This semi-supervised 

framework proposed in this thesis can be a meaningful approach especially 

since remotely-sensed images are continuously being accumulated while 

manually labeling images is typically very difficult and expensive. 

The proposed framework was evaluated by using three test sites from the 

ISPRS Vaihingen VHR dataset with five benchmarks composed of both 

supervised and semi-supervised methods. The highest accuracy (OA: 0.796 

in area 1, 0.786 in area 15, 0.784 in area 23) in the test sites was achieved by 

the proposed framework when using semi-supervised learning with the 

EfficientUNet and the modified CycleGAN module. Especially, the largest 

increase in accuracy was observed in area 1 which contained objects with 

different properties due to the regularization effect for the unlabeled images. 

These results implied that a large amount of unlabeled data can be utilized to 

the generalization of the supervised model when biased and limited labeled 

data can be used, resulting in consistent segmentation of the remotely-sensed 

objects having various spatial properties. 

In addition, this thesis analyzed the impact of labeled and unlabeled data 

and the cycle consistency loss on classification accuracy. By controlling the 

number of labeled image patches from one to three and the unlabeled image 



 

６３ 

 

patches from 6 and 13 patches, the results demonstrated that using more 

unlabeled patches improved the performance of the semi-supervised method, 

but the increase was smaller when a relatively sufficient amount of unlabeled 

data to labeled data are not available. Consequently, the improvement of the 

proposed framework is more dramatic when applied in an extreme condition 

of training data, such as when making a lot of ground truth data for remote 

sensing VHR image is extremely hard. 

 Lastly, to confirm the adaptation of the proposed framework for additional 

classification models, namely, FPN and PSPNet, were evaluated with UNet. 

For three models, segmentation results were improved when using the semi-

supervised method. This third experiment showed that the proposed semi-

supervised framework is not confined to a particle UNet model and 

independent to the backbone classification models, indicating the 

applicability to future classification backbone models.  

Future works are necessary to tackle several limitations in this thesis. First, 

while the proposed framework was robust to spatial properties, objects 

containing similar spectral properties such as low vegetation and tree or 

objects in shadow were misclassified. Since the generators utilized the pre-

trained weights by CV-based data, remote sensing data’s unique spectral 

information could not be sufficiently considered and only three channels 

should be used in input data. If rich spectral information of remote sensing 

images is utilized through channel attention-based modules or multi-spectral 

data augmentation, results of the spectral-mixed objects can be improved. 

Second, the results of the clutter class are highly poor due to its inner-class 

heterogeneous and very limited samples. This problem can be critical in 

practical applications such as land cover classification, where class imbalance 

is often accompanied. Clutter’s results emphasized that the modification of 

the proposed framework for class imbalance problem is necessary to apply to 

more realistic remote sensing data. Also, this thesis was restricted to a limited 
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dataset composed of similar ground properties used for training and testing. 

However, there is a clear need to apply the proposed framework to different 

domains containing various characteristics and classes. Moreover, for more 

practical applications, the semi-supervised framework should be extended 

toward employing multi-domain unlabeled images during model training. 

Lastly, the recent trend on semi-supervised learning is based on 

simultaneously combining several semi-supervised methods such as 

consistency loss, entropy minimization, and pseudo labeling (Berthelot et al., 

2019). Stemming from this trend, the proposed semi-supervised framework 

in this thesis can be improved further to compare its applicability by 

combining additional semi-supervised methods together. 
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국문 초록 

고해상도 영상 분류를 위한 

순환 적대적 생성 신경망 기반의 

준지도 학습 프레임워크 

서울대학교 대학원 

공과대학 건설환경공학부 

곽 태 홍 
 

 고해상도 영상 분류는 토지피복지도 제작, 식생 분류, 도시 계획 

등에서 다양하게 활용되는 대표적인 영상 분석 기술이다. 최근, 심층 

합성곱 신경망 (deep convolutional neural network)은 영상 분류 분야에서 

두각을 보여왔다. 특히, 심층 합성곱 신경망 기반의 의미론적 영상 분할 

(semantic segmentation) 기법은 연산 비용을 매우 감소시키며, 이러한 점은 

지속적으로 고해상도 데이터가 축적되고 있는 고해상도 영상을 분석할 

때 중요하게 작용된다. 

심층 학습 (deep learning) 기반 기법이 안정적인 성능을 달성하기 

위해서는 일반적으로 충분한 양의 라벨링된 데이터 (labeled data)가 

확보되어야 한다. 그러나, 원격탐사 분야에서 고해상도 영상에 대한 

참조데이터를 얻는 것은 비용적으로 제한적인 경우가 많다. 이러한 

문제를 해결하기 위해 본 논문에서는 라벨링된 영상과 라벨링되지 않은 

영상 (unlabeled image)을 함께 사용하는 준지도 학습 프레임워크를 

제안하였으며, 이를 통해 고해상도 영상 분류를 수행하였다. 본 

논문에서는 라벨링되지 않은 영상을 사용하기 위해서 개선된 순환 

적대적 생성 신경망 (CycleGAN) 방법을 제안하였다. 

순환 적대적 생성 신경망은 영상 변환 모델 (image translation model)로 
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처음 제안되었으며, 특히 순환 일관성 손실 함수 (cycle consistency loss 

function)를 통해 페어링되지 않은 영상 (unpaired image)을 모델 학습에 

활용한 연구이다. 이러한 순환 일관성 손실 함수에 영감을 받아, 본 

논문에서는 라벨링되지 않은 영상을 참조데이터와 페어링되지 않은 

데이터로 간주하였으며, 이를 통해 라벨링되지 않은 영상으로 분류 

모델을 함께 학습시켰다. 

수많은 라벨링되지 않은 데이터와 상대적으로 적은 라벨링된 데이터를 

함께 활용하기 위해, 본 논문은 지도 학습과 개선된 준지도 학습 기반의 

순환 적대적 생성 신경망을 결합하였다. 제안된 프레임워크는 순환 

과정(cyclic phase), 적대적 과정(adversarial phase), 지도 학습 

과정(supervised learning phase), 세 부분을 포함하고 있다. 라벨링된 영상은 

지도 학습 과정에서 분류 모델을 학습시키는 데에 사용된다. 적대적 

과정과 지도 학습 과정에서는 라벨링되지 않은 데이터가 사용될 수 

있으며, 이를 통해 적은 양의 참조데이터로 인해 충분히 학습되지 못한 

분류 모델을 추가적으로 학습시킨다. 

제안된 프레임워크의 결과는 공공 데이터인 ISPRS Vaihingen Dataset을 

통해 평가되었다. 정확도 검증을 위해, 제안된 프레임워크의 결과는 

5개의 벤치마크들 (benchmarks)과 비교되었으며, 이때 사용된 벤치마크 

모델들은 지도 학습과 준지도 학습 방법 모두를 포함한다. 이에 더해, 본 

논문에서는 라벨링된 데이터와 라벨링되지 않은 데이터의 구성에 따른 

영향을 확인하였으며, 다른 분류 모델에 대한 본 프레임워크의 

적용가능성에 대한 추가적인 실험도 수행하였다. 

 제안된 프레임워크는 다른 벤치마크들과 비교해서 가장 높은 정확도 

(세 실험 지역에 대해 0.796, 0.786, 0.784의 전체 정확도)를 달성하였다. 

특히, 객체의 크기나 모양과 같은 특성이 다른 실험 지역에서 가장 큰 

정확도 상승을 확인하였으며, 이러한 결과를 통해 제안된 준지도 학습이 

모델을 우수하게 정규화(regularization)함을 확인하였다. 또한, 준지도 

학습을 통해 향상되는 정확도는 라벨링된 데이터에 비해 라벨링되지 
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않은 데이터가 상대적으로 많았을 때 그 증가 폭이 더욱 커졌다. 

마지막으로, 제안된 준지도 학습 기반의 순환 적대적 생성 신경망 

기법이 UNet 외에도 FPN과 PSPNet이라는 다른 분류 모델에서도 

유의미한 정확도 상승을 보였다. 이를 통해 다른 분류 모델에 대한 

제안된 프레임워크의 적용가능성을 확인하였다  
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