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Abstract
Although dataflow models are known to thrive at exploiting task-level parallelism of

an application, it is difficult to exploit the parallelism of data. Data-level parallelism can

be represented well with loop structures, but these structures are not explicitly specified

in most existing dataflow models. SDF/L model was introduced to overcome this short-

coming by specifying the loop structures explicitly in a hierarchical fashion. To the best

of our knowledge however, scheduling of SDF/L graph onto heterogeneous processors

has not been considered in any previous work.

In this dissertation, we introduce a scheduling technique of an application represented

by the SDF/L model onto heterogeneous processors. In the proposed method, we explore

the mapping of tasks using an evolutionary meta-heuristic and schedule hierarchically

in a bottom-up fashion, creating parallel loop schedules at lower levels first and then

re-using them when constructing the schedule at a higher level. To verify the efficiency of

the proposed scheduling methodology, we apply it to benchmark examples and randomly

generated SDF/L graphs.
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Chapter 1

Introduction

Heterogeneous multiprocessor embedded systems with multi-core CPUs and GPUs

have emerged to support computation-intensive applications. Such applications often

include data-parallel computations, procedures that we need to process in a quick and

parallel manner on the embedded system. Deep learning applications are a great example

of such applications, to run inference fast, it is critical to distribute the data-parallel

computations onto different processing units for efficiency.

Dataflow models have been widely used for specifying embedded system applications

given the inherited task-level parallelism in the model itself. Particularly, Synchronous

Dataflow (SDF) model [1] is often used for streaming applications due to its formality and

predictability. The model displays an application as a graph where each node indicates a

functional task, and directed edges represent channels to transmit data (sample)1 between

those functional tasks.

Each node consumes samples to be executed and produces samples needed by the

other tasks as a result of the execution. Based on the sample rates fixed in advance, we

can easily determine the repetition count for each node in a periodic schedule of the graph

and using this information, it is possible to decide the static schedule of the application

at compile time. The lowest graph in Fig. 1.1 serves as an example of the SDF graph

1In this paper, we interchangeably use node and task in the same meaning. The task instance, or job, is
the unit of schedule.
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representation of an application. Node A2 produces a single sample to node Z when

executed, node Z however needs to consume 2 samples to execute in turn. This means

that for node Z to run, node A should run twice to produce enough samples. Nodes A and

B have a one to one connection between them meaning, for every execution of node A,

node B will also be executed, this makes the repetition count of node B also two.

The SDF graph is often presented as a hierarchical graph, where a node may be

representing another graph, in which case the node is referred to as a macro node.

As an extension, Synchronous Dataflow with Loop (SDF/L) model [2] was recently

proposed in order to, without the loss of SDF property, express the computation-intensive

and data-parallel applications which contain loops. The SDF/L graph similarly has a

hierarchical structure, adding a special type of macro node that represents a loop structure.

The biggest difference from the original model is that the SDF/L model explicitly shows

not only the task-level parallelism but also expresses the data-level parallelism through

the use of these loop nodes.

In the SDF/L model, two types of loops can be described - data loop (D-type)

and convergent loop (C-type). The D-type loop is used to explicitly express data-level

parallelism. If a macro node represents a D-type loop, iterations of the subgraph can

be run in parallel on multiple mapped processors. Meanwhile, a C-type loop is used to

express a loop with the conditional exit similarly to break keyword commonly used in

programming languages. Running C-type loop iterations concurrently is not allowed as it

is necessary to check the exit condition at the completion of each iteration.

Thanks to its extended expressiveness, the SDF/L model can be used to describe

deep learning applications as dataflow graphs which previously was difficult due to the

lack of data-parallel structures. These macro nodes representing the repeating loop tasks,

that can be consecutively executed on multiple processors, allow us to divide the graph

into multiple levels and provide the hierarchy we wish to exploit in this paper.

Figure 1.1 shows an example of an SDF/L graph. The diamond port on a node in the
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Figure 1.1: An example of hierarchical SDF/L graph

nested graph represents a data flow to or from a higher-level graph. For example, node A1

consumes 1 sample from node S in the top-level. Node B1, defined in the middle-level,

produces 1 sample to top-level node D. In the top-level graph, node S executing once

produces 100 samples to node L1, and node D requires 100 samples to run. Since each

iteration of the middle-level graph produces and consumes 1 sample, with the total of 100

iterations of the middle-level graph, the required samples are produced.

Going into more detail, there are two types of ports: broadcasting and distributing.

The former is used to broadcast the same data for all iterations, while the latter is used to

transmit different data to each iteration. When different ports are used, the sample rates

are also different, representing a queue and a buffer type input, respectively, which in

a simple sense means that with the broadcasting port, the same sample can be re-used

while samples coming in through distributing port are discarded after use. In the example

figure, the distributing ports are used for ease of explanation.

Keep in mind though, that scheduling graphs on a multiprocessor system is an

NP-hard problem [3] and finding the best schedule is not a trivial problem. Although

dataflow models have this hierarchical structure, most of the previous works have focused

on mapping and scheduling a flattened graph. Many methods have been proposed to find

efficient mapping and scheduling on multiprocessor systems based on a flattened SDF

graph.
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The authors in [4] and [5] applied the mathematical approach using integer lin-

ear programming (ILP). Also commonly used in an attempt to solve this problem are

approaches using meta-heuristics - ([6, 7, 8, 9, 10, 11, 12, 13]). There is a number of

scheduling heuristics that have been proposed, some examples are [14] and [15].

However, given that a graph with nested loops can get exponentially big when

flattened, these approaches making use of the flattened graph to compute the schedule are

not best suited for the exploration of mapping and scheduling of an SDF/L graph.

In addition, if we get rid of the structure of the graph, the information of the com-

position of the loop is ignored, and the loop scheduling containing repeating tasks gets

mixed with normal tasks - this can make code synthesizing difficult.

To solve those problems, [14], [16] and [17] proposed hierarchical scheduling on the

SDF graph to make the schedule much simpler without too significant loss of accuracy.

However, none of them consider heterogeneous processor setups, which are prevalent

for an embedded system. To the best of our knowledge, there is no previous work that

considers scheduling of SDF/L graph onto heterogeneous processors.

In this paper, we propose a mapping and scheduling methodology for an application

described with the SDF/L graph onto heterogeneous multiprocessors with a goal to

minimize the latency of the graph and number of used processors in a feasible time, while

taking advantage of the structure of the specific graph.

Figure 1.2 shows the overall structure of the proposed scheme, where we separate

mapping and scheduling. We use a meta-heuristic algorithm to decide the mapping of

tasks onto processors. With a given mapping, we use heuristics for priority assignments

and composing the schedule.

The main contribution of this work lies in the heuristic to schedule the graph hier-

archically in a bottom-up fashion, given an SDF/L graph divided into levels through the

explicit loop structure.

The scheduling objective is to minimize the latency in a much shorter time than

4



Figure 1.2: Overall structure of the proposed methodology

scheduling based on a flattened graph with minimal loss of accuracy. Additional objective

in the meta-heuristic algorithm is to minimize the number of processors used in hopes to

utilize processors more effectively.
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Chapter 2

Related Work

Numerous scheduling techniques have been proposed for SDF graphs [18]. They can

be classified into three approaches: heuristic, meta-heuristic, and integer linear program-

ming(ILP). We review the related work focusing on the scheduling of SDF graphs onto

heterogeneous processors first.

The authors of [19] proposed a list scheduling heuristic for the mapping and priority

assignment of tasks in DAG called Best-Imaginary-Level (BIL) scheduling. The node

priority is determined by the critical path length from a node considering heterogeneous

processors. It is proven that it generates an optimal schedule for the graph with a linear

topology. In the work of [20], Heterogeneous Earliest-Finish-Time (HEFT) is presented,

which is similar to the BIL scheduling.

The authors of [21] proposed another list scheduling heuristic for real-time applica-

tions that have deadline constraints. The node priority is computed by the rest time until

the deadline, called laxity.

Although heuristic-based methods are fast and provide near-optimal results, they

are tailored for the given problem setting and are not expandable to reflect additional

constraints or extended graphs. To apply those techniques to the SDF graph, the conversion

of SDF to DAG is needed.

The genetic algorithm (GA) is a popular meta-heuristic that is used for mapping and
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scheduling problems of SDF graphs thanks to its extensibility and availability of solution

frameworks. The authors of [6] investigated the effects of multi-objective evolutionary

algorithms (MOEAs) for the mapping problem of heterogeneous MPSoC design. An

application is assumed to be specified by a Kahn process network [22] and three objective

functions are considered: processing time, power consumption, and cost. They conducted

comparative experiments extensively, changing algorithms and strategies.

The work in [9] proposed a two-phase mapping methodology for mapping and

scheduling multiple HSDF graphs. In the first phase, they generate a set of schedules for

each application on a varying number of processors by applying the genetic algorithm.

In the second phase, those schedules are merged based on the schedulability analysis of

each processor.

The authors of [10] presented a mapping and scheduling methodology of an appli-

cation represented by a DAG through the genetic algorithm. They showed the trade-off

relation among lifetime reliability, power consumption, and maximum execution time on

the heterogeneous platforms.

The work in [11] presented a genetic algorithm-based technique for mapping multiple

SDF graphs onto heterogeneous processors, proposing a clustering technique to reduce

the model conversion overhead from SDF to DAG.

The author of [12] proposed the mapping scheme of an MMDF (multi-mode

dataflow) graph on heterogeneous multiprocessors. They proposed a cooperative co-

evolutionary genetic algorithm (CCGA) which efficiently explores the design space by a

problem-specific decomposition strategy in which the node mapping solutions for each

individual mode are assigned to an individual population.

The author of [13] considered single or multiple deep learning applications on

a heterogeneous system that includes both GPU and NPU (Neural Processing Unit),

exploiting the task-level parallelism of each network.

ILP (integer linear programming) is popularly used to find an optimal solution for

7



small-scale mapping and scheduling problems. The work in [23] produced an optimal

solution via an ILP-based method considering task mapping/scheduling as well as SPM

partitioning. The authors of [24] presented an ILP-based framework to map an application

represented by a graph to heterogeneous chip multiprocessors within the energy and

reliability constraints. The authors of [25] also proposed an ILP-based method, aiming

to minimize the latency of the DAG schedule on heterogeneous processors, considering

bus contention. The authors of [26] solved the mapping and scheduling problem of the

acyclic SDF graph with a satisfiability modulo theory (SMT) solver.

2.1 SDF Scheduling with Data-level Parallelism

Even though SDF scheduling has been extensively researched, there is relatively

small number of works considering data-parallelism. The authors in [15] presented a

heuristic algorithm for partitioning an SDF graph on homogeneous multiprocessors to

optimize the arrival rate. They find hot actors which are stateless and a bottleneck of the

program, and duplicate them. To resolve the bottleneck, they exploit data-level parallelism

by allocating the duplicated actors on different processors. The work in [27] introduced a

compiler for Streamlt programming language [28] that is based on SDF. To leverage the

data-level parallelism, the stateless actors are detected, and undergo the fission to map to

distinct cores.

An ILP-based approach was proposed to scheduling SDF graph onto heterogeneous

architecture [5], exploiting not only task-level parallelism but also data-level parallelism.

The authors in [4] also presented an ILP-based technique taking into account the data-level

parallelism, and additionally performed granularity-based optimization on heterogeneous

architectures. Due to the limitation of the ILP, however, neither method is suitable for han-

dling a large number of nodes as the time complexity of the ILP solver is exponential. The

same authors of [5] proposed a scheduling technique on heterogeneous processors using

Quantum-inspired Evolutionary Algorithm (QEA), which finds a near-optimal solution
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much faster than their previous work [7].

The authors of [29] converted a convolutional neural network (CNN) to an SDF graph

and made the mapping decision through the genetic algorithm by exploiting both task-

level and data-level parallelism. Then, they converted the CNN to a cyclo-static dataflow

(CSDF) graph based on the mapping to represent the final platform-aware executable

CNN inference application.

All these works schedule the flattened graph and consider only a single task for

data-parallel execution. On the other hand, we consider data-parallel execution of the full

subgraph inside a loop.

2.2 Hierarchical Scheduling

The SDF graph may have many instances of nodes because of the sample rate mis-

match, which increases the scheduling complexity. To reduce the scheduling complexity,

the authors of [14] proposed a hierarchical scheduling heuristic on homogeneous mul-

tiprocessors. They first cluster nodes, then combine clusters hierarchically to reduce the

makespan of an SDF graph.

The work in [16] proposed a hierarchical compilation method for a macro dataflow

graph. They used a tree-based heuristic to decide the number of processors on nodes in

a macro node, then schedule nodes hierarchically. In their method, however, the number

of processors is decided without considering the scheduling, and it may cause an empty

hole in the schedule leading to an inefficient schedule. The most closely related work

to the proposed technique is [17] where quasi-static scheduling of dynamic constructs is

performed hierarchically. They generated the schedule of one iteration in the macro node,

and simplified the macro node as a node which has a repeated pattern of one iteration.

Thanks to the hierarchical nature of the approach, the scheduling method scales to relieve

the complexity with a decent result compared to the ideal schedule. However, none of the

above schemes support heterogeneous processors.
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The authors of [30] proposed a hierarchical scheduling technique on DAG. They

assume the hierarchical task graph (HTG) which is a nested DAG. They recursively

schedule using ILP from subgraph in a bottom-up manner. Since ILP is time-consuming

and it is repeated many times, this method is not scalable.
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Chapter 3

Problem and Challenges

3.1 Notations and Problem Description

The purpose of this work is to in a reasonable time find a mapping and corresponding

schedule in a hierarchical fashion, aiming to minimize the latency of an application

specified by an SDF/L graph while using minimal number of processors.

An SDF graph g is characterized by a tuple (Ng, Eg), where Ng and Eg represent the

set of nodes and the set of edges, respectively. |Ng| indicates the number of nodes. The

repetition count of node n ∈ Ng is denoted byRep(n). The number of incoming/outgoing

edges of node n is represented as |Ein
n | and |Eout

n |, respectively. Instances of a node n

are represented as {ni (1 ≤ i ≤ Rep(n))}, each of which is assigned a different priority

Pr(ni). We indicate a set of node instances as Ṅg. Furthermore, we define Dep(ni) as a

set of depending instances of instance ni, and Pr(Dep(ni)) as a set of priorities of the

depending instances of ni.

The application specified above is executed on a set of heterogeneous processors

denoted as PE . The number of processors is represented as |PE|. Each node n has an

execution time C(n, k) on the mapped processor Pk ∈ PE . If the mapped processor of a

node is known, we simply use C(n) to indicate the execution time of the node. To make

the problem practical, we consider the constraint where some node can not be mapped to

a certain processor by setting the execution time to infinity. For instance, CPU tasks may
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Figure 3.1: Two scheduling options for the lower-level graph of Fig. 1.1: (a) scheduling
on a single processor and extending it horizontally and vertically and (b) Scheduling on
two processors and extending it horizontally. Colors indicate different iterations.

not run on GPU due to the algorithm of the task, or the user may fix the mapping of a

data-parallel task to GPU for efficient processing.

We assume that the nodes inside a D-type loop are mapped onto a set of homogeneous

processors for data parallel execution, but the user can specify some specific heterogeneous

mapping for any node even if it is contained within the loop. For example, in Fig. 1.1,

while macro node L2 generally can be mapped to either CPU or GPU, not both, the user

can enforce node Z to be mapped to GPU even when L2 as a unit is mapped to CPU. In

the case of C-Type loop, the inside nodes are not data-parallel as previously mentioned

and so there is no unit mapping, nodes can be mapped to heterogeneous processors. For

the latency evaluation of the mapping, we assume the fixed loop iteration for C-Type loop

as the maximum iteration count allowed for conservative and safe scheduling considering

the worst case.

In summary, the scheduling problem tackled in this work is how to map and schedule

an SDF/L graph hierarchically onto heterogeneous processors to minimize the latency

with given profiling information of task execution times on the processing elements and

considering a given set of mapping constraints.

3.2 Challenges

Before going into details about the proposed approach, we need to explain some

challenges involved in hierarchical scheduling. Since a loop is executed repeatedly, the

12
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Figure 3.2: Two scheduling options for the middle-level graph of Fig. 1.1: (a) L2 is mapped
to both processors, (b) L2 is mapped to P1 only

first challenge is to find a throughput-optimal schedule of a loop node for a given number

of processors. In the case of D-type loop that can be executed in parallel, we have several

options for how many processors to use to schedule a single iteration. Figure 3.1 shows

two scheduling options for the lower-level graph of Fig. 1.1. If we schedule an iteration on

a single processor and extend the schedule horizontally and vertically, we may end up with

an idle period due to the unbalanced assignment of loop iterations between processors

(Fig. 3.1(a)). If scheduling of an iteration is done with two processors and extended

horizontally, we may have an idle period due to unbalanced workload assignment at each

iteration, (Fig. 3.1(b)). We need to consider both cases in finding the schedule of a data

parallel loop. While we may use any existing technique to find a throughput-optimal

schedule of an SDF graph for a given number of processors, we devise a list scheduling

heuristic to find a sub-optimal schedule fast.

The second challenge comes from the nature of hierarchical scheduling. Since we

schedule hierarchically from the lowest level nested graph, catching the information of

surrounding nodes is more difficult than it is for flattened scheduling. If the mapping of

nodes in the inside loop overlaps with the mapping of outside nodes, the contention may

occur on the same processor which makes it hard to schedule efficiently. Figure 3.2(a)

and 3.2(b) show this difficulty explicitly. There is a nested SDF/L graph as shown in

the middle- and lower-level graph in Fig. 1.1 for an easy explanation. Since we schedule

hierarchically, it is hard to consider other nodes in the upper level graph when we schedule

the inside of L2. If L2 is scheduled as shown in Fig. 3.2(a) and node C1 has a very long
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Figure 3.3: Example chromosomes

execution time, the resulting schedule is not efficient. Even though the latency of L2 in

Fig. 3.2(b) is higher than for the one shown in Fig. 3.2(a), it may result in a better higher

level schedule. To tackle this challenge, we separate mapping and scheduling, exploring

the mapping of nodes using an evolutionary meta-heuristic.
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Chapter 4

Proposed methodology

The proposed methodology consists of three steps described in Fig. 1.2. First, we

generate the mapping of nodes using a meta-heuristic algorithm. In the next step, we assign

priorities and compose the schedule using the heuristics with the generated mappings.

We schedule hierarchically from the bottom up and make an evaluation based on the

scheduling results. By exploration via a meta-heuristic algorithm, we eventually find

Pareto-optimal mapping and scheduling results in terms of latency and the number of

processors.

4.1 Mapping Exploration

We make use of a genetic algorithm (GA) as a meta-heuristic for the exploration

of mapping. Any meta-heuristic can be applied, but GA is chosen because of a well-

established GA solver [31] being freely available. During this process, we first generate

many chromosomes that represent candidate mapping solutions and calculate each chro-

mosome’s fitness value which based on the latency of the schedule produced when using

the mapping and the number of processors included in the mapping. Among chromo-

somes, we select some chromosomes which have good fitness values and apply GA

operations such as mutation and crossover to produce the offspring chromosomes. The

offspring then replace the existing chromosomes with poor fitness values. This procedure
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is repeated until the fitness value is converged or the predefined maximum number of

iterations is reached.

Since the nodes inside a D-Type loop may be assigned to more than one processor,

the chromosome allowing multi-mapping of a node to multiple processors is devised.

Figure 3.3 shows an example chromosome. For easy explanation, we assume that there

are three processing elements P0, P1, and P2 in PE . In the figure, each gene in the

chromosome represents a mapping of a node in the top-level graph or a macro node. A

gene consists of a bit array, each of which expresses whether the corresponding processor is

included in the mapping of the said node or not. For example, the Loop node chromosome

in Fig. 3.3(a) indicates that the nodes inside the Loop macro node are to be scheduled on

processors P0 and P1. Note that no gene is assigned for the normal nodes inside a D-type

loop since we assume that a D-type loop is assigned to homogeneous processors only in

order to exploit the data-level parallelism.

We could consider another option of mapping all nodes inside the D-type loop

explicitly. Then the scheduling and performance evaluation would be easy but the design

space of mapping may become too wide to explore efficiently. Hence we specify the

mapping of the D-type loop as a whole and resort to a scheduling heuristic to determine

the mapping and scheduling of nodes inside a D-type loop, which reduces the design

space of mapping drastically. For a C-type loop, however, we specify the mapping of each

inside node individually since the loop can not be executed in parallel and the nodes can

be mapped to heterogeneous processors.

If some node is manually mapped to some specific processor, no gene associated

with the node is added to the chromosome since there is no need to explore the mapping

for such nodes. If there is a nested D-type node inside a loop such as shown in Fig. 1.1,

then we also add a separate gene for the nested macro node as displayed in Fig. 3.3(b). In

this case, there is a constraint that node L2 should be mapped to a subset of the processors

mapped to the parent loop at the higher level L1. During the GA operations, an incorrect
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chromosome may be generated such as the lower chromosome shown on Fig. 3.3(b). To

handle this and other cases of unwanted or incorrect chromosomes, a repair process is

induced to partially re-generate the offending part of the chromosome.

To sum up, a chromosome includes the mappings for normal top-level nodes and the

mapping of each loop node regardless of the level.

4.2 Priority Assignment and List Scheduling Heuristic

List scheduling is a popular approach used for scheduling, especially in multipro-

cessor systems with parallelizable tasks. We use list scheduling as a base and introduce a

number of small improvements compatible with our approach to speed up the scheduling

process. For list scheduling, we use a priority assignment method based on Latest Start-

ing Time (LST) which is similar to [19]. The proposed method allows us to do priority

assignment calculations in a more compact way using the SDF graph itself instead of

extending the SDF graph into a homogeneous synchronous dataflow (HSDF) where each

instance of an SDF node becomes a separate node, while still giving different priorities

to different instances of the same task.

To do priority assignment, we first initialize nodes with priority arrays of length

corresponding to the repetition count, the values in the array itself are initialized by

multiplying the instance index and the execution time of each node. For example, in the

case of node B2 in Fig. 4.1 which is in the lowest graph of Fig. 1.1, Pr(B21) = 1 · 1 = 1

and Pr(B22) = 2 · 1 = 2. Note that as we have fixed the mapping at this point, the

execution time for each node is fixed.

We consider instances to be connected if one produces data samples for the other.

Knowing the repetition counts of two connected nodes we can easily calculate which

instance of the producing node produces samples for which instance of the consuming

node using equation (4.1). The IdS indicates the instance id of the source node S, and

IdD is the instance id of the destination node D corresponding to the instance SIdS .
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IdD = ⌊IdS ∗Rep(D)− 1

Rep(S)
⌋+ 1 (4.1)

Pr(SIdS ) = Max(Pr(SIdS−1), P r(Dep(SIdS )) + C(SIdS ) (4.2)

Starting from the exit nodes and moving upwards the entry nodes, we calculate the

priority of an instance by taking the maximum of the priority values among depending

instances and its previous instance, and adding the execution time as described in equation

(4.2). If i is zero, then PrSi−1 is zero. For example, we calculate the IdD for nodes B2

and Z to get Pr(A22). From equation (4.2), IdD for node B2 is computed to be 2, and

IdD for node Z is one. For Pr(A22) computation, we perform Max operation among

three values: Pr(A21), Pr(B22), and Pr(Z1) (blue and green arrows in Fig. 4.1). In this

way, we assign priorities in a hierarchical manner before scheduling.

Node A2

C(A2)=1
Rep(A2)=2
Pr(A2i)=[4, 5]

Node B2

C(B2)=1
Rep(B2)=2
Pr(B2i)=[1,2]

Task Z

C(Z)=1
Rep(Z)=1
Pr(Zi)=[3]

Figure 4.1: Priority assignment based on the priorities of depending instances

The complexity of priority calculation depends on the instance counts and the number

of dependencies, which is O(
∑N

1 Rep(ni) ∗ |Eout
ni

|) where N is the number of nodes. In

the worst case, this could be represented as O(|Ṅg| ∗max(|Eout
i |)) for all i.

4.3 Hierarchical Scheduling

After priority assignment is completed, we use a list scheduling heuristic to schedule

the inside graphs of loop nodes hierarchically in a bottom-up fashion, starting from the

lowest-level. Let us remind the assumptions made for the scheduling of a D-type loop.
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The tasks inside a D-type loop have to be scheduled to a set of homogeneous processors.

But there may exist some nodes within the D-type loop for which mapping to a specific

processor, homogeneous or heterogeneous, is enforced by the user. For instance, the user

may want to map a time-consuming node to a GPU while other nodes can be mapped to

either CPU or GPU. To support this scenario, we allow mapping the D-type loop onto a

multi-core CPU while mapping the designated node to GPU.

Such assumptions are made to simplify the problem while covering the common

practical scenarios. If we allow the mapping of a D-type loop onto heterogeneous pro-

cessors, exploitation of data-parallelism would be extremely complicated and the design

space of mapping would become unbearably large.

While the mapping is decided in a top down approach, the scheduling itself is done in

a bottom up fashion. Since a D-type loop is mapped to homogeneous processors, different

mappings can share the same schedule as illustrated with a simple example in Fig. 4.2

where we have three homogeneous processors and 2 of them are used for the loop. As

shown in Fig. 4.2(a), the loop schedule should be made on a set of anonymous virtual

processors (VPs) and recorded into the schedule database with a unique identifier for each

set of similar mappings. If a schedule for a similar mapping is already generated, we reuse

the partial schedule instead of re-calculating it. For mappings [P0, P1] (Fig 4.2(b)) and

[P1, P2] (Fig 4.2(c)), we can reuse this schedule by fitting it onto the now fixed processors.

The conditions under which we consider mappings similar (to allow reuse) are as

follows:

1. Mapping contains the same number of processors from the same homogeneous set

of processors.

2. If there exist manually-mapped tasks within the loop, they should be mapped to the

same processor.

3. If the loop mapping overlaps with the manual mapping of some tasks, the same
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Figure 4.2: Scheduling examples of a D-type loop node

overlap is present in all similar mappings.

To clarify the third condition, consider the case where node C is a special task for

which the mapping has been fixed to P0. In this case, the lower processor on Fig 3.1(a)

would no longer be anonymous but would be fixed to P0. With C fixed, the [P0, P1](with

C[P0] overlap) mapping case would be regarded as the same schedule (Fig 4.2(b)). For

mapping onto [P1, P2], however, we now need to generate a different schedule as shown

in Fig 4.2(d).

After starting the scheduling process for the task graph, we first check whether

we have the pre-calculated schedule in the schedule database for each loop node by

composing the identifier based on the mapping and looking into the database for the

schedule corresponding to the composed key. If no pre-calculated schedule is present, it

triggers the list scheduling heuristic for the loop node. To calculate the loop schedule, we

schedule the loop one iteration at a time until we observe a repeating pattern - we find

that the single iteration schedule just created overlaps with the schedule of some previous
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iteration. At this point we can figure out a repeating pattern and just extend the schedule

to match the loop count using this pattern.

Suppose we need to schedule loop L2 in our example task graph shown in Fig 1.1;

We have three tasks (A2, B2, and Z) and their execution times are 1, 1, and 3, respectively

on the homogeneous set of processors considered.

As an example, consider the case where L2 mapping is given as [P0, P1], which are

two processors from a set of homogeneous processors, and task Z is a designated task

that is manually mapped to processor P0. This means there is an overlap in the processors

assigned for the loop and for the designated task Z.

How to find the repeating pattern in loop scheduling is illustrated in Fig. 4.3. As

we schedule iterations of the loop step by step as illustrated in Fig. 4.3(a), we compare

the schedule shape with the previously seen single iteration schedules that are shown in

Fig. 4.3(b). In the figure, we distinguish the schedule of each iteration with a different

color. In this example, we find the repeating pattern after the 4-th iteration. Iterations 1

and 2 make up our pattern and after identifying this repeating pattern, we can extend the

schedule by adding the necessary number of appropriately shifted copies of the already

found schedules to compose the full schedule of the loop. Finally, we mark the entry

and exit nodes corresponding to the channels into and out of the loop and save the pre-

calculated scheduling result to our schedule database to be reused for mappings with

similar characteristics.

After finishing the scheduling of L2, we go back to scheduling our task graph at one

level higher. We go on to pre-calculate the schedule for L1, after which we have enough

knowledge to schedule the graph at the top level plugging in the L1 schedule where needed.

After we finish scheduling a task graph containing a multi-level data-parallel loop node for

a given mapping, we repeat this process for a different mapping solution (chromosome).

As explained above, we reuse the pre-calculated schedule as much as possible. Note that

it is possible for a higher level loop, L1, to have a non-similar mapping while a inner loop,
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Figure 4.3: Scheduling example of a loop node

L2, which is mapped to a subset of processors, is assigned a mapping considered similar

to a previously processed mapping. Then, we need to perform scheduling at the middle

level only, re-using the bottom level schedule for L2. This offers a big advantage in a GA

based approach for design space exploration, considering the large number of mappings

that need to get evaluated (scheduled).

Note that the schedule distribution to processors in itself (excluding the specially

fixed processor) is not ordered and all permutations are valid; Whatever order we fit

the schedule to the assigned processors, the mapping does not break the validity of the

schedule. In an attempt to schedule the loop node in a way that the other nodes would

better fit around it, we use a utilization based heuristic to decide the ordering of processors.

However, the ordering will not in fact make a difference for more simple use cases, as the

genetic algorithm will serve to find the best mapping of the rest of the nodes that would

naturally fit around the loop schedule regardless of how we decide to order it. It will

start making a difference only when we have multiple non-overlapping loops or manually

mapped designated nodes.
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4.4 Complexity

As the actual scheduling of a loop node is performed only once for each set of

similar mappings and the schedule is reused in every subsequent same identifier mapping,

the number of times we do the loop scheduling depends on the number of unique keys

in our schedule database. The identifier consists of two parts. The first part depends on

the number of homogeneous processors mapped to the loop, consisting of a tag for the

homogeneous processor set and number of processors included. The second part indicates

whether each designated task is mapped to a homogeneous processor overlapping with

the other loop nodes or to a separate processor. Considering these, the maximum number

of unique identifiers Ui for a single-level loop task, L, can be expressed as shown in

equation (4.3) where |PE| represents the total number of processors in our system and

Ht(L) represents the number of manually-mapped tasks contained in this loop task.

Ui(L) = |PE| ∗ 2Ht(L) (4.3)

If we have multiple levels of loops inside a loop, the number of identifiers grows

exponentially in theory. But considering that the number of manually-mapped tasks and

the number of loops are usually limited in practice, the total computation time of loop

scheduling is affordable, we believe. In fact, during the design space exploration using

genetic algorithm, calculation of loop schedule is done for only a fraction of explored

chromosomes and the time spent on pre-calculating the loop schedule turns out to be

insignificant in our experiments.
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Chapter 5

Experiments

To evaluate our approach, we apply the same GA meta-heuristic to the flattened

graph, which is taken as the baseline technique, called flat scheduling, for comparison.

To flatten an SDF/L graph, we bring all of the tasks up to the top level, getting rid of the

loop structure. The loop count is reflected in the repetition counts, which means that the

instance number for all tasks in the final schedule is the same regardless of the scheduling

approach. The flattened version of our synthetic example and the corresponding task

repetition counts are presented in Fig. 5.1. The flat scheduling schedules the flattened

graph as a whole without loop hierarchy. Note that the flattened graph is also an SDF

graph and we do not expand the SDF graph to an HSDF graph in either of the two

approaches, baseline and the proposed.

Since there are only a few SDF/L examples currently available that were introduced at

the time of proposing the SDF/L model [32], we implemented and utilized a random SDF/L

generator to further evaluate the effectiveness of the approach. There are two metrics

considered for evaluation: scheduling time and the latency of the produced schedule.

For all experiments, we set up our exploration to consist of 100 generations with 100

chromosomes in population and 25 offspring generated in each generation with uniform

crossover and 5% mutation with a rate of 95% and 70%, respectively, based on NSGA2

selector algorithm. Across the experiment results we observe the latency of the generated
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Rep(S)=Rep(L1)=Rep(D)=1

Rep(A1)=Rep(B1)=Rep(L2)=1

Rep(C1)=1

Level 
(# of iteration)

Task Rep. count
in each level

Top (1) S, L1, 
D

1

Middle (100) A1, B1, 
L2

1

C1 20
Lowest (25) A2, B2 2

Z 1

Top-level

Middle-level

Lowest-level Level 
(# of iteration)

Task Rep. count
in each level

Top (1) S, D 1 
A1, B1 100

C1 2000
A2, B2 5000
Z 2500

Figure 5.1: The example of hierarchical SDF/L graph after flattening

final schedule and the average iteration time of the GA based DSE algorithm. The average

iteration time represents the average time it took to complete the evaluation for one

generation of offspring (that is 25 mappings); It means that we perform scheduling 25

times per iteration, once for each mapping chromosome. The scheduling objectives as

mentioned earlier, are to minimize the latency and the number of processors used to utilize

processors more effectively.

5.1 Benchmarks

In addition to the synthetic example of Fig. 1.1, we use two benchmark programs that

contain a single layer D-type loop inside a C-type loop hierarchically - MNIST shown in

Fig. 5.2(a) and K-means Clustering described in Fig. 5.2(b), where the red line represents

a feedback channel with initial tokens available for the first iteration.

We profiled the provided real applications on Jetson TX2 which is a heterogeneous

system consisting of two Denver CPUs, four ARM A57 CPUs, and one NVIDIA Pascal

GPU: the total number of PEs is seven. In the case of MNIST, codes for all processors

are provided and profiling is performed for two types of CPUs and GPUs. In the case

of K-means Clustering, however, only CPU codes are provided, so only two types of

CPUs are profiled and the design space is explored. For the synthetic example of Fig. 1.1,

we arbitrarily assign the execution time of each node per homogeneous set of processor

between 1 and 10. In this example, we map task Z to one of the processors from CPU 2
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manually. The assumed profile of execution times for the tasks in the synthetic example

is displayed in Table 5.1.
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Figure 5.2: SDF/L benchmarks

The design space exploration results for these three benchmarks are displayed in

Table 5.2. We compare the average time it takes to complete one iteration of the genetic

algorithm. As expected, the proposed hierarchical scheduling is significantly faster than

the flat baseline scheduling, from 7.9 times for K-means Clustering to 120 times for

MNIST. Since the proposed approach is designed to take advantage of the loop structure,

the speed-up gain depends on the ratio of the number of tasks inside the loop to the
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Table 5.1: Execution time information of the synthetic example

Pool Cores Execution time (us)
S D A1 B1 C1 A2 B2 Z

CPU 1 4 5 7 4 6 7 3 4 3
CPU 2 2 3 5 2 5 5 3 4 1
GPU 1 - 4 1 3 2 1 2 1

Table 5.2: Design space exploration results

Application Iteration Time (sec) Resultant Latency (ms)
Flat Hierarchical. Flat Hierarchical.

Synthetic 8.1 0.25 12.6 13.2
MNIST 263.5 2.2 10183.3 10182.9

K-means Clustering 50.0 6.3 87.5 87.5

number of tasks in the whole graph: The loop in K-means Clustering is a lot simpler than

that in MNIST.

When comparing the latency results listed in Table 5.2, the flat scheduling found

a little bit better schedule than the hierarchical scheduling technique for the synthetic

benchmark. The lowest-level loop in Fig. 1.1 has four task instances per iteration: one

for A2 and B2 each and two instances for Z. In the proposed technique, scheduling of

the innermost graph schedules incurs empty time slots, called slack, due to unbalanced

execution time between mapped processors and the tasks, due to this repeating the schedule

as a whole in the upper-level scheduling degrades the utilization of processors. On the

other hand, a flat scheduling approach schedules 25 instances of A2, B2, 50 instances of

Z and all other tasks from other levels at once. Hence it could find a better schedule than

the proposed schedule by avoiding the slack. The scheduling quality of the hierarchical

scheduling depends on how well balanced is the loop schedule since the scheduling slack

will begin piling up as loop iterations are added.

For the K-means Clustering benchmark, two scheduling techniques achieved the

same latency results since there is only a single task inside the loop and there is no

scheduling slack in the loop schedule. On the other hand, for MNIST benchmark, the
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proposed hierarchical scheduling found a better schedule with a shorter latency than the

flattened scheduling technique, which is counter-intuitive.

As the size of the flattened graph increases, flat scheduling becomes more difficult

and may be too greedy to find a good solution for some graphs. If there is none or little

slack in the loop schedule, considering it as a whole will make the upper-level schedule

easier without affecting the performance. It explains why the hierarchical scheduling gives

shorter latency than the flat scheduling for the MNIST benchmark.

In summary, the potential latency differences, which can go both ways, between

two approaches are directly connected to the level of awareness of the scheduler and the

scheduling slack of the loop schedule.

As mentioned earlier, we may want to minimize both the number processors used

and the latency. By using a genetic algorithm, we can perform design space exploration

(DSE) to obtain the Pareto-optimal solutions easily. The Pareto-optimal solutions after

finishing DSE for the three examples are shown in Fig 5.3. The red triangles on the plots

indicate solutions that are not Pareto-optimal.

Note that there is no optimal 3 processor mapping found for the synthetic example

shown in Fig 5.3(a) as the best 3 processor mapping resulted in a schedule that had latency

slightly worse than the 2 processor mapping. This comes specifically from the chosen

profile and processing unit setup. As task Z is fixed to a processor in CPU 2 set, that

processor should be included in any schedule we generate. This means if we want a 3

processor schedule, L1, L2 can be mapped to two processors from CPU 2 and GPU can

be used for D. For any schedule using 3 processors, our loops are actually mapped to 2

processors which explains why we can not get a better schedule using 3 processors over

using 2 processors. While the difference between 5 processor and 6 processor schedule

latency is also very small, there is still a slight improvement with the added processor and

both are considered Pareto-optimal.

The result shows that increasing the number of processors can improve the latency but
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the benefit gain slows down as more processors are added and after some point might stop

improving completely - this is the case with K-means example results for which are shown

on Fig 5.3(b). The same is true for MNIST example which shows no improvement when

adding the sixth processor, as shown on Fig 5.3(c). This is in part due to the restriction

that loop mapping is limited to a set of homogeneous processors and the biggest set of

homogeneous processors for this example contains 4 PEs.

For the K-means Clustering benchmark, there is no single processor Pareto-optimal

mapping. It is because the number of generations, 100, is so small that no chromosome is

made that maps all of the tasks to a single processor in our experiment: The probability of

randomly generating a mapping that puts all tasks to same processor is low. Another setup

where single processor mappings can not be tested would be one where multiple dedicated

tasks are mapped to different processors. In this case the lowest number of processors in

a valid mapping would correspond to the number of such dedicated processors.
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Figure 5.3: Pareto-optimal solutions for three benchmarks.
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5.2 Randomly Generated Graphs

Given the lack of real SDF/L examples currently implemented, we perform experi-

ments with randomly generated graphs in order to give a more generalized overview on the

performance of the hierarchical scheduling approach. For these experiments we assume a

Jetson TX2-like architecture that has 3 pools of 1, 2 and 4 processors, respectively: The

tasks can be mapped to 3 sets of homogeneous processors made up of 7 processors in

total.

For each graph included in the experiment the whole GA based design space explo-

ration is executed 10 times for both algorithms and the best results are recorded. This is to

account for cases where we randomly start from an unfavorable initial generation for either

of the algorithms and thus could potentially show one of the approaches more favorably

than it actually is. Note that that the range of settings is limited by the effectiveness of flat

scheduling algorithm as the SDF/L graphs have to be simple enough for both approaches

to complete in a feasible time.

At the base the randomly generated graph has a number of fixed characteristics.

A graph has anywhere between 5 to 25 tasks. A graph may have 1 to 3 D-type loops

with a loop count in the range of 20 to 200. In case of multi-level loops (D-type loop

inside D-type loop), the parent loop count is set to 10% of the inner loop count. The

depth of the loop nest is limited to 2 to control the complexity of the graph in favor of

the flattened scheduling approach. We assign tasks to D-type loops first. Then we make

connections between tasks at each level. At the lowest level, we consider a task one by

one by making a connection between a new task to a randomly chosen task to make a

connected graph. In addition, we make more connections: for each ordered pair of tasks an

additional connection is formed with 10% likelihood to avoid only generating completely

linear SDF/L graphs. There is also a 5% chance that a feedback arc is added to the graph.

At the upper level, a D-type loop is considered as a single task, and the same process

of making connections among tasks is followed. After the task graph is constructed, we
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Table 5.3: Improvement over the flat scheduling approach for randomly generated SDF/L
graphs

Latency improvement Time improvement
WORST -21.63% 107.21%

AVG -2.46% 1913.94%
BEST 20.53% 19637.12%
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Figure 5.6: Randomly generated graphs schedule latency
and iteration time comparisons

assign each task a repetition count between 1 to 5. In addition, there is a 5% chance that

a task is fixed to a designated processor prior to the DSE algorithm being executed.

A total of 60 randomly generated SDF/L graphs were used for the experiments.

Table 5.3 displays the summary of the comparison - the best, worst and average percentage

of improvement when using the proposed hierarchical scheduling over the flat scheduling

approach for the same randomly generated SDF/L graphs.

The number of total scheduled tasks in the final schedule can be used as a metric to

assess the complexity of the graph. This value can also be calculated by Eq.( 5.1) where

ti is the i − th task out of n total tasks, pi represents the parent (loop) task of ti, and

LoopCount(pi) is the loop count of the loop represented by task pi.
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n−1∑
i=0


0, if tiis a loop task

Rep(ti) ∗Rep(pi) ∗ LoopCount(pi), if tiis in loop pi

Rep(ti), otherwise

(5.1)

Figure 5.4 plots the average iteration times of both approaches for random graphs

with a wide range of complexity defined above.

As we can see, the hierarchical scheduling has a significant advantage in terms of the

iteration time over flat scheduling, regardless of the complexity level. Figure 5.5 shows the

latency found for the same graphs. While the variance of latency difference is relatively

small, the hierarchical scheduling can produce a better or worse latency result, similarly

to the results with the benchmark experiments.

On average a slight loss in latency is expected, the difference in latency in our

experiment set ranged from -21.63% to +20.53% with the average being -2.53%. In

turn there is a significant improvement in speed of calculation ranging from 107.21% to

19637.12% of improvement. The average improvement over these 60 graphs included is

1913.94%.

Since the speed-up of the hierarchical scheduling is dependent upon the complexity

of the loops, not the complexity of the entire graph, the speed-up improvement over the

flat scheduling is quite random in Figure 5.4. So we focus on the loop complexity that

grows when the number of tasks in the loop, the repetition count of the loop task or the

loop count grows.

Since the easiest setting to manipulate while minimally changing the base graph is

the loop count, we generate a random graph and vary the loop count, ranging from 10 to

200.

Experimental results for 2 such random graphs, graphs A and B, are displayed in

Fig. 5.7 for the average iteration time, as the loop count increases, and the corresponding

speed-up gain when comparing the two approaches. Note that the loop complexity of
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Figure 5.7: Iteration time improvement over the loop count increase
for two random graphs

graph B is 1.8 times larger than graph A with the same loop count.

The results suggest, that as the loop complexity grows either through increasing the

loop count (or the number of task instances inside the loop), the benefit margin of using

the hierarchical scheduling technique over the baseline grows at a increasingly higher rate.

From this we conjecture that with more complex graphs or higher loop counts that are not

included in our experiment sets due to lacking capabilities of the baseline scheduling, the

improvement of using the hierarchical scheduling will increase.

From the graphs we can see that the improvement percentage starts steadily increasing

either right from the start or after increasing the loop count a few times. The point where

the improvement ratio starts increasing is directly related with the number of unique

patterns in the loop schedule and the horizontal extension potential of the schedule. As
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stated in Section 4.3, when creating a hierarchical schedule for a loop, we schedule the

loop iteration by iteration until finding a pattern and then extend the found pattern up to

the loop count. If the pattern is not found before the loop count is met, which might occur

when the loop count is small, we do not get any benefit of extension. As the loop count

increases, the potential to find a pattern earlier grows and thus the hierarchical becomes

more effective. The reason for the initial drop in Figure 5.7(b) for random graph A is

caused by this: a repeating pattern is not found early until the loop count increases to 10.

Once the loop count passes the unique iteration shapes count, the improvement over the

flat scheduling gets increasingly better.

Combining both results from random graphs and concrete benchmark examples, we

claim that using the hierarchical scheduling approach to compose the schedule is always

noticeably faster than flat scheduling with a small potential variance in latency. This makes

it feasible to use the GA-based approach for larger graphs where the baseline scheduling

of a flattened graph is too slow to process a large number of potential mappings to find

the favorable mapping in an affordable time.
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Chapter 6

Conclusions

In the presented work, we introduced the problems and challenges related to SDF/L

graph scheduling, when considering systems with heterogeneous processors. While the

SDF/L model takes care of explicitly showing the data-parallelism, flattening the graph out

for scheduling, fails to fully utilize the potential it provides. As seen, however, scheduling

data-parallel loop tasks with high repetition and multiple mapping possibilities on complex

systems while preserving, and exploiting, the hierarchical structure is not trivial.

In order to tackle these problems, we adopted a hierarchical scheduling methodology

to map and schedule an SDF/L graph onto multiple heterogeneous processors. We present

a number of small adjustments to the base scheduling methodology, a priority assignment

scheme and a new hierarchical scheduling heuristic to cope with and take advantage

of the hierarchical structure to more effectively utilize the potential that SDF/L model

introduces.

The efficient mapping space for data-parallel tasks is defined to explore fast via a

genetic algorithm. The effectiveness of the proposed method is verified with two real-life

benchmarks, a synthetic example, and a number of randomly generated SDF/L graphs.

While the real-life benchmarks used for the experiments might be on the simple side,

the variety of random graphs, with different complexity levels used, serve to show the

potential and scalability of the described approach. Based on the results, we claim that
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scheduling SDF/L graphs hierarchically, following proposed methodology, the schedule

generating process finishes significantly faster with the loss in latency being relatively

small.
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요약

이종멀티코어프로세서에서 SDF/L
그래프스케줄링기법

Mari-Liis Oldja
공과대학

컴퓨터공학부

서울대학교대학원

데이터플로우 모델은 애플리케이션의 태스크를 병렬 처리할 때 좋은 모델로 알

려져 있지만 데이터를 병렬로 처리하는 데에 활용하기는 어렵다. 데이터 수준 병렬

처리는 루프 구조를 통해 표현될 수 있으나 기존 데이터플로우 모델에서 명시적으로

루프 구조는 명세하는 방법이 없었다. 이러한 단점을 극복하기 위해 계층적 구조를

활용하여 루프 구조를 명시적으로 명세할 수 있는 SDF/L 모델이 제안되었다. 그러나

이기종프로세서에대한 SDF/L그래프의스케줄링은이전까지고려되지않은것으로

파악된다.

본논문에서는 SDF/L모델로표현되는애플리케이션을이기종프로세서에대하

여 스케줄링하는 기법을 소개한다. 제안된 방법에서는 먼저 진화적 메타 휴리스틱을

사용하여태스크매핑을탐색한다.이후하위수준에서병렬루프스케줄을만든다음

상위수준에서스케줄구성할때재사용하는상향식의계층적태스크스케줄링을수행

한다. 제안하는 스케줄링 기법의 효율성을 검증하기 위해 벤치마크 예제와 무작위로

생성된 SDF/L그래프에기법을적용하였다.

주요어 : 매핑 및 스케줄링, 계층적 스케줄링, 데이터 병렬 스케줄링, 데이터플로우
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