
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Thesis for a Ph. D. Degree 

 

Retrieval of wintertime snow depth on Arctic 

sea ice and analysis of long-term variability 

using satellite passive measurements 

 

인공위성 수동 관측자료를 활용한 겨울철 북극 

해빙지역 적설깊이 산출 및 장기변동성 분석 

 

 

August 2021 

 

 

 

School of Earth and Environmental Sciences 

Graduate School 

Seoul National University 

 

Hoyeon Shi 

 

 



Retrieval of wintertime snow depth on Arctic 

sea ice and analysis of long-term variability 

using satellite passive measurements 

 

 

By  

Hoyeon Shi 

 

A dissertation submitted to the faculty of the 

graduate school of the Seoul National University  

in partial fulfillment of the requirements  

for the Degree of Doctor of Philosophy 

 

Degree Awarded: 

August 2021 

 

Advisory committee: 

 Professor Kwang-Yul Kim, Chair 

 Professor Byung-Ju Sohn, Advisor 

 Professor Sang-Woo Kim 

Doctor Hyun-Cheol Kim 

 Professor Young-Ho Kim 





i 

Abstract 

A new satellite retrieval algorithm for wintertime snow depth on Arctic sea 

ice was developed based on the hydrostatic balance and thermodynamic steady-

state of a snow-ice system. In this algorithm, snow depth is estimated from the 

passive infrared and microwave measurements, with the use of sea ice freeboard, 

snow surface temperature, and snow-ice interface temperature as inputs. The 

algorithm was validated against NASA's Operation IceBridge (OIB) 

measurements, and results indicate that the snow depth on the Arctic sea ice can 

be estimated with a high level of accuracy. To produce a long-term snow depth 

record in the Arctic basin-scale, sea ice freeboard was estimated from the satellite 

passive microwave (PMW) measurements. To do so, the snow-ice scattering 

optical depth from satellite PMW measurements was used as a predictor for the 

estimation of the total freeboard. Estimated PMW total freeboards were found to 

be in good agreement with OIB total freeboards. 

The wintertime snow depth records for the 2003-2020 period were produced 

by combining the PMW freeboard and satellite-derived temperatures. It was found 

that snow depth is highly dependent on sea ice type, likely due to the snow 

accumulation timing and period. The snow depth and its variability were greater 

on multiyear ice than on first-year ice. Besides, a significant reduction in mean 

snow depth was found, compared to the snow depth climatology for the 1954-1991 
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period. Regarding the temporal variations over the 2003-2020 period, regionally 

different snow depth trends are found; negative and positive snow depth trends 

were noted over the eastern and western parts of the Arctic Ocean, respectively. It 

is thought that the negative trends are related to sea ice type transition and delayed 

freeze onset, while the positive trends are related to increased precipitation amount.  

 

Keywords: Snow depth, Arctic sea ice, Satellite Remote Sensing, Climate Change 

Student number: 2016-29111 
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1. Introduction 

Arctic sea ice is frozen sea water that covers the Arctic Ocean enclosed by 

Eurasian and North American continents. Sea ice plays important role in the Arctic 

climate system. Sea ice, generally covered with snow layer, is one of the brightest 

materials on Earth's surface with high reflectivity. Thus, much of the insolation 

reaching the sea ice is reflected into space during the melting period (e.g., a period 

from spring to fall when sunlight is present in the Arctic region). As a result, 

surfaces covered by sea ice absorb less solar energy, so temperatures in the Arctic 

regions remain relatively cool. Sea ice is also related to meridional ocean 

circulation. When sea ice forms, salt dissolved in sea water is discharged into the 

water below the ice. This phenomenon makes sea water below sea ice denser than 

the surroundings. As a result, cold and dense polar water sinks and moves toward 

the equator, while warm water moves from the equator toward the Arctic Ocean. 

This meridional circulation is as known as ‘Atlantic meridional overturning 

circulation’. 

The coverage of Arctic sea ice has an annual cycle. It reaches a maximum in 

spring when solar insolation starts to affect the Arctic Ocean and reaches a 

minimum in fall when sea ice melting terminates, and new ice formation starts. 

Sea ice starts to form when the temperature of sea water reaches the freezing 
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temperature that is approximately -1.8°C. The freezing temperature of sea water 

is lower than that of fresh water because sea water is saline. There are mainly two 

ways in the sea ice growth process. One way is thermodynamic growth. During 

the freezing period, cold atmosphere uptakes the thermal energy from the ocean 

through sea ice. As a result, sea ice growth takes place at the ice bottom, where the 

ocean loses thermal energy. Consequently, the temperature at the ice bottom 

remains at an almost constant value because phase transition (i.e., freezing) takes 

place at the ice bottom. The other way of sea ice growth is dynamic growth. Sea 

ice floating on the Arctic Ocean does not stay at one location, but it moves around 

the Arctic Ocean due to external forces such as wind and ocean currents. Due to 

the mobility of sea ice, the convergence of ice floes can occur. Sea ice can grow 

by this convergence forming surface features such as pressure ridges. Similarly, 

sea ice loss can occur by melting due to warm temperature and break up due to 

divergence. 

Due to global warming, Arctic sea ice cover is decreasing rapidly (Andersen 

et al., 2020). A warm Arctic environment makes sea ice more vulnerable to 

external perturbations. Tinner ice is much more likely to melt away during summer 

than thicker ice because less energy is required to melt thinner ice. Moreover, 

thinner sea ice is prone to break up into small ice floes with greater mobility due 

to ocean waves and winds. The increased mobility of sea ice makes sea ice easier 
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to be exported from the Arctic Ocean to the lower latitude region by transpolar 

drift. It is reported that the change in intensified atmospheric circulation such as 

Arctic Oscillation can significantly remove Arctic sea ice by sea ice export through 

Fram straight (Rigor and Wallace, 2004). In this situation, the portion of multiyear 

ice (MYI) which survived the summer melting period decreases rapidly, and the 

dominant wintertime ice type now becomes first-year ice (FYI) which is newly 

formed sea ice. 

While diminishing Arctic sea ice has become the most vivid evidence of 

global warming, the sea ice loss is not only the consequence of global warming 

but also the driver of accelerated Arctic warming. If sea ice area with high albedo 

decreases, the solar energy absorbed by the surface increases. As a result, the 

surface warming and the sea ice loss forms a positive feedback loop as known as 

‘albedo feedback’. The rate of Arctic temperature rise is more than twice the global 

warming rate, which is called Arctic amplification (Serreze and Barry, 2011; 

Screen and Simmonds, 2010). The impact of the Arctic amplification extends to 

the midlatitude region by providing favorable conditions for the wavier jet 

(Francis and Vavrus, 2015). It is thought that the wavier jet during winter is closely 

related to the East Asian cold surge (Kug et al., 2015). 

Heretofore, studies on the role of sea ice in weather and climate have been 

focused on the sea ice cover of which the Arctic basin-scale data are continuously 
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available from satellite passive microwave (PMW) measurements for more than 

30 years. However, sea ice thickness is as important as sea ice cover because the 

degree of insulation effect (i.e., reducing energy transport between atmosphere and 

ocean) depends on the sea ice thickness. A modeling study showed that the Arctic 

amplification factor has increased 37% when sea ice thickness change was 

involved in calculation compared to when fixed ice thickness was used (Lang et 

al., 2017). However, the aforementioned study did not consider the change of snow 

depth on sea ice. Considering that snow is a great insulator with very low thermal 

conductivity compared to sea ice (Maykut and Untersteiner, 1971; Sturm et al., 

1997; Sturm et al., 2002), the effect of snow depth change should be included to 

derive a more solid conclusion. 

Especially, snow depth on sea ice is necessary information for estimating sea 

ice thickness from satellite altimeter observations. The altimeters do not measure 

sea ice thickness directly but measure sea ice freeboard (i.e., height from a local 

sea surface to snow or ice surface). Once the freeboard measurement is available, 

a buoyancy equation is applied to covert freeboard to sea ice thickness with the 

assumption that input parameters such as snow depth, the snow and ice densities, 

and the radar penetration depth are known (Ricker et al., 2014). The buoyancy 

equation describes the balance between the buoyant force and the weight of snow 

and ice, and thus the sea ice thickness is a function of snow depth for a given sea 
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ice freeboard and densities. Furthermore, the conversion results are highly 

dependent on snow depth (Kern et al., 2015; Ricker et al., 2014; Zygmuntowska 

et al., 2014, Kim et al., 2020). Therefore, obtaining the spatial distribution of snow 

depth is a very crucial issue for sea ice thickness estimation. 

Fundamental knowledge on snow depth was achieved by the monumental 

work of Warren et al. (1999) (hereafter referred to as W99) which constructed 

monthly snow depth climatology fields from extensive in-situ measurements 

during the 1954-1991 period. However, it has been reported that recent snow depth 

has been reduced significantly compared to the W99 snow depth climatology 

(Webster et al., 2014; Kurtz and Farrell, 2011). Therefore, the use of W99 for a 

recent period may induce more uncertainty in retrieving the sea ice thickness. 

There are other in-situ snow depth measurements from the ongoing Arctic buoy 

program such as the Cold Regions Research and Engineering Laboratory – Ice 

Mass Balance (CRREL-IMB) buoy program (Perovich et al., 2019), and Alfred 

Wegener Institute (AWI) buoy program (Grosfeld et al., 2016). Nevertheless, those 

point measurements cannot capture snow depth distribution over the whole Arctic 

Ocean. Even if the new climatology is constructed in a similar way to W99, great 

interannual variability of snow depth cannot be treated. Therefore, Arctic basin-

scale snow depth observations are highly desirable. 
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There have been various approaches aimed at estimating the snow depth 

distribution using satellite PMW observations. Markus and Cavalieri (1998) 

developed an algorithm based on the Brightness Temperatures (TBs) of Special 

Sensor Microwave/Imager (SSM/I) based on the negative correlation of the snow 

depth with the spectral gradient ratio (GR) between 18 and 37 GHz of vertically 

polarized TBs, but only on the Antarctic FYI. Comiso et al. (2003) have updated 

the coefficients of this algorithm for the Advanced Microwave Scanning 

Radiometer for EOS (AMSR-E). However, snow depth retrieval using this 

algorithm is reported to be less accurate when the MYI fraction within the grid 

cell is significant (Brucker and Markus, 2013). Recently, Rostosky et al. (2018) 

suggested a new method using the lower frequency pair of 7 and 19 GHz to 

overcome such limitation − for the time being this lower frequency algorithm is 

valid only for March and April months over the MYI region. 

There are other approaches involving the use of the lower frequency 

measurements at the L-band. Using Soil Moisture Ocean Salinity (SMOS) 

measurements, Maaß et al. (2013) found that 1.4 GHz TB has a dependence on the 

snow depth because of the insulation effect of the snow layer, and they determined 

snow depth by matching Radiative Transfer Model (RTM) simulated TBs with 

SMOS-measured TBs. Zhou et al. (2018) simultaneously estimated the sea ice 

thickness and snow depth by adding additional lidar altimeter freeboard 
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information, improving the Maaß et al. (2013) approach. However, both RTM-

based approaches require a priori information on ice properties (e.g., temperature 

and salinity profiles). Other satellite remote sensing approaches include the snow 

depth retrieval using dual-frequency altimetry (Guerreiro et al., 2016; Lawrence 

et al., 2018; Kwok et al., 2020), multilinear regression (Kilic et al., 2019), and a 

neural network approach (Braakmann-Folgmann and Donlon, 2019). Nonetheless, 

estimating the basin-scale snow depth distribution seems so far to be a difficult 

task. More detailed reviews on previous approaches to obtain snow depth 

information can be found in Section 2. 

Here, instead of retrieving the snow depth directly, let us switch our point of 

view to finding a constraint that can be used for snow depth retrieval. There are 

two unknowns (i.e., snow depth and ice thickness) in the buoyancy equation for a 

given freeboard. If a particular relationship between snow depth and ice thickness 

exists, it may be possible to constrain the buoyancy equation to solve 

simultaneously both ice thickness and snow depth.  

To find a possible relationship between snow depth and ice thickness, this 

study examines the vertical thermal structure within the snow-ice system. The 

wintertime vertical temperature profile of the snow–ice system can be assumed to 

be piecewise linear, as illustrated in Figure 1. Therefore, the temperatures at three 

interfaces can describe the thermal structure of the snow-ice system fairly well; 
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they are (1) air–snow interface temperature (Tas), (2) snow–ice interface 

temperature (Tsi), and (3) ice–water interface temperature (Tiw). Tiw is assumed to 

be nearly constant at the freezing temperature of seawater, implying that two other 

interface temperatures (Tas and Tsi) may be enough to describe the thermal 

structure of the system. Therefore, the thermal structure of a snow-ice system can 

be resolved from satellite observations of Tas (Dybkjær et al., 2014) and Tsi (Lee 

et al., 2015) in the Arctic basin-scale. 

Based on the assumption on the thermal structure, we attempt to find a 

relationship between the snow depth and ice thickness which can be used as a 

constraint for reducing the unknown variables in the hydrostatic balance equation. 

Identifying the relationship, conductive heat flux is assumed to be continuous 

through the snow–ice interface (Maykut and Untersteiner, 1971), implying that 

conductive heat fluxes within the snow and ice layers are the same under the 

steady-state. Considering that the conductive heat flux is proportional to the bulk 

temperature difference of a layer divided by the thickness of the corresponding 

layer, it is possible to deduce the ratio between snow depth and ice thickness 

(hereafter referred to as thickness ratio; TR) under the given steady-state. TR can 

be used with freeboard measurements to yield snow depth and sea ice thickness 

simultaneously. 
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Meanwhile, a recent study by Lee et al. (2021) showed that it is possible to 

estimate ice freeboard from satellite PMW measurements by relating snow-ice 

scattering optical depth (SOD) due to snow and freeboard scatterings with ice 

freeboard. As PMW freeboard from AMSR measurements can provide consistent 

freeboard record for January-February-March (JFM) months during the 2003-

2020 period, it is suitable for constructing a long-term snow depth record, 

synergized with the TR. Based on this background, this study aims to accomplish 

the followings: 

(1) Develop a snow depth retrieval algorithm based on the vertical thermal 

structure of a snow-ice system and freeboard measurements during wintertime. 

(2) Construct snow depth record for JFM months during the 2003-2020 period by 

using the developed retrieval algorithm in combination with PMW-derived 

freeboards. 

(3) Examine the geographical distribution and temporal variations of snow depth 

for the 2003-2020 period with related geophysical processes. 
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Figure 1. Schematic diagram of a typical snow–ice system during the winter. 

Snow depth (hs), ice thickness (Hi), total freeboard (Ft), radar freeboard (Fr), and 

ice freeboard (Fi) are indicated. Correction terms regarding the wave propagation 

speed change in the snow layer (Fc) and the displacement of the scattering horizon 

from the ice surface (Fp) are indicated by blue arrows. The red line denotes a 

typical temperature profile with air–snow interface temperature (Tas), snow–ice 

interface temperature (Tsi), and ice–water interface temperature (Tiw). 
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2. Previous studies in obtaining Arctic snow depth 

2.1. In situ measurements 

2.1.1. Snow depth climatology 

Although the Arctic ocean is a severe environment for humans to reach, there 

have been pioneers who endeavored to obtain in situ measurements of snow depth. 

Soviet Union operated many manned stations established on the drifting MYI over 

the Central Arctic Ocean to conduct in situ measurements of ocean and atmosphere 

including snow depth. Those stations are called ‘North Pole (NP) stations’ and the 

spatial and temporal coverage of the stations are presented in Figure 2a. Warren 

and his colleagues produced the monthly snow depth climatology based on the 

snow depth measured at NP stations during the 1954 to 1991 period. Snow depth 

climatology was produced by fitting a two-dimensional quadratic function to the 

massive snow depth measurements. The snow depth climatology for January 

month is shown in Figure 2b. 

In addition, there was an airborne expedition conducted by the Soviet Union 

during the 1959-1988 period. The name of the expedition is ‘Sever’ which is the 

Russian word for ‘north’. During the spring season, skilled personnel landed on 

Arctic sea ice including both FYI and MYI, and measured sea ice parameters such 

as snow depth, snow density, and ice thickness. The data obtained from the Sever 
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expedition can be found at the National Snow and Ice Data Center (NSIDC) 

website (https://doi.org/10.7265/N5B8562T). As the spatial coverage and number 

of measurements of the Sever expedition are much wider and greater than that of 

NP stations, particularly in the Eurasian marginal seas (Figure 3a and 3b), Shalina 

and Sandven (2018) analyzed snow depth data from Sever expeditions to produce 

updated snow depth climatology (Figure 3c).  

Because of difficulties in the estimation of the Arctic basin-scale snow depth, 

these snow depth climatological values are still considered as a standard reference. 

However, as the climate in the Arctic region changes rapidly, it is difficult to accept 

that this snow depth climatology is a representative value for the recent periods. 

  



13 

 

Figure 2. (a) Paths of NP drifting stations and years of operation of each drifting 

station. (b) Obtained snow depth climatology for January. (Figures from Warren 

et al., 1999) 

 

 

Figure 3. (a) Geographical distributions of snow depth measurement sites for 

March-April-May months during the 1959–1988 period. (b) The number of 

measurements within gridded area of 100 × 100 km. (c) Contours of the snow 

depth obtained from observations shown in (a) (Figure from Shalina and Sandven, 

2018)  
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2.1.2. Arctic buoy programs 

In recent days, it is almost impossible to conduct massive, labor-intensive, 

and dangerous expeditions for the Arctic Ocean in situ measurements. Instead, 

automated in situ measurements are carried out by installing observation devices 

on the sea ice and using it as a buoy as illustrated in Figure 4. Once the buoys are 

deployed, measurements of sea ice parameters such as ice thickness, snow depth, 

temperature profile are made along the drift track of sea ice floe. One of the most 

famous Arctic buoy programs is the Ice Mass Balance (IMB) buoy program 

operated by Cold Regions Research and Engineering Laboratory (CRREL) in the 

United States. The CRREL-IMB buoy data are available from 2000 to the present 

at the CRREL website (http://imb-crrel-dartmouth.org/). Other buoy data are 

available from the Surface Heat Energy Budget of the Arctic (SHEBA) campaign 

(Perovich et al., 2007) and Alfred Wegener Institute (AWI) buoy program 

(Grosfeld et al., 2016). These buoy data are widely used as a training dataset for 

satellite retrieval algorithm development or validation dataset. 

However, special cautions should be made for the usage of these buoy data. 

Because buoy observation is autonomous, the measurement setting cannot be 

controlled perfectly even if it was perfect when it was initially installed. For 

example, accurate observation may fail due to the tilting of the device. In the case 

of snow depth measurements, it utilizes an acoustic sounder which must be 
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installed perpendicular to the surface for accurate ranging. Besides, buoy data are 

point measurements that may not be representative of the area around the buoy. 

Therefore, direct comparison between the buoy and satellite data may not 

appropriate for the variable with high spatial inhomogeneity. 
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Figure 4. Schematic diagram of an ice mass-balance buoy (Figure from 

Polashenski et al., 2011) 
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2.2. Remote sensing 

2.2.1. Operation IceBridge 

To overcome the harsh environment of the Arctic Ocean, observations of 

Arctic sea ice are also done with remote sensing approaches. One of the most 

famous and widely used remote sensing datasets is from NASA’s Operation 

IceBridge (OIB) which is an airborne mission. The main objective of the OIB 

mission is to extend and improve the record of sea ice observations begun by 

ICESat which terminated its operation in 2008 (Zwally et al., 2002). This mission 

was terminated in 2019 as ICESat-2 (Markus et al., 2017) is launched and become 

operational. 

OIB utilizes a highly specialized aircraft equipped with various sensors. 

Those are high resolution visible digital camera for surface mapping (Digital 

Mapping System; DMS), lidar altimeter for surface height estimation (Airborne 

Topographic Mapper; ATM), infrared radiometer for surface temperature 

estimation (KT-19), ultra-wideband snow radar for snow depth estimation, etc. 

(Figure 5a). OIB generally collects snow and ice data only for the western part of 

the Arctic Ocean (Figure 5b). Since OIB data have relatively high accuracy among 

other remotely sensed data with a more comparable spatial scale to satellite 

measurements, it is mainly used as a validation dataset in the field of satellite 



18 

remote sensing. However, airborne measurements are available for the spring 

season (i.e., March, and April) because flight without sunlight during the Arctic 

winter season is dangerous. 
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Figure 5. (a) Measurement devices equipped in airplane used for OIB mission 

(image from OIB website; https://icebridge.gsfc.nasa.gov/). (b) Mean OIB snow 

depth for March month for the 2010-2018 period.  
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2.2.2. Satellite passive microwave (PMW) measurements 

Many studies utilize satellite PMW measurements to estimate Arctic basin-

scale snow depth, advantaged by the low sensitivity of microwave signal to 

hydrometeor and water vapor. Markus and Cavalieri (1998) found that GR (i.e., a 

normalized difference of TBs at two different frequencies) between 18 and 37 GHz 

of vertically polarized TBs are negatively correlated with snow depth on Antarctic 

FYI by comparing SSM/I and in situ measurements. This phenomenon is due to 

the radiometric nature that the TBs at higher frequencies are more likely to be 

attenuated by the snow layer scattering than TBs at lower frequencies. 

Based on their findings, Comiso et al. (2003) made a snow depth retrieval 

algorithm for Arctic FYI using AMSR-E measurements. However, this GR-based 

algorithm does not work for thick snow on MYI because the difference in TB is 

saturated. Recently, Rostosky et al. (2018) suggested a new method using GR from 

the lower frequency pair of 7 and 19 GHz to overcome that limitation. They 

regressed the GR values from AMSR2 measurements with OIB snow depth to 

obtain the snow depth prediction equation, separately for FYI and MYI. The 

validation results showed fair accuracy, however, this lower frequency algorithm 

is valid only for March and April months when OIB training data are available.  
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There is an approach using the PMW measurements at the L-band. Maaß et 

al. (2013) found that 1.4 GHz TB has a dependence on the snow depth. 

Theoretically, the snow layer is almost transparent at L-band, thus this dependency 

was not able to be explained by radiative transfer knowledge. It was found that 

this phenomenon was due to the insulation effect of the snow layer: a thicker snow 

layer makes ice temperature warmer. Based on this, Maaß et al. (2013) determined 

snow depth by matching RTM simulated TBs and SMOS-measured TBs. However, 

the inclusion of RTM requires a priori information on ice properties such as 

temperature and salinity profiles. 

In addition, advanced statistical algorithms have been developed. Kilic et al. 

(2019) performed multivariate linear regression analysis using the AMSR2 TBs 

and snow depth measurements from buoy observations. Besides, Braakmann-

Folgmann and Donlon (2019) used GR values for three different frequency pairs 

from AMSR2 measurements as a predictor for snow depth estimation. They 

trained an artificial neural network with those variables with OIB snow depth. 

Both the methods show better accuracy than the previous methods, however, there 

may be an overfitting problem with advanced statistics-based algorithms. In other 

words, accuracy is not guaranteed for the data not included in the training set. 
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2.2.3. Dual-frequency satellite altimetry 

Snow depth can be estimated from satellite altimeter measurements and the 

fundamental principle of this approach is very simple and robust. Reminding that 

snow depth is a distance from the snow-ice interface to the snow surface, snow 

depth estimation can be estimated from the height of the snow-ice interface and 

the height of the snow surface. That information can be obtained by satellite 

altimeter measurements. Satellite altimeter emits electromagnetic wave to surface 

and receives the surface reflected wave. The satellite altimeter measures the travel 

time of the wave which provides information on the distance from the reflecting 

surface to the satellite. An electromagnetic wave with a higher frequency (shorter 

wavelength) is reflected at the snow surface, while the wave with a lower 

frequency (longer wavelength) penetrates the snow layer and is reflected near the 

snow-ice interface. Therefore, snow depth can be estimated from satellite altimeter 

measurements at two different frequencies. Based on this, Kwok et al. (2020) 

estimated snow depth using ICESat-2 which is a lidar altimeter, and CryoSat-2 

which is a radar altimeter. However, overlapping of the two altimeters are available 

since 2018, thus this method cannot provide past snow depth records. 
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3. Used data 

3.1. Snow-ice temperature profiles 

In-situ measurements of temperature profile within the snow and ice 

layers are used to obtain the relation between TR (defined in the introduction) and 

vertical thermal structure of the snow-ice system (hereafter referred to as TR-

temperature equation). These temperature profiles are obtained by thermistor 

chain implanted into the ice floe, as parts of the buoys deployed over the Arctic 

ocean for the AWI buoy program (Grosfeld et al., 2016). The buoy measurements 

are used for further analysis if temperature records are continuously available from 

December of the year when the buoy was deployed, to the following March. Data 

showing bad quality (e.g., spiky-shaped temperature profiles or GPS positions 

holding sudden jumps to a very distant place) are subjectively filtered out. Detailed 

information on the ice type and initial snow/ice thickness at buoy deployment 

locations is provided in Table 1. 
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Table 1. Information on the measurement sites of AWI buoys whose observations 

were used in this study. 

Buoy 

name 

Deployment 

location 
Ice type 

Initial 

snow depth (m) 

Initial 

ice thickness (m) 

2014T14 81.93°N, 131.13°E Multi-Year 0.07 1.49 

2014T33 89.97°N, 29.64°E Multi-Year 0.11 2.22 

2015T25 88.34°N, 144.32°W First-Year 0.15 1.45 

2018T46 80.44°N, 161.93°E Multi-Year 0.004 1.82 

2018T52 80.96°N, 163.18°E Multi-Year 0 2.39 

2018T54 79.17°N, 167.97°E Multi-Year 0 2.62 

2018T55 80.72°N, 159.83°E Multi-Year 0.003 2.11 

2019T56 85.83°N, 122.46°E - - - 

2019T58 85.11°N, 136.20°E - 0.1 1.57 

2019T62 85.65°N, 125.47°E - - - 

2019T63 85.00°N, 135.00°E - 0.1 1.06 

2019T64 85.13°N, 133.17°E - 0.14 1.74 

2019T65 85.00°N, 135.03°E - 0.15 1.31 

2019T66 85.65°N, 125.51°E - - - 

2019T67 85.01°N, 132.78°E - 0.13 1.44 

2019T68 84.92°N, 131.26°E - 0.15 1.8 

2019T70 85.13°N, 135.68°E - 0.06 0.45 

2019T72 85.05°N, 139.02°E - 0.13 0.97 
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3.2. Satellite data 

3.2.1. PMW brightness temperature 

To retrieve Tsi (Lee et al., 2015), SOD (Lee et al., 2021), and sea ice type (Lee 

et al., 2017), Level-3 daily TB fields from AMSR-E and AMSR2 at 6.925, 10.65, 

18.5, and 36.5 GHz for JFM months of 2003-2020 are used. Ascending and 

descending TB fields are averaged to obtain daily TB fields. Data are provided in 

a 25 km polar stereographic grid format by Japan Aerospace Exploration Agency 

(JAXA) through their G-portal (ftp.gportal.jaxa.jp). There is a data gap in 2012 

because AMSR was not operational.  

Atmospheric correction is done by using Satellite Data Simulator Unit 

(SDSU)-version 2.1 (Masunaga et al., 2010) with inputs from the European Centre 

for Medium-Range Weather Forecast (ECMWF) ReAnalysis-5th Generation 

(ERA5; Hersbach et al., 2020). A detailed description of the atmospheric 

correction method can be found in Section 2.1 of Lee et al. (2017). To 

intercalibrate AMSR-E and AMSR2 TBs, AMSR2 TBs are converted into AMSR-

E-equivalent TBs based on the inter-calibration coefficients given in Table 2 

(JAXA, 2015). Data close to coastlines within a distance of 100 km are discarded 

to prevent land contamination effects due to the large footprint of PMW 

observation, which can cause systematic errors in retrievals (Cavalieri et al., 1999; 



26 

Schluessel and Lurhardt, 1991). The retrievals are done only over the area where 

the sea ice concentration (SIC) is greater than 98% to avoid open water 

contamination. 
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Table 2. Intercalibration coefficients between AMSR-E and AMSR2. Conversion 

equation is TBAMSR-E = (1 - s) TBAMSR2 – i. 

Frequency/Polarization Slope (s) Intercept (i) 

6.925 GHz/Vertical -0.01390 3.67421 

6.925 GHz/Horizontal -0.00940 3.03663 

10.65 GHz/Vertical  -0.01289 6.34775 

10.65 GHz/Horizontal -0.00221 3.79624 

18.7 GHz/Vertical -0.04524 12.57562 

18.7 GHz/Horizontal -0.00858 1.89574 

36.5 GHz/Vertical -0.01019 5.49799 

36.5 GHz/Horizontal -0.00985 4.19181 
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3.2.2. Snow surface temperature 

To obtain the TR, time-averaged Tas is required. Recent Tas data for the 2020 

period is obtained from the “Arctic Ocean – Sea and Ice Surface Temperature” 

dataset distributed by Copernicus Marine Environment Monitoring Service 

(CMEMS; https://marine.copernicus.eu). The Tas product was derived from 

Advanced Very High Resolution Radiometer (AVHRR) TBs at three channels 

(3.74, 10.8, and 12.0 μm) using the split-window algorithm (Dybkjær et al., 2014). 

For the 2003-2019 period, the data are obtained by personal communication with 

Dr. Gorm Dybkjær. Because those data are derived from AVHRR TBs using the 

same algorithm as the CMEMS Tas data, those two datasets are assumed a 

consistent Tas record for the 2003-2020 period. Daily Tas data in a 0.05 grid format 

is re-gridded to the 25 km grid. Finally, monthly fields of Tas are obtained by 

averaging daily fields under the condition of daily SIC greater than 98%.  
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3.2.3. Total freeboard 

ICESat and ICESat-2 total freeboard (i.e., distance from a local sea surface 

to snow surface; depicted in Figure 1) measurements are used as a training dataset 

for obtaining the relationship between the SOD and total freeboard. Both are 

satellite lidar altimeters that measure the total freeboard by analyzing signals 

reflected at snow or sea surface. Both data are available at the NSIDC website 

(https://nsidc.org). 

For ICESat data, along-track total freeboard measurements included in the 

“Arctic Sea Ice Freeboard and Thickness, Version 1” dataset (Yi and Zwally, 2009) 

are used. To match ICESat total freeboard with daily AMSR measurements, the 

track data are collocated in the 25 km grid format, producing daily total freeboard 

fields. The daily total freeboard fields are constructed for all available ICESat data 

February-March months during 2003-2008. For ICESat-2 data, daily gridded sea 

ice freeboards on 25 km gird included in the “ATLAS/ICESat-2 L3B Daily and 

Monthly Gridded Sea Ice Freeboard, Version 1” dataset (Petty et al., 2020; ATL20) 

are used. It is reported that ATL20 contains erroneous freeboards higher than few 

kilometers, therefore, freeboards higher than 1000 m are removed. All available 

ICESat-2 data are used over JFM months during 2019-2020. 

Information on the satellite data used in this study is summarized in Table 3. 
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Table 3. Summarized information of satellite data 

PSN: Polar Stereographic grid for Northern hemisphere (https://nsidc.org/data/polar-stereo/tools_geo_pixel.html) 

  

Variable Sensor Data period 
Spatial 

resolution 

Temporal 

resolution 
Purpose 

Data 

provider 

Tsi 

AMSR 2003-2020 
25 km 

PSN format 
Daily 

TR calculation 

JAXA SOD Ft calculation 

Ice type Analysis 

Tas AVHRR 2003-2020 
0.05°0.05° 

grid 
Daily TR calculation CMEMS 

Ft 

ICESat 2003-2008 
170 m 

along track 
Occasional Training NSIDC 

ICESat-2 2019-2020 
25 km 

PSN format 
Daily Training NSIDC 
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3.3. Auxiliary data 

Daily gridded 25 km SIC data included in the “NOAA/NSIDC Climate Data 

Record of Passive Microwave Sea Ice Concentration, Version 3” dataset are used 

(Meier et al., 2017a) to apply SIC criteria during the data processing. This SIC 

data set is a combination of ice concentration estimates from the NASA Team 

algorithm (Cavalieri et al., 1984) and the NASA Bootstrap algorithm (Comiso, 

1986). The data are in the 25 km format and available from 9 July 1987 to 31 

December 2019. In the case of the year 2020, a near-real-time version of the CDR 

data is used (Meier et al., 2017b). 

Total freeboard and snow depth measurements are needed for snow depth 

retrieval and validation. Those measurements are available from NASA’s OIB 

mission. OIB is an aircraft mission and measures total freeboard and snow depth 

over the Arctic ocean using DMS, ATM, and snow radar (Kurtz et al., 2013). More 

information on the OIB mission can be found in Section 2.2.1. All available March 

OIB data during the 2009–2018 period are utilized in this study. The 2009-2013 

period data are obtained from the “ICEBridge L4 Sea Ice Freeboard, Snow Depth, 

and Thickness, Version 1” dataset (Kurtz et al., 2015), and 2014-2018 period data 

are obtained from the OIB Quick Look dataset (available at 

https://doi.org/10.5067/GRIXZ91DE0L9). The OIB data are collocated on the 25 
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km grids by averaging the nearest OIB observations to grid point to produce daily 

gridded data. 
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Table 4. Summarized information of auxiliary data 

Product Sensor Data period 
Spatial  

resolution 

Temporal  

resolution 
Purpose 

Data 

provider 

SIC 
SSMI 

SSMI/S 
2003-2020 

25 km  

PSN format 
Daily Sea ice mask NSIDC 

hs Snow radar 2009-2018 
40 m  

along track 
Occasional Validation NSIDC 

Ft ATM 2009-2018 
40 m  

along track 
Occasional Validation NSIDC 

PSN: Polar Stereographic grid for Northern hemisphere (https://nsidc.org/data/polar-stereo/tools_geo_pixel.html) 
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4. Methods 

4.1. Algorithm development 

4.1.1. New method using thickness ratio (TR) 

As described in the introduction, a relationship between snow depth and ice 

thickness can be used for retrieving snow depth from sea ice freeboard. To do so, 

this study defines the thickness ratio TR which is a ratio between hs and Hi (i.e., 

TR = hs/Hi). In this section, how snow depth and ice thickness can be obtained 

from the buoyancy equation with TR specified.  

The buoyancy equation describes the Archimedes principle, which is a 

balance between the snow and ice loading and the buoyant force proportional to 

the submerged volume to the seawater. The equation is as follow: 

( )i i s s w i iH h H F  + = −                    (1) 

Here, Fi is the ice freeboard depicted in Figure 1. w, i, and s denote the 

bulk densities of water, ice, and snow layer, respectively. In Equation (1), there are 

three unknowns for given densities; Those are hs, Hi and Fi. Unknown Fi can be 

obtained from satellite altimeter observations, but direct measurement of the Fi is 

not available yet. 
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Generally, there are two types of satellite altimeters providing indirect 

measurements of Fi: (1) Lidar altimeters such as NASA’s ICESat (Zwally et al., 

2002) and ICESat-2 (Markus et al., 2017) missions measure the total freeboard 

(Ft): the height from the sea surface in cracks and leads to the snow surface. (2) 

Radar altimeters such as ESA’s CryoSat-2 (Wingham et al., 2006) measure the 

radar freeboard (Fr): difference in the radar ranging between the sea surface and 

the radar scattering horizon. The two different freeboards are indicated in Figure 

1. In the case of total freeboard, ice freeboard can be obtained by simply 

subtracting snow depth from the total freeboard as the following equation: 

i t sF F h= −                          (2) 

On the other hand, obtaining ice freeboard from the radar freeboard is 

relatively complicated. Ice freeboard is obtained from radar freeboard by applying 

two correction terms regarding the change of the wave propagation speed in the 

snow layer (Fc) and the displacement of the scattering horizon from the ice surface 

(Fp) (Kwok and Cunningham, 2015). 

( )i r c pF F F F= + −                      (3) 

The correction terms are expressed by the following equations (Armitage and 

Ridout, 2015; Kwok and Markus, 2018). 
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( 1)c s sF fh= −                          (4) 

(1 )p sF f h= −                          (5) 

Here, s denotes the refractive index of the snow layer and f denotes the radar 

penetration factor (Armitage and Ridout, 2015), which is the depth of the radar 

scattering horizon relative to the snow depth (e.g., f = 1 if the radar scattering 

horizon is at snow–ice interface and f = 0 if the radar scattering horizon is at air-

snow interface). A combination of Equations (3)–(5) yields the following 

relationship. 

( 1)i r s sF F f h= + −                       (6) 

Using Equations (2) and (6), Equation (1) can be rewritten as follows: 

( ) ( )w w i i w st sF H h    = − + −                  (7) 

( ) {( 1) }w w i i s w s srF H f h     = − − − +              (8) 

Finally, substituting hs with TR×Hi by definition yields an equation for ice 

thickness in terms of TR and Ft (or Fr). 

( )

w
i t

w i w s

H F
TR



   
=

− + −
                  (9) 
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( ) }{ 1

w
i r

w i s w s

H
f

F
TR



    
=

− − − +
              (10) 

At the same time, the corresponding hs is obtained by multiplying the 

obtained Hi and TR. From Equations (9) and (10) it is evident that the snow depth 

and ice thickness can be simultaneously estimated from the freeboard 

measurements and TR, once  and f are known. 

Currently, there are some parametrizations available for snow and ice 

densities, which can be chosen by users upon their purpose. On the other hand, the 

radar penetration factor f remains widely uncertain for various retracker algorithms 

and various ice types and conditions (Nandan et al., 2017; Willatt et al., 2011; 

Tonboe et al., 2010). Therefore, this study uses total freeboard with Equation (9) 

rather than radar freeboard for snow depth estimation. 
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4.1.2. Theoretical background of TR  

To retrieve the snow depth in the Arctic basin-scale, the way to resolve TR in 

such scale is only possible through satellite observations. Since the vertical 

thermal structure of a snow-ice system can be resolved from satellite observations, 

we now explore whether TR can be described in terms of the vertical thermal 

structure. To do so, we consider a physical property relating the thickness to 

temperature, i.e., the conductive heat flux, which is a derivative of temperature to 

depth multiplied by thermal conductivity. 

The conductive heat flux across the snow-ice interface is assumed to be 

continuous (Maykut and Untersteiner, 1971) and expressed as in the following 

equation: 

0 0

e
snow ice

snow

z z

ic

T T
k

z
k

z = =

=
 

 
                  (11) 

In Equation (11), the subscripts snow and ice denote their respective layers, 

and T, k, and z denote temperature, bulk thermal conductivity, and depth, 

respectively. Here, the snow-ice interface locates at z = 0. This heat flux continuity 

assumption has been widely accepted for sea ice studies regarding thermodynamic 

modeling, satellite application, and in situ measurements for snow and ice 

conductivities (Maykut and Untersteiner, 1971; Maaß et al., 2013; Perovich et al., 
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1997). Besides, temperature discontinuity at the snow-ice interface must be 

observed if Equation (11) is not valid. However, such discontinuity has not been 

observed in buoy data used in this study, thus it is plausible to use this assumption. 

Equation (11) can be rewritten as the following equation, assuming a 

piecewise linear temperature profile within the snow and ice layers. 

si sias
snow

s i

iw
ice

T T T T
k k

h H

− −
=                    (12) 

Subscripts as, si, and iw denote the air-snow, snow-ice, and ice-water 

interface, respectively, as depicted in Figure 1. For the piecewise linear 

temperature profile assumption, it is necessary to average the temperature profile 

over weekly to monthly timescale. Shi et al. (2020) analyzed the buoy-measured 

sea ice temperature profiles with various averaging periods from 1 to 30 days to 

figure out which averaging timescale can satisfy the assumption. It was found that 

averaging periods longer than 7 days are suitable to approximate the linear 

temperature profile of sea ice.  

Then, the rearrangement of Equation (12) yields the relationship between TR 

and the vertical thermal structure as follow: 

s snow snow

i ice ice

h T
T

k

k

H
R

T


==


                    (13) 
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Here, T denotes the temperature difference between the top and bottom of 

the snow or ice layer (i.e., Tsnow = Tas – Tsi and Tice = Tsi – Tiw). One may concern 

that Equation (13) is a highly simplified equation while the Arctic snow-ice system 

has a complex multi-layer vertical structure. However, an equivalent equation to 

Equation (13) can be derived by taking a different approach of physical insight. 

The T of a certain layer should be proportional to the thickness of the 

corresponding layer considering an insulating effect. Therefore, TR should be 

proportional to Tsnow and inverse proportional to Tice. This is equivalent to the 

form of Equation (13). 
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4.1.3. Strategy for obtaining TR 

In this section, a strategy to find an empirical equation that can predict TR 

from the Tas, Tsi, and Tiw based on the form of Equation (13) is described. In order 

to calculate TR from interface temperatures, the thermal conductivity ratio 

(ksnow/kice) should be known. There can be two approaches to obtain the 

conductivity ratio: (1) to use parametrization on thermal conductivity of snow and 

sea ice or (2) to use in-situ data to obtain the ratio statistically.  

The first approach requires us to review the factors determining kice and ksnow. 

According to Maykut and Untersteiner (1971), kice is a function of salinity and 

temperature. 

-1 -1( )2.03 0.1 m7 K1 Wice
ice

ice

S
k

T
= +                   (14) 

Here, Sice and Tice are the salinity (in part per thousand; ppt) and temperature 

(in Celsius) of sea ice, respectively. Sice can be estimated according to the 

following empirical relationship between sea ice thickness and mean salinity from 

Cox and Weeks (1974): 

14.24 19.39 , 0.4m
(ppt)

7.88 1.59 , 0.4m

i i

ice

i i

H H
S

H H

− 
= 

− 
               (15) 

We can use Equations (14) and (15) to calculate kice without additional 

unknowns. However, the calculation of ksnow is much more complex. ksnow is 
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determined by snow density, temperature, and crystal structure (Sturm et al., 1997). 

Snow is a mixture of ice particles and air, and air has lower thermal conductivity 

than ice. Thus, snow with a relatively lower density including a greater portion of 

air should have relatively lower thermal conductivity. Besides, the thermal 

conductivity of ice particles depends on the temperature and the path of heat 

transfer depending on the crystal structure (e.g., how the ice particles are 

connected). The heat transfer occurs not only by conduction but also by water 

vapor latent heat transportation and convection through the pore spaces (Sturm et 

al, 2002), which are hard to quantify explicitly. 

In short, it is impossible to calculate ksnow explicitly from satellite observation. 

Therefore, instead of explicit calculation of thermal conductivities, this study takes 

the second approach which empirically determines the TR-temperature equation 

using TR and Tsnow/Tice obtained from the in-situ buoy temperature profile 

measurements. 
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4.1.4. Buoy data preprocessing 

To determine the TR-temperature equation from in-situ measurements, values 

of hs, Hi, Tas, Tsi, and Tiw (as depicted in Figure 1) are required. For obtaining 

required variables, the interfaces should be determined from buoy-measured 

temperature profiles, which show a piecewise linear temperature profile as 

schematically depicted in Figure 1. The temperature profiles are measured by 

thermistor string where temperature sensors are installed at discrete levels. It 

means that the interfaces (air–snow, snow–ice, and ice–water) can be located in-

between measurement levels. Moreover, although the instrument initially sets the 

zero-depth reference position to be approximately at the snow–ice interface, the 

reference position can deviate from the initial position due to the ice deformation, 

the metamorphosis of snow into snow-ice. Therefore, an interface searching 

algorithm is developed to search three interfaces (yas, ysi, yiw) and their respective 

temperatures (Tas, Tsi, Tiw). 

The interface searching algorithm iterates the following three processes to 

find the location and temperature at each interface: (1) dividing temperature 

profile into four layers using the most recently available locations of the three 

interfaces, (2) finding a linear regression line of the temperature profile at each 

layer, (3) updating the location and temperature of each interface by finding an 

intersection between two adjacent regression lines. The algorithm fails to search 
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interfaces if the temperature profile of the ice layer is far from linear, or the 

thickness of a certain layer is too thin (i.e., having less than two data points which 

are the minimal set to determine a regression line) or the difference between the 

maximum and minimum temperature within water layer exceeds 0.5 K. The final 

outputs are Tas, Tsi, Tiw, Hi (= yas – ysi), and hs (= ysi – yiw). Detailed procedures for 

determining the interface are provided in Figure 6, as a flow chart. To secure the 

required vertical thermal states (e.g., linear temperature profile), monthly averaged 

temperature profiles are used as input to the interface searching algorithm. 
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Figure 6. The flow chart of the interface searching algorithm. yi and Ti denote the 

position and temperature of a data point in the temperature profile. yas, ysi, and yiw 

denote the position of the interfaces, and Tlayer denotes a set of temperature data 

points. 

  



46 

4.1.5. Snow depth retrieval procedure 

The snow depth retrieval procedure consists of two steps. First, TR is 

calculated from satellite-derived Tas and Tsi with constant Tiw using the TR-

temperature equation. To do so, Tiw is assumed to be a constant as a freezing 

temperature of seawater and its value is chosen as the average value of Tiw in buoy 

data. Second, hs is calculated from the obtained TR and Ft measurements using 

Equation (9) with prescribed densities. 

For calculating TR, time-averaged fields of Tas and Tsi are required because 

the TR-temperature equation is based on the analysis of monthly averaged buoy 

data. However, the literal meaning of monthly average is not a necessary condition 

for the application. Therefore, moving average with a 31-day time window is done 

to produce a daily time-averaged temperature field. In this case, the date at the 

center of the time window represents the observation time of the averaged data. 

Daily temperature fields applied with 98% SIC mask (SIC > 98%) are used for the 

moving average calculation. Finally, TR is calculated but rejected if Tas is warmer 

than Tsi. 

Now hs can be estimated from Equation (9) using TR and Ft with prescribed 

density values. The densities are prescribed as those used for Operation ICEBridge 

(OIB) data processing (Kurtz et al., 2013) because we intend to compare outputs 
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against OIB data: s, i, and w are 320 kg m-3, 915 kg m-3, and 1024 kg m-3, 

respectively. Currently, there is an issue about sea ice density in the field of satellite 

sea ice thickness retrieval. While some studies (e.g., Petty et al., 2020; Kurtz et al., 

2013; Kurtz and Harbeck, 2017) have used a uniform sea ice density assumption 

across the Arctic basin as 915 kg/m3 for ice density for sea ice thickness estimation 

from satellite and airborne altimetry, other studies discriminate sea ice density 

according to sea ice type as suggested by Alexandrov et al. (2010). They suggested 

values of 882 kg/m3 for MYI density and 917 kg/m3 for FYI density. Here, short 

discussion on the two-density assumption suggested by Alexandrov et al. (2010) 

is made. 

To estimate the density of FYI, Alexandrov et al. (2010) used Sever 

expedition data which provides in situ-measured snow density, snow depth, ice 

freeboard, and sea ice thickness, considering that SEVER expedition was done 

over FYI. However, their conjecture on sea ice type is questionable because Sever 

data does not provide any ice type information, and approximately 30% of Sever 

measurements were found to be done over MYI when the geolocations of each 

measurement are matched with the satellite-derived NSIDC ice age data (Tschudi 

et al., 2019a) for 1984-1988 period when both datasets are available. This implies 

that the density of MYI can be close to the density of FYI. 

In the case of MYI density, weighted averaged density of freeboard layer and 
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draft layer (i.e., submerged part of sea ice) was used based on the difference in 

compositional characteristic between freeboard and ice draft layers. While the 

density of the freeboard layer depends largely upon ice type, the density of the ice 

draft layer is nearly uniform approximately 920 kg m-3 regardless of ice type 

(Timco and Frederking, 1996). During summer, brine rejection occurs resulting in 

air pockets replacing brine pockets in the freeboard layer. Therefore, the freeboard 

layer of MYI generally has a lower density value than that of FYI because of the 

relatively larger amount of air pockets in the freeboard layer of MYI. However, 

considering that the magnitude of such difference is around 20 kg m-3 and 

freeboard occupies only 10% of ice thickness, it seems that there would be no 

significant differences in bulk sea ice density between FYI and MYI. As Arctic 

basin-scale measurements for sea ice density are lacking, further study should be 

needed to evaluate which sea ice density is plausible. At this point, it is reasonable 

to select 915 kg m-3 for sea ice density.  
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4.2. Sea ice parameters from satellite PMW measurements 

4.2.1. Simplified radiative transfer model 

In the case of specular and homogeneous sea ice without snow cover, 

upwelling p-polarized radiance Tp at the ice surface can be formulated as 

multiplication of p-polarized Fresnel surface emissivity εs,p (subscript s denotes 

specular) and effective emission temperature TE.  

,p s p ETB T=                        (16) 

Here, εs,p is a function of adjusted real refractive index Nr. This simple 

formulation is valid for lower microwave frequencies such as the 6.925 GHz 

channel. However, surface roughness and scattering should be considered for 

higher frequency. To include those effects, Lee et al. (2018) introduced a simplified 

three-layer radiative transfer model for a snow-ice system that can be used for 

microwave frequencies below 37 GHz. It consists of a snow layer at the top, a 

surface scattering ice layer in the middle, and a congealed ice layer at the bottom 

as illustrated in Figure 7. 

In the simplified model, upwelling polarized radiance is emitted from a 

hypothetical rough emission surface located in the middle and/or bottom layers 

and attenuated by snow particles and air pockets in the freeboard above the 
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emission layer. Then TBp emanating from the top of the snow surface can be 

written as the following equation. 

,
sca

p r p EeTB T
−

=                      (17) 

In Equation (17), εr,p is a rough surface emissivity described by two-

dimensional isotropic rough surface emissivity model (Lee et al., 2018; see Sect. 

2.1 and Appendix A of their paper), which is a function of Nr and root-mean-square 

slope of the surface  (referred to as roughness index), and τsca denotes SOD. For 

the practical purpose, apparent emissivity εp is defined as the ratio between TE and 

TBp. 

/p p ETB T=                       (18) 
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Figure 7. Schematic diagram of simplified three-layer radiative transfer model. 
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4.2.2. Snow-ice scattering optical depth 

Combining Equations (17) and (18), the following relationship is obtained. 

, ( , ) sca

p r p rN e
 −

=                     (19) 

To solve Equation (19) for τsca at a certain frequency, values of Nr, εp, and  

should be known. This can be done based on the optical characteristics of sea ice 

in the microwave region. First, Nr over sea ice has a nearly invariant behavior over 

the microwave frequencies of interest (Vant et al., 1978; Ulaby et al., 1986; Warren 

and Brandt, 2008). Second, TE at frequencies between 6.925 GHz and 36.5 GHz 

are similar (Lee and Sohn, 2017). 

Therefore, we can use Nr and TE at one frequency for another frequency. For 

simultaneous retrieval of Nr and TE, the algorithm developed by Lee and Sohn 

(2015) using polarized TB measurements from AMSR at 6.925 GHz is used. As 

TE is obtained, εp can be calculated for each frequency from Equation (18) after 

removing the atmospheric contribution from observed TB.  

Once Nr is prescribed in, σ and τsca can be solved since there are observations 

from two independent polarizations (i.e., vertical and horizontal polarization). For 

computationally efficient calculation, method introduced by Lee et al. (2021) 

using polarization ratio (PR) defined as PR = (TBV- TBH)/(TBV+TBH) is used. 
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Because PR decreases with σ for given Nr as shown in Figure 8a, σ can be solved 

by minimizing the difference between simulated and observed PR. The processes 

for retrieving σ are summarized in Figure 8b. Finally, τsca can be solved from (19) 

as Nr, εp, and  are obtained. 
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Figure 8. (a) Contours of polarization ratio (PR) × 100 with respect to the adjusted real refractive index (Nr) and 

roughness index () and (b) roughness index () retrieval scheme. 

 



55 

4.2.3. Sea ice type 

There are two distinct groups of Arctic sea ice during boreal winter. Those 

are FYI and MYI which are newly formed ice and the ice survived melting season, 

respectively. As the physical properties of FYI and MYI are significantly different 

it is worth analyzing results for each ice type.  

The difference in radiative properties between FYI and MYI enables us to 

discriminate two ice types from satellite PMW measurements. Sea ice experiences 

a brine rejection process during the summer melting period, as known as brine 

drainage that reduces the salinity of the ice above the waterline (i.e., freeboard 

layer). The most accepted mechanism for the brine drainage to the researchers is 

flushing (Untersteiner, 1968). In that mechanism, fresh water produced by surface 

melting flushes out the brine inclusions downward through permeable sea ice that 

allows meltwater to penetrate. However, such flushing is limited to the level near 

the waterline because the height difference between the level of meltwater and 

waterline is needed for a downward gravitational force that is a source of flushing. 

As a result of brine drainage, MYI has lower salinity and more air pockets than 

FYI in the freeboard layer. This physical property of MYI is related to a deeper 

emitting layer with more scattering, and thus reduces the apparent emissivity of 

MYI.  
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Lee et al. (2017) retrieved apparent emissivities defined in Equation (18) 

from AMSR-E measurements and analyzed their spectral signature in order to 

separate sea ice types using PMW measurements. They found that apparent 

emissivity of MYI generally decreases with frequency while the apparent 

emissivity of FYI shows less spectral difference (Figure 9). Based on this finding, 

Lee et al. (2017) suggested that the difference of vertically polarized apparent 

emissivity V between 10.65 GHz and 18.7 GHz can separate FYI and MYI. Such 

index referred to as EVD is defined as the following equation.  

(10.65GHz) (18.7GHz)EVD V V= −              (20) 

In general, the EVD value is positive for MYI and slightly negative for FYI 

as observed in Figure 9. The geographical distribution of EVD is shown in Figure 

10a and the boundary between FYI and MYI is clearly observed.  

There is another satellite product related to sea ice type available at NSIDC. 

The product named “EASE-Grid Sea Ice Age, Version 4” (Tschudi et al., 2019a) 

provides weekly estimates of sea ice age over the Arctic Ocean derived from 

remotely sensed sea ice motion and SIC in 12.5 km x 12.5 km grid format. As the 

principle of sea ice tracking is simple and robust, it is thought that the quality of 

the sea ice age product for separating FYI and MYI is most reliable among other 

satellite products. Here, EVD is compared with the NSIDC ice age product shown 
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in Figure 10b. They seem consistent with each other in terms of the geographical 

distributions of MYI (i.e., positive EVD and ice age older than 1). Based on the 

comparison, it is expected that sea ice separation results will not significantly 

differ whatever data is used. However, EVD-based sea ice type can provide daily 

data and the grid is perfectly matched with other data used in this study. Therefore, 

this study utilizes daily sea ice type data based on EVD. 
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Figure 9. Nine-year (2003–2011) January mean vertically polarized apparent 

emissivities averaged over first-year ice (red dots) and multiyear ice (blue dots). 

The error bar represents one standard deviation of the data (Figure from Lee et al., 

2017). 

 

 

Figure 10. Geographical distributions of (a) EVD for 1 January 2010, and (b) 

NSIDC ice age product for the first week of January 2010.  
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5. Results 

5.1. Snow depth retrieval algorithm 

5.1.1. TR-temperature equation 

In order to find the TR-temperature equation in the form of Equation (13) 

using in-situ data, first, Tas, Tsi, Tiw, Hi, and hs were obtained from buoy measured 

temperature profiles. To do so, the interface algorithm introduced in Section 4.1.4 

was applied to monthly averaged temperature profiles. An example of the interface 

searching result for AWI buoy measurement in March 2014 is shown in Figure 11. 

The algorithm worked adequately for the rest of the AWI buoy measurements in 

Table 1. Since the required variables were obtained from the buoy temperature 

profiles using the interface searching algorithm, the calculations of Tsnow/Tice 

and TR are straightforward. 

Now, let us examine obtained variables to obtain the TR-temperature equation. 

In Figure 12, the scatter plot of Tsnow/Tice versus TR for JFM months is shown. 

It appears that TR has a linear relationship with Tsnow/Tice. Such pattern is found 

to be nearly invariant regardless of months, as different markers representing the 

month of observation appear through the entire range of Tsnow/Tice. Taking such 

a linear pattern of TR with respect to Tsnow/Tice into account, the TR-temperature 
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equation was determined by doing linear regression using 42 data points. The 

found equation is as follow: 

0.11 0.04snow

ice

T
T

R
T


+=                     (21) 

To evaluate the performance of the regression analysis, predicted TR values 

from Equation (21) are compared to the original TR values. The comparison 

revealed that the regression equation was fitted well based on a mean bias of zero, 

a root-mean-squared difference (RMSD) of 0.02, and a coefficient of 

determination (R2) of 0.82. Therefore, we can estimate TR using Equation (21) if 

Tas, Tsi, and Tiw are known. 

For the Arctic basin-scale retrieval of TR, satellite-derived temperature data 

are available for Tas and Tsi. Tiw is set to be a constant freezing temperature of 

seawater. Although the freezing temperature of seawater is often assumed to be -

1.8 °C, the value of -1.87 °C is chosen based on the buoy observations used in this 

study. A sensitivity test indicated that the influence of a 0.07 °C difference in the 

freezing temperature on TR was negligible. 
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Figure 11. Example of interface searching results with monthly temperature 

profile from AWI 2019T72 buoy in March: Blue dots are buoy-measured 

temperature profiles and red lines are regression lines. Black dashed lines indicate 

the intersections between adjacent regression lines. 
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Figure 12. Scatter plots of the temperature difference ratio of the snow and ice 

layer (Tsnow/Tice) and the snow–ice thickness ratio (TR). The shape of the marker 

denotes the collected month of buoy data. The red solid line is the regression line 

defined in Equation (21). Error statistics are included in the figure. 
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5.1.2. Snow depth retrieval and validation 

Snow depth can be retrieved from Tas, Tsi, and Ft using Equation (21) and 

Equation (9). To test and evaluate the developed snow depth retrieval method, 

snow depth was retrieved using the OIB measured Ft with satellite-derived Tas and 

Tsi, then the retrieved snow depth was compared with the independent OIB snow 

depth measurement. If the retrieved snow depth shows good agreement with the 

OIB snow depth, we can tell the developed retrieval algorithm works successfully. 

To do so, snow depth was retrieved by using procedures described in Section 

4.1.5. Daily TR was calculated from the 31-day running averaged Tas and Tsi using 

Equation (21). Then, daily hs was calculated with obtained TR and OIB measured 

Ft using Equation (9) with prescribed densities in Section 4.1.5. Geographical 

distributions of the retrieved snow depth and OIB snow depth are presented in 

Figure 13a and Figure 13b, respectively. Retrieved snow depths and the OIB 

measurements appear to be consistent with each other in terms of magnitudes and 

spatial patterns. To compare the results quantitatively, a 2-dimensional histogram 

comparing the retrieved hs against OIB measurements was made from 816 

matched data, along with error statistics (Figure 14). The comparison indicates 

that the retrieved snow depth is consistent with independent OIB snow depth 

measurements, with a correlation coefficient of 0.84, a near-zero bias of 0.19 cm, 

and an RMSD of 5.06 cm. It is also noted that the slope of the regression line 
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between the OIB and retrieved snow depth is approximately 1. Based on the 

validation result, the TR-temperature equation obtained from the buoy 

measurements is thought to be used for further Arctic basin-scale snow depth 

estimation. 
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Figure 13. Geographical distributions of (a) snow depth retrieved from OIB total freeboard and satellite-derived TR 

and (b) snow depth from OIB snow radar for all matched data in March. 
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Figure 14. 2-dimensional histogram between OIB snow depth and the snow depth 

retrieved from OIB total freeboard and satellite-derived TR with error statistics 

and the regression line (red solid line). 
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5.2. Long-term snow depth record 

5.2.1. PMW total freeboard 

In the previous section, an algorithm using Tas, Tsi, and Ft is introduced to 

retrieve the snow depth. To obtain the Arctic basin-scale snow depth record, 

continuous observations of the input variables with wide spatial coverage are 

necessary. While temperature data meet that condition, satellite Ft measurements 

have limitations on spatial coverage compared to the temperature data. As the total 

freeboard is measured by lidar altimeter, the relatively small footprint of lidar 

sensor and widespread cloud cover may limit the spatial coverage. This 

characteristic reduces the observation frequency at each location, causing the 

situation that the Arctic basin-scale Ft field should be obtained by a composite of 

daily observations for a period longer than a month. Therefore, obtaining Ft from 

PMW measurements is desirable. 

Regarding this issue, Lee et al. (2021) demonstrated that the ice freeboard 

can be obtained from PMW measurements using the SOD of sea ice as a predictor. 

Their algorithm is based on the physical background that SOD reflects scattering 

effect due to air pockets in ice freeboard layer. However, total freeboard retrieval 

instead of ice freeboard would be more promising because SOD includes the 

scattering effect of snow particles as well. Moreover, CS2-derived ice freeboard 
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which was a target variable in their study has a great uncertainty due to the radar 

penetration factor and snow depth climatology used for the data production (Shi 

et al., 2020). Therefore, this study attempts to obtain Ft from SOD by conducting 

regression analysis to predict the Ft field with wider spatial coverage and more 

continuous temporal availability. To examine the possibility, geographical 

distributions of SOD at 36.5 GHz channel (hereafter, referred to as SOD36.5) and 

total freeboard Ft in January 2020 are compared in Figure 15. Here, SOD36.5 is 

obtained from AMSR measurements by the method described in Section 4.2.2. 

Spatial distributions of two variables look similar to each other. Especially, the 

boundary of the MYI region is clearly depicted in both distributions, rendering 

SOD36.5 to be useful as a predictor for Ft. 

To determine the empirical relationship between the scattering optical depth 

and the total freeboard, SOD36.5 retrieved from daily AMSR-E and AMSR2 data 

were matched with Ft from daily ICESat and ICESat-2 data during 2003-2008 and 

2019-2020 period. Total 338848 data points are matched as in the 2-dimensional 

histogram presented in Figure 16. A positive correlation between the SOD36.5 and 

Ft can be observed from the 2-d histogram. As most of the data are at a region 

where the optical depth is less than 0.1, we conducted a binned analysis to obtain 

mean values and standard deviations which are used for further regression analysis. 

Means and standard deviations are calculated for every 0.01 bin of optical depth. 
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A significant linear relationship is found from the series of mean values. 

To find a linear fit from mean and standard deviation values of each bin, the 

weighted least square is used in order to incorporate the variance of the Ft into the 

regression (i.e., regression focuses on the less uncertain data such as optimal 

estimation technique). Mean values were weighted with the inverse of standard 

deviation (i.e., the uncertainty of total freeboard). By doing so, a fitted line can be 

more focused on data with smaller uncertainty. Additionally, mean values 

calculated from less than 1000 data were not used for the regression as they would 

not represent the bin adequately. The obtained regression equation is as below: 

36.50.98 SOD 0.23tF +=                   (22) 

Using Equation (22), daily Ft fields were retrieved for the AMSR period 

during winter (i.e., JFM of 2003-2020, except for 2012). Retrieved Ft was 

validated against OIB total freeboard measurements. Geographical distributions 

of retrieved Ft and OIB Ft are illustrated in Figure 17. Although their distributions 

are consistent, Equation (22) seems to underestimate the thick total freeboard in 

the area showing larger than 0.6 m. For quantitative comparison, 2d-histogram 

with statistics are made for 2792 matched data as in Figure 18. Compared to OIB 

Ft, retrieved Ft has a mean bias of -0.03 m, RMSD of 0.13 m, and a correlation 

coefficient of 0.67. Relatively large RMSD compared to the small mean bias may 
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be related to horizontal resolution difference between PMW and active laser 

sensors because the OIB Ft shows greater variance compared to the retrieved Ft. 

It is thought that Equation (22) can estimate Ft adequately in terms of mean bias. 
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Figure 15. Geographical distributions of (a) retrieved snow-ice scattering optical depth from AMSR 36.5 GHz 

channel (SOD36.5) and (b) total freeboard (Ft) obtained from ICESat-2 in January 2020. Only matched data are 

presented. 
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Figure 16. Two-dimensional histogram between scattering optical depth at 36.5 

GHz and total freeboard. Binned analysis results are overlayed for a mean 

(circles/triangles) and one standard deviation (error bars). The linear fit (red solid 

line) is found from the binned analysis results except for values that represent less 

than 1000 data. 
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Figure 17. Geographical distributions of (a) total freeboard retrieved from AMSR 

scattering optical depth at 36.5 GHz and (b) OIB total freeboard for all matched 

data in March. 

 

 

Figure 18. 2-dimensional histogram between OIB total freeboard and the total 

freeboard retrieved from AMSR scattering optical depth at 36.5 GHz with error 

statistics.  
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5.2.2. Snow depth from satellite passive measurements 

Now, daily snow depth can be retrieved from satellite passive measurements 

only. The calculation was done by combining the PMW total freeboard with 

satellite-derived TR using Equation (9) with the prescribed densities. Geographical 

distributions of the satellite snow depth and OIB snow depth are presented in 

Figure 19a and Figure 19b, respectively. It seems that the satellite snow depth 

retrievals and OIB measurements are consistent with each other.  

For quantitative validation, a 2-dimensional histogram was made with error 

statistics, matching 791 pairs of the retrieved hs and OIB hs as shown in Figure 

20a. The statistics indicate that the retrieved snow depth is fairly consistent with 

the OIB snow depth measurements, with a near-zero bias of -1.37 cm, an RMSD 

of 6.26 cm, and a correlation coefficient of 0.61. To evaluate how good this product 

is, it is compared with the snow depth from Rostosky et al. (2018). The comparison 

was done for the corresponding dates of Figure 20a and the result is shown in 

Figure 20b as a 2-dimensional histogram. Snow depth from the PMW algorithm 

has a mean bias of 3.55 cm, an RMSD of 8.45 cm, and a correlation coefficient of 

0.47. Based on the comparison result, it can be concluded that snow depth can be 

retrieved with success using the developed retrieval algorithm. 

Finally, monthly Arctic basin-scale snow depth for the 2003-2020 period can 
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be estimated by using monthly averaged satellite interface temperatures and PMW 

total freeboard. After snow depth estimation for each month was done, JFM 

averaged fields were calculated by averaging January, February, and March snow 

depth fields to obtain the wintertime snow depth for each year. The evolvement of 

JFM averaged snow depth from the 2003 to 2020 period is presented in Figure 21. 

Snow depth for 2012 is not available due to a lack of AMSR data. It is shown that 

the snow depths over the perennial ice zone (e.g., Central Arctic and northern part 

of Canadian Archipelago) are deeper relative to over the seasonal ice zone (e.g., 

the East Siberian Sea and the Chukchi Sea). Great interannual variability of snow 

depth is observed in Figure 21. Deeper snow depths areas tend to be shrinking with 

time, probably caused by more frequent seasonal sea ice appearance. 
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Figure 19. Geographical distributions of (a) snow depth retrieved from satellite-

derived total freeboard and TR, and (b) OIB snow depth for all matched data in 

March. 

 

 

Figure 20. (a) 2-dimensional histogram between OIB snow depth and the snow 

depth retrieved from satellite-derived total freeboard and TR with error statistics. 

(b) Same as (a) but for the snow depth retrieved from state-of-art PMW algorithm. 
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Figure 21. Geographical distributions of January-February-March averaged snow 

depth from 2003 to 2020. 
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5.2.3. Uncertainty estimation and sensitivity test 

To estimate the uncertainty of retrieved snow depth, a simple propagation 

analysis of errors is performed, regarding the uncertainty of satellite products (TR 

and Ft) and prescribed parameters (w and i). In this study, uncertainty due to the 

variability of w is neglected (Kurtz and Harbeck, 2017; Hendricks et al., 2016; 

Ricker et al., 2014). Uncertainty of estimated snow depth can be calculated by 

using the following Gaussian error propagation equation. 

2 2

, ( )
xy total yE E x=                      (23) 

Here, Ey,total denotes the total uncertainty of retrieved variable y (hs) and Ey (x) 

denotes the uncertainty of y related to input variable x (i.e., TR, Ft, i, and s). In 

Equation (23), it is assumed that the errors of input variables are not correlated, 

with no systematic bias in input variables. This assumption may not be true in the 

real world. However, it allows us to estimate the retrieval uncertainty from 

satellite-derived products with a certain limit. At least, we confirmed that errors of 

TR and Ft are not correlated. The uncertainties on the right-hand side are obtained 

by the following equation. 

0
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Here, x denotes the uncertainty of x and  is set to be 10-6 for numerical 

calculation of the partial derivative. TR is estimated to be an RMSD value between 

the satellite-derived TR and OIB derived TR which is 0.05. Note that OIB sea ice 

thickness is not a directly measured value but is calculated from Ft and hs 

measurements using Equation (7) with the prescribed densities. However, it is our 

best reference among publicly available datasets with consideration of spatial and 

temporal scales. Value of Ft is set to be 0.13 m based on the validation result in 

Figure 16. Uncertainties of snow and ice densities are from relevant studies 

(Alexandrov et al., 2010; Hendricks et al., 2016; Kern and Spreen, 2015; Ricker 

et al., 2014; Warren et al., 1999). Values and uncertainties of the input variables 

are summarized in Table 5. 

Finally, uncertainties of snow depth retrievals can be estimated using 

Equations (23) and (24). Estimated JFM snow depth uncertainties averaged over 

the 2003-2020 period are presented in Figure 22a. The total uncertainty of snow 

depth ranges from approximately 5 cm to 15 cm and it is generally greater for the 

MYI region than the FYI region. From a relative point of view, snow depth 

uncertainty ranges from 40% over the MYI region. Over the FYI regions, the 

uncertainty increases up to 90% because the absolute magnitude of snow depth on 

FYI is very small.  
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To examine which error of input variables are dominant contributors in total 

uncertainty, the uncertainty portion is calculated for each input variable. It is 

revealed that TR is a major source of uncertainty for the coast along the North of 

the Canadian Archipelago-Greenland (Figure 22c) and Ft is a major source of 

uncertainty for the Eastern Arctic Ocean (Figure 22d). The inclusion of additional 

buoy measurements for improving the TR-temperature equation, the advance of 

satellite temperature retrieval algorithms, and the advance of the total freeboard 

retrieval algorithm can reduce uncertainties in the snow depth estimation. 

In addition, we conducted a sensitivity test for each input variable to examine 

how the estimated snow depth is dependent on input variables. To do so, the errors 

of snow depth (hs) due to the uncertainties of each input are calculated. Here hs 

is defined as the difference between hs estimated from the perturbated state and hs 

estimated from a reference state (e.g., x0; TR=0.075, Ft=0.26 m, w=1024 kg m-3
, 

i=915 kg m-3, and s=320 kg m-3). One can calculate hs as following:  

0 0( ) ( )( )s x s x sh x h xh  −= +                  (25) 

In this study, uncertainty values defined above as x were used as the 

perturbation value. hs values were calculated for negative and positive 

perturbations of each input variable. The results are shown in the following Table 

6. It was found that all input variables are positively correlated to snow depth. In 
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addition to the uncertainty analysis, snow depth estimations are sensitive to TR, 

and Ft. Snow depths were relatively insensitive to the density perturbations.  



82 

Table 5. Values and uncertainties of input variables for uncertainty estimation. 

 TR Ft (m) i (kg m-3) s (kg m-3) 

Value Satellite-derived TR PMW Ft 915 320 

Uncertainty 0.05 0.13 20 50 
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Figure 22. Geographical distributions of (a) averaged JFM snow depth uncertainty 

for the 2003-2020 period, (b) relative uncertainty compared to snow depth, (c) the 

portion of TR-related uncertainty, and (d) the portion of Ft-related uncertainty. 
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Table 6. Errors of snow depth (hs) due to positive and negative perturbations of 

input variables. 

Input 

variables 

hs 

Negative perturbation Positive perturbation 

TR -7.1 cm 4.6 cm 

Ft -6.2 cm 6.2 cm 

i -1.4 cm 1.7 cm 

s -0.3 cm 0.3 cm 
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5.3. Analysis of Arctic snow depth during 2003-2020 period 

5.3.1. Geographical distribution 

Now we have Arctic basin-scale snow depth record for the JFM months of 

AMSR-E and AMSR2 observation periods (i.e., the years of 2003-2020 except for 

2012) (Figure 21), and this snow depth record enables us to address scientifically 

important questions of (1) How has the wintertime mean snow depth changed over 

the Arctic ocean basin compared to the W99 climatology? and (2) How the time 

variation of the snow depth differs from region to region during recent days? In 

this section, the mean and variability of wintertime snow depth are analyzed 

regarding the first question. 

JFM averaged snow depths from the 2003 to 2020 period are presented in 

Figure 23a. For the mean field, pixels having less than 10 data points are neglected 

for calculating the statistics. The deepest snow, in between approximately 16 and 

28 cm, presents over the perennial ice zone (e.g., Central Arctic and northern part 

of Canadian Archipelago). Snow depth is smaller over the seasonal ice zone (e.g., 

the northern part of Eurasia). The lowest mean snow depth is found in the Kara 

and Laptev Seas, ranging from approximately 7 to 16 cm. In general, snow depth 

on MYI is found to be deeper than that on FYI and this is also seen in other model-

based and satellite-based snow depth products (Rostosky et al., 2018; Zhou et al., 
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2021).  

Deeper snow on MYI than FYI can be explained by the different snow 

accumulation periods because the snow depth is positively correlated with the 

snow accumulation period (Webster et al., 2014). However, a detailed relationship 

between the accumulation period and snow depth has not been examined yet. To 

examine the relationship between snow depth and accumulation period in Arctic 

basin-scale, freeze onset data from PMW measurements are utilized. The freeze 

onset is the date when the surface is maintained frozen after that day. The sea ice 

freeze onset product (Markus et al., 2009) is available over the 2002–2019 period 

distributed through the Cryosphere Research Portal 

(http://neptune.gsfc.nasa.gov/csb/). For comprehensive interpretation, a new 

variable called ‘frozen days’ is defined as the length of days from freeze onset to 

the end of the year. The geographical distribution of mean frozen days is presented 

in Figure 24a. As expected, frozen days for MYI are much longer than FYI. The 

frozen days generally range between 0 to 130 days.  

In Figure 24b, a clear positive correlation is observed between two variables 

as shown in the 2-d histogram between mean frozen days (Figure 24a) and mean 

snow depth (Figure 23a). Binned analysis reveals that such relation is not linear, 

and the variance of mean snow depth becomes larger for longer mean frozen days. 

This implies that the effect of the snowfall amount is more important for MYI than 
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FYI. It is known that accumulation has a seasonal cycle; snow accumulates rapidly 

in September and October and slows down until January (Warren et al., 1999). 

Due to the seasonal cycle, snow depth over the MYI region affected mainly by 

intense snowfall in September and October rapidly increases with the frozen days, 

while snow depth on the FYI region affected mainly by less intense snowfall in 

winter shows less sensitivity to the frozen days. Therefore, the slope of the 

relationship between mean frozen days and mean snow depth is not constant but 

increases with mean frozen days. 

Then, the variability of snow depth is examined. The geographical 

distributions of standard deviation fields from time-detrended snow depth 

anomalies (i.e., detrended variability) are shown in Figure 23b. It is noted that the 

detrended variability of snow depth generally follows the mean snow depth fields. 

Relatively large interannual variability of JFM snow depth over MYI areas is 

observed, while snow depth on FYI has a smaller and smoother interannual 

variability. The snow depth variability over MYI shows a mean value of 3.97 cm 

and a standard deviation of 0.95 cm, approximately. It ranges between 

approximately 3 to 6 cm, which lies between previously reported values from W99 

(4.6 to 6.2 cm) and values from snow accumulation models (2 to 3 cm) (Zhou et 

al., 2021).  

To figure out whether snow depth has reduced or increased relative to W99 
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snow depth climatology (Figure 23c), relative JFM mean snow depth compared to 

W99 climatology was calculated as shown in Figure 23d. A significant decrease 

in snow depth was found over the FYI region. Especially, snow depth reduced to 

approximately 40% level of the W99 climatology over the Beaufort and Chukchi 

seas (18.3 cm decrease in absolute value). This snow depth reduction is consistent 

with the reported value by Webster et al. (2014). By comparing the W99 

climatology with the OIB measured snow depth during the 2009-2013 period, they 

found that the snow depth has decreased from 32.86 cm to 14.56 cm (decreased to 

44% level) in the Beaufort and Chukchi seas. Snow depth reduction was relatively 

small in the case of snow depth on MYI, however, it has been reduced to 

approximately 55 to 80% level of W99 climatology (6 cm to 10 cm decrease in 

absolute value). This result indicates that W99 snow depth climatology base on 

buoy measurements in the 1954-1991 period is no longer valid for the present day. 
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Figure 23. Geographical distributions of averaged (a) JFM mean snow depth for 

the 2003-2020 period, (b) corresponding detrended variability, (c) W99 snow 

depth climatology, and (d) the ratio between the mean snow depth and W99 

climatology. 
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Figure 24. (a) Geographical distributions of (a) mean frozen days and (b) relationship between mean frozen days and 

mean snow depth overlayed with binned analysis result. 
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5.3.2. Temporal variation  

To answer the second question regarding the temporal variation of snow 

depth, trends of snow depth are calculated and presented in Figure 25a. As before, 

pixels having less than 10 data points are neglected for calculating the statistics. 

The obtained result indicates that snow depth trends are highly variable by region 

or sea ice type.  

Statistically significant negative trends in snow depth (-0.29 cm/yr on 

average; up to -0.50 cm/yr) on FYI near the Laptev Sea to the Central Arctic Ocean 

and the northern part of the East Siberian Sea (bluish shaded and dotted area in 

Figure 25a). Those regions are generally consistent with the regions where MYI 

turns into FYI. Considering that snow depth on MYI is greater than snow depth 

on FYI, the significant negative trends are closely related to the sea ice type 

transition. Besides, negative trends over FYI would also be related to the delayed 

freeze-up dates due to Arctic warming, shortening the snow accumulation period 

on FYI. 

Statistically significant positive trends in snow depth (0.43 cm/yr on average; 

up to +0.70 cm/yr) are observed over MYI near the northern part of Greenland and 

the Canadian Archipelago (reddish shaded and dotted area in Figure 25a). The 

positive trend is likely to be related to increased autumn and winter precipitation, 
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likely caused by more frequent cyclone occurrences (Graham et al., 2019; Kwok 

et al., 2020), because Arctic cyclone activity is closely related to snowfall on sea 

ice (Serreze et al., 2012; Webster et al., 2019). 

To compare this result with others, reanalysis-based snow depth 

reconstruction (SnowModel-LG; Liston et al., 2020) data are introduced. 

SnowModel-LG accumulates and redistributes snowfall from atmospheric 

reanalysis in a Lagrangian framework using satellite-derived ice motion vectors 

(Liston et al., 2020) and it includes physical processes associated with snow layer 

(e.g., blowing snow, snowpack metamorphosis, and compression). This study 

utilizes JFM averaged fields of SnowModel-LG forced with ERA5 and sea ice 

motion vectors from the NSIDC (Tschudi et al., 2019b). Snow depth trends of the 

SnowModel-LG were calculated for the 2003-2018 periods because SnowModel-

LG data are available up to 2018. SnowModel-LG shows a similar geographical 

distribution of snow depth trends but with a greater magnitude of negative trends 

and with less organized positive trends over MYI (Figure 25b). However, over a 

longer period from 1991-2015, significant positive snow depth trends in 

agreement with this study are noted over the northern part of the Canadian 

Archipelago and Greenland in reanalysis-based snow depth reconstructions 

including SnowModel-LG (Zhou et al., 2021).  

To see snow depth distribution in detail, probability distribution functions 
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(PDFs) of mean snow depth for each year are made as in Figure 26a. Reduced 

snow depth compared to W99 snow depth climatology can be clearly observed. 

By observing snow depth PDF for the whole period (black solid line), a bimodal 

distribution of snow depth is observed with peaks at approximately 12.5 cm and 

22 cm, and two modes correspond to snow depth on FYI and MYI, respectively. 

However, we can observe that snow depth distribution has significantly changed 

during the 2003-2020 period by comparing PDFs for the first 5-year period (2003-

2007, blue solid line) and the last 5-year period (2016-2020, red solid line). It is 

observed that snow depth distribution becomes single mode with a peak at 

approximately 13 cm and the maximum range of snow depth has increased. These 

PDFs suggest that the snow depth on FYI has become the dominant contributor to 

the overall snow depth over the Arctic basin in more recent years and the thickest 

snow on MYI has become thicker. 

The mean snow depth time series for each ice type is shown in Figure 26b. 

MYI snow depth shows a slightly increasing trend, while there is not much 

difference for FYI snow depth and overall snow depth. The mean snow depth time 

series is consistent with the PDF analysis results: FYI is the dominant sea ice type 

over the Arctic Ocean and snow depth on FYI did not change significantly. This 

seems to be contradicted with the significant negative snow depth trend in Figure 

25a. However, it is not a contradiction because the significant negative trend is 
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due to from sea ice type transition: thick snow on MYI is replaced by thin snow 

on FYI. This becomes clear if we look at the time series of snow depth for regions 

showing statistically significant positive and negative trends in Figure 27a. Snow 

depths for the two regions were close to each other initially in 2003 which may 

represent snow depth on MYI. Moreover, the regions showing significant negative 

trends well correspond with the regions showing significant negative trends of 

MYI fraction (Figure 27b). 
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Figure 25. Geographical distributions of JFM averaged snow depth trend of (a) snow depth produced in this study 

(2003-2020 period) and (b) snow depth from the SnowModel-LG (2003-2018 period). The dotted area indicates the 

region where the linear trend is significant over 95% confidence level. 
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Figure 26. (a) Time evolution of retrieved snow depth distribution. W99 

climatology is illustrated in the grey-shaded probability distribution function 

(PDF). (b) Time series of mean snow depth for each ice type. Shade denotes 

standard deviation. 

 

 

Figure 27. (a) Time series of mean snow depth for regions where snow depth trend 

is significant. Shade denotes standard deviation. (b) The trend of MYI fraction. 
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6. Conclusions and discussion 

The snow on Arctic sea ice is an important element in the Earth's climate 

system. It dampens direct heat and mass exchange between the atmosphere and 

the ocean, and it reflects a large amount of incoming solar energy. Considering 

these, observing the snow depth on Arctic sea ice is essential for improving our 

understanding of the Arctic weather and climate. However, the estimation of the 

Arctic snow depth from PMW measurements has been a challenging task for the 

satellite community, especially over the MYI region.  

In this study, a novel satellite retrieval algorithm for the wintertime Arctic 

basin-scale snow depth was developed based on the hydrostatic balance and 

thermodynamic steady-state of a snow-ice system. The key concept of this 

algorithm is to estimate snow depth and ice thickness simultaneously from the 

thickness ratio TR which is defined as the ratio between snow depth and sea ice 

thickness, and the total freeboard measurements.  

The TR is estimated from the vertical thermal structure of the snow-ice 

system (i.e., snow top temperature and snow-ice interface temperature) which can 

be resolved from satellite infrared and microwave radiometer measurements 

during wintertime. To do so, the empirical relationship between TR and the 

interface temperatures (i.e., TR-temperature equation) was obtained from buoy 
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data analysis. Total freeboard was estimated from satellite PMW measurements 

rather than satellite altimeter measurements to obtain Arctic basin-scale total 

freeboard. PMW total freeboard was estimated by using the snow-ice scattering 

optical depth at 36.5 GHz channel (SOD36.5) as a predictor. It was found that snow 

depth retrieved from TR and PMW total freeboard was consistent with OIB snow 

depth. 

Using the developed algorithm, wintertime snow depth records for the 2003-

2020 period were estimated from AVHRR and AMSR measurements. Currently, 

most of the satellite snow depth products rely upon the OIB dataset showing 

differences from product to product (Kwok et al., 2017), which implies the OIB-

dependent snow depth should inherit potential bias within certain OIB products. 

On the other hand, the snow depth data record provided by this study is a unique 

dataset because the suggested snow depth estimation method is independent of the 

OIB dataset. Although the suggested method is independent of OIB data, good 

consistency in snow depth between this study and OIB (Kurtz et al., 2015) was 

found, demonstrating that a reliable snow depth can be estimated from satellite 

radiometer measurements. Flowchart summarizing this study is provided for 

comprehensive understanding in Figure 28. 

Spatio-temporal variability of the produced Arctic snow depth record was 

analyzed. In general, snow depth on MYI was greater than snow depth on FYI, 
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which is related to the length snow accumulation period. To examine such relation 

in detail, the relationship between mean snow depth and frozen days was analyzed, 

revealing that they are positively correlated. However, the relationship was not 

linear but the sensitivity of mean snow depth to frozen days was greater for the 

longer frozen days. 

This study revealed that the mean snow depth is significantly reduced 

compared to the W99 snow depth climatology over both MYI and FYI regions. 

This snow depth reduction has been reported by other studies as well for limited 

areas or time (Webster et al., 2014; Kwok et al., 2020). Although it is hard to 

consider that the W99 for the 1954-1991 period is valid over the Arctic Ocean for 

recent decades, it is still used for satellite ice thickness retrieval with a 

modification (Sallila et al., 2019). Many studies modified W99 (hereafter referred 

to as mW99) by dividing W99 by a factor of 2 over FYI based on a report by Kurtz 

and Farrell (2011).  

However, it has been suggested that mW99 introduces systematic bias in sea 

ice thickness estimation (Kwok et al., 2020; Stroeve et al., 2020; Shi et al., 2020). 

The overestimated mW99 snow depth will likely cause underestimation 

(overestimation) of ice thickness when using lidar (radar) altimeter measurements 

(Shi et al., 2020). Such underestimation and overestimation due to mW99 were 

demonstrated by a recent study that revealed a significant bias between the ice 
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thicknesses estimated from lidar (i.e., ICESat) and radar (i.e., CryoSat-2) 

altimeters (Kim et al., 2020). In conclusion, the consideration of using satellite-

based snow depth for sea ice thickness retrieval is desirable. 

An interesting snow depth trend with spatially different patterns is noted. A 

positive snow depth trend was found over the western Arctic while a negative trend 

was found over the Eastern Arctic. It is thought that the negative trend is related 

to sea ice type transition and delayed freeze onset (Webster et al., 2014) and 

positive trends are thought to be related to increased snowfall due to more frequent 

intrusion of Arctic cyclones through the Atlantic Ocean (Kenigson and 

Timmermans, 2021) and Pacific Ocean (Tachibana et al., 2019). Regarding the ice 

thickness retrieval, these regional trends of snow depth suggest that ice thickness 

trends derived from the fixed mW99 climatology most likely contain erroneous 

regional trends (Shi et al., 2020).  

Another consequence of snow depth change would be an influence on sea ice 

loss associated with the insulation effect of the snow layer. Snow is a good thermal 

insulator due to its low thermal conductivity, and it controls conductive heat flux 

from the ocean to the atmosphere. Therefore, thickened snow layer prevents the 

rapid growth of sea ice during winter by dampening the uptake of thermal energy 

by the atmosphere from the ocean. Consequently, thickened snow cover can result 

in thinner ice (Ledley, 1991). The indirect evidence of this is given as the trends 
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of snow depth portion in total snow-ice thickness (Figure 29). Thinner sea ice has 

less chance to survive successive summer because thinner ice requires less energy 

to melt away. Besides, dynamical sea ice loss is as important as the thermodynamic 

process. Thinner ice is more likely to break up into small ice floes with increased 

mobility. On top of this condition, recently increased cyclone intrusion to Arctic 

weekends Beaufort High (Moore et al., 2018) promoting sea ice export (Rigor et 

al., 2002). As a result, the open ocean area increases during the melting period and 

causes a warm and moist Arctic atmosphere (Kim et al., 2019; Higgins and 

Cassano, 2009). Rapid warming of the Arctic region results in the northward shift 

of the tropospheric polar vortex (Kenigson and Timmermans, 2021) promoting 

more favorable conditions for cyclone intrusion. These changes are linked to snow 

depth increase over the MYI region which can form a sea ice loss feedback loop 

(Figure 30). Further investigation on this suggested feedback mechanism is needed, 

especially taking into consideration of cyclone intrusion timing (Webster et al., 

2019), ocean heat transport (Auclair and Tremblay, 2018), moisture transport 

(Bintanja et al., 2020), and surface longwave radiative effect of cloud (Yeo et al., 

2018). 

The obtained Arctic basin-scale snow depth records can be used for 

improving the atmospheric reanalysis data and Arctic climate prediction. Most 

Arctic climate research utilizes reanalysis data because there are not enough 



102 

observations available over the Arctic. For instance, anomalous surface turbulent 

heat flux was used as an indicator to investigate causality between sea ice loss and 

mid-latitude cold surges during winter (Blackport et al., 2019). However, the 

majority of atmospheric reanalysis models are missing the snow layer on sea ice 

in the surface physics process which is a crucial factor for the surface energy 

balance (ECMWF, 2007; ECMWF, 2016; Batrak and Müller, 2019). The 

conductive heat flux through sea ice is balanced with other energy fluxes above 

the snow surface. The missing snow cover makes conductive heat flux be 

overestimated, resulting in a significant warm bias of surface temperature (Batrak 

and Müller, 2019; Wang et al., 2019). Therefore, reanalysis models must take into 

account snow depths for more realistic surface energy fluxes. To do so, appropriate 

snow depth data should be assimilated into the model. Besides, climate models 

require realistic initial conditions for the improved climate prediction. The snow 

depth records produced in this study can be used for such purposes. 
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Figure 28. Flow chart of this study: (Red box) development of snow depth retrieval algorithm, (Blue box) estimation 

of sea ice freeboard from satellite PMW measurements, and (Green box) production of long-term snow depth record. 
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Figure 29. Geographical distribution of the decadal trend of snow depth portion 

in the total snow-ice thickness for the 2003-2020 period. The dotted area indicates 

the region where the linear trend is significant over 95% confidence level. 
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Figure 30. Diagram of the snow depth related feedback mechanisms over the Arctic Ocean. 
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국문 초록 

겨울철 북극 해빙지역 적설깊이 산출을 위해 적설-해빙 시스템의 정역

학적 평형 및 열역학적 정상상태(steady state)를 기반으로 한 새로운 인공

위성 산출 알고리즘이 개발되었다. 개발된 알고리즘은 수동 마이크로파/적외

선 관측자료로부터 얻어진 해빙건현(freeboard), 적설표면온도와 적설-해빙

경계층온도를 입력자료로 사용하여 적설깊이 산출을 수행한다. 적설깊이 산

출물은 NASA의 OIB(Operation IceBridge) 항공기 관측자료를 기준으로 

검증되었으며 높은 정확도를 보였다. 새로운 알고리즘을 활용한 북극해 규모

의 장기간 적설깊이 자료 생산을 위해 인공위성 수동 마이크로파 관측자료로

부터 해빙건현을 추정하였다. 이를 위해 수동 마이크로파 관측에서 얻은 적

설-해빙 산란 광학 깊이를 예측 변수로 사용하였다. 추정된 수동 마이크로

파 해빙건현은 OIB 관측치와 높은 일치성을 보였다. 

2003-2020년 기간 겨울철 적설깊이 자료를 인공위성 온도자료와 수동

마이크로파 해빙건현자료를 함께 사용하여 생산하고 분석하였다. 북극 해빙

지역 적설깊이는 눈이 쌓이는 시기 및 기간과 관련하여 해빙의 종류에 크게 

의존하는 것으로 나타났으며, 적설깊이와 그 변동성은 단년빙보다 다년빙에

서 큰 값을 보였다. 또한, 1954-1991년 기간 동안의 현장관측 기반 적설깊

이 기후값과 비교하여 현대 적설깊이의 상당한 감소가 발견되었다. 시계열 

분석 결과 2003-2020년 기간동안 지역적으로 다른 적설깊이 경향성이 보
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였다. 북극해의 동쪽지역에서는 감소, 서쪽지역에서는 증가 경향이 나타났다. 

감소 경향은 다년빙에서 단년빙으로의 해빙 종류 변화 및 결빙시점의 지연과 

관련이 있으며, 증가 경향은 강수량의 증가와 관련이 있는 것으로 보인다. 

 

주요어: 적설깊이, 북극 해빙, 인공위성 원격탐사, 기후변화 

학  번: 2016-29111 
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