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Abstract

Hyper-parameter optimization is crucial for pushing the accuracy of a deep

learning model to its limits. A hyper-parameter optimization job, referred to

as a study, involves numerous trials of training a model using different training

knobs, and therefore is very computation-heavy, typically taking hours and days

to finish.

We observe that trials issued from hyper-parameter optimization algorithms

often share common hyper-parameter sequence prefixes. Based on this observa-

tion, we propose TreeML, a hyper-parameter optimization system that reuses

computation across trials to reduce the overall amount of computation signifi-

cantly. Instead of treating each trial independently as in existing hyper-parameter

optimization systems, TreeML breaks down the hyper-parameter sequences into

stages and merges common stages to form a tree of stages (a stage tree). TreeML

maintains an internal data structure, search plan, to manage the current status

and history of a study, and employs a critical path based scheduler to minimize

the overall study completion time. TreeML is applicable to not only single

studies, but multi-study scenarios as well. Evaluations show that TreeML’s

stage-based execution strategy outperforms trial-based methods for several mod-

els and hyper-parameter optimization algorithms, reducing end-to-end training

time by up to 2.76× (3.53×) and GPU-hours by up to 4.81× (6.77×), for single

(multiple) studies.
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Chapter 1

Introduction

Deep learning (DL) models have made great leaps in various areas including

image classification [1, 2, 3], object detection [4], and speech recognition [5, 6].

However, such benefits come at a cost; training DL models require heavy datasets

and long computations, which may take up to a week [7] even on hundreds of

GPUs [7]. This cost becomes even more significant when we take hyper-parameter

optimization into account. Since hyper-parameters can impact the trained models’

quality, investigating the hyper-parameter search space often requires hundreds to

thousands of training with different hyper-parameter settings [8]. Consequently,

naively running hyper-parameter optimization requires an exceedingly large

number of GPUs, and it is crucial to explore the hyper-parameter search space

as efficiently as possible.

Training modern DL models requires changing hyper-parameter values on-

the-fly during training to reach state-of-the-art accuracy, as they aim to minimize

high-dimensional, non-convex loss functions. The learning rate hyper-parameter

governs the training speed of a DL model. As a result, the DL community widely
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B 0.05
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Figure 1.1: A hyper-parameter optimization study of trials that share common

computations. A single hyper-parameter, learning rate, is being explored within

the search space {0.1, 0.05, 0.02, 0.01}. Each trial is split into several stages.

Each stage is labeled with an id (A-E) and its parameter value.

uses the learning rate as a sequence, and all DL frameworks provide various

learning rate sequences that developers can plug-in to their code. Moreover,

many papers also use other hyper-parameters as sequences to train DL models [7,

9, 10, 11, 12, 13]. However, existing hyper-parameter optimization systems [14,

15, 16, 17] do not consider hyper-parameters as sequences of values.

Tuning hyper-parameters as sequences creates an optimization opportunity of

sharing common computations. Figure 1.1 shows a hyper-parameter optimization

job, which we call a study. This study consists of four separate instances, or

trials, each associated with different learning rate sequences. The first 100

training steps for all four trials can be shared, as they are operating on the

same learning rate value, 0.1. We use the term stage to refer to this sharable

execution unit. Similarly, for step range [100, 200), trials 2, 3, and 4 have a

common stage for learning rate 0.05. Instead of handling such common stages

independently, we can execute them only once and share them across trials to

avoid redundant computation and reduce the amount of resource (GPU-hours)

used. We can merge the common stages and regard the set of trials as a tree
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of stages – a stage tree. This framework-agnostic abstraction can express the

computation dependencies of stages as a directed tree. Existing systems lack this

key abstraction, missing the opportunity to eliminate redundant computation

across trials.

However, building a system that handles trials as a stage tree to share compu-

tation is challenging because of the dynamic characteristics of hyper-parameter

optimization. First, as trials are added and removed on-the-fly, the system must

dynamically determine which stages to share across trials. Depending on the

specific hyper-parameter sequences and trial submission timings, a newly added

trial may or may not be able to reuse the result of an intermediate stage; the

system must efficiently manage the states (checkpoints and evaluation metrics)

of such stages so that no trial needlessly executes a stage that would otherwise

be sharable. Second, stages must be scheduled in an online manner. In order to

minimize the study’s completion time, the system requires an online schedul-

ing algorithm that allocates GPUs to stages while taking common stages into

account.

To this end, we present TreeML, a hyper-parameter optimization system that

finds and reuses redundant computations in hyper-parameter optimization jobs.

TreeML uses a search plan, a tree-like data structure with append-only edges, to

manage and reuse stage states for common stages in a clear, consistent fashion.

Once added, edges are invariant to trial operations, allowing us a static structure

for considering only current trials when sharing stages. TreeML also employs

an online scheduler that considers critical paths among stages to minimize the

overall completion time. The scheduler extracts a stage tree snapshot from the

search plan and iteratively analyzes critical paths, removing the critical path

from the stage tree and repeating the process with the remaining stages. The

system schedules each critical path as a whole by batching the stages in the
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same path, subsequently reducing the checkpoint saving and loading overheads

when sharing computations.

We evaluated TreeML with three popular DL models (ResNet56, Mo-

bileNetV2, and BERT-Base) and three well-known hyper-parameter optimization

algorithms (SHA, ASHA, grid search) on a cluster of 40 GPUs. Our evaluations

show that TreeML outperforms Ray Tune, a black-box optimization system,

reducing the end-to-end training time and GPU-hours of a single study up to

2.76× and 4.81×, respectively. For multi-study scenarios, TreeML can share

redundant computations across studies and reduce the end-to-end training time

and GPU-hours by up to 3.53× and 6.77×, respectively.
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Chapter 2

Background and Motivation

In this section, we present a brief overview of hyper-parameters and its opti-

mization. Then, we motivate the need for the abstraction of hyper-parameter

sequences and discuss the challenges of applying such abstraction in a system.

2.1 Hyper-Parameter Optimization

Hyper-parameter optimization refers to the act of training multiple instances of

a machine learning model with slightly differing training knobs, such as learning

rate and batch size. We use the term study to refer to a single optimization

run of a model over a certain search space of parameters. Each sub-procedure

of a study associated with a set of parameters sampled from the given search

space is called a trial. Specifically, a trial defines what hyper-parameter sequence

the model should use to train. A trial can be split into one or more disjoint

subsequences, referred to as stages in this paper.

There are many types of hyper-parameters as well as many possible values
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for each hyper-parameter. The search space is often enormous, and the number

of trials is usually in the hundreds and even thousands [8, 18, 19]. Therefore,

hyper-parameter optimization is crucial in training deep learning models for

high model quality. The model quality of trials with different hyper-parameter

values may differ significantly, even if settings other than the hyper-parameters

such as the model architecture and input data are kept the same across all

trials [20].

Hyper-parameter sequences. Learning rate, one of the most critical hyper-

parameters in DL, is a tunable value that controls how much model weights

should be updated proportionally to its error. If the learning rate value is too

small, the training process becomes very slow, and if the value is too large, the

model weights may fail to converge to a stable value. As the model trains, the

loss landscape changes and the learning rate must be adjusted, respectively,

resulting in a sequence of learning rate values. Over a decade, the DL community

have discovered many heuristics [1, 21, 22, 23, 24, 25, 26, 27, 28], which are

supported natively by most DL frameworks [29, 30, 31].

Recent works have also applied this sequence heuristic to other hyper-

parameters as well, such as batch size [12], drop-out ratio [32], optimizer [7],

momentum [13], image augmentation parameters [9], training image input

size [10], input sequence length [11], and network architecture parameters [10].

As training modern DL models involves minimizing high-dimensional, non-convex

loss functions, we predict this trend of hyper-parameter sequences to become

even more popular throughout the community.

The hyper-parameter sequences are usually manually sampled by researchers [19].

When manually tuning hyper-parameters, a common heuristic to discover a

well-performing trial is local search, slightly modifying a previously attempted

hyper-parameter sequence that showed good results. As a result, promising trials

14
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Figure 2.1: An illustration of Successive Halving (SHA) when reduction factor

is 2. The search starts with 16 trials (lines). Only the trials with lower loss

values are trained further over the decision boundaries (vertical lines). For every

boundary, only half of the trials can proceed.

often share common subsequences in their hyper-parameter values.

Hyper-parameter optimization. Hyper-parameter optimization allocates

resources to each trial in a non-uniform way. Promising trials with lower loss

are trained more, and inferior trials are stopped early. For example, Successive

Halving (SHA)[33] is a popular way to allocate more resource to trials which have

better accuracy than others. We provide an example run of SHA in Figure 2.1.

SHA has multiple decision boundaries, depicted as vertical dashed lines. SHA

trains all trials until the decision boundary but advances only the trials with

relatively lower loss value. In SHA, every boundary is a synchronous barrier; all

trials are trained until the border before tested against other trials. However,

ASHA [8], an asynchronous variant of SHA, only compares a trial only against

completed trials. Therefore, a trial can advance to the next boundary without

waiting for other trials to complete. SHA and ASHA compare trials after training

a fixed amount of iterations, but some algorithms such as the median-stopping

rule, dynamically kill trials whenever they perform poorly than expected[15].

Multiple studies potentially share common computation as well. Hyper-

parameter optimization is a feedback-driven exploratory process where the user
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constantly tries new search spaces and tuning heuristics [17, 34]. In this process,

the user modifies the previous study to create a new one, thereby running

multiple studies that share the same model and dataset. As a result, a hyper-

parameter optimization system can benefit from sharing computation across

multiple studies.

2.2 Challenges of Sharing Computations in
Hyper-Parameter Optimization Jobs

As promising trials usually share common sequences in their hyper-parameter

configurations, it makes sense to build a system that performs such common

computations only once, avoiding redundant computations. Several systems have

been proposed throughout the literature that applies computation sharing to

increase computation efficiency, including machine learning systems [35, 36, 37,

38] that target a static set of jobs with configurations known beforehand, as

well as systems from the big data domain [39, 40, 41, 42, 43, 44] that assume

an online setting where jobs are dynamically submitted. Unfortunately, sharing

computations in hyper-parameter optimization jobs involves new challenges due

to the workload characteristics of hyper-parameter optimization.

C1: Dynamic computation sharing of trials. As opposed to static settings

where all computations are known from the start, hyper-parameter optimization

studies operate in a more online manner in which trials are constantly added

and removed during a study. Thus, new common computations may emerge

at runtime, and existing common computations may expire. This complicates

matters, as any non-common computation can become a common computation

in the future, and vice versa. Moreover, the unique pattern of sharable com-

putations across trials motivates an abstraction tailored to hyper-parameter
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optimization jobs (Section 3). A hyper-parameter optimization system must take

such uncertainties into account and employ a computation sharing mechanism

that adapts to such dynamics (Section 4.2).

C2: Online stage scheduling. The scheduling order of stages impacts the

total completion time of trials because each stage saves a different amount of exe-

cution time, depending on the number of trials that share the stage. However, the

exact saved time is unpredictable, as trials are added and removed dynamically.

Moreover, depending on the scheduling algorithm, sharing computation may

incur large overheads because model checkpoints must be saved to and loaded

from the disk to be shared across trials. A hyper-parameter optimization system

must schedule stages on-the-fly while considering the effects of computation

sharing as well as the possible overheads (Section 4.3).
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Chapter 3

Stage Tree

We now propose an abstraction for identifying common computations in hyper-

parameter optimization trials: the stage tree. The stage tree abstraction is not a

direct solution to solving the challenges described in Section 2.2. Rather, stage

trees provide the basis for TreeML’s two core system techniques (Sections 4.2

and 4.3).

We first briefly explain how individual hyper-parameter sequences are ex-

pressed. Users express sequences as mathematical functions with a non-negative

integer domain. Then two subsequences are identical if they share the same

function and domain. The sequences can be elementary functions such as co-

sine, or exponential, but also piecewise functions. For example, learning rate

warmup [24] is a technique to increase the learning rate linearly for a few steps

and then decaying the value using a different function. To express piecewise

functions, elementary functions can be concatenated such as trial 1 in Figure 1.1.

Each elementary function corresponds to a stage, which can be further split for

merging.

18
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trial 1
trial 2
trial 3
trial 4

Figure 3.1: A stage tree formed from the trials of Figure 1.1. Stage A1 can be

executed once to serve all four trials, while stage B1 can be shared by three

trials. A stage can be split into shorter stages to match the length of a stage

from another study that shares the same hyper-parameter value.

By merging common stages across trials in Figure 1.1, we get the tree-shaped

arrangement of stages in Figure 3.1. In this form, it is evident that stages A1

and B1 can be shared by multiple trials. We refer to this form as a stage tree.

The stage tree is mainly used to identify schedulable units when it comes to

executing a hyper-parameter optimization study. Conveniently, a stage can be

considered as a schedulable unit, while edges between stages express scheduling

dependencies.

During the course of a study, the shape of the stage tree constantly changes

as new trials arrive and old trials are deleted. When new trials arrive, new

stages may be added to a stage tree, while existing stages can be split into

shorter stages of smaller step ranges. Stages can even be deleted if the given

hyper-parameter optimization algorithm decides to kill certain trials.

Figure 3.2 depicts how the stage tree from Figure 3.1 transforms when a

new trial is added. Stage A of the new trial (Trial 5) cannot be merged into

stage A1 or stage A2 in Figure 3.1, because neither of them has a matching

step range (steps 0-150). Instead, stage A2 needs to be divided into stages A3

(steps 100-150) and A4 (steps 150-200), and then the new trial’s last stage, F ,

is appended to A3. All stages that came after A2 in the original stage tree are
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A1

B1

A3 E
D
C

B2

trial 1
trial 2
trial 3
trial 4

A4

steps3001501000

trial 5 (new)

F

A 0.1 F 0.01

Figure 3.2: An illustration of a stage tree transformation when a new trial is

added to the stage tree in Figure 3.1. Both the first stage in trial 5 and stage

A2 in Figure 3.1’s stage tree must be split into smaller stages, in order to merge

trial 5 into the stage tree. As a result, trial 5 shares stages A1 and A3 with trial

1.

modified to follow A4 in the new stage tree.
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Chapter 4

TreeML System Design

In this section, we introduce TreeML, a hyper-parameter optimization system

that incorporates stage trees to run studies while automatically reusing computa-

tion for sharable stages. TreeML addresses the challenge of dynamic computation

sharing (C1) by maintaining an internal data structure, search plan, to track all

submitted trials and efficiently reuse model checkpoints and evaluation metrics

for shared stages (Section 4.2). TreeML also implements a scheduling algorithm

(C2) that considers critical paths in stage trees to minimize the overall makespan

of the study (Section 4.3).

4.1 Overview

TreeML consists of various components to serve studies that dynamically send

hyper-parameter optimization trials. A study application, whether an automated

optimization algorithm or an interactive shell, communicates with the TreeML

master via a client library. Instead of eagerly partitioning a trial into stages,
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Figure 4.1: TreeML system architecture. Trial requests are issued by study

applications, scheduled by the TreeML Master, and trained on the GPU cluster

via workers (shown as W).

TreeML stores the trial information in the search plan database, in the form of

a global search plan, so that new trials do not effect existing stages. After the

search plan is updated, a transient stage tree is generated from the search plan

and passed on to the scheduler, which in turn determines which stages need to
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Figure 4.2: A search plan example of hyper-parameter configurations. Each

node stores various fields, including hyper-parameter value functions for each

hyper-parameter (hp_config) and a dictionary that marks the current stages

that are waiting to be executed under this configuration (requests). Edges

across nodes indicate sequential dependencies, e.g., HB occurs after training a

model for 100 steps under HA, while HC occurs after training a model for 100

more steps under HB (a total of 200 preceding steps).

be run. The scheduler notifies the node managers, one on each GPU server, to

run stages. The aggregator continuously collects evaluation metrics from the

running stages to update the search plan database.

Figure 4.1 shows the overall flow of processing a trial in TreeML. The study

application initiates the execution of a trial by submitting the trial to TreeML

via the client library ( 1 ). Once a trial arrives at the system, the hyper-parameter

sequence configuration of the trial is immediately compared with the search plan

in the search plan database, and the search plan is adjusted accordingly ( 2 ). In

case metrics that satisfy the trial are already present, then TreeML immediately

returns the evaluation metrics of the trial back to the application. Otherwise,

the search plan database generates a stage tree and notifies the scheduler to run

new stages.

The scheduler decides which stages to run by examining the stage tree

generated from the current search plan ( 3 ). Stages are given to GPU workers

for execution ( 4 ), and the workers start computation by loading checkpoints
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from the distributed filesystem ( 5 ). Workers periodically report evaluation

metrics to the aggregator through the node manager. Each server has a node

manager to gather metrics locally before passing them to the aggregator for

reducing inter-server data traffic ( 6 ). The aggregator, upon receiving a set of

metrics, updates the search plan ( 7 ). After repeating the scheduler-aggregator

cycle multiple times, the final stage for a trial will eventually terminate, and the

metrics are sent back to the application ( 8 ). Even if the trial has not finished

yet, the application may request for metrics of intermediate stages at any time;

TreeML will promptly return the metrics if they are available in the database.

4.2 Search Plan

4.2.1 Search Plan Data Structure

When a trial is submitted, TreeML must check if it can reuse an existing model

checkpoint that shares hyper-parameter configurations. TreeML uses a data

structure called search plan to maintain this information. A search plan is a

tree that stores the hyper-parameter configuration history of submitted trials as

well as model checkpoints and evaluation metrics. Each tree node in a search

plan represents a hyper-parameter configuration starting from a certain training

step. An edge between nodes indicates that the hyper-parameter configuration

of the child node is appended to the configuration of the parent node, to form a

hyper-parameter sequence. The number of training steps required to move from

a parent node hyper-parameter configuration to a child node is annotated on the

connecting edge. A path in a search plan represents a trial. Search plans have

append-only edges; trial additions or removals do not remove existing edges.

Such characteristics make individual paths invariant to other paths, or trials.

An example of a search plan is drawn in Figure 4.2. HA, the root node of this
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search plan, indicates a configuration of training a freshly initialized model (no

parent node) with a linear learning rate (LINEAR(x; a, b) = a+ bx) and constant

batch size (CONSTANT(x; a) = a). Likewise, HE indicates a configuration of an

exponential learning rate (EXPONENTIAL(x; a0, γ) = a0γ
x) and constant batch

size, starting from a model checkpoint that has been trained with HA for 10

steps (note the directed edge between HA and HE).

Unlike stage trees, a search plan node is not a scheduling unit. The existence

of a node does not necessarily imply that a trial, configured by that node, is

currently running in the system. Rather, a node holds various statistics gathered

by the system regarding the corresponding hyper-parameter configurations.

TreeML can tell that a trial for that node has finished running by checking the

following node fields:

• hp_config : Hyper-parameter configurations for each target hyper-parameter.

Widely used functions for hyper-parameter values, such as CONSTANT,

EXPONENTIAL, COSINE, and STEP, are allowed.

• ckpt : A dictionary of file paths for checkpoints that were trained under

this configuration.

• metrics : Intermediate values for evaluating the quality of the model check-

point, like test/validation accuracy and loss.

• requests: A dictionary holding integers representing trial requests as keys,

and state variables (SCHED or NOT_SCHED) as values. Each integer indicates

the number of steps a model needs to be trained before evaluating it. For

example, in Figure 4.2, the number 150 in HA’s requests field indicates

that a trial requires training with HA’s hyper-parameter configuration

for 150 steps. The state variable marks if that request has currently been
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scheduled or not (Section 4.3). Note that a single request maps to a single

trial; we use both terms interchangeably throughout the paper.

Adding a new trial to the search plan is done as follows. When a new trial

arrives, the system traverses the search plan for a path that matches the trial’s

hyper-parameter sequence. If the trial has no matching path, new nodes are

added to the search plan. Then we check the ckpt and metrics fields of the

leaf node and immediately return the appropriate results in case no training is

needed (e.g., there already is a metric that matches the request). In case results

aren’t already available, a new entry is added to the requests field of the node.

Revisiting the example illustrated in Figure 3.2 where a new trial submission

requires splitting an existing stage A2 and adding a new stage F , TreeML

handles this case by adding a search plan node corresponding to F as a child of

HA in Figure 4.2. HA itself does not need to be modified. TreeML also marks

the new node’s requests field with the number 300, the step count of the new

trial.

Removing a trial is done in a similar manner as adding a trial, except that

nodes are not added nor deleted (to maintain the append-only edge property).

The system traverses the search plan to find the node of the request that

corresponds to the trial. If the request object is marked as NOT_SCHED, then we

can simply delete the request from the database since the request has not yet

been scheduled. On the other hand, if the request is marked SCHED, the database

signals the scheduler to abort computation for the corresponding stage.

Going from search plans to stage trees.

While search plans are effective for managing the current status and history

of a hyper-parameter study, stages are more straightforward as a scheduling

unit for a system scheduler component to interact with. Thus, we use search
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Algorithm 1 Build Stage Tree
1: function BuildStageTree(requests R)

2: Initialize empty lookup table, L

3: Initialize empty set of stages, S

4: for r ∈ R do

5: FindLatestCheckpoint(r, L)

6: for end, start in L do

7: S.put(Stage(start, end))

8: return BuildTree(S)

9: function FindLatestCheckpoint(r, L)

10: if r.node == null || r ∈ L then return

11: for s ∈ {r.step - 1, r.step - 2, ..., r.node.init_step} do

12: if checkpoint_exists(r.node, s) then

13: L[r] = (r.node, s)

14: return

15: rp = (r.node.parent, r.node.init_step)

16: L[r] = rp

17: FindLatestCheckpoint(rp, L)

plans as the basic format for carrying out trial additions and removals, but

ultimately generate stage trees when a scheduling decision needs to be made.

The generated stage trees are transient representations, used solely for creating

scheduling units (stages), and are not kept in the system like search plans.

The generated stage tree serves all NOT_SCHED requests in the search plan;

SCHED requests have already been processed by the scheduler, and thus do not

need to be served again. Every request corresponds to a path in the stage tree

where the start of the path starts from a existing checkpoint. For example, to
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Figure 4.3: A stage tree generated from the search plan in Figure 4.2. The

numbers below each stage indicate the step to start and stop training. Shaded

stages indicate stages with checkpoints where training can be resumed from.

serve the request 300 of HE in Figure 4.2, we first follow the edge from the

preceding node (HA), indicating that the request requires training for 200 steps

with HA’s hyper-parameter configuration. Then, the request requires training

for an additional 100 steps with HE ’s hyper-parameter configuration, for a total

of 300 steps. Note that since there already is a checkpoint for HA at 200 steps,

we don’t actually have to perform any training with HA.

Algorithm 1 describes the process of generating a stage tree from a search

plan. The algorithm first checks all requests and breaks them down into smaller

units that utilize available checkpoints (line 5). The lookup table L maps a child

request object to a parent request object that is needed to reach the child. The

request object is a tuple of a search plan node (e.g., HE in Figure 4.2) and the

number of training steps required to fulfill the request (e.g., 300 in HE). Next,

each <child, parent> pair is translated as a stage (line 7) that loads a model

checkpoint from the parent, trains the model, and saves a new checkpoint at

the child. Lastly, the function BuildTree is called (line 8) to construct a stage

tree from the stages by connecting consecutive stages.

Figuring out the closest parent to a child is done with a helper function

FindLatestCheckpoint. This function receives a request object and the lookup
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table L as input. If no appropriate checkpoints are available in the current node,

the function is recursively called with its parent node (line 17). Also, the parent

node is added to the lookup table (line 16). It is worth noting that the lookup

table is also used as a memoization mechanism (line 10).

Figure 4.3 illustrates the stage tree generated from the search plan in

Figure 4.2 via Algorithm 1. A stage will be executed by resuming from the

nearest available checkpoint, where available checkpoints are marked as shaded

areas in the figure. For example, the stage denoted by HE2 with steps 250 to

300 in the figure will be trained after resuming from HE1’s checkpoint at 250

steps (as seen in HE ’s ckpt field).

4.2.2 Search Plan Database

TreeML stores all search plans that are currently being served in the search

plan database. When a new trial is added, TreeML updates the search plan as

described in Section 4.2.1. The various field entries in any node of the search plan,

including checkpoints, metrics, and runtime profile data, can also be updated

by the aggregator component.

Checkpoint caching The database stores pointers to each checkpoint, as

well as metadata such as file size, reference count, and last used time. These

checkpoints have two purposes: sharing computations and recovering from

failures. Depending on its primary use, checkpoints are either central or peripheral.

Workers automatically create central checkpoints at the end of a stage for

computation reuse in child stages1. Additionally, users can configure the system

to periodically create peripheral checkpoints in the middle of stages. Long stages

can recover from peripheral checkpoints in case of failures.

1The central checkpoint of a leaf stage is actually optional, but useful when extending a
trial by training more steps, which is a common pattern.
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Trial additions and removals can cause a central checkpoint to become a

peripheral one, or vice versa. Therefore, TreeML manages the two types of

checkpoints in the same cache. The cache policy can evict any of the two

checkpoints according to a cost-benefit ratio, proposed in Nectar [40].

Multiple search plans Trials may have no overlapping hyper-parameter

sequences at all, in which case they cannot be represented with a single search

plan. To cover such cases, the search plan database holds multiple search plans;

when a new trial arrives, TreeML adds it to the search plan that has a matching

root node hyper-parameter configuration. Managing multiple search plans also

has the benefit of allowing TreeML to serve more than one study at once – studies

on different models as well as different input datasets. As different search plans

are mutually independent, TreeML does not require any kind of synchronization

mechanism between search plans.

4.3 Scheduler

TreeML schedules computation on GPUs with stages as the basic scheduling

unit. Since the number of stages that can run concurrently at a given moment

usually exceeds the number of available GPUs in the cluster, TreeML utilizes a

scheduler component to determine the stages to be run. The scheduler allocates

GPUs to execute stages, and preempts stages associated with requests that have

been canceled by the client.

The scheduler takes stage trees generated from the current search plans as

inputs and schedules stages on GPU workers. A simple scheduling method would

be to do a breadth-first traversal through all stage trees and schedule each stage

one by one until all GPU workers have been assigned stages. However, we have

found that this method leads to a large job makespan, due to stages on the

critical path of the stage trees being scheduled relatively later than non-critical
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path stages.

Instead, the scheduler computes the critical path of all given trees and

schedules the longest critical path on a worker. At this point, all request entries

in the search plan associated with this path are marked as SCHED. With multiple

workers, the scheduler repeatedly finds the next longest path among unscheduled

stages of all stage trees and schedules the path of stages on an idle worker. The

longest path of a stage tree is the path that has the longest estimated execution

time; the execution time of an individual stage is estimated by multiplying the

number of steps of that stage by the execution time per step (profiled beforehand

when a search plan node is newly added).

We also observed that the stage transition overhead for a worker is significant

due to checkpoint saving and loading, when scheduling a path of stages on the

worker. If two consecutive stages (connected as parent and child in the stage

tree) are scheduled on the same worker, then there is no need to load the

corresponding central checkpoint from the distributed filesystem before running

the child stage because the checkpoint would still be present in GPU memory.

The checkpoint save still needs to happen for other child stages, but can be done

in the background, in parallel with training. To mitigate these overheads, the

scheduler batches consecutive stages in the critical path and dispatches them as

a single scheduling unit to a worker. The larger scheduling granularity improves

locality by avoiding checkpoint overheads and further minimizes the end-to-end

training time of a study.

The scheduler does not store any information regarding the execution states

of stages. The scheduler operates in a stateless manner, relying entirely on the

search plan to identify the stages that need to be run and the stages that have

already run. After processing a stage tree, the scheduler simply releases the

stage tree. Any stage batches (i.e., stage paths) that are yet to be scheduled on
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a worker (due to all workers being busy) are put in a separate queue; as soon

as a worker becomes idle, the aggregator is notified to update the search plan,

and the scheduler sends the batch at the head of the queue to the idle worker,

unless the queue is empty.

When the scheduler is triggered again later by another trial addition/removal

to schedule more stages, the scheduler takes a new stage tree freshly generated

from the latest search plan and repeats the whole scheduling process from the

start. Note that triggering the scheduler while it is scheduling a stage tree does

not affect the current scheduling; all unscheduled stage batches will be enqueued

into the queue, behind the previous batches.

32



Chapter 5

Implementation

We have implemented TreeML in 5K lines of Python code. Communication

between the TreeML master and node managers is done via the pub/sub interface

provided by Apache Kafka 2.4.1 and Apache ZooKeeper 3.4.13. MySQL 8.0

is used to store system states in the search plan database. Kafka, ZooKeeper,

and MySQL all run in Docker containers. Additionally, we use GlusterFS 6.9 as

the distributed file system for saving and sharing checkpoints between nodes.

Our current implementation of TreeML utilizes the deep learning framework

PyTorch 1.5.0 to train DNN models, though TreeML’s design is not tied to any

specific framework.

5.1 Data Pipeline

We implemented a custom data pipeline for PyTorch that is compatible with

stages. Two major updates were done. First, we modified the checkpoint mech-

anism of PyTorch’s default data pipeline to include the current permutation

of the dataset as a part of the checkpoint. This way, the data pipeline is able

33



to save its current position in the dataset when a stage terminates, and later

resume from the same position for the next stage. Second, we added a feature to

change the batch size of the data pipeline. When the batch size is changed, the

data pipeline will flush every preprocessed batch from the queue, and relaunch

the background threads so that they produce the correct batch samples.

5.2 Cost Estimator

Since hyper-parameters affect the GPU resource requirements of a stage, we

implemented a cost estimator that uses linear regression to estimate a stage’s

completion time and number of GPUs required on profiling results. The scheduler

uses this estimator to analyze the critical paths. Initially, when no historical

data is available, the estimator predicts both latency and GPU requirement as

one. We observe that cold predictions underestimate the GPU requirements of a

stage, causing out of memory(OOM) errors. To effectively mitigate OOM errors,

the stage is rescheduled with the double number of GPUs than the previous

attempt.

5.3 Client Library

We implement a client library that serves three purposes. First, the client

library is the entry point to TreeML. It serves as a thin communication layer for

the study to add new trial requests. Second, the client library includes popular

hyper-parameter optimization algorithms [33, 45, 8, 15, 46]. Lastly, the client

library provides the API to express hyper-parameter sequences. The API is a

collection of several parametric families. Each family represents a set of functions

with identical parameters. Users can use the family to create new sequences.

For example, the sinusoidal parametric family is a function that returns a new

cosine function when given magnitude, period, and phase.
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class MyTrainer(Trainer):
...
def setup(self , hp):
# hp is a dictionary of updated values

if "lr" in hp:
for group in self.optimizer.param_groups:

group["lr"] = hp["lr"]
if "bs" in hp:

if self.train_loader:
del self.train_loader

self.train_loader = DataLoader(
self.train_dataset ,
batch_size=hp["bs"]

)
...

Figure 5.1: An example that updates the learning rate (lr) and batch size (bs)
in the custom Trainer that the user should override. TreeML passes into setup
the values of sequential hyper-parameters that should be updated.

To run a study in TreeML, users must first decide the model and dataset

they want to use in the study, the types and values of hyper-parameters to tune,

and the tuning algorithm to use. The training logic, which describes all things

needed for training a model such as setting the values of each hyper-parameter,

is defined by overriding the base Trainer class TreeML provides. The values of

each hyper-parameter used in the Trainer will be drawn from the search space

defined in Python by the user. The tuning algorithm specifies how to spawn,

pause, or terminate trials that compose the study. Users may implement their

own strategies, or simply choose from the tuners we provide. We will now take

a closer look at each step a user must take to run a study in TreeML.

First, users should implement the training logic by overriding the base

Trainer class TreeML provides. Users should write functions for initializing

training (e.g. defining the model or loading the dataset), training for one logical
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def get_search_space ():
hp = {

"lr": [
Constant (0.1),
Exponential (0.1, 0.95)

],
"bs": [

Constant (128),
MultiStep (128, [40], 2)

]
}
return GridSearchSpace(hp)

Figure 5.2: Defining a search space consisting of learning rate (lr) and batch size
(bs) sequences in Python using the function definitions provided by TreeML.
Two different sequences were defined for each hyper-parameter, resulting in four
trials.

iteration (which may consist of multiple steps), evaluating the model trained

so far and returning the metrics, saving, and loading checkpoints. One logical

training iteration, executed by one call to the Trainer’s train function, should

be long enough to avoid overheads, but short enough to regularly report progress.

Often, a logical training iteration is set as one pass through the dataset. Whenever

a hyper-parameter value is initialized or updated within a stage, TreeML calls

the Trainer’s setup function with a dictionary containing updated values. Then,

using theses values in setup, the user should make according changes to the

appropriate attributes of the Trainer. Figure 5.1 illustrates a setup example.

Then, the user should define the search space they wish to explore using

TreeML’s implementation of well-known functions. Figure 5.2 displays a simple

example that creates a search space over two types of hyper-parameters to use

with the MyTrainer class defined previously in Figure 5.1. Unlike in existing

frameworks, users can directly express hyper-parameters in the search space as
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sequences, without having to embed the sequences as part of the training logic.

Notice the matching keys between the search space and the hp dictionary passed

into MyTrainer’s setup. Trials are sampled from this search space as a grid here,

resulting in a total of four trials, but users who wish to implement conditional

hyper-parameter spaces can optionally pass in a function to GridSearchSpace

to filter out certain trials.

The last step is to create a study and a tuner. A study is defined by spec-

ifying the dataset, the command to run a trial, the checkpoint path, and the

hyper-parameter set. The hyper-parameter set contains the types of hyper-

parameters that are tuned in the study. For tuners, we provide several hyper-

parameter optimization algorithms such as Successive Halving (SHA) [33], Hyper-

band [45], Asynchronous Successive Halving (ASHA) [8], median-stopping [15],

and PBT [46] in the client library. Figure 5.3 illustrates how to create a study

with a search space containing two types of hyper-parameters, and tune the

study with a tuner that early-stops trials on milestones based on a certain

metric.

TreeML’s client library heavily utilizes Python’s asyncio library. Instead of

creating a new thread for each request, the library creates coroutines which are

handled by the default Python event-loop. The tuning algorithms provided by

TreeML take advantage of asyncio primitives, such as wait_all (block until all

coroutines have finished) and wait_any (block until at least one coroutine has

finished), to implement their logic.

Typically, hyper-parameter optimization algorithms submit several requests

in parallel. In such situations, the client library batches the requests to reduce

processing overhead at the search plan database.
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hp_set = ["lr", "bs"]
study = Study(remote_url).create(

dataset , command , ckpt_path , hp_set
)

schedule = Schedule.from_milestones(
(5, 8), (10, 4)

)
tuner = EarlyStopTuner(

schedule , search_space ,
metric.ExtractSingleNumber(

"test_acc"
)

)
tuner(study)

# Users can tune a study multiple times on different
tuners

tuner2(study)

# Users can directly evaluate a certain trial on a
specified step

study.eval(hp_config , step)

Figure 5.3: Running a study with an example tuner that trains 8 trials for
5 logical training iterations, early-stops 4 trials, and trains the remaining 4
trials up to 10 logical iterations. The killing decision is made based on the test
accuracy as specified in the last argument to EarlyStopTuner.
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Chapter 6

Evaluation

In this section, we first compare TreeML with Tune [14], a black-box hyper-

parameter optimization framework built top of Ray [47]. We conducted four

single study experiments comparing Tune and TreeML 6.1, and two multi-study

experiments, each with a varying number of studies that run in parallel 6.2.

Finally, we demonstrate the effect of our scheduling policy via comparison with

other policies 6.3.

Environment Each experiment uses a homogeneous GPU cluster of five Ama-

zon EC2 p2.8x instances, each with 8 NVIDIA Tesla K80 GPUs. A distributed

file system using GlusterFS [48] is set up on Amazon EBS volumes. All experi-

ment scripts are implemented in PyTorch 1.5.0 [29]. In all of our experiments, we

measure the end-to-end time (the elapsed time from the start of the experiment

to the end) and the GPU-hours (the sum of elapsed time each GPU was held

for training).

For fair evaluation, we have made the following changes to Tune. We re-
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Type Function Models
R M B

learning rate MultiStep, CyclicLR, Warmup+MultiStep
Warmup+Exponential, Warmup+Cosine, ✓ ✓ ✓

batch size Constant, MultiStep ✓ ✓

momentum Constant, MultiStep ✓

weight decay Constant ✓

optimizer Constant ✓ ✓

cutout size Constant, MultiStep ✓

input seq. length Constant, MultiStep ✓

Table 6.1: Hyper-parameter types, functions and their memberships. Functions
denote possible sequences samples. R, M, B each denote the search space of
ResNet56, MobileNetV2, and BERT-Base. For example, the ResNet56 search
space consists of five hyper-parameters.

implement the ASHA [8] algorithm to match the behavior specified in the original

paper. Also, we alter Tune’s runtime and API so that the system evaluates the

model only whenever TreeML does. Model evaluation is relatively cheaper than

training one epoch but causes huge overheads when done every batch. Tune’s

original implementation runs model evaluation every iteration creating huge

overhead when tuning the BERT-Base model, which is trained in units of steps.

Conversely, TreeML evaluates the model only when necessary.

Model Dataset Algorithm Policy # of trials Merge rate

ResNet56 CIFAR-10 SHA reduction=4,
min=15, max=120 448 2.45

ResNet56 CIFAR-10 ASHA reduction=4,
min=15, max=120 448 2.45

MobileNetV2 CIFAR-10 Grid search max=120 240 3.14
BERT-Base SQuAD 2.0 Grid search max=27000 40 2.05

Table 6.2: Specification of four studies. Each study is specified a model, dataset,
hyper-parameter, tuning algorithm, and a tuning algorithm policy. min and max
are the minimum and maximum training iterations for each trial. Each study is
given its own search space represented by number of trials and merge rate.

Merge rate As our evaluation results vary on the configuration of the search
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Figure 6.1: Single-study experiment results for Tune, TreeML-Trial, and TreeML.
Compared to Tune, TreeML can reduce end-to-end time by up to 2.76×, and
GPU-hours by up to 4.81×.

space, we provide a metric m that summarizes the merging capability of the

search space.

m =
Total steps

Unique steps

Unique steps is defined as the number of training steps that are needed to train

the entire search space, counting identical steps (redundant computation) as one

step. Total steps is defined as the number of training steps while not considering

redundant computations. For example, if there are N identical trials, the merge

rate is m = N
1 = N . Similarly, we define a k-wise merge rate mk defined on k

search spaces.

mk =
Total steps of k studies

Unique steps across k studies

The merge rate is the theoretical estimate of GPU-hour reduction in TreeML.

Actual reduction values differ from this estimate due to three factors: opti-

mization algorithm, checkpoint overhead, and hyper-parameter value. First,

hyper-parameter optimization algorithms like SHA and ASHA early-stop trials,

thereby pruning outer stages. As a result, the algorithm prunes stages that

are less shared. We show experimental results that exhibit this effect in 6.1.

Second, checkpoint saving and loading create overhead, decreasing the GPU hour
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reduction gain. Lastly, the GPU time for a trial differs by the hyper-parameter

value it has. Hyper-parameters like batch size, or optimizer require different

computation time. Sharing a stage with hyper-parameters that corresponds to

heavy computation is more beneficial than a stage that does not.

Hyper-parameters Table 6.1 summarizes hyper-parameters used for each

search space. We use a total of seven hyper-parameters. Five hyper-parameters

(learning rate, batch size, momentum, cutout[49] size, input sequence length[11])

are sampled as sequences, and two hyper-parameters (optimizer, weight decay)

are sampled as point values. The search space is composed of commonly used

functions in research papers, github repositories and Kaggle kernels.

6.1 Single Study

This section compares three different hyper-parameter optimization algorithm

systems: Tune, TreeML, and TreeML-Trial. TreeML-Trial is an implementation

of TreeML where no computation is reused.

We compare four different studies across three different hyper-parameter

optimization systems. The design of each study is described in Table 6.2. Three

different models, two different datasets, and three different hyper-parameter

optimization algorithms are used for the different studies. We further train

the best performing trial for 100 additional steps and the extra training time

is accounted to the GPU-hour and the end-to-end time. Aside from system

performance, we also compare the final model accuracy of the systems. For

ResNet56 and MobileNetV2, we report the top-1 validation accuracy, and for

BERT-Base, we report the F1 score.

Figure 6.1 depicts the end-to-end time and the GPU-hour of four studies.

Tune and TreeML-Trial show comparable end-to-end time and GPU-hours,

except for ASHA. In ASHA, the number of early-stopped trials depends on the
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Model Accuracy / F1 score [%]
Reported Tune Trial Stage

ResNet56 (SHA) 93.03 93.08 92.89 93.27
ResNet56 (ASHA) 93.03 93.58 92.89 93.72

MobileNetV2 94.43 95.03 95.04 95.04
BERT-Base 76.28 78.42 78.57 78.18

Table 6.3: Final model metric of all four single-study experiments. Tune, TreeML,
and TreeML-Trial reached the reported model accuracy or F1 score, reported
from the original paper, popular GitHub repository, or dataset leaderboard.

completion order of trials. Because of its non-deterministic nature, Tune and

TreeML-Trial differ in the total number of training steps.

Compared to Tune, TreeML can reduce end-to-end time and GPU-hours

by up to 2.76× and 4.81×, respectively. As expected, for the two grid search

studies, the merge rate (3.14×, 2.05×) matches the GPU-hour saving (3.15×,

2.07×). However, the GPU-hour saving of SHA and ASHA (4.81×, 3.92×)

is significantly higher than its merge rate (2.45×). As discussed earlier, the

early-stopping mechanism used by these algorithms prune stages that are less

shared.

The top-1 accuracies and F1 scores reached in each study is shown in

Table 6.3. In all four studies, TreeML successfully achieved top-1 accuracies and

F1 scores higher than the reported target values. Moreover, in the experiment

some studies reached higher model accuracy on TreeML compared to Tune,

demonstrating that TreeML can finish training in a fraction of the time spent

by Tune while possibly finding a better model checkpoint.

6.2 Multiple Studies

TreeML is able to merge computation across multiple studies. We compare the

GPU-hour and the end-to-end time of TreeML and Tune when running several
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Figure 6.2: Multi-Study results with k-wise merge rates S2: 2.26, S4: 2.77, and
S8: 2.47.

studies simultaneously. We vary the number of studies: 1, 2, 4, and 8, and refer

to each case as S1, S2, S4, and S8. We create two search space sets where each

set contains 8 subspaces. All studies spawn 144 trials where each trial train the

ResNet20 model on the CIFAR-10 dataset, and tune learning rate and batch

size.

The merge rate for the first search space set ranges from 1.5× to 2.73×.

The k-wise merge rate for S2, S4, and S8 is 2.26, 2.77, and 2.47, respectively.

Figure 6.2 depicts the results from this search space. We can see that with a

relatively large merge rate between the studies, the GPU-hour and the end-to-end

time shrinks by up to 6.77× and 3.53×.

The merge rate for the second search space set ranges from 1.2× to 2.1×.

The k-wise merge rate for S2, S4, and S8 are 1.40, 1.19, and 1.66, respectively.

Figure 6.3 depicts the results from this search space. Though the gains are

smaller than in the previously defined search space due to lower merge rates,

TreeML still reduces the GPU-hour and end-to-end time by up to 2.32× and

1.99×.
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Figure 6.3: Multi-Study results with k-wise merge rates S2: 1.40, S4: 1.19, and
S8: 1.66.

6.3 Scheduler Comparison

In this section, we compare TreeML’s critical path scheduler with other possible

scheduling policies. The three policies we compare are as follows.

• BFS : schedule stages in breadth-first search order

• THR: maximize throughput by scheduling stages with the largest number

of child stages first

• Critical : the scheduler policy used in TreeML

As a fair comparison, the Critical scheduler does not batch stages; a checkpoint

is always loaded from the disk. Therefore all policies have similar checkpoint

overheads.

We compare the policies with two hyper-parameter optimization algorithms:

grid search and ASHA. We train ResNet20 with CIFAR10, and tune the learning

rate and batch size as hyper-parameters. The search space’s merge rate is set to

3.55.
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Figure 6.4: End to end time of three scheduling policies.

As shown in Figure 6.4, TreeML’s critical scheduling policies has lower

makespan compared to the two baselines. In grid search, THR and Critical have

similar makespan, but in ASHA, Critical is 1.27 times faster. This is because

when asha dynamically adds new trials, the critical path before trial submission

tends to be also an critical path in the new stage tree; However the number of

descendants the stage has changes as new trials are added.
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Chapter 7

Related Work

Trial-based systems There have been recent systems [14, 15, 50, 51, 52,

17, 53, 54] for hyper-parameter optimization, helping users to manage their

hyper-parameter optimization jobs on distributed environments. However, the

trial-based systems miss the opportunities to reduce resource usage by reusing

the common computation results.

Tune [14], for example, is a hyper-parameter optimization system built on

top of Ray [47]. Since Tune does not understand the internals of a trial, a

single trial cannot be further split into multiple stages to merge the common

computation between trials, achieving sub-optimal performance compared to

TreeML. Other popular trial-based hyper-parameter optimization systems such

as Google Vizier [15], NNI [50], Optuna [51], Kubeflow [52], CHOPT [17],

HyperDrive [53], and SageMaker [54] provide similar trial-level user APIs and

schedule hyper-parameter optimization jobs on a trial basis, failing to share

common computation as they cannot identify stages.
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Computation sharing systems Reusing intermediate outputs across multi-

ple jobs is a commonly used technique for multi-job systems. The workloads

covered by such systems can largely be categorized into two groups: (i) a static

setting in which all jobs are available at once so that the system can analyze

sharable computation from the start, and (ii) a dynamic setting where jobs are

continuously submitted to the system.

Several recent machine learning systems [35, 36, 37, 38, 55] fall into the former,

static setting. [36] attempts to reduce the resource usage of hyper-parameter

optimization jobs by caching intermediate data from data preprocessing steps

and feature extraction steps. Pretzel [35] performs offline analysis on a given

set of machine learning jobs and compiles a model plan that is able to reuse

computation across the jobs, while Clipper [55] employs a prediction cache

that stores the whole result of executing a job. Both Pretzel and Clipper

target inference workloads, and thus are inapplicable to model training settings.

Helix [38] selectively caches intermediate results for a job, depending on the

storage cost and materialization cost, and reuses them in subsequent iterations.

None of these systems particularly consider dynamically arriving jobs. On the

other hand, TreeML’s search plan data structure allows us to dynamically

accommodate new trials and identify reusable stage results without running an

offline analysis of all trials.

Various big data systems [39, 40, 41, 42, 43, 44] assume the latter, dynamic

setting. Nectar [40] enables reusing common computation in DryadLINQ pro-

grams within a datacenter. Tachyon [39] implements an algorithm that bounds

the recovery cost of any file in the whole job lineage by checkpointing certain

key files. Although these systems take dynamically added jobs into account,

they were not designed to handle hyper-parameter optimization workloads.

Systems focusing on a specific algorithm As hyper-parameter optimiza-
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tion algorithms such as ASHA [8] and PBT [46] have been devised to optimize the

resource usage on distributed environments, systems to efficiently run those algo-

rithms have been introduced alongside with the algorithms themselves. However,

the systems are not generic since each of these systems is specifically designed

for executing only a specific algorithm. HyperSched [56] extends ASHA [8] and

supports algorithms similar to ASHA. On the other hand, TreeML aims to

support various hyper-parameter optimization algorithms including ASHA [8],

SHA [33], PBT [46], and the median-stopping rule [15].
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Chapter 8

Conclusion

TreeML is a hyper-parameter optimization system that removes redundant

computation in the training process by breaking down the hyper-parameter

sequences into stages, merging common stages to form a tree of stages, and

executing a stage once per tree. TreeML is applicable to not only single-study

scenarios but also multi-study scenarios. Our evaluations show that TreeML

saves GPU-hours and reduces end-to-end training time significantly compared

to Ray Tune on multiple models and hyperparameter optimization algorithms.
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Appendix A

Appendix

A.1 Search Space

In this section, we explain how each hyper-parameter sequences are parameterized

as functions.

• Constant(init)

A constant function of value init

• Exponential(init, gamma)

An exponentially decaying function that starts at init and multiplies the

value with gamma every iteration.

• MultiStep(init, milestones, gamma)

A piece-wise constant function that starts as init and decays by gamma

every time the iteration number reaches a milestone. milestones is an

array of desired milestone.

• CyclicLR(init, max_y, period1, period2)[22]
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An oscillating function. All periods linearly increase from init to max_y

for period1 iterations, and linearly decrease back to init for period2

iterations.

• Cosine(init, min_y, period, gamma)[57]

A periodic cosine-annealing function. Each period starts as init and ends

as min_y. The period length starts with period, and is multiplied by

gamma every period.

• Warmup(init, period, func)[24]

A linear function that starts as init and increases linearly for period

iterations. After the linear increase, continue the sequence specified with

func.
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초록

초 매개변수 최적화는 딥러닝 모델의 성능을 한계까지 끌어올리기 위해서는 필수

불가결한과정이다. Study,혹은초매개변수최적화작업은각각다른초매개변수

값을 가진 무수히 많은 딥러닝 학습 작업으로 이루어져 있으며, 각 학습 작업은

trial이라 불린다. 매우 많은 학습을 해야 하기에 연산이 많고, 짧게는 몇 시간에서

몇 주일씩 걸리기도 한다. 본 연구에서는 한 초 매개변수 최적화 작업으로부터

파생된 여러 trial 들의 초 매개변수 순열이 공통된 앞부분을 가짐을 밝힌다. 이러

한 발견으로부터, Hippo라는 새 시스템을 제안한다. Hippo는 trial들에서 공통된

순열 앞부분을 찾아 연산 결과를 재활용하여 전체 연산량을 크게 줄인다. 기존 초

매개변수 최적화 시스템은 trial마다 매번 새로 학습하는 반면, Hippo는 주어진

초 매개변수 순열을 stage라는 작은 단위로 쪼개어 동일한 stage끼리 합쳐 stage

tree의 형태로 만든다. Hippo는 Search Plan이라는 내부 자료구조를 통해 현 초

매개변수 최적화 study의 모든 상태를 기록하며, 임계 경로 기반 스케줄러를 통해

전체 작업 수행 시간을 최적화한다. Hippo는 한 번에 한 개의 study뿐만 아니라,

복수의 study도 동시에 수행할 수 있다. Hippo는 여러 모델과 여러 초 매개변수

최적화 알고리즘에서 기존의 초 매개변수 최적화 시스템보다 전체 수행 시간을

최대 2.76배, GPU hour를 최대 4.81배 최적화한다. 복수의 study를 동시에 수행할

경우 수행 시간은 최대 4.81배, GPU hour는 최대 6.77배 최적화 할 수 있다.

주요어: 딥러닝 시스템, 초매개변수, 초매개변수 최적화

학번: 2019-24157
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