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Abstract

Trajectory generation and control of multi-rotors with a

suspended load using nonlinear optimization

SON Youngdong

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Trajectory generation and control are fundamental requirements for safe and stable

operation of multi-rotors. The dynamic model should be considered to generate efficient

and collision-free trajectories with feasibility. While the dynamic model of a bare multi-

rotor is expressed non-linearly with high dimensions which results in computational loads,

the suspended load increases the complexity further. This dissertation presents efficient

algorithms for trajectory generation and control of multi-rotors with a suspended load.

A single multi-rotor with a suspended load is addressed first. Since the load is suspended

through a cable without any actuator, movement of the load must be controlled via maneu-

vers of the multi-rotor. However, the highly non-linear dynamics of the system results in

difficulties. To relive them, the rotational dynamics is simplified to reduce the non-linearity

and consider the delay in attitude control. For trajectory generation, the vehicle, cable,

and load are considered as ellipsoids with different sizes and shapes, and collision-free con-

straints are expressed in an efficient and less-conservative way. The augmented Lagrangian

method is applied to solve a nonlinear optimization problem with nonlinear constraints in

real-time. Model predictive control with the sequential linear quadratic solver is used to

track the generated trajectories. The proposed algorithm is validated with several simula-

tions and experiment.

A system with multiple multi-rotors for cooperative transportation of a suspended load

is addressed next. As the system has more state variables and coupling terms in the dynamic
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equation than the system with a single multi-rotor, optimization takes a long time without

an efficient method. The differential flatness of the system is used to reduce the complexity

of the highly non-linear dynamic equation. The trajectories are also parameterized using

piece-wise Bernstein polynomials to decrease the number of optimization variables. By de-

composing an optimization problem and performing convexification, convex sub-problems

are formulated for the load and the tension trajectories optimization, respectively. In each

sub-problem, a light-weight sampling method is used to find a feasible and low-cost tra-

jectory as initialization. In the first sub-problem, the load trajectory is optimized with

safe flight corridor (SFC) and clearance constraints for collision avoidance and security of

space for the multi-rotors. Then, the tension histories are optimized with safe flight sector

(SFS) and relative safe flight sector (RSFS) constraints for obstacle and inter-agent collision

avoidance. Simulations and experiments are conducted to demonstrate efficient trajectory

generation in a cluttered environment and validate the proposed algorithms.

Keywords: Aerial manipulation, Motion and path planning, Optimization and optimal

control, Multi-agent.

Student Number: 2015-22735
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1
Introduction

Unmanned aerial vehicles (UAVs) have been widely used in various areas such as photog-

raphy, surveillance, inspection, farming, and transportation with the advancements of high

computing power and efficient algorithms. Among the areas, many freight delivery compa-

nies have been actively investigating aerial transportation since it can substantially reduce

the time consumed in land transportation.

Various manipulators have been attached to UAVs to expand the coverage of the appli-

cation in aerial transportation. For instance, a robotic gripper is equipped, and the vehicle

gains an ability to grasp or release variously shaped objects [1]. A robotic arm with multi

degrees of freedom is used to pick or push an object [2, 3]. While the two mentioned types

require actuators to control the manipulators actively, only a cable is required for the sus-

pension type. Some studies taking into account the movement of both the suspended load

and the multi-rotor carry the load safely [4], [5], [6].

The system composed of multi-rotors and an object suspended by a cable, also called a

slung load system, has various advantages in transportation. Since no additional actuators

are required, there is little increase in the total mass of the system, and users can utilize
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the maximum payload. Moreover, by attaching one end of the cable close to the center of

the mass of the vehicle, the attitude dynamics of the multi-rotor is scarcely affected.

Although the slung load system has several merits in transportation, it is very difficult

to control the overall system stably. The difficulty comes from under-actuation and non-

linearity of the system. Multi-rotor is originally an under-actuated system with twelve

states and four inputs [7], and it should tilt itself to generate horizontal acceleration. The

slung load system has six more states for each multi-rotor due to the cable while no input is

added [8], which increases the level of under-actuation and non-linearity from the dynamic

coupling between the vehicles and the suspended load.

Stabilizing controllers and efficient trajectory generation algorithms are required to

operate this under-actuated nonlinear system. Efficient trajectory generation algorithms

enable the vehicle and the load to fly in cluttered environments while avoiding obstacles.

Meanwhile, stabilizing controllers need to stabilize the swing of the suspended object while

tracking the desired trajectory.

The first aimed system is composed of a single multi-rotor and a suspended load which

is depicted in Fig. 1.1(a). To compensate the attitude control delay and reduce complexity

of the dynamic model, an original attitude dynamics is simplified. After conducting simple

trajectory tracking experiments, model identification is performed with two candidates:

a time-delay model and a first-order model. The more exact attitude dynamics is used

for the trajectory generation and control. By enclosing the multi-rotor, cable, and load

with three ellipsoids, collision avoidance for obstacles is considered in trajectory generation

optimization as done in [9]. For trajectory tracking control, model predictive control is used

to consider full states and generate optimal control inputs in real-time.

The second targeted model, the multiple multi-rotors with a suspended load, has a

higher-dimensional dynamic model as shown in Fig. 1.1(b). Therefore, the proposed meth-

ods for a single multi-rotor cannot be directly applied. To reduce the computational load,

the differential flatness property is used to formulate an optimization problem with the

smaller number of variables called flat output which is composed of the load position and
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cable tension vectors. The problem is also parameterized using piece-wise Bernstein poly-

nomials and decomposed into two sub-problems: load trajectory generation and tension

history generation. For each sub-problem, convexification methods are proposed to convex-

ify non-convex constraints, which formulates a convex optimization sub-problem. A robust

controller is implemented to track the generated trajectory in a decentralized manner.

Figure 1.1: Coordinate frames and state variables of the systems. (a) A single multi-rotor
with a suspended load. (b) Multiple multi-rotors with a suspended load.
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The respective flow charts of the proposed algorithms for the two targeted systems are

shown in Fig. 1.2.

Figure 1.2: Flow charts of the proposed algorithms for the slung load systems. (a) A single
multi-rotor with a suspended load. (b) Multiple multi-rotors with a suspended load.
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1.1 Literature Survey

There exists an extensive body of literature in operating the slung load systems. In this

dissertation, the related works are introduced into two categories: single vehicle and mul-

tiple vehicles with a suspended load. Each category is once more divided into trajectory

generation and control.

1.1.1 Single Vehicle with a Suspended Load

Trajectory Generation

There exist many works for trajectory generation of a bare multi-rotor [10, 11, 12, 13, 14].

Meanwhile, due to the complexity of the slung load system, relatively smaller number

of algorithms have been proposed for transportation of a suspended load. In [15], mixed

integer quadratic programming is used to generate narrow-gap-passing trajectories. Another

work demonstrates load throwing and obstacle avoidance maneuvers using mathematical

program with complementarity constraints along with quadratic programming [16]. While

the referred works show good performance, it is not possible to generate collision-free

trajectories in real-time. In [5], the authors show slalom maneuvers with real-time trajectory

generation. Still, the work has a limitation in that only the suspended load is considered

for collision avoidance.

Control

Various controllers are proposed to control the slung load system. They can be classified

into three types depending on the objective, and the first type considers tension from the

load as an impediment to control of the multi-rotor and focuses on reducing swing of the

load. Input shaping and delayed feedback control are used to actively attenuate swing [17],

[18]. An H∞ controller with Lyapunov redesign technique is implemented in [19] to track the

desired trajectory of the multi-rotor with swing damping. While the proposed controllers
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are proven to be stable since their focus is control of the multi-rotor, the load cannot be

controlled but only the swing can be attenuated.

The second approach aims to control the passively suspended load through actuation

of the multi-rotor. A geometric controller is proposed and performance of the controller is

validated through various experiments [6], [8]. While desired trajectories must be a para-

metric curve of class at least C5 for stability, the proposed controller in [20] shows little

error in tracking. [21] controls the system using the nonlinear dynamic inversion to employ

standard linear controllers. However, the referred controllers are designed with a cascade

structure where the desired cable angle is computed from the desired load position, and the

desired multi-rotor attitude is computed from the desired cable angle. Since the cascade

structure cannot control both the vehicle and the load simultaneously, directly applying it

for obstacle avoidance is not appropriate.

The last approach is optimal control which can control both the multi-rotor and load

by optimization. Since the system has many state variables for the general nonlinear opti-

mization solvers to optimize in real-time, dynamic programming approach has been mainly

used. A linear quadratic regulator and a model predictive control (MPC) are compared

in [22] with stabilization and tracking simulations. In [23], MPC is used for load tracking

experiments and it shows good performance. Recently, obstacle avoidance is successfully

conducted by following the generated collision-free trajectories [4, 5].

1.1.2 Multiple Vehicles with a Suspended Load

Trajectory Generation

Differential flatness is derived and utilized to generate trajectories for the system with a

point mass or a rigid body in [24]. However, the generated trajectory is a simple sinusoidal

one without consideration of obstacle avoidance. A dynamic model with flexible cables is

derived in [25] with which cable slackness can be considered. In this dissertation, the slack-

ness needs not to be considered since the cable tautness is maintained with constraints. To
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avoid inter-agent collision between the vehicles, [26] proposes a cone constraint which limits

the position of the vehicle in the designed cone. A recent work [27] proposes a distributed

optimization algorithm that solves multi-rotor trajectories in parallel and updates a load

trajectory with them. The work shows near-real-time performance for obstacle avoidance.

Control

A linear quadratic regulator and leader-follower control scheme are used for collabora-

tive transportation of two multi-rotors [28]. [29] uses robust model predictive control and

conducts numerical simulations where four multi-rotors follow a reference trajectory. [30]

proposes a nonlinear geometric controller with a stability proof which can be applied to

any number of vehicles.

1.1.3 Feature of the Work

The most studies about trajectory generation for the single multi-rotor with a load cannot

generate trajectories in real-time. While some works show real-time performance, they

cannot guarantee collision avoidance of the entire components, i.e., the vehicle, cable, and

load. The first two categories of the works related to control have difficulties in tracking the

desired trajectory since they consider the load as a disturbance or use a cascaded structure.

The proposed work addresses both the trajectory generation and control problems. To

avoid obstacles, all the components of the system are considered in a less-conservative way

by encompassing them with three ellipsoids. By formulating a receding horizon constrained

optimization, real-time trajectory generation is possible. To track the generated trajectory

precisely, an optimal control algorithm is proposed which can control the vehicle, cable,

and load at the same time.

In the second targeted system, since the dimension increases proportionally to the num-

ber of the vehicles which makes designing efficient algorithms more difficult, there are rela-

tively fewer studies than the single vehicle slung load system. Since the position of the sus-

7



pended load is passively decided by the positions of at least three vehicles, controller design

is a relatively lighter topic. For safe trajectory generation, not only the obstacle avoidance

of the load, but also the inter-agent collision avoidance between the vehicles and obstacle

avoidance of each vehicle should be considered. While [27] addresses the constraints, only

cylindrical obstacles are addressed and complex environments cannot be easily considered.

To generate safe trajectories efficiently, the proposed work decomposes a big problem

into two sub-problems. For each sub-problem, the non-convex constraints are convexified to

generate convex safe regions. Then, the convex sub-problems can be solved by any convex

optimization solvers. For control of the system, a robust controller proposed in [31] is

used to construct a decentralized control system where each vehicle follows the respective

trajectory compensating the tension from the cable actively without communication.
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1.2 Contributions

The contributions of this dissertation are summarized as follows.

Single multi-rotor with a suspended load

• Practical dynamic model: A simplified but practical dynamic model is proposed

with the consideration of the control delay. The considered delay reduces the control

error, and the reduced size of the dynamic equation helps to decrease the computa-

tional load required for trajectory generation and optimal control.

• Real-time trajectory generation: The proposed trajectory generation and optimal

control algorithms can run on onboard computer in real-time. This makes it possible

to re-generate new trajectories when new obstacles appear and to update the control

inputs rapidly.

Multiple multi-rotors with a suspended load

• Convex optimization formulation: The non-convex problem can be solved with

the proposed two convex optimization sub-problems where many solvers can be used.

• Independence of environment complexity: The proposed trajectory generation

algorithm considers obstacles using a single map. The number of obstacles does not

necessarily increase the number of collision avoidance constraints, which maintains

the order of the computational load even in a complex environment.
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1.3 Outline

The outline of the dissertation is as follows. Chapter 2 addresses trajectory generation and

optimal control methods for the system composed of a single multi-rotor with a suspended

load. Chapter 3 presents trajectory generation methods for the system of multiple multi-

rotors with a load. For validation, Chapter 4 provides experimental results, and Chapter 5

ends the dissertation with concluding remarks.
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2
Single Multi-rotor with a Suspended Load

This chapter addresses overall algorithms of trajectory generation and optimal control

to operate a single multi-rotor with a suspended load, with the derivation of a practical

dynamic model. Refer to Fig. 1.2(a) for the flow chart of the chapter.

2.1 Dynamics

Various dynamic models are proposed for the slung load system. [32] derives a dynamic

model using the Udwadia-Kalaba equation with the consideration of rotor downwash. As-

suming that one end of the cable is attached to the center of mass of the multi-rotor, [8]

derives a dynamic model using the method of Lagrange while another model is derived

using the Newtonian method [33]. The assumption is used also in this dissertation. The
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dynamic model proposed in [33] is expressed as

d

dt
xL = vL,

d

dt
vL =

1

mM +mL

(
fRe3 −mM q̈

)
− ge3,

d

dt
q = ω × q,

d

dt
ω =

1

mM l2
q × fRe3,

d

dt
R = RΩ̂B,

d

dt
ΩB = J−1M (M −ΩB × JMΩB),

(2.1)

with a control input u =
[
f M>

]>
∈ R4 and a rotation matrix R = Rz(ψ)Ry(θ)Rx(φ).

Note that the dynamic model assumes the cable tautness, and the assumption is validated

through the experiment results in Fig. 4.5 and Fig. 4.10. Nomenclature for the system is

listed in Table 2.1.

Multi-rotor generates thrust and moments by making differences in the thrust of each

motor. Although the dynamic model in (2.1) describes the coupling between the vehicle and

the load well, there exists a limitation to be used with optimization-based controllers. While

direct speed control of BLDC motors is possible to generate desired thrust [34, 35], precise

attitude control is difficult since measurement of the moment of inertia requires additional

processes. To overcome the limitation in the attitude control, other research uses angular

velocity, w, as a control input assuming that the angular velocity control is immediate [23].

Not only be the simplified dynamics more reasonable with a stable low-level controller, but

it also reduces the size of the state variable. However, such dynamic models require very

fast update of the input, and the assumption of delay-less angular velocity control is too

harsh. Accordingly, such dynamic model is not appropriate for optimization-based control

which requires longer computation time.

Two kinds of simplified attitude dynamics are proposed and compared in this disser-
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Table 2.1: Nomenclature of Chapter 2

Notation Meaning
I Inertial frame
B Body-fixed frame of the multi-rotor
xI , yI , zI ∈ R3 x, y, z axes of I
xB, yB, zB ∈ R3 x, y, z axes of B

xM ,xL ∈ R3 Position of the multi-rotor and the load expressed
in I

vM ,vL ∈ R3 Velocity of the multi-rotor and the load expressed
in I

q ∈ S2 Position of the multi-rotor with respect to the load
expressed in I

R ∈ SO(3) Rotation matrix of the multi-rotor from B to I
Φ =

[
φ θ ψ

]> ∈ R3 Roll, pitch, and yaw angle of the multi-rotor

ΩB =
[
p q r

]> ∈ R3 Angular velocity of the multi-rotor expressed in B
ω ∈ R3 Angular velocity of q expressed in I
f ∈ R1 Thrust input of the multi-rotor
M ∈ R3 Moment input of the multi-rotor
g ∈ R1 Gravitational constant
l ∈ R1 Length of the cable
mM , mL ∈ R1 Mass of the multi-rotor and the load
JM ∈ R3×3 Inertia matrix of the multi-rotor
ei ∈ R3 Unit vector whose ith element is 1
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tation. The first model, time-delay model, is simplified by considering the time-delay of

attitude control explicitly, and the control input of the system is a desired force vector.

The other model, first-order model, is simplified by assuming that the attitude control dy-

namics is a first-order system where the control delay is implicitly considered and control

input is a desired attitude vector. Two models are constructed using system identification

from experiment data, and more practical and accurate one is adopted for the trajectory

planner and the controller.

2.1.1 Simplified Dynamics: Time-delay Model

Firstly, a bare multi-rotor dynamics can be expressed as follows:

d

dt
xM = vM ,

d

dt
vM =

1

mM

fRe3 − ge3,

d

dt
R = RΩ̂B,

d

dt
ΩB = J−1M (M −Ω× JMΩB).

(2.2)

If a stable attitude controller is implemented, the attitude of the vehicle can approximated

as a delayed signal of the desired attitude as

Φ =


φ(t)

θ(t)

ψ(t)

 ≈

φdes(t− γφ)

θdes(t− γθ)

ψdes(t− γψ)

 , (2.3)

where ∗des are desired values of ∗, and γ∗ are non-negative time-delay. In [36], with some

reasonable assumptions, it is shown that the input/output relationship of the translational

acceleration can also be expressed similar to (2.3) as
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˜̈xM =


˜̈xM(t)

˜̈yM(t)

˜̈zM(t)

 ≈


˜̈xM.des(t− γφ)

˜̈yM.des(t− γθ)
˜̈zM.des(t)

 , (2.4)

where a pseudo-acceleration vector is defined as ˜̈xM = R−1z (ψ)
(
ẍM+ge3

)
= R−1z (ψ) 1

mM
fRe3.

By multiplying both sides of (2.4) by Rz(ψ)mM , the input/output relationship of the force

generated by the multi-rotor can be considered as a point-mass force generator with time-

delay in only horizontal directions. The equation is expressed as

F =


Fx(t)

Fy(t)

Fz(t)

 ≈

Fx.des(t− γh)

Fy.des(t− γh)

Fz.des(t)

 , (2.5)

with the assumption that γφ and γθ have the same value of horizontal time-delay, γh.

Although it is difficult to directly consider the time-delay, γh, in the form of a state-space

equation, it can easily be modeled in a frequency domain. For example, the force relationship

in x axis can be expressed as follows:

G(s) =
Fx(s)

Fx.des(s)
= e−γhs ≈

−s+ 2
γh

s+ 2
γh

, (2.6)

which is approximated using Padé approximation. Time domain expression of the equation

can be expressed as

ẋFx = AFxxFx +BFxFx.des

Fx = CFxxFx +DFxFx.des,
(2.7)

where an additional state, xFx , is required. Accordingly, to model input/output relationship

of generated force vector, only two slack variables, xFx and xFy , are required.

Since the attitude dynamics in (2.1) is independent from the translation dynamics, the
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new simplified dynamics for rotation can be expressed by replacing the attitude dynamics

with (2.7) in both the x and y axes as follows:

d

dt
xFxy = AFxyxFxy +BFxyFxy.des

F =

CFxyxFxy +DFxyFxy.des

Fz.des

 , (2.8)

with a new control input u =
[
Fx.des Fy.des Fz.des

]>
∈ R3. Note that xFxy , AFxy , BFxy ,

CFxy , DFxy , and Fxy.des are defined to express (2.7) in both the x and y axes in a com-

pact form. The yaw angle is not considered in this equation since it can be controlled

independently.

2.1.2 Simplified Dynamics: First-order Model

Motivated by [37], the following first-order model approximates the input/output relation-

ship of attitude control as a first-order system where the time-delay and the response time

are considered implicitly.

d

dt
φ̃ = Ahφ̃+Bhφ̃des,

d

dt
θ̃ = Ahθ̃ +Bhθ̃des.

(2.9)

Again, the yaw angle of the vehicle is assumed to be controlled separately by a low-level

controller. Note that ∗̃ mean yaw-compensated values using the following equations:

R̃e3 = Re3

R̃ = Ry(θ̃)Rx(φ̃).
(2.10)
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2.1.3 Identification and Comparison of the Simplified Models

For identification of the two candidate dynamic models, circular trajectory flight experi-

ments are conducted with different periods. The trajectories enable the attitude controller

to send time-varying commands. The position and attitude tracking results of the multi-

rotor are shown in Fig. 2.1, Fig. 2.2, and Fig. 2.3.
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Figure 2.1: Circular trajectory (10 seconds period) tracking experiment result with (left)
position and (right) attitude histories of the multi-rotor. The red line denotes desired values,
and the black line denotes measurement data
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Figure 2.2: Circular trajectory (7.5 seconds period) tracking experiment result with (left)
position and (right) attitude histories the a multi-rotor. The red line denotes desired values,
and the black line denotes measurement data
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Figure 2.3: Circular trajectory (5 seconds period) tracking experiment result with (left)
position and (right) attitude histories of the a multi-rotor. The red line denotes desired
values, and the black line denotes measurement data
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For system identification of the time-delay model in (2.8), the parameter γh is estimated

by minimizing the following error metric:

γh = argmin
td

∑(
|φ(t)− φdes(t− td)|+ |θ(t)− θdes(t− td)|

)
. (2.11)

Fig. 2.4 shows the estimation result from the brute-force search, and the estimated γh has

the same value regardless of the trajectory periods.

Figure 2.4: Horizontal time-delay estimation using (2.11) where the red, green, and blue
lines are computed from the trajectories with 10, 7.5, and 5 seconds periods. The triangles
denote the estimated time-delays and the minimum errors.
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Figure 2.5: Simulation result from the system identification. The black and red lines denote
the measured and desired values, and the blue and green lines denote the simulation results
of the time-delay model and the first-order model, respectively. For the simulation results,
solid lines mean open-loop results while dashed lines with triangles mean closed-loop results.

Table 2.2: RMSE of the system identification for the candidate models.

open-loop closed-loop

time-delay 0.3883◦ 0.2722◦

first-order 0.5244◦ 0.0391◦
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For identification of the second candidate model, the first-order model in (2.9), the

subspace method is applied [38]. Since the input/output response of roll and pitch angles

is similar, the first-order model requires only two parameters, Ah and Bh. Identification is

conducted with the concatenated roll and pitch data where the offset at the conjunction is

removed.

Fig. 2.5 shows the simulation result from the identification. The RMSE of the candi-

date models is shown in Table 2.2. Since tendencies in roll and pitch angle are very similar

regardless of the periods of the desired trajectories, only pitch angle result with five sec-

onds period trajectory is shown here. Two kinds of the simulation are conducted for each

candidate model which are open-loop and closed-loop ones. For the open-loop simulation,

only initial condition is given, and integration is carried out with the desired values. On

the other hand, the measurement data is given at each time step for the closed-loop simu-

lation. Since state feedback of xFxy for the time-delay model cannot be done directly from

measurement values while feedback of φ̃ and θ̃ is possible for the first-order model by IMU

measurements, the following equation is used to compute xFxy .

F =

CFxyxFxy +DFxyFxy.des

Fz.des

 = fRe3. (2.12)

While open-loop simulation results show quite larger error, closed-loop simulation re-

sults show good performance. Especially, the first-order model shows more exact result

in the closed-loop simulation since the time-delay model requires magnitude of thrust for

feedback of xFxy state, which is not accurate. Compared to the original dynamics which has

eighteen state variables and four control inputs, the first-order model has fourteen state

variables and three control inputs. This simplification enables the trajectory generation

and optimal control algorithms to find solutions faster. Therefore, the first-order model is

used in this dissertation for the dynamics of the system. Note that the state vector and the
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control input vector first-order model are defined as:

x =
[
x>L q> v>L ω> φ̃ θ̃

]>
∈ R14×1,

u =
[
f φ̃des θ̃des

]>
∈ R3×1.

(2.13)

2.2 Trajectory Generation

For safe flight of the vehicle, an efficient planning algorithm which generates collision-

free trajectories fast enough is required. While only the load is considered in the previous

work [5], all the multi-rotor, cable, and load are considered for collision avoidance in this

dissertation. Moreover, the current state can be fully considered, which is also not possible in

[5]. An augmented Lagrangian method in [39] is employed to solve a nonlinear optimization

problem with the proposed obstacle avoidance constraints.

2.2.1 Cost Functional

To find an optimal trajectory given the current state, x(1), and the goal state, xf , the

following cost functional is designed to reach the goal state while regulating the state and

minimizing the control input:

JT
(
x(·),u(·)

)
=

1

2
‖x(NT +1)−xf‖2L+

1

2

NT∑
k=1

(
‖x(k)−xf‖2Q+‖u(k)−udes‖2R

)
dt, (2.14)

where ‖ ∗ ‖X =
√
∗>X∗ and NT is the number of control inputs to be optimized. The

matrices L,Q ∈ R14×14, and R ∈ R3×3 are weight matrices for the optimization. The state

and input trajectory are defined as follows:
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x(·) = {x(1),x(2), · · ·x(NT + 1)},

u(·) = {u(1),u(2), · · ·u(NT )}.
(2.15)

The desired input vector, udes =
[
(mM +mL)g 0 0

]>
, is a constant vector required to

maintain equilibrium when hovering with the load halted.

2.2.2 Collision Avoidance Constraints

Considering obstacles in trajectory generation as constraints is necessary for the safety.

As an example of the constraint, the system can be considered as a sphere, and a simple

constraint function keeping the sphere from colliding with the obstacles can be imposed,

which is widely used for the bare multi-rotor systems. However, for the system in this work,

such a constraint is very conservative since the enclosing sphere becomes bigger as the cable

length grows. To design a less-conservative constraint function, this dissertation considers

the system as three safety ellipsoids which enclose the multi-rotor, cable, and suspended

load, respectively. The following equation is used to express ellipsoids in this work:

E(p, Q) = {p+Q1/2v | v>v = 1}, (2.16)

where p is the center of the ellipsoid, and Q is a shape matrix decided by length and

direction of the principal axes.
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Figure 2.6: Coordinate frames and safety ellipsoids with the dimensions.
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The safety ellipsoids are shown in Fig. 2.6 with parameters depending on the state

variables and the physical size of the system. Each ellipsoid enclosing the multi-rotor,

cable, and load is defined as EM(pM , QM), EC(pC , QC), and EL(pL, QL). The parameters

for them are defined as follows:

pM = xL − q, QM = R̃>diag
(
r2M , r

2
M , (hM/2)2

)
R̃,

pC = xL −
1

2
q, QC = R>Cdiag

(
r2C , r

2
C , (l/2)2

)
RC ,

pL = xL, QL = diag
(
r2L, r

2
L, r

2
L

)
,

(2.17)

where the load is assumed to be enclosed by a sphere with a radius of rL. The matrix RC

is defined from the current cable direction as follows:

rC.3 = −q
l
,

rC.1 = rC.3 × e3,

rC.2 = rC.3 × rC.1,

RC =
[
rC.1 rC.2 rC.3

]
.

(2.18)

This kind of safety ellipsoid enclosure expands to represent obstacles also. This work

assumes that the position and shape of the obstacles are known in advance because detection

of them is beyond the scope of the dissertation. Therefore, the obstacles are expressed with

EO.i(pO.i, QO.i) for i = 1 · · ·NO where NO is the number of the obstacles.

Safety is assured by eliminating intersection between the ellipsoids enclosing the sys-

tem and the ellipsoids enclosing the obstacles. Existence of intersection of two ellipsoids,

E1(p1, Q1) and E2(p2, Q2), can be checked using Minkowski sum, and it does not exist if

the following condition is satisfied:

0 /∈ E1 ⊕ (−E2). (2.19)
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Since Minkowski sum of two ellipsoids is usually not an ellipsoid, it requires approximation

to find an analytic solution and to check the condition (2.19). The trace minimization

approach in [40] is adopted to find the smallest ellipsoid encompassing the Minkowski

sum. The approximated ellipsoid, Ê1,2(p̂1,2, Q̂1,2), can be analytically computed using the

following equations:

E1 ⊕ (−E2) ⊂ Ê1,2(p̂1,2, Q̂1,2)

p̂1,2 = p1 − p2

Q̂1,2 = Q1

(
1 +

√
tr(Q2)√
tr(Q1)

)
+Q2

(
1 +

√
tr(Q1)√
tr(Q2)

)
.

(2.20)

Therefore, the safety condition (2.19) can be expressed as a constraint function with the

approximated ellipsoid as follows:

p̂>1,2Q̂
−1
1,2p̂1,2 − 1 > 0, (2.21)

and collision avoidance constraints used in trajectory generation are defined as follows:

p̂>M,O.iQ̂
−1
M,O.ip̂M,O.i − 1 > 0

p̂>C,O.iQ̂
−1
C,O.ip̂C,O.i − 1 > 0

p̂>L,O.iQ̂
−1
L,O.ip̂L,O.i − 1 > 0

for i = 1 · · ·NO. (2.22)

Note that p̂i,j and Q̂i,j are computed from pi, pj, Qi, and Qj using the same procedure in

(2.20).
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2.2.3 Augmented Lagrangian Method

For the optimization with the designed cost functional and the proposed constraints, the

augmented Lagrangian method with the differential dynamic programming (DDP) ap-

proach is adopted. The following minimization problem is what needs to be solved for

the trajectory generation:

minimize
u(·)

JT (x(·),u(·))

subject to x(k + 1) = f(x(k),u(k)) for k = 1 · · ·NT ,

x(1) = x0,

cM.i(x(k)) > 0 for k = 1 · · ·NT , i = 1 · · ·NO,

cC.i(x(k)) > 0 for k = 1 · · ·NT , i = 1 · · ·NO,

cL.i(x(k)) > 0 for k = 1 · · ·NT , i = 1 · · ·NO,

(2.23)

where the first constraint is for the dynamic feasibility discretized from the proposed dy-

namic model, (2.1) and (2.9). The second one is for the initial condition and the last three

terms are for collision avoidance in (2.22) for each time step and obstacle. The augmented

Lagrangian method transforms the original constrained optimization into unconstrained

optimization by adding both the penalty terms and the Lagrangian multiplier terms as

follows:

minimize
u(·)

La = JT (x(·),u(·)) +

NT∑
k=1

{
c>(x(k))Iµkc(x(k)) + λ>k c(x(k))

}
,

(2.24)

where c(x(k)), λk ∈ R3NO are the vertical concatenation of the collision avoidance con-

straints and Lagrange multipliers at the kth time step, respectively. The matrix Iµk ∈

R3NO×3NO is a diagonal matrix whose diagonal terms are defined as:
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Iµk(i, i) =

µ
i
k if ci(x(k)) < 0 or λik > 0

0 otherwise

, (2.25)

where ci(x(k)) and λik are the ith elements of c(x(k)) and λk, respectively.

The unconstrained optimization problem in (2.24) with initial values of µ and λ is solved

by iterative Linear Quadratic Regulation (iLQR) [41]. After convergence, the constraint

functions are checked, and µ and λ are updated if any magnitude of constraint violation

is larger than a threshold value. While µ is updated according to a predefined schedule, λ

value is updated using the first-order necessary condition for optimality as follows:

λik ← λik − µikci(x(k)). (2.26)

The detailed algorithm for the optimization is explained in Algorithm 1. The unconstrained

problem, (2.24), is solved using the iLQR method (line 3 ). After convergence, the constraint

violation is checked. If the ith constraint for the kth time step is not violated more than a

threshold value κik (line 7 ), the Lagrangian multipliers are updated and the threshold value

is reduced (lines 8-9 ). If the constraint violates more than the threshold value, the penalty

term is increased (line 11 ). After the outer loop update, an unconstrained problem with

the updated parameters are optimized again. These procedures of inner loop optimization

and outer loop update are repeated until all the constraints are satisfied (line 2 ).
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Algorithm 1 Augmented Lagrangian method [39]
Input: Iµ, λ, κ, x(1), un(·)
Output: J∗, x(·)∗, u(·)∗

1: utemp(·) = un(·)
2: while max(c) > εc do
3: Optimize the unconstrained problem (2.24) (inner loop)

→ {xtemp(·),utemp(·)} = iLQR(x(1),un(·), Iµ, λ, κ) [41]
4: Update the penalty terms and Lagrangian multipliers (outer loop)
5: for k = 1, · · · , NT + 1 do
6: for i = 1, · · · , 3 do Three obstacle avoidance constraints
7: if ci(x(k)) < κik then
8: λik = λik − µikci(x(k))
9: Reduce κik

10: else
11: Increase µik
12: end if
13: end for
14: end for
15: end while
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2.3 Optimal Control

An optimization-based controller is adopted to track the generated trajectory. Compared

to the conventional ones, this kind of controller can consider the state fully at once without

the cascade structure. Moreover, the priority of the state and input variables in tracking

can be modulated using gain matrices. The optimal control is computed using the following

cost functional:

JC
(
x(·),u(·)

)
=

1

2
‖x(NC + 1)− x∗(NC + 1)‖2L

+
1

2

NC∑
k=1

{
‖x(k)− x∗(k)‖2Q + ‖u(k)− udes‖2R

}
dt

= g(x(NC + 1)) +
1

2

NC∑
i=1

{
h(x(·),u(·))

}
(2.27)

where NC is a control horizon calculated by subtracting time-delay in trajectory generation

from NT . The desired trajectory, x∗(·), is also front-truncated from the generated collision-

free trajectory by the amount of the time-delay, which is implemented to compensate and

minimize the effect of computation time in trajectory generation. To solve the optimal

control problem, the sequential linear quadratic (SLQ) solver is implemented in a model

predictive control (MPC) manner.

2.3.1 Sequential Linear Quadratic Solver

A stable and fast optimal control solver is required to compute an optimal control problem

at each time step. The sequential linear quadratic (SLQ) solver is implemented whose speed

and performance has been previously demonstrated in agile flight experiments [12].

The detailed algorithm of SLQ is shown in Algorithm 2. At first, the current state and

nominal control input are given for initialization. After forward simulation with the nominal

input (line 2 ), the dynamics is linearized along the computed nominal trajectory (line 3 ).

Here, analytic derivatives are used instead of numerical ones to reduce computation time.
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Symbolic expressions are computed in MATLAB and the result is embedded in the solver.

Then, the cost functional is quadratized to compute gradients of the cost functional (line 4 ).

If the form of the designed cost functional are similar to the quadratic function, the analytic

derivatives can easily be computed. With the linearized dynamics and the quadratized cost

functional, it is possible to find a feedforward input, l(k), and a feedback gain, K(k), by

solving backward Riccati-like equations (line 5 ). Since the dynamics is linearized, using

the feedforward input and the feedback gain directly is not appropriate since there exist

linearization error. Iteratively finding a lower cost by line search is a good method which

can reduce the linearization error by finding the proper magnitude of the update (lines

6-13 ). Also, it can save time and reduce the number of iterations of SLQ. An exponentially

decreasing values of the step size, α, is used with a scale parameter kline. After completing

the line search, if the new cost does not decrease more than the predefined value, stopSLQ,

the optimization is judged to be converged (lines 14-19 ).
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Algorithm 2 SLQ
Input: x(1), un(·)
Output: J∗, x(·)∗, u(·)∗, K(·)∗, l(·)∗, α∗

1: while (iterSLQ <= maxSLQ) {SLQ loop} do
2: Simulate the system forward with the dynamics

→ xn(1),xn(2), · · · ,xn(NC),xn(NC + 1)
3: Linearize the dynamics along xn

→ δx(k + 1) = δf(x(k),u(k)) ≈ A(k)δx(k) +B(k)δu(k)
4: Quadratize the cost functional J

(
x(k) + δx(k),u(k) + δu(k)

)
→ J ≈ s0(NC + 1) + δx>(NC + 1)s1(NC + 1) + 1

2δx
>(NC + 1)S2(NC + 1)δx(NC + 1)

+
∑NC

k=1

(
q0(k) + δx>(k)q1(k) + 1

2δx
>(k)Q2(k)δx(k)

+δu>(k)r1(k) + 1
2δu

>(k)R2(k)δu(k)

)
dt

where s1(NC + 1) = ∂g
∂x

∣∣∣>
NC+1

, S2(NC + 1) = ∂g2

∂x2

∣∣∣
NC+1

,

q1(k) = ∂h
∂x

∣∣∣>
k
, Q2(k) = ∂h2

∂x2

∣∣∣
k
, r1(k) = ∂h

∂u

∣∣∣>
k
, R2(k) = ∂h2

∂u2

∣∣∣
k

5: Minimize the cost functional by solving backward
→ s1(k − 1) = q1(k − 1) +A>(k − 1)s1(k)−G>H−1g

S2(k − 1) = Q2(k − 1) +A>(t− dt)S2(k)A(k − 1)
−G>H−1G

K(k − 1) = −H−1G
l(k − 1) = −H−1g

where G = B>(k − 1)S2(k)A(k − 1)
H = R2(k − 1) +B>(k − 1)S2(k)B(k − 1)
g = r1(k − 1) +B>(k − 1)s1(k)

6: while (iterline ≤ maxline) {line search loop} do
7: α = 10−kline(iterline−1)/(maxline−1)

8: Simulate the system forward
→ utemp(k) = un(k) + αl(k) +K(k)

(
xtemp(k)− xn(k)

)
xtemp(k + 1) = f

(
xtemp(k),utemp(k)

)
9: Compute the temporary cost

→ Jtemp = J
(
xtemp(·),utemp(·)

)
10: if (Jtemp ≤ Jold) then
11: break with {Jtemp,xtemp(k),utemp(k),K(k), αl(k)}
12: end if
13: end while
14: if (Jnew ≥ Jold − stopSLQ) then
15: return {Jnew, xnew(·), unew(·), K(k), l(·), α}
16: else
17: Jold = Jnew,un(k) = unew(k)
18: iterSLQ = iterSLQ + 1
19: end if
20: end while
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2.3.2 Model Predictive Control

In this section, customized MPC settings are addressed which increase stability and agility

in experiments. In reality, since there exist various disturbances and errors unlike simu-

lations, the system cannot be controlled perfectly. For continuous feedback control, MPC

is implemented. However, MPC algorithms tend to reduce magnitudes of control input as

vehicle approaches final desired state, and such small control input might be unable to con-

trol the system stably due to disturbances or actuator delay. The proposed MPC algorithm

is described in detail in Algorithm 3.

By changing the length of the time horizon adaptively, it is possible to solve the above-

mentioned issue of decreasing input magnitude when approaching the final desired state.

By changing the time horizon proportionally to the distance from the load to the final

position (line 1 ), the control input can maintain appropriate magnitudes. Conversely, the

length of time horizon decreases as the distance to final position becomes closer. If the time

horizon is too long, the computation time is lengthened, and if it is too short, the solution

becomes less stable. These problems are eliminated by empirically setting the upper and

lower limits to length of time horizon (lines 2-6 ).

With the computed time horizon and the final desired state, a stable control input is

computed using a nominal controller. For a nominal controller, the geometric controller

[42] is used whose stability is verified. Using the control input from the nominal controller

(lines 7-10 ) as a starting point, optimal control input and trajectory can be computed by

the SLQ solver (line 11 ). For the first optimization, the geometric controller computes the

nominal control input to follow a simple polynomial trajectory avoiding obstacles (line 8 ).

After one convergence, the previous SLQ result is used for warm start (line 9 ). Since the

previous result can avoid obstacles, giving it to the nominal controller enables generating

collision-free nominal trajectory with a near-optimal control. This method not only reduces

the computation time but also increases stability since the previous SLQ is near the optimal

result.
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Algorithm 3 MPC
Input: tnow, x(tnow)
Output: J∗, x(·)∗, u(·)∗

1: Compute time horizon length adaptively

→ df =

√(
xL −

[
xLf

yLf
zLf

]T
)T (xL −

[
xLf

yLf
zLf

]T )
H = round(df × kadaptive)

2: if H > Hmax then
3: H = Hmax

4: else if H < Hmin then
5: H = Hmin

6: end if
7: Find a nominal stable control input
8: if (At the beginning) then
→ un(·) = nominalController(x(1), xf )

9: else if (Afterward) then
→ un(·) = nominalController(x(1), x(·)∗previous)

10: end if
11: Solve SLQ
→ {J∗, x(·)∗, u(·)∗, K(·)∗, l(·)∗, α} = SLQ(x(1),un(·)

)
12: Repeat until the system meets the final desired state
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3
Multiple Multi-rotors with a Suspended Load

This chapter addresses the system composed of multiple multi-rotors with a suspended load.

Sine this system has more number of states and control inputs increasing proportionally

to the number of the vehicle, applying the proposed algorithms in Chapter 2 results in

a high computational load. Not using the large dynamic model as it is, this dissertation

utilizes the differential flatness to reduce the number of the optimization variables. For

the further efficiency, an entire optimization problem is parameterized and decomposed

into two sub-problems which are for the load trajectory and tension histories, respectively.

Refer to Fig. 1.2(b) for the flow chart of the chapter.

3.1 Problem Setting

3.1.1 Dynamics

Various dynamic models are used to express the internal effects of the tension of the cables

[24, 25, 30]. The model in [24] is derived using the Newtonian mechanics with the explicit

cable tension terms. Since tension is an internal force that cannot be known prior to exerting
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control inputs, Lagrangian mechanics can be used to express the motion without the explicit

cable tension terms as derived in [25, 30]. While [30] assumes cable tautness, [25] derives a

dynamic model using flexible cables without the tautness assumption.

In this paper, since the cable tensions are the optimization variables and tautness can

be guaranteed in the trajectory generation step through constraints, the model in [24] is

used:

(vehicle)
d

dt
xi = ẋi,

d

dt
v̇i =

1

mi

(
fiRie3 −mige3 − Tiqi

)
,

d

dt
Ri = RiΩ̂Bi ,

d

dt
ΩBi = J−1i

(
Mi −ΩBi × JiΩBi

)
,

(load)
d

dt
xL = ẋL,

d

dt
v̇L =

1

mL

( nM∑
i=1

Tiqi −mLge3

)
.

(3.1)

The definition of the variables is listed in Table 3.1, and a three-vehicle system is illustrated

in Fig. 1.1(b), i.e., nM = 3. Note that, compared to [24], the only difference is that the sign

of qi is flipped in this work for intuitive interpretation during the convexification process.

The state and the input vector are defined as follows:

x =
[
x>L v

>
L x

>
M v>M Φ>M Ω>M

]> ∈ R6+12nM ,

u =
[
f>M M>

M

]> ∈ R4nM ,
(3.2)

where ∗M = [∗>1 ∗>2 · · · ∗>nM ]> is a concatenated vector of elements for all the multi-rotors.

This dynamics cannot be directly used since the tension vectors, TM , require additional

sensors to be measured. The motion of the load and the multi-rotor is innately coupled and

the dynamic model is highly non-linear with a large number of states and inputs, which

results in difficulties to secure short computation time for optimization.
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Table 3.1: Nomenclature of Chapter 3

Notation Meaning

nx, xu, nM , nB, nC , nζ ,

nν ∈ R1

The number of states, inputs, multi-rotors, trajectory

segments, control points, flat outputs, and vertices of

SFCs

I Inertial frame

Bi Body-fixed frame of the ith multi-rotor

xI , yI , zI ∈ R3 x, y, z axes of I

xBi , yBi , zBi ∈ R3 x, y, z axes of Bi
xL,xi ∈ R3 Position of the load and the ith multi-rotor expressed

in I

xM ∈ R3nM Concatenated positions of the multi-rotors

vL,vi ∈ R3 Velocity of the load and the ith multi-rotor expressed

in I

vM ∈ R3nM Concatenated velocities of the multi-rotors

Ti ∈ R1 Tension magnitude of the ith cable

qi ∈ S2 Direction of the ith multi-rotor with respect to the load

expressed in I

Ti ∈ R3 Tension vector of the ith multi-rotor with respect to

the load expressed in I

TM ∈ R3nM Concatenated tension vectors of the multi-rotors

Ri ∈ SO(3) Rotation matrix of the ith multi-rotor from I to Bi

Φi =
[
φi θi ψi

]>
∈ R3 Roll, pitch, and yaw angle of the ith multi-rotor

ΦM ∈ R3nM Concatenated attitudes of the multi-rotors

ΩBi =
[
pi qi ri

]>
∈ R3 Angular velocity of the ith multi-rotor expressed in Bi

ΩIi ∈ R3 Angular velocity of the ith multi-rotor expressed in I

ΩM ∈ R3nM Concatenated angular velocities of the multi-rotors
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fi ∈ R1 Thrust input of the ith multi-rotor

fM ∈ RnM Concatenated thrusts of the multi-rotors

Mi ∈ R3 Moment input of the ith multi-rotor expressed in Bi
MM ∈ R3nM Concatenated moment inputs of the multi-rotors

x ∈ Rnx States of the system

u ∈ Rnu Inputs of the system

ζ ∈ Rnζ Flat outputs of the system

ηL, ηT ∈ R1 Maximum differentiation order of the flat outputs cor-

responding to the load and the tension for the differ-

ential flatness

dL, dT ∈ R1 Degree of the Bernstein polynomial corresponding to

the load and the tension

Z ∈ R3(ηL+1)+3(nM−1)(ηT+1) Flat outputs and their derivatives to be optimized

g ∈ R1 Gravitational constant

l ∈ R1 Length of the cables

mi, mL ∈ R1 Mass of the ith multi-rotor and the load

Ji ∈ R3×3 Inertia matrix of the ith multi-rotor

ei ∈ R3 Unit vector whose ith element is 1
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3.1.2 Differential Flatness

The system with multi-rotors and a suspended load is proved to be differentially flat [24].

While both the configuration with a point-mass load or a rigid-body load are proved to

have the differential flatness, this dissertation focuses on only the point-mass type.

A system is said to be differentially flat if the state vector, x ∈ Rnx , and the input

vector, u ∈ Rnu , can be expressed by flat outputs, ζ ∈ Rnζ , which are chosen as follows:

ζ =
[
x>L T

>
2 T>3 · · · T>nM ψ

>
M

]>
∈ Rnζ , (3.3)

where ψM = [ψ1 · · · ψnM ]> ∈ RnM is a concatenated vector of yaw angles [24]. Note that

the first tension vector, T1, is not included in the flat outputs. The detailed derivation of

the differential flatness is shown in Appendix A.

Since the yaw angle of a multi-rotor can be easily controlled independently by an efficient

attitude controller, it is assumed that the yaw angles of the multi-rotors are maintained at

zero, which results in a reduction in the number of the flat outputs to be optimized, from

3 + 3(nM − 1) + (nM − 1) to 3 + 3(nM − 1).

3.1.3 Optimization Problem

To generate trajectories quickly, trajectory optimization is performed using not the original

state x and the input u, but the flat output ζ. Then, the dynamics of ζ can be considered

with an affine function. For consideration of the constraints, Bernstein polynomials are used

which have a convex hull property. Additionally, the polynomials can parameterize the con-

tinuous trajectory using a discrete number of control points. By performing convexification

for the non-convex collision constraints, this dissertation proposes a convex optimization

algorithm that can be solved efficiently. Refer to Appendix B for the detailed definition

and the properties of Bernstein polynomials.

As stated in Appendix A, the flat output xL and Ti need to be differentiated at least
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four and six times to express the states and the inputs of the original system, i.e. ηL = 6

and ηT = 4. It results in 3× (ηL + 1) + 3(nM − 1)(ηT + 1) optimization variables which is

expressed as

Z =
[
Z>L Z

>
T

]>
, (3.4)

where ZL =
[
x>L (x

(1)
L )> · · · (x

(6)
L )>

]>
and ZT =

[
Z>2 Z

>
3 · · · Z>nM

]>
. Zi is defined as

Zi =
[
T>i (T

(1)
i )> · · · (T

(4)
i )>

]>
and ∗(η) is the ηth derivative of ∗.

Cost Functional

The aim of the trajectory optimization is minimizing the following cost functional:

J(ZL(t),ZT (t)) = JL(ZL(t)) + JT (ZT (t)). (3.5)

JL(ZL(t)) = 1
2

∫ tf
t0

∥∥∥Z(6)
L (t)

∥∥∥2 dt and JT (ZT (t)) = 1
2

∑nM
i=2

{∫ tf
t0

∥∥∥T (4)
i (t)

∥∥∥2 dt} indirectly

minimize the energy consumption by reducing the magnitude of the control input.

Trajectory Parameterization

For optimization, the trajectories are parameterized using piece-wise Bernstein polynomials.

To decide the degrees of the polynomials, the following Euler-Lagrange equation is used:

∂L
∂fL
− d

dt

(
∂L
∂ḟL

)
+ · · ·+ (−1)η

dη

dtη

(
∂L
∂f

(η)
L

)
= 0, (3.6)

under fixed boundary conditions for fL and its derivatives of orders up to η − 1.

L
(
t, fL, ḟL, · · · , f (η)

L

)
is a Lagrangian of the cost functional. As an example, fL = xL(t)

and L =
(
x
(6)
L (t)

)2
for the x-component load trajectory based on (3.5). Then, (3.6) can be

simplified with η = ηL = 6 as follows:

(−1)6 · d
6

dt6

(
x
(6)
L (t)

)
= x

(12)
L (t) = 0, (3.7)
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which can be satisfied with the polynomials of degree dL = 11. The same procedures are

used for the tension histories, and (3.6) is satisfied with η = ηT = 4 and dT = 7.

Then, the trajectories of the load and the tensions can be expressed as follows where

only the x-components are shown as examples:

xL(t) =



dL+1∑
j=1

c1Lx.jBdL.j(τ1) for t ∈ [t0, t1]

...
...

dL+1∑
j=1

cnBLx.jBdL.j(τnB) for t ∈ [tnB−1, tnB ] ,

(3.8)

Tix(t) =



dT+1∑
j=1

c1ix.jBdT .j(τ1) for t ∈ [t0, t1]

...
...

dT+1∑
j=1

cnBix.jBdT .j(τnB) for t ∈ [tnB−1, tnB ] ,

(3.9)

which are nB-segment polynomials with one second duration for each segment, i.e., t0 = 0

and tk+1 − tk = 1. The control points are the optimization variables, and they are defined

as follows:

cL =
[
c>Lx c

>
Ly c

>
Lz

]> ∈ R3nB(dL+1),

cL∗ =
[
(c1L∗)

> (c2L∗)
> · · · (cnBL∗ )>

]> ∈ RnB(dL+1),

ckL∗ =
[
ckL∗.1 c

k
L∗.2 · · · ckL∗.dL+1

]> ∈ RdL+1.

(3.10)

cT =
[
c>2 c

>
3 · · · c>nM

]> ∈ R3nB(dT+1)(nM−1),

ci =
[
c>ix c

>
iy c

>
iz

]> ∈ R3nB(dT+1),

ci∗ =
[
(c1i∗)

> (c2i∗)
> · · · (cnBi∗ )>

]> ∈ RnB(dT+1),

cki∗ =
[
cki∗.1 c

k
i∗.2 · · · cki∗.dT+1

]> ∈ RdT+1.

(3.11)

Then, with the defined trajectories and control points, the cost functional (3.5) can be
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parameterized as follows:

J(ZL(t),ZT (t)) = J(cL, cT ) = JL(cL) + JT (cT ),

JL(cL) = c>Ldiag(HL, HL, HL)cL,

JT (cT ) =

nM∑
i=2

{
c>T diag(HT , HT , HT )cT

}
.

(3.12)

HL ∈ SnB(dL+1)
+ and HT ∈ SnB(dT+1)

+ can easily be computed using the definition of the cost

functional.

3.1.4 Problem Formulation

With the constraints for boundary conditions and collision avoidance, the following trajec-

tory generation problem can be formulated:

Problem 1. Entire optimization

minimize J(cL, cT ) = JL(cL) + JT (cT )

subject to AL.boundarycL = bL.boundary,

AT.boundarycT = bT.boundary,

AL.continuitycL = bL.continuity,

AT.continuitycT = bT.continuity,

gL(cL) ≥ δL,

gT (cL, cT ) � δT ,

gI(cL, cT ) � δI ,

where the first and second constraints are the boundary conditions which encode the

following example equation of the x-component of the load for all axes of the load and
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tension:

dL+1∑
j=1

c1Lx.jB
(η)
dL.j

(0) = x
(η)
L.initial for η = 0 · · · ηL − 1,

dL+1∑
j=1

cnBLx.jB
(η)
dL.j

(1) = x
(η)
L.final for η = 0 · · · ηL − 1.

(3.13)

For continuity of the trajectories including the derivatives, continuity constraints are also

added which are the third and fourth ones. One example for x-component of the load

trajectory is as follows:

dL+1∑
j=1

ckLx.jB
(η)
dL.j

(1) =

dL+1∑
j=1

ck+1
Lx.jB

(η)
dL.j

(0)

for k = 1 · · ·nB − 1 and η = 0 · · · 5.

(3.14)

The fifth constraint is for obstacle avoidance of the suspended load which encodes ‖xL − xO‖

≥ δL. The last two constraints are for obstacle avoidance of the multi-rotors and inter-agent

collision avoidance between them which encodes ‖xi − xO‖ ≥ δT and ‖xi1 − xi2‖ ≥ δI , re-

spectively. Note that, as shown (A.1), the position of the first multi-rotor requires the load

acceleration, which is the reason why gT and gI depend on cL.

3.1.5 Decomposed Optimization

As shown in Problem 1, the cost functional is decoupled as two terms JL and JT . The

boundary and continuity constraints are also separated, and the only coupled terms are gT

and gI . Then, this problem can be efficiently solved with two sub-problems after decom-

position: load trajectory generation and tension history generation. The load trajectory

for cL is solved first and the tension histories for cT are solved fixing cL. Since clearance

constraints for the multi-rotors are considered in load trajectory generation, the loss of

optimality from the decomposition is not critical.
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3.2 Load Trajectory Generation

This section addresses a trajectory generation problem for the suspended load which is the

first sub-problem of Problem 1. While all the cost functional, boundary constraint, and

continuity constraint are convex functions of cL, the constraint for load obstacle avoid-

ance, gL(cL), is not. For formulation of a convex optimization problem which can be easily

solved by many solvers, the non-convex constraint is convexified by generating convex re-

gions called safe flight corridors (SFCs) [43]. Since generation of SFCs requires initial guess

of the trajectory, a sampling-based trajectory initialization method is proposed in the fol-

lowing subsection, and a convexification method and the resultant optimization problem

are addressed.

3.2.1 Trajectory Initialization

Since a good initial guess of the trajectory is required to generate SFCs, an efficient

sampling-based initialization is proposed which is shown in Algorithm 4.
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Algorithm 4 Sampling-based trajectory initialization (Load)

Input: xinit, yinit, dB , nB , nsample, H, AKKT , bKKT (xW ), O, dt
Output: c∗x.sample, c

∗
y.sample

1: Set the sampling area
2: for k = 1 · · ·nB − 1 do
3: εk = cdistance ∗min distance

(
O, xkinit, y

k
init

)
4: end for
5: Perform sampling
6: J̄temp =∞
7: for s = 1 · · ·nsample do
8: for k = 2 · · ·nB − 1 do
9: xksample = xkinit + Sk where Sk ∼ U(−εk, εk)

10: yksample = ykinit + Sk where Sk ∼ U(−εk, εk)
11: end for
12: cx.sample = A−1KKT bKKT (xsample)
13: cy.sample = A−1KKT bKKT (ysample)
14: xtraj = compute trajectory(cx.sample, dB , nB , dt)
15: ytraj = compute trajectory(cy.sample, dB , nB , dt)
16: if not check collision(xtraj ,ytraj , O) then
17: J̄x.temp = c>x.sampleHcx.sample
18: J̄y.temp = c>y.sampleHcy.sample
19: if J̄x.temp + J̄y.temp < J̄temp then
20: c∗x.sample = cx.sample
21: c∗y.sample = cy.sample
22: J̄temp = J̄x.temp + J̄y.temp
23: end if
24: end if
25: end for

The algorithm receives (1) centers of samples xinit and yinit, (2) polynomial parameters

dB and nB, (3) sampling number nsample, (4) cost matrix H, (5) KKT system (AKKT ,

bKKT (xW )), (6) occupancy matrix O, and (7) time step dt. The centers of samples are set

using A∗ graph search method since it provides the shortest collision-free paths quickly. As

shown in Fig. 3.1(b), A∗ search results in paths with an arbitrary number of nodes which is

drawn with asterisk markers. To fit the number of the nodes with the number of the joints

of the polynomial segments, the A∗ search result is uniformly interpolated to match with

the number of polynomial segments which is depicted with triangle markers. The results

xinit, yinit ∈ RnB−1 are sent as one of the inputs. The degree of the polynomial and the

cost matrix are set as dB = dL and H = HL.
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Figure 3.1: Procedures for trajectory generation of the suspended load. (a) The initial and
desired positions of the load with the obstacle information. (b) A∗ search result and the
interpolated path with the safe margin shaded in gray.
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Since assigning hard waypoints to the segment joints incurs high-cost samples, the

trajectory samples are generated with soft waypoints. As an example, the cost functional

for the x-component is defined as

JLx.w(cLx,xW )

= w

nB−1∑
k=1

{ dL+1∑
j=1

(
ckLx.jBdL.j(1)

)
− xkW

}2

= w

nB−1∑
k=1

{
ckLx.dL+1 − xkW

}2

= wc>LxM
>McLx − 2wx>WMcLx + wx>WxW ,

(3.15)

where xW = [x1W · · ·x
nB−1
W ]> ∈ RnB−1 is the waypoints for the x-axis, and w is the weight

parameter. M ∈ R(nB−1)×nB(dB+1) is a mapping matrix from cLx to [c1Lx.dL+1 · · · c
nB
Lx.dL+1]

>.

Since the last term in (3.15) is not related to the optimization variables, the resultant cost

functional which is the sum of an input minimization term and the soft waypoint term can

be expressed as a quadratic function of cLx as follows:

c>Lx(HL + wM>M)cLx − 2wx>WMcLx. (3.16)

When the KKT condition is applied to the cost functional with the affine boundary

constraints, ALx.boundarycLx = bLx.boundary, and the continuity constraints, ALx.continuitycLx =

bLx.continuity, the optimization problem can be solved analytically without iteration using

the KKT system as follows: c∗Lx
λ∗Lx

 = A−1KKTbKKT ,

AKKT =

HL + wM>M A>Lx

ALx 0

 , bKKT =

wM>xW

bLx

 ,
(3.17)
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where c∗Lx is the optimal solution, and ALx = [A>Lx.boundary A>Lx.continuity]
> and bLx =

[b>Lx.boundary b
>
Lx.continuity]

>. The KKT systems for the x and y axes are sent to Algorithm 4

as a part of the inputs.

Given the input data, Algorithm 4 sets the sampling area using the A∗ result xinit,

yinit ∈ RnB+1 (lines 1-4 ). The min distance function computes the minimum distance

between [xkinit y
k
init]

> and the obstacles with a positive scaling factor cdistance at the kth

segment. After that, the sampling is performed based on the sampling range, εk. With the

uniformly distributed samples (lines 9-10 ), the control points minimizing (3.16) with the

KKT system (lines 12-13 ) can be computed. The trajectory corresponding to the control

points is easily computed using (3.8) with the fixed time step, dt (lines 14-15 ). Each

trajectory is checked for collision, and if it is safe and has a lower overall cost compared

with the saved minimum cost, Jtemp, the new control points and the cost are stored (lines

16-24 ). The result of the algorithm is shown in Fig. 3.2.

Figure 3.2: Sampling-based initialization. The trajectories where collision exist are depicted
in translucent orange, and the collision-free trajectory samples are in solid red. The sample
with the lowest cost is denoted in a black line with the circle control points. SFCs are
generated based on the lowest-cost-sample and depicted in the blue area.
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3.2.2 Convexification

Since the soft waypoint constraints in the sampling process deteriorate the quality of the

trajectory by deviating it unnecessarily into the waypoints, it is necessary to optimize the

result without the soft waypoints. The convexification method proposed in [43] is applied

where safe flight corridors (SFCs) are generated for each segment of the position trajec-

tory. The method convexifies the non-convex collision avoidance constraints, and a convex

optimization problem is formulated to generate collision-free trajectories stably and fast.

Fig. 3.2 shows the SFCs generated based on the initialized trajectory.

In addition to collision avoidance of the load, clearance for the multi-rotors needs to

be considered since the acceleration of the load is decided by the tension vectors and the

multi-rotors are located along the directions of the cables. ĉkLx.acc and ĉkLy.acc are defined

as representations of the control points for the acceleration trajectory of each axis, and

ĉLx.clearance and ĉLx.clearnace as the control points for the polynomials xL(t) + δmax
amax

ẍL(t)

and xL(t) + δmax
amax

ẍL(t) where δmax is the maximum horizontal displacement of the multi-

rotor from the load computed in the following paragraph. As derived in Appendix B.4, the

acceleration control points can be computed using the following equation:

ĉkL∗.acc = S−1BdL−2
S
B

(2)
dL

ckL∗, (3.18)

and the control points for the clearance can be computed as

ĉkL∗.clearance = ckL∗ +
δmax
amax

S−1BdL

 02

SBdL−2
ĉkL∗.acc

 . (3.19)

Note that the equation assumes a linear relationship between displacement and accelera-

tion. This approximation is acceptable since the collision avoidance constraints are handled

tightly in Section 3.3.
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Figure 3.3: Multi-rotor configurations for computation of the clearance constraints.

The clearance can be set depending on the number of vehicles. A system with three

multi-rotors is handled in this work as shown in Fig. 3.3. The maximum acceleration and

tension boundaries are computed as the following procedures. First, the minimum vertical

tension required to maintain hovering is computed which is Tmin = mLg/(3sinβmax) with

βmax = acos(δI/
√

3l). δI is the minimum distance between multi-rotors to avoid collision.

This configuration is shown in Fig. 3.3(a). Second, a constraint on the minimum beta

angle, βmin, is imposed since low beta angles result in very high tension to cancel out

the gravitational force on the suspended load. To compute the maximum acceleration,

two multi-rotors are located along the same direction with the minimum distance and the

minimum beta angle, δI and βmin, while the other positioned in the opposite direction

with the maximum beta angle as shown in Fig. 3.3(b). The magnitude of the tension is

set to maintain constant altitude with the same contribution from each multi-rotor to the

mass of the load. Then, the maximum tension in this configuration with the minimum

beta angle is Tmax = mLg/(3sinβmin). The maximum acceleration can also be computed as
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amax =
(
2Tmaxcosβmincos(

θcollision
2

)− Tmincosβmax
)
/mL where θcollision is the angle between

two cables when the multi-rotors are placed with the distance δI . Finally, the maximum

displacement of the multi-rotors from the load in this configuration is δmax = lcosβmin.

3.2.3 Optimization sub-problem

With the consideration of the SFCs and the clearance constraints, the resultant subproblem

is formulated as follows:

Problem 2. Load optimization

find c∗L = argmin
cL

JL(cL)

subject to AL.boundarycL = bL.boundary,

AL.continuitycL = bL.continuity,

xkSFC � ckLx � xkSFC for k = 1, · · · , nB,

yk
SFC
� ckLy � ykSFC for k = 1, · · · , nB,

−amax � ĉkLx.acc � amax for k = 1, · · · , nB,

−amax � ĉkLy.acc � amax for k = 1, · · · , nB,

xkSFC � ĉkLx.clearance � xkSFC
for k = 1, · · · , nB,

yk
SFC
� ĉkLy.clearance � ykSFC

for k = 1, · · · , nB,

where � is the generalized inequality for element-wise comparison.

The first two constraints are the boundary and continuity constraints. In the third

and fourth constraints, xkSFC and xkSFC are the x-axis boundaries of the SFC for the kth

segment, and the y-axis boundaries are indicated by yk
SFC

and ykSFC . The fifth and sixth

constraints are about the maximum acceleration of the load. The last two constraints denote

the clearance requirements for the multi-rotors with the threshold value amax.

Fig. 3.4 shows the resultant trajectory of Problem 2, x∗L(t) and y∗L(t) which can be

52



computed using c∗L after optimization. The arrow denotes the normalized acceleration,

δmax
amax

ẍ, and the clearance for the multi-rotors is secured in the direction of the acceleration.

The z-axis trajectory, z∗L(t) can be easily computed using the KKT system in (3.17) with the

boundary and continuity constraints in addition to setting w = 0. For flight area constraints

like positiveness or maximum of the altitude, the generated SFCs can be expanded or shrank

along the z direction.

Figure 3.4: Optimized trajectory with the consideration of the clearance for the multi-rotors
and maximum acceleration constraints.

53



3.3 Tension History Generation

Now that optimization variables for the load are optimized in the previous subsection, the

remaining variables are for the cable tension histories. Not only the minimization of the

cost but also the obstacle avoidance of the multi-rotors and inter-agent collision between

the vehicles should be considered in this step.

Since the optimization variables do not include terms about the first multi-rotor, the

tension history for the first one is expressed with the Bernstein polynomials of the order

dL − 2 based on (A.1), and the kth segment trajectory can be expressed as follows:

T1∗(t) =

dL−1∑
j=1

ĉk1∗.jBdL−2.j(τk) for t ∈ [tk−1, tk] (3.20)

where ∗ denotes the axes. The new control points ĉk1x, ĉ
k
1y, and ĉk1z can be computed as

follows based on (A.1) and Appendix B.3:

ĉk1x = mLĉ
k
Lx.acc − S−1BdL−2

 02

SBdT
∑nM

i=2 c
k
ix

 ,
ĉk1y = mLĉ

k
Ly.acc − S−1BdL−2

 02

SBdT
∑nM

i=2 c
k
iy

 ,
ĉk1z = mLĉ

k
Lz.acc − S−1BdL−2

( 02

SBdT
∑nM

i=2 c
k
iz

−
0dL−2

mLg

).
(3.21)

3.3.1 History Initialization

As in Section 3.2.1, initialization is also required here for convexification of non-convex

collision avoidance constraints. Algorithm 5 shows the initialization process for the tension

histories where some steps are added compared with Algorithm 4 to check inter-agent

collision of the samples.
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Algorithm 5 Sampling-based history initialization (Tension)

Input: Xinit, Yinit, dB , nB , nsample, H, AKKT , bKKT (xW ), O, dt
Output: ĉ1.sample, c

∗
T.sample

1: Set the sampling area
2: for i = 2 · · ·nM do
3: for k = 1 · · ·nB − 1 do
4: εki = cdistance ∗min distance

(
O, xki.init, y

k
i.init

)
5: end for
6: end for
7: Perform sampling
8: Jtemp =∞
9: for s = 1 · · ·nsample do

10: for i = 2 · · ·nM do
11: for k = 2 · · ·nB − 1 do
12: xki.sample = xki.init + Ski where Ski ∼ U(−εki , εki )

13: yki.sample = yki.init + Ski where Ski ∼ U(−εki , εki )

14: zki.sample = zknominal + Sz where Sz ∼ U(−εz, εz)
15: end for
16: Ti.sample = xyz to T (xi.sample,yi.sample, zi.sample)
17: ci∗.sample = A−1KKT bKKT (Ti∗.sample)
18: Ti.traj = compute history(ci.sample, dB , nB , dt)
19: end for
20: ĉ1.sample = first tension(ĉL.acc, c2.sample,
21: c3.sample, · · · , cnM .sample)
22: T1.traj = compute history(ĉ1.sample, dB , nB , dt)
23: if not check collision(T1.sample, · · · ,TnM .sample, O) then
24: for i = 2 · · ·nM do
25: Ji∗.temp = c>i∗.sampleHci∗.sample
26: Ji.temp = Jix.temp + Jiy.temp + Jiz.temp
27: end for
28: if

∑nM

i=2 Ji.temp < Jtemp then
29: ĉ∗1.sample = ĉ1.sample
30: for i = 2 · · ·nM do
31: c∗i.sample = ci.sample
32: end for
33: Jtemp =

∑nM

i=2 Ji.temp

34: c∗T.sample =
[
c>2.sample c

>
3.sample · · · c>nM .sample

]>
35: end if
36: end if
37: end for
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While performing A∗ search for the multi-rotors is possible to get the centers of samples,

the optimal result for the load computed in Problem 2 is shifted since it has been optimized

with the clearance constraints. Additionally, A∗ often results in partially overlapped paths

despite different start and goal points. The shifted trajectories starting from initial positions

of each multi-rotor are shown in Fig. 3.5(a), and x− and y−axis trajectories are denoted

as Xinit = {xi.init ∈ RnB−1 | i = 2 · · ·nM} and Yinit = {yi.init ∈ RnB−1 | i = 2 · · ·nM}.

Since the position sample does not satisfy the distance constraint between the load and

the multi-rotor, only the direction information is extracted. The xyz to T function converts

the position sample to a tension sample, the direction of which is parallel to the relative

position of the vehicle with respect to the load (line 16 ). The magnitude is set to cancel

out mLg/nM in the z-axis. Using (3.21), the control points c1 and the history for the first

multi-rotor can be computed (lines 20-22 ). After that, the collision check with the obstacles

and the inter-agent collision check is performed (lines 23 ). The result of the algorithm is

shown in Fig. 3.5(b).
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Figure 3.5: Procedures for trajectory initialization of the multi-rotors. The trajectories for
the multi-rotors are represented by the colors in a RGB order. (a) The shifted trajectories
from the optimized load trajectory are used for the sampling centers. (b) Sampling-based
initialization where the trajectory samples with inter-agent collision are depicted in translu-
cent color, and the collision-free trajectory samples are in solid colors. The sample with the
lowest cost is denoted in the thickest lines.
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3.3.2 Convexification

Similar to the load trajectory optimization, the sampled tension histories are also not

efficient due to the soft waypoint constraints. While the SFC construction is an efficient

convexification method for a point mass, it cannot be applied to this sub-problem since the

multi-rotor position is decided by adding the normalized unit tension vector to the load

position as xi = xL + lTi/‖Ti‖, which is not a convex function of the flat outputs.

SFS generation

The collision avoidance constraints between the vehicles and the obstacles are convexified

using safe flight sector (SFS) construction. For SFS generation, the relative obstacle position

with respect to the load position is accumulated, and the collision region for the kth segment

is defined for each time segment as the following set:

Xk
O = {xO(t)− xL(t) | t ∈ [tk−1, tk], ‖xO(t)− xL(t)‖ ≤ l}. (3.22)

Some examples of Xk
O for k = 3, 6, 9, 12 are shown in Fig. 3.6(b) as blue markers. Then,

collision avoidance for the ith multi-rotor during the kth time segment is satisfied if the

relative position trajectory segment is located in the collision-free region, i.e.
(
xi(t) −

xL(t)
)
⊂ Xk

Free = Sl −Xk
O for t ∈ [tk−1, tk] where Sl is a sphere centered at the origin with

the radius l.
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Figure 3.6: SFS generation results. (a) The lowest-cost-trajectories from the initialization
are denoted in RGB lines, and the yellow area denotes the area of the trajectory segments
for SFS generation. (b) Some examples of the generated SFSs are depicted as the gray area
where the blue area denotes the obstacles. RGB lines are the parts of trajectory segments
for each time segment.
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Since the collision-free sets Xk
Free are not convex, they are convexified by constructing

SFSs. The construction procedure is shown in Fig. 3.7.

Figure 3.7: SFS construction procedure example for the 9th segment. (a) Initialization with
the maximum radius without collision. (b) The vertex expansion process where the darker
areas are the latter result. (c) The vertex shrinkage process to make the polyhedron convex
where the darker area is the latter result. (d) The resultant collision-free convex polyhedron
where the green arrows are the normal vectors of the triangular surfaces.
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The number of the vertices nν = 8 is decided as a user-defined parameter. The horizontal

positions of the vertices are initialized as far away as possible from the center of the sphere

as follows:

νkγ (1) = δkνcosαγ,

νkγ (2) = δkνsinαγ,

αγ = αmin +
αmax − αmin
nν − 1

(γ − 1)

for

k = 1, · · · , nB,

γ = 1, · · · , nν ,
(3.23)

which is shown in Fig. 3.7(a).

The vertices are expanded to the outward direction of the circle one by one to maximize

the area of SFSs. After each expansion, collision is checked along the newly generated

polygon made of the vertices. If no collision is detected, the expanded vertex is saved,

and the expansion proceeds until the polygon cannot expand more without collision. The

expansion procedure is shown in Fig. 3.7(b) where the darker polygons are the broader ones

after each expansion. The vertices are projected onto the sphere to generate a polyhedron

by setting the z-axis value as νkγ (3) = lsinβkγ with βkγ = acos
(√

νkγ (1)2 + νkγ (2)2/l
)

. The

vertices of the polyhedron are composed of the projected ones and the center of the sphere.

Since the polyhedron is not guaranteed to be a convex hull, a post processing is per-

formed to turn it into a convex set. In contrast to the vertex-expansion, the vertices are

shrunk at each step if the adjacent edges hinder convexity of the polyhedron. The shrinking

process is explained in detail in Algorithm 6 where the input and output data is defined

as V = {νkγ ∈ R3 | k = 1, · · · , nB, γ = 1 · · ·nν}, Aα = {αγ | γ = 1, · · · , nν}, and

Bβ = {βkγ | k = 1, · · · , nB, γ = 1 · · ·nν}. Two new slack vertices νk0 and νknν+1 are added

for computational convenience (lines 2-3 ). For each vertex, two edges gprev and gnext are

computed (lines 7-9 ), and the cross product of them, gnormal, is used to check the convex-

ity (lines 10-12 ). When it is not convex, the vertex with a lower β is moved toward the

center of the sphere (lines 14-26 ). This process is repeated until the polyhedron becomes

a convex set. Fig. 3.7(c) shows the result of the shrinking process where the darker area is

the later result. The resultant convex hull is shown in Fig. 3.7(d), and it is guaranteed that
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the multi-rotors avoid collision when they are located above the triangular surfaces of the

polyhedron. The convex set below the sphere and above the triangular surfaces is called as

a SFS in this dissertation.

Algorithm 6 Vertex-processing for convex set generation
Input: V , Aα, Bβ , nB , nν
Output: V , Bβ

1: for k = 1 · · ·nB do
2: νk0 = νknν

3: νknν+1 = νk1
4: is convex = false
5: for γ = 1 · · ·nν do
6: while not is convex do
7: Compute the edge vectors
8: gprev = νkγ − νkγ−1
9: gnext = νkγ+1 − νkγ

10: Check the convexity
11: gnormal = gprev × gnext
12: if gnormal(3) < 0 then
13: is convex = false
14: Shrink one vertex with a lower β angle
15: if βkγ−1 < βkγ+1 then

16: βkν−1 = βkν−1 + ∆β
17: νkγ−1(1) = lcosβkγ−1cosαγ
18: νkγ−1(2) = lcosβkγ−1sinαγ
19: νkγ−1(3) = lsinβkγ−1
20: else
21: βkγ+1 = βkγ+1 + ∆β

22: βkγ+1 = βkγ−1 + ∆β

23: νkγ+1(1) = lcosβkγ+1cosαγ
24: νkγ+1(2) = lcosβkγ+1sinαγ
25: νkγ+1(3) = lsinβkγ+1

26: end if
27: else if γ == nν then
28: is convex = true
29: end if
30: end while
31: end for
32: end for
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Placing the multi-rotors in the SFS can be achieved by manipulating the tension vectors.

The normal vectors of the triangular surfaces pointing toward the center of the sphere are

defined as

hkγ =
νkγ × νkγ+1

‖νkγ × νkγ+1‖
for

k = 1, · · · , nB,

γ = 1, · · · , nν ,
(3.24)

which can be easily computed using the vertices. Then, the collision avoidance constraints

for the kth segment of the tension vector multi-rotor can be expressed as follows:

[
ckix.j ckiy.j ckiz.j

]>
hkγ ≥ 0 for


i = 2, · · · , nM ,

γ = 1, · · · , nν ,

j = 1, · · · , dT + 1,

(3.25)

which means that all the tension vectors should be located in the generated SFSs.

Since the control points for the first multi-rotor can be expressed as affine functions of

the control points of other vehicles as shown in (3.21), the following inequalities complete

the collision avoidance constraint for the multi-rotors:

[
ĉk1x.j ĉk1y.j ĉk1z.j

]>
hkγ ≥ 0 for

γ = 1, · · · , nν ,

j = 1, · · · , dL − 1.
(3.26)
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RSFS generation

The last constraint to be considered for the safety is inter-agent collision avoidance between

the multi-rotors. Since the multi-rotor positions cannot be expressed with the optimization

variables as previously described, RSFSs are constructed using the relative tension history

defined as follows:

T k
i1,i2

= T k
i2
− T k

i1
for

i1 = 1, · · · , nM − 1,

i2 = i1 + 1, · · · , nM ,
(3.27)

which is a relative tension history of the ith2 multi-rotor with respect to the ith1 multi-rotor

during the kth time segment. As an example, the x-component trajectory of the kth segment

can be expressed using the tension control points as follows:

T ki1x,i2x(t) =


∑dT+1

j=1 (cki1x,i2x.j)BdT .j(τk) if i1 6= 1,∑dL−1
j=1 (ĉk1x,i2x.j)BdL−2.j(τk) otherwise,

(3.28)

where cki1x,i2x.j = cki2x.j − cki1x.j. Note that ĉk1∗,i2∗ = [ĉk1∗,i2∗.1 · · · ĉ
k
1∗,i2∗.dL−1]

> ∈ RdL−1 can

be computed similarly to (3.21). The x-axis trajectory, as an example, is shown in the

following equation:

ĉk1x,i2x = S−1BdL−2

 02×1

SBdT c
k
i2x

− ĉk1x. (3.29)

To compute the RSFSs, the safe and collision regions are computed based on the system

parameters firstly, which are shown in Fig. 3.8(a) with the parameters Tmin = 4.531N,

Tmax = 10.572N, and θcollision = 25.840◦. In the figure, the green arrow denotes the tension

vector for the first multi-rotor, T1. The angle between the first and second tension vectors

must be at least θcollision to avoid inter-agent collision, which results in the blue safe region

and the red collision region as shown. The RSFS computation procedures are shown in

Fig. 3.8(b). The blue feasible set of Ti1,i2 can be computed by changing the β of the first
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Figure 3.8: Computation procedures of the RSFS. (a) The safe and collision regions of T2

which are depicted in blue and red, respectively. (b) The feasible and collision sets of T1,2.
The RSFS is computed based on the initialized relative tension history, T1,2, in gold.

tension from βmin to π − βmin and accumulating the feasible values of the second tension.

The red collision set, a subset of the feasible set is computed by accumulating the collision

region. The inter-agent collision avoidance can be guaranteed if Ti1,i2(t) is located in the

blue feasible set. Note that, for computation of y-component, the x- and z-component set

is rotated with respect to the z-axis. The rotation is discretely performed to show the sets

more clear. Since the collision set is not convex, a collision sphere of radius δRSFS is used

to encompass the set, which is depicted in green.

With the computed collision sphere, the RSFS for the kth segment can be convexified
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and computed as follows:

hkRSFS.1,2 = T k
1,2.mean/

∥∥T k
mean.1,2

∥∥ ,
T k
mean.1,2 =

1

(tk − tk−1)

∫ tk

tk−1

T1,2(t)dt,
(3.30)

where the project-and-linearize method in [14] is used for the convexification. Then, the

inter-agent collision constraints for the kth segment are imposed using the control points as

(cki1,i2.j)
>hkRSFS.i1,i2 ≥ δRSFS

for


i1 = 2, · · · , nM − 1,

i2 = i1 + 1, · · · , nM ,

j = 1, · · · , dT + 1,

(ĉk1,i2.j)
>hkRSFS.1,i2 ≥ δRSFS

for

i2 = 2, · · · , nM ,

j = 1, · · · , dL − 1,

(3.31)

where cki1,i2.j =
[
cki1x,i2x.j c

k
i1y,i2y.j

cki1z,i2z.j
]>

and ĉk1,i2.j =
[
ĉk1x,i2x.j ĉ

k
1y,i2y.j

ĉk1z,i2z.j
]>

.

3.3.3 Optimization sub-problem

With the computed constraints for collision avoidance, the second sub-problem of Problem 1

is expressed as Problem 3.
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Problem 3. Tension optimization (discrete)

find c∗T = argmin
cT

JT (cT )

subject to AT.boundarycT = bT.boundary,

AT.continuitycT = bT.continuity,

[
ckix.j ckiy.j ckiz.j

]>
hkγ ≥ 0 for



k = 1, · · · , nB,

i = 2, · · · , nM ,

γ = 1, · · · , nν ,

j = 1, · · · , dT + 1,

[
ĉk1x.j ĉk1y.j ĉk1z.j

]>
hkγ ≥ 0 for


k = 1, · · · , nB,

γ = 1, · · · , nν ,

j = 1, · · · , dL − 1,

(cki1,i2.j)
>hkRSFS.i1,i2 ≥ δRSFS for



k = 1, · · · , nB,

i1 = 2, · · · , nM − 1,

i2 = i1 + 1, · · · , nM ,

j = 1, · · · , dT + 1,

(ĉk1,i2.j)
>hkRSFS.1,i2 ≥ δRSFS for


k = 1, · · · , nB,

i2 = 2, · · · , nM ,

j = 1, · · · , dL − 1,

∥∥∥∥[ckix.j ckiy.j ckiz.j

]>∥∥∥∥ ≤ Tmax for


k = 1, · · · , nB,

i = 2, · · · , nM ,

j = 1, · · · , dT + 1,∥∥∥∥[ĉk1x.j ĉk1y.j ĉk1z.j

]>∥∥∥∥ ≤ Tmax for

k = 1, · · · , nB,

j = 1, · · · , dT + 1,

ckiz.j � Tmin for

k = 1, · · · , nB,

i = 2, · · · , nM ,

ĉk1z.j � Tmin for k = 1, · · · , nB.
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4
Experimental Validation

This section presents the results of the proposed trajectory planning and control algorithms

through indoor obstacle avoidance and transportation flight experiments. In Section 4.1

and Section 4.2.1, the experiment results for the single multi-rotor system and the multiple

multi-rotor system are described, respectively. Each section consists of the experiment

setting and results with discussion.

4.1 Single Multi-rotor with a Suspended Load

4.1.1 Experiment Setting

The software setup for the experiments is as follows. All the programs run under Robot

Operating System (ROS) Kinetic version in Linux 16.04. The multi-rotor is equipped with

a Pixhawk4 mini module for attitude estimation and low-level controller. The translational

states and the yaw angle are estimated from the measurement of VICON motion capture

system running at 100Hz. For an onboard computer which performs real-time optimization,

Intel NUC7i7BNH with i7-7567U processor is used.
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For validation of real-time performance, two settings are used, the first of which is

continuous replanning. Since it is not possible to track the generated collision-free trajectory

without error, the trajectory generator continuously replans every 0.1 seconds while MPC

computes optimal control input every 0.01 seconds. The next setting is change of the

desired position during flight. The trajectory generator generates new trajectories as soon

as it receives a new goal point during flight.

Parameters for the trajectory generation are same for both the simulation and the

experiment which are listed in Table 4.1. Note that the weight matrices are chosen by

firstly adjusting its order reflecting their physical meanings and fine-tuning empirically to

increase stability and performance of flight.

Table 4.1: Parameters for trajectory generation.

Parameter Value Parameter Value

mM 2.473 kg mL 0.152 kg

Ah -7.904 Bh 7.979

NT 80 l 1.2 m

rM 0.35 m hM 0.3 m

rC 0.1 m rL 0.05 m

L, Q
diag{300, 300, 90, 30, 30, 30, 60, 60, 60,

10, 10, 10, 1000, 1000}
R diag{10, 200, 200}

4.1.2 Experiment Results and Discussion

Scenario 1: Horizontal Obstacles with a Vertical Gap

In the first scenario, two obstacles are horizontally placed with a vertical gap. Since the

gap is shorter than the distance between the top of the multi-rotor and the bottom of the

load, the vehicle cannot pass between the obstacles unless the cable is tilted.

The simulation result for the first scenario is depicted in Fig. 4.1, and it can be seen that

the generated trajectory avoids collision and reaches the desired position which is marked

as a pink sphere. Note that the red ellipsoids are obstacles, and the ellipsoids enclosing
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the vehicle is depicted only in the right figure to show the simulation result better. The

multi-rotors in the figure are depicted with the same time interval. The translucent blue

bars are the overall results for the cable while the opaque ones are the results with the

same time interval. The suspended load is depicted with a black sphere.

Desired position

Desired position

Current position Current position

Figure 4.1: Simulation result for the first scenario. The generated trajectory passes the
narrow gap by tilting the cable. The purple and the blue lines denote the path of the
vehicle and the load, respectively.
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An experiment is conducted to demonstrate the scenario. As shown in Fig. 4.2, the

multi-rotor does not fly straight and moves quickly in the lateral direction to shake the

suspended load and pass between the obstacles. The vehicle traversed six times without

collision in the experiment. Fig. 4.3 shows the 2-D trajectory plot of the vehicle and the

load. Fig. 4.4 shows the snapshot of the experiment, and it can be seen that the proposed

algorithm enables the vehicle to successfully pass the narrow gap. The by showing the

acceleration history of the load. The cable tautness assumption is validated by showing that

the z-component of the acceleration is always greater than the gravitational acceleration

as shown in Fig. 4.5.

Desired position

Figure 4.2: Experiment result of the first scenario. Thick lines denote actual positions of
the multi-rotor and the load while thin lines denote generated trajectories at each time
step.
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Figure 4.3: Side-view 2-D plot of the first scenario. Red circles denote the obstacles, and
black and green circles are collision areas of the load and the multi-rotor.

Figure 4.4: Experiment snapshot for the first scenario.
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Figure 4.5: Acceleration history of the load for the first scenario. Translucent lines are the
generated desired acceleration, and the solid lines are the experiment result.
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Scenario 2: Vertical Obstacles Placed in Zigzags

In the second scenario, three obstacles are placed with short distances. Since the size of the

multi-rotor hinders the vehicle and the load from flying straight, the trajectories should be

generated avoiding the obstacles aggressively. Fig. 4.6 shows the simulation result for the

second scenario. Again, the obstacles are drawn with red ellipsoids. The translucent blue

bars are the overall results for the cable while the opaque ones are the results with the

same time interval. The suspended load is depicted with a black sphere.

Desired position

Desired position

Current position

Current position

Figure 4.6: Simulation result for the second scenario. The generated trajectory shows a
slalom-like maneuver. The purple and the blue line denote the path of the vehicle and the
load, respectively.
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In the experiment, as shown in Fig. 4.7, the multi-rotor successfully flies avoiding ob-

stacles without losing agility. Four traversals are successfully completed in the experiment.

Fig. 4.8 shows the 2-D trajectory plot of the vehicle and the load. Fig. 4.9 shows the snapshot

of the experiment, and the proposed algorithms successfully operates the slung load system

safely. The cable tautness assumption is validated by showing that the z-component of the

acceleration is always greater than the gravitational acceleration as shown in Fig. 4.10.

Desired position

Figure 4.7: Experiment result of the second scenario. Thick lines denote actual positions
of the multi-rotor and the load, while thin lines denote generated trajectories at each time
step.
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Figure 4.8: Side-view 2-D plot of the second scenario. Red circles denote the obstacles, and
black and green circles are collision areas of the load and the multi-rotor.

Figure 4.9: Experiment snapshot for the second scenario.
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Figure 4.10: Acceleration history of the load for the second scenario. Translucent lines are
the generated desired acceleration, and the solid lines are the experiment result.
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Computation Time

In Table 4.2, the measured computation time for the planner and controller is listed. Note

that even the maximum computation time meets the operating frequencies of the planner

and the controller, which are 10 Hz and 100 Hz, respectively.

Table 4.2: Computation time data.

Algorithm Average Maximum Minimum

Planner 60.9 ms 97.6 ms 10.4 ms

MPC 2.7 ms 10.5 ms 1.1 ms
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4.2 Multiple Multi-rotors with a Suspended Load

4.2.1 Generated Trajectories

Scenario 1: Cluttered Environment

The environment in the first scenario has several obstacles with close distances. The first

obstacle the vehicles meet hinders flying straightly. And the remaining two obstacles have

short displacement, which makes the multi-rotors shrink toward the load.

Figure 4.11: The generated trajectories for the first scenario. (a) Top view and (b) Perspec-
tive view.
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Figure 4.12: The generated trajectories of the multi-rotors for the first scenario.
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Figure 4.13: The generated trajectories of the load for the first scenario.
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Scenario 2: Narrow Passage

The environment in the second scenario has two obstacles with the very short distance. To

pass through the narrow gap, the multi-rotors fly in a almost straight line.

Figure 4.14: The generated trajectories for the second scenario. (a) Top view and (b)
Perspective view.
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Figure 4.15: The generated trajectories of the multi-rotors for the second scenario.
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Figure 4.16: The generated trajectories of the load for the second scenario.
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Computation Time

The trajectory generation problems Problem 2 and Problem 3 are sequentially optimized

in advance on a desktop with Intel i7-4790 CPU and 16.0GB RAM. The optimization is

performed using a convex optimization solver [44] in MATLAB. The parameters which

mainly affect the computation time and the timing results are listed in Table 4.3 and Ta-

ble 4.4. One hundred trajectory optimizations are performed for evaluation of the proposed

algorithm, and the corresponding mean, minimum, maximum, and standard deviation of

computation time are shown. In each optimization, the timing results are all different since

trajectory initialization with sampling is newly performed. Although the overall compu-

tation currently takes around 7 seconds, it is expected to be at least ten times faster if

embedded in C code and run with multiple cores.

In Table 4.4, three timing results for the first scenario and one result for the second

scenario are shown. In the first scenario, the trajectory generation is performed by varying

the obstacle number to check the effect. It can easily be checked the obstacle number

scarcely effects the performance. Compared to the first scenario, the performance in load

trajectory generation is very fast since it generates a simple straight trajectory in the second

scenario.

Table 4.3: Parameters for the trajectory generation.

Parameter nM nB nsample nv
Value 3 15 20000 8
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Table 4.4: Timing results for the trajectory generation.

Mean Min Max Std Dev

Scenario 1
(one obstacle)

Load sampling (Algorithm 4) 0.20 s 0.10 s 0.23 s 0.03 s
Load optimization (Problem 2) 0.52 s 0.29 s 0.51 s 0.13 s
Tension sampling (Algorithm 5) 1.99 s 1.85 s 2.13 s 0.08 s
SFS generation (Algorithm 6) 0.05 s 0.01 s 0.08 s 0.02 s
Tension optimization (Problem 3) 4.01 s 2.11 s 5.23 s 1.33 s

Scenario 1
(two obstacles)

Load sampling (Algorithm 4) 0.21 s 0.13 s 0.26 s 0.02 s
Load optimization (Problem 2) 0.56 s 0.30 s 0.63 s 0.14 s
Tension sampling (Algorithm 5) 2.03 s 1.89 s 2.27 s 0.11 s
SFS generation (Algorithm 6) 0.05 s 0.02 s 0.06 s 0.01 s
Tension optimization (Problem 3) 4.05 s 2.19 s 6.2 s 1.20 s

Scenario 1
(three obstacles)

Load sampling (Algorithm 4) 0.22 s 0.14 s 0.24 s 0.03 s
Load optimization (Problem 2) 0.54 s 0.32 s 0.69 s 0.11 s
Tension sampling (Algorithm 5) 2.03 s 1.88 s 2.17 s 0.09 s
SFS generation (Algorithm 6) 0.05 s 0.02 s 0.07 s 0.01 s
Tension optimization (Problem 3) 4.06 s 2.29 s 6.34 s 1.23 s

Scenario 2

Load sampling (Algorithm 4) 0.21 s 0.13 s 0.27 s 0.04 s
Load optimization (Problem 2) 0.10 s 0.05 s 0.14 s 0.03 s
Tension sampling (Algorithm 5) 2.03 s 1.88 s 2.17 s 0.09 s
SFS generation (Algorithm 6) 0.05 s 0.02 s 0.07 s 0.01 s
Tension optimization (Problem 3) 3.26 s 2.01 s 5.11 s 0.56 s
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4.2.2 Experiment Setting

To validate the proposed algorithm, trajectory tracking experiment is performed for the

first scenario in Section 4.2.1. Three custom-made multi-rotors are used which are shown

in Fig. 4.18. Each vehicle is built on a Armattan Rooster frame and uses four Armattan

Oomph Titan motors. For attitude and thrust control, a Pixhawk 4 FCU (Flight Control

Unit) is used which provides the current attitude information of the vehicle and sends PWM

(Pulse Width Modulation) signals to the motors. Additionally, SparkFun WRL-00705 is

used to receive the control commands and transmit the IMU (Inertial Measurement Unit)

information to a laptop used as a GCS (Ground Control Station). The vehicle weighs 0.762

kg including a 4S 2200 mAh Lipo battery.

The laptop runs three position controllers to compute the desired rotational velocity

and the thrust given the collision-free trajectory. Crazyradio PA is used with the laptop to

communicate with the vehicles. The navigational information of the vehicles is estimated

using an external motion capture system, OptiTrack, and a Kalman filter. To compensate

the external force from the load, a robust controller proposed in [31] is used which estimates

and compensates the disturbance using a disturbance observer. Fig. 4.17 shows the overall

control structure for the experiment.

The weight of the suspended load is 0.976 kg, which is too heavy for a single multi-rotor

to carry alone.
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Figure 4.17: The control structure for the experiment.

Figure 4.18: The multi-rotors and the suspended load used for the experiment.
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4.2.3 Experiment Results and Discussion

To validate the proposed algorithm, a trajectory tracking experiment is conducted. In the

following figures, the generated trajectories are denoted in translucent lines while the exper-

iment data is shown in solid lines. The vehicle trajectories are drawn in RGB corresponding

to each multi-rotor, and the suspended load is drawn in black.

The experiment snapshot is shown in Fig. 4.19 where three multi-rotors cooperatively

transport a suspended load. The top and perspective views of the tracking result are shown

in Fig. 4.20. It can be easily checked that the multi-rotors and the suspended load accurately

follow the generated trajectory without any collision.

Fig. 4.21 and Fig. 4.22 show the tracking error of the tracking experiment for the

multi-rotors and load, respectively. The RMSE for each translational state is listed in

Table 4.5 and Table 4.6. The load states also show small tracking error although it is

passively controlled. Since the maximum acceleration of the load, maximum tension, and

minimum tension of the cables are considered in the trajectory optimization, the generated

result is dynamically feasible, which results in good tracking results. Fig. 4.23 shows that

the attitudes of the vehicles are not zeros since they should generate horizontal forces to

compensate the cable tensions.
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Figure 4.19: Multi-rotors transporting a suspended load cooperatively.
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Figure 4.20: The tracking result of the experiment. Translucent lines are the generated
desired trajectories, and the solid lines are the experiment result. (a) Top view of the
experiment. (b) Perspective view of the experiment.
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Figure 4.21: The tracking error result of the multi-rotors for the translational states.
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Figure 4.22: The tracking error result of the suspended load.
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Table 4.5: RMSE of the trajectory tracking experiment for the multi-rotors.

State RMSE (m) State RMSE (m) State RMSE (m)

Position
x1 0.042 x2 0.044 x3 0.033
y1 0.027 y2 0.029 y3 0.035
z1 0.022 z2 0.022 z3 0.029

State RMSE (m/s) State RMSE (m/s) State RMSE (m/s)

Velocity
ẋ1 0.071 ẋ2 0.074 ẋ3 0.067
ẏ1 0.069 ẏ2 0.079 ẏ3 0.074
ż1 0.055 ż2 0.053 ż3 0.055

Table 4.6: RMSE of the trajectory tracking experiment for the load.

State RMSE (m)

Position
xL 0.071
yL 0.059
zL 0.059

State RMSE (m/s)

Velocity
ẋL 0.152
ẏL 0.084
żL 0.048
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Figure 4.23: The tracking result of the multi-rotors for the rotational states. Translucent
lines are the generated desired trajectories, and the solid lines are the experiment result.
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4.2.4 Comparison with formation control

The proposed algorithm requires relatively high computational load compared to the forma-

tion control algorithms since several constraints are considered in addition to the dynamic

model. As a comparison work, [45] is used which generates trajectories of the vehicles with-

out the consideration of the dynamics. The work generates relative safe flight corridors for

convexification of the non-convex collision-avoidance constraints.

The optimal load trajectory generated in Problem 2 is used identically, and [45] gen-

erates collision-free trajectories of each vehicle for the x− and y−axis. While computing

each trajectory, an additional constraint is imposed to restrict the distance of the vehicles

from the load less than the radius of the cable length. After optimization, the altitudes of

the vehicles are decided using the cable length constraints.

A simulation is performed to track the generated trajectories. As explained Section 4.2.1,

each vehicle runs a trajectory tracking controller individually. The tracking result is shown

in Fig. 4.24. Fig. 4.25 and Fig. 4.26 show the tracking error for the simulation. As shown

in the figures, the tracking error becomes very large compared to the proposed algorithm.

Since the tension of the cable and the overall dynamics for the load and the vehicles

are not considered in the referred work, the generated trajectories are infeasible to be

tracked accurately. This inaccurate tracking performance may result in collision although

the generated trajectories are collision-free.
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Figure 4.24: The tracking result for the formation control. Translucent lines are the gener-
ated desired trajectories, and the solid lines are the experiment result. (a) Top view of the
experiment. (b) Perspective view of the experiment.
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Figure 4.25: The tracking error result of the multi-rotors for the translational states.
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Figure 4.26: The tracking error result of the suspended load.
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5
Conclusion

This dissertation presents trajectory generation and control methods for multi-rotor with

a suspended load. Since the dynamic model becomes more complex as cables are attached

compared with the bare multi-rotor, efficient algorithms are required for operation of the

system.

For a single multi-rotor with a suspended load, the dynamic model is simplified with

the consideration of control delay, and it is used in the proposed real-time planning and

optimal control algorithms. The entire system is considered in a less-conservative manner

using ellipsoids for collision avoidance. Performance of the planner is validated with two

difficult scenarios where safety cannot be assured without collision avoidance. To track the

generated trajectories, model predictive control is used, and flight experiments successfully

demonstrate agile maneuvers without losing safety and real-time performance.

The operation becomes more difficult when multiple multi-rotors transport a suspended

load cooperatively as the dimension of the system increase proportionally to the number

of the vehicles. Thanks to the differential flatness, the optimization variables are changed

to ones with linear dynamic model, and the number of them is reduced. Furthermore,
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to compute the continuous trajectory using discrete optimization variables efficiently, the

trajectories are parameterized using Bernstein polynomials whose convex hull property

allows to consider various collision avoidance and dynamic constraints. Since solving the

entire optimization is intractable due to high non-linearity and the large number of the

optimization variables, the entire problem is decomposed into two sub-problems, which

are load optimization and tension optimization, respectively. In the former sub-problem,

collision avoidance of the load is guaranteed using SFC, and the clearance for the multi-

rotors is also considered. In the latter sub-problem, using the proposed SFS and RSFS

construction method, collision avoidance and inter-agent collision avoidance are guaranteed.

The feasibility of the generated trajectory is validated through the successful collision

avoidance experiment with little tracking error.

The possible future works of this dissertation will be increasing the generality. Since

only a point mass load is considered, there exist room for development of the trajectory

generation and control required to transport a rigid-body load. Moreover, when vehicles

have cables with different lengths, the construction RSFS can be revised to generate a

more tight safe set as the required minimum angle between two vehicles decreases. While

the real-time performance is validated for a single slung load system, the proposed method

for multiple multi-rotors is required to be validated to replan trajectories fast. Finally,

since the size and position of the obstacles are assumed to be known, vision-based obstacle

detection algorithms can increase practicality in operation of the system.
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A
Detailed Derivation of Differential Flatness

This section shows a detailed derivation of the differential flatness of the system composed of

nM multi-rotors and a suspended point-mass load. While the differential flatness was proved

in [24], explicit equations were omitted. The following steps are based on the derivations

for a multi-rotor without a cable [35].

The tension vector for the first multi-rotor is not included in the flat outputs, and it

can be computed using the fourth line of (3.1),

T1q1 = mLẍL −
nM∑
i=2

Tiqi +mLge3. (A.1)

The direction vectors for the cables can be computed by normalizing the tension vectors

as follows:

qi = Tiqi/ ‖Tiqi‖ . (A.2)

The position, velocity, and acceleration of the ith multi-rotor can be expressed using the
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kinematic relationship as follows:

xi = xL + lqi,

ẋi = ẋL + lq̇i,

ẍi = ẍL + lq̈i.

(A.3)

Note that the derivatives of qi can be computed by differentiating Tiqi with the same order.

The rotation matrix for the ith multi-rotor, Ri = [xBi yBi zBi ], can be computed using

the following equations:

zBi = Rie3 =
fiRie3
‖fiRie3‖

,

yBi =
zBi × xCi
‖zBi × xCi‖

,

xBi = yBi × zBi ,

(A.4)

where xCi = [cosψi sinψi 0]> is the x axis of the frame Ci. The frame Ci is an intermediate

frame computed after rotating the frame I with ψi angle with respect to the zI axis. Note

that the y axis of the frame Ci is yCi = [sinψi − cosψi 0]>

By projecting both sides of the second line of (3.1) to Rie3 = zBi , the thrust input for

the ith multi-rotor can be computed as follows:

miẍi · (Rie3) = fi −mige3 · (Rie3)− Tiq · (Rie3),

fi =
(
miẍi +mige3 + Tiq

)
· zBi .

(A.5)

To compute the rotational velocities of the ith multi-rotor, ΩBi = [pi qi ri], the second

line of (3.1) is differentiated.

mi
...
xi = ḟiRie3 + fiṘie3 − ˙(Tiqi)

= ḟiRie3 + fiRiΩ̂Bie3 − ˙(Tiqi).
(A.6)
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After projecting both sides of (A.6) to xBi , the following equation can be computed:

mix
>
Bi
...
xi = ḟi[1 0 0]e3 + fi[1 0 0]


qi

−pi
0

− x>Bi ˙(Tiqi). (A.7)

Then, qi can be computed as follows:

qi =
1

fi

(
mix

>
Bi
...
xi + x>Bi

˙(Tiqi)

)
. (A.8)

For computation of pi, both sides of (A.6) are projected to yBi :

miy
>
Bi
...
xi = ḟi[0 1 0]e3 + fi[0 1 0]


qi

−pi
0

− y>Bi ˙(Tiqi). (A.9)

Then, pi can be computed as follows:

pi = − 1

fi

(
miy

>
Bi
...
xi + y>Bi

˙(Tiqi)

)
. (A.10)

The first required equation for the computation of ri can be computed by expanding

the fifth line of (3.1) after projecting both sides to yBi as follows:

y>Bi [ẋBi ẏBi żBi ] = [ri 0 − pi],

ri = y>BiẋBi .
(A.11)

The second required equation is the derivative of xBi which can be computed as follows:

xBi =
yCi × zBi
‖yCi × zBi‖

=
x̃Bi
‖x̃Bi‖

,

ẋBi =
˙̃xBi
‖x̃Bi‖

−
x̃Bi(x̃

>
BiẋBi)∥∥ ˙̃xBi
∥∥3 .

(A.12)
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By substituting (A.12) to (A.11) and using the condition that y>Bix̃Bi = 0, the last angular

velocity component can be computed as follows:

˙̃xBi = ẏCi × zBi + yCi × żBi

= (−ψ̇ixCi)× zBi + yCi × (qixBi − piyBi),

ri =
y>Bi

˙̃xBi
‖x̃Bi‖

=
ψ̇ix

>
CixBi + qiy

>
CizBi

‖yCi × zBi‖
.

(A.13)

Lastly, the angular acceleration vector needs to be computed. The first thing to be

found is the derivative of the thrust input by differentiating the second line of (3.1).

mi
...
xi = ḟiRie3 + fiRiΩ̂Bie3 − ˙(Tiqi)

= ḟiRie3 + fi(qixBi − piyBi)− ˙(Tiqi).
(A.14)

By projecting (A.14) to zBi , the derivative of the thrust input can be expressed as follows:

ḟi =
(
mi
...
xi + ˙(Tiqi)

)
· zBi . (A.15)

For computation of q̇i, fiqi is differentiated based on (A.8):

ḟiqi + fiq̇i = mi(ẋ
>
Bi
...
xi + x>Bi

....
xi) + ẋ>Bi

˙(Tiqi) + x>Bi
¨(Tiqi). (A.16)

Note that the one unrecognized term ẋBi can be expressed using the attitude and angular

the velocity of the ith vehicle as follows:

ẋBi = (ΩIixBi) = (RiΩ̂BiR
>
i xBi). (A.17)

Accordingly, q̇i can be computed by the flat outputs and their derivatives using (A.16).

Following the similar procedure starting by differentiating (A.10), the following equation

105



can be computed to find ṗi:

− ḟipi − fiṗi = mi(ẏ
>
Bi
...
xi + y>Bi

....
xi) + ẏ>Bi

˙(Tiqi) + y>Bi
¨(Tiqi). (A.18)

Similarly, the one unrecognized term ẋBi can be expressed as follows:

ẏBi = (ΩIiyBi) = (RiΩ̂BiR
>
i yBi). (A.19)

The last component of the angular acceleration, ṙi, needs to be computed, the first step of

which is computing derivative of ri expressed in (A.13):

d

dt
‖xCi × zBi‖ ri + ‖yCi × zBi‖ ṙi

= ψ̈ix
>
CixBi + ψ̇iẋ

>
CixBi + ψ̇ix

>
CiẋBi

+ q̇iy
>
CizBi + qiẏ

>
CizBi + qiy

>
Ci żBi .

(A.20)

The d
dt
‖xCi × zBi‖ term in the left-hand side of (A.20) needs to be expressed by the flat

outputs as follows:

d

dt
‖xCi × zBi‖ =

d

dt
‖x̃Bi‖ =

d

dt

√
x̃>Bix̃Bi

=
x̃>Bi

˙̃xBi
‖x̃Bi‖

= x>Bi
˙̃xBi ,

(A.21)

using that x̃Bi/ ‖x̃Bi‖ = xBi . Using the properties, ẏCi = −ψ̇ixCi and żBi = −piyBi , (A.20)

can be further simplified as follows:

x>Bi
˙̃xBi = −ψ̇ix>Bi(xCi × zBi)− pix

>
Bi(yCi × yBi)

= ψ̇ix
>
Ci(xBi × zBi) + piy

>
Ci(xBi × yBi)

= −ψ̇ix>CiyBi + piy
>
CizBi .

(A.22)

The right-hand side of (A.20) can be simplified using the properties, ẋCi = ψ̇iyBi and
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y>CixBi = 0, as follows:

ψ̈ix
>
CixBi + ψ̇iẋ

>
CixBi + ψ̇ix

>
CiẋBi

+ q̇iy
>
CizBi + qiẏ

>
CizBi + qiy

>
Ci żBi

= ψ̈ix
>
CixBi + ψ̇irix

>
CiyBi − 2ψ̇iqix

>
CizBi

+ q̇iy
>
CizBi − piqiy

>
CiyBi .

(A.23)

Using the results in (A.20), (A.22) and (A.23), ṙi can be computed as follows:

ṙi =
1

‖yCi × zBi‖

(
ψ̈ix

>
CixBi + 2ψ̇irix

>
CiyBi

− 2ψ̇iqix
>
CizBi − piqiy

>
CiyBi

− piriy>CizBi + q̇iy
>
CizBi

)
.

(A.24)

In summary, it is shown that the states and the inputs can be shown as functions of

the flat outputs and their derivatives. To compute pi and qi as in (A.16) and (A.18), the

fourth-order derivatives of the multi-rotor positions are required. The derivatives of the

multi-rotor positions can be computed from the derivatives of the load positions as shown

in (A.3) except that the position of the first multi-rotor requires the second-order derivative

of the load position as shown in (A.1). Therefore, the highest differentiation order of xL

and Ti for the computation is six and four, i.e. ηL = 6 and ηT = 4. On the other hand, the

highest derivative order of ψi is two as shown in (A.20).
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B
Preliminaries of Bernstein Polynomials

B.1 Definition of a Bernstein Polynomial

A Bernstein polynomial of degree dB can be expressed with control points and Bernstein

basis polynomials of degree dB which are cj andBdB .j(t) for j = 1, 2, · · · , dB+1, respectively.

Bernstein basis polynomials are defined as follows:

BdB .j(t) =

(
dB
j − 1

)
tj−1(1− t)dB+1−j for t ∈ [0, 1] . (B.1)

Then, a Bernstein polynomial of degree dB with the control points is expressed as follows:

p(t) =

dB+1∑
j=1

cjBdB .j(t). (B.2)

For more flexibility with a longer duration, a trajectory can be composed of several

Bernstein polynomials occupying each time segment. The trajectory with nB segments can

108



be expressed as follows:

p(t) =



∑dB+1
j=1 c1jBdB .j(τ1) for t ∈ [t0, t1]∑dB+1
j=1 c2jBdB .j(τ2) for t ∈ [t1, t2]

...
...∑dB+1

j=1 cnBj BdB .j(τnB) for t ∈ [tnB−1, tnB ] ,

(B.3)

where τk = t−tk−1

tk−tk−1
, ckj is the jth control point of the kth segment of the trajectory p(t). tk−1

and tk are the start and end time of the kth segment.
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B.2 Convex hull property of a Bernstein Polynomial

The most interesting characteristic of a Bernstein polynomial is a convex hull property. The

property means that the polynomial resides in the convex hull built from the control points.

As an example, two dimensional Bernstein polynomials of degree two can be expressed using

(B.2) as follows: x(t)

y(t)

 =

∑3
j=1 cx.jB2.j(t)∑3
j=1 cy.jB2.j(t)

 , (B.4)

where cx.j and cy.j are the control points of the x and y axes polynomials, respectively.

It can easily computed that
∑3

j=1B2.j(t) = 1 and B2.j(t) ≥ 0 for t ∈ [0, 1]. Then, the

polynomials on the right-hand side of (B.4) are convex combinations of the control points,

cx.j and cy.j, which means the minimum and maximum values of the continuous polynomials

can be controlled by limiting the control points as follows:min {cx}
min {cy}

 �
x(t)

y(t)

 �
max {cx}
max {cy}

 , (B.5)

where cx = [cx.1 cx.2 cx.3]
> and cy = [cy.1 cy.2 cy.3]

>.
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B.3 Representation of a General Polynomial with Bernstein

Basis Polynomials

This subsection addresses a method to express a general polynomial as a Bernstein poly-

nomial. A general polynomial of degree dB can be expressed as follows:

q(t) = [sdBq sdB−1q · · · s1q s0q][tdB tdB−1 · · · t 1]>

= s>q tdB ,
(B.6)

where sq ∈ RdB+1 is the coefficient vector of q(t). The Bernstein polynomial (B.2) is ex-

pressed in a different way:

p(t) =
(
SBdBc

)>
tdB ,

c = [c1 c2 · · · cdB cdB+1]
T ,

SBdB = [sB1 sB2 · · · sBdB sBdB+1
],

sBdB.j = [sBdB.j,dB sBdB.j,dB−1
· · · sBdB.j,1 sBdB.j,0 ]

T .

(B.7)

sBdB.j includes the coefficients of the jth Bernstein basis polynomial, BdB .j, in a descending

order. By computing (B.1), it can be easily found that SBdB is symmetric. Accordingly, the

control points for representation of q(t) can be computed as follows:

c = S−1BdB
sq. (B.8)
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B.4 Representation of the Derivative of a Bernstein Poly-

nomial with Bernstein Basis Polynomials

When a Bernstein polynomial of degree dB, (B.2), is differentiated r times, the derivative

polynomial is expressed as follows:

p(η)(t) =

dB+1∑
j=1

cjB
(η)
dB .j

(t) = (S
B

(η)
dB

c)T tdB−η, (B.9)

where S
B

(η)
dB

∈ R(dB+1−η)×(dB+1) is a coefficient matrix of B
(η)
dB

(t) similarly defined as (B.7).

Since the differentiated polynomials, B
(η)
dB

(t), are not Bernstein basis polynomials, the

derivative polynomial no longer has the convex hull property. To generate various con-

straints for the derivative polynomials, they are expressed with Bernstein basis polynomials

of an order dB − η as follows:

(S
B

(η)
dB

c)T tdB−η =
(
SBdB−η ĉ

)T
tdB−η,

ĉ = (SBdB−η)
−1S

B
(η)
dB

c,
(B.10)

where SBdB−η ∈ R(dB−η+1)×(dB−η+1) and ĉ ∈ RdB−η+1 are coefficient matrix of BdB−η.j(t) and

control points of a new Bernstein polynomial of an order dB − η, respectively. Accordingly,

the equation (B.10) means that the ηth order derivative of a Bernstein polynomial of an

order dB can be expressed as another Bernstein polynomial of an order dB − η.
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국 문 초 록

경로 계획과 제어는 안전하고 안정적으로 멀티로터를 운용하기 위해서 필수적인 요소이다.

충돌을 회피하며 효율적인 경로를 생성하고 이를 실제로 추종하기 위해서는 동역학 모델이

고려되어야 한다. 일반 멀티로터의 동역학 모델은 높은 차원을 가진 비선형식으로 표현되는

데, 현수 운송 물체를 추가할 경우 계산이 더욱 복잡해진다. 본 논문은 멀티로터를 이용한

현수 운송에 있어 경로 계획과 제어에 대한 효율적인 기법을 제안한다.

첫 번째로 단일 멀티로터를 이용한 현수 운송을 다룬다. 물체가 별도의 엑츄에이터 없이

운송될 경우 물체는 기체의 움직임에 의해서만 제어가 가능하다. 하지만, 동역학식의 높은

비선형성으로운용에어려움이존재한다.이를경감시키기위해서회전동역학식의비선형성

을줄이고자세제어에존재하는시간지연을고려하여동역학식을간소화한다.경로계획에

있어서는 충돌 회피를 위해 기체, 케이블, 그리고 운송 물체를 다른 크기와 모양을 가진 타

원체들로 감싸며, 효과적이면서도 덜 보수적인 방식으로 충돌 회피 구속조건을 부과한다.

Augmented Lagrangian 방법을 이용하여 비선형 구속조건이 부과된 비선형 문제를 실시간

최적화하여 경로를 생성한다. 생성된 경로를 추종하기 위해서 Sequential linear quadratic

솔버를 이용한 모델 예측 제어기로 최적 제어 입력을 계산한다. 제안된 기법은 여러 시뮬레

이션과 실험을 통해 검증한다.

다음으로, 다중 멀티로터를 이용한 협업 현수 운송 시스템을 다룬다. 해당 시스템의 상태

변수나 동역학식에서 연결된(coupled) 항의 개수는 기체의 수에 비례하여 증가하기 때문에,

효과적인 기법 없이는 최적화에 많은 시간이 소요된다. 높은 비선형성을 가진 동역학식의

복잡성을 낮추기 위하여 미분 평탄성을 사용한다. 경로 또한 piece-wise Bernstein 다항식을

이용하여 매개변수화하여 최적화 변수의 개수를 줄인다. 최적화 문제를 분해하고 충돌 회피

구속조건들에 대해 볼록화(convexification)를 수행하여 운송 물체의 경로와 장력의 경로에

대한 볼록한(convex) 하위문제들이 만들어진다. 첫 번째 하위문제인 물체 경로 생성에서

는, 장애물 회피와 멀티로터의 공간을 확보하기 위하여 안전 비행 통로(safe flight corridor,

SFC)와여유간격구속조건을고려하여최적화한다.다음으로,장력벡터들의경로는장애물
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회피와 상호 충돌을 방지하기 위하여 안전 비행 섹터(safe flight sector, SFS)와 상대 안전

비행섹터(relative safe flight sector, RSFS)구속조건을부과하여최적화한다.시뮬레이션과

실험으로 복잡한 환경에서 효율적인 경로 계획 기법을 시연하며 검증한다.

주요어: 공중 조작, 움직임 및 경로 계획, 최적화 및 최적 제어, 다개체

학 번: 2015-22735
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