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Abstract

Trajectory generation and control of multi-rotors with a

suspended load using nonlinear optimization

SON Youngdong
Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Trajectory generation and control are fundamental requirements for safe and stable
operation of multi-rotors. The dynamic model should be considered to generate efficient
and collision-free trajectories with feasibility. While the dynamic model of a bare multi-
rotor is expressed non-linearly with high dimensions which results in computational loads,
the suspended load increases the complexity further. This dissertation presents efficient
algorithms for trajectory generation and control of multi-rotors with a suspended load.

A single multi-rotor with a suspended load is addressed first. Since the load is suspended
through a cable without any actuator, movement of the load must be controlled via maneu-
vers of the multi-rotor. However, the highly non-linear dynamics of the system results in
difficulties. To relive them, the rotational dynamics is simplified to reduce the non-linearity
and consider the delay in attitude control. For trajectory generation, the vehicle, cable,
and load are considered as ellipsoids with different sizes and shapes, and collision-free con-
straints are expressed in an efficient and less-conservative way. The augmented Lagrangian
method is applied to solve a nonlinear optimization problem with nonlinear constraints in
real-time. Model predictive control with the sequential linear quadratic solver is used to
track the generated trajectories. The proposed algorithm is validated with several simula-
tions and experiment.

A system with multiple multi-rotors for cooperative transportation of a suspended load

is addressed next. As the system has more state variables and coupling terms in the dynamic

Vl I = -i!



equation than the system with a single multi-rotor, optimization takes a long time without
an efficient method. The differential flatness of the system is used to reduce the complexity
of the highly non-linear dynamic equation. The trajectories are also parameterized using
piece-wise Bernstein polynomials to decrease the number of optimization variables. By de-
composing an optimization problem and performing convexification, convex sub-problems
are formulated for the load and the tension trajectories optimization, respectively. In each
sub-problem, a light-weight sampling method is used to find a feasible and low-cost tra-
jectory as initialization. In the first sub-problem, the load trajectory is optimized with
safe flight corridor (SFC) and clearance constraints for collision avoidance and security of
space for the multi-rotors. Then, the tension histories are optimized with safe flight sector
(SFS) and relative safe flight sector (RSFS) constraints for obstacle and inter-agent collision
avoidance. Simulations and experiments are conducted to demonstrate efficient trajectory
generation in a cluttered environment and validate the proposed algorithms.

Keywords: Aerial manipulation, Motion and path planning, Optimization and optimal
control, Multi-agent.

Student Number: 2015-22735
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Introduction

Unmanned aerial vehicles (UAVs) have been widely used in various areas such as photog-
raphy, surveillance, inspection, farming, and transportation with the advancements of high
computing power and efficient algorithms. Among the areas, many freight delivery compa-
nies have been actively investigating aerial transportation since it can substantially reduce
the time consumed in land transportation.

Various manipulators have been attached to UAVs to expand the coverage of the appli-
cation in aerial transportation. For instance, a robotic gripper is equipped, and the vehicle
gains an ability to grasp or release variously shaped objects [I]. A robotic arm with multi
degrees of freedom is used to pick or push an object [2 [3]. While the two mentioned types
require actuators to control the manipulators actively, only a cable is required for the sus-
pension type. Some studies taking into account the movement of both the suspended load
and the multi-rotor carry the load safely [4], [5], [6].

The system composed of multi-rotors and an object suspended by a cable, also called a
slung load system, has various advantages in transportation. Since no additional actuators

are required, there is little increase in the total mass of the system, and users can utilize



the maximum payload. Moreover, by attaching one end of the cable close to the center of
the mass of the vehicle, the attitude dynamics of the multi-rotor is scarcely affected.

Although the slung load system has several merits in transportation, it is very difficult
to control the overall system stably. The difficulty comes from under-actuation and non-
linearity of the system. Multi-rotor is originally an under-actuated system with twelve
states and four inputs [7], and it should tilt itself to generate horizontal acceleration. The
slung load system has six more states for each multi-rotor due to the cable while no input is
added [8], which increases the level of under-actuation and non-linearity from the dynamic
coupling between the vehicles and the suspended load.

Stabilizing controllers and efficient trajectory generation algorithms are required to
operate this under-actuated nonlinear system. Efficient trajectory generation algorithms
enable the vehicle and the load to fly in cluttered environments while avoiding obstacles.
Meanwhile, stabilizing controllers need to stabilize the swing of the suspended object while
tracking the desired trajectory.

The first aimed system is composed of a single multi-rotor and a suspended load which
is depicted in . To compensate the attitude control delay and reduce complexity
of the dynamic model, an original attitude dynamics is simplified. After conducting simple
trajectory tracking experiments, model identification is performed with two candidates:
a time-delay model and a first-order model. The more exact attitude dynamics is used
for the trajectory generation and control. By enclosing the multi-rotor, cable, and load
with three ellipsoids, collision avoidance for obstacles is considered in trajectory generation
optimization as done in [9]. For trajectory tracking control, model predictive control is used
to consider full states and generate optimal control inputs in real-time.

The second targeted model, the multiple multi-rotors with a suspended load, has a
higher-dimensional dynamic model as shown in . Therefore, the proposed meth-
ods for a single multi-rotor cannot be directly applied. To reduce the computational load,
the differential flatness property is used to formulate an optimization problem with the

smaller number of variables called flat output which is composed of the load position and



cable tension vectors. The problem is also parameterized using piece-wise Bernstein poly-
nomials and decomposed into two sub-problems: load trajectory generation and tension
history generation. For each sub-problem, convexification methods are proposed to convex-
ify non-convex constraints, which formulates a convex optimization sub-problem. A robust

controller is implemented to track the generated trajectory in a decentralized manner.
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Figure 1.1: Coordinate frames and state variables of the systems. (a) A single multi-rotor
with a suspended load. (b) Multiple multi-rotors with a suspended load.



The respective flow charts of the proposed algorithms for the two targeted systems are

shown in [Fig. 1.2

(a)

Trajectory
optimization
(Chap. 2.2)

Model simplification
(Chap. 2.1)

Optimal control
(Chap.2.3)

(b) Decomposition

Load trajectory
optimization

Entire optimization | | (Chap. 3.2) Trajectory tracking
(Chap. 3.1) Tension history control

optimization

(Chap. 3.3)

Figure 1.2: Flow charts of the proposed algorithms for the slung load systems. (a) A single
multi-rotor with a suspended load. (b) Multiple multi-rotors with a suspended load.



1.1 Literature Survey

There exists an extensive body of literature in operating the slung load systems. In this
dissertation, the related works are introduced into two categories: single vehicle and mul-
tiple vehicles with a suspended load. Each category is once more divided into trajectory

generation and control.

1.1.1 Single Vehicle with a Suspended Load

Trajectory Generation

There exist many works for trajectory generation of a bare multi-rotor [10], 11l 12, 13, [14].
Meanwhile, due to the complexity of the slung load system, relatively smaller number
of algorithms have been proposed for transportation of a suspended load. In [15], mixed
integer quadratic programming is used to generate narrow-gap-passing trajectories. Another
work demonstrates load throwing and obstacle avoidance maneuvers using mathematical
program with complementarity constraints along with quadratic programming [16]. While
the referred works show good performance, it is not possible to generate collision-free
trajectories in real-time. In [5], the authors show slalom maneuvers with real-time trajectory
generation. Still, the work has a limitation in that only the suspended load is considered

for collision avoidance.

Control

Various controllers are proposed to control the slung load system. They can be classified
into three types depending on the objective, and the first type considers tension from the
load as an impediment to control of the multi-rotor and focuses on reducing swing of the
load. Input shaping and delayed feedback control are used to actively attenuate swing [17],
[18]. An H,, controller with Lyapunov redesign technique is implemented in [19] to track the

desired trajectory of the multi-rotor with swing damping. While the proposed controllers
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are proven to be stable since their focus is control of the multi-rotor, the load cannot be
controlled but only the swing can be attenuated.

The second approach aims to control the passively suspended load through actuation
of the multi-rotor. A geometric controller is proposed and performance of the controller is
validated through various experiments [6], [8]. While desired trajectories must be a para-
metric curve of class at least C®° for stability, the proposed controller in [20] shows little
error in tracking. [2I] controls the system using the nonlinear dynamic inversion to employ
standard linear controllers. However, the referred controllers are designed with a cascade
structure where the desired cable angle is computed from the desired load position, and the
desired multi-rotor attitude is computed from the desired cable angle. Since the cascade
structure cannot control both the vehicle and the load simultaneously, directly applying it
for obstacle avoidance is not appropriate.

The last approach is optimal control which can control both the multi-rotor and load
by optimization. Since the system has many state variables for the general nonlinear opti-
mization solvers to optimize in real-time, dynamic programming approach has been mainly
used. A linear quadratic regulator and a model predictive control (MPC) are compared
in [22] with stabilization and tracking simulations. In [23], MPC is used for load tracking
experiments and it shows good performance. Recently, obstacle avoidance is successfully

conducted by following the generated collision-free trajectories [4, [5].

1.1.2 Multiple Vehicles with a Suspended Load

Trajectory Generation

Differential flatness is derived and utilized to generate trajectories for the system with a
point mass or a rigid body in [24]. However, the generated trajectory is a simple sinusoidal
one without consideration of obstacle avoidance. A dynamic model with flexible cables is
derived in [25] with which cable slackness can be considered. In this dissertation, the slack-

ness needs not to be considered since the cable tautness is maintained with constraints. To



avoid inter-agent collision between the vehicles, [26] proposes a cone constraint which limits
the position of the vehicle in the designed cone. A recent work [27] proposes a distributed
optimization algorithm that solves multi-rotor trajectories in parallel and updates a load

trajectory with them. The work shows near-real-time performance for obstacle avoidance.

Control

A linear quadratic regulator and leader-follower control scheme are used for collabora-
tive transportation of two multi-rotors [28]. [29] uses robust model predictive control and
conducts numerical simulations where four multi-rotors follow a reference trajectory. [30]
proposes a nonlinear geometric controller with a stability proof which can be applied to

any number of vehicles.

1.1.3 Feature of the Work

The most studies about trajectory generation for the single multi-rotor with a load cannot
generate trajectories in real-time. While some works show real-time performance, they
cannot guarantee collision avoidance of the entire components, i.e., the vehicle, cable, and
load. The first two categories of the works related to control have difficulties in tracking the
desired trajectory since they consider the load as a disturbance or use a cascaded structure.

The proposed work addresses both the trajectory generation and control problems. To
avoid obstacles, all the components of the system are considered in a less-conservative way
by encompassing them with three ellipsoids. By formulating a receding horizon constrained
optimization, real-time trajectory generation is possible. To track the generated trajectory
precisely, an optimal control algorithm is proposed which can control the vehicle, cable,
and load at the same time.

In the second targeted system, since the dimension increases proportionally to the num-
ber of the vehicles which makes designing efficient algorithms more difficult, there are rela-

tively fewer studies than the single vehicle slung load system. Since the position of the sus-



pended load is passively decided by the positions of at least three vehicles, controller design
is a relatively lighter topic. For safe trajectory generation, not only the obstacle avoidance
of the load, but also the inter-agent collision avoidance between the vehicles and obstacle
avoidance of each vehicle should be considered. While [27] addresses the constraints, only
cylindrical obstacles are addressed and complex environments cannot be easily considered.

To generate safe trajectories efficiently, the proposed work decomposes a big problem
into two sub-problems. For each sub-problem, the non-convex constraints are convexified to
generate convex safe regions. Then, the convex sub-problems can be solved by any convex
optimization solvers. For control of the system, a robust controller proposed in [31] is
used to construct a decentralized control system where each vehicle follows the respective

trajectory compensating the tension from the cable actively without communication.



1.2 Contributions

The contributions of this dissertation are summarized as follows.

Single multi-rotor with a suspended load

e Practical dynamic model: A simplified but practical dynamic model is proposed
with the consideration of the control delay. The considered delay reduces the control
error, and the reduced size of the dynamic equation helps to decrease the computa-

tional load required for trajectory generation and optimal control.

e Real-time trajectory generation: The proposed trajectory generation and optimal
control algorithms can run on onboard computer in real-time. This makes it possible
to re-generate new trajectories when new obstacles appear and to update the control

inputs rapidly.

Multiple multi-rotors with a suspended load

e Convex optimization formulation: The non-convex problem can be solved with

the proposed two convex optimization sub-problems where many solvers can be used.

e Independence of environment complexity: The proposed trajectory generation
algorithm considers obstacles using a single map. The number of obstacles does not
necessarily increase the number of collision avoidance constraints, which maintains

the order of the computational load even in a complex environment.



1.3 Outline

The outline of the dissertation is as follows. addresses trajectory generation and

optimal control methods for the system composed of a single multi-rotor with a suspended

load. presents trajectory generation methods for the system of multiple multi-
rotors with a load. For validation, provides experimental results, and

ends the dissertation with concluding remarks.
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Single Multi-rotor with a Suspended Load

This chapter addresses overall algorithms of trajectory generation and optimal control

to operate a single multi-rotor with a suspended load, with the derivation of a practical

dynamic model. Refer to [Fig. 1.2(a)| for the flow chart of the chapter.

2.1 Dynamics

Various dynamic models are proposed for the slung load system. [32] derives a dynamic
model using the Udwadia-Kalaba equation with the consideration of rotor downwash. As-
suming that one end of the cable is attached to the center of mass of the multi-rotor, [§]
derives a dynamic model using the method of Lagrange while another model is derived

using the Newtonian method [33]. The assumption is used also in this dissertation. The

11 I = 4



dynamic model proposed in [33] is expressed as

d. _

dtwL = vL,

d 1 .

%'UL = m(fRe?, - mMCI) — ges,
iq =wXxq

dt ’ (2.1)
i N x fRe

it = 2! 3

d A

—R = RQ

g1t = s,

d

— i = T (M — Qg x JyS2p),
T

with a control input u = [f MT] € R* and a rotation matrix R = R,(¢)R,(0)R.(¢).
Note that the dynamic model assumes the cable tautness, and the assumption is validated
through the experiment results in Fig. and Fig. Nomenclature for the system is
listed in [Table 2.11

Multi-rotor generates thrust and moments by making differences in the thrust of each
motor. Although the dynamic model in describes the coupling between the vehicle and
the load well, there exists a limitation to be used with optimization-based controllers. While
direct speed control of BLDC motors is possible to generate desired thrust [34], 35], precise
attitude control is difficult since measurement of the moment of inertia requires additional
processes. To overcome the limitation in the attitude control, other research uses angular
velocity, w, as a control input assuming that the angular velocity control is immediate [23].
Not only be the simplified dynamics more reasonable with a stable low-level controller, but
it also reduces the size of the state variable. However, such dynamic models require very
fast update of the input, and the assumption of delay-less angular velocity control is too
harsh. Accordingly, such dynamic model is not appropriate for optimization-based control
which requires longer computation time.

Two kinds of simplified attitude dynamics are proposed and compared in this disser-
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Notation

z

B

Tz, Y1, 2T € R3
B, Yp, 25 € R3

x),x € R?
R3
Uy, UL €

qgcsS?

R e SO(3)

<I>:[¢ 6 | €R3
Qs=[p ¢ T}TGR?’
wcR?

feRrR!

M c R?

geR!

[ eR!
ma, my € R!
JM€R3X3

€i€R3

]T

Table 2.1: Nomenclature of Chapter 2

Meaning
Inertial frame
Body-fixed frame of the multi-rotor
x,1y,z axes of Z
x,y, 2 axes of B
Position of the multi-rotor and the load expressed
in Z
Velocity of the multi-rotor and the load expressed
inZ
Position of the multi-rotor with respect to the load
expressed in Z
Rotation matrix of the multi-rotor from B to Z
Roll, pitch, and yaw angle of the multi-rotor
Angular velocity of the multi-rotor expressed in B
Angular velocity of q expressed in Z
Thrust input of the multi-rotor
Moment input of the multi-rotor
Gravitational constant
Length of the cable
Mass of the multi-rotor and the load
Inertia matrix of the multi-rotor
Unit vector whose i*" element is 1
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tation. The first model, time-delay model, is simplified by considering the time-delay of
attitude control explicitly, and the control input of the system is a desired force vector.
The other model, first-order model, is simplified by assuming that the attitude control dy-
namics is a first-order system where the control delay is implicitly considered and control
input is a desired attitude vector. Two models are constructed using system identification
from experiment data, and more practical and accurate one is adopted for the trajectory

planner and the controller.

2.1.1 Simplified Dynamics: Time-delay Model

Firstly, a bare multi-rotor dynamics can be expressed as follows:

d__

dth = Vwm,

d 1

—vy = — fRes — ges,

d R .
—R = RQ

dt B

d

EQB = Jif (M — Q x JyQp).

If a stable attitude controller is implemented, the attitude of the vehicle can approximated

as a delayed signal of the desired attitude as

(b(t) Pdes (t - 7¢)
Odes(t — 7o) | » (2.3)
¥(t) Vaes(t — 1)

where %45 are desired values of *, and 7, are non-negative time-delay. In [36], with some

o
I
>
Q

reasonable assumptions, it is shown that the input/output relationship of the translational

acceleration can also be expressed similar to (2.3)) as

14 | = )¢



i’M@) «%M.des(t - P)/¢)

Ly = yM(t) ~ ZjM.des (t - '70) ) (24)

Zu(t) Z0des(t)

where a pseudo-acceleration vector is defined as Ty = R7Y() (fi:M—l—geg) = R:7'(¢) -~ fRes.

Z mpy

By multiplying both sides of (2.4)) by R.(¢))mas, the input/output relationship of the force
generated by the multi-rotor can be considered as a point-mass force generator with time-

delay in only horizontal directions. The equation is expressed as

Fx<t> Fx.des (t - ’Yh)
F=1F,)| ~ | Fyaes(t =) (2.5)
Fz(t) Fz.des (t)

with the assumption that 7, and 7y have the same value of horizontal time-delay, ;.
Although it is difficult to directly consider the time-delay, ~,, in the form of a state-space
equation, it can easily be modeled in a frequency domain. For example, the force relationship
in x axis can be expressed as follows:
F.(s . TS8T 2
G(s) = K(S()S) =e T%Z”, (2.6)
which is approximated using Padé approximation. Time domain expression of the equation

can be expressed as

g, = Ap,tp, + Br, Fy des
(2.7)
F, =Crxp, + Dp, Fy des,

where an additional state, zf, , is required. Accordingly, to model input/output relationship
of generated force vector, only two slack variables, vy, and zf,, are required.

Since the attitude dynamics in (2.1)) is independent from the translation dynamics, the
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new simplified dynamics for rotation can be expressed by replacing the attitude dynamics

with (2.7)) in both the x and y axes as follows:

d
%mFry = AFrwary + BFTnyy.des
F— CFlwazy + DFzyF:vy.des (28)
Fz.des
. . T
with a new control input w = |F, jos  F, es thdes] € R®. Note that @p,,, Ar,,, Br,,

Cr,,» Dr,,, and F, 4., are defined to express (2.7) in both the z and y axes in a com-
pact form. The yaw angle is not considered in this equation since it can be controlled

independently.

2.1.2 Simplified Dynamics: First-order Model

Motivated by [37], the following first-order model approximates the input/output relation-
ship of attitude control as a first-order system where the time-delay and the response time

are considered implicitly.

d - 3 3
—¢p=A B ess
dt¢ h¢ + Broa

d
dt

) ) ) (2.9)
0 = Apb + Bp0ges.

Again, the yaw angle of the vehicle is assumed to be controlled separately by a low-level

controller. Note that * mean yaw-compensated values using the following equations:

(2.10)

16 al %



2.1.3 Identification and Comparison of the Simplified Models

For identification of the two candidate dynamic models, circular trajectory flight experi-
ments are conducted with different periods. The trajectories enable the attitude controller

to send time-varying commands. The position and attitude tracking results of the multi-

rotor are shown in [Fig. 2.1} [Fig. 2.2 and |[Fig. 2.3]

20 25 30 35 20 25 30 35
14 ' e[ | | I
=135 /\ B
g A s V/\A A /\ s 0] e P P N .
= 137 \/ % v S o~ S
1.25¢ ‘ ‘ ‘ ‘ 40 | | |
20 25 30 35 20 25 30 35
time(s) time(s)

Figure 2.1: Circular trajectory (10 seconds period) tracking experiment result with (left)
position and (right) attitude histories of the multi-rotor. The red line denotes desired values,
and the black line denotes measurement data
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Figure 2.2: Circular trajectory (7.5 seconds period) tracking experiment result with (left)
position and (right) attitude histories the a multi-rotor. The red line denotes desired values,
and the black line denotes measurement data
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18 20 22 24 26 28 18 20 22 24 26 28

1.35+ 1 . 57
£ 4 o \ I
" 1.25f S 5f
1.2¢ : : : : : o -10 ¢ ‘ ‘ ‘ ‘ ‘ d
18 20 22 24 26 28 18 20 22 24 26 28
time(s) time(s)

Figure 2.3: Circular trajectory (5 seconds period) tracking experiment result with (left)
position and (right) attitude histories of the a multi-rotor. The red line denotes desired
values, and the black line denotes measurement data
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For system identification of the time-delay model in (2.8)), the parameter 7, is estimated

by minimizing the following error metric:

Y = argtminz <|¢(t) — Paes(t —ta)| + 10(t) — Oges(t — td)\). (2.11)

shows the estimation result from the brute-force search, and the estimated 4, has

the same value regardless of the trajectory periods.

0.25 T

ot
.
o
.

02+ i

015 o 4

error (deg)
~
|
-J
&) |
0)]

ooooooooo

0.05 . T =10 s |

Figure 2.4: Horizontal time-delay estimation using (2.11)) where the red, green, and blue
lines are computed from the trajectories with 10, 7.5, and 5 seconds periods. The triangles
denote the estimated time-delays and the minimum errors.

; BE L



—— state
——desired |/
A firStclosed
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Figure 2.5: Simulation result from the system identification. The black and red lines denote
the measured and desired values, and the blue and green lines denote the simulation results
of the time-delay model and the first-order model, respectively. For the simulation results,
solid lines mean open-loop results while dashed lines with triangles mean closed-loop results.

Table 2.2: RMSE of the system identification for the candidate models.

open-loop closed-loop
time-delay | 0.3883° 0.2722°
first-order | 0.5244° 0.0391°
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For identification of the second candidate model, the first-order model in , the
subspace method is applied [38]. Since the input/output response of roll and pitch angles
is similar, the first-order model requires only two parameters, A, and By,. Identification is
conducted with the concatenated roll and pitch data where the offset at the conjunction is
removed.

shows the simulation result from the identification. The RMSE of the candi-
date models is shown in [Table 2.2] Since tendencies in roll and pitch angle are very similar
regardless of the periods of the desired trajectories, only pitch angle result with five sec-
onds period trajectory is shown here. Two kinds of the simulation are conducted for each
candidate model which are open-loop and closed-loop ones. For the open-loop simulation,
only initial condition is given, and integration is carried out with the desired values. On
the other hand, the measurement data is given at each time step for the closed-loop simu-
lation. Since state feedback of xp,, for the time-delay model cannot be done directly from
measurement values while feedback of ¢ and 6 is possible for the first-order model by IMU

measurements, the following equation is used to compute xp,, .

CFzyszy + DFzy F:L"y.des
Fz.des

F = = fRe;. (2.12)

While open-loop simulation results show quite larger error, closed-loop simulation re-
sults show good performance. Especially, the first-order model shows more exact result
in the closed-loop simulation since the time-delay model requires magnitude of thrust for
feedback of @, state, which is not accurate. Compared to the original dynamics which has
eighteen state variables and four control inputs, the first-order model has fourteen state
variables and three control inputs. This simplification enables the trajectory generation
and optimal control algorithms to find solutions faster. Therefore, the first-order model is

used in this dissertation for the dynamics of the system. Note that the state vector and the
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control input vector first-order model are defined as:

_oqT
T = [a:z q" v w' ¢ 9} e R,

. (2.13)
u = |:f édes édesi| € RBXI‘

2.2 Trajectory Generation

For safe flight of the vehicle, an efficient planning algorithm which generates collision-
free trajectories fast enough is required. While only the load is considered in the previous
work [5], all the multi-rotor, cable, and load are considered for collision avoidance in this
dissertation. Moreover, the current state can be fully considered, which is also not possible in
[5]. An augmented Lagrangian method in [39] is employed to solve a nonlinear optimization

problem with the proposed obstacle avoidance constraints.

2.2.1 Cost Functional

To find an optimal trajectory given the current state, (1), and the goal state, xs, the
following cost functional is designed to reach the goal state while regulating the state and

minimizing the control input:

Nr

(). u()) = gl + ) a5 Y (o)~ ol + lul) - waulf Jar, (210

where || x ||x = V"X and Np is the number of control inputs to be optimized. The
matrices L, Q € R4 and R € R?**3 are weight matrices for the optimization. The state

and input trajectory are defined as follows:
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x(-) = {z(1),2(2), - x(Nr + 1)},

u(-) = {u(l),u(2),---u(Nr)}.

(2.15)

.
The desired input vector, ug.s = [(mM +mp)g 00| , is a constant vector required to

maintain equilibrium when hovering with the load halted.

2.2.2 Collision Avoidance Constraints

Considering obstacles in trajectory generation as constraints is necessary for the safety.
As an example of the constraint, the system can be considered as a sphere, and a simple
constraint function keeping the sphere from colliding with the obstacles can be imposed,
which is widely used for the bare multi-rotor systems. However, for the system in this work,
such a constraint is very conservative since the enclosing sphere becomes bigger as the cable
length grows. To design a less-conservative constraint function, this dissertation considers
the system as three safety ellipsoids which enclose the multi-rotor, cable, and suspended

load, respectively. The following equation is used to express ellipsoids in this work:

Ep,Q)={p+Q"v v v=1}, (2.16)

where p is the center of the ellipsoid, and ) is a shape matrix decided by length and

direction of the principal axes.

3 11 3
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Figure 2.6: Coordinate frames and safety ellipsoids with the dimensions.
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The safety ellipsoids are shown in |Fig. 2.6 with parameters depending on the state
variables and the physical size of the system. Each ellipsoid enclosing the multi-rotor,
cable, and load is defined as Ey(par, Qunr), Ec(pe, Qc), and Er(pr, Q). The parameters

for them are defined as follows:

Pv =2 — 4, QM - RTdmg(r%, 7012\/[7 (hM/2)2)R7

1 :
Dc =T — §q7 QC - Rgdlag(ré, T’%, (l/2)2)RCa (217)
PL =Ty, QL = d’L.CLg(T%, T’%, T’%),

where the load is assumed to be enclosed by a sphere with a radius of 7. The matrix R¢

is defined from the current cable direction as follows:

rcs=—

)

g
l

rci1="Tc3 X €3, (2 18)

rc2=Tc3 X Tcui,

Re = rci1 Tc2 Tc3|-

This kind of safety ellipsoid enclosure expands to represent obstacles also. This work
assumes that the position and shape of the obstacles are known in advance because detection
of them is beyond the scope of the dissertation. Therefore, the obstacles are expressed with
Eo.i(pPo.i, Qo) for i =1--- No where Np is the number of the obstacles.

Safety is assured by eliminating intersection between the ellipsoids enclosing the sys-
tem and the ellipsoids enclosing the obstacles. Existence of intersection of two ellipsoids,
E1(p1, Q1) and & (p2, Q2), can be checked using Minkowski sum, and it does not exist if

the following condition is satisfied:

0¢ & (-E&). (2.19)
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Since Minkowski sum of two ellipsoids is usually not an ellipsoid, it requires approximation
to find an analytic solution and to check the condition (2.19)). The trace minimization
approach in [40] is adopted to find the smallest ellipsoid encompassing the Minkowski
sum. The approximated ellipsoid, 5’172(@172, QAL2>, can be analytically computed using the

following equations:

E @ (—&) C 51,2(151,2, Qm)

15172 =DP1— P2 (2.20)

Therefore, the safety condition (2.19) can be expressed as a constraint function with the

approximated ellipsoid as follows:

PloQrspra — 1> 0, (2.21)

and collision avoidance constraints used in trajectory generation are defined as follows:

T A-1 .
Pro0i@QroiPmoi—1>0

ﬁ(TJ,oAiQ(_:}o,iIA’C,O.i —1>0 for i=1---No. (2.22)

~T A1 =~
ProiroProi—1>0

Note that p; ; and QU are computed from p;, p;, @, and ); using the same procedure in

[2.20)).
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2.2.3 Augmented Lagrangian Method

For the optimization with the designed cost functional and the proposed constraints, the
augmented Lagrangian method with the differential dynamic programming (DDP) ap-
proach is adopted. The following minimization problem is what needs to be solved for
the trajectory generation:

miI}Li(I.r)lize Jr(x(-), u(-))

subject to &(k + 1) = f(x(k),u(k)) for k=1--- N,

1) =
x(1) = xo, (2.23)
eai(x(k)) >0fork=1---Np, i=1---Np,
cci(x(k)) >0fork=1---Np, i=1---Np,
CL.i(CU(k>)>OfOI‘]€:1-~-NT7 i=1---Np,

where the first constraint is for the dynamic feasibility discretized from the proposed dy-
namic model, and . The second one is for the initial condition and the last three
terms are for collision avoidance in for each time step and obstacle. The augmented
Lagrangian method transforms the original constrained optimization into unconstrained
optimization by adding both the penalty terms and the Lagrangian multiplier terms as

follows:

minimize L, = Jr(x(:),u(-)) +

" Nt (2.24)
ST @ (k) L el (k) + A c(z(k))}

k=1
where c(x(k)), A € R3No are the vertical concatenation of the collision avoidance con-
straints and Lagrange multipliers at the k'™ time step, respectively. The matrix I, €

R3Nox3No g 5 diagonal matrix whose diagonal terms are defined as:

3 11 3
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wiif ¢i(x(k)) < 0or X >0
L(i,i)=4¢ " BT (2.25)

0  otherwise
where ¢;(x(k)) and A} are the i*" elements of c(x(k)) and A, respectively.

The unconstrained optimization problem in ([2.24]) with initial values of ;1 and A is solved
by iterative Linear Quadratic Regulation (iLQR) [41]. After convergence, the constraint
functions are checked, and g and A\ are updated if any magnitude of constraint violation
is larger than a threshold value. While p is updated according to a predefined schedule, A

value is updated using the first-order necessary condition for optimality as follows:
N L — g (@), (2.26)

The detailed algorithm for the optimization is explained in[Algorithm I} The unconstrained
problem, , is solved using the iLQR method (line &). After convergence, the constraint
violation is checked. If the i** constraint for the k** time step is not violated more than a
threshold value &% (line 7), the Lagrangian multipliers are updated and the threshold value
is reduced (lines 8-9). If the constraint violates more than the threshold value, the penalty
term is increased (line 11). After the outer loop update, an unconstrained problem with
the updated parameters are optimized again. These procedures of inner loop optimization

and outer loop update are repeated until all the constraints are satisfied (line 2).
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Algorithm 1 Augmented Lagrangian method [39]

Input: I,, A, k, (1), u,(:)

Output: J*, (-)*, u(-)*

1 g () = ()

2: while max(c) > €. do

3: Optimize the unconstrained problem (inner loop)

— {mtemp(')a utemp(')} = ZLQR(m(l)a un()7 I/M >‘v K‘) [41]

4 Update the penalty terms and Lagrangian multipliers (outer loop)
5 fork=1,--- ,Nr+1do

6: for i =1,---,3 do Three obstacle avoidance constraints
7 if ¢;(z(k)) < ki then

8 N = AL — pici(@(k))

9: Reduce &},
10: else

11: Increase u};
12: end if

13: end for

14: end for

15: end while
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2.3 Optimal Control

An optimization-based controller is adopted to track the generated trajectory. Compared
to the conventional ones, this kind of controller can consider the state fully at once without
the cascade structure. Moreover, the priority of the state and input variables in tracking
can be modulated using gain matrices. The optimal control is computed using the following

cost functional:

o (@(),u()) = 5 lle(Ne +1) — @ (No + 1)}

N % kz:; {||:1:(k:) _ m*(k)Hé + ||lu(k) — udes”?%}dt (2.27)

= gla(Ne+ 1)+ 33 {hla)u()}

where N¢ is a control horizon calculated by subtracting time-delay in trajectory generation
from Np. The desired trajectory, *(+), is also front-truncated from the generated collision-
free trajectory by the amount of the time-delay, which is implemented to compensate and
minimize the effect of computation time in trajectory generation. To solve the optimal
control problem, the sequential linear quadratic (SLQ) solver is implemented in a model

predictive control (MPC) manner.

2.3.1 Sequential Linear Quadratic Solver

A stable and fast optimal control solver is required to compute an optimal control problem
at each time step. The sequential linear quadratic (SLQ) solver is implemented whose speed
and performance has been previously demonstrated in agile flight experiments [12].

The detailed algorithm of SLQ is shown in [Algorithm 2| At first, the current state and
nominal control input are given for initialization. After forward simulation with the nominal
input (line 2), the dynamics is linearized along the computed nominal trajectory (line 3).

Here, analytic derivatives are used instead of numerical ones to reduce computation time.
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Symbolic expressions are computed in MATLAB and the result is embedded in the solver.
Then, the cost functional is quadratized to compute gradients of the cost functional (line 4 ).
If the form of the designed cost functional are similar to the quadratic function, the analytic
derivatives can easily be computed. With the linearized dynamics and the quadratized cost
functional, it is possible to find a feedforward input, I(k), and a feedback gain, K(k), by
solving backward Riccati-like equations (line 5). Since the dynamics is linearized, using
the feedforward input and the feedback gain directly is not appropriate since there exist
linearization error. Iteratively finding a lower cost by line search is a good method which
can reduce the linearization error by finding the proper magnitude of the update (lines
6-13). Also, it can save time and reduce the number of iterations of SLQ. An exponentially
decreasing values of the step size, «, is used with a scale parameter kj;,.. After completing
the line search, if the new cost does not decrease more than the predefined value, stopsrq,

the optimization is judged to be converged (lines 14-19).
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Algorithm 2 SLQ

Input: (1), w,(:)
Output: J*, ()", u(-)*, K(-)*, I(")*, «
1: while (itersrg <= mazrsrg) {SLQ loop} do

2: Simulate the system forward with the dynamics
=@, (1),2,(2), - ,zo(Ne),xn(No + 1)
3: Linearize the dynamics along x,,

—dx(k+1) =0f(x(k),uk)) = A(k)dx(k) + B(k)du(k)
4: Quadratize the cost functional J(z(k) + dx(k), u(k) + du(k))
— J & so(Ne+1) +6x" (N + 1)s1 (N + 1) + 562 T (Ne + 1)S2(Ne + 1)dz(Ne + 1)

+Re 1( o(k) + o2 (k)qu(k) + 50 (k) Q2 (k)o (k)

+ouT (k)ro (k) + ;5uT(k)RQ(k)5u(k)> dt

where s1(Ne +1) =

S(Nc+1) g

9 | Nog1’ 2% | Not1’
on|" on|" oh?
@)= 3| 0 Q=35 nw =32 . Rk =]
5: Minimize the cost functional by solving backward

—s1k—1)=q(k—1)+AT(k—1)s;(k) —G"H g
So(k —1) = Qa(k — 1) + AT (t — dt) Sz (k) A(k — 1)
-GTH '@
Kk-1)=-H'G
I(k—1)=-H" g
where G = BT (k —1)Sy(k)A(k — 1)
H=Ry(k—1)+ BT (k—1)So(k)B(k —1)
g=ri(k—1)+B"(k—1)s1(k)
6: while (iter;ine < mazyn.) {line search loop} do

7 o = 10~ Frine(iteriine—1)/(mawiine—1)
8: Simulate the system forward
— Utemp(k) = () + (k) + K (k) (@emp (k) — @0 (k)
wtemp(k + 1) = f($temp(k)7 utemp(k))
9: Compute the temporary cost
= Jtemp = J(mteTnp(')vutemp('))
10: if (Jtemp S Jold) then
11: break with {Jiemp, Tiemp(k)s Uiemp(k), K (k), al(k)}
12: end if

13: end while
14: if (Jnew > Jold - StOpSLQ) then

15: return {Joew, Tnew(:), Unew(:), K(k), I(-), a}
16: else

17: Jota = Jnew7un(k) = unew(k)

18: itersrg = tersrg + 1

19: end if

20: end while
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2.3.2 Model Predictive Control

In this section, customized MPC settings are addressed which increase stability and agility
in experiments. In reality, since there exist various disturbances and errors unlike simu-
lations, the system cannot be controlled perfectly. For continuous feedback control, MPC
is implemented. However, MPC algorithms tend to reduce magnitudes of control input as
vehicle approaches final desired state, and such small control input might be unable to con-
trol the system stably due to disturbances or actuator delay. The proposed MPC algorithm
is described in detail in [Algorithm 3]

By changing the length of the time horizon adaptively, it is possible to solve the above-
mentioned issue of decreasing input magnitude when approaching the final desired state.
By changing the time horizon proportionally to the distance from the load to the final
position (line 1), the control input can maintain appropriate magnitudes. Conversely, the
length of time horizon decreases as the distance to final position becomes closer. If the time
horizon is too long, the computation time is lengthened, and if it is too short, the solution
becomes less stable. These problems are eliminated by empirically setting the upper and
lower limits to length of time horizon (lines 2-6).

With the computed time horizon and the final desired state, a stable control input is
computed using a nominal controller. For a nominal controller, the geometric controller
[42] is used whose stability is verified. Using the control input from the nominal controller
(lines 7-10) as a starting point, optimal control input and trajectory can be computed by
the SLQ solver (line 11). For the first optimization, the geometric controller computes the
nominal control input to follow a simple polynomial trajectory avoiding obstacles (line 8).
After one convergence, the previous SLQ result is used for warm start (line 9). Since the
previous result can avoid obstacles, giving it to the nominal controller enables generating
collision-free nominal trajectory with a near-optimal control. This method not only reduces
the computation time but also increases stability since the previous SLQ) is near the optimal

result.
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Algorithm 3 MPC

IUPUt: tnoun m(tﬂow)
Output: J*, x(-)*, u(-)*

1:

10:
11:

12:

Compute time horizon length adaptively

—dy = \/(wL - [fo YL, ZLf]T)T(wL - [fo YL, ZLf}T)
H = round(ds X kadaptive)
if H > H,,4, then
H= Hmax
else if H < H,,;,, then
H= Hm,in
end if
Find a nominal stable control input
if (At the beginning) then
— Uy, (-) = nominalController(x(1), xy)
else if (Afterward) then

— un () = nominalController(x(1), ®(-)} cvious)
end if
Solve SLQ

— {J*7 w()*a u(')*7 K()*7 l()*7 a} = SLQ($(1)7UH())
Repeat until the system meets the final desired state

Ty
o
sy
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Multiple Multi-rotors with a Suspended Load

This chapter addresses the system composed of multiple multi-rotors with a suspended load.
Sine this system has more number of states and control inputs increasing proportionally
to the number of the vehicle, applying the proposed algorithms in results in
a high computational load. Not using the large dynamic model as it is, this dissertation
utilizes the differential flatness to reduce the number of the optimization variables. For
the further efficiency, an entire optimization problem is parameterized and decomposed

into two sub-problems which are for the load trajectory and tension histories, respectively.

Refer to [Fig. 1.2(b)|for the flow chart of the chapter.

3.1 Problem Setting

3.1.1 Dynamics

Various dynamic models are used to express the internal effects of the tension of the cables
[24], 25, B0]. The model in [24] is derived using the Newtonian mechanics with the explicit

cable tension terms. Since tension is an internal force that cannot be known prior to exerting
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control inputs, Lagrangian mechanics can be used to express the motion without the explicit
cable tension terms as derived in [25] 30]. While [30] assumes cable tautness, [25] derives a
dynamic model using flexible cables without the tautness assumption.

In this paper, since the cable tensions are the optimization variables and tautness can
be guaranteed in the trajectory generation step through constraints, the model in [24] is

used:
(vehicle)

d .
dt b

s, = I (M, — s, x T ) 3
dt Bi - 1 (3 Bi 1 Bz‘ 9

d .
(load) %L =%,

d 1 [ &
%’bL = ( ; Tiqi — nge3)-
The definition of the variables is listed in[Table 3.1} and a three-vehicle system is illustrated
in i.e., npyr = 3. Note that, compared to [24], the only difference is that the sign
of g; is flipped in this work for intuitive interpretation during the convexification process.
The state and the input vector are defined as follows:
x =z, v] x; v} By QL}T € RO+12nar

! (3.2)
w=[f], MJ,]" e R,

e

nyy) 18 @ concatenated vector of elements for all the multi-rotors.

where ;= [%] *
This dynamics cannot be directly used since the tension vectors, Ty, require additional
sensors to be measured. The motion of the load and the multi-rotor is innately coupled and
the dynamic model is highly non-linear with a large number of states and inputs, which

results in difficulties to secure short computation time for optimization.
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Notation
Ngy, Ty, MM, B, NC, N,

n, € R

Z

B;

x7, yr, 27 € R3
xs,, Y., 25, € R?

x, x; € R3

Ty € R3nm

vr,v; € R3

Vv € R3nMm
T; € R!
q; € S*

T, € R?

Ty € R3nM

-
®; = [¢i 0; %‘] cR?
q)M € R3nMm

-
Qp, = [pi qi Ti] € R’
QL' e R?

Qu € R3mm

Table 3.1: Nomenclature of Chapter 3

Meaning
The number of states, inputs, multi-rotors, trajectory
segments, control points, flat outputs, and vertices of
SFCs
Inertial frame
Body-fixed frame of the ¥ multi-rotor
x,y,z axes of Z
x,y, z axes of B;
Position of the load and the i** multi-rotor expressed
inZ
Concatenated positions of the multi-rotors
Velocity of the load and the i** multi-rotor expressed
inZ
Concatenated velocities of the multi-rotors
Tension magnitude of the i** cable
Direction of the ¥ multi-rotor with respect to the load
expressed in Z
Tension vector of the " multi-rotor with respect to
the load expressed in Z
Concatenated tension vectors of the multi-rotors
Rotation matrix of the i multi-rotor from Z to B;
Roll, pitch, and yaw angle of the i multi-rotor
Concatenated attitudes of the multi-rotors
Angular velocity of the i multi-rotor expressed in B;
Angular velocity of the 7" multi-rotor expressed in Z

Concatenated angular velocities of the multi-rotors
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fi eR!

fu e R
M, € R3
M, € R3"m
x e R"™

u € R™

¢ e R

ne, nr € R

dL, dT e R!

7 c R30+D+3(nar—1)(nr+1)
g € R!

leR!

m;, my, € R

J; € R3*%3

€i€R3

Thrust input of the 7" multi-rotor

Concatenated thrusts of the multi-rotors

Moment input of the i multi-rotor expressed in B;
Concatenated moment inputs of the multi-rotors
States of the system

Inputs of the system

Flat outputs of the system

Maximum differentiation order of the flat outputs cor-
responding to the load and the tension for the differ-
ential flatness

Degree of the Bernstein polynomial corresponding to
the load and the tension

Flat outputs and their derivatives to be optimized
Gravitational constant

Length of the cables

Mass of the 7" multi-rotor and the load

Inertia matrix of the i multi-rotor

Unit vector whose " element is 1
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3.1.2 Differential Flatness

The system with multi-rotors and a suspended load is proved to be differentially flat [24].
While both the configuration with a point-mass load or a rigid-body load are proved to
have the differential flatness, this dissertation focuses on only the point-mass type.

A system is said to be differentially flat if the state vector, * € R"*, and the input

vector, u € R™, can be expressed by flat outputs, ¢ € R™, which are chosen as follows:

.
C=l|e T, Ty - T, 9| €R™, (3.3)
where ¥y = [t1 -+ ¥p,,]T € R™ is a concatenated vector of yaw angles [24]. Note that

the first tension vector, T3, is not included in the flat outputs. The detailed derivation of
the differential flatness is shown in [Appendix Al

Since the yaw angle of a multi-rotor can be easily controlled independently by an efficient
attitude controller, it is assumed that the yaw angles of the multi-rotors are maintained at
zero, which results in a reduction in the number of the flat outputs to be optimized, from

3+3(nay — 1)+ (npyr — 1) to 3+ 3(nar — 1).

3.1.3 Optimization Problem

To generate trajectories quickly, trajectory optimization is performed using not the original
state & and the input u, but the flat output ¢. Then, the dynamics of ¢ can be considered
with an affine function. For consideration of the constraints, Bernstein polynomials are used
which have a convex hull property. Additionally, the polynomials can parameterize the con-
tinuous trajectory using a discrete number of control points. By performing convexification
for the non-convex collision constraints, this dissertation proposes a convex optimization
algorithm that can be solved efficiently. Refer to for the detailed definition
and the properties of Bernstein polynomials.

As stated in [Appendix A] the flat output x; and T; need to be differentiated at least

5 - 1
"':I'H-_E _'H.I.- ok |
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four and six times to express the states and the inputs of the original system, i.e. n, = 6
and ny = 4. It results in 3 x (n, + 1) + 3(ny — 1)(nr + 1) optimization variables which is

expressed as
z =z} z]]", (3.4)

T

where Z; = [wg )T - (;Aﬁ)T] and Zr = [Z] Z] --- Z] |'. Zi is defined as

-
Z; = [TZT (THT ... (T.(4))T} and * is the n'* derivative of *.

Cost Functional

The aim of the trajectory optimization is minimizing the following cost functional:
J(ZL(t), Z7(t) = JL(ZL(t)) + Jr(Zr(t)). (3.5)

2
i) = 2 |20 ar and snizao) = 12 g

minimize the energy consumption by reducing the magnitude of the control input.

@) | -
T, (t)” dt » indirectly

Trajectory Parameterization

For optimization, the trajectories are parameterized using piece-wise Bernstein polynomials.

To decide the degrees of the polynomials, the following Euler-Lagrange equation is used:

oL d ( oL ) ar [ oL
— =+ + ()= — | =0, (3.6)
of, dt ofr dtn (@féﬂ) )

under fixed boundary conditions for f; and its derivatives of orders up to n — 1.

L (t,fg, fe,-- ,fén)> is a Lagrangian of the cost functional. As an example, f, = x(t)

2
and L = (:17536) (t)) for the z-component load trajectory based on 1' Then, 1) can be

simplified with n = n; = 6 as follows:

(10 55 (#00) = 420 = 0 (37)

3 1] ;
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which can be satisfied with the polynomials of degree d;, = 11. The same procedures are
used for the tension histories, and ({3.6|) is satisfied with n =ny =4 and dp = 7.
Then, the trajectories of the load and the tensions can be expressed as follows where

only the z-components are shown as examples:

((dr+1

Z Cix.deL‘j(Tl) for t < [to,tl]

Jj=1

dL—‘rl

5 0t Busr) Dot € byt
L 7=t

( dT+1
Z Czla:.deT.j(Tl) fort € [to,tl]

=1

dT+1

Z CiniBar j(Tng) for t € [ty —1,tnz],
\ =1

which are npg-segment polynomials with one second duration for each segment, i.e., to = 0
and tg,1 — tx = 1. The control points are the optimization variables, and they are defined
as follows:

7T T . T7T 3np(d+1)
cr = [CLI Cry cLz] eR ,

Cry = [(CIL*)T (Ci*)T (CZE)T]T € RB(dtD) (3.10)
cj, = [C’Z*,l g Cﬁ*.dﬁJT € R,

er=ey ef - CZM}T € R3¥Br+)(na—1)

¢ = e € cz-Tz}T e R3nsldr+l) o
cio = [(eh)T (2)T -+ ()] e R, |
ch = [y Cha Cf*.dT+1}T € R+,

Then, with the defined trajectories and control points, the cost functional (3.5)) can be
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parameterized as follows:

J(ZL(t), ZT(t)) = J(CL7 CT) = JL(CL) + JT(CT),
Ji(er) = c;diag(Hy, Hy, Hy)cy, (3.12)
nym
Jr(er) = Z {C;dmg(HT, Hr, Hr)er} .
i—2
H,eS"” @t and Hy € S? (@r+1) can easily be computed using the definition of the cost

functional.

3.1.4 Problem Formulation

With the constraints for boundary conditions and collision avoidance, the following trajec-

tory generation problem can be formulated:

Problem 1. FEntire optimization

minimize J(ep,er) = J(er)+ Jr(er)
SUbjGCt to AL.boundarycL = bL.boundary7
AT.boundarycT = bT.boundm‘ya
AL.contmuitycL - bL.continuity7
AT,continuitycT = bT.continuitya
grler) = or,
gr(cw,er) = or,

gI(CLa CT) t 5]7

where the first and second constraints are the boundary conditions which encode the

following example equation of the x-component of the load for all axes of the load and

Joan . (5
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tension:

dr+1
Z CLw]Bt(irIIJj _‘Ig]antml forn:O"'nL_ 17
(3.13)

dL+1
Z cﬁ’jJBd” x%"}mal forn=0---n; — 1.

For continuity of the trajectories including the derivatives, continuity constraints are also
added which are the third and fourth ones. One example for x-component of the load

trajectory is as follows:

dp+1 drp+1

Z Csz dL ] C];/J:;l]Bc(lZ)](())
=1 (3.14)

fork=1---ng—1 and n=0---5.

The fifth constraint is for obstacle avoidance of the suspended load which encodes ||z, — xo||
> or,. The last two constraints are for obstacle avoidance of the multi-rotors and inter-agent
collision avoidance between them which encodes ||x; — xol|| > dr and ||x;, — x;,|| > I1, re-
spectively. Note that, as shown , the position of the first multi-rotor requires the load

acceleration, which is the reason why gr and g; depend on c;,.

3.1.5 Decomposed Optimization

As shown in [Problem 1] the cost functional is decoupled as two terms J;, and Jp. The
boundary and continuity constraints are also separated, and the only coupled terms are gr
and g;. Then, this problem can be efficiently solved with two sub-problems after decom-
position: load trajectory generation and tension history generation. The load trajectory
for ¢y, is solved first and the tension histories for ¢r are solved fixing ¢j. Since clearance
constraints for the multi-rotors are considered in load trajectory generation, the loss of

optimality from the decomposition is not critical.
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3.2 Load Trajectory Generation

This section addresses a trajectory generation problem for the suspended load which is the
first sub-problem of [Problem 1 While all the cost functional, boundary constraint, and
continuity constraint are convex functions of ¢y, the constraint for load obstacle avoid-
ance, gr(cr), is not. For formulation of a convex optimization problem which can be easily
solved by many solvers, the non-convex constraint is convexified by generating convex re-
gions called safe flight corridors (SFCs) [43]. Since generation of SFCs requires initial guess
of the trajectory, a sampling-based trajectory initialization method is proposed in the fol-
lowing subsection, and a convexification method and the resultant optimization problem

are addressed.

3.2.1 Trajectory Initialization

Since a good initial guess of the trajectory is required to generate SFCs, an efficient

sampling-based initialization is proposed which is shown in [Algorithm 4]
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Algorithm 4 Sampling-based trajectory initialization (Load)

Input: Tinit, Yinit, dB, "B, Nsamples H, Ak, bxkr(Tw), O, dt

Output: ¢

e el el el

18:
19:
20:
21:
22:
23:
24:
25:

* c*
z.sample’ “y.sample

Set the sampling area
fork=1---ng—1do
ek = ¢y * min_distance (O zh oyl )
istance = s Linits Yinit
end for
Perform sampling
Jtemp =0
for s =1 nsumple do
fork=2---ngp—1do
‘Z‘Iscample = x?nit + Sk Where Sk ~ U(_ekv Ek)
yfample = yzknit + Sk where Sk ~ U(_ek’ ek)
end for
Cg.sample = A;(1 TbKKT(xsample)
Cy.sample = A;(KTbKKT(ysample)
Lirq; = compute_trajectory(cy. sampie, dB,nE, dt)
Ytraj = compute,trajectory(cy_sample, dB, ng, dt)
if not check collision(Ziraj, Ytraj, O) then

— Al
Jm.temp - Cw.sampleHcm.sample
7 _ T
Jy‘t_emp - cy.s_ampleHcy:?ample
if Jytemp + Jy.temp < Jtemp then

c;’.sample = Cg.sample
C_Z.sample _: cy,sampl_e
Jtemp = Jx.temp + Jy.temp
end if
end if

end for

dp and ng, (3) sampling number nggmpe, (4) cost matrix H, (5) KKT system (Axkr,
brkr(xw)), (6) occupancy matrix O, and (7) time step dt. The centers of samples are set
using A* graph search method since it provides the shortest collision-free paths quickly. As
shown in A* search results in paths with an arbitrary number of nodes which is
drawn with asterisk markers. To fit the number of the nodes with the number of the joints
of the polynomial segments, the A* search result is uniformly interpolated to match with
the number of polynomial segments which is depicted with triangle markers. The results

Tinit, Yinie € R™7L are sent as one of the inputs. The degree of the polynomial and the

The algorithm receives (1) centers of samples @;,;; and Y;nir, (2) polynomial parameters

cost matrix are set as dg = d, and H = Hj,.
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—— A*

interpolated A*
sample center

Figure 3.1: Procedures for trajectory generation of the suspended load. (a) The initial and
desired positions of the load with the obstacle information. (b) A* search result and the

interpolated path with the safe margin shaded in gray.
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Since assigning hard waypoints to the segment joints incurs high-cost samples, the
trajectory samples are generated with soft waypoints. As an example, the cost functional

for the xz-component is defined as

JLx.w(cha CL‘W)

ng—1 ,dp+1 2
=w ) { > (. ;Bayi(1) — “”]51/}
k=1

J=1

’N,B—l 2
_ k k
=w § {CLr.dL—H - xw}

k=1

(3.15)

=we, M Mcp, — 2wy, Mcr, + wxy, Ty,

where zy, = [z}, - 212 ']T € R"#~! is the waypoints for the z-axis, and w is the weight

parameter. M € Rz=1xms(d5+) is 4 mapping matrix from g t0 [¢f, g 1 <+ 124 )"
Since the last term in (3.15)) is not related to the optimization variables, the resultant cost
functional which is the sum of an input minimization term and the soft waypoint term can

be expressed as a quadratic function of ¢, as follows:
CZQC(HL + wMTM)ch - zww%MCLx. (316)

When the KKT condition is applied to the cost functional with the affine boundary
constraints, Arz poundaryCrs = YrLe.boundary, and the continuity constraints, Arg continuityCre =
bz continuity, the optimization problem can be solved analytically without iteration using

the KKT system as follows:

c X —
g - AKlKTbKKT7
i (3.17)
3.17
Hp+wM™™ A}, wM "z
AKKT - ) bKKT - 3
ALz 0 bLm
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AT

* . . . o T
where ¢}, is the optimal solution, and A;, = [A L. continuity

T —
Lx.boundary ] and bLﬂC -

[bzw‘boundwy bzx.commmtyr' The KKT systems for the x and y axes are sent to |Algorithm 4

as a part of the inputs.

Given the input data, sets the sampling area using the A* result @,
Yinit € R (lines 1-4). The min_distance function computes the minimum distance
between [2% .. yk 17 and the obstacles with a positive scaling factor cgistance at the k¥
segment. After that, the sampling is performed based on the sampling range, ¢;,. With the
uniformly distributed samples (lines 9-10), the control points minimizing with the
KKT system (lines 12-13) can be computed. The trajectory corresponding to the control
points is easily computed using with the fixed time step, dt (lines 14-15). Each
trajectory is checked for collision, and if it is safe and has a lower overall cost compared

with the saved minimum cost, Jiep,, the new control points and the cost are stored (lines

16-24). The result of the algorithm is shown in |[Fig. 3.2

27 safe flight corridor
colliding traj. sample
s collision-free traj. sample
1F optimal traj. sample
control points
=
IS 0F
SN
-1F
_2 1 1 1 1 J
-3 -2 -1 0 1 2 3

x (m)

Figure 3.2: Sampling-based initialization. The trajectories where collision exist are depicted
in translucent orange, and the collision-free trajectory samples are in solid red. The sample
with the lowest cost is denoted in a black line with the circle control points. SFCs are
generated based on the lowest-cost-sample and depicted in the blue area.

49 : "H _r 1-'-” .'



3.2.2 Convexification

Since the soft waypoint constraints in the sampling process deteriorate the quality of the
trajectory by deviating it unnecessarily into the waypoints, it is necessary to optimize the
result without the soft waypoints. The convexification method proposed in [43] is applied
where safe flight corridors (SFCs) are generated for each segment of the position trajec-
tory. The method convexifies the non-convex collision avoidance constraints, and a convex
optimization problem is formulated to generate collision-free trajectories stably and fast.
shows the SFCs generated based on the initialized trajectory.

In addition to collision avoidance of the load, clearance for the multi-rotors needs to
be considered since the acceleration of the load is decided by the tension vectors and the
multi-rotors are located along the directions of the cables. ¢§ . and é’zy.acc are defined

as representations of the control points for the acceleration trajectory of each axis, and

CLo.clearance AN €Ly ciearnace @S the control points for the polynomials zp(t) + 2mez i (t)

Amax

and xp(t) + 2me=i; (1) where d,,q, is the maximum horizontal displacement of the multi-

Amazx

rotor from the load computed in the following paragraph. As derived in [Appendix B.4] the

acceleration control points can be computed using the following equation:

~k _ g1 k
Cls.ace — SBdL,QSBf)CL*’ (318)
L

and the control points for the clearance can be computed as

~ 5mam _ 02
c’z*.clearance = Clz* + SB;L . (319)

a ~k
mae SBdL—QCL*.acc

Note that the equation assumes a linear relationship between displacement and accelera-

tion. This approximation is acceptable since the collision avoidance constraints are handled

tightly in
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Figure 3.3: Multi-rotor configurations for computation of the clearance constraints.

The clearance can be set depending on the number of vehicles. A system with three
multi-rotors is handled in this work as shown in |[Fig. 3.3 The maximum acceleration and
tension boundaries are computed as the following procedures. First, the minimum vertical
tension required to maintain hovering is computed which is T}, = mpg/(3sinfme:) with
Bmaz = acos(6;/v/3l). 67 is the minimum distance between multi-rotors to avoid collision.
This configuration is shown in . Second, a constraint on the minimum beta
angle, B,.in, is imposed since low beta angles result in very high tension to cancel out
the gravitational force on the suspended load. To compute the maximum acceleration,
two multi-rotors are located along the same direction with the minimum distance and the
minimum beta angle, 6; and f,,;,, while the other positioned in the opposite direction
with the maximum beta angle as shown in . The magnitude of the tension is
set to maintain constant altitude with the same contribution from each multi-rotor to the
mass of the load. Then, the maximum tension in this configuration with the minimum

beta angle is Ty,0e = mpg/(38inLmin). The maximum acceleration can also be computed as
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[T (ZTmWCOSﬂmmcos(ec"”%) — Tmmcosﬂmm) /my, where O.1isi0n 1S the angle between
two cables when the multi-rotors are placed with the distance ;. Finally, the maximum

displacement of the multi-rotors from the load in this configuration is 0,,4. = [c0SBmin-

3.2.3 Optimization sub-problem

With the consideration of the SFCs and the clearance constraints, the resultant subproblem

is formulated as follows:

Problem 2. Load optimization

find c; = argmin Jy(cp)
cr,

SUbjeCt to AL.boundarycL = bL.bounda’/‘y7

AL.continuityCL = bL,continuitya

k k =k _
Tspe = CLy = Tgpe for k=1,--- ,np,
k k =k —
Yere = €Ly 2 Ysre for k=1,--- ng,
~k _
—Amazx j Cr. acc j Amazx for k= L o, NB,
~k _
—Amazx j cLy.acc j Amax fOI' k= 15 o, NB,

k ~k =k
LspC = ClLz.clearance = Lsrc
for k=1,--- ,npg,

k ~L —k
QSFC = cLy.cleamnce = Ysre

for k=1,--- ng,

where < is the generalized inequality for element-wise comparison.

The first two constraints are the boundary and continuity constraints. In the third
and fourth constraints, z% .. and T%,- are the x-axis boundaries of the SFC for the k"
segment, and the y-axis boundaries are indicated by g';F o and g% .o. The fifth and sixth
constraints are about the maximum acceleration of the load. The last two constraints denote

the clearance requirements for the multi-rotors with the threshold value a,,q,.

Fig. 3.4] shows the resultant trajectory of [Problem 2| 7 (¢) and yj(¢) which can be
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computed using c; after optimization. The arrow denotes the normalized acceleration,
%i, and the clearance for the multi-rotors is secured in the direction of the acceleration.
The z-axis trajectory, zj (t) can be easily computed using the KKT system in with the
boundary and continuity constraints in addition to setting w = 0. For flight area constraints

like positiveness or maximum of the altitude, the generated SFCs can be expanded or shrank

along the z direction.

27 optimal traj.
(d) L control points

normalized
—_— .
acceleration
1 L
&
o 0
=
1 1 1 1 1 1 1 L 1 1 1
0 1 2

x (m)

-3 2 o

Figure 3.4: Optimized trajectory with the consideration of the clearance for the multi-rotors
and maximum acceleration constraints.



3.3 Tension History Generation

Now that optimization variables for the load are optimized in the previous subsection, the
remaining variables are for the cable tension histories. Not only the minimization of the
cost but also the obstacle avoidance of the multi-rotors and inter-agent collision between
the vehicles should be considered in this step.

Since the optimization variables do not include terms about the first multi-rotor, the
tension history for the first one is expressed with the Bernstein polynomials of the order
dy, — 2 based on , and the k' segment trajectory can be expressed as follows:

dp—1

Tyu(t) =Y &, ;Ba,—2j(mi) for t€ [tpy,ty] (3.20)
j=1
where * denotes the axes. The new control points ¢}, é’fy,

follows based on ({A.1]) and [Appendix B.3}

and ¢}, can be computed as

~k Y S 1 02
Cip = mLcLac acc Ba; -2 Nk )
_SBdT Z ¢

=2 i |
02
Ak
¢y, mLcLy ace SBdL , R (3.21)
_SBdT > its Ciy |
sk sk o= 0, 04, —2
Ci, = MLCL, gec — Ba; 2 g - :
SBdT dipCi mrg

3.3.1 History Initialization

As in [Section 3.2.1] initialization is also required here for convexification of non-convex
collision avoidance constraints. [Algorithm 5| shows the initialization process for the tension
histories where some steps are added compared with [Algorithm 4f to check inter-agent

collision of the samples.
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A

lgorithm 5 Sampling-based history initialization (Tension)

Input: Xinit, Yinit, dB, B, Neampte, H, Axxr, bxrr(Tw), O, dt

OutPUt: é1.sa7nple>

—_
o ©

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:

35:
36:
37:

c;’.sample

: Set the sampling area

:fori=2---ny do

fork=1---ng—1do
¥ = Cgistance * min_distance (O, z¥, .., y¥, .
end for

end for

: Perform sampling

: Jtemp = 0

: for s =1---ngampre do

for i =2---n do
fork=2---ng—1do

k _ .k k k k _k
xi.sample = Ly init + Sz where Sz ~ U(_Ei ’ 62’)
k _ .k k k k _k
Yi sample = Yi.init T S; where S ~ U(—¢€7,€7)
k _ Sk
Zi.sample = Znominal + SZ where SZ ~ U(*EZ, 62)
end for

E.sample = wyzftofT(wi‘sampleu Yi.sample; zi.sample)
Cix.sample = Ag(lf(TbKKT(E*.sample)
T, traj = compute_history(c; sample, B, N B, dt)
end for
él.sample = firSt—tenSion(éL.acc» C2. sample;
C3.sampley " " * 7CnM.sample)
T\ traj = compute_history(€1.sample, dB,nB, dt)
if not check_collision(T1 sample; - - s Tnpy.sampte; O) then
fori=2---n) do
Ji*.temp = c;[k'sampleHCi*.saanle
Ji.temp = Jiz.temp + Jiy.temp + Jiz.temp
end for
if Z:l:Mz Ji.temp < Jtemp then

~k -
cl‘sample = Ci.sample

fori=2---n) do
* j— .
ci.sample = Ci.sample
end for

_ nm
Jtemp - ZZ‘ZQ Ji.temp

C;sample = [C;—.sample ci—’:sample C;LFMASLmele
end if
end if
end for
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While performing A* search for the multi-rotors is possible to get the centers of samples,
the optimal result for the load computed in is shifted since it has been optimized
with the clearance constraints. Additionally, A* often results in partially overlapped paths
despite different start and goal points. The shifted trajectories starting from initial positions
of each multi-rotor are shown in , and r— and y—axis trajectories are denoted
as Xinit = {®iini ER™ 1| i =2+ -ny} and Yipy = {Yiine ER™E7H i =2 -ny}.

Since the position sample does not satisfy the distance constraint between the load and
the multi-rotor, only the direction information is extracted. The xyz_to T function converts
the position sample to a tension sample, the direction of which is parallel to the relative
position of the vehicle with respect to the load (line 16). The magnitude is set to cancel
out mpg/nys in the z-axis. Using , the control points ¢; and the history for the first
multi-rotor can be computed (lines 20-22). After that, the collision check with the obstacles

and the inter-agent collision check is performed (lines 23). The result of the algorithm is

shown in [Fig. 3.5(b)l
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Figure 3.5: Procedures for trajectory initialization of the multi-rotors. The trajectories for
the multi-rotors are represented by the colors in a RGB order. (a) The shifted trajectories
from the optimized load trajectory are used for the sampling centers. (b) Sampling-based
initialization where the trajectory samples with inter-agent collision are depicted in translu-

cent color, and the collision-free trajectory samples are in solid colors. The sample with the
lowest cost is denoted in the thickest lines.
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3.3.2 Convexification

Similar to the load trajectory optimization, the sampled tension histories are also not
efficient due to the soft waypoint constraints. While the SFC construction is an efficient
convexification method for a point mass, it cannot be applied to this sub-problem since the
multi-rotor position is decided by adding the normalized unit tension vector to the load

position as x; = x, + IT;/||T;||, which is not a convex function of the flat outputs.

SFS generation

The collision avoidance constraints between the vehicles and the obstacles are convexified
using safe flight sector (SFS) construction. For SF'S generation, the relative obstacle position
with respect to the load position is accumulated, and the collision region for the k' segment

is defined for each time segment as the following set:
X6 ={zo(t) —ar(t) | t € [te-s,ta], w0 (t) — L (t)]| < 1} (3.22)

Some examples of X for k = 3,6,9,12 are shown in as blue markers. Then,
collision avoidance for the i multi-rotor during the k" time segment is satisfied if the
relative position trajectory segment is located in the collision-free region, i.e. (a:,(t) —
2 (t) C Xfyee = S — X§ for t € [ty_1, ;] where S is a sphere centered at the origin with

the radius I.
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Figure 3.6: SF'S generation results. (a) The lowest-cost-trajectories from the initialization
are denoted in RGB lines, and the yellow area denotes the area of the trajectory segments
for SE'S generation. (b) Some examples of the generated SFSs are depicted as the gray area
where the blue area denotes the obstacles. RGB lines are the parts of trajectory segments
for each time segment.
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Since the collision-free sets X%, .. are not convex, they are convexified by constructing

SFSs. The construction procedure is shown in [Fig. 3.7
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Figure 3.7: SFS construction procedure example for the 9" segment. (a) Initialization with
the maximum radius without collision. (b) The vertex expansion process where the darker
areas are the latter result. (¢) The vertex shrinkage process to make the polyhedron convex
where the darker area is the latter result. (d) The resultant collision-free convex polyhedron
where the green arrows are the normal vectors of the triangular surfaces.
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The number of the vertices n,, = 8 is decided as a user-defined parameter. The horizontal

positions of the vertices are initialized as far away as possible from the center of the sphere

as follows:
1/1;(1) = 6k cosa,,
k=1,--- ng,
1/5(2) = 6k sina,, for (3.23)
Umaz — Cmin v=L e,

(v=1)

Ay = Qmin +

which is shown in |[Fig. 3.7(a)l

The vertices are expanded to the outward direction of the circle one by one to maximize

n, — 1

the area of SFSs. After each expansion, collision is checked along the newly generated
polygon made of the vertices. If no collision is detected, the expanded vertex is saved,
and the expansion proceeds until the polygon cannot expand more without collision. The
expansion procedure is shown inwhere the darker polygons are the broader ones
after each expansion. The vertices are projected onto the sphere to generate a polyhedron

by setting the z-axis value as v}(3) = lsinf¥ with 55 = acos <\/I/§(1)2 + V$(2)2/l). The

vertices of the polyhedron are composed of the projected ones and the center of the sphere.

Since the polyhedron is not guaranteed to be a convex hull, a post processing is per-
formed to turn it into a convex set. In contrast to the vertex-expansion, the vertices are
shrunk at each step if the adjacent edges hinder convexity of the polyhedron. The shrinking
process is explained in detail in where the input and output data is defined
as V={vl eR | k=1, ,ng v=1-m} Ay = {a, | v = 1,--- ,m}, and
B = {55 | k=1, ,ng, ¥y =1---n,}. Two new slack vertices v/ and vf ., are added
for computational convenience (lines 2-3). For each vertex, two edges gprev and gpeq,: are
computed (lines 7-9), and the cross product of them, g,ormar, is used to check the convex-
ity (lines 10-12). When it is not convex, the vertex with a lower /5 is moved toward the
center of the sphere (lines 14-26). This process is repeated until the polyhedron becomes
a convex set. [Fig. 3.7(c)|shows the result of the shrinking process where the darker area is
the later result. The resultant convex hull is shown in , and it is guaranteed that
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the multi-rotors avoid collision when they are located above the triangular surfaces of the
polyhedron. The convex set below the sphere and above the triangular surfaces is called as

a SF'S in this dissertation.

Algorithm 6 Vertex-processing for convex set generation
Input: V, A,, Bs, np, no
Output: V, Bj

for k=1---ng do
k_ ok
u%funu .
Vi1 =1

1:

2

3

4: is_convex = false

5: for y=1---n, do

6: while not is_convex do

7 Compute the edge vectors
8

Gprev = V’ch - V']yc—l

9: Gnext = V'];-i-l - V'];

10: Check the convexity

11: Gnormal = Gprev X Gnext

12: if gnormat(3) < 0 then

13: is_convex = false

14: Shrink one vertex with a lower S angle
15: if g, <pF,, then

16: b1 =B +AB

17: vk (1) = lcospl_cosa,
18: vk 1(2) = leospt_ | sina,
19: vk (3) =lsinBl_,
20: else
21: BE =B +AB
22: S =0 A
23: vk (1) = lcospl, cosa,
24: vk 1(2) = leospl,  sina,
25: vk (3) =lsingl,
26: end if
27: else if v ==n, then
28: 1s_convexr = true
29: end if
30: end while
31: end for
32: end for

3 11 3
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Placing the multi-rotors in the SF'S can be achieved by manipulating the tension vectors.

The normal vectors of the triangular surfaces pointing toward the center of the sphere are

defined as
VkXVk k:]_,"',TLB,
hf = ———* for (3.24)
Hy’y XV’Y+1H ’}/:1, s Ny,

which can be easily computed using the vertices. Then, the collision avoidance constraints

for the k' segment of the tension vector multi-rotor can be expressed as follows:

izQ?'”a”M?

.
b by dh] REZ0 for Sy =1, (3.25)

iT.J 1y.J 2.
j: 17 adT+]-7

which means that all the tension vectors should be located in the generated SFSs.

Since the control points for the first multi-rotor can be expressed as affine functions of
the control points of other vehicles as shown in (3.21)), the following inequalities complete

the collision avoidance constraint for the multi-rotors:

T k Y= 17 o, Ny,
leac.j C]fy.j C]fz.j] h,,y Z 0 for (326)

A -S-tj 8k
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RSFS generation

The last constraint to be considered for the safety is inter-agent collision avoidance between
the multi-rotors. Since the multi-rotor positions cannot be expressed with the optimization
variables as previously described, RSF'Ss are constructed using the relative tension history
defined as follows:

ilz]-a"' 7nM_]-7

T, =T, T, for (3.27)
Z'222'14—17”' y

which is a relative tension history of the it multi-rotor with respect to the it multi-rotor
during the k& time segment. As an example, the z-component trajectory of the k'* segment

can be expressed using the tension control points as follows:

ST g ) Bag g (1) i iy # 1,
ﬂﬁx,zgx(t) = dr—1 . (328)
D55 (Clnige)Bay—2,4()  otherwise,
where Cfll‘,in‘-j = cfgx,j - Cfloc.j' Note that élf*,ig* = [é}f*,ig*.l e élf*,ig*.dL—l]T € Rz~ can

be computed similarly to (3.21). The z-axis trajectory, as an example, is shown in the

following equation:

e -l Ova | (3.29)
k| .

Clx,izx = Ba; -2 L

SBdT cigx

To compute the RSFSs, the safe and collision regions are computed based on the system
parameters firstly, which are shown in with the parameters T,,;,, = 4.531N,
Trnae = 10.572N, and 6.01555i0n = 25.840°. In the figure, the green arrow denotes the tension
vector for the first multi-rotor, T7. The angle between the first and second tension vectors
must be at least O..si0n to avoid inter-agent collision, which results in the blue safe region

and the red collision region as shown. The RSFS computation procedures are shown in

Fig. 3.8(b)l The blue feasible set of T, ;, can be computed by changing the 3 of the first
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Figure 3.8: Computation procedures of the RSFS. (a) The safe and collision regions of T
which are depicted in blue and red, respectively. (b) The feasible and collision sets of 17 5.
The RSF'S is computed based on the initialized relative tension history, 77 2, in gold.

tension from f,,;, to ™ — Bnin and accumulating the feasible values of the second tension.

The red collision set, a subset of the feasible set is computed by accumulating the collision

region. The inter-agent collision avoidance can be guaranteed if T;, ;, () is located in the

blue feasible set. Note that, for computation of y-component, the x- and z-component set

is rotated with respect to the z-axis. The rotation is discretely performed to show the sets

more clear. Since the collision set is not convex, a collision sphere of radius dggrg is used

to encompass the set, which is depicted in green.

With the computed collision sphere, the RSFS for the k* segment can be convexified
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and computed as follows:

hI;%SFS.l,Z = T1k,2.mean/ HTTI:Lean.l,QH )

mean.1,2 (tk_tk:—1> - 1,2 )

where the project-and-linearize method in [I4] is used for the convexification. Then, the

inter-agent collision constraints for the k* segment are imposed using the control points as

k Tok
(€i i) PRsFsy iy = ORSFS

i1:2,... 777/]\/[_1,
for ZéZZ’l"*’L"'a”M?
j=1,---,dp+1, (3.31)
~k Tk
(¢1,,5) Prsrsi, = Orsrs
22 — 2’ . 7/n’M7
for
J= 17 adL 17
ko [k k K T g ” " .
where Civiag = [Cilz’in'j Ciry,izy.j Cilzviﬂ-j] and Clivg = [clz,in.j Cly,ioy.j Clz,izz.j] :

3.3.3 Optimization sub-problem

With the computed constraints for collision avoidance, the second sub-problem of
is expressed as [Problem 3]
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Problem 3. Tension optimization (discrete)

find ¢ = argmin Jr(er)
cr

SUbj ect to AT.boundarycT - bT.boundarya

AT.continuityCT - bT.continuity:

k= 17 y B,
Y. 0=2,0
[cm.j Ci i Ciz.g} h7 > (0 for
=1,
J=1,dr+1,
k= 1’ co- . ng,
T k
[lem.j ley.j Cllcz.ji| h’Y = 0 for 7= 17 ey Ny,
j: ]‘7 7dL ]-7
(
k= 17 , B,
Zl = 27 7nM - 17
<C§1,i2.j)Thlf%SFs.¢1,i2 > Opsrs for
lp =11+ 1. na,
]:1, ,dT+1,

k= ]-7 , B,
~k Tk
(cl,iz.j) hRSFS.l,iz > Opsrs for 19 = 2, ST
j = 17 : 7dL 17
k= ]-7 , VB,
T
k k k _
|:Ci:c.j Ciy.j Ciz.j] < Trnaa for =2, ,nyp,
j = 1, 7dT + 17
Ak Ak Ak T < f k= ) y B,
[Claz.j Cly.j Clz.j] < T for '
J = ]-7 7dT + 17
k k = ]-7 , B,
1=2,- , N,
~k
Clz.j = Tmzn for k= 1, , B ,
r L
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Experimental Validation

This section presents the results of the proposed trajectory planning and control algorithms
through indoor obstacle avoidance and transportation flight experiments. In
and [Section 4.2.1] the experiment results for the single multi-rotor system and the multiple
multi-rotor system are described, respectively. Each section consists of the experiment

setting and results with discussion.

4.1 Single Multi-rotor with a Suspended Load

4.1.1 Experiment Setting

The software setup for the experiments is as follows. All the programs run under Robot
Operating System (ROS) Kinetic version in Linux 16.04. The multi-rotor is equipped with
a Pixhawk4 mini module for attitude estimation and low-level controller. The translational
states and the yaw angle are estimated from the measurement of VICON motion capture
system running at 100Hz. For an onboard computer which performs real-time optimization,

Intel NUC7i7BNH with i7-7567U processor is used.
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For validation of real-time performance, two settings are used, the first of which is
continuous replanning. Since it is not possible to track the generated collision-free trajectory
without error, the trajectory generator continuously replans every 0.1 seconds while MPC
computes optimal control input every 0.01 seconds. The next setting is change of the
desired position during flight. The trajectory generator generates new trajectories as soon
as it receives a new goal point during flight.

Parameters for the trajectory generation are same for both the simulation and the
experiment which are listed in [Table 4.1 Note that the weight matrices are chosen by
firstly adjusting its order reflecting their physical meanings and fine-tuning empirically to

increase stability and performance of flight.

Table 4.1: Parameters for trajectory generation.

’ Parameter \ Value \ Parameter \ Value
mar 2.473 kg mrp, 0.152 kg
Ay, -7.904 By, 7.979
Nrp 80 l 1.2 m
M 0.35 m har 0.3 m
ro 0.1 m Ty, 0.05 m
L. Q diag{300, 300, 90, 30, 30, 30, 60, 60, 60,
’ 10,10, 10,1000, 1000}
R diag{10, 200,200}

4.1.2 Experiment Results and Discussion

Scenario 1: Horizontal Obstacles with a Vertical Gap

In the first scenario, two obstacles are horizontally placed with a vertical gap. Since the
gap is shorter than the distance between the top of the multi-rotor and the bottom of the
load, the vehicle cannot pass between the obstacles unless the cable is tilted.

The simulation result for the first scenario is depicted in[Fig. 4.1] and it can be seen that
the generated trajectory avoids collision and reaches the desired position which is marked

as a pink sphere. Note that the red ellipsoids are obstacles, and the ellipsoids enclosing
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the vehicle is depicted only in the right figure to show the simulation result better. The
multi-rotors in the figure are depicted with the same time interval. The translucent blue
bars are the overall results for the cable while the opaque ones are the results with the

same time interval. The suspended load is depicted with a black sphere.

—+——Cu sition TN ~_Current position
Figure 4.1: Simulation result for the first scenario. The generated trajectory passes the

narrow gap by tilting the cable. The purple and the blue lines denote the path of the
vehicle and the load, respectively.
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An experiment is conducted to demonstrate the scenario. As shown in the
multi-rotor does not fly straight and moves quickly in the lateral direction to shake the
suspended load and pass between the obstacles. The vehicle traversed six times without
collision in the experiment. shows the 2-D trajectory plot of the vehicle and the
load. shows the snapshot of the experiment, and it can be seen that the proposed
algorithm enables the vehicle to successfully pass the narrow gap. The by showing the
acceleration history of the load. The cable tautness assumption is validated by showing that

the z-component of the acceleration is always greater than the gravitational acceleration

as shown in

16 18
,\\//
16 18

16 18

time(s)

Figure 4.2: Experiment result of the first scenario. Thick lines denote actual positions of
the multi-rotor and the load while thin lines denote generated trajectories at each time
step.
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Figure 4.3: Side-view 2-D plot of the first scenario. Red circles denote the obstacles, and

black and green circles are collision areas of the load and the multi-rotor.

Figure 4.4: Experiment snapshot for the first scenario.
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Figure 4.5: Acceleration history of the load for the first scenario. Translucent lines are the
generated desired acceleration, and the solid lines are the experiment result.
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Scenario 2: Vertical Obstacles Placed in Zigzags

In the second scenario, three obstacles are placed with short distances. Since the size of the

multi-rotor hinders the vehicle and the load from flying straight, the trajectories should be

generated avoiding the obstacles aggressively. shows the simulation result for the

second scenario. Again, the obstacles are drawn with red ellipsoids. The translucent blue

bars are the overall results for the cable while the opaque ones are the results with the

same time interval. The suspended load is depicted with a black sphere.

ired position

Desired position

\ ..4..,,‘.,,,,,,,., (‘\

Figure 4.6: Simulation result for the second scenario. The generated trajectory shows a
slalom-like maneuver. The purple and the blue line denote the path of the vehicle and the

load, respectively.
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In the experiment, as shown in Fig. [£.7 the multi-rotor successfully flies avoiding ob-
stacles without losing agility. Four traversals are successfully completed in the experiment.
ig. 4.8 shows the 2-D trajectory plot of the vehicle and the load. shows the snapshot
of the experiment, and the proposed algorithms successfully operates the slung load system
safely. The cable tautness assumption is validated by showing that the z-component of the

acceleration is always greater than the gravitational acceleration as shown in

Desired position g 9

S—

= 0

5 -1

pe 48 50 52 54
CEUL A
™ b

4 Y ~— 0

g 0.2 \J

48 50 52 54

48 50 52 54

gt S P x: R time(s)

Figure 4.7: Experiment result of the second scenario. Thick lines denote actual positions
of the multi-rotor and the load, while thin lines denote generated trajectories at each time
step.
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Figure 4.8: Side-view 2-D plot of the second scenario. Red circles denote the obstacles, and
black and green circles are collision areas of the load and the multi-rotor.

Figure 4.9: Experiment snapshot for the second scenario.
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Figure 4.10: Acceleration history of the load for the second scenario. Translucent lines are
the generated desired acceleration, and the solid lines are the experiment result.
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Computation Time

In [Table 4.2, the measured computation time for the planner and controller is listed. Note
that even the maximum computation time meets the operating frequencies of the planner

and the controller, which are 10 Hz and 100 Hz, respectively.

Table 4.2: Computation time data.

Algorithm ‘ Average ‘ Maximum ‘ Minimum
Planner 60.9 ms 97.6 ms 10.4 ms
MPC 2.7 ms 10.5 ms 1.1 ms
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4.2 Multiple Multi-rotors with a Suspended Load

4.2.1 Generated Trajectories
Scenario 1: Cluttered Environment

The environment in the first scenario has several obstacles with close distances. The first
obstacle the vehicles meet hinders flying straightly. And the remaining two obstacles have
short displacement, which makes the multi-rotors shrink toward the load.

2

(a) @

y (m)
o
j/

Figure 4.11: The generated trajectories for the first scenario. (a) Top view and (b) Perspec-
tive view.
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Figure 4.12: The generated trajectories of the multi-rotors for the first scenario.
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Figure 4.13: The generated trajectories of the load for the first scenario.
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Scenario 2: Narrow Passage

The environment in the second scenario has two obstacles with the very short distance. To

pass through the narrow gap, the multi-rotors fly in a almost straight line.

2 -

(a)

y (m)

Figure 4.14: The generated trajectories for the second scenario. (a) Top view and (b)
Perspective view.
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Computation Time

The trajectory generation problems [Problem 2 and [Problem 3| are sequentially optimized

in advance on a desktop with Intel i7-4790 CPU and 16.0GB RAM. The optimization is

performed using a convex optimization solver [44] in MATLAB. The parameters which

mainly affect the computation time and the timing results are listed in [Table 4.3 and [Ta-

[ble 4.4 One hundred trajectory optimizations are performed for evaluation of the proposed
algorithm, and the corresponding mean, minimum, maximum, and standard deviation of
computation time are shown. In each optimization, the timing results are all different since
trajectory initialization with sampling is newly performed. Although the overall compu-
tation currently takes around 7 seconds, it is expected to be at least ten times faster if
embedded in C code and run with multiple cores.

In [Table 4.4 three timing results for the first scenario and one result for the second
scenario are shown. In the first scenario, the trajectory generation is performed by varying
the obstacle number to check the effect. It can easily be checked the obstacle number
scarcely effects the performance. Compared to the first scenario, the performance in load
trajectory generation is very fast since it generates a simple straight trajectory in the second

scenario.

Table 4.3: Parameters for the trajectory generation.

Parameter | nyy  np  Ngample Mo
Value 3 15 20000 8
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Table 4.4: Timing results for the trajectory generation.

Mean Min Max  Std Dev
Load sampling (Algorithm 4) 0.20s 0.10s 0.23s 0.03s
Scenario 1 Load optimization (Problem 2) 0.52s 029s 051s 0.13s
Tension sampling (Algorithm 5) 1.99s 1.85s 2.13s 0.08s
(one obstacle) SFS generation (Algorithm 6) 0.05s 0.0ls 0.08s 0.02s
Tension optimization (Problem 3) | 4.01s 2.11s 523s 1.33s
Load sampling (Algorithm 4) 021s 0.13s 026s 0.02s
Scenario 1 Load optimization (Problem 2) 0.56s 030s 063s 0.14s
(two obstacles) Tension sampling (Algorithm 5) 203s 189s 227s 0.11s
SFS generation (Algorithm 6) 0.05s 0.02s 0.06s 0.01s
Tension optimization (Problem 3) | 4.05s 2.19s 6.2 1.20 s
Load sampling (Algorithm 4) 022s 0.14s 024s 0.03s
Scenario 1 Load optimization (Problem 2) 054s 032s 069s 0.11s
(three obstacles) Tension sampling (Algorithm 5) 203s 1.88s 217s 0.09s
SFS generation (Algorithm 6) 0.05s 0.02s 0.07s 0.01s
Tension optimization (Problem 3) | 4.06 s 2.29s 6.34s 1.23s
Load sampling (Algorithm 4) 021s 0.13s 027s 0.04s
Load optimization (Problem 2) 0.10s 0.05s 0.14s 0.03s
Scenario 2 Tension sampling (Algorithm 5) 2.03s 1.88s 217s 0.09s
SFS generation (Algorithm 6) 0.05s 0.02s 0.07s 0.01s
Tension optimization (Problem 3) | 3.26 s 2.01s 5.11s 0.56 s
3 2
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4.2.2 Experiment Setting

To validate the proposed algorithm, trajectory tracking experiment is performed for the
first scenario in [Section 4.2.11 Three custom-made multi-rotors are used which are shown
in [Fig. 4.18, Each vehicle is built on a Armattan Rooster frame and uses four Armattan
Oomph Titan motors. For attitude and thrust control, a Pixhawk 4 FCU (Flight Control
Unit) is used which provides the current attitude information of the vehicle and sends PWM
(Pulse Width Modulation) signals to the motors. Additionally, SparkFun WRL-00705 is
used to receive the control commands and transmit the IMU (Inertial Measurement Unit)
information to a laptop used as a GCS (Ground Control Station). The vehicle weighs 0.762
kg including a 4S 2200 mAh Lipo battery.

The laptop runs three position controllers to compute the desired rotational velocity
and the thrust given the collision-free trajectory. Crazyradio PA is used with the laptop to
communicate with the vehicles. The navigational information of the vehicles is estimated
using an external motion capture system, OptiTrack, and a Kalman filter. To compensate
the external force from the load, a robust controller proposed in [31] is used which estimates
and compensates the disturbance using a disturbance observer. shows the overall
control structure for the experiment.

The weight of the suspended load is 0.976 kg, which is too heavy for a single multi-rotor

to carry alone.

87 M=



__________ Vehicle 1

GCS ‘I’l.d{i: ff&ge_s,iy Attitude controller PWM Motors i

T Ve i

Trajectory T, Robust et vehiclez ... =)
generation |“{controllers ‘«I»fn*' Atitud controller (=4 Motors
T = e

‘I’”f:: 03'd‘;‘\§‘ Attitude controller f-M) Motors E

Figure 4.17: The control structure for the experiment.

88



4.2.3 Experiment Results and Discussion

To validate the proposed algorithm, a trajectory tracking experiment is conducted. In the
following figures, the generated trajectories are denoted in translucent lines while the exper-
iment data is shown in solid lines. The vehicle trajectories are drawn in RGB corresponding
to each multi-rotor, and the suspended load is drawn in black.

The experiment snapshot is shown in where three multi-rotors cooperatively
transport a suspended load. The top and perspective views of the tracking result are shown
in[Fig. 4.20] It can be easily checked that the multi-rotors and the suspended load accurately
follow the generated trajectory without any collision.

and show the tracking error of the tracking experiment for the

multi-rotors and load, respectively. The RMSE for each translational state is listed in

[Table 4.5 and [Table 4.6 The load states also show small tracking error although it is

passively controlled. Since the maximum acceleration of the load, maximum tension, and
minimum tension of the cables are considered in the trajectory optimization, the generated
result is dynamically feasible, which results in good tracking results. |Fig. 4.23| shows that
the attitudes of the vehicles are not zeros since they should generate horizontal forces to

compensate the cable tensions.
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Figure 4.20: The tracking result of the experiment. Translucent lines are the generated
desired trajectories, and the solid lines are the experiment result. (a) Top view of the
experiment. (b) Perspective view of the experiment.
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Figure 4.22: The tracking error result of the suspended load.
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Table 4.5: RMSE of the trajectory tracking experiment for the multi-rotors.

State  RMSE (m) | State RMSE (m) | State RMSE (m)
1 0.042 T2 0.044 3 0.033
Position Y1 0.027 Y2 0.029 Y3 0.035
21 0.022 22 0.022 23 0.029

State RMSE (m/s) | State RMSE (m/s) | State RMSE (m/s)
a1 0.071 o 0.074 T3 0.067
Velocity i 0.069 i 0.079 is 0.074
21 0.055 22 0.053 Z3 0.055

Table 4.6: RMSE of the trajectory tracking experiment for the load.

State  RMSE (m)
L 0.071
Position UL 0.059
zr 0.059

State RMSE (m/s)
T 0.152
Velocity UL 0.084
Zr 0.048
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Figure 4.23: The tracking result of the multi-rotors for the rotational states. Translucent
lines are the generated desired trajectories, and the solid lines are the experiment result.
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4.2.4 Comparison with formation control

The proposed algorithm requires relatively high computational load compared to the forma-
tion control algorithms since several constraints are considered in addition to the dynamic
model. As a comparison work, [45] is used which generates trajectories of the vehicles with-
out the consideration of the dynamics. The work generates relative safe flight corridors for
convexification of the non-convex collision-avoidance constraints.

The optimal load trajectory generated in is used identically, and [45] gen-
erates collision-free trajectories of each vehicle for the x— and y—axis. While computing
each trajectory, an additional constraint is imposed to restrict the distance of the vehicles
from the load less than the radius of the cable length. After optimization, the altitudes of
the vehicles are decided using the cable length constraints.

A simulation is performed to track the generated trajectories. As explained [Section 4.2.1]

each vehicle runs a trajectory tracking controller individually. The tracking result is shown

in |Fig. 4.24] [Fig. 4.25| and [Fig. 4.26| show the tracking error for the simulation. As shown

in the figures, the tracking error becomes very large compared to the proposed algorithm.
Since the tension of the cable and the overall dynamics for the load and the vehicles
are not considered in the referred work, the generated trajectories are infeasible to be
tracked accurately. This inaccurate tracking performance may result in collision although

the generated trajectories are collision-free.

96 A _. L ]|



Figure 4.24: The tracking result for the formation control. Translucent lines are the gener-
ated desired trajectories, and the solid lines are the experiment result. (a) Top view of the
experiment. (b) Perspective view of the experiment.
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Figure 4.26: The tracking error result of the suspended load.
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Conclusion

This dissertation presents trajectory generation and control methods for multi-rotor with
a suspended load. Since the dynamic model becomes more complex as cables are attached
compared with the bare multi-rotor, efficient algorithms are required for operation of the
system.

For a single multi-rotor with a suspended load, the dynamic model is simplified with
the consideration of control delay, and it is used in the proposed real-time planning and
optimal control algorithms. The entire system is considered in a less-conservative manner
using ellipsoids for collision avoidance. Performance of the planner is validated with two
difficult scenarios where safety cannot be assured without collision avoidance. To track the
generated trajectories, model predictive control is used, and flight experiments successfully
demonstrate agile maneuvers without losing safety and real-time performance.

The operation becomes more difficult when multiple multi-rotors transport a suspended
load cooperatively as the dimension of the system increase proportionally to the number
of the vehicles. Thanks to the differential flatness, the optimization variables are changed

to ones with linear dynamic model, and the number of them is reduced. Furthermore,

3 1] 3
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to compute the continuous trajectory using discrete optimization variables efficiently, the
trajectories are parameterized using Bernstein polynomials whose convex hull property
allows to consider various collision avoidance and dynamic constraints. Since solving the
entire optimization is intractable due to high non-linearity and the large number of the
optimization variables, the entire problem is decomposed into two sub-problems, which
are load optimization and tension optimization, respectively. In the former sub-problem,
collision avoidance of the load is guaranteed using SFC, and the clearance for the multi-
rotors is also considered. In the latter sub-problem, using the proposed SFS and RSFS
construction method, collision avoidance and inter-agent collision avoidance are guaranteed.
The feasibility of the generated trajectory is validated through the successful collision
avoidance experiment with little tracking error.

The possible future works of this dissertation will be increasing the generality. Since
only a point mass load is considered, there exist room for development of the trajectory
generation and control required to transport a rigid-body load. Moreover, when vehicles
have cables with different lengths, the construction RSFS can be revised to generate a
more tight safe set as the required minimum angle between two vehicles decreases. While
the real-time performance is validated for a single slung load system, the proposed method
for multiple multi-rotors is required to be validated to replan trajectories fast. Finally,
since the size and position of the obstacles are assumed to be known, vision-based obstacle

detection algorithms can increase practicality in operation of the system.
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Detailed Derivation of Differential Flatness

This section shows a detailed derivation of the differential flatness of the system composed of
njy; multi-rotors and a suspended point-mass load. While the differential flatness was proved
in [24], explicit equations were omitted. The following steps are based on the derivations
for a multi-rotor without a cable [35].

The tension vector for the first multi-rotor is not included in the flat outputs, and it
can be computed using the fourth line of ,

nym

Tiqy = mpx — Z T:q; +mpges. (A1)

=2

The direction vectors for the cables can be computed by normalizing the tension vectors

as follows:

q; = Tiqi/ | T:qi| - (A.2)

The position, velocity, and acceleration of the i** multi-rotor can be expressed using the
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kinematic relationship as follows:

T; = x +lg;,
T, =z +1lq;, (A.3)
T; =z +1g;.

Note that the derivatives of g; can be computed by differentiating 7;q; with the same order.
The rotation matrix for the :** multi-rotor, R; = [xs, ys, z8,], can be computed using

the following equations:

25 = Ries — fiRies
' T fiRies|”
zZp. X e,
Yp, = T (A.4)
' ||sz’ X mCiH’

TB, = Y, X ZB;,

where xc, = [cos; sini; 0]7 is the z axis of the frame C;. The frame C; is an intermediate
frame computed after rotating the frame Z with 1; angle with respect to the z7 axis. Note
that the y axis of the frame C; is ye, = [siny; — cosy; 0]"

By projecting both sides of the second line of to R;e3 = zg,, the thrust input for

the i** multi-rotor can be computed as follows:

ML, - (R¢€3) = fi —m;ges - (Ries) —Tiq - (Ri63)7
(A.5)
fi = (mi&; + miges + T,q) - zs,.

To compute the rotational velocities of the i*" multi-rotor, Qp, = [pi ¢; 73], the second

line of (3.1)) is differentiated.

m;&; = fiRieg + fiRie3 - (T’zqz)

. ) . (A.6)
= fiR;es + f; R e5 — (1;q;).
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After projecting both sides of (A.6) to xp,, the following equation can be computed:

qi
miy @ = fi[10 0les + £i(1 0 0] | —p; | — x4 (Tiq). (A7)
0
Then, ¢; can be computed as follows:
1 .

For computation of p;, both sides of (A.6|) are projected to yg,:

4qi
miys, & = ;[0 1 0les + £10 10] | —p; | — g (Tiqs). (A.9)
0
Then, p; can be computed as follows:
1 :
pi = _F <miy;wi + ygi (Tz%)) (A.10)

The first required equation for the computation of r; can be computed by expanding

the fifth line of (3.1]) after projecting both sides to yp, as follows:

T . . .
Yg.[Ts, Y, 25,] =i 0 — pil,
b (A.11)

T .

The second required equation is the derivative of &, which can be computed as follows:

Y, Xz,  Zp,
wB»L' - - ~ 9
|ye, X zs, |25, N
i, @ (BhEs) (A.12)
sl (s
B, | #5,]]
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By substituting (]A.12[) to (]A.lll) and using the condition that ygz @5, = 0, the last angular

velocity component can be computed as follows:

Tp, = Yo, X 25, + Yo, X 25,
- (—%wcl) X zB, + Yc, X (inBi - pini)? (A13)

TA T T
YT, Vi, X, + iYc, ZB;

N ||5331|| N ||ycz X sz’H

i

Lastly, the angular acceleration vector needs to be computed. The first thing to be

found is the derivative of the thrust input by differentiating the second line of (3.1)).

mE; = fz‘Ries + fiRiQBie3 - (Tz%) (A 14)

= fiRieZS + fi(qiw& - pini) - (ﬂ.qi)'

By projecting to zp,, the derivative of the thrust input can be expressed as follows:
fi= (mais; + (Tqu)) " 2B (A.15)

For computation of ¢;, fiq; is differentiated based on (A.8)):
fidi + fig = mi(@p, @ + zg @) + a5, (Tq) + o5, (Ta)- (A.16)

Note that the one unrecognized term &, can be expressed using the attitude and angular

the velocity of the i** vehicle as follows:
&5, = (Qz5,) = (RQs R z5,). (A.17)

Accordingly, ¢; can be computed by the flat outputs and their derivatives using (A.16)).
Following the similar procedure starting by differentiating (A.10]), the following equation
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can be computed to find p;:
— fipi — fibi = mu (P58 + yhE) + Y (Tiq;) + yg(Tzqz) (A.18)
Similarly, the one unrecognized term &, can be expressed as follows:
ys, = (Qz,y5,) = (RQs R ys,). (A.19)

The last component of the angular acceleration, 7;, needs to be computed, the first step of

which is computing derivative of r; expressed in (A.13)):

d .
- ITc; 2B Ti Ye, ZB; || Ti
o Nle, < 25|l mi + llye, x 2,

+ Qz’ycTiZBi + q@".i/(z zp, T+ qz-y(z zB;-

The 4 |lzc, X zp,| term in the left-hand side of (A.20)) needs to be expressed by the flat

outputs as follows:

d d d
% chz X 2|l = % H Bill — % Lp. LB,
ol A A.21
ZU;;,CCBZ o wT 5,3 ( )
- ~ - LB
HmBi B

using that &g./ |Xg, || = xp,. Using the properties, ye, = —%wc, and zg, = —p;ys,, (A.20))
g 7,/ H 'LH 7 g p p Y y i i 7 p y 77

can be further simplified as follows:

wgz"i& = —?ﬂzw;(wcl X zBi) - piwgi (yci X sz’)
= 1/%1'(1 (xp, X 28,) +pz’ycTi (x5, X ys,) (A.22)

= —¢z‘33cTini + piycTizBi-

The right-hand side of 1) can be simplified using the properties, x¢, = %ygi and
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ygingi = 0, as follows:

. - _—
Vike T, + Yike, T, + Yike, Tp;
. T . T T .
+ GiYe, 28, + GiYe, 28, + GiYe, 2B,
. _r _
= i, T, + YiriTe,Yn, — 20iqixc, ZB,

+ qzycTZ zp, — pi‘]iy(—lj;yBi~

Using the results in (A.20)), (A.22)) and (A.23]), 7; can be computed as follows:

1

S R
' ”yCz X sz‘”

(@Zamgaza + 2¢i7”ii13cTini
— 20iq;8, 2B, — PitiYe, Y5,

— PiTiYo, 2B + Qiyc—’:zb’i> :

In summary, it is shown that the states and the inputs can be shown as functions of
the flat outputs and their derivatives. To compute p; and ¢; as in and , the
fourth-order derivatives of the multi-rotor positions are required. The derivatives of the
multi-rotor positions can be computed from the derivatives of the load positions as shown
in except that the position of the first multi-rotor requires the second-order derivative
of the load position as shown in . Therefore, the highest differentiation order of xj,

and T; for the computation is six and four, i.e. n, = 6 and ny = 4. On the other hand, the

highest derivative order of v; is two as shown in (A.20)).
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Preliminaries of Bernstein Polynomials

B.1 Definition of a Bernstein Polynomial

A Bernstein polynomial of degree dg can be expressed with control points and Bernstein
basis polynomials of degree dp which are ¢; and By, ;(t) for j = 1,2, -, dp+1, respectively.

Bernstein basis polynomials are defined as follows:
)tj_l(l — )41 for t €00,1]. (B.1)

Then, a Bernstein polynomial of degree dg with the control points is expressed as follows:
dp+1
p(t) = > ¢;Bay (D). (B.2)

J=1

For more flexibility with a longer duration, a trajectory can be composed of several

Bernstein polynomials occupying each time segment. The trajectory with ng segments can
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be expressed as follows:

([ —dp+1 g
ijl ¢;Bag (1) for t € [to, t]
dg+1 2
21 ¢ Bag (T ort € [ty,t
p(t) _ ijl '] dB-]( 2) f ‘ [ 1 2] (B3)

d n
Zjij—l CjBBdBJ(TnB) fort e [tanlatnB] )

\

where 7, = ti:tk,:y c¥ is the j control point of the k" segment of the trajectory p(t). tp—,

and t), are the start and end time of the k" segment.
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B.2 Convex hull property of a Bernstein Polynomial

The most interesting characteristic of a Bernstein polynomial is a convex hull property. The
property means that the polynomial resides in the convex hull built from the control points.

As an example, two dimensional Bernstein polynomials of degree two can be expressed using

(B.2) as follows:

z(t) _ > im1 CaiBa (1) ’ (B.4)

y(t) 1 €y Baj(t)
where ¢, j and ¢, ; are the control points of the z and y axes polynomials, respectively.
It can easily computed that Z?Zl By j(t) = 1 and B, ;(t) > 0 for t € [0,1]. Then, the
polynomials on the right-hand side of are convex combinations of the control points,
Cz.; and ¢, j, which means the minimum and maximum values of the continuous polynomials
can be controlled by limiting the control points as follows:

min{e;}|  |e(t)|  [maz{e.} (B.5)

min{c,}|  |y(t)|  |maz{c,}

where ¢, = [c;1 ¢p2 23] and ¢, = [c,1 ¢y2 ¢y3]".
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B.3 Representation of a General Polynomial with Bernstein

Basis Polynomials

This subsection addresses a method to express a general polynomial as a Bernstein poly-

nomial. A general polynomial of degree dg can be expressed as follows:

_ [edB dp—1 1 014d 4dp—1 T
q(t) = [sg? 877 -+ sy s |[t7 1P et ]

(B.6)

T
= Sq tdB,

where s, € R9*! is the coefficient vector of ¢(t). The Bernstein polynomial (B.2) is ex-

pressed in a different way:

p(t) = (SBdB C)TtdB,

c=[cico - cay Capi)”
v (B.7)
SBdB = [SB1 Sp, " 8B, SBdBH]’
T
SBap.; — [SBdB.j,dB SBap.jag-1 " SBag.na SBdBJ',O]

SB,, ; includes the coefficients of the 4" Bernstein basis polynomial, By, ;, in a descending
order. By computing ‘} it can be easily found that Sp 4y 18 symmetric. Accordingly, the

control points for representation of ¢(t) can be computed as follows:

c= ngB P (B.8)
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B.4 Representation of the Derivative of a Bernstein Poly-

nomial with Bernstein Basis Polynomials

When a Bernstein polynomial of degree dp, (B.2)), is differentiated r times, the derivative

polynomial is expressed as follows:

dB+1

Z cJBC(lZJ = (Syme) tay—n, (B.9)

dp

where S € RUBH=Mx([5HD) ig g coefficient matrix of Bg;) (t) similarly defined as (B.7).
iB

Since the differentiated polynomials, Bég)(t), are not Bernstein basis polynomials, the
derivative polynomial no longer has the convex hull property. To generate various con-
straints for the derivative polynomials, they are expressed with Bernstein basis polynomials

of an order dg — 1 as follows:

T
(SB;mC) tas—n = (S84, ,€) tag,
5 (B.10)
N -1
C = (SBdB—n) SBC%QC’

where Sp, € Rz=n+1)x(ds=n+1) and ¢ € R~ are coefficient matrix of By, _, () and
control points of a new Bernstein polynomial of an order dg — 1, respectively. Accordingly,
the equation (B.10)) means that the n'® order derivative of a Bernstein polynomial of an

order dg can be expressed as another Bernstein polynomial of an order dg — 7.
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