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Abstract

Performance Improvement of Deep
Autoencoders for Computer Vision Models

Using Human Body Embeddings

Jonghyuk Park

Department of Industrial Engineering

The Graduate School

Seoul National University

Deep learning models have dominated the field of computer vision, achieving state-

of-the-art performance in various tasks. In particular, with recent increases in images

and videos of people being posted on social media, research on computer vision tasks

for analyzing human visual information is being used in various ways.

This thesis addresses classifying fashion styles and measuring motion similarity as

two computer vision tasks related to humans. In real-world fashion style classification

problems, the number of samples collected for each style class varies according to

the fashion trend at the time of data collection, resulting in class imbalance. In this

thesis, to cope with this class imbalance problem, generalized few-shot learning, in

which both minority classes and majority classes are used for learning and evaluation,

is employed. Additionally, the modalities of the foreground images, cropped to show

only the body and fashion item parts, and the fashion attribute information are

reflected in the fashion image embedding through a variational autoencoder. The
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K-fashion dataset collected from a Korean fashion shopping mall is used for the

model training and evaluation.

Motion similarity measurement is used as a sub-module in various tasks such as

action recognition, anomaly detection, and person re-identification; however, it has

attracted less attention than the other tasks because the same motion can be rep-

resented differently depending on the performer’s body structure and camera angle.

The lack of public datasets for model training and evaluation also makes research

challenging. Therefore, we propose an artificial dataset for model training, with mo-

tion embeddings separated from the body structure and camera angle attributes for

training using an autoencoder architecture. The autoencoder is designed to generate

motion embeddings for each body part to measure motion similarity by body part.

Furthermore, motion speed is synchronized by matching patches performing similar

motions using dynamic time warping. The similarity score dataset for evaluation

was collected through a crowdsourcing platform utilizing videos of NTU RGB+D

120, a dataset for action recognition.

When the proposed models were verified with each evaluation dataset, both out-

performed the baselines. In the fashion style classification problem, the proposed

model showed the most balanced performance, without bias toward either the mi-

nority classes or the majority classes, among all the models. In addition, In the mo-

tion similarity measurement experiments, the correlation coefficient of the proposed

model to the human-measured similarity score was higher than that of the baselines.

Keywords: Human body, Fashion, Motion analysis, Computer vision application,

Autoencoder, Industrial engineering
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Chapter 1

Introduction

1.1 Background and motivation

Computer vision, a field that has benefited significantly from the development of

deep learning, is applied in various tasks such as object classification, detection,

and segmentation [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Computer vision technology

plays an important role in real-world industries in various ways, such as aiding

the analysis of user trends using vast amounts of user-generated images and videos

uploaded on social media [16, 17, 18]. Most posts on TikTok, which became the

most downloaded application globally with 8.5 million downloads from Google Play

and the iOS App Store in 2020, have a short-form video format in which humans

appear. The categories of posts featuring people (Entertainment, Dance, Pranks,

Fitness/Sports, Home Renovation, Beauty, Fashion) ranked in the top seven most-

viewed categories, based on survey results in July 2020 [19]. This example implies

that computer vision applications to process images containing people could be more

widely utilized.

This thesis addresses two human-related computer vision tasks: image-based

fashion style classification and video-based human motion similarity measurement.

Fashion is one of the fastest-growing areas and one that could most benefit from the

1



recent advances in deep learning-based machine vision. Most tasks in this domain,

including fashion category classification [20, 21], segmentation [22, 23], retrieval [24,

25], and recommendation [26, 27], have been actively researched and successfully ad-

dressed using models based on convolutional neural networks (CNNs) [28]. However,

only a few attempts have been made to solve fashion style classification [29, 30, 31],

which aims to classify the style of a fashion image. These studies related to fashion

style presented a fashion style dataset, providing benchmark performance for it.

Although previous studies have recorded superior performances, they are limited

because they do not take into account the class imbalance problem that exists in

real-world scenarios. Fashion style classes are highly imbalanced as there are styles

that dominate the majority, such as everyday or trendy styles. For instance, fashion

images of “Street style” are much more frequent than those of “Hippy style,” as

shown in Figure 1.1, where the bar graph represents the number of images retrieved

by searching the fashion style class labels on Instagram. Therefore, training the

model without considering that fashion style is divided into majorities and minorities

in real-world problems will produce reasoning biased toward the majority.

Human motion, essentially a combination of translational and rotational motions

of each body joint, contains a significant amount of information inherent to a human.

In particular, motion similarity, which can be obtained by analyzing human motion,

has a wide range of applications. For instance, motion similarity can be used for

action recognition [32, 33, 34, 35, 36, 37]. It is also possible to measure motion

similarity to determine whether a task is performed well [38, 39, 40, 41, 42] or

identify abnormal behavior [43, 44, 45]. A motion comparison system is helpful for

matching a target person from different cameras for re-identification [43, 45, 46, 47,

2



Figure 1.1: The number of images retrieved by searching fashion style class labels
such as ”street fashion” on Instagram. The search took place on December 7, 2020.

48, 49].

While analyzing human motion plays an essential role in the tasks mentioned

above, motion similarity research has attracted less attention so far than the other

research areas due to the following reasons. First, measuring motion similarity is

a challenging problem. Different camera views or human body structures cause a

variety of 2D joint coordinates, even for similar motions in videos. This makes it

impossible to measure the similarity directly using the joint coordinates. Second, the

availability of large-scale datasets for learning motion similarity is limited. Finally,
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to the best of our knowledge, few human motion datasets are available to assess the

performance of different motion similarity computation methods.

In this thesis, we propose models that address both points mentioned above and

evaluate the models to verify their effectiveness.
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1.2 Research contribution

As mentioned above, this thesis deals with two subjects: fashion style classification

and human motion similarity. In this section, we address contributions to improve

the performance of each subject using embeddings generated from body information

in images.

1.2.1 Fashion style classification

As fashion images exposed through social media increases, the fashion style classi-

fication model has more opportunities to be used, such as recommending fashion

items and providing customized advertisements to users, by recognizing the fashion

style of the images. In collecting data for these real-world fashion style classification

models, class imbalance occurs due to fashion trends, as mentioned in Section 1.1.

This imbalance makes it possible to formulate the fashion style classification as

generalized few-shot learning (GFSL) [2, 50]. This setting, also known as the step

imbalance [51] or two-level imbalance [52], divides classes into the majority and mi-

nority and uses only a minimal number of samples for the minority classes. Because

GFSL uses both data-rich majority classes and data-poor minority classes for model

training and evaluation, it is a more generalized problem setting than few-shot learn-

ing (FSL), in which the model only trains and evaluates minority classes. Figure 1.2

shows the difference between FSL and GFSL.

When solving a GFSL problem, multimodal information is generally used to-

gether to improve the performance of the minority classes. The cross- and distribution-

aligned variational autoencoder (CADA-VAE) [2] reflects the information of other

modalities by making the latent distribution of the modalities close in the latent
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space. DRAGON, which stands for “a moDulaR Approach for lonG-tail classifica-

tiON” [52] rearranges the probabilities of two modalities through late fusion. The

above studies improve the performance of minority classes by supplementing infor-

mation from other modalities.

We address the fashion style classification problem by extending the CADA-

VAE framework, which is more suitable for multiple modalities than DRAGON.

Performance for the minority classes is maximized by using embeddings generated

from two additional modalities: foreground images and attributes specified to the

human body information in the image. The foreground images were cropped to only

the part of the body wearing a fashion item using the model of [22]. With the

foreground images, we force the model to focus on the body and fashion item parts.

Attributes describing the characteristics of the clothing item according to the body

structure, such as a top or bottom, are generated as one-hot vectors and fed to

CADA-VAE. Examples for the foreground image and the attributes for one fashion

image are shown in the Figure 1.3.

After the training of CADA-VAE, the proposed cyclic oversampling algorithm

adjusts the oversampling ratio for the latent variable of the minority classes every

epoch. This adjustment prevents learning biased toward the majority or minority

during the training of the classifier. The authors of CADA-VAE reported that the

model performed best in situations where the numbers of minority and majority

sampled variables are in a specific ratio. However, because this ratio should vary

when the dataset changes, we propose a cyclic oversampling algorithm that does not

require manual tuning.

The proposed architecture utilizing multimodal variational inference for fash-
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Foreground image

Top_Knitwear

Top_DropShoulder

Top_Oversize

Bottom_Skirt

Bottom_Loose

Bottom_Cashmere

Attributes

Fashion image

Style: Country, Resort

Figure 1.3: Examples of the foreground image and the attributes for a fashion image.

8



ion style classification (MVStyle) was trained and evaluated with the K-fashion

dataset [1], which is composed of multi-label fashion style images collected from

shopping malls in Korea. The performance measurement showed that MVStyle out-

performed the baselines. Specifically, utilizing the combination of all modalities pro-

duced the best performance.

1.2.2 Human motion similarity

Measuring human motion similarity has been utilized for various human-related

computer vision tasks, such as action recognition, performance evaluation, anomaly

detection, and person re-identification, as mentioned above. This work attempts to

compare short video clips of basic human motions. Our target motions are short

enough (1−2 s) to be described by a few words or a sentence and can be easily

imitated after a demonstration. The comparison is made solely by body movements,

excluding differences in body size and appearance. In this work, we represent a

motion as a sequence of joint positions and do not consider an interaction between a

human and an object in the environment. To build a comparison system, we extend

the autoencoder-based model of [53] to split human motion into five body parts and

map them to a latent space. The similarity is measured by comparing the encoded

motion vectors. The overview of the method for measuring motion similarity is

depicted in Figure 1.4.

The proposed model is trained on our synthetic motion dataset, an extended

version of the dataset [53] from Adobe Mixamo [5]. We collected human motion

animations with variations in characteristic elements (e.g., movement and angle) of

each motion. These variations are important for learning the motion similarity, as
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they allow us to distinguish between very similar movements.

To incorporate this property into the model effectively, we propose a motion

variation loss. This loss forces the distance between two motion embeddings to be

proportional to the motion variation. Overall, our goal is to learn disentangled mo-

tion embeddings from the skeletons and camera views, in contrast to the existing

motion similarity-learning methods utilized in other tasks such as action recognition.

The motion embeddings, which are divided into five body parts and learned through

motion variation loss in this study, allow robust analysis of the motion similarity.

To assess the performance of the proposed model on real-world data, we utilized

the NTU RGB+D 120 [4, 3] dataset, which has been widely used for action recog-

nition [54, 55, 56, 57, 58, 59, 60, 61, 62]. NTU RGB+D 120 is composed of videos

where people perform various actions with different camera angles. Because there

are no labels in the dataset to measure the similarity, we collected labels via Amazon

Mechanical Turk (AMT) [63]. The proposed method achieved a higher correlation

between the evaluated similarity scores and human perception than the baseline

models. Both datasets and codes have been made publicly available1.

1.2.3 Summary of the contributions

In summary, our main contributions in this thesis are as follows:

(a) We address two computer vision tasks to process images containing people

through autoencoder-based models.

(b) We improve the performance of each problem by learning the embedding of

the model to include the human body information in the image.

1https://chico2121.github.io/bpe/
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(c) The proposed architectures outperform the baselines in each problem.
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1.3 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2, we review literature

related to the problems. In Chapter 3 and 4, we introduce the datasets used to train

the models, explain the proposed architectures for classifying fashion style and mea-

suring motion similarity, and present the experimental results of each task. Finally,

in Chapter 5, we give concluding remarks and possible future research directions of

this thesis.
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Chapter 2

Literature Review

2.1 Fashion style classification

2.1.1 Machine learning and deep learning-based approaches

While most fashion-related problems such as category classification [20, 21], item seg-

mentation [22, 23], item retrieval [24, 25], and item recommendation [26, 27] have

been actively studied, only a few studies have been conducted on the fashion style

classification problem. Most research projects addressing fashion style classification

have been focused on the introduction of fashion datasets, such as FashionStyle14

[29], Hipster Wars [31], and WEARSTYLE [30], with the benchmark model perfor-

mance.

Specifically, Takagi et al. [29] presented style classification using a CNN as the

backbone network, and they measured its performance using a newly presented fash-

ion style dataset called FashionStyle14, which included 14 style classes. Kiapour et

al. [31] released a dataset, Hipster Wars, composed of five style classes and evaluated

the performance of each class using various machine learning techniques. Miyamoto

et al. [30] proposed a dataset called WEARSTYLE based on the images and classes

collected from a website. The authors found that style classification performance

was improved when using the foreground images, which are images with the back-
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ground removed. Based on this insight, we select foreground images as one of the

modalities to use. In addition, Ma et al. [64] constructed a dataset from images of

fashion shows. The dataset was annotated with 527 styles and visual features such as

collar shape and pants length. Results produced from the proposed model achieved

the best performance among the comparison models.

Nonetheless, the previous studies have a major drawback: the class imbalance

problem when collecting large-scale fashion style data is not considered. Further-

more, because the model was evaluated only with a single-label dataset, there are

limitations in real-world scenarios.

2.1.2 Class imbalance

General algorithms

Several algorithms have been proposed to train imbalanced datasets effectively. Lin

et al. [65] developed cross-entropy loss and applied down-weight to well-classified

examples to lower the contribution, allowing the model to focus on hard examples.

Li et al. [66] found that easy examples with many samples and challenging examples

close to being outliers significantly influence learning the gradient norm distribution

according to the number of samples in the class. Therefore, the authors improved the

performance by down-weighting the easy examples and challenging examples. Cui

et al. [67] calculated the effective number, which means the number of influential

samples, and applied it to the loss term to give weights to improve the performance.

In addition, Cao et al. [68] improved the minority’s accuracy by providing a margin

dependent on the class’s number of samples. Meanwhile, there are studies to solve

the class imbalance problem through resampling methods.

The authors improved performance by oversampling the minority classes [69, 70]
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and under-sampling the majority classes[71]. In this paper, we oversample minority

features from the learned latent distribution. Furthermore, by using the proposed

cyclic oversampling, the model does not need to be overfitted for the minority classes.

Generalized few-shot learning

In FSL, classes are not divided into the majority and minority, and only a small

number of samples, k, are provided to train the model. In contrast, in GFSL, both

the majority and the minority are put into training [2]. To measure the model’s

performance in the GFSL, Schonfeld et al. [2] used the harmonic mean between

the accuracy of the majority classes and the accuracy of the minority classes as an

evaluation metric. It was shown that the proposed model improved the performance

in GFSL situations by utilizing both visual and textual features as input values.

Huang et al. [72] introduced a model that reduces the variance of latent variables

in a class. The authors constructed a loss by adding a term using the k-means

clustering algorithm to the loss of [2]. Ye et al. [50] tried to solve the GFSL problem

by synthesizing a classifier trained with majority classes and a classifier trained with

minority classes. Xian et al. [73] extended the GFSL problem in image classification

to the video classification domain by adopting spatiotemporal CNN and 3D CNN

structures.

Learning with multimodal information

[2, 72, 74] aimed at learning joint representation by aligning the distribution of fea-

tures obtained from different modalities. In [2, 72], a distribution-alignment term

and cross-alignment term were added to the VAE loss to reflect multimodal in-

formation in the latent distribution. Hubert Tsai et al. [74] used maximum mean
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discrepancy [75] as the loss to make the distribution between the image and semantic

embedding close. Samuel et al. [52] rescored the classification probability for each

class obtained from an image and attribute information by feeding the number of

samples for each class as an input to the model.

By combining two images (images, foreground images) and attributes, we maxi-

mize the performance for classifying fashion styles.

2.1.3 Variational autoencoder

A variational autoencoder (VAE) [76] estimates latent distribution parameters from

input values through the encoder and puts the sampled latent variable from the

distribution into the decoder to reconstruct the input values. A normal distribu-

tion is generally used as the prior probability distribution to approximate the latent

distribution. The approximation is achieved through Kullback-Leibler (KL) diver-

gence included in the loss function, resulting in the total loss function, including KL

divergence, as follows:

L = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)‖pθ(z)), (2.1)

where x and z are the input and latent variables, respectively. The first term on

the right-hand side of (2.1) means the reconstruction error of the input. The latent

distribution qφ(z|x) of z is created from the encoder with parameter φ, and the

decoder with parameter θ reconstructs x using z sampled from the latent distribu-

tion. Then, z is sampled using a reparameterization trick so that the VAE is trained

through backpropagation. The second term on the right-hand side of (2.1) is the KL

divergence, which approximates the latent distribution to prior distribution, pθ(z).

After the VAE was introduced, many VAE variants [2, 72, 77, 78, 79, 80, 81, 82,
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83] were published. We adopted the VAE of [2] to learn the latent distribution from

multimodal information suitable for the fashion domain.
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2.2 Human motion similarity

2.2.1 Measuring the similarity between two people

Defining similarity between human poses is a fundamental task for building a video

retrieval system, and many studies have approached it in various ways. Ferrari et

al. [84] defined a feature vector representing a human pose in an image based on

the pictorial structure, computed vector space distances between poses in a query

image, and individual frames of a video in a database, and they aggregated the

distances from all frames to obtain the relevant score for the video track. The sys-

tem in [85] measured the distance between poses as a function of joint angles and

retrieved similar videos containing the frames near a query pose image. Kim and

Kim [40] measured the similarity between two dance poses using the joint angles of

the person in a frame. In [86], fixed-length short motion sequences were clustered

into groups and used as a motion representation. In contrast to [40, 84, 85], in which

the methods for either image-level or video-level retrieval rely on pose similarity

between two image frames, our method defines motion similarity between a pair of

motion sequences directly.

Apart from analyzing independent motions, Shen et al. [87] proposed an approach

for measuring motion similarity in interaction-based activities. While this approach

is promising for tasks of interacting with objects, it cannot be utilized to compare

independent movements without interactions or when the objects are located far

apart. Moreover, the algorithm is unsuitable for real-time applications. In [35], long

short term memory with a layer normalization architecture was utilized to generate

motion embeddings. In the training phase, the authors replaced the hard-negative

mining required for similarity learning with maximum mean discrepancy (MMD) [75]
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and reduced the computational cost. We employ this architecture as one of the main

baselines when assessing the performance of our model.

2.2.2 Human body embedding

Decomposing a body into several parts based on the human skeleton structure and

constructing representations for individual parts are common approaches to under-

stand human action. For instance, Choutas et al. [88] suggested a fixed-size rep-

resentation of a video clip containing a motion as a collection of trajectory maps

of individual joints. Guo and Choi [89] argued that learning local representations

separately on four limbs and the torso was helpful for short-term human motion

prediction.

Liu et al. [90] suggested the hierarchical partwise bag-of-words representation fo-

cused on the visual salience of different body areas with seven bag-of-words features

(limb, head, leg, foot, upper, lower, and full) in three levels (low level, middle level,

and high level). Hake [91] extracted interaction triples—a body part, an action verb,

and an object—from images based on the features of part regions. Jammalamadaka

et al. [92] proposed a method to classify a body part image to a corresponding

class and constructed an image embedding vector based on the classification scores.

In [92], the learned body part embeddings were not merely intermediate represen-

tations for subsequent classifiers but also contained general information for 2D pose

reconstruction and could be appropriate for measuring motion similarity.

2.2.3 Datasets for measuring the similarity

Few datasets contain a pair of motions with similarity annotation. Mori et al. [93]

suggested annotating pose similarity automatically by determining whether the
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mean joint distance satisfied a given threshold constraint. Despite the ease of con-

structing a large-scale dataset, this method could not generate similar pairs of

poses in terms of human perception. Other studies [86, 87] evaluated their models

against binary classification or retrieval test sets constructed from action recogni-

tion datasets by regarding motions of the same action label as similar. In [87], the

authors defined an evaluation task in which a comparison system was required to

assign higher similarities to motions that shared more specific class labels for a query

motion. However, this class-based strategy could not correctly capture the intraclass

variation of motion, as actions from the same class might be less similar than a pair

of actions from different classes.

Motivated by the lack of motion similarity datasets, we propose a new dataset

containing motion similarity annotations obtained from crowd workers for approxi-

mately 20, 000 video pairs.

2.2.4 Triplet and quadruplet losses

Schroff et al. [94] proposed a triplet loss that took three images as input. Specifically,

the input was composed of a reference image of a person (the anchor), another

image of the same person (the positive sample), and an image of a different person

(the negative sample). The loss minimizes the distance of anchor-positive features

while maximizing the distance of anchor-negative features. The triplet loss has been

actively applied in many studies. Wohlhart and Lepetit [95] utilized it to predict

classes of objects and 3D poses. Hermans et al. [96] proposed a triplet loss that

included a sampling method, showing state-of-the-art performance in person re-

identification. Kim et al. [97] proposed a new triplet loss using continuous labels that

preserve the distance ratio of numeric labels in the learned latent space, allowing
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the model to learn the degree of similarity, not just the order. Meanwhile, [98, 99]

learned the distance between features using four samples. Using the triplet loss as

a basis, the authors constrained the minimum interclass distance to be larger than

the maximum intraclass distance. While such approaches focused on the interclass

separation through a manually defined constraint, we aim to map the distance in

a latent space between the intraclass samples using ground-truth motion variation

labels.

2.2.5 Dynamic time warping

Dynamic time warping (DTW) [100] is an algorithm that determines the optimal

alignment of two time series with different lengths. It can be utilized to measure mo-

tion similarity, as it allows the comparison of two motions with varying speeds [101].

Let P = (p1,p2,· · · ,pTP ) ∈ Rhp×TP denote the time series of hp-dimensional vectors

with time-length TP . Similar to P , Q = (q1,q2,· · · ,qTQ) ∈ Rhq×TQ represents the

time series of hq-dimensional vectors with time length TQ. To align the two time

series, DTW constructs cost matrix D ∈ RTP×TQ using dynamic programming. Each

matrix element Dij = d(pi,qj) is the cost between pi and qj , where i ∈ [1 : TP ],

j ∈ [1 : TQ] and d(·) is a distance metric. The optimal alignment is the path with

the smallest sum of costs from D11 to DTPTQ , like the gray path in Figure 2.1 (a).

The path obtained in this way is matched not with the same time points, but with

the points of a similar pattern, as shown in Figure 2.1 (b). We utilize DTW to align

two motions and calculate their similarity.
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Chapter 3

Fashion Style Classification

3.1 Dataset for fashion style classification: K-fashion

K-fashion [1] is a dataset collected by the National Information Society Agency in

Korea and consists of 1.2 million women’s fashion images from Korean shopping

malls. Fashion experts selected 23 style classes, and labels for each image include up

to two style classes. Fashion-related attributes (e.g., collar shape, pattern, and fabric)

were also collected so that users can use them as side information. The attributes of

each image were chosen from a total of 186 attributes determined by fashion experts.

Example images for each style class are shown in Figure 3.1.

Since K-fashion is a vast dataset containing 1.2 million fashion images, we sam-

pled the dataset to make the experiments more efficient. The training and validation

sets were randomly sampled and reconstructed considering various class imbalance

situations and the ratio of the majority- and minority-class samples. K-fashion is an

unbalanced dataset with a long-tail distribution, so eight tail classes were selected as

the minority classes, similar to the ratio between the majority and minority classes

in [2, 102]. Furthermore, the ratio between the maximum number of samples in

the majority classes and the minimum number of samples in the minority classes,

ρ [51], is adopted to represent the degree of imbalance. The datasets were sampled
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Street Resort Feminine Romantic Modern

Classic Sophisticated Country Genderless Hippy

Sporty Tomboy Sexy Manish Retro

Oriental Kidult Military Hiphop Avantgrade

Preppy Western Punk

Figure 3.1: Examples of images from K-fashion [1] dataset.
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with different degrees of imbalance at ρ = 373.36, 232.72, 110.84, 73.91, and 40.13.

In addition, the maximum and minimum number of samples in classes belonging

to the minority were not different by more than 100 samples. Table 3.1 shows the

distribution of the number of samples by class when ρ = 110.84.
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3.2 Multimodal variational inference for fashion style clas-
sification

In this section, we first present a formal definition of the GFSL setting of the fashion

style classification problem as follows. Let G = {g1, g2, . . . , gnG} denote the set of nG

modalities. For example, one of the possible modality sets is {Images, Foreground

images, Attributes}. We are given a training set Dtr = {(x, y)|x ∈ X, y ∈ Y } where

X = {xg|g ∈ G} is the set of features, xg, generated from modality g. In addition,

Y is the union of the set of majority classes, Ymaj , and minority classes’ set, Ymin:

Y = Ymaj ∪ Ymin, (3.1)

Ymaj = {y|ny > bound}, Ymin = {y|ny ≤ bound}, (3.2)

where ny is the number of samples in class y and bound means the boundary value

that divides the majority and minority classes.

As depicted in Figure 3.2, our MVStyle training consists of two phases: CADA-

VAE [2] training and the classifier training. Figure 3.2 (a) shows the CADA-VAE

structure using the multimodal features. It helps the latent distribution of fashion

images to contain information about different modalities. The final classifier is fitted

using latent variables sampled from the latent distribution, depicted in Figure 3.2

(b). Here, the proposed cyclic oversampling controls the number of minority classes’

latent variables provided to the classifier for each epoch, which prevents the model

from being too biased towards either the majority or the minority. Moreover, the

classifier adopts binary cross-entropy as a loss term for learning on a multi-label

dataset. In subsection 3.2.1, we first present CADA-VAE and the classifier. Then,

the process of generating multimodal inputs used in MVStyle is explained in subsec-
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tion 3.2.2. Finally, the proposed cyclic oversampling is described in subsection 3.2.3.
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3.2.1 CADA-VAE

CADA-VAE [2] is characterized by training the encoder-decoder structure through

VAE loss for each modality and allowing information from each modality to be

mapped on the same latent space with the cross-alignment loss and distribution-

alignment loss.

The encoder of modality g, Eg, maps the input feature xg into a latent variable

zg ∼ N(µg,Σg), where N is a standard multivariate Gaussian distribution. The VAE

loss calculated for each modality is summed as follows:

LVAE =
∑
g

Eqφ(zg |xg)[log pθ(xg|zg)]− βKLD(qφ(zg|xg)‖pθ(zg)), (3.3)

where β is the weight of the KL divergence [79].

The cross-alignment loss (LCA) calculates the reconstruction error through the

latent variables obtained from different modalities. Through this term, latent distri-

butions are induced to be aligned.

LCA =
∑
g

∑
l 6=g
‖xl −Dl(zg)‖1, (3.4)

where Dl is the decoder of modality l.

The distribution-alignment loss (LDA) encourages alignment of the latent distri-

bution. It is designed to minimize the distance between latent multivariate Gaussian

distributions with the 2-Wasserstein distance [103].

LDA =
∑
g

∑
l 6=g

(‖µg − µl‖22 + Tr(Σg) + Tr(Σl)− 2(Σ
1
2
g ΣgΣ

1
2
l )

1
2 ). (3.5)
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Since the encoder generates the diagonal covariance matrices, this loss simplifies to:

LDA =
∑
g

∑
l 6=g

(‖µg − µl‖22 + ‖Σ
1
2
g − Σ

1
2
l ‖

2
Frobenius)

1
2 . (3.6)

The total loss LCADA-VAE is the weighted sum of LVAE, LCA, and LDA:

LCADA-VAE = LVAE + γ1LCA + γ2LDA, (3.7)

where γ1 and γ2 are the weighting factors of LCA and LDA, respectively.
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3.2.2 Generating multimodal features

As mentioned previously, we used a total of three modalities. Image-based modalities

consist of an original image and a foreground image, which are known to be effective

in classifying styles [30]. Foreground images were generated with non-fashion items

removed to focus on the fashion items of the human body in the images. Furthermore,

since some images collected in shopping malls include enlarged materials or patterns

(see Figure 3.1, an example of K-fashion’s Feminine label), we protect the model from

such noise by using the foreground images for the model training. The mask for each

fashion category was obtained using the Fashionpedia model [22], and all masks were

merged to generate the foreground images. Examples of foreground images are shown

in Figure 3.3.

In the case of the attribute modality, one-hot vectors, in which 1 was assigned

to the attribute’s index and 0 was assigned to the other index, were generated and

fed to the model. The one-hot vector consists of 442 dimensions, which is equal to

the sum of all attribute types corresponding to top, bottom, outer, and one-piece

dresses. Since one fashion image can have multiple attributes, there are multiple

one values in one-hot vector as many as the number of attributes. The process of

generating these vectors is shown in Figure 3.4.
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(a) Original Images (b) Foreground Images

Figure 3.3: Examples of foreground images.
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3.2.3 Classifier training with cyclic oversampling

Only the image modality is utilized for classifier training. Let dim(zI) and dim(xI)

denote the dimension of latent variable zI and feature xI for the image modality,

respectively. zI ∈ Rdim(zI) is sampled from the learned latent distribution of CADA-

VAE, as shown in Figure 3.2 (b). By concatenating zI with xI ∈ Rdim(xI) obtained

from the image feature generator, an input vector u ∈ Rdim(zI)+dim(xI) of the classi-

fier is produced. Finally, u is passed through the fully connected layer to calculate

the logit value for each class, and the model is trained with cross-entropy loss.

In addition to the above method, we adopt an oversampling technique to accel-

erate overcoming the class imbalance. Since the oversampling method causes over-

fitting for the minority classes [67, 69], accompanying data augmentation is known

to help solve the overfitting [69, 104]. We alleviate the overfitting by performing

augmentation at the feature level rather than the input data level through varia-

tional inference. However, excessive oversampling leads to a decrease in performance

for the majority classes. Therefore, we propose the cyclic oversampling detailed in

Algorithm 1 to determine the effective oversampling quantities. The cyclic oversam-

pling first measures the validation loss of the minority class. If the loss is larger

than the loss of the previous epoch, the number of sampled latent variables for the

minority classes is increased in the training of the next epoch. In contrast, if the

loss is smaller than the loss of the previous epoch, the number of sampled latent

variables for minority classes is reduced in the training of the next epoch, increasing

the majority’s proportion during the classifier training. This adjustment is repeated

until the training ends so that the classifier does not lean toward either the majority

or the minority classes during the training.
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Algorithm 1: Cyclic oversampling

Input : the number of training epochs ne, classifier CLS,
number to sample for minority classes smin,
number to sample for majority classes smaj ,
adjustment ratio adj,
training dataset:
DtrI = {(xt1I , yt1), . . . , (xTI , y

T )},
validation dataset:
DvalI = {(xv1I , yv1), . . . , (xVI , y

V )},
pre-trained latent distribution qφ(zI |xI)

s← smin
lossb ←∞
for e = 1 to ne do

Z ← new List()
foreach (xtI , y

t) ∈ Dtr
I do

if any class of yt in minority classes then
sample ztI s times from qφ(zI |xI)
append the all sampled ztI and yt to Z

else
sample ztI smaj times from qφ(zI |xI)
append the all sampled ztI and yt to Z

end

end
train the classifier using Z
loss← 0
foreach (xvI , y

v) ∈ Dval
I do

if any class of yv in minority classes then
lossv ← loss of xvI calculated from CLS
loss← loss+ lossv

end

end
if loss ≥ lossb then

s← adj × s
else

s← bs/adjc
end
lossb ← loss

end
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3.3 Experimental results for fashion style classification

In this section, we first introduce the implementation details of the proposed archi-

tecture, MVStyle. Second, the baselines adopted in the experiments are described,

and the performance measurement results are reported for the K-fashion dataset.

Then, we analyze whether MVStyle learns modality information well with example

images. Finally, the effectiveness of the proposed cyclic oversampling is explained.

3.3.1 Implementation details

Preprocessing

Images and foreground images were resized to 256×256 pixels, and then the middle

224×224-pixel section was used, removing the images’ outer part, which was highly

unlikely to contain human body. These cropped images were represented with RGB

channels and used as the inputs for the model. Here, the values corresponding to

the RGB channels were normalized using the mean and standard deviation of the

ImageNet [105] dataset for stable and fast model learning.

Network structure

For images and foreground images, ResNet-50 [106] is employed as the feature gen-

erator. ResNet-50 can extract image features based on a total of four convolution

blocks, as shown in Figure 3.5 (a). The image generates 64 feature maps through con-

volution operation with a filter size of 7×7. The 64 feature maps, which are reduced

in size through max pooling, are then passed through four convolution blocks. Each

convolution block consists of convolution operations and the rectified linear unit

(ReLU) [107] activation function, as shown in Figure 3.5 (b). The value calculated

through the three convolution layers is added to the initial input value of the con-
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Figure 3.5: Illustration of ResNet-50 architecture.
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volution block to generate the output value of the convolution block. This structure

alleviates the gradient vanishing problem in which the gradient is close to 0, and the

weights are not updated during the training. ResNet-50 utilizes a total of four types

of convolutional blocks. Each convolutional block is repeated three, four, six, and

three times to generate 256, 512, 1024, and 2048 feature maps, respectively. Finally,

a 2048-dimensional vector is generated through global average pooling. Using this

vector as the input value of the fully connected layer, the logit values correspond-

ing to each class are calculated. ResNet-50 is pretrained with the ImageNet dataset

and fine-tuned with our dataset to ensure that the feature generator’s parameters

capture fashion information well. Then, the ResNet-50 parameters are fixed, and

ResNet-50 generates a 2048-dimensional feature vector from the output of the last

convolution block using global average pooling.

All encoders and decoders of MVStyle are multilayer perceptrons with two hidden

layers. Encoder layers for the images and foreground images each have 1560 hidden

units, and layers for the attributes have 1460 hidden units. The 128-dimensional la-

tent variable is reconstructed with the decoder having 1660 and 1160 hidden units for

the images and foreground images and 660 and 460 hidden units for the attributes.

Optimization

CADA-VAE was trained using the Adam optimizer with β1 = 0.9, β2 = 0.999, and

ε = 10−8 for 100 epochs. The initial learning rate was 1.5 × 10−4. γ1 and γ2 were

designed in a manner similar to [2]. Specifically, β increased from 1 epoch to 90

epochs at a rate of 5.62× 10−6 per epoch, γ1 increased from 21 epochs to 75 epochs

at a rate of 8.15× 10−4 per epoch, and γ2 increased from 6 epochs to 37 epochs at

a rate of 1.61× 10−5 per epoch.
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The classifier was trained for 10 epochs using stochastic gradient descent (SGD)

with momentum parameter 0.9 and L2 regularization. The initial learning rate was

10−3 for the K-fashion dataset. For hyper-parameters of the cyclic oversampling,

adj = 2, smaj = 1, and smin = nmaj/nmin were used, where nmaj is the number of

all image samples belonging to the majority classes, and nmin is the number of all

image samples belonging to the minority classes.

Model selection

The classifier parameters to be employed for evaluation were selected based on the

epoch with the best performance for each sampled K-fashion validation set.
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3.3.2 Settings for experiments

Baselines

We employed baselines trained using only image modality with cross-entropy loss,

focal loss [65], and label-distribution-aware margin (LDAM) loss [67] to compare

the proposed model’s performance on the K-fashion dataset. The model trained

by the oversampling method was also adopted. The oversampling method was de-

signed to sample the minority class smin times and was trained through cross-entropy

loss. In addition, two models were considered using multimodal input. One was the

model trained by concatenating features of each modality (Concat). This model fed

concatenated features, which are outputs of CADA-VAE’s feature generators, to a

classifier consisting of three fully connected layers. Then, it was backpropagated

through LDAM loss to cope with the class imbalanced datasets. The other baseline

was DRAGON [52], a state-of-the-art model in the GFSL task of the CUB [108] and

SUN [109] datasets, which are single-label datasets. DRAGON can be trained us-

ing only images or images and other modalities simultaneously. Initially, DRAGON

used only the attributes modality, but we experimented with attributes as well as

foreground images. Similarly with [52], one fully connected layer was employed as

the expert generating the classification probability from each modality input. The

number of polynomial coefficients was selected as four.

Metrics

Top-3 accuracy (T3), which measures the frequency of all labels being included in

the top-3 inference, was adopted as the metric on K-fashion with the multi-label

42



property. The formal definition of top-3 accuracy is as follows:

T3 =
|{Samples with all labels in the top-3 inferences}|

|{All samples}|
(3.8)

The harmonic average between T3 for the majority classes and T3 for the minority

classes (T3 H) was also considered, similar to the metric in [2]. If even one of the two

labels was included in the minority classes, the sample was determined to belong to

the minority classes.
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3.3.3 Experimental results on K-fashion

Comparisons with the baselines

The results for each dataset are recorded in Table 3.2. Images, foreground images,

and attributes are denoted by I, F, and A, respectively. The proposed model outper-

formed all baselines in the T3 H metric without significant performance degradation

in the T3 metric, which is the total indicator of the dataset. The distribution of the

K-fashion’s test set has a long tail, as shown in Table 3.1. Therefore, the proportion

of the majority increases in the T3 metric, whereas the proportion of the minority

increases in the T3 H index. While the performance of the baselines is biased toward

the majority or the minority, T3 and T3 H confirm that MVStyle maintained the

majority’s performance and outperformed the baselines for the minority.

Note that DRAGON is the model optimized for a single-label dataset. We modi-

fied and implemented the model to fit the multi-label situation, but the results show

that the performance was biased toward the majority. We believe that DRAGON’s

reordering method of prediction scores is not suitable for the multi-label problem.

Ablation study

Table 3.3 shows the performances when the foreground images and attributes are

combined with the images as the inputs. On average, the best performance was

obtained when all modalities were used together as the inputs to the model. Ad-

ditionally, it was found that when the foreground image was used together with

the images, the performance was better than when the attribute was used together

with the image. This suggests that the K-fashion dataset contains data that includes

unnecessary information in the background, such as the examples of Feminine and
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Genderless shown in Figure 3.1.
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3.3.4 Qualitative analysis

In this subsection, we visualize the cases correctly classified with additional modal-

ities while wrongly identified without these modalities. For these experiments, we

utilized the modality combinations of I+F and I+A with ρ = 110.84 on the K-fashion

dataset. First, the cases that were correct for I+F only are presented in Figure 3.6.

As previously mentioned, there are cases in which the clothing material is expanded

and presented in K-fashion. CADA-VAE trained with the foreground images enables

the model to focus on the areas containing the human body, not the areas where

the material is enlarged. Next, examples that were correct only in I+A are shown

in Figure 3.7. The left side of Figure 3.7 is an image with the label, Military. It is

also annotated with Patchwork as one of the attributes; however, the corresponding

part does not appear well on the image because of the angle. By using the attributes

as a modality, the inference is corrected. The right side of Figure 3.7 is an image

with the label, Sporty. If a person were wearing it, the tight shape of sportswear

would appear on the image. However, the mannequin is wearing it, and the arm is

loose. Since attributes such as Jersey and Tight were reflected in the image’s latent

distribution, this image could be classified as Sporty in the I+A combination model.
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(a) Original Images (b) Foreground Images

Figure 3.6: Examples in which the generated foreground image captures human body
and fashion items.
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Figure 3.7: Examples that is judged as the correct answer when the attributes modal-
ity is included.

3.3.5 Effectiveness of the cyclic oversampling

To verify the effectiveness of the proposed cyclic oversampling, we compared our

algorithm with various schedules that utilize the same oversampling ratio. The ex-

periment was performed with the I+F+A modality combination, which produces

the best performance on K-fashion’s ρ = 110.84 dataset. Figure 3.8 shows the cyclic

oversampling indicated by the blue line and other learning schedules.

The schedule for large amounts of oversampling in the first half and small

amounts of oversampling in the second half is referred to as high to low (orange

line). The opposite schedule is named low to high (green line). Increasing (red line)

is a schedule that gradually increases the amount of oversampling, and decreasing

(purple line) is a schedule that gradually decreases oversampling.

Table 3.4 shows the results of measuring the performance of the model trained
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Table 3.4: Comparing the cyclic oversampling to the baselines on K-fashion ρ =
110.84. All numbers are T3 H represented in percent. The best performance is
marked in bold.

Schedule T3 H

High to low 28.49
Low to high 5.49
Increasing 5.55
Decreasing 27.57

Cyclic oversampling 39.55

with each schedule. The results of the model trained with the proposed cyclic over-

sampling achieved the best performance. The proposed algorithm continuously im-

proves the performance of the minority class while reducing or increasing the fre-

quency of sampling of the latent variable based on the validation loss of the minority

class. In contrast, low to high or increasing schedule models fit the model for the ma-

jority at the beginning of the training, which was not overcome later. Additionally,

for high to low or decreasing, the minority is sufficiently trained initially. Still, the

frequency of oversampling for the minority gradually decreases, and the performance

cannot be maintained, known as the catastrophic forgetting phenomenon [110].
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Chapter 4

Motion Similarity Measurement

4.1 Datasets for motion similarity

Training the model to produce a motion embedding representation is performed

with a synthetically created 3D motion dataset. Additionally, to demonstrate the

generalization capabilities of the proposed model in evaluating the motion similarity

of real-world data, we have manually annotated the NTU RGB+D 120 dataset. The

latter is only used for performance evaluation.

4.1.1 Synthetic motion dataset: SARA dataset

We constructed a 3D motion dataset, named Synthetic Actors and Real Actions

(SARA) to train a model to produce motion embeddings suitable for reasoning

about motion similarity. Mixamo [5] was used for this.

Motion sequence data was generated by combining 18 different actors (i.e.,

action-performing characters). The characters were rendered in a skeleton shape

with Adobe Fuse software. We selected four action categories (Combat, Adventure,

Sport, and Dance), comprising several motion variations, where each action has a

length of 32 frames or more. There are 4,428 base motions (e.g., dancing, jumping)

in the SARA dataset. Intraclass variations were generated from these motions. Mix-

amo allows users to control various characteristics of each motion (e.g., Energy)
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Table 4.1: SARA dataset overview.

Action Number of Number of Number of
category characters base motions variations

Combat

18

3,000 76,512
Adventure 264 3,390

Sport 306 4,485
Dance 858 18,756

Total 18 4,428 103,143

that can be adjusted to create variations for the dataset. Values of the character-

istics variables are within the range of [−1, 1], and in the SARA dataset, they are

set to one of {−1, −0.5, 0, 0.5, 1}. This parameter is configured differently for each

motion. Each sequence frame provides 3D coordinates of 17 joints from all body

parts, and we generated samples through 2D projection. The dataset statistics are

summarized in Table 4.1.
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4.1.2 NTU RGB+D 120 similarity annotations

We collected motion similarity annotations for the NTU RGB+D 120 dataset to

evaluate motion similarity in the real world. The NTU RGB+D 120 dataset is an

action recognition dataset consisting of 114,480 videos covering 120 different actions

of 106 people. While original videos from the dataset were used to obtain ground

truth motion similarity from AMT, only the 2D skeleton sequences are utilized in

our model to estimate the motion similarity.

Only a portion of the entire dataset was utilized because actions with small

movements such as reading, writing, and talking on the phone also exist in the

original NTU RGB+D 120 dataset. After filtering out these actions, 21 actions with

large and well-defined movements were selected based on visual inspection. Then,

two videos of 39 people for each action were sampled. The total number of sampled

video clips was 1,638 (21 actions × 39 people × 2 videos).

We obtained motion similarity scores from humans through AMT [63] using the

sampled videos. The motion similarity was scored on a 4-point scale ranging from 1

(utterly different motions) to 4 (the same movements) for each pair of video clips.

The similarity score for a pair is an average of scores collected from at least 10 AMT

workers. From all the possible candidates, the annotations for 20,093 randomly sam-

pled video pairs were collected. We use all the annotations to evaluate the models,

not to train them. These annotations are released on our project page. Some of

the video pairs and the distribution of the annotated similarity scores are shown in

Figure 4.1.

There are some imprecise skeleton data in NTU RGB+D 120. To cope with

this problem and generate new 2D joint annotations, we used our reproduction of
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MultiPoseNet [111] with an average precision of 0.709 for large objects in the COCO

2017 validation set to generate new 2D joint annotations.

More detailed information, including instructions, annotation guidelines provided

to the workers, and 2D joint annotations generated using MultiPoseNet, can be found

in Appendix A and Appendix B.
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4.2 Framework for measuring motion similarity

We propose a learning-based method to encode unique motion embeddings necessary

for the motion similarity assessment. Inspired by the framework of [53], we extend the

method by training a model to reconstruct each body part, rather than the whole

body, to identify particular hand or foot movements. Furthermore, we propose a

motion variation loss to calculate motion similarity robustly.

4.2.1 Body part embedding model

Network structure

LetM, S, and C denote the sets of motion, skeleton, and camera view attributes, re-

spectively, in the training set. To calculate a total loss, we require M = {m, m′, m′′},

S = {s, s′}, and C = {c, c′}, which are subsets of M, S, and C, respectively. In ad-

dition, m and m′′ are required to be from the same motion class with different

characteristics (i.e., motion variation), and m′ to be a motion from a different class.

For example, if m is a Low jump, then m′′ is a High jump whereas m′ is a Sit-

ting. s and s′ represent two skeletons with different body structures, and c and

c′ are viewing angles when the 3D motion is projected to 2D. We can generate a

motion sequence by selecting and combining each element from M , S, and C. Let

X = {Xijk ∈ R2×J×T | i ∈M, j ∈ S, k ∈ C} be the set of 2D coordinate sequences

where J is the number of joints of a skeleton, and T is the time length of the motion

sequence. Among the elements of X , Xmsc and Xms′c are the sequences of 2D joint

coordinates representing the same motion m with the different skeletons s and s′ at

the same viewing angle c.

With set B, composed of nB = 5 body parts, we decompose a skeleton to
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construct body part embeddings (BPEs). Our case considers B = {RightArm,

LeftArm, RightLeg, LeftLeg, Torso}, as depicted in Figure 4.2. Specifically, the

motion sequence Xmsc is decomposed into specific body parts Xb
msc ∈ R2×nb×T ,

where nb is the number of joints in b ∈ B. Xb
msc is fed into body part motion en-

coder EbM and skeleton encoder EbS to produce embeddings. For global camera view

encoder EC , all the decomposed motion sequences are concatenated to generate the

input of EC . Let us denote this input as Xa
msc ∈ R2×nc×T , where nc is the sum of the

number of joints that make up each body part. The embeddings from the two types

of encoders, EbM and EbS , respectively capturing the motion and skeleton features of

body part b, are combined with the feature from the EC . These combined features

are decoded by body part decoder Db to reconstruct the body part motion sequence.

Since we are considering five body parts, each of the motion and skeleton encoders

has five modules (i.e., one for each body part) that do not share weights with each

other. This process is visualized in Figure 4.3.

Losses

Aberman et al. [53] used a triplet loss to enforce separation between samples on the

motion latent space. Let zbmsc = EbM (Xb
msc) be the resulting motion embedding of

Xb
msc obtained from EbM . Then, the motion triplet loss is:

LbM (Xb
msc,X

b
m′s′c′) = [d(zbms′c′ , z

b
msc)− d(zbms′c′ , z

b
m′s′c′) + δ]+, (4.1)

where d(·) is a distance metric, δ is the margin between the Xb
msc and Xb

m′s′c′ pair,

and [·]+ is a hinge function [112]. The triplet loss ensures the distance between

a reference and a positive sample is small and the distance between a reference

and a negative sample is large. However, this loss measurement does not contain
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information on the similarity of the samples.

To overcome this limitation of the triplet loss, we propose a loss term that utilizes

a motion variation score between samples in the same action category. The proposed

motion variation loss projects positive and semi-positive samples at a certain dis-

tance defined by the motion variation, as illustrated in Figure 4.4. Assuming that

there are variables that can control the movement of the skeleton, such as Energy,

Distance, and Height in Figure 4.5, we let vm be the characteristic vector that

has each element corresponding to one of these variables for motion m. Since m and

m′′ belong to the same motion class, vm and vm′′ have the same nvm number of

variables. Then, the motion variation var(m,m′′) between m and m′′ is defined as:

var(m,m′′) =
‖vm − vm′′‖1

2× nvm
. (4.2)

The motion variation loss Lbvar is defined using the motion variation as:

Lbvar(Xb
msc,X

b
m′s′c′ ,X

b
m′′sc) = LbM (Xb

msc,X
b
m′s′c′) + LbM (Xb

m′′sc,X
b
m′s′c′)

+ α1{d(zbmsc, z
b
m′′sc)− α2 · var(m,m′′)}2, (4.3)

where d(·) is a distance metric, and hyper-parameters α1 and α2 are respectively

selected to 1 and 0.1 by grid search in our experiments. With this loss term, we

expect the motion embedding vectors of positive and semi-positive samples to be

dependent on the characteristic vector.

For the skeleton and camera view embeddings, triplet losses LbS and LC can be

obtained in the same manner as (4.1). These terms are then combined to complete
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the final similarity loss term:

Lsim =
∑
b∈B
Lbvar +

∑
b∈B
LbS + LC . (4.4)

The estimate X̂
b ∈ R2×nb×T , which is the output of the Db, can be obtained by

providing the concatenation of motion, skeleton, and camera view embedding vectors

to Db. While the BPE model can accommodate 12 combinations specified by the

different attributes of M , S, and C as inputs, only three inputs, Xb
msc, Xb

m′s′c′ , and

Xb
m′′sc, are utilized to calculate the reconstruction error for computational efficiency.

Specifically, motion embeddings, EbM (Xb
msc), E

b
M (Xb

m′s′c′) and EbM (Xb
m′′sc); skeleton

embeddings, EbS(Xb
msc) and EbS(Xb

m′s′c′); and camera view embeddings, EC(Xa
msc)

and EC(Xa
m′s′c′) are concatenated into 12 different ways to build the inputs of Db.

Before the concatenation, the camera view embedding is copied a number of times

equal to the number of body parts. Then, the skeleton embeddings and all the copied

camera view embeddings are tiled along the time axis. The reconstruction error can

then be calculated by comparing the output X̂
b

of the decoder Db with the ground

truth. The reconstruction error for each body part is defined as follows:

Lbrec =
1

12

∑
i∈M

∑
j∈S

∑
k∈C

(X̂
b
ijk −Xb

ijk)
2. (4.5)

This reconstruction error term helps disentangle the motion, skeleton, and camera

view embedding vectors.

Finally, the foot velocity loss Lf used in [53] is applied to prevent a foot skating

phenomenon that causes a significant error in hands and feet. The final loss is the
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weighted sum of the individual loss terms:

L = λ1
∑
b∈B
Lbrec + λ2Lsim + λ3Lf , (4.6)

where the weights λ1, λ2, and λ3 are respectively selected to 1, 1, and 0.5 by grid

search in our experiments.
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4.2.2 Measuring motion similarity

The measurement of similarity between motions is described in Algorithm 2. We use

the outputs of the motion encoders only so that the model can generate predictions

robust to differences in view-points or skeletons (e.g., different heights).

Let two sequences X1 ∈ R2×J×T1 and X2 ∈ R2×J×T2 , which are targets for mea-

suring motion similarity, have time lengths of T1 and T2, respectively. Furthermore,

let Xb
1 ∈ R2×nb×T1 and Xb

2 ∈ R2×nb×T2 , respectively, be the sequences corresponding

to body part b of X1 and X2. A sliding window approach with window size w and

stride r is applied to split Xb
1 and Xb

2 into patches, which are then put into the

motion encoder EbM . Let Fb1 and Fb2 denote the sets of motion embeddings of the Xb
1

and Xb
2 patches, respectively. They are then fed as inputs to the DTW algorithm to

determine the best alignment between the sequences. Subsequently, the similarity of

each body part can be obtained through average cosine similarity between match-

ing time frames on the DTW path. Based on each body part’s similarity, the final

similarity of the two sequences X1 and X2 can be calculated by averaging over the

body parts and temporal timestamps.
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Algorithm 2: Measuring motion similarity

Input : motion sequences X1,X2,
motion encoders
EM = {E1

M ,· · · , EbM ,· · · , E
nB
M },

video sampling window size w,
video sampling stride r

Output: similarity sim

divide X1,X2 into each body part {X1
1,· · · ,Xb

1,· · · ,X
nB
1 },

{X1
2,· · · ,Xb

2,· · · ,X
nB
2 }

for b = 1 to nB do

extract patches from Xb
1,X

b
2 using sliding window with w, r

obtain embeddings Fb1 ,Fb2 from the extracted patches by using EM
path← DTW (Fb1 ,Fb2)
simb ← average cosine similarity between the embedding pairs in path

sim← the average of {simb|b ∈ B}

4.3 Experimental results for measuring motion similarity

In this section, we first present implementation details for our model, then introduce

the correlation measurements between the collected annotations for NTU RGB+D

120 pairs and the similarities produced by several models, including ours and the

baselines. Next, we visualize the motion latent space of our model. Finally, we explain

how our framework can be applied to real-world tasks. For all the experiments in

this section, only the SARA dataset is used for training, and the NTU RGB+D

similarity annotations are used for evaluation.

4.3.1 Implementation details

Preprocessing

First, all motion sequences are divided into segments of 32 frames. Then, we split the

SARA dataset into training and validation sets composed of different base motions

of non-overlapping characters. This results in 455,028 motions, each with 32 frames,
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from 12 characters for training and 64,218 motions, each with 32 frames, from 6

characters for validation.

In a real-world environment, the size of a person’s projection varies depending

on the distance from the camera. To address this problem, the skeleton size of

the sequence is reduced or increased by a scale factor, which is randomly sampled

between 0.5 and 1.5. After the scale adjustment, the reference joint for each body

part is selected, and the coordinates of all joints are changed from absolute to relative

coordinates. The reference joints for each body part are shoulders for arms, hips for

legs, and the middle hip for a torso. Finally, the coordinates are normalized to

produce the final input.

Network structure

The encoders and decoders in our BPE model depicted in Figure 4.6 are implemented

as convolutional layers with a batch normalization [113] layer and a leaky rectified

linear unit (Leaky ReLU) [114] activation function in between each layer. The motion

encoder for each body part takes a 2D sequence for the corresponding body part as

input. Let Xb
msc ∈ R2×nb×T be a sequence fed into the encoder for body part b. Each

motion encoder generates the embedding, denoted as EbM (Xb
msc) ∈ Rh1×

T
8 , where

h1 = 128 for the torso motion encoder and h1 = 64 for the other encoders. The

torso embedding is set to a higher dimension because its number of joints is greater

than the number of joints for other body parts. In the case of the skeleton encoders,

the input is the same as the motion encoders. The difference is that it generates

an embedding that compresses the temporal information using global max pooling.

This embedding, denoted as EbS(Xb
msc) ∈ Rh2 , has dimension h2 = 32 for torso and

h2 = 16 for the other body parts. The camera view encoder uses the concatenation
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of the body parts as input. Unlike the skeleton encoder, we use average pooling to

make the embedding with dimension h3 = 64. The camera view embedding is copied

a number of times equal to the number of body parts. Then, the generated skeleton

and the camera view embeddings are tiled along the time axis to match the size of

the motion embedding, T
8 , and subsequently concatenated. The decoder then yields

an estimate X̂
b
msc for each body part using the concatenated embeddings. The size

of the resulting output is the same as the input size of the encoders.

Optimization

The model was trained using Adam optimizer [115] with β1 = 0.9, β2 = 0.999, and

ε = 10−8. L2 regularization with a weight decay of 0.01 was also used to prevent

overfitting. The initial learning rate was 10−3, and we applied an exponential decay

with a rate of 0.98 every 1/3 epoch. Using a single GPU (NVIDIA Tesla V100) and

Intel Xeon 5120 @ 2.20 GHz, it took less than 20 minutes for the model to train one

epoch with 12 workers and a batch size of 2,048.

Model selection

As previously mentioned, we trained the model only with the SARA dataset. The

model parameters to be employed for evaluation were selected based on the epoch

with the lowest total loss for the SARA validation set.
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4.3.2 Experimental results on NTU RGB+D 120 similarity anno-
tations

Comparisons with the baselines

We calculated the correlations between the model’s predictions and the annotated

similarity scores to determine how comparable the model is to human perception.

Spearman’s rank correlation was employed as an evaluation metric, and 20, 093 pairs

were used to obtain the correlations. For the models relying on 2D coordinates, the

symmetrical nature of the human body was utilized. In detail, each model predicted

two different similarity scores for each motion pair: one from the original motion

sequences and the other by using horizontally flipped ones from the two sequences,

and the larger value was selected as the final similarity prediction. This procedure

is referred to as Body flip in Tables 4.2 and 4.3.

Four approaches were considered as baselines. The first was a heuristic algorithm

that calculated the Euclidean distance between the joints of the matching frames.

DTW was used to align the frames of two motion sequences. As the second baseline,

we used the algorithm of [40], where the authors proposed the similarity of 3D motion

sequences between teacher and learner in a dance teaching situation. We used the

3D joint coordinates of the NTU RGB+D 120 as inputs for this method.

For the third baseline, we considered the approach of Coskun et al. [35], which

was used to carry out the action recognition and retrieval tasks, since it learns the

similarity between the motions through metric learning. We re-implemented the

model of [35] and trained it with the SARA dataset for a fair comparison. Similar to

Algorithm 2, DTW was employed to align the motion embedding patches. Finally, we

trained the model of Aberman et al. [53] on the SARA dataset and used its motion
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Table 4.3: Ablation study on the proposed loss function.

Method With variation With recons. Original pair Body flip

BPE (ours)

X X 0.5264 0.5662
X O 0.5280 0.5740
O X 0.5363 0.5758
O O 0.5509 0.5970

embeddings for similarity measurement. Since [53] generated one motion embedding

for the entire body’s motion sequence, Algorithm 2 was modified to calculate the

similarity for individual embedding vector.

Meanwhile, the BPE model was implemented with positional encoding attached

to Xb
msc. Positional encoding is an embedding that can include the positional infor-

mation of a sequence, as proposed in Transformer [116]. We trained the BPE model

by generating the model inputs, (Xb
msc)pos ∈ R2×(nb+hpos)×T , where hpos is the di-

mension of the positional encoding vector, and we compared its performance with

the other models.

Overall, the highest correlation results were achieved by the proposed BPE

model, as shown in Table 4.2. Our method significantly improved the correlation

results between the similarity estimation and human perception. There are two main

reasons for this. One is that our method can estimate the similarity score for each

body part. When people compare two motions, they tend to think that the whole

body performs different motions even if only one body part moves differently. Fur-

thermore, our loss term allows the model to catch subtle intraclass variations and

enables the similarity estimation to be closer to human perception. The ablation

study related to the loss term will be discussed.
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Interestingly, in all the cases based on the proposed BPE model, the similarity

correlation results produced with the Body flip had the best performance. This

implies that horizontally flipped motions are considered the same motion in the

human perspective. For example, people may not care whether a human throws a

ball with their right hand and tend to focus only on the fact that a ball is thrown

to determine whether the motions are similar.

Finally, we noted that using motion sequences corrected by MultiPoseNet results

in a higher correlation score for every method. We believe that refining imprecisely

annotated poses impacted this.

Ablation study

To verify the effectiveness of the proposed loss term, we carried out ablation exper-

iments. Specifically, we separately removed the reconstruction and motion variation

losses by excluding their contributions from the total loss. The results are outlined

in Table 4.3.

The results show that the correlation scores increased when motion variation

loss was applied. Unlike the triplet loss, motion variation loss forces the model to

ensure that motion embeddings are separated even for slightly different motions from

the same class. We argue that this property helps a model to generate similarity

predictions close to human perception.

When we omitted the reconstruction loss, the correlation scores decreased. We

claim that the reconstruction loss of our model forces the embedding to contain es-

sential information of the motions, and when it is applied with a cross-reconstruction

scheme, it can generate the embedding of the motion attribute independent of the

skeleton or camera view.
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The BPE model without the motion variation loss (shown in the second row

of Table 4.3) performed better than Aberman et al. (shown in the fourth row of

Table 4.2), suggesting the effectiveness of the proposed body part decomposition

approach. The motion embedding for each body part appears to make it possible

for the model to capture detailed motion information.

Motion similarity comparison by body part

Our model computed the motion similarity for each body part for a given pair of

motions. Representative results from NTU RGB+D 120 are given in Table 4.4, with

the corresponding visual references in Figure 4.7. Figure 4.7 (a) represents a case

where both people raise their left hand. Our model predicted high similarity results

in most body parts except the right hand for which their positions were different.

Next, Figure 4.7 (b) shows a motion where one person raises both hands while

the other raises a left hand. The model predicted a lower similarity score for the

right arm and a high score for the remaining parts. Figure 4.7 (c) represents motion

sequences with the same waving motion performed with a different hand. It was

found that the motion similarities for both arms were lower than for the other body

parts. In Figure 4.7 (d), the left person sits on the chair, and the right one performs

squats. The model predicted lower similarities of the legs and torso than those of

arms because the angles of the knees and hips were different. Finally, an example

of a comparison between a person standing with raised arms and a person sitting is

displayed in Figure 4.7 (e). The similarity scores in all parts were relatively low as

the motions of all body parts’ are different.
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Table 4.4: Motion similarity by body part for the sample pairs in Figure 4.7. Body
parts with relatively lower similarity scores are marked bold.

Right Arm Left Arm Right Leg Left Leg Torso

(a) -0.0153 0.6982 0.9297 0.9205 0.9429
(b) 0.1740 0.7338 0.8843 0.6937 0.8773
(c) 0.1841 0.0648 0.9423 0.9321 0.9160
(d) 0.8196 0.7210 0.3999 0.5499 0.2366
(e) 0.2147 -0.2170 0.1040 0.1517 0.1057

4.3.3 Visualization of motion latent clusters

The motion latent spaces for the SARA validation set and NTU RGD+D 120 are

shown in Figure 4.8, visualized using t-distributed stochastic neighborhood embed-

ding (t-SNE) [117]. t-SNE represents high-dimensional data as a two-dimensional

graph by learning a two-dimensional embedding vector to preserve the neighbor

structure between high-dimensional vectors.

Figure 4.8 (a) shows that despite the differences in the characters and camera

views in the SARA dataset, the sequences with the same motion attributes are clus-

tered together. It supports the claim that similarity can be measured by considering

only the motion, independent of the humans or camera views. Furthermore, closely

mapped motions corresponded to similar body part movements, as displayed on the

right side of Figure 4.8 (a), even though they belonged to different classes. The plot

on the left of Figure 4.8 (b) shows the motion latent space for the 21 sampled actions

of NTU RGB+D 120. Overall, the samples with the same action class formed clus-

ters. In some cases, however, different motions were mapped closely, similar to the

aspect shown in the SARA dataset’s case. The photos on the right of Figure 4.8 (b)

are examples of such cases in which they are positioned closely due to their motion
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classes’ similarities from the human perspective.

79



(a
)

A
d

ve
n

tu
re

1
5

2
D

a
n

ce
1

3
2

C
h

ee
r 

u
p

S
tr

et
ch

 o
n

es
el

f

(b
)

F
ig

u
re

4
.8

:
V

is
u

a
li

za
ti

o
n

o
f

m
o
ti

o
n

la
te

n
t

ve
ct

o
rs

.
T

h
e

m
ot

io
n

cl
as

se
s

of
th

e
S
A

R
A

va
li

d
at

io
n

se
t

ar
e

cl
u

st
er

ed
b
y

co
lo

rs
in

th
e

le
ft

p
ar

t
o
f

(a
).

T
h

e
d

a
rk

gr
ee

n
(A

d
ve

n
tu

re
1
5
2

)
an

d
li

gh
t

ye
ll

ow
(D

a
n

ce
1
3
2

),
ci

rc
le

d
in

b
la

ck
,
co

rr
es

p
on

d
to

th
e

si
m

il
ar

m
o
ti

o
n

s
th

at
w

er
e

p
er

fo
rm

ed
w

h
il

e
st

an
d

in
g

w
it

h
th

e
el

b
ow

s
b

en
t

an
d

le
an

in
g

b
ac

k
(s

h
ow

n
in

th
e

ri
gh

t
p

ar
t

o
f

(a
))

.
T

h
e

v
is

u
a
li

za
ti

o
n

o
f

21
sa

m
p

le
d

ac
ti

on
s

of
N

T
U

R
G

B
+

D
12

0
[3

]
is

m
ad

e
in

th
e

le
ft

p
ar

t
of

(b
).

T
h

e
b

lu
e

(c
h
ee

r
u

p
)

a
n

d
re

d
(s

tr
et

ch
o
n

es
el

f
)

p
os

it
io

n
ed

on
th

e
u

p
p

er
ri

gh
t,

re
p

re
se

n
t

si
m

il
ar

m
ot

io
n

s
(s

h
ow

n
in

th
e

ri
gh

t
p

a
rt

of
(b

))
.

80



4.4 Application

In this section, we provide a guideline for using the proposed motion similarity in the

real-world. Evaluating an exercise (e.g., dance, yoga, and figure skating) performance

is a natural application of the proposed model.

4.4.1 Real-world application with dancing videos

To evaluate the proposed motion similarity measurement framework with real-world

data, we collected dancing videos from Korean idol audition programs. This dataset

fits our goal to assess the performance periodically as the dance progresses and as

the audition participants perform the same dance except for the section where they

show their dancing individuality.

We compared two temporally aligned videos of people trying to perform the same

dance. We used the method of [111] to extract the joints’ location, although any

human pose estimation algorithm is suitable. Algorithm 2 with window size w = 32

and stride r = 32 was used to obtain the motion similarities between two sequences.

The parameters were set to provide feedback approximately every second. However,

they could be defined arbitrarily based on the application or user preference.

To compare two video clips (3.5 min long, 24 fps), the proposed method took

about 7.8 s (approximately 670 fps) on an Intel Xeon 5120 CPU @ 2.20 GHz without

model or code optimization. This included joint data preprocessing, network infer-

ence, and motion similarity calculation but excluded the pose estimation extraction.

Figures 4.9 and 4.10 are examples that show interactive feedback of two similar

dance motions. Since the two audition participants performed similar dance moves,

the similarity was measured with high scores in all body parts. Figures 4.11 and
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4.12 are examples that show interactive feedback of two partially different dance

motions. When two audition participants momentarily showed different body part

movements, the measured similarity score was lower.

Note that, in its current form, the proposed method neither provides feedback

on the exact incorrect human joint location nor how to correct the location to make

the action more similar. Nonetheless, our approach provides a similarity score on the

sequences without requiring evaluation of the motion similarity based on manually

defined rules, such as normalized distances between joints of an actor and the ground

truth.

Meanwhile, the audition judges also evaluated and graded the participants based

on the dance and the corresponding song in the audition program. We clustered mo-

tion embeddings through k-means clustering algorithm [118, 119] to check whether

participants with similar dancing skills can form clusters. Since the dance and the

song were evaluated comprehensively, we cannot directly compare the evaluation

results of the judges with our framework, which generates motion embeddings with

only dance movements. However, it is possible to compare the 16 highest-grade par-

ticipants (grade 1) who were thought to have been relatively good at both dancing

and singing, and the 14 lowest-grade participants (grade 5) who were considered to

be relatively poor at both dancing and singing. As a result of clustering by the dance

motion embeddings of the chorus part, one cluster consisted of 10 participants with

an average grade of 1.4, and the other cluster consisted of 20 participants with an av-

erage grade of 3.6. This suggests that the highest-grade participants who performed

dance movements accurately and produced similar motion embeddings formed the

cluster with an average grade of 1.4.
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4.4.2 Tuning similarity scores to match human perception

For a real-world application, it is necessary to know the meaning of the similarity

measured from two motions. For example, if the measured similarity is 0.7, the

number 0.7 should be able to imply how similar the two motions are. To convert

the measured similarity into meaningful numbers, we utilized the similarity scores

of the NTU RGB+D 120 similarity annotations which is collected from humans.

The relationship between the score of NTU RGB+D 120 similarity annotation and

the average value of the similarity measured from the proposed framework for each

score is shown in the Figure 4.13. Since this relationship is approximated by the

logistic function f(x) = 1
1+e−(27x−15.5) , the measured similarity can be converted to

the criteria of NTU RGB+D 120 similarity annotation using this logistic function.

The examples of each score on 4-point scale ranging from 1 (utterly different motions)

to 4 (the same movements) is shown in Figure 4.1.
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Figure 4.13: Relationship between the similarity scores of NTU RGB+D 120 simi-
larity annotations and the similarity measured from the proposed framework. The
x-axis represents the similarity measured from the proposed framework, and the y-
axis represents the values obtained by normalizing the similarity scores of 1-4 points
collected from humans to a 0-1 scale. The relationship can be approximated by the
logistic function.
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Chapter 5

Conclusions

5.1 Summary and contributions

This thesis proposes a method to improve the performance of two computer vision

tasks, fashion style classification and measuring motion similarity using the visual

information of the human body based on deep autoencoder architectures.

For the fashion style classification task, we proposed an architecture to classify

the fashion styles by training the foreground images, which were cropped to include

only the human parts with fashion items, and the fashion attributes represented

in each image. The model was trained on GFSL problem settings, in which the

class imbalance scenario is suitable for the fashion style classification domain. The

CADA-VAE structure is adopted to overcome the class imbalance and utilize other

modalities. After training CADA-VAE, the style classifier was trained through the

proposed cyclic oversampling. The results showed that the proposed architecture,

MVStyle, outperformed the baselines.

For motion similarity measurement utilized in various human-related computer

vision tasks such as action recognition, human performance evaluation, and anomaly

detection, we generated motion embedding vectors for five body parts, and a mo-

tion variation loss term was introduced to distinguish similar motions. Additionally,
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a synthetic dataset to train the model was constructed. For evaluation purposes, we

collected real-world annotations of the NTU RGB+D 120 dataset. The evaluation

indicated that our method outperformed all the baseline models considered. An ex-

ample application in which the proposed framework can be utilized by measuring the

similarity of dance motions was also presented using the joint-coordinate sequences

measured from real-world dance videos.
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5.2 Limitations and future research

Training the model using additional modalities will be our future work for the fashion

style classification task. Foreground images will be able to be specified, such as a

top, a bottom, and accessories. Human pose, which was used to measure motion

similarity, will help the model to recognize the clothing shape accurately. It is also

possible that attributes can be represented in a format other than a one-hot vector.

If the soft grouping approach proposed in [120] is applied, even information not

included in the attribute labels can be reflected in learning. Because this study was

conducted on women’s fashion images, its performance was not confirmed on men’s

fashion images. Furthermore, it was trained using shopping mall images, not images

from real life. Therefore, it will be our additional future work to train the model

with different fashion style datasets.

Because our approach for measuring motion similarity depends on the joint-

coordinate sequences, the similarity model performs best when precise pose estima-

tion is available. However, the pose estimation may not be satisfactory in challenging

situations (e.g., occlusions and crowded scenes), and our future work will seek to

measure the similarity accurately even in these challenging situations. Adding noise

to the training inputs for generating motion embeddings is one method that can

overcome these challenging situations. Extending the model to learn temporal align-

ment is also an important future work. We expect the extended model to produce

better similarity predictions using both aligned and non-aligned action datasets and

data-driven sequence alignment. Finally, evaluating the performance of existing tasks

such as action recognition or person re-identification by applying motion similarity is

also viable. In fact, the aforementioned tasks already take advantage of the concept
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of motion similarity, and it would be interesting to see how the proposed method

can contribute to those tasks.
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Appendix A

NTU RGB+D 120 Similarity Annotations

A.1 Data collection

We collected 20,093 motion similarity scores of NTU RGB+D 120 [4, 3] action

sample pairs using Amazon Mechanical Turk (AMT). The annotation task (each

HIT) consisted of 21 sets. One set was composed of a query video and 10 candidate

videos, forming 10 pairs. Thus, there were 210 sample pairs per task. With random

sampling, the distribution of scores would have been focused near a score of 1 (i.e.

utterly different motions) since it is unlikely that a particular sample movement

would have been similar to the movement of the sample from any other action

category. To solve this problem, we adjusted the configuration of the pair selection

strategy so that a wider variety of similarity scores was collected. When constructing

a set, we included action videos in a fixed ratio of same (40%) and different (60%)

actions. The different actions for the query were chosen from the action groups

likely having similar movements to the query video (e.g. capitulate and cheer up).

We created 100 tasks and performed a survey based on the tasks to obtain human

evaluation. At least 10 AMT annotators examined each pair, and the final score was

determined by averaging similarity scores for a particular pair.

Several examples of the motion pairs in AMT can be observed in Figure 4.1.
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Figure 4.1 (a) is an example of score 4 because both people perform the same action

- crossing hands in front. The two videos in Figure 4.1 (b) were given scores of

3. They share the same hand waving motion, but the arm movements are slightly

different. In Figure 4.1 (c), the video on the left is the running-on-the-spot motion,

while the right one is the butt-kicks motion. While they were in different action

categories, the pair was scored 2, as there was similar movement between them.

Lastly, Figure 4.1 (d) represents completely different motions. It was given a score

of 1. Like the pair of videos in Figure 4.1, the instructions with a sample test were

given to the AMT annotators before proceeding with the scoring (see Figures A.1

and A.2). In total, the final dataset after cleaning consisted of 20,093 pairs.

A.2 AMT score analysis

The average scores for each action are depicted in Figure A.3. The blue bar displays

the average score of sample pairs belonging to the same action category, and the

red bar displays the average score for all cases in which one of the pairs belongs

to the corresponding action category and the other belongs to a different action

category. Scores are generally high for pairs of the same action and mostly low for

pairs of different actions. However, there are a few exceptions where low scores are

observed for the same actions. For instance, two actions, A048 (nausea/vomiting)

and A104 (stretch oneself ), are scored relatively lower than other action pairs in

the same action. We infer that the aforementioned actions can be expressed with

various motions, causing the annotator to treat them as different.

On the other hand, two actions score relatively higher than other actions in a

different action group: A095 (capitulate) and A104 (stretch oneself ). For instance,
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the capitulate action resembles A022 (cheer up) and A040 (cross hands in front)

since both arms are raised while performing these actions. A104 (stretch oneself ) is

similar to A022 (cheer up) and A095 (capitulate) since these actions share movements

such as lifting and stretching the arms. Because the images in an action pair with a

high score have certain movements in common, we believe that our proposed method

captures the motion similarity for each body part.
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Appendix B

Data Cleansing of NTU RGB+D 120 Skeletal
Data

We noticed that some skeletal data in NTU RGB+D 120 is annotated imprecisely.

Misannotated files can be classified into three cases. In the first case, a skeleton

representing a human and a skeleton representing nonhuman objects are stored to-

gether, as shown on the left side of Figure B.1 (a). The problem is that we cannot

identify a correct human skeleton without looking at the original video. In the sec-

ond case, as shown on the left side of Figure B.1 (b), the skeleton is incorrectly

located. In the last case, the joints have invalid annotations, as represented on the

left side of Figure B.1 (c). To cope with these issues, we used our reproduction of

MultiPoseNet [111] to generate new 2D joint annotations. More accurate skeleton

data was obtained as a result, as shown on the right side of Figure B.1 (a), (b) and

(c).
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Appendix C

Motion Sequence Generation Using Mixamo

As mentioned in the paper, we utilized Adobe Mixamo [5] to generate motion se-

quences. Figure C.1 shows an example of generating a Hip Hop Dancing motion

class. By adjusting the value of the slider on the right side, we could change the

characteristic of the motion.
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Figure C.1: Motion generation using the Mixamo [5] tool.
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국문초록

컴퓨터 비전은 딥러닝 학습 방법론이 강점을 보이는 분야로,다양한 태스크에서 우수한

성능을 보이고 있다. 특히, 사람이 포함된 이미지나 동영상을 딥러닝을 통해 분석하

는 태스크의 경우, 최근 소셜 미디어에 사람이 포함된 이미지 또는 동영상 게시물이

늘어나면서 그 활용 가치가 높아지고 있다.

본 논문에서는 사람과 관련된 컴퓨터 비전 태스크 중 패션 스타일 분류 문제와 동작

유사도 측정에 대해 다룬다. 패션 스타일 분류 문제의 경우, 데이터 수집 시점의 패션

유행에 따라 스타일 클래스별 수집되는 샘플의 양이 달라지기 때문에 이로부터 클래스

불균형이발생한다.본논문에서는이러한클래스불균형문제에대처하기위하여,소수

샘플 클래스와 다수 샘플 클래스를 학습 및 평가에 모두 사용하는 일반화된 퓨샷러닝

으로 패션 스타일 분류 문제를 설정하였다. 또한 변분 오토인코더 기반의 모델을 통해,

신체및패션아이템부분만잘라낸전경이미지모달리티와패션속성정보모달리티가

패션 이미지의임베딩 학습에 반영되도록 하였다.학습 및 평가를 위한 데이터셋으로는

한국 패션 쇼핑몰에서 수집된 K-fashion 데이터셋을 사용하였다.

한편,동작유사도측정은행위인식,이상동작감지,사람재인식같은다양한분야

의 하위 모듈로 활용되고 있지만 그 자체가 연구된 적은 많지 않은데, 이는 같은 동작을

수행하더라도 신체 구조 및 카메라 각도에 따라 다르게 표현될 수 있다는 점으로 부터

기인한다. 학습 및 평가를 위한 공개 데이터셋이 많지 않다는 점 또한 연구를 어렵게

하는 요인이다. 따라서 본 논문에서는 학습을 위한 인공 데이터셋을 수집하여 오토인

코더 구조를 통해 신체 구조 및 카메라 각도 요소가 분리된 동작 임베딩을 학습하였다.

이때, 각 신체 부위별로 동작 임베딩을 생성할 수 있도록하여 신체 부위별로 동작 유

사도 측정이 가능하도록 하였다. 두 동작 사이의 유사도를 측정할 때에는 동적 시간
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워핑 기법을 사용, 비슷한 동작을 수행하는 구간끼리 정렬시켜 유사도를 측정하도록

함으로써, 동작 수행 속도의 차이를 보정하였다. 평가를 위한 유사도 점수 데이터셋은

행위 인식 데이터셋인 NTU-RGB+D 120의 영상을 활용하여 크라우드 소싱 플랫폼을

통해 수집되었다.

두 가지 태스크의 제안 모델을 각각의 평가 데이터셋으로 검증한 결과, 모두 비교

모델 대비 우수한 성능을 기록하였다. 패션 스타일 분류 문제의 경우, 모든 비교군에서

소수 샘플 클래스와 다수 샘플 클래스 중 한 쪽으로 치우치지 않는 가장 균형잡힌 추론

성능을 보여주었고, 동작 유사도 측정의 경우 사람이 측정한 유사도 점수와 상관계수

에서 비교 모델 대비 더 높은 수치를 나타내었다.

주요어: 신체, 패션, 동작 분석, 컴퓨터 비전 응용, 오토인코더, 산업공학

학번: 2016-21106
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