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Abstract

Integrated architectures combine CPU and GPU cores onto a single proces-

sor die. Thanks to the shared memory architecture, costly memory copies to

the GPU device memory can be avoided, and programmers can use both CPU

and GPU cores to accelerate their applications. Especially for memory-intensive

applications, however, utilizing all available core resources does not always max-

imize performance due to congestion in the shared memory system. Tuning an

application to use the optimal number of CPU and GPU compute resources is

a difficult and machine-dependent task.

This thesis presents an automated system that auto-tunes an OpenCL ker-

nel for a given integrated architecture on the fly. A light-weight compiler extract

the characteristics of a kernel as it is submitted to the OpenCL runtime. We

then use a software-based technique to automatically rewrite the kernel to only

utilize the compute resources that are expected to maximize performance based

on a model. Our analysis shows that the memory access pattern and the cache

utilization are the decisive factors when determining the parallelism of a kernel.

To accommodate for the varying properties of different integrated architectures,

we employ machine learning to create models for different architectures. The

models are trained with microbenchmarks that generate a large number of vary-

ing memory patterns and evaluated with OpenCL benchmarks from different

benchmark suites.

While the presented approach shows good results for older integrated ar-

chitectures such as Intel Skylake and AMD Kaveri, it currently still does not

achieve satisfactory results on the more recent architectures Intel Comet Lake
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and AMD Picasso. However the analysis performed on memory pattern still has

some insight on it.

Keywords: Parallelism Mangaement, CPU-GPU Integrated Architecture, Code

Analysis

Student Number: 2019-22899
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Chapter 1

Introduction

Many recent desktop and mobile processors integrate CPU and GPU cores onto

a single die. Examples of such integrated architectures are AMD’s accelerated

processing units (APU) [1] and Intel processors since Skylake [5]. Integrated

architectures present an attractive alternative to dedicated GPUs not only be-

cause of the lower cost and energy consumption [11, 13], but also because they

allow for a simpler parallel programming model. Since the CPU and GPU cores

share the off-chip memory, applications can exploit the processing power of

CPUs and GPUs without requiring costly data copying operations.

Achieving maximal performance on integrated architectures for data-parallel

workloads, however, is a challenging problem. Integrated architectures enable

the CPU and the GPU to execute different tasks that collaborate through

shared memory [15, 7]. The characteristics of a parallel workload determine

its affinity: workloads with frequent control flow changes and irregular mem-

ory accesses tend to achieve better peformance on the CPU, while kernels with

little control divergence and regular memory access patterns typically achieve
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superior performance on the GPU [12, 16, 3]. Whether a workload is CPU or

GPU affine, adding more processing cores of the other type intuitively leads to

higher performance [10, 17]. As we will demonstrate shortly, not only is this not

true, but orchestrating the co-execution of a workload on both CPU and GPU

cores is a non-trivial problem by itself [17, 3] since the optimal static partition-

ing of the workload to CPU and GPU is unknown and a dynamic partitioning

scheme needs to implement a low-overhead global shared queue to distribute

the workload.

Figure 1.1: Normalized work group execution time of matrix accumulation ker-

nel for varying number of CPU cores while running GPU on both kernel on an

Intel Comet Lake system.

As stated earlier, utilizing all available computational resources does not

necessarily lead to maximum performance. Figure 1.1 visualizes the single work

group execution time of two different kernels, which reads from two different

matrix and writes it to another. On left kernel, best case is using all for GPU
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and less(2) for CPU, however on right kernel, the best case is to use less cores

for GPU and all for CPU. On this simple example we can see that using all

resources not always lead to best results.

Managing thread-level parallelism has long been an important technique for

multi-core processors [14, 6, 2]. However, existing techniques are not applicable

for integrated architectures. Unlike CPUs, GPUs do not allow for a flexible ad-

justment of the number of threads once a kernel is launched because the GPU

threads are managed by the GPU’s hardware scheduler. A number of techniques

have been presented to select the optimal execution mode [17, 18, 4]. For ex-

ample, a state-of-the-art technique [17] executes an application exclusively on

the CPU, the GPU, or in parallel on all cores of the CPU and the GPU, based

on a decision tree.

We tried to present a way to find and apply an appropriate degree of paral-

lelism for integrated architectures. First, to manage the thread-level parallelism

of the GPU, we transforms OpenCL kernels to be able to run with a specific

number of threads. Also, we made a machine learning modeled based on results

from micro kernels, and calculate performance-relevant static features of the

OpenCL kernel. With pre-runned data with synthetic workload, we expect to

predict optimal degree of parallelism on any architecture for target application

before running it.

The remainder of this paper is organized as follows. In Section 2, we discuss

the background information to extract features, about how GPU runs workload

on it. In Section 3, we describe how we runs limited number of cores and the

ML model to determine the number of threads for the CPU and the GPU.

Sections 4 discuss the experimental setup and the results. Section 5 concludes

this paper.
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Chapter 2

Background

2.1 Integrated CPU-GPU Architecture

Figure 2.1: SoC and ring interconnect architecture of Intel i7 processor 6700K[9]

Unlike traditional GPU, which located outside of CPU chip and has sepa-

rate memory, integrated systems shares same memory for both CPU and GPU.
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Figure 2.1 shows Intel Gen9 architecture, which also shares last level cache with

GPU. On discrete architecture, programmers should copy data from CPU mem-

ory to GPU before GPU start working, and copy it back when GPU completes

it computation. For application in which CPU and GPU should communicate

often the overhead of memory copying gets more significant. By using integrated

systems we can avoid this overhead.

2.2 OpenCL Programming

In this section, we discuss the background of running kernels on GPU systems

using OpenCL.

Based on OpenCL programming models, the workloads are consit of multi-

ple work items. One work item is related to data position on which GPU thread

will perform on. A compute unit in GPU will process multiple work items si-

multaneously on same instruction. Since GPU contains of several CUs, we make

a group of work items to run on single CU. The number of work items can be

larger than the number of cores inside CU since GPU can switch working data

and use others in work group for performance. On OpenCL, we can number the

work items in different dimension. The work item number and dimension will

make memory accesses form differently.

On 1D kernel, the work items will be assigned continuously. Figure 3.1 is

an example for 1D kernel. From the kernel, we can see that continuous threads

in a work group will write on continuous region on array B, while starting read

from N-strided on array A.

On 2D kernel, the work groups are shaped on 2D space. Figure 2.2 shows

when the work group is size of 42. On example kernel, the global id of work

items in a box will be numbered from 0 to 3 for global id(0) and 0 to 1 for

5



...

... ...

...

global_size(0)local_size(0)

local_size(1)

global_size(1)

Figure 2.2: 2D kernel execution

global id(1). We used these two values for indexing data region which the work

item accesses, like A[i][j], the size of work group affects on memory pattern of

kernel.

Unlike AMD, Intel uses concept of threads which performs SIMD operation.

Figure 2.3 illustrates intel Execution Unit. Each gen9 EU has seven threads and

each thread has its own registers to deal with SIMD operations. The number

of SIMD lanes is decided on compile time by intel graphics compiler.
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Figure 2.3: The Execution Unit(EU) of Intel GPU.[9]
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Chapter 3

Implementation

3.1 Overview

3.2 Kernel Modification

This section discuss about how to throttle workloads. We only modified software

code to leverage the number of running cores on devices. The number of activate

core is dependent on two parameters: throttling alloc and throttling mod. Code

for throttling is inserted before kernel loop starts. The if-else statement tests

whether the work item id % throttling mod < throttling alloc. If not, core will

skip the whole loop, not making any memory requests.

Figure 3.1 shows the original kernel code of simple applications which read

a value from 2d matrix A and assign it to B. The index of matrix is calculated

with global id and loop variable j. We modify the original code to Figure 3.2.

In throttling kernel, if-else statement with throttling alloc decides whether to

execute loop or not. Also we change initialization of i. To make other core to

8



__kernel void micro_kernel(__global float *A,
__global float *B, 
int N)  

{    
    int x = get_global_id(0);

    for(int k = 0; k < N; k++)  
        B[x] = A[x*N + k];  
}

Figure 3.1: Original kernel code assigning 2-d matrix one to another

__kernel void micro_kernel_repeat(
__global float *A,
__global float *B,
int N,
int throttling_mod,
int throttling_alloc)

{
   int local_wi = get_local_id(0);

   if (get_local_id(0) % throttling_mod < throttling_alloc) {
       for(int work = local_wi;

work < (local_wi + throttling_mod - (local_wi % throttling_mod));
work += throttling_alloc) {

           int global_id_0 = get_group_id(0) * get_local_size(0) + get_global_offset(0) + work;
           int x = global_id_0;
           for(int k = 0; k < N; k++)
                 B[x] = A[x*N + k];
        }
    }
}

Figure 3.2: Modified kernel code for throttling
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run skipped work item, we make an local work item list and get work item id

from the local list. If the core workload is skipped, it will not increase local work

item list, so other core which not skipped will be assigned with next id and do

work. Figure 3.2 illustrates the idea of throttling code. We can see the only half

of total cores are running, if we set throttling alloc half of throttling mod. To

avoiding skipping work items, we calculate next local work id which should be

processed by stopped core.

throttling_mod

throttling_alloc

Figure 3.3: Example for throttling code

3.3 GPU Throughput Analysis

In this section we will figure out what feature affects GPU performance. To

predict the optimal number of threads, we must know which factor affects on

performance, so the application can be classified whether it is good for CPU or

GPU. We know that locality is important for CPU performance, but we can not

sure that same fact will be applied to GPU since it runs a large number of cores,

so even if it has temporal locality, the line containing the data can be evicted
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from GPU cache due to huge amount of memory access for all cores. Instead of

using throttling kernel, we used unmodified code to detect naive performance

of GPU which does not affected by throttling. You can find the description for

each variable used in this section from Table 3.1. We used 4 kernels for Intra-

analysis and 3 kernels for Inter-analysis. Table 3.2 shows the inner loop of each

kernel.

Variable Description

k loop index

x global id(0)

y global id(1)

N data size

Table 3.1: Kernel variable description

Kernel Intra Inter

1 B[x] = A[x][k] (N=16384) C[y][x] = A[y][k]

2 B[x] = A[x][k] (N=25600) C[y][x] = A[k][y]

3 B[x] = A[x][k] (N=28800) C[y][x] = A[x][k]

4 B[x] = A[x][k] (N=16384, k<N)

Table 3.2: Kernels for intra-thread analysis

3.3.1 Intra-Thread

We tested 1D, 2D GPU kernels with different amount of memory stride. Fig-

ure 3.4 shows how we make a memory access with different amount of stride.
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We runs kernel with s range of 1, 2, 4, 8, 16. Kernel with s = 1 will access

memory continuously, and others will have interval of s. The first three kernel

are the same, but testes with different input sizes. In kernel 4, the inner loop

line is same with other, but the loop variable k increase until N instead of s N

__kernel void micro_kernel(__global float *A,
__global float *B, 
int N)  

{    
    int x = get_global_id(0);

    for(int k = 0; k < N; k+=1)  
        B[x] = A[x*N + s * k];  
}

Figure 3.4: Intra kernel 1 code

Figure 3.5 is graph of running time for five kernels. The time is normalized

by time of stride 1. From kernel 1, we can see that performance is best on stride

4. However when we test larger data, on kernel 2, stride 2 perform best and

on kernel 3 continuous version runs on shortest time. We can see that on small

data size GPU internal cache affects on kernel. For example, on stride 2, since

we change k from 0 to 2N-1, the memory region from a thread in which x is 0

collapsed with next thread (x=1) when k gets larger than N. When data gets

larger this effect is lost due to limited cache size. On kernel 4, instead of increase

k to s N, we only increase it to N and multiplied s to running time, to match

with loop size. The result is similar to kernel 3, setting with stride 16 performs

worst. With this results, we can see that we should consider locality also with

12
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Figure 3.5: Normalized time for kernels with different amount of stride

other thread’s view.

3.3.2 Inter-Thread

The target kernel is 2D matrix copying. Figure 3.2 shows 8 similar but different

kernels for Inter-work group analysis. We changed work group size from 64x1

to 1x64 so that variable x and y assigned differently but not affect to single

thread’s memory access pattern.

To analysis inter-thread memory access, we use calculate the number of

memory accesses per cache line for same instruction. For example, if all 32

threads reference memory continuously, the number will be 16 since we use 4

byte floating point for the data. We represent cache efficiency by dividing the

number by 16. We will call this simply efficiency in this section.

Figure 3.6 shows result of kernel 1 and 2 for different work group size. For
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kernel 1, read efficiency is 1 for all configuration. For kernel 2, it differs. On

both kernel, we can see that when the write efficiency gets lower, the time it

takes gets higher. Also for kernel 1, which read efficiency is always 100%, slowest

configuration reaches about 600%, but for kernel 1, of which read efficiency also

gets lower, slowest configuration reaches about 1200%.
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Figure 3.7: Normalized time for kernel 3

When efficiency for read and write differs, it show different results depends

on how much they are low or high. In figure 3.6 when write efficiency goes down,

read efficiency goes up. Time makes U shaped graph, results in minimum time

near when the read and write crossed.

From these results, we can figure out what element affects on GPU perfor-

mance. However the number of possible value is too much to design a single

model, and also it will depends on GPU architecture. So we will use this infor-

mation to make a machine learning model.
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3.4 Prediction Model

3.4.1 Feature Selection

Using results from previous section, we designed model features to predict op-

timal number of cores to use. Each features are related to how many memory

requests are produced from the device, which will affect optimal number of

threads. Since our target is memory intensive application, we consider the com-

putation ratio is low, and not include it.

Intra Thread Cache Efficiency From a thread’s point of view, it accesses

data sequentially in a loop. We find from Section 3.3.1 that the size of stride

affects on GPU performance. We also know that it is important factor for CPU.

To measure it, we calculate how much a single cache line is reused after it loads,

and divide it by 16, which is the number of floating points one cache line can

contains. We will call it as Intra Thread Cache Efficiency. We count lines only

for 16 loops, which is the number of loop when continuous accesses fills one

cache line. It can also applied for constant access to same memory inside a

loop. If the kernel accesses same memory address for entire loop, the value will

be 1.

Inter Thread Cache Efficiency This feature is more important to GPU

performance. For each instruction, T (T can be different on architecture) threads

will simultaneously make memory access (for some instructions or not). So we

calculate efficiency by dividing the number of cache lines T threads produces on

a single line by T.

Memory Access Pattern We also calculate basic memory access pattern

of kernels. We tracked the number of memory accesses which is continuous,

16



constant, and have stride. The number of arithmetic calculation is also included.

Data Size From Section 3.3.1 we have seen that size of data affects with

results. So we also put data size into features. It is determined by the maximum

range of access occurs in a loop.

3.4.2 Model Training

Micro benchmark We made 1D and 2D kernels for training. For 1D kernel,

we varies stride and used 1 and 2 matrices for read. For 2D kernel, we varies

work group size to get different features. We have total 154 different kernels.

Model Design We made two models, blended by best three models from

which show good prediction compare to others. For first model we use all data

for training. We normalized time for each CPU, GPU configuration and for a

workload, with minimum time of the workload results. We put core configura-

tion as feature, so the best configuration in a workload will trains as a time

1.0, and others will be larger than that. On prediction, we put all possible core

configuration in feature and pick the smallest results. We used regression model

for this. We blended Light Gradient Boosting Machine, Random Forest Regres-

sor, Extra Trees Regressor using Voting Regressor. The number of input data

is multiplied by total core configuration, which is 17864 data on Intel, 12320

data on AMD.

For second model, we simplify the problem and train only best results. For

each micro-kernels, find cpu and gpu combination which gives best (minimum)

results, and train it as a class. Since we have to predict both CPU and GPU

we have to combine these to one class to train the model. So we simplify the

problem. We classify kernels to 4 class: 1) Using CPU 100% and some for

17



GPU is best (CPU) 2) Using GPU 100% and some for CPU is best (GPU) 3)

Using both CPU and GPU 100% is best (ALL) 4) Using both CPU and GPU

but both are not 100% is best (MIX). We blended Random Forest Classifier,

Gradient Boosting Classifier and Extra Trees Classifier using Voting Classifier.

The number of input data is same with the number of kernels.

18



Chapter 4

Experiment

4.1 Throughput Measurement

The main difficulty in measuring performance in integrated architecture is work-

load partitioning. Since if the CPU or GPU ends earlier than other it will be

not accurate run-time of the kernel. Without modifying hardware architecture,

after the kernel starts it is hard to add more workloads to kernel instead of re-

launching it, so we have to estimate run-time of each device beforehand. As we

want to focus on throughput of co-running applications, instead of measuring

run-time of application, we measured time to process one work group.

If the number of total work groups are too small, measured throughput

can be inaccurate. Figure 4.1 shows the problem. We track the time and the

number of work groups until the kernel ends. However, if some CPUs failed

to finish current work but almost done it, like on (A), and if the kernel ends

after all CPUs finished their work, like in (B) they can make a big difference on

performance even if its real performance is almost same. Assume the number of
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Figure 4.1: Performance with work group ending

processed work groups on (A) is 40, then the processed number of work groups

on case (B) will be 10% more. To avoid this problem, we repeat the GPU kernel

while the total number of the work group number become more than the number

of CPU cores * 100. It makes that even if all CPU almost proceed the work

group and not finished, the error for it will be less than 1%.

4.2 Target Device

We use AMD 3400G quad-core (eight threads with Simultaneous multithread-

ing) APU (Picasso) system and a hexa-core (12 threads with Hyperthreading)

Intel Comet Lake i5-10400 processor system. The AMD system integrates Vega

11 GPU, which has 11 CUs with each containing 64 Shaders. The Intel system

contains an Ingel Gen9.5 UHD Graphics GPU which comprises 24 CUs. We use

64 for T on AMD system, however on the intel system, instead of cores there

are registers and shared FPUs for CU. So we used 32, which is recommended
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for work group size on opencl information for the system.

4.3 Micro-benchmark Results

Table 4.1: Results by Model-1

Intel AMD

ALL 138% 134%

Model 223% 170%

We trained model with 85% of micro-benchmark results and predict for

remaining 15% of data.

Model-1 We compared average normalized time for prediction to CPU, GPU

100% case (ALL). Table 4.2 shows the results. The ALL method performs better

on both system.

Table 4.2: Results by Model-2

Intel AMD

ALL 56% 17%

Model 86% 63%

Model-2 Table 4.2 shows the percentage of correct prediction for each labels

on test set of microbenchmarks. When we use ALL methods, we can get limited

number of correct prediction.

4.4 Real Benchmark Results

We have tested model on real benchmark. We used PolyBench[8] suite, since it

contains linear algebra kernels which are memory bounded. The prediction of
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model 1 for real workloads is not good. Table 4.3 shows the results. On both

machine, it performs worse than ALL.

Table 4.3: Real Benchmarks Prediction Results - Model 1 (normalized time)

CPU GPU ALL Model

Intel 1.54 4.59 2.21 2.84

AMD 3.67 2.29 1.50 3.63

We also tested model 2 for real benchmark. Table 4.4 shows the results. We

can see that model predicts almost 3 (ALL) for Intel, 1 (CPU Max) for AMD.

Table 4.4: Real Benchmarks Prediction Results - Model 2

ALL Model

Intel 138% 223%

AMD 134% 170%

4.5 Result Analysis

Even if we have tested the relativity of memory access patterns and performance

with GPU, the model based on the result shows not good results. We analysis

that the problem is related with feature design. We run DBSCAN clustering on

the training data for model-2. As a results, we can see that data with different

classes are belong to same cluster, which means that the feature of it are similar

but classified different. It occurs mostly on class 1 (CPU Max) on Intel and 3

(ALL) on AMD. It means that we need more feature to separate those from

other class.

For example, we added data size feature to a model, based on analysis

of Section 3.3.1. However the main cause of different throughput is that the

memory access of a thread collapsed with the different thread’s access, but not
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on same instruction. It means that we have to calculate inter-thread efficiency

not only for simultaneous instruction but on instructions have some time gap,

as the threads in work group uses same cache inside GPU CU.

Also as we calculate GPU features based on naive C kernel code, it can

show different characteristics with real pattern. To analysis it more correct, we

should get features using GPU assembly code.

Lastly, the modeling of training/test data can be a problem. For first model,

we trains minimum case for all kernels as 1.0, treating the number of core as

same feature as others. We can think that the model will groups all minimum

cases from different kernels, which have different features onto same group with

1.0. Also for second model, we lost the application trend by training it with only

best case. For example, there is a kernel which produces good results when using

GPU 100% is good but the number of CPU does not affects. We but train this

kernel class 3, which will be treated as same kernel with using both 100% is

good.
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Chapter 5

Conclusion

By doing GPU analysis, we can figure out that GPU performance can be

bounded by limited memory bandwidth. We can throttle the number of cores

modifying kernel code to execute for specific cores. By doing static analysis, we

can predict the memory performance on each device, which can tell us whether

the application is CPU friendly or GPU friendly.

Using the features extracted from the code and running configuration (data

size, work group size), and using the micro-bench performance results for dif-

ferent core configuration from target device as a training data, we can build a

model to predict the optimal core settings for CPU and GPU.

However the results of model is not good. To improve the results, we think

that these things are needed: 1) Analysis on assembly code on CPU and GPU.

2) More features, especially on inter-thread in same work group but on different

instructions.
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요약

CPU와 GPU가 메모리를 공유하는 Integrated graphics(Intel) 또는 APU(AMD)

시스템에서 어플리케이션을 동시에 작업하는 것은 두 기기 간의 메모리 복사에

걸리는 시간을 절약할 수 있기 때문에 효율적으로 보인다. 한편으로 메모리 연

산이 많은 비중을 차지하는 어플리케이션의 경우, 서로 다른 메모리 접근 특징을

가진 두 기기가 동시에 같은 메모리에 접근하면서 병목현상이 일어난다. 이 때 작

업에 필요한 데이터를 기다리면서 코어가 중지되는 상황이 발생하며 퍼포먼스를

낮춘다.

이 논문에서 우리는 소프트웨어 코드의 변형을 통해 제한된 개수의 코어만을

사용하는 방법을 소개한다. 그리고 이 방법을 사용하여 코어 개수를 조절할 때

모든 코어를 사용하는 것보다 더 좋은 결과를 낼 수 있음을 보인다. 이 때 어플리

케이션의 메모리 접근 패턴이 최적 코어 개수와 관련이 있음을 확인하고, 코드를

기반으로 해당 패턴을 분석한다.

퍼포먼스는 또한 시스템의 특징과도 관련이 있다. 따라서 우리는 가능한 메모

리 패턴들을 담고 있는 마이크로 벤치마크를 생성하여 이를 시스템에서 테스트한

결과를 기계학습 모델의 학습에 사용하였다. 그러나 메모리 패턴의 특징이 충분

하지 않아 모델은 좋은 예측 결과를 내지 못했다. 비록 모델 예측 결과가 좋지

못했지만, CPU-GPU 통합 아키텍처의 메모리 접근에 대한 분석으로서 의미가

있을 것이다.

주요어: 병렬성 관리, CPU-GPU 통합 아키텍쳐, 코드 분석

학번: 2019-22899
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