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Abstract

On the minimal number of sample points and

the persistence of the Vietoris-Rips complex

Hyojin Jung

Department of Mathematical Sciences

The Graduate School

Seoul National University

Recently topological data analysis become a popular tool to analyze data. In

this paper, we study the behaviour of Vietoris-Rips complex with persistent

homology to figure out the shape of data. In particular, we find the minimal

number of data points on a sphere such that homology of the Vietoris-Rips

complex of those data points is isomorphic to the homology of the sphere.

Key words: Vietoris-Rips complex, persistence module, persistent homology,

Nerve theorem, TDA
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Chapter 1

Introduction

Topological data analysis has become a fairly popular tool to analyze data

from a qualitative point of view. In particular, the Vietoris-Rips complex is a

common tool to analyze the shape of data. The Vietoris-Rips complex general-

izes the concept of neighborhood graph, and is very flexible. Roughly speaking,

given a finite set X = {xi}ni=1 together with a dissimilarity measure d, we define

the Vietoris-Rips complex at scale parameter ε, as a simplicial complex whose

vertices consist of xi and whose k-simplices are just k+ 1-tuples xi0 , . . . , xik of

points with dissimilarity less than ε.

One may wonder what scale parameter to choose, and again there is an

idea from TDA dealing with this, namely the idea of persistence. Briefly intro-

duce the concept of persistence: for a parameterized family of spaces, certain

topological features which persist over a significant parameter range are to be

treated as signal with short-lived features as noise. We can denote these pa-

rameter ranges as intervals, say a barcode: for each interval, we consider the

left end point as the birth and the right end point as the death of a topological

feature. In other words, a barcode is a graphical representation as a collection

of horizontal line segments in a plane where the horizontal axis corresponds to

the parameter and the vertical axis shows an ordering of homology generators.
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CHAPTER 1. INTRODUCTION

We will investigate how reliable these barcodes are, and how many data

points are necessary.

Mathematically, we can simply forget about data, and ask the following

questions.

• Given the manifold, what is the minimal number of cells that is needed

to describe homotopy type correctly? Weaker and easier is the question

how many cells are needed to obtain the correct homology groups. This

is in some sense a classical invariant that has been studied quite well.

• Another question is what is the minimal size of a simplicial complex that

computes the homology correctly? Again, this is a classical question.

For example, to compute the homology of S1 correctly, one can use a

simplicial complex with 2 vertices and 2 edges.

• In the setup of the Vietoris-Rips complex we are dealing with a simplicial

complex, but there are now restrictions on the complex. For example, the

smallest Vietoris-Rips complex that computes the homology of the circle

correctly has 4 points and 4 edges.

In particular, we need at least 4 data points.

This line of reasoning brings us to a lower bound on the number of data points.

We will not consider these interesting questions in any detail, but instead

address the opposite approach.

Assuming that we have enough data points, we may wonder which barcodes

are reliable. The motivating example here is very simple. Consider the unit

cube, with vertices (0, 0, 0), (1, 0, 0), . . . , (1, 1, 1). If we consider the Vietoris-

Rips complex of these 8 points with the Euclidean distance, we find that this

space has the homology of S3, which is obviously not desired.

Although one might think at first sight that this is caused by the lack of

points, a result by Adamaszek and Adams, [13], shows that there is another

2



CHAPTER 1. INTRODUCTION

mechanism at work here. Namely, they studied the Vietoris-Rips complex of

the circle; they found that as r increases the Vietoris-Rips complex V R(S1, r)

is homotopy equivalent to S1, S3, S5, S7, · · · until finally it is contractible.

We shall see that this phenomenon of the wrong barcodes is easily under-

stood using the Nerve theorem. The Nerve theorem tells us that good covers

of a space will yield simplicial complexes that are homotopy equivalent to the

original space.
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Chapter 2

Preliminaries

In this chapter, we review several complexes and its related homology groups

with some fixed notation and terminologies. Recall the Nerve theorem which

shows certain connectivity of simplicial complex if its subcomplexes have prop-

erties of some connectivity conditions.

Definition 2.0.1. A family K of a set X with a collection of finite non-empty

subsets of X is called an abstract simplicial complex if

(1) {v} ∈ K for all v ∈ X, and

(2) If σ ∈ K and ∅ 6= τ ⊆ σ, then τ ∈ K where τ is called a face of σ.

The elements of X are called vertices and we denote X as Vert(K). The

elements of a simplicial complex K are called simplices. A k−simplex σ

consists of k + 1 vertices and its dimension dim σ = k. The dimension

of an abstract simplicial K is the maximum dimension of simplexes of K.

A subset L ⊂ K is called a subcomplex of K, denoted L < K, if L is a

simplicial complex in its own right.

Example 2.0.2. 0−simplices are vertices.

4



CHAPTER 2. PRELIMINARIES

Remark 2.0.3. Consider a collection of all simplices of K with dimension p

or less, i.e.,

Kp = { σ ∈ K | dim σ ≤ p }.

This subsetKp ⊂ K becomes a subcomplex ofK and it is called the p−skeleton

of K.

Note that we use the notation [v0, · · · , vk] as a k−simplex {v0, · · · , vk} to em-

phasize itself.

Given a simplicial complex K, the pth chain group Cp of K contains all

linear combinations of p−simplices in the complex with Z2−coefficients. Since

Z2 = {0, 1}, all elements of Cp are of the form
∑

j σj, for σj ∈ K. The group op-

eration is addition with Z2 coefficients. Define the pth boundary homomor-

phism as the homomorphism that assigns each simplex σ = [v0, · · · , vp] ∈ K
to its boundary

∂pσ =
∑
i

[v0, · · · , v̂i, · · · , vp]

where v̂i indicates that the simplex excludes the ith vertex. The function ∂p :

Cp −→ Cp−1 is a homomorphism between the chain groups. Abbreviate C = Cp

and ∂ = ∂p.

Lemma 2.0.4. For all p, we have ∂p−1 ◦ ∂p = 0.

Proof. By expanding the definition with a p−simplex σ = [v0, · · · , vp], we get

∂p−1 ◦ ∂p(σ) = ∂p−1

(∑
i

[v0, · · · , v̂i, · · · , vp]
)

=
∑
j<i

[v0, · · · , v̂j, · · · , v̂i, · · · , vp]

+
∑
i<j

[v0, · · · , v̂i, · · · , v̂j, · · · , vp]

= 0.

5



CHAPTER 2. PRELIMINARIES

With the above lemma, we can use a useful tool of a sequence and its

induced invariants.

Definition 2.0.5. A chain complex (C, ∂) is a sequence of abelian groups

Cp connected by homomorphisms ∂p such that the composition of any two

consecutive maps is the zero map.

· · · ∂n+1−−−→ Cn
∂n−→ Cn−1

∂n−1−−−→ · · · ∂2−→ C1
∂1−→ C0

∂0−→ 0

This boundary homomorphism is also called differentials.

Definition 2.0.6. Given a chain complex (C, ∂), the image im(∂p+1) of the

boundary homomorphism is called the boundary group Bp and its elements

are called boundaries. Similarly, the kernel ker(∂p) of the boundary homo-

morphism is called cycle groups Zp and its elements are called cycles. The

pth homomorphism group Hp is a quotient group defined as

Hp = Zp/Bp

= ker∂p/im∂p+1.

In this paper, the word “map” is used to denote “continuous function.”

Let X and Y be two topological spaces.

Definition 2.0.7. Let f0, f1 : X −→ Y be two maps of X into Y . The

maps f0 and f1 are homotopic, denotes as f0 ' f1, if there exist a map

F : X × [0, 1] −→ Y such that f0(x) = F (x, 0) and f1(x) = F (x, 1) for all

x ∈ X. We call this map F a homotopy between f0 and f1.

Definition 2.0.8. The spaces X and Y are homotopy equivalent, denotes

X ' Y , if there are maps g : X −→ Y and h : Y −→ X such that the two

6



CHAPTER 2. PRELIMINARIES

compositions h◦g : X −→ Y −→ X and g ◦h : Y −→ X −→ Y are homotopic

to the respective identity maps. We call the pair of these maps a homotopy

equivalence.

Properties 2.0.9 (Homotopy Invariance). For any map f : X → Y , there

is an induced homomorphism Hn(f) : Hn(X) → Hn(Y ) by the map f# :

(C(X), ∂X)→ (C(Y ), ∂Y ) defined as σ 7→ f ◦ σ.

(1) If f, g : X → Y are homotopic, then Hn(f) = Hn(g).

(2) If f is a homotopy equivalence, then Hn(f) is an isomorphism.

A given set of point {p0, p1, · · · , pk} ⊂ Rk is geometrically indepen-

dent (or affinely independent) if those vectors p1− p0, p2− p0, · · · , pk − p0
are linearly independent. A combination x =

∑k
i=0 aipi is a convex com-

bination if
∑k

i=0 ai = 1 and all ai ≥ 0. The convex hull of a given point

set M = {q0, q1, · · · , qn} is the set of all convex combinations, denoted as

Conv(M) = {
∑n

i=0 aiqi|
∑n

i=0 ai = 1 and ai ≥ 0}. If {p0, p1, · · · , pk} is geo-

metrically independent, σ = Conv({p0, p1, · · · , pk}) is called a k− simplex in

RN (or k−simplex spanned by {p0, p1, · · · , pk}), denoted 〈p0, p1, · · · , pk〉,
and a simplex τ spanned by a subset of {p0, p1, · · · , pk} is a face of σ, denoted

τ < σ.

Definition 2.0.10. A simplicial complex K in RN is a collection of sim-

plices in RN such that

(1) if τ < σ ∈ K, then τ ∈ K, and

(2) if σ, τ ∈ K, then σ ∩ τ < σ and σ ∩ τ < τ .

Remark 2.0.11. For a simplicial complex K, consider |K| = ∪σ∈Kσ ⊂ RN

for some N . Define a topology on |K| with the following properties.

(1) Each of σ has the usual induced subspace topology in RN .

7



CHAPTER 2. PRELIMINARIES

(2) A ⊂ |K| is closed if A ∩ σ is closed in σ for all σ ∈ K.

(3) A ⊂ |K| is open if A ∩ σ is open in σ for all σ ∈ K.

This topology on K is called a weak topology. We call |K| with a weak

topology the underlying space (or a polytope) of K.

Given an abstract simplicial complex, we can also define an underlying

space like the underlying space of a simplicial complex in RN .

Let K be an abstract simplicial complex and σ = {v0, · · · , vn} ∈ K. Define

|σ| = {
∑n

i=0 tivi|
∑n

i=0 ti = 1, ti ≥ 0} and |K| = ∪σ∈K |σ|. In formal,

|K| = {x : Vert(K)→ [0, 1] |
∑

{v∈Vert(K)|x(v)6=0}∈K

x(v) = 1}

and |σ| = {x ∈ |K| | x(v) = 0 if v 6∈ σ }. The topology of |σ| is induced by the

following distance metric d: for x, y ∈ σ, x =
∑
tivi, y =

∑
sivi,

d(x, y) =
√∑

(ti − si)2.

Then |σ| and 〈e1, · · · , en+1〉 ⊂ Rn+1 are isometric, where ei denotes the vector

with a 1 in the ith coordinate and 0’s elsewhere. Also |σ| is homeomorphic

to any affine simplex 〈a0, · · · , an〉 ⊂ RN with the subspace topology and this

affine simplex 〈a0, · · · , an〉 is called a geometric realization of |σ|. Now we

define a topology of |K| as a weak topology generated by {|σ| | σ ∈ K}. Note

that |σ| ∩ |τ | is clearly closed in |σ| and in |τ |.

We now talk about the Čech complex which is commonly used in practice.

To reach the Čech complex, it is a good start from the nerve of an open

covering. We refer to the paper by Aleksandroff [1].

8



CHAPTER 2. PRELIMINARIES

Definition 2.0.12. Let X be a topological space, a cover U of X is a collec-

tion of subsets of X

U = {Uv ⊂ X | v ∈ V}

such that
⋃
v∈V Uv = X. Moreover if each subset Uv is an open set, then the

cover U is called an open cover of X.

Definition 2.0.13. Given an open cover U = {Uv}v∈V of a topological space

X, the nerve N (X,U) of U is an abstract simplicial complex defined as

N (X, U) = {σ ∈ V |
⋂
v∈σ

Uv 6= ∅}.

We sometimes abbreviate N (X, U) as N (U).

Remark 2.0.14. The nerve N (U) is well-defined, i.e., if τ ⊂ σ, σ ∈ N (U),

then τ ∈ N (U).

Definition 2.0.15. Let X be a topological space, a refinement of a cover

U of X is another cover R of X such that for each R ∈ R there exists some

U ∈ U satisfying R ⊂ U .

Remark 2.0.16. If two covers of a space refine each other, then their nerves

have the same homotopy type.

We need several definitions to make a useful notation K(U) for some ex-

pression in Nerve Lemma.

Definition 2.0.17. Given a set A, a (non-strict) partial order is a ho-

mogeneous binary relation ≤ over a set A satisfying axioms below: for all

x, y, z ∈ A,

(1) (reflexivity) x ≤ x,

(2) (antisymmetry) if x ≤ y, y ≤ x, then x = y, and

9



CHAPTER 2. PRELIMINARIES

(3) (transitivity) if x ≤ y, y ≤ z, then x ≤ z.

A set with a partial order is called a partially ordered set (also called a

poset).

Definition 2.0.18. Let ≤ be a partial order on a set A. This partial order is

called a total order if for all x, y ∈ A, either x ≤ y or y ≤ x. A set with a

total order is called a totally ordered set.

A partially ordered set may have subsets that are totally ordered and such

subsets are called chains. The length l of a finite chain C is one less than the

number of elements in the chain:

l(C) = |C| − 1.

We shall use the following notation: given a open cover U of a topological

space X, let K(U) denote the complex whose vertices are the members of U
and whose simplexes are the finite totally ordered subcollections of U , where

U is partially ordered by inclusion.

Now we have some definitions to describe conditions of Nerve Lemma.

Definition 2.0.19. Given a space X, let a collection of sets U = {Uv}v∈V be

an open cover of a space X. The open cover U is called locally finite if for

each point x ∈ X, there exists some neighborhood Wx of x such that the set

{v ∈ V | Uv ∩Wx 6= ∅} is finite.

Definition 2.0.20. Let X be a space and let a collection of sets U = {Uv}v∈V
be an open cover of a space X. An open cover U is called to be basis-like if

for any v1, v2 ∈ V , there exist a subset W ∈ V such that

Uv1 ∩ Uv2 ⊂
⋃
w∈W

Uw.

10
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Definition 2.0.21. A map f : X −→ Y is called a weak homotopy equiv-

alence if

1) f induces an isomorphism of connected components, i.e,

π0(f) : π0(X)
'→ π0(Y ),

2) for all x ∈ X and for all n ≥ 1, f induces an isomorphism on homotopy

groups, i.e.,

πn(f, x) : πn(X, x)
'→ πn(Y, f(x)).

Remark 2.0.22. Homotopy equivalence is an equivalence relation on spaces

which is well-defined since homotopy is an equivalence relation on the set

of maps. A homotopy type is an equivalence class of homotopy equivalent

spaces.

Definition 2.0.23. A space X is homotopically trivial if πi(X, x) = 0 for

all i ≥ 0.

Remark 2.0.24. A contractible space has the homotopy type of a point space;

all the homotopy groups of a contractible space are trivial. In other words, any

contractible space is homotopically trivial.

The following is obtained from [2], but for ease of reading this connection

is discussed in appendix 7.

Theorem 2.0.25. Let X be a space and let U = {Uv}v∈V be a locally finite,

basis-like, open cover of X with contractible sets Uv. Then there exist a weak

homotopy equivalence f : |K(U)| −→ X.

Note that the result in the theorem 2.0.25 is about not ‘homotopy equiva-

lence’ but ‘weak homotopy equivalence’.

11
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Definition 2.0.26. Let X be a space. A subspace A of X is called a defor-

mation retract of X if there is a homotopy F : X × [0, 1] −→ X such that

for all x ∈ X and a ∈ A,

(1) F (x, 0) = x,

(2) F (x, 1) ∈ A, and

(3) F (a, 1) = a.

We call this map a deformation retraction of X onto A.

Lemma 2.0.27. Let U be a cover of a space such that the intersection of any

finite subcollection of U is either empty or a member of U . Then |K(U)| is a

deformation retract of |N (U)| .

The proof is given in the section 7.

Corollary 2.0.28. (Nerve Lemma) Let X be a space and let R be a locally

finite open cover of X such that the intersection of any (finite) subcollection of

R is contractible. Then there exists a weak homotopy equivalence |N (R)| −→
X.

The idea of the proof follows the paper [2].

Proof. Let U be the collection of all nonempty intersection of finite subcol-

lections of R. Observe that the collection U is a locally finite, basis-like open

cover of X. Hence there exists a weak homotopy equivalence |K(U)| −→ X.

Since R ⊂ U , U is a refinement of R. By the remark 2.0.16, |N (R)| is a de-

formation retract of |N (U)|. Since we have a deformation retraction of |K(U)|
onto |N (U)| by Lemma 2.0.27, the proof is completed.

Remark 2.0.29. If X has the homotopy type of a CW-complex such as a

topological manifold, then we may conclude from a theorem of Whitehead [7]

that f is an actual “homotopy equivalence”.

12
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Definition 2.0.30. A topological space X is said to be paracompact if every

open cover has a locally finite open refinement.

The following is a version of Nerve theorem with a paracompact space.

Theorem 2.0.31 (Corollary 4G.3, [18]). If U is an open cover of a paracom-

pact space X such that every nonempty intersection of finitely many sets in U
is contractible, then X is homotopy equivalent to the nerve N (U).

We call such a cover a good cover, i.e., an open cover in which all sets

and all intersections of finitely many sets are contractible.

Remark 2.0.32. Nerve theorem gives conditions under which the nerve of a

cover is equivalent to the underlying space. We can see several examples related

to this theorem: one for closed covers by K. Borsuk [8] and another one for open

covers by A.Weil[9], both for homotopy equivalences. After their attribution,

several generalizations were made. First generalizations by W. Holsztynski

[10] and J.N.Haimov [11] relaxed conditions on the cover. Moreover, weak

homotopy equivalence were studied in the context by M.McCord[2] and weak

n−homotopy equivalence by A.Bjorner [12].

Definition 2.0.33. Let M be a metric space. Given a point set X in M

and a number ε > 0, the Čech complex Č(X, ε) is the simplicial complex

whose simplices are formed as follows: for each subset S ⊂ X of points, form

a (ε/2)−ball around each point in S, and include S as a simplex of dimension

|S| if there is a common point contained in all of the balls in S.

Remark 2.0.34. The Čech complex is well-defined as a simplicial complex

since any subsets σ ⊂ S of a simplex S is a simplex.

Remark 2.0.35. Notice that the Čech complex is the nerve of the set of

(ε/2)−balls centered at points of X. By the Nerve theorem, the Čech complex

is homotopy equivalent to the union of the balls.

13
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Since it is not easy to figure out the intersections of balls, it is better to

use a variant version of the Čech complex, a Vietoris-Rips complex.

Definition 2.0.36. Let (X, d) be a metric space, the Vietoris-Rips complex

V R(X, ε) for X with the parameter ε, is the simplicial complex whose vertex

set is X and a finite subset {x0, · · · , xk} spans a k−simplex [x0, · · · , xk] if

d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k.

Note that the notation V Rε(X) is also used instead of V R(X, ε). We some

times use notations V R(X, d, ε) and V Rε(X, d) to denote the distance metric

d on the space X.

By the triangle inequality, we have the following lemma.

Lemma 2.0.37. Č(X, ε) ⊂ V R(X, 2ε) ⊂ Č(X, 2ε).

We can also represent a Vietoris-Rips complex as Categorical object. Recall

some definitions in Category.

Definition 2.0.38. A colimit in a category C is the same as a limit in the

opposite category Cop.

Definition 2.0.39. Let C be a category with weak equivalences and let D be

a (small) diagram category. The homotopy colimit of a functor F : D → C
is, if it exists, the image of F under the left derived functor of the colimit

functor colimD : [D, C]→ C with respect to the given weak equivalences on C
and the objectwise weak equivalences on [D, C]:

hocolimDF = (LcolimD)F.

Remark 2.0.40. Let (X, d) be metric space. Denote F (X) as the poset of all

finite subset of X ordered by inclusion. We can consider the following: for any

r > 0, V R(−, r) : F (−) −→ T op is a functor. Hence

V R(X, r) = colimY ∈F (X)V R(Y, r) ' hocolimY ∈F (X)V R(Y, r).

14



CHAPTER 2. PRELIMINARIES

Note this homotopy equivalence is induced from inclusions of closed subcom-

plex V R(Y, r) ↪→ V R(Y ′, r) for any Y ⊆ Y ′, i.e., cofibrations.

2.1 Nerve theorem with Vietoris-Rips complex

In this section we observe some results of combining Nerve theorem and Vietoris-

Rip complexes in metric space.

Hausmann proved the following, which appears in [20].

Theorem 2.1.1. For a closed Riemannian manifold X and ε sufficiently small

the geometric realization |V Rε(X)| of this complex is homotopy equivalent to

X.

Given a metric space X, the set of closed sets of X supports a metric,

the Hausdorff metric. For a set A ∈ X and a number r > 0, define the

r−neighborhood(or the r−thickening) of A as the set

A(r) =
⋃
x∈A

Bx(r)

where Bx(r) is the open ball of radius r centred at x.

Definition 2.1.2. Let A,B ⊂ X be closed sets. The Hausdorff distance

dH(A,B) is defined by

dH(A,B) = inf{r > 0 | B ⊂ A(r), A ⊂ B(r)}.

Recall the Gromov-Hausdorff distance is the extension of the Hausdorff

distance.

15
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Definition 2.1.3. Given two closed metric spaces A and B, the Gromov-

Hausdorff distance is defined as

dGH(A,B) = inff,gdH(f(A), g(B))

where maps f : A → X and g : B → X are isometric embeddings and the

infimum is taken over all possible such embeddings.

The following is a well known property about Gromov-Hausdorff distance.

Proposition 2.1.4. Let (X, dX) and (Y, dY ) be metric spaces that admit com-

pact exhaustions. If dGH(X, Y ) = 0, then (X, dX) and (Y, dY ) are isometric.

The following is obtained from a theorem of Latschev [21].

Theorem 2.1.5. Let X be a closed Riemannian manifold. Then there exists

ε0 such that for every 0 ≤ ε ≤ ε0 there exists a δ > 0 such that the geomet-

ric realization |V Rε(Y )| of the ε−complex of any metric space Y which has

Gromvov -Hausdorff distance less than δ to X is homotopy equivalent to X.

Here is the unsurprising formulation: if we have enough sample points, and

look at small scale, then the Vietoris-Rips complex will reproduce the correct

homology. It make us move on to the problem of finding what scale is small

enough.

16



Chapter 3

Persistence

Nerve Theorem has an beneficial effect on the area of topological data analysis

(TDA). The purpose of TDA is to obtain information about the topology of a

space which is given as a discrete sample of the space, commonly called point

cloud data. A powerful tool in TDA is persistent homology, which computes

not the homology of a single space but the homology of a filtration. Using the

homology functor, we get a persistence module. Computing homology with

field coefficients, we can obtain a complete topological invariant called persis-

tence barcode or persistence diagram. In this chapter, we handle the persistent

homology with Vietoris-Rips complex.

3.1 Persistent homology

Persistent homology is a way to record the homology of a so-called filtered

space at different filtration levels. It plays a major role in topological data

analysis, and can be applied to many different settings.

Let us start by recalling some definitions.

17



CHAPTER 3. PERSISTENCE

Definition 3.1.1. Given a subset T ⊂ R (or more generally some ordered

set), a filtration F over T is a family of objects (topological spaces, rings,

etc) Xi parametrized by T such that Xi ⊂ Xj whenever i ≤ j.

This can be phrased with categorical language. A filtered space will be a

filtration of topological spaces. Simply put

X0 ⊂ X1 ⊂ X2 ⊂ . . . ,

where X0 = ∅. We will often assume that the filtration stabilizes. Basic exam-

ples are

• sublevel sets of a (continuous) function f : X → R, and

• the Vietoris-Rips complex associated with a metric space (X, d), namely

V Rε(X, d). We have inclusions V Rε′(X, d)→ V Rε(X, d) for ε ≥ ε′.

Given a fixed filtration level, say Xi of a filtered space {Xi}i, we can of course

compute the homology, but this homology does not carry so much information.

For example, if fij is the inclusion Xi → Xj, we also want to the effect of

this map of homology to see which cycles survive. This leads to the following

definition.

Definition 3.1.2. A persistence module or persistence vector space

consists of

1. a family of vector spaces {V r}r∈R≥0
,

2. for r′ ≥ r, linear maps f r,r
′
: V r → V r′ satisfying

f r2,r3 ◦ f r1,r2 = f r1,r3 .

We will call these maps continuation maps.

18



CHAPTER 3. PERSISTENCE

We call a persistence module q-tame (quadrant-tame) if the ranks of the

continuation maps are finite.

In order to use naturality, we need to define a category of persistence vec-

tor spaces. While we can define morphisms between persistence vector spaces

directly, it is more economical to first recast the above definition in more cat-

egorical language.

Let P denote the category Poset(R>0, <) or Poset(N0, <).

Definition 3.1.3. A persistence object P in a category C is just a functor

P : P → C.

With this in mind, a persistence vector space is just a persistence object in

the category of vector spaces.

The category of persistence vector spaces is then the functor cate-

gory of persistence objects in the category of vector spaces. This means that

morphisms between a persistence vector spaces V = (Vi, fij) are just natural

transformations. Written out, this means that a morphism between persis-

tence vector spaces {V r, Ir,r
′}r,r′ and {W r, Jr,r

′}r,r′ is a collection of linear

maps f r : V r → W r such all the following diagrams commute,

V r

fr

��

Ir,r
′
// V r′

fr
′

��
W r Jr,r

′
//W r′ .

3.1.1 Tameness and barcodes

Finite dimensional vector spaces over a field k are isomorphic to kr for some

r ∈ N0, so we have a practical model which we can always work with. We want

to have a similar description for persistence vector spaces. The basic building
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block will be the so-called interval module I(a, b) for an interval [a, b),

{I(a, b)}r =

k r ∈ [a, b),

0 otherwise.

with maps f r1,r2 satisfying

f r1,r2 =

id r1, r2 ∈ [a, b),

0 otherwise.

The concept of direct sum can be defined on persistence vector spaces. If

V = (Vi, vij) and W = (Wi, wij) are persistence vector spaces, then we define

the direct sum V⊕W by

(Vi ⊕Wi, vij ⊕ wij).

Definition 3.1.4. We call a persistence module W indecomposable if the

only decomposition W = U ⊕ V is the trivial decomposition, i.e., U or V is

trivial.

Definition 3.1.5. Finitely generated persistence vector spaces are isomorphic

to a direct sum of of I(a, b) or I(c,∞).

Theorem 3.1.6 (Gabriel). Suppose that V is a persistence module over a set

T ⊂ R. Assume that one of the following is true:

1. the set T is finite, or

2. Vt is finite-dimensional for all t ∈ T .

Then V is isomorphic to a direct sum of interval modules.
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We call such a persistence module V, which is the direct sum of interval

modules, interval-decomposable.

The above assumptions can be restrictive, and the class of q-tame filtrations

can be better when dealing with stability.

Figure 3.1: A dampened topologist’s sine curve

For example, consider the example in Figure 3.1: let X be the graph of the

function x 7→ x√
x2+1

sin(1/x), and filter this space by

Xt = {(x, y) | y =
x√
x2 + 1

sin(1/x) < t}.

The sublevel set X0 has infinitely many components, so we can not directly

apply the above theorem. The concept of q-tameness is better for this as we

have.

Theorem 3.1.7. Let X be a compact simplicial complex, i.e., topological space,

and assume that f : X → R is a continuous function. Then the persistent

homology of the sublevel set filtration of f , namely H(Xf≤·), is q-tame.
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Remark 3.1.8. Of course with data, we only have finitely many points, so

then Theorem 3.1.6 applies. However, for stability one needs Theorem 3.1.7.

We will describe persistence in detail in this section. Most of the material

is extracted from [16].

Definition 3.1.9. Let T denote any totally ordered set and R be a ring. A

R−persistence module parameterized by T is a family of R−modules

{Mt}t∈T together with homomorphisms of R−modules ϕt,t′ : Mt →Mt′ for all

t ≤ t′ such that the homomorphisms are compatible, i.e.,

ϕt,t′ ◦ ϕt′,t′′ = ϕt,t′′ whenever t ≤ t′ ≤ t′′.

Persistence modules bring with the information contained in the homomor-

phisms, and also are computable in the time required for computing a single

homology group.

Example 3.1.10. Assume a family of spaces Xε is parameterized by the real

valued parameter ε satisfying Xε ⊆ X ′ε if ε ≤ ε′. Then the family of Abelian

groups Hn(Xε, R), where R is a ring, becomes a R−persistence module param-

eterized by R. Moreover, if R is a field, then this family is a R−persistence

vector space parameterized by R over the field R.

Definition 3.1.11. Given T = R, a persistence module {Vt}t over a field F is

of finite type if there are a finite number of unique finite-dimensional vector

spaces in the persistence module.

Let I be an interval. Define a persistence vector space Q(I) over a field F

as

Q(It) =

F, if t ∈ I,

0, otherwise,
(3.1.1)

where the homomorphism is the identity within each interval.

We recall the following property due to Carlsson.
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Theorem 3.1.12 (Proposition 5.2., [16]). A persistence module parameterized

by R over a field F of finite type is isomorphic to one of the form

n⊕
t=1

Q(It),

where each interval It is bounded from below, and the description is unique up

to the order of the intervals.

Now it is natural to name the intervals in the above theorem.

Definition 3.1.13. A barcode is a finite multiset of intervals that are bounded

below.

Remark 3.1.14. From a barcode, we have comprehension of the space in the

sense of treating the intervals as the life times of non-trivial cycles in a growing

complex. In detail, we consider the left endpoint of an interval as the birth of

a new topological attribute, and the right endpoint as its death. Intuitively,

the longer the interval, the more important the topological attribute, since it

persists in being a feature of the complex.

Persistent homology can be used to measure the scale or resolution of a

topological feature. Let’s introduce persistent homology in detail.

Definition 3.1.15. Given a simplicial complex K, a function f : K → R is

called to be monotonic if it is non-decreasing along increasing chains of faces,

i.e., f(σ) ≥ f(τ) whenever σ is a face of τ .

For a simplicial complex K, if we have a monotonic function f : K → R,

then this monotonicity implies that the sublevel set, K(a) = f−1(−∞, a], is

a subcomplex of K for every a ∈ R. Indeed if a1 < a2 < · · · < an are the
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function values of the simplices in K with a0 = −∞, define Ki = K(ai) for

each i. Hence we get an increasing sequence

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K.

This sequence of complexes is the filtration of f . More than in the sequence

of complexes, we are interested in the topological evolution, as expressed by

the corresponding sequence of homology groups. For every i ≤ j we have an

inclusion map from the underlying space of Ki to that of Kj and therefore an

induced homomorphism,

f i,jp : Hp(Ki)→ Hp(Kj), for each dimension p.

The filtration thus corresponds to a sequence of homology groups connected

by homomorphisms,

0 = Hp(K0)→ Hp(K1)→ · · · → Hp(Kn) = Hp(K),

for each dimension p. As we go from Ki to Ki+1, we gain new homology classes

and we lose some when they become trivial or merge with each other. We

collect the classes that are born at or before a given threshold and die after

another threshold in groups.

Definition 3.1.16. The p−th persistent homology groups are the images

of the homomorphisms induced by inclusion, PH i,j
p = imf i,jp , for 0 ≤ i ≤ j ≤ n.

The corresponding p−th persistent Betti numbers are the ranks of these

groups, βi,jp = rankPH i,j
p .

Persistence diagrams. We visualize the collection of persistent Betti

numbers by drawing points in two dimensions. Some of these points may have

infinite coordinates and some might be the same, so we want to consider a
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multiset of points in the extended real plane R2
. Denote µi,jp as the number of

p−dimensional classes born at Ki and dying entering Kj, we have

µi,jp = (βi,j−1p − βi,jp )− (βi−1,j−1p − βi−1,jp ),

for all i < j and all p. In detail, βi,j−1p −βi,jp counts the classes that are born at

or before Ki and die entering Kj, and βi−1,j−1p − βi−1,jp counts the classes that

are born at or before Ki−1 and die entering Kj. Drawing each point (ai, aj)

with multiplicity µi,jp , we get the p−th persistence diagram of the filtration,

denoted as Dgmp(f). It represents a class by a point whose vertical distance

to the diagonal is the diagonal is the persistence. Since the multiplicities are

defined only for i < j, all points lie above the diagonal. In other words, none of

classes can be born before dying. Moreover we can take βi,jp as the number of

points in the upper, left quadrant with corner point (ak, al). Note that a class

which is born at Ki and dies entering Kj is counted if and only if ai ≤ ak and

aj > al.

Theorem 3.1.17. (Fundamental Lemma of Persistent Homology). Let ∅ =

K0 ⊆ K1 ⊆ · · · ⊆ Kn = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤
n and every dimension p, the p−th persistent Betti number is

∑
i≤k
∑

j>l µ
i,j
p .

Interpretation of this theorem is the diagram encodes the entire information

about persistent homology groups.

3.2 The Isometry theorem

In this section we discuss the metric relationship between persistence modules

and their persistence diagrams.

Let U and V be persistence modules over R, and let δ be any real number.
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A homomorphism of degree δ is a collection Φ of linear maps

φt : Ut → Vt+δ

for all t ∈ R, such that the diagram

Us

φs

��

ust // Ut

φt

��
Vs+δ

vs+δt+δ // Vt+δ

commutes whenever s ≤ t. Denote

Homδ(U,V) = { homomorphisms U→ V of degree δ }.

Let δ ≥ 0. Two persistence modules U and V are said to be δ−interleaved

if there are maps

Φ ∈ Homδ(U,V), Ψ ∈ Homδ(U,V)

such that

ΨΦ = 12δ
U , ΦΨ = 12δ

V .

More expansively, there are maps

φt : Ut → Vt+δ and ψt : Vt → Ut+δ

defined for all t, such that the following diagrams

Us

φs

��

ust // Ut

φt

��
Vs+δ

vs+δt+δ // Vt+δ

Us−δ
us−δs+δ //

φs−δ
!!

Us+δ

Vs

ψs

==
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Vs

ψs

��

vst // Vt

ψt

��
Us+δ

us+δt+δ // Ut+δ

Vs−δ
vs−δs+δ //

ψs−δ !!

Vs+δ

Us

φs

==

commute for all s ≤ t.

Lemma 3.2.1. (Interpolation Lemma) Suppose U and V are a δ−interleaved

pair of persistence modules. Then there exists a 1−parameter family of persis-

tence modules (Ux | s ∈ [0, δ]) such that U0,Uδ are equal to U,V respectively,

and Ux,Uy are |y − x|−interleaved for all x, y ∈ [0, δ]. Moreover, if U and V
are q−tame, then the (Ux) may be assumed q−tame also.

We say that two persistence modules U and V are δ+−interleaved if there

are (δ + ε)−interleaved for all ε > 0.

Definition 3.2.2. The interleaving distance between two persistence mod-

ules is defined as

di(U,V) = inf{ δ | U and V are δ − interleaved }

= min{ δ | U and V are δ+ − interleaved }.

If there is no δ−interleaving between U and V for any value of δ, then di(U,V) =

∞.

A partial matching between A and B is a collection of pairs

M ⊂ A×B

such that

1. for every α ∈ A there is at most one β ∈ B such that (α, β) ∈M , and

27



CHAPTER 3. PERSISTENCE

2. for every β ∈ B there is at most one α ∈ A such that (α, β) ∈M .

We Say that a partial matching M is a δ−matching if all of the following are

true:

1. if(α, β) ∈M then d∞(α, β) ≤ δ;

2. if α ∈ A is unmatched then d∞(α,∆) ≤ δ;

3. if β ∈ B is unmatched then d∞(β,∆) ≤ δ.

Definition 3.2.3. The bottleneck distance between two multisets A,B in

the extended half-plane is

db(A,B) = inf( δ | there exists a δ −matching between A and B).

Theorem 3.2.4. Let U,V be q-tame persistence modules. Then

di(U,V) = db(dgm(U), dgm(V)).

Theorem 3.2.5 (The Isometry Theorem/ Stability theorem). Let X be a

topological space homeomorphic to a finite simplicial complex, and let f, g :

X → R be continuous functions. Then

db(dgm(f), dgm(g)) ≤ ||f − g||∞.

This result can be interpreted by saying that barcodes are resistant to noise.
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2n-problem

We consider a topological space X, say a CW-complex so that the Eilenberg-

Steenrod axioms suffice to compute its homology. We have the following natural

questions:

• what is the minimal number of cells or points of a CW-complex with the

same (isomorphic) homology as that of X?

• what is the minimal number of points of a simplicial complex with the

same homology as that of X?

In this chapter, we will observe how to find a proper number of data point

for the persistent homology of the standard space.

We define

N(X) := min{#(Y, dY ) |

there is ε > 0 st. H∗(V Rε(Y, dY );F ) ∼= H∗(X;F )}
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and

N(X, d) := min{#Y ⊂ X |

there is ε > 0 st. H∗(V Rε(Y, d);F ) ∼= H∗(X;F )}.

Indeed, N(X) means the minimal number of cardinality of vertex sets such

that the persistent homology of the related Vietoris-Rips complexes has the

same homology of the space X for some parameter. Similarly, we can consider

N(X, d) with a given metric.

Remark 4.0.1. If (X, d) is a metric CW complex, then we only have

N(X, d) ≥ N(X),

and many cases this inequality will be strict.

Example 4.0.2. By the definition of Vietoris-Rips complex, three vertices

have a cycle which is represented as the boundary of a 2−simplex. We can

consider the set {A = (0, 0), B = (1, 0), C = (1, 1), D = (0, 1)} over R2: for 1 ≤
ε <
√

2, there is no 2−simplex and one cycle {A,B}+{B,C}+{C,D}+{D,A}.
Thus we have N(S1) = 4.

4.1 Examples

Terminology & Notation

1. The cubic shaped sphere C is the boundary of the unit cube I3 =

[0, 1]3, i.e., the union of 6 faces of the unit cube.

2. NC(S
2) is the notation of the least number of points on the cubic shaped

sphere C having a 2-dimensional barcode of the persistent homology of

S2.
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Question On the cubic shaped sphere C, at least how many points do we need

to get a 2-dimensional barcode of the persistent homology like 2-dimensional

generator of the homology of the unit sphere S2?

We use the python module ripser.py to compute barcodes for samples of

data8 and data6 in this section. Instead of the module ripser.py, you may use

the python module gudhi.py or the c++ library gudhi which offer a powerful

tool for computing various complexes and their homology.

Example 4.1.1. data8 = [[0,0,0], [0,0,1], [0,1,0], [0,1,1], [1,0,1], [1,1,1], [1,1,0],

[1,0,0]] is the collection of 8 corner points in C. The result of the persistent

homology of data8 with the Euclidean distance is the following:

value range: [1,
√

3]

distance matrix with 8 points
persistence intervals in dim 0:
[0,1)
[0,1)
[0,1)
[0,1)
[0,1)
[0,1)
[0,1)
[0, ∞)
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persistence intervals in dim 1:
[1,
√

2)
[1,
√

2)
[1,
√

2)
[1,
√

2)
[1,
√

2)

persistence intervals in dim 2:

persistence intervals in dim 3:
[
√

2,
√

3)

persistence intervals in dim 4:

Remark 4.1.2. We can observe that there is no 2-dimensional generator in

the sample of data8.

Example 4.1.3. data6 = [[0,1/2,1/2], [1,1/2,1/2], [1/2,0,1/2], [1/2,1,1/2],

[1/2,1/2,0], [1/2,1/2,1]] is the collection of 6 central points on each face of

the unit cube. The result of the persistent homology of data6 with the Eu-

clidean distance is the following:

value range: [
√

2/2,1]

distance matrix with 6 points
persistence intervals in dim 0:
[0,
√

2/2)
[0,
√

2/2)
[0,
√

2/2)
[0,
√

2/2)
[0,
√

2/2)
[0, ∞)

persistence intervals in dim 1:

persistence intervals in dim 2:
[
√

2/2, 1)

persistence intervals in dim 3:

persistence intervals in dim 4:
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Remark 4.1.4. Since data6 has a 2-dimensional barcode, we get NC(S
2) ≤ 6.

4.2 Minimal Construction for S2

In this section, we will find the answer of the question for finding a proper

number of points such that the Vietoris-Rips complex of those points gets the

same homology of S2.

Notation Let Cr be a Vietoris-Rips complex with the parameter r.

Lemma 4.2.1. There exist at least four 2−simplices for 2−dimensional gen-

erator of the persistent homology.

STRATEGY Check case by case according to the number of intersected

1-simplices among 2-simplices and don’t care intersected 0-simplices since we

are looking for 2-dimensional cycles.
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Proof.

Suppose there exists only one 2-simplex

[A,B,C], see Figure 1. Its boundary

would be the union of three distinct

1-simplices and so such a 2−simplex is

not even a cycle.

Suppose there exist two 2-simplices.

There are two cases of two 2-simplices.

One is two 2-simplices with one in-

tersected 1- simplex , see Figure 2,

and the other are two 2-simplices

without a intersected 1-simplex, see

Figure 3 & 4. The boundary of the

former case is the union of four dis-

tinct 1-simplice and the latter case is

the union of six distinct 1-simplices.

None of them are a 2-dimensional cycle.

A

B

C

Figure 1

A

B

C

D

Figure 2

A

B

C

D

E

F

Figure 3

A

B

C

E

D

Figure 4
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C

B

A

D

E

F

G

Figure 5

Suppose there exist three 2-

simplices. Automatically if there is

no intersected 1−simplex among

them, then it is not a cycle by

its boundaries. Assume there

exists one intersected 1-simplex,

say {A,B} so that there are two

cases of three 2-simplices. The

first case is only two 2-simplices

with one intersected 1-simplex,

see Figure 5,6, &7 and the second

case is three 2-simplices having

the same 1-simplex, see Figure 8.

The boundary of both cases is the

union of seven 1-simplices and it is

not a cycle.

C

B

A

D

F

E

Figure 6

B

C

A

D

F

E

Figure 7
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And if there exists two intersected

1-simplices, say {A,B} and {A′,
B′}, then we have two pairs of

2-simplices associated with inter-

sected 1-simplices. Since there are

only three 2-simplices, two pairs

have a common 2-simplex, i.e.,

{A=A′, B, B′}, see Figure 9. Hence

its boundary is the union of five 1-

simplices and so it is not a cycle.

Therefore, we need more than three

2-simplices to have H2(Cr) 6= 0.

A

B

C

D

E

Figure 8

C

B

A = A′

D = B′

E

Figure 9

Remark 4.2.2. A tetrahedron has no 2-dimensional generator of persistent

homology. Since a tetrahedron is a complete graph, all edges are measured

among 4 points, say vi for i = 0, 1, 2, 3. Let r be the maximum length of edges

of this tetrahedron. Consider balls of radius r with center vi for i = 0, 1, 2, 3,

then we have four 2-simplices which become a cycle of 2-dimensional persistent

homology. However this 2-dimensional cycle is the boundary of the 3-simplex

{v0, v1, v2, v3}. Hence there is no 2-dimensional generator of a tetrahedron.
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Theorem 4.2.3. Then there are at least 6 points such that the induced Vietoris-

Rips complex has a 2−dimensional generator in its persistent homology.

Proof. By the Lemma 4.2.1, we have at least four 2−simplices. The minimum

number of points having four 2−simplices is 4 vertices since 4C3 = 4. Thus we

get a least 4 points and there is only one 2−dimensional cycle, the boundary of

a tetrahedron induced from 4 points, which is not a 2−generator. Thus we have

at least 5 points to get a 2−dimensional generator in its persistent homology.

Now it is enough to check that 5 vertices cannot have 2-dimensional generator

of persistent homology. Our strategy starts from the most popular 1-simplex

and the most popular 0-simplex among complices.

A

B

C

D

E

F

Figure 10

Let σ be a k-simplex. DefineMσ = {τ |σ ⊂ τ, τ : a (k + 1)− simplex} as a

collection of 1 dimension higher complices containing σ and µσ = |Mσ| as its

number of elements. Consider Mk = max
σ : a k−simplex

µσ.
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If M1 ≤ 1, then at least four 2-simplices have the boundary of twelve 1-

simplices. This number is more than the total number of 1-simplices with 5

vertices, i.e., 5C2 = 10 (ten) 1-simplices. On the other hand, if M1 ≥ 4, then

there should be more than 5 vertices, see Figure 10. Hence we observe that

M1 = 2 or 3.

Assume M1 = 3. Consider it with

Figure 8. Since we have at least

four 2-simplices, there should be at

least one 1-simplex among {C,D},
{D,E} and {C,E}. Without loss of

generality, if there exists only one

of these 1-simplices, then it turns

to a tetrahedron with a connected

2-simplex, see Figure 11. If there

are only two of them, then it turns

to an object of two tetrahedrons

having a common face, see Figure

12.

A

B

Figure 11

A

B

Figure 12

Finally, if there are all of them, then it turns to a complete graph, the

maximal complex with 5 vertices, see Figure13.
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A

DC

B

E

A

C

B

E

D

Figure 13

Suppose M1 = 2. Let σ be a k-

simplex. Define Nσ = {τ |σ ⊂ τ, τ :

a (k + 2)− simplex} as a collection

of 2 dimension higher complices

containing σ and νσ = |Nσ| as its

number of elements.

Consider Nk = max
σ : a k−simplex

νσ.

We focus on the following cases:

case1: N0 = 1)

All 2-simplices are disjoint and so

at least 12 vertices exist. This is a

contradiction to given 5 vertices.

C

B

A

D

E

Figure 14

A

B

C

D

α

Figure 15
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case2: N0 = 2)

Let A be a vertex such that

NA = {{A,B,C}, {A,C,D}} and

νA = 2 and E be the last vertex.

Then the 3rd 2-simplex should be

{B,D,E}. Consequently, NA ≥ 3

with {A,B,D}. This is a contra-

diction to N0 = 2.

case3: N0 = 3)

Let A be a vertex such that NA =

{{A,B,C}, {A,C,D}, {A,D, α}}
and νA = 3. Then α can be one of

vertices B and E.

If α = B, then we automatically

get {B,C,D} and there are no 2-

simplex containing the vertex E.

If α = E, then there should be

one of 1-simplices {B,D}, {B,E}
and {C,E} for the 4th 2-simplex.

Consequently, NA ≥ 4 and it is

contradic to N0 = 3.

case4: N0 = 4)

Let A be a vertex such that

NA = {{A,B,C}, {A,C,D},
{A,D,E}, {A,E, α}} and νA = 4.

Then α can be one of vertices B

and C. If α = C, then M{A,C} ≥ 3

which is a contradiction to M1 = 2.

Hence α = B, see Figure 19.

B

C

A

D

E

Figure 16

B

C

A

D

E

Figure 17

B

C

A

D

E

α

Figure 18
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B

E
A C

D

B

E

D

C

A

Figure 19

case5: N0 ≥ 5)

Let A be a vertex such that

NA = {{A,B,C}, {A,C,D},
{A,D,E}, {A,E, α},
{A,α, β}, ... ... }

and νA ≥ 5. Then α can be one

of vertices B and C. If α = B or

C, then M{A,B} ≥ 3 or M{A,C} ≥ 4

which is a contradiction to M1 =

2. Thus, there is no complex which

satisfies N0 ≥ 5 with M1 = 2.

B

C

A

D

E

α

β

Figure 20

In summary there are only 5 kinds of complices with 5 vertices: Figure

41



CHAPTER 4. 2N-PROBLEM

11, Figure 12, Figure 13, Figure 16 and Figure 19. None of them have 2-

dimensional generators. In other words, 5 points are not enough to contribute

a 2−dimensional element of persistent homology. Therefore, there exist at least

6 point such that the induced Vietoris-Rips complex has a 2−dimensional gen-

erator in its persistent homology.

Remark 4.2.4. About the answer of the main question, we conclude 6 is the

minimal number of points for the cubic shaped sphere C having a 2−dimensional

barcode of its persistent homology as the homology of S2, i.e., NC(S
2) = 6.

4.3 Another proof of Minimal Construction

for S2

Our goal is to show there is no 2-dimensional generator of persistent homology

with 5 vertices.

Strategy

Find all possible 2-cycles and show they are boundaries of some 3-simplices.

Observe the following:

F1 There are at most three 2-simplices associated to a 1-simplex with 5 ver-

tices since the more 2-simplices, the more vertices.

F2 A boundary of a 2-simplex is the sum of three 1-simplices.

F3 Let σ be a 2-cycle. Each 1-simplex of σ should be in a pair of 2-simplices

by F1 since our coefficient ring of persistent homology is Z2. In other words,

there exist only two 2-simplices containing the same 1-simplex.

F4 There are ten 2-simplices combining 5 vertices (i.e., 5C2 = 10).

F5 There are ten 1-simplices combining 5 vertices (i.e., 5C3 = 10).
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Claim

All 2-cycles with 5 vertices are a surface of a tetrahedron or a contractible

union of two tetrahedrons.

Proof. Without loss of generality, we don’t consider a subcomplex having two

same simplices because of Z2 coefficient ring of persistent homology.

A 2-cycle σ consists of an even number l of 2-simplices by F2. Hence l =

2,4,6,8 or 10 by F4. If l = 2, σ is just a copies of the same 2-simplex. If l = 10,

a complete graph, then every 1-simplex of σ is on three 2-simplices. Thus it

is a contradiction to 2-cycle. If l = 8, then there are twenty four(= 8 × 3) of

1-simplices as a boundary of σ. Since there are at most ten 1-simplices by F5,

there exist at least four 1-simplices such that each 1-simplex is on some three

2-simplices. Thus it is a contradiction to 2-cycle.

Assume l = 4. It is easy to imagine the surface of a tetrahedron with four

2-simplices. By the way, we can show that a tetrahedron is the only 2-cycle

with four 2-simplices. Suppose that σ is a 2-cycle of four 2-simplices associated

with 5 vertices. There are twelve(= 4 × 3) 1-simplices of ∂σ and six(= 12/2)

distinct 1-simplices. Because of 5 vertices, two 2-simplices of σ have at least a

common vertex. If it has only one common vertex, then σ is a union of only

2-simplices having one common vertex with six 1-simplices which is a con-

tradiction to 2-cycle. Otherwise if it has two common vertices, then this two

2-simplices with one common 1-simplex with 4 vertices and five 1-simplices

should be connected to the 5th vertex with one 1-simplex which is the last 1-

simplex and it is not a 2-cycle. Hence a 2-cycle with a surface of a tetrahedron

which is a boundary of a 3-simplex.

Assume l = 6. Denote 5 vertices as A, B, C, D, E. There are nine(=
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6 × 3/2) distinct 1-simplices in σ which are all of ten in F5 except one 1-

simplex, say {A,B}. Then we can have four 2-simplices in F4 which are not in

σ as {A,B,C}, {A,B,D}, {A,B,E}, and {C,D,E}. In other words, σ is the

boundary of a union of two 3-simplices {A,C,D,E} and {B,C,D,E}.

Lemma 4.3.1. A tetrahedron has no 2-dimensional generator of persistent

homology.

Proof. Since a tetrahedron is a complete graph, all edges are measured among

4 points, say vi for i = 0, 1, 2, 3. Let r be the maximum length of edges of

this tetrahedron. Consider balls of radius r with center vi for i = 0, 1, 2, 3, and

then we have four 2-simplices which become a cycle of 2-dimensional persistent

homology. However this 2-dimensional cycle is the boundary of the 3-simplex

{v0, v1, v2, v3}. Hence there is no 2-dimensional generator of a tetrahedron.

In conclusion, there is no 2-dimensional generator of persistent homology

with 5 vertices by above Lemma and Claim.

4.4 6 points probability for S2

In the previous subsections, we show 6 points in Vietoris-rips complex is the

minimum number of points that can have 2-dimensional generator of persistent

homology. In this subsection, we want to figure out 6 points probability, i.e.,

the probability of 6 points in Vietoris-Rips complex holding 2-dimnesional

generator of persistent homology by ripser module which is an algorithm to

compute persistent homology.

4.4.1 Script for 6 points probability

On the cubical sphere, we can measure the possible region of 6 points can

make form 2-dimensional persistent homology such that we get the 6 points

44



CHAPTER 4. 2N-PROBLEM

probability. The following pseudocode shows how to compute it using Boost

library and Ripser library.

6 points probability

N ← the number of times for splitting intervals

LowerBound=0 ← the lower bound of 6 points possiblity

UpperBound=1 ← the upper bound of 6 points possiblity

INTERVAL ← boost::numeric::interval<double>

CUBE ← std::vector<INTERVAL>

CUBELIST ← collection of CUBE

Check2dim(CUBE) ← using ripser library,

check the number of 2-dimensional interval;

if all values(numbers) on CUBE > 0

return 1

else if all values(numbers) on CUBE = 0

return -1

else

return 0

SplitCUBE(CUBE) ← collection of subcubes of CUBE

by dividing all intervals into half size

volume=0 ← the possible region volume

complementvolume=0 ← the impossible region volume

initialCUBE ← initialize the cubical sphere

CUBELIST ← initialCUBE

for (i in 1:N)

preCUBELIST ← another collection of CUBE

for j in CUBELIST

if Check2dim(j)=1

volume += size(j)
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else if Check2dim(j)=-1

complementvolume += size(j)

else

preCUBELIST ← SplitCUBE(j)

CUBELIST ← updated by preCUBELIST

LowerBound ← volume/size(initialCUBE)

UpperBound ← 1− complementvolume/size(initialCUBE)

Remark 4.4.1. When N increases, we get the accurate value of 6 point prob-

ability. However, we need a large memory in computer and it takes a lot of

time to get proper a range of probability.

Another method for 6 point probability is sampling which is much faster

than optimization. The following pseudocode shows how to compute the prob-

ability using Ripser library.

6 points sampling probability

SN ← sampling number

S=0 ← count the number of successful case

for (i in 1:SN)

p=GenerateRandompt(i) ← randomly pick 6 points on the cubic sphere

Check2dim(p) ← using ripser library,

check the number of 2-dimensional interval;

if the numbers > 0

s++;

Result ← S/SN

Remark 4.4.2. In practical, we get the following result of 6 points sampling

probability.
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6point sampling probability results

SN 1,000 10,000 100,000 1,000,000

Trial 1 0.007 0.0053 0.00651 0.006904

Trial 2 0.003 0.0068 0.00697 0.006945

Trial 3 0.006 0.0064 0.00648 0.00684

Trial 4 0.009 0.007 0.00678 0.00703

Trial 5 0.012 0.0078 0.00663 0.006929

Trial 6 0.008 0.0061 0.00664 0.007006

Trial 7 0.008 0.0068 0.00692 0.006899

Trial 8 0.006 0.0055 0.00668 0.006836

Trial 9 0.005 0.0087 0.00725 0.007036

Trial 10 0.007 0.0061 0.00691 0.006923

By the law of large numbers, when SN ≥ 100,000, we may get the expecta-

tion of 6 points probability as the number around 0.007. However, how much

can we trust this expectation? Now we want to state confidence intervals in

terms of proportions or percentages. In next subsection, we will find confidence

intervals with the Bootstrap method.

4.4.2 Bootstrap Confidence Intervals

In this subsection, we will apply the same technique to find out the bootstrap

confidence intervals and we use the same notation as in the book [22] of Larry

Wasserman, see 7.2 in Appendix.

Suppose we draw an independent and identically distributed (IID) sample

X1, ..., XB from a distribution F . By the law of large numbers,

XB
P−→
∫
xdF(x) = E(X)
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as B →∞. So if we draw a large sample from F , we can use the sample mean

XB to approximate E(X). In a simulation, we can make B as large as we

like, in which case, the difference between XB and E(X) is negligible. More

generally, if h is any function with finite mean then

1

B

B∑
j=1

h(Xj)
P−→
∫
h(x)dF(x) = E(h(x))

as B →∞. In particular,

1

B

B∑
j=1

(Xj −XB)2 =
1

B

B∑
j=1

X2
j −

( 1

B

B∑
j=1

Xj

)2
P−→
∫
x2dF(X)−

(∫
xdF(x)

)2
= V(X)

as B →∞. Hence, we can use the sample variance of the simulated values to

approximate V(X).

In most practical research, the standard deviation is not known. In this

case, the standard deviation is replaced by the estimated standard deviation,

also known as the standard error se.

Bootstrap Variance Estimation

1.Draw X∗1 , · · · , X∗n ∼ F ∗n .

2.Compute T ∗n = g(X∗1 , · · · , X∗n).

3.Repeat steps 1 and 2, B times, to get T ∗n,1, · · · , T ∗n,B.

4.Let

vboot =
1

B

B∑
b=1

(
T ∗n,b −

1

B

B∑
r=1

T ∗n,r

)2
.

The following pseudocode shows how to use the bootstrap to estimate the

standard error of the median.
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Bootstrap for The Expectation

Given data X = [X[1], · · · , X[n]]:

T ← E(X)

Tboot ← vector of length B

for (i in a:B):

Xstar ← sample of size n from X (with replacement)

Tboot[i] ← E(Xstar)

se ← sqrt(variance(Tboot))

Here we discuss the simplest method, the Normal Interval

Tn±zα/2 seboot

where seboot =
√
vboot is the bootstrap estimate of the standard error, Tn =

g(X1, · · · , Xn). Note that this interval is not accurate unless the distribution

of Tn is close to Normal.

Remark 4.4.3. In experimental with SN = 1, 000, 000, B = 1, 000 and α =

0.005, zα/2 = 1.96 ≈ 2, we get the 95% confidence interval

0.007081± 2 ∗ 8.254727372845205e−5

= (0.006915905452543096, 0.007246094547456903)

4.5 Vietoris-Rips complex for Sn

In this section, we observe the phenomenon of higher dimensional sphere and

get some generalization results related to previous section.
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Example 4.5.1. Consider

data2(N + 1) := { ci,j | 1 ≤ i ≤ N + 1, and j = 0, 1}

where ci,j denotes the vector with a δj in the ith coordinate and 1
2
’s elsewhere

and δj = 0 or 1. The set data2(N+1) is the collection of 2(N+1) central points

on each face of the (n+1)−dimensional unit cube. The result of the persistent

homology of this example with the Euclidean distance is the following:

value range: [
√
2
2
, 1]

distance matrix with 2(n+ 1) points

persistence intervals in dim 0:

2n+ 1 copies of the interval [0,
√
2
2

) and one interval of [0,∞)

persistence intervals in dim n:

[
√
2
2
, 1)

There is no persistence intervals other dimension. From above observation, we

get

N(Sn) ≤ 2n+ 2.

c.f. When the parameter ε is in [
√
2
2
, 1], there are 2n+1 number of n−simplices

which represents the combination number of choosing N+1 times one elements

in each two elementary set.

Remark 4.5.2. Consider

data2N+1 := {δi ei | δi = 0 or 1, and 1 ≤ i ≤ N + 1}

where ei denotes the vector with a 1 in the ith coordinate and 0’s elsewhere. We

get its persistent homology with the Euclidean distance through value range:

[1,
√
n+ 1]. Clearly, we have persistence intervals in dim 0: 2n+1 − 1 copies

of the interval [0, 1) and one interval of [0,∞). However, it’s already hard

to compute other dimensional persistence intervals by hands after 4 vertices;
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whenever parameter ε grows through
√
k for 1 ≤ k ≤ n+ 1, we should consider

all combination of vertices whose distance less than
√
k.

Property 4.5.3. No n + 2 vertices of Vietoris-Rips complex can form a

n−dimensional generator in its persistent homology.

Proof. Without loss of generality, we have a n+ 1 vertices {v0, · · · , vn} which

form a n−simplex [v0, · · · , vn]. Consider a distinct vertex vn+1 which is not

on this simplex. Then there is only one n−dimension cycle using all vi, 0 ≤
i ≤ n+ 1, i.e., the boundary of (n+ 1)-simplex [v0, · · · , vn+1]. Since this cycle

is exact, there is no n−dimensional generator in its persistent homology with

n+ 2 vertices.

Remark 4.5.4. Construction for S3 of Vietoris-Rips complex is hard to do in

higher dimension because additional axes give spaces not like lower dimension.

Even though the direct construction is not possible but still we get an re-

markable result.

Notation For a n- simplex σ and a collection of n-simplices Σσi,

< σ,Σσi >= k mod 2

where the number k is a cardinality of the set { i | σi = σ for some i}.

Theorem 4.5.5. Given numbers n, r and a finite point set X with a distance

d, assume a Vietoris-Rips complex V Rr(X) has the same homology of Sn with

Z2-coefficients. Suppose σ+ Σσi is a collection of n-simplices of V Rr(X) such

that [σ + Σσi] is a generator of Hn(V Rr(X)). Say, σ = [0, 1, · · · , n].

If the n-simplex σ satisfies < σ, ∂τ >= 0 for any (n + 1) -simplex τ in

V Rr(X), then there exist n+ 1 additional points in X.
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Proof. Since we have the Z2 - coefficients, we may assume σ 6= σi for any

i. Consider the boundary of σ, i.e., ∂σ = Σn
j=0[0, 1, · · · , ĵ, · · · , n]. Because

σ + Σσi is closed, there should be at least one n-simplex σl for some l such

that < [0, 1, · · · , ĵ, · · · , n], ∂σl >= 1, i.e., σl = [0, 1, · · · , pj, · · · , n] for a point

pj 6= j. If the distance between j and pj is less than r, then we get a (n + 1)-

simplex [0, 1, · · · , n, p]. This is a contradiction to the assumption < σ, ∂τ >= 0

for any (n + 1) -simplex τ in V Rr(X). Hence the distance d(j, pj) ≥ r and

d(k, pj) < r for k ∈ {0, 1, · · · , ĵ, · · · , n}. In other words, we have some points

{pj}nj=0 such that pj 6= pk for j 6= k. Note pj 6∈ {0, 1, · · · , n} for all j. Therefore

X has n+ 1 additional points.

Corollary 4.5.6. Given numbers n, r and a finite point set X with a distance

d, assume a Vietoris-Rips complex V Rr(X) has the same homology of Sn

with Z2-coefficients. Suppose Σσi is a collection of n-simplices of V Rr(X) such

that [Σσi] is a generator of Hn(V Rr(X)). If all (n + 1)−simplices τ satisfy

< σi, ∂τ >≤ 1, then there exist at least 2n+ 2 points in X.

Conjecture Given numbers n, r and a finite point set X with a distance d,

assume a Vietoris-Rips complex V Rr(X) has the same homology of Sn with

Z2-coefficients. Then there exist at least 2n+ 2 points in X.
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The Vietoris-Rips complex on a

circle S1

In this chapter, we observe homotopy types from finite points on a circle S1

as Vietoris-Rips complex. We will follow the technique and notation from the

Adamaszek [13].

Definition 5.0.1. A subset X of a metric space M is an ε− covering if every

point of M is within distance less than ε from some point in X.

Remark 5.0.2.

1. A finite subset X ⊆ S1 is an ε− covering of S1 if and only if every two

cyclically consecutive points in X are less than 2ε apart.

2. If 0 < r < 1
3

and X ⊆ S1 is a finite subset, then V R(X, r) ' S1 if and

only if an (1
2
)− covering of S1.

Now we follow notations from Adamaszek[14].

Definition 5.0.3. For n ≥ 1, i, j ∈ Z with i ≥ j, the discrete circular arc [i, j]n

is the image of the set {i, i + 1, · · · , j} under the quotient map Z −→ Z/n

sending z 7→ z mod n.
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For n ≥ 1 and k ≥ 0, denote N (n, k) as a simplicial complex consisting of

the vertex set {0, 1, · · · , n− 1} and its set of maximal simplices {[i, i+ k]n|i =

0, · · · , n− 1}.
Observe that for k ≤ n− 2 N (n, k) has n maximal simplices given by the

n rotation of [0, k]n. The simplicial complex N (n, k) is the (n − 1)− simplex

if k ≥ n− 1.

Suppose S1 has the circumference 1. For 0 ≤ k < n,

Un,k = {[ i
n
,
i+ k

n
]S1|i = 0, · · · , n− 1},

i.e., a set of n evenly-spaced arcs of length k
n

in S1.

Remark 5.0.4. If Xn ⊆ S1 is a set of n evenly-spaced points, then

Č(Xn,
k

2n
) ' N (Un,k) ' N (n, k).

Properties 5.0.5.

1. N (n, 0) = ∨n−1S0 is the disjoint union of n points.

2. For 1 ≤ k < n
2
, N (n, k) ' S1.

3. N (n, n− 2) is the boundary of a (n− 1)−simplex.

4. For k ≥ n− 1, N (n, k) is a (n− 1)− simplex.

Definition 5.0.6. Let K and L be simplicial complexes with disjoint vertex

sets.

1. The join K ∗ L is the simplicial complex whose faces are all the union

σ ∪ τ for σ ∈ K, τ ∈ L.

2. The unreduced suspension
∑
K is S0 ∗K.
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Lemma 5.0.7. Let M be a simplicial complex such that M = M1 ∪M2 with

contractible subcomplexes Mi for i = 1, 2. Then

M '
∑

(M1 ∩M2).

Proposition 5.0.8. For n
2
≤ k < n, N (n, k) and

∑2N (k, 2k − n) are homo-

topy equivalent.

Proof. Consider the maximal simplices of N (n, k), denoted as σi = [i, i + k]n

for i = 0, 1, · · · , n− 1. Then we have the following expression:

N (n, k) = (∪n−k−2i=0 σi) ∪ (∪n−1j=n−k−1σj).

Say, A = (∪n−k−2i=0 σi) and B = (∪n−1j=n−k−1σj). Note that σj contains (n − 1)

figure point and σi contains k figure point since n − k − 2 ≤ k. Moreover, A

and B are cones and σi does not contain n− 1 figure point. By Lemma 5.0.7,

we get

N (n, k) '
∑

K

where K is a simplicial complex with the vertex set {0, 1, · · · , n − 2} and its

simplex {σi ∩ σj|i = 0, · · · , n− 2, j = n− k − 1, · · · , n− 1}.
Observe the shape of simplices of K:

Type1) If 0 ≤ i ≤ j+k−n ≤ i+k < j ≤ n−1, then σi∩σj = {i, · · · , j+k−n}.
Hence

σi ∩ σj ⊆ σ0 ∩ σn−1 = {0, · · · , k − 1}.

Type2) If 0 ≤ j+k−n < i ≤ j ≤ i+k ≤ n−2, then σi∩σj = {j, · · · , j+k}.
Thus

σi ∩ σj ⊆ σn−k−2 ∩ σn−k−1 = {n− k − 1, · · · , n− 2}.
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Type3) If i ≤ j + k − n and j ≤ i+ k, then

σi ∩ σj = {i, · · · , j + k − n} ∪ {j, · · · , i+ k}

* σi′ ∩ σj′ for any i′, j′.

Now we have the following maximal simplices of K:

τ = {0, · · · , k − 1},

τ ′ = {n− k − 1, · · · , n− 2},

τi,j = {i, · · · , j + k − n} ∪ {j, · · · , i+ k}

for 0 ≤ i ≤ j + k − n and j ≤ i+ k ≤ n− 2.

Observe the subcomplex T = τ ′ ∪ (∪i,jτi,j) is contractible. By the Lemma

5.0.7 and K = τ ∪ T ,

K '
∑

(τ ∩ T ).

Since τ ∪ T = N (k, 2k − n), we have

N (n, k) '
∑

(A ∩B)

'
∑

(τ ∪ T )

'
∑∑

(τ ∩ T )

'
∑2
N (k, 2k − n).

Note that N (n, 0) ' ∨n−1S0 and N (n, k) ' S1 for 1 ≤ k < n
2
. Applying

Proposition 5.0.8 repeatly, we get the following theorem.
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Theorem 5.0.9. Let 0 ≤ k ≤ n− 2. Then

N (n, k) '

S2l+1, if l
l+1

< k
n
< l+1

l+2
for l = 0, 1, · · · ,

∨cS2l, if k
n

= l
l+1
.

Definition 5.0.10. Let G be a simple, loopless, undirected graph. The clique

complex Cl(G) is to be a simplicial complex whose vertices are the vertices

of G and the simplices are the cliques (complete subgraphs) of G.

Definition 5.0.11. For n ≥ 1, k ≥ 0, the clique complex N̄ (n, k) is the

maximal simplicial complex with 1-skeleton N (n, k), i.e., Cl(N (n, k)(1)).

Remark 5.0.12. If Xn ⊆ S1 is a set of n evenly-spaced points, then

V R(Xn,
k

n
) ' N̄ (Un,k) ' N̄ (n, k).

Lemma 5.0.13. Let n ≥ 1 and k ≥ 0. The map f : {0, · · · , n + k − 1} ←−
{0, · · · , n−1} assigning i 7→ i mod n induces a simplicial, surjective homotopy

equivalence

f : N̄ (n, k)
'−→ N (n, k).

By the above Lemma 5.0.13, we have the following theorem.

Theorem 5.0.14. Let 0 ≤ k < n
2
. Then

N̄ (n, k) '

S2l+1, if l
2l+1

< k
n
< l+1

2l+3
for l ≥ 0,

∨n−2k−1S2l, if k
n

= l
2l+1

for some l

Remark 5.0.15. It is also the same result in Adamaszek [15], Corollary 6.7.

From above theorem we have the following theorem, see Adamaszek [13](Theorem

7.6).
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Theorem 5.0.16. Let X be a subset which is dense in S1 and 0 ≤ r < 1
2
.

Then

V R(X, r) '

S2l+1, if l
2l+1

< r < l+1
2l+3

, l = 0, 1, · · · ,

∨cS2l, if r = l
2l+1

,

where c is the cardinality of the continuum.

In short, for large r, V R(X, r) does not have the homotopy of X.
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Reliable barcodes

In the previous chapter, we observe that even a dense set of sample points

cannot suggest the underlying space. Then the issue is hence the choice of

radius in the Vietoris-Rips complex. In short, for small radii we get a good

cover; by Nerve theorem we have the correct homology of the underlying space.

The problem is now to determine how small the radius should be.

6.1 On the length of barcodes

We consider a topological space X. The Nerve theorem tells us that the nerve

of a good cover of X is homotopy equivalent to X, so this motivates us to find

good covers. Since we have some form of metric or dissimilarity measure when

working with data, we can look at ε-balls. We can use this to either look at

the Čech complex or the Vietoris-Rips complex. We consider the latter for a

metric space (X, d).

Recall that the V R(X, d, ε) can be defined as the nerve of a cover, namely

V R(X, d, ε) = N (X,U = {Bε(x)}x∈X).
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We may hence wonder for what values of ε the cover U is a good cover. From

the results on the Vietoris-Rips complex for S1 we know that U will not be a

good cover for large ε, since the homotopy type changes. We also note that for

general topological spaces there is no good cover. For example, the quasi-circle

has no good cover, since that space is connected, but not path-connected. In

particular, it is not homotopy equivalent to a simplicial complex.

We will restrict ourselves to smooth manifolds, because many data sets may

be regarded as samples from some underlying manifold. From a mathematical

point of view, there are many methods from Riemannian geometry available,

so this is a relatively good setting to obtain results.

Remark 6.1.1. We will work with the intrinsic distance on Riemannian man-

ifolds. This is from a mathematical point of view the most natural. However,

when working with data, we usually don’t have direct access to this infor-

mation, and instead we have only direct access to the coordinates of some

embedding. Although it is in principle possible to reconstruct the intrinsic dis-

tance by using sufficiently many data points and good optimization, this is not

a very practical approach.

The reader should keep this in mind when reading our arguments.

6.1.1 Mission impossible

Before we give some criteria to find good covers, we point out that these criteria

involve assumptions on the data which impossible to check in practice.

• the topology of the space: we will assume often that the space is a man-

ifold of some form. Although one can argue that this is natural (regular

values of a smooth function being dense), there is no way to verify this

based on only finitely many points

• bounds on the curvature or reach: it is possible approximate curvature

numerically, but given a finite sample sets of points pi ∈ M ⊂ Rn, we
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can never be sure that some small region where the absolute value of the

curvature is large has been missed.

6.1.2 Basic assumptions

We may assume that the sample points lie on or close to a smooth manifold M ;

this is a reasonable assumption, since sample points are commonly assumed

to be chosen from some probability distribution. If the associated probability

density function p is smooth, then sets where a large part of the support

lies are generically smooth manifolds. Sample points can have numerical and

categorical features, but after indexing the categorical values, we can always

assume that the sample points lie in Rn, so M ⊂ Rn. By the way, this choice

is not natural. Moreover, we have a distance/dissimilarity measure d for the

sample points. This is an extrinsic distance on M , meaning that it is already

defined on Rn.

6.1.3 Further assumptions

To get clear results, we want work with an intrinsic distance, which we first

assume to come from a Riemannian metric. Here are the key points for this

choice: First, it is mathematically natural. Second, at small scales, the extrin-

sic and intrinsic distances are approximately equal. Third, intrinsic distances

are “observer” independent. To give a concrete example, indexing categorical

variables is not natural, leading to arbitrary choices, which can be dealt with

(to some extent) using this intrinsic distance Lastly, a downside is that the

intrinsic distance is not readily available; it can however be deduced from the

second point. Therefore, in this Riemannian setting (including some general-

izations), we will see that we can obtain upper bounds on the the admissible

radii for the Vietoris-Rips complex.
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6.1.4 Convex balls and curvature

Suppose that (M, g) is a Riemannian manifold.

Definition 6.1.2. The injectivity radius of (M, g) at x ∈M is

inj(M,x) := sup{r ∈ R ∪ {∞} | expx : Br(0)→M is embedding }.

The injectivity radius of (M, g) is then infp inj(p).

Clearly, compact Riemannian manifolds without boundary have positive

injectivity radius.

Definition 6.1.3. A subset B in M is called strongly convex if for every

pair p, q ∈ B, there is a unique minimal geodesic segment γ : I → M that is

entirely contained in M . The convexity radius of M at p is defined as

r(p) := max{R > 0 | Bs(p) is strongly convex for s ∈ (0, R)}.

The convexity radius of (M, g) is then infp conv(p).

Remark 6.1.4. We note that a cover consisting of strongly convex balls

U = {Bi}i∈I will give a good cover. Indeed, consider any finite non-empty

intersection C = Bi1 ∩ . . . ∩ Bik . Take c ∈ C, which will serve as a center.

By convexity, we find for all x ∈ C a unique geodesic segment γx : I → M

connecting x to c that is completely contained in C. Now define the contraction

H : C × I −→ C, (x, t) 7−→ γx(t).

This map is continuous by continuous dependence on initial conditions of

geodesics, see Milnor [23].

From the above we see that a cover by balls whose radius is less than the

convexity radius will be a good cover. We apply this observation together with

the Nerve theorem to obtain the following, simple, yet useful proposition.
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Proposition 6.1.5. Suppose that (M, g) is a Riemannian manifold with the

property that there is R0 such that the convexity radius conv(p) > R0 for all

p ∈M . Then V R(M,d,R0) is homotopy equivalent to M .

If we understand a Riemannian manifold sufficiently well, then we can

compute its convexity radius. For example, the convexity radius of the round

sphere Sn ⊂ Rn+1 is π. On the other hand, if we consider the surface of

revolution

Sf = {(x, y, z) ∈ R3 | f(z) =
√
x2 + y2}

for a a function f as sketched in Figure 6.1, we find the much smaller convexity

radius r0.

Figure 6.1: f(z) =
√
x2 + y2

In general, the best we can try to do, is to bound the convexity radius from

below. From the literature we know that there is no universal bound without

further assumptions. Indeed, we have the following theorem due to Dibble, [4].

Theorem 6.1.6. Fix n ≥ 2. Then for every ε > 0 there exists a compact

n-dimensional Riemannian manifold with conv(M)/inj(M) < ε.

To deal with this, we can impose curvature bounds, but we will need more.

63



CHAPTER 6. RELIABLE BARCODES

For example, the lens space L(p, 1) = S3/Zp has a much smaller convexity

radius despite having the same curvature as its covering space S3.

From Chavel’s book on Riemannian geometry, Theorem IX.6.1, [17], we

find the following.

Theorem 6.1.7. Assume that (M, g) is a Riemannian manifold whose sec-

tional curvature is bounded from above by KM . Put r1 = min
(
inj(M)/2, π

2
√
KM

)
.

Then Br1(x) is a strongly convex ball.

By a result of Klingenberg, [3, Corollary 5.7], we know that

Theorem 6.1.8 (Klingenberg). If the sectional curvature of (M, g) is bounded

from above by KM , then

inj(M) ≥ min
(
π/
√
KM , `g(γ)/2 where γ is the shortest periodic geodesic

)
.

This gives the following bound,

conv(M) ≥ min

(
`g(γ)/2 where γ is the shortest periodic geodesic,

π

2
√
KM

)
.

In some cases, we can remove the dependence on the shortest geodesic, which

is a global condition, rather than a local one.

Theorem 6.1.9. Suppose that M is an even-dimensional, orientable manifold

whose sectional curvature is positive and bounded from above by KM . Then

conv(M) ≥ π

2
√
KM

.

Note that KM can be determined or approximated from local measure-

ments.

Proof. By a theorem of Synge, see [3, Theorem 5.9, part 2], we see that M is

simply-connected. A theorem of Klingenberg, [3, Theorem 5.10], then tells use
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that inj(M) ≥ π/
√
KM . Now suppose that γ is the shortest, periodic geodesic.

Clearly, we have

`(γ)/2 ≥ inj(M) ≥ π/
√
KM .

Hence the two terms in Theorem 6.1.7 have equal bounds, so we obtain the

claimed conclusion.

6.1.5 Background from metric geometry

In the following we describe several concepts which originate from Riemannian

geometry to describe these bounds. Some of these concepts can be generalized

to the metric setting, which will be convenient for later use.

Definition 6.1.10. Suppose that (X, d) is a metric space, and γ : [a, b]→ X

a curve. Given a partition Y = {y0 = a, y1, . . . , yN = b} of [a, b], define

Σ(Y, γ) :=
N∑
i=1

d(γ(yi−1, γ(yi) ).

The length of γ is then defined as

Ld(γ) = sup
Y

Σ(Y, γ).

Call the curve rectifiable if Ld(γ) is finite.

In a Riemannian manifold (M, g), the logic goes the other way around.

Given a smooth curve γ in a Riemannian manifold (M, g), we define the length

of the curve as

`g(γ) :=

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t) )dt.

After that, the distance function on (M, g) is defined as

dg(x, y) := inf
{γ∈C1([0,1],M) | γ(0)=x,γ(1)=y}

`g(γ).
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One can show that the Riemannian and metric concepts agree.

In a Riemannian manifold, we have locally a unique shortest path, i.e., given

x ∈M , there is a neighborhood U of x such that for all y ∈ U , there is a unique

curve γx,y, up to reparametrization, such that

• γx,y(0) = x, γx,y(1) = y, and

• `g(γx,y) = dg(x, y).

The concept of shortest path can obviously be defined in metric spaces as well.

Definition 6.1.11. Suppose that (X, d) is a metric space. We will call a subset

B in X strongly convex if for every pair p, q ∈ B, there is a unique shortest

path γ : I → X that is entirely contained in B. The convexity radius of X

at p is defined as

r(p) := sup{R > 0 | Bs(p) is strongly convex for s ∈ (0, R)}.

Definition 6.1.12. Suppose that (X, d) is a metric space. The cut locus of

x ∈ X is

CL(x) := {y ∈ X | there exist distinct paths γ, γ′ : I → X

with γ(0) = x = γ′(0), γ(1) = y = γ′(1), L(γ) = L(γ′) = d(x, y)}.

We will denote by C(p) the infimum of the distance of a point p to its cut

locus CL(p), and let C = infp C(p) By definition, we can use C to bound the

convexity radius, but the computation of C is next to impossible in general.

Hence we will consider a simplicial complex X, which we will equip with

the following distance function:

• prescribe distances between the vertices (this is natural if the vertices

are sample points),
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• embed each simplex affinely in RN such that the Euclidean distance is

the prescribe distance,

• give each simplex the flat Riemannian structure inducing the prescribed

distances, and

• define the distance function

d(x, y) = inf{`(γ) | γ piecewise linear curve from x to y}.

This definition is of course inspired by the Vietoris-Rips complex for a finite

metric space. The convexity radius can then in principle be determined by

investigating the combinatorics of the line segments.

6.1.6 Persistent homology of the Vietoris-Rips complex

Suppose that (X, d) is a metric space with convexity radius rc, and consider a

cover U = {Bε(x)}x. If ε < rc, then this is a good cover.

Now let us consider the Vietoris-Rips complex V Rε(X, d). Consider the per-

sistent homology of the resulting filtered space {V Rε(X, d)}ε. By Lemma 2.0.37,

we have V R(X, r) ⊂ Č(X, ε).

By convexity we know that this cover will be a good cover for ε < rc, so

the Nerve theorem will tell us that PH∗(V Rε(X, d) ) ∼= H∗(X) for ε < rc. On

the other hand, for a larger radius, we know from the cube example that for

larger ε, we have, in general, PH∗(V Rε(X, d) ) � H∗(X). Inspired by this, we

call a barcode reliable if its endpoint is shorter than the convexity radius.

6.2 Application to data

Let us first consider a situation where we sample data from a manifold, and

we have the necessary information.
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6.2.1 Revisiting the cube

Let us consider the hyper unit cube C spanned V = [0, 1]n+1 ⊂ Rn+1 as

in the introduction. Instead of the extrinsic metric coming from Rn+1, we

consider the intrinsic metric defined following piecewise smooth curves on the

hypersurface of C, so for example d((1/2, 0, 1), (1/2, 1, 0)) = 1 + 1 = 2. In this

case, the curvature is actually infinite at the vertices, so we use the metric space

description instead. The convexity radius is 1. The barcodes of the persistent

homology of V Rε(V, d) are plotted in

Figure 6.2: Persistent homology of the Vietoris-Rips complex of the corners of
the cube, data8.

We see that the incorrect 3-homology barcode is not reliable according to

this criterion.

Now let us take the 6 face center points, data6, again with the intrinsic

distance. As before, the convexity radius is 1, so the (correct) 2-dimensional

homology is unreliable.

In the natural setting of the theorem, i.e., with many data points, we do,

of course, get reliable barcodes for the 2-dimensional homology, and we can

rule out the incorrect 3-dimensional with this criterion.
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6.2.2 Discretized curvature

So far, we apply the above criterion to a situation where we know the underly-

ing manifold. Let us now consider the situation where we have sample points

coming from a manifold, but we do not have more information (other than the

dimension of the manifold). As we indicated earlier, it is now impossible to

give any guarantees, but we can try to estimate the curvature from the data.

We suggest a couple of approaches:

• A direct approach via the discretized derivative: this approach suffers

from numerical instability.

• Define the Gauss curvature via the angle defect. In other words, apply

the local Gauss-Bonnet theorem to define the curvature.

• Use volume/area defect to define the scalar curvature. This is based on

the following classical result.

Proposition 6.2.1. Let (M, g) be an n-dimensional Riemannian mani-

fold with scalar curvature S. Then

V ol(Bε(p) ⊂ (M, g))

V ol(Bε)(0) ⊂ (Rn, gEuclidean)
= 1− S(p)

6(n+ 2)
ε2 + o(ε2).

Let us make the above a little more concrete. We describe the volume

approach, and assume that we have sample points {x0, . . . , xn} from which we

have constructed a simplicial complex (for example the Vietoris-Rips complex).

For convenience, assume that this is a 2-dimensional manifold.

Take p = xi. We want to define S near p. The proposition suggests that we

should take the limit ε → 0, but since that will yield infinite scalar curvature

in curvature, we choose ε to be half the edge length to closed neighbor of p.

Compute the area of Bε(p) in the simplicial complex, and solve S(p) from the
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approximate equation
Area

πε2
= 1− S

24
ε2.

If we assume that the curvature is approximately constant near p, we obtain

an approximate value for S on Bε(p).

For higher-dimensional data, the same approach can be pursued, but we

need to fix a 2-dimensional “geodesic” subcomplex first. We can then apply the

above approach to this subcomplex to obtain the scalar/Gauss curvature for

this subcomplex. The sectional curvature can then be bounded be repeating

this procedure for all 2-dimensional subcomplexes.

Here is a possible approach to generate these 2-dimensional “geodesic”

subcomplexes ∆:

• Fix a simplex containing p, and consider a 2-simplex σ contained in this

simplex.

• We follow all geodesics in σ until they enter another 2-simplex τ . Include

τ in ∆ if τ contains p. More practically, consider the adjacent 2-simplices

containing p

• Repeat this procedure for the new τ . Stop when we get back a a simplex

sufficiently close to σ.
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Example 6.2.2. Take a set of 60 random points on a cube.

Figure 6.3: Random points on a cube and an approximate geodesic

We use this and other approximate geodesics to determine the convexity

radius: we find 1.0123.

Figure 6.4: Barcodes of the persistent homology of the Vietoris-Rips complex
60 random points on a cube
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With the estimate on the convexity radius, we can dismiss the barcode in

degree 3,

(3,with the interval (1.0127, 1.0180))

The same approach works also for higher dimensional data, where visual-

ization is not possible. The upshot is the following:

• In TDA, small barcodes are commonly treated as corresponding to noise,

and long barcodes as the true signal.

• However, barcodes can be too long, and result in nonsense homology

groups. In higher dimensions, visualization is not possible without loss of

information, and we cannot easily recognize these meaningless barcodes.

• Our above techniques allow us to eliminate some of these meaningless

barcodes.
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Appendix

7.1 Notation and Conventions

The n−dimensional disk(or the n−disk) is

Dn = {x ∈ Rn | |x| ≤ 1},

where | · | : Rn → [0,∞) is the standard norm on Rn. Then the n−disk is

closed subset in Rn. The open n−disk(or the interior of Dn in Rn) is

int(Dn) = {x ∈ Rn | |x| < 1}.

The boundary of Dn in Rn is the (n− 1)-sphere

Sn−1 = {x ∈ Rn | |x| = 1}.

Note that the 0−disk Dn = Rn = {0} and its interior int(D0) = {0} = D0.

Definition 7.1.1. An n−cell is a space which is homeomorphic to the open

n−disk int(Dn). A cell is a space which is an n−cell for some n ≥ 0.
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Since int(Dm) and int(Dn) are homeomorphic if and only if m = n, we can

define the dimension of a cell, i.e., an n−cell has dimension n.

Definition 7.1.2. A cell-decomposition of a space X is a collection C =

{eα|α ∈ J} of subspaces of X such that each eα is a cell and X is a disjoint

union of such cells

X =
∐
α∈J

eα.

The n−skeleton of X is the subspace

Xn =
∐

{β∈J | dim(eβ)≤n}

eβ.

Remark 7.1.3. A cell-decomposition of a space can have many different di-

mensional cells. Since there are no restrictions on the number of cells in a

cell-decomposition, a cell-decomposition of a space is not unique.

Definition 7.1.4. Let X be a Hausdorff space. A CW-complex is a pair

(X, C) consisting of a space X and a cell-decomposition C of X such that the

following axioms are satisfied:

(A1) For each n−cell e ∈ C, there is a map fe : Dn → X such that the

restriction fe|int(Dn) → e is a homeomorphism and fe(S
n−1) ⊂ Xn−1. We

call such maps fe characteristic maps.

(A2) For any cell e ∈ C, the closure ē of e intersects only a finite number of

other cells in C.

(A3) A subset A ⊆ X is closed if and only if A ∩ ē is closed in X for each

e ∈ C.

Lemma 7.1.5. Let K be a CW-complex and X, Y be topological spaces.

Assume a map p : X → Y is a weak homotopy equivalence in the following

diagram.
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X

p
��

K

f
>>

g
// Y

Then there exist a map f such that p◦f and g are homotopic. Moreover, if

g is a weak homotopy equivalence, then f is also a weak homotopy equivalence.

The proof of this lemma can be found in the paper [5].

We recall the following lemma due to McCord [6].

Lemma 7.1.6. Let X, Y be topological spaces. Suppose p is a map of X into

Y and there exist a basis-like open cover W of Y such that for each W ∈ W ,

the restriction p|p−1(W ) : p−1(W )→ W is a weak homotopy equivalence. Then

p is a weak homotopy equivalence.

Now we prove Theorem 2.0.25 as in [2].

Proof. (Theorem 2.0.25)

Suppose X is a topological space and U is a locally finite, basis-like open cover

of X. Since U is partially ordered by inclusion, we make U into a topological

space. Indeed, for U ∈ U , let
⌊
U
⌋

= {V ∈ U | V ⊂ U}. Then the collection

{
⌊
U
⌋
| U ∈ U} is a basis for the required topology of U . First, define a

map g : |K(U)| → U as follows : for x ∈ |K(U)|, we have the unique open

simplex [U0, · · · , Un] for |K(U)| satisfying and x ∈ U0 and U0 ⊂ · · · ⊂ Un,

i.e., g(x) = U0. Note that g is continuous. By the Lemma 7.1.6, g is a weak

homotopy equivalence. Second, define a map p : X → U as follows : for each

x ∈ X, let p(x) be the smallest element of U containing x. This map is well-

defined since U is locally finite and basis-like. Now observe the following:

For each U ∈ U , p−1(
⌊
U
⌋
) = U. (a)
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Note that p is continuous since the collection {
⌊
U
⌋
| U ∈ U} forms a basis

for the space U . Now let’s show that p is a weak homotopy equivalence. For the

basis-like open cover of U , consider the basis W = {
⌊
U
⌋
| U ∈ U}. Note that

all
⌊
U
⌋

are a contractible subset of U . By the eq. (a), p−1(
⌊
U
⌋
) = U . Since

U is homotopically trivial, p|U : U →
⌊
U
⌋

is a weak homotopy equivalence.

By the lemma 7.1.6, p is a weak homotopy equivalence. Therefore, we obtain

a weak homotopy equivalence f : |K(U)| → X by the lemma 7.1.5.

Definition 7.1.7. Let K be a simplicial complex and σ = [v0, · · · , vn]

be a n−simplex of K.

(1) The barycenter b(σ) of σ is the point

b(σ) =
1

n+ 1

∑
0≤i≤n

vi ∈ |K|.

(2) The barycentric subdivision of σ consists of n−dimensional sim-

plices σi = [pi0, · · · , pin], 1 ≤ i ≤ (n + 1)! defined as follows: for each

permutation τi of the set {0, 1, · · · , n} and the ordered set of vertices

{vτi(0), · · · , vτi(n)}, let

pij = b([vτi(0), · · · , vτj(n)]).

Definition 7.1.8. Let K,L be simplicial complexes. A map ϕ : K −→ L is

called to be a simplicial map if it has the property that the images of the

vertices of simplex always span a simplex.

By definition, a simplicial map assigns vertices to vertices. In other words,

simplicial maps are determined by their effects on vertices.
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Definition 7.1.9. A carrier is a function Carr : F −→ G from a cover F of

a space X into a collection G of subsets of a topological space such that for

each Ui ∈ F if
⋂
i Ui 6= ∅, then

⋂
Ui

Carr (Ui) 6= ∅.

We are ready to prove Lemma 2.0.27.

Proof. (Lemma 2.0.27)

Let N be the first barycentric subdivision of N (U) and its nerve N (U). Define

a simplicial map ϕ : N → K(U) as follows:

ϕ(b(σ)) = Carr (σ)

where b(σ) as the barycenters of the simplexes σ of N (U). Note that this is

well-defined because of Carr (σ), i.e., the intersection of the vertices of σ is

not a empty set but a member of U , a vertex of K(U). Observe that every

simplex of N is spanned by vertices b(σ0), · · · , b(σn) with σ0 ⊂ · · · ⊂ σn. Then

Carr (σ0) ⊃ · · · ⊃ Carr (σn) and these vertices span a simplex of K. Thus ϕ

is simplicial.

ϕ : |N (U)| = |N | → |K(U)| is clearly a retraction, i.e., ϕ||K(U)| = id|K(U)|.

If we show that for every simplex τ of N , both τ and ϕ(τ) are subsets of some

simplex σ of N (U), then ϕ is a deformation retraction. Let the vertices of τ

be b(σ0), · · · , b(σn), where σ0 ⊂ · · · ⊂ σn, and the vertices of σn be U0, · · · , Ur.
Let σ be the simplex of N (U) spanned by the vertices

{U0, · · · , Ur,Carr (σ0), · · · ,Carr (σn)}.

Then this simplex σ is desired one. Therefore, the proof is completed.
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7.2 Background from Probability

First we recall some statistics definitions and theorems from the book [22] of

Larry Wasserman.

Denote Ω as the set of possible outcomes of an experiment, called the

sample space.

Definition 7.2.1. A function P that assigns a real number P(A) to each event

A ∈ ω is called to be a probability distribution or a probability measure

if it satisfies the following three axioms:

(A1) P(A) ≥ 0 for every A,

(A2) P(Ω) = 1, and

(A3) If A1, A2, · · · , are disjoint, then

P
(
∪∞i=1 Ai

)
=
∞∑
i=1

P(Ai).

A real number P(A) to every event A is called the probability of A.

Definition 7.2.2. A random variable is a mapping

X : Ω→ R

that assigns a real number X(ω) to each outcome ω.

Definition 7.2.3. The cumulative distribution function, or CDF, is the

fuction FX : R→ [0, 1] defined by

FX(x) = P(X ≤ x).
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Definition 7.2.4. A random variable X is continuous if there exists a func-

tion fX such that

(1) fX(x) ≥ 0 for all x,

(2)
∫∞
−∞ fX(x)dx = 1, and

(3) for every a ≤ b, P(a < X < b) =
∫ b
a
fX(x)dx.

The function fX is called the probability density function or PDF. We

have that

FX(x) =

∫ x

−∞
fX(t)dt

and fX(x) = F
′
X(x) at all points x, i.e., FX is differentiable at x.

Sometimes we write
∫
f(x)dx to mean

∫∞
∞ f(x)dx.

Example 7.2.5. A continuous random variable X has a Normal (or Gaus-

sian) distribution with parameters µ and σ, denoted by X ∼ N(µ, σ2), if its

probability density function is

f(x) =
1

σ
√

2π
exp

{
− 1

2σ2
(x− µ)2

}
, x ∈ R

where µ ∈ R and σ > 0. We say X has a standard Normal distribution if

µ = 0 and σ = 1.

Given continuous random variables (X1, · · · , Xn), we call a function f(x1, · · · , xn)

a PDF if it satisfies the following:

(1) f(x1, · · · , xn) ≥ 0 for all (x1, · · · , xn),

(2)
∫∞
−∞ · · ·

∫∞
−∞ f(x1, · · · , xn)dx1 · · · dxn = 1, and
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(3) for any set A ⊂ R× · · · × R,

P((x1, · · · , xn) ∈ A) =

∫
· · ·
∫
A

f(x1, · · · , xn)dx1 · · · dxn.

The marginal densities are

fXi(xi) =

∫
· · ·
∫
f(x1, · · · , xn)dx1 · · · d̂xi · · · dxn, for 1 ≤ i ≤ n,

where d̂xi indicates that dxi excludes and there are n − 1 copies of
∫

. The

corresponding marginal distribution functions are denoted by FX1 , · · ·
and FXn .

We say that X1, · · · , Xn are independent if for every A1, · · · , An,

P(X1 ∈ A1, · · · , Xn ∈ An) =
n∏
i=1

P(Xi ∈ Ai).

Note that if f(x1, · · · , xn) =
∏n

i=1 fXi(xi), then X1, · · · , Xn are independent.

Definition 7.2.6. If X1, · · · , Xn are independent and each has the same

marginal distribution with CDF F , we say that X1, · · · , Xn are independent

and identically distributed or IID and we write

X1, · · · , Xn ∼ F.

If F has density f , we also write X1, · · · , Xn ∼ f . We also call X1, · · · , Xn a

random sample of size n from F .

Definition 7.2.7. Suppose a random variable X is continuous with its prob-

ability density function f(x) and
∫
xf(x)dx is well-defined. The expected
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value, or mean, or expectation of X is defined to be

E(X) =

∫
xdF(x) =

∫
xf(x)dx.

Definition 7.2.8. Let X be a random variable with mean µ. The variance

of X is defined by

V(X) = E(X − µ)2 =

∫
(x− µ)2dF(x),

assuming this expectation exists. The standard deviation is sd(X) =
√
V(X).

Property 7.2.9. Let X be a random variable with mean µ. If the variance is

well-defined, then

V(X) = E(X2)− µ2.

Definition 7.2.10. Let X1, X2, · · · , be a sequence of random variables and let

X be another random variable. We say Xn converges to X in probability,

written Xn
P−→ X, if for every ε > 0,

P(|Xn −X| > ε)→ 0 as n→∞.

Definition 7.2.11. Let X1, X2, · · · , be a sequence of random variables and

let X be another random variable. Let Fn denote the CDF of Xn and let F

denote the CDF of X. Then Xn converges to X in distribution, written

Xn  X, if

lim
n→∞

Fn(t) = F (t) at all t,

i.e., F is continuous at t.

Theorem 7.2.12. (The Weak Law of Large Numbers) Let X1, X2, · · · , Xn be

an IID sample, let µ = E(X1) and σ2 = V(X1). Then

Xn
P−→ µ as n→∞
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where Xn = 1
n

∑n
i=1Xi is the sample mean.

Proof. Assume that σ <∞. By Chebyshev’s inequality,

P(|Xn − µ| > ε) ≤ V(Xn)

ε2
=

σ2

nε2

which approach to 0 as n goes to infinity.

The Weak Law of Large Numbers means the distribution of Xn becomes

more concentrated around µ as n increases.

Theorem 7.2.13. (The Central Limit Theorem) Let Let X1, X2, · · · , Xn be

an IID sample with mean µ and variance σ2. Let Xn = 1
n

∑n
i=1Xi and Zn =

Xn−µ√
V(Xn)

. Then Zn  Z where Z ∼ N(0, 1).

Definition 7.2.14. A 1 − α confidence interval for a parameter θ is an

interval Cn = (a, b) where a = a(X1, · · · , Xn) and b = b(X1, · · · , Xn) are

functions of the data such that

Pθ(θ ∈ Cn) ≥ 1− α, for all θ ∈ Θ.

In words, (a, b) traps θ with probability 1− α. We call 1− α the coverage of

the confidence interval.

7.3 Scripts to compute persistent homology

Here is a simple julia-script to compute persistent homology.

using eirene

function add_bits(k)

result = 0
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for i in (1:32)

if k & 1 == 1

result += 1

end

k = k >> 1

end

result

end

dim = 3

N = 2^dim

D = Array{Float64,2}(undef, N, N)

for k1 in (0:N-1)

for k2 in (0:N-1)

k = k1 ⊻ k2

n = add_bits(k)

D[k1+1,k2+1] = sqrt(n)

D[k2+1,k1+1] = D[k1+1,k2+1]

end

end

cpx = eirene(D, maxdim = 10)

plotbarcode_pjs(cpx)
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[9] Weyl, A., Sur les théorèmes de de Rham (1952), Comm. Mathem. Hel-

vetici, 26, pp.119-145.

[10] Holsztynski, W., On spaces with regular decomposition (1964),

BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-

SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET

PHYSIQUES, 12(10), pp.607-611.

[11] Haimov, J. N., The homotopy type of a space having a brick decom-

position (1979), In Dokl. Akad. Nauk Tadzhik. SSR (Vol. 22, No. 1,

pp.25-29).

[12] Björner, A., Nerves, fibers and homotopy groups (2003), Journal of Com-

binatorial Theory, Series A, 102(1), pp.88-93.

[13] Adamaszek, M., and Adams, H., The Vietoris–Rips complexes of a circle

(2017), Pacific Journal of Mathematics, 290(1), pp.1-40.

[14] Adamaszek, M., Adams, H., Frick, F., Peterson, C., and Previte-Johnson,

C., Nerve complexes of circular arcs (2016), Discrete & Computational

Geometry, 56(2), pp.251-273.

[15] Adamaszek, M., Clique complexes and graph powers(2013), Israel Journal

of Mathematics, 196(1), pp.295-319.

[16] Carlsson, G., Zomorodian, A., Collins, A., and Guibas, L.J., Persistence

barcodes for shapes (2005), International Journal of Shape Modeling,

11(02), pp.149-187.

85



BIBLIOGRAPHY

[17] Chavel, I., Riemannian geometry. A modern introduction, Second edi-

tion. Cambridge Studies in Advanced Mathematics, 98. Cambridge Uni-

versity Press, Cambridge, 2006. xvi+471 pp. ISBN: 978-0-521-61954-7;

0-521-61954-8

[18] Hatcher, A., Algebraic Topology(2002), Cambridge University Press,

Cambridge. Also available online at http://www. math. cornell. edu/∼

hatcher/AT/ATpage. html.

[19] Govc, D., and Skraba, P., An approximate nerve theorem(2018), Foun-

dations of Computational Mathematics, 18(5), pp.1245-1297.

[20] Hausmann, J.C., On the Vietoris-Rips complexes and a cohomology

theory for metric spaces (1995), Annals of Mathematics Studies, 138,

pp.175-188

[21] Latschev, J., Vietoris-Rips complexes of metric spaces near a closed Rie-

mannian manifold(2001), Archiv der Mathematik, 77(6), pp.522-528.

[22] Wasserman, L., All of statistics: a concise course in statistical infer-

ence(2013), Springer Science & Business Media.

[23] Milnor, J., Morse Theory (AM-51)(2016), Volume 51. Princeton univer-

sity press.

86



국문초록

최근 위상적 자료분석 방법은 데이터 분석에 각광받고 있다. 이 논문에서는 데

이터의모형을분석하기위하여 Vietoris-Rips complex와 persistent호몰로지를

연구하였다. 특별히, Vietoris-Rips complex구조가 주어진 데이터가 n차원 구와

같은 호몰로지를 갖을 수 있다고 할 때, 필요한 최소한의 데이터 양을 산출해냈

다.

주요어휘: Vietoris-Rips complex, persistence 모듈, persistent 호몰로지, Nerve

이론, 위상적 자료 분석

학번: 2012–30869
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