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Abstract

Non-linear operators on fractal domains and
homogenization for fully non-linear parabolic
equations

Sungha Park
Department of Mathematical Sciences
The Graduate School

Seoul National University

The analysis of fractals has been studied extensively in both analysis
and probability approaches. In this thesis, we construct the non-linear ellip-
tic equation involving second order terms on fractal spaces, and our main
object is to exhibit the regularity of their solutions by using an analytic ar-
gument. Since a calculus on fractals is not available, our approach is based
on the graph approximation argument to construct Dirichlet forms. The cen-
tral concept is in finding suitable cut-off functions and weighted inequalities,
which can be obtained by using the special geometric properties of the fractal
domain.

Another topic in this thesis is the homogenization theory for fully non-
linear parabolic equations. In particular, we treat the case with different
scales of the oscillating variables. The interesting point is that the homog-
enization occurs separately for time and space due to a mismatch in the
scale of time and space fast variables. In addition, this phenomenon causes

different order of convergence rates.
Key words: fractals, Sierpinski gasket, Harnack inequality, homogenization,

convergence rate
Student Number: 2014-22341
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Chapter 1

Introduction

1.1 Part I : Non-linear operators on the frac-

tal domains

Fractals have a very interesting structure called “self-similarity”, which is a
geometrically generated pattern that is reproducible at any magnification or
reduction. During the last decade, various types of fractal spaces, such as
Sierpinski gaskets, Sierpinski carpets, and more generally certain manifolds,
graphs, and metric spaces have been studied extensively as an aspect of
partial differential equations (see [3, 30, 31, 32, 36, 56]).

Fractal domains are of significant interest in both probability theory and
analysis. The two fields are closely related and share the same goal. The main
approach in probability theory is to construct diffusion processes on fractals,
analogous to Brownian motion, and heat kernel estimates for these processes.
This was first worked by Goldestein [22], Kusuoka [36, 37], and Lindtrom [44].
They proved independently the existence of Brownian motion as the scaling
limit of a sequence of random walks on certain fractals. The advantage of this
approach is that it is a very suitable method for finding Brownian motion
and heat kernel estimates and hence makes it possible to extend to other
fractal domains. Barlow—Bass [4, 5] followed the construction of Brownian

motion on Sierpinski carpets, and Barlow—Perkins [3] use a similar approach
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to Sierpinski gaskets, which was proved by a probabilistic argument.

Another approach, based on analysis, is due to Kigami [30, 31, 32] by
introducing Dirichlet forms and Laplacian on fractals. That is, he constructs
analytic structures (Dirichlet forms in particular) on fractals and finds a
harmonic function by minimizing the Dirichlet forms among all functions
which have required boundary values. The Dirichlet forms can be obtained
as the limit of a sequence of discrete energy on graphs approximating the
fractal. For example, The Sierpinnski gasket, which is one of the simplest
fractal set, energy forms on the Sierpinski gasket can be written as the limit
of energy forms on a sequence of discrete graphs. This is essentially because
we cannot define both gradient and integral in our energy. Nevertheless, this
approach allows us to capture the structures of harmonic functions, Green’s
function, and solutions of Laplacian operators.

There are many results for linear cases such as Laplacian and Brownian
motion, for example, we can refer to the following papers [6, 7, 18, 23, 24,
27, 54], but relatively few results for non-linear cases. [25, 55] and [15, 16]
shows that the existence of p-harmonic functions and proved the Harnack
inequality for non-negative p-harmonic functions on the Sierpinski gasket,
respectively. On the other hand, a certain semi-linear parabolic equation on
the Sierpinski gasket was studied independently in [26, 49].

As an analytic point of view, it is natural to wonder if general regularity
theories such as the Holder’s continuity, Harnack inequality, and their appli-
cations hold on fractals. [5] gave the proof of the Harnack inequality in the
case of harmonic functions on pre-Sierpinski carpets, and [6] proved the same
result for linear operators in divergence form. See also [7, 18] and [23] for a
similar statement for certain graphs and manifolds.

In this thesis, we would like to propose new non-linear operators on one
particular class of fractals, domains in R? which is the Sierpinski gasket. As
mentioned above, the main tool in analytic approach is energy. We construct
generalized energy functional on the Sierpinski gasket that covers the exist-

ing energy of Laplacian operators. We provide abstract formulations of these



CHAPTER 1. INTRODUCTION

functional and show existence and uniqueness results for their minimizers.
Our main interest is to obtain the Harnack inequality for non-negative mini-
mizers. We develop an analytic approach in which we used very strongly the
energy measure, the symmetry of the space, and the comparability of the
non-linear operators.

The key step to achieving the Harnack ineuqality is to find suitable cut-off
functions. In fractal domains, there is no analogue of the following Newton-

Leibniz formula

u(z) — uly) = / (3(s), Vi (s)))ds

for every curve 7 : [0, 1] — R” connecting x and y. Due to this limitation, we
cannot use the Sobolev inequality as in Euclidean space. Instead, by finding
an appropriate cut-off function, we can combine it with the Hausdorff mea-
sure to create a new measure \. Then the measure A allows us to prove a
weighted Sobolev inequality linking the L?™ norm of A to the energy mea-
sure. The Harnack inequality is achieved by involving the Caccioppoli type
inequality and weighted Sobolev inequality which gives the local boundedness

and the weak Harnack inequality of solutions with respect to the measure \.

1.2 Part II : Homogenization for fully non-

linear parabolic equations

In various fields of physics and engineering one need to solve partial differen-
tial equations in a composite media. In many cases the pattern of composite
media is the periodic structure, in which case the heterogeneous media re-
peats for each cell. Generally, the size of the period is very small compared to
the size of the entire media. In this case, we are mainly interested in the over-
all or macroscopic properties of a composite media and not so much about
the properties in microscopic parts. From this point of view, the study of the

asymptotic behavior when the size of period goes to zero and finding an av-
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eraged formulation is called homogenization. That is, homogenization is the
process of seeking a macroscopic or effective aspect starting from a micro-
scopic description of a problem. The most important goal of the homogeniza-
tion is to find homogeneous effective parameters from heterogeneous media,
or to justify of averaging process rigorously.

We investigate a physical problem of conductivity in a periodic domain
Q C R”, since it is a natural example to see what homogenization is. The
periodicity is € > 0 and the rescaled unit periodic cell Y = (0,1)". The
conductivity in € is a matrix A(y), where y = x/e € Y is the fast variable,
while x € €0 is the slow variable. Since the conductivity varies in €2, the
matrix A can be any second order tensor. Moreover, the matrix A(y) is a
periodic function of y with period Y. That is, the matrix A is a coefficient
with rapidly oscillating structure in e-scale, which is why we named y the

fast variable. Then a homogenization problem can be formulated as follows.
. X .
—div(A(Z) V) =f Q. (1.2.1)
€

The mathematical theory of homogenization can be interpreted as follows.
Rather than solving a single problem (1.2.1), we look at the equation (1.2.1)
as a sequence of such problems indexed by ¢, which gets smaller and going to
zero. The aim is to find the limit of this sequence of problems. More precisely,
we want to find a function u which is the limit of u° in the appropriate
sense, and limit problem which u solves. The first question is to determine
an adequate topology where u® converges to u. We call u the effective limit.
If we define the proper space for which u® — u, the next thing we need to
consider is finding the equation that u satisfies. That is, one can determine

a coefficient A which satisfies the following equation:
— div (ZVU) =f in Q.

The operator A is called the effective conductivity. Finally, the approximation

can be rigorously justified by quantifying the resulting error. In other words,
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we need to quantitatively compare the difference between u° and the effective
limit w.

The classical, but powerful approach is to use the well known two-scale
asymptotic expansion method: the main idea is to assume that the solution
u® of (1.2.1) can be represented by the following power series in ¢, called

ansatz,
o
u () =Y e'u'(z,y)
i=0

where each term u'(x,y) is periodic in y. Then inserting this expansion in
(1.2.1) and matching the order of € gives equations that satisfies each u'. In
particular, the first term u° of this expansion will be identified with the effec-

tive limit u, and we can compute the exact form of the effective conductivity

A.

Classical results in the theory of homogenization can be seen in the books
[1, 2, 10, 29]. The homogenization theory is started by Lions [48] about the
first order evolutionary problems, and extended to second-order equations in
[45, 46]. Evans [19, 20] introduced “perturbed test function method” to estab-
lish a periodic homogenization problem for certain fully non-linear, first and
second order equations. Regarding the results about rates of convergence
in periodic homogenization, for linear equation, it is well known that the
O(e) rate proved to be optimal in [10]. For the case of fully non-linear equa-
tions, [14] proved a O(£*) rate and [34] improved this result to the higher
order: O(e[%]) rate when the order of asymptotic expansion is m. On the
other hand, a study of the stochastic homogenization for uniformly elliptic
equations was introduced by Caffarelli, Souganidis, and Wang [12, 13]. Their
approach extended to fully non-linear uniformly parabolic equations covered
in [43]. For the homogenization theory in a perforated domain with oblique
boundary condition, [38] obtained the effective operator by introducing the
compatibility condition.

In this thesis, we cover the homogenization problem of non-divergence

type elliptic and parabolic PDE, especially obtain the convergence rate in
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homogenization of non-linear PDEs. The first result concerns the parabolic
fully non-linear equation when the space-time scaling factor k is different.
Naturally, the space-time scaling factor k is 2 to match the order of €. How-
ever, there are cases where the space-time scaling factor is not 2, such as a
fractal. In this work, a mismatch will inevitably occur in a asymptotic expan-
sion, and it causes a phenomenon in which the homogenization of time and
space is separated. We overcome the difficulty by constructing appropriate
k-multiple order effective limits and correctors. In fact, this approach is very
natural, because the k-th order corrector will serves to connect the homoge-
nization separated by time and space. One of the key features in this work is
to recover the convergence rate up to €, by considering effective limits whose
order of ¢ is less than 1.

The second result studies the higher order convergence rate of the homog-
enization of non-divergence semi-linear equation with the oblique condition
over a periodically perforated domain. The oblique condition is a general-
ization of the boundary condition in the well-known Skorokhod problem. In
this case, The homogenization can be established when the diffusion term
and drift term satisfy the compatibility condition. The compatibility condi-
tion will give the balance between the diffusion equation and the drift effect
by the oblique condition, and then it gives the existence of global solution as
it does in the standard divergence-type equation. In order to find the rate of
convergence, we consider the higher order correctors. At each step of finding
the higher order corrector, we need a compatibility condition which uniquely

determines the corrector.



Chapter 2
Preliminaries

Let us summarize some notions, well known results and ways of notation that

are frequently used throughout this work.

2.1 Part I : Non-linear operators on the frac-

tal domains

2.1.1 Sierpinski gasket
Let Vo = {po, p1,p2} C R? with py = (0,0), p1 = (1,0), p2 = (1/2,+/3/2) and
consider a set of three mappings F; : R? — R2, i = 0, 1, 2 defined by

Fi(x) =27 (2 +p).

The m-lattice V,,,, m € N are the sets defined inductively by

Vm: U -Fivm—l, m€N+.

i=0,1,2

We will regard the sets V,, as the vertices of a graph I',,,, with edges written
&~y y provided |z —y| = 27™. Then if we put Vi, = {J,_, Vin, the Sierpinski
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gasket K is defined to be the closure K = cl(V;). Let
W, = {w = wwows - - : w; € {0,1,2},i € N, }

be the family of infinite sequences w = wjwsows - -+ of symbols in {0, 1, 2}.
For each w € W, denote by [w],, = wjw; - w,,, the truncation of w of
length m, we call [w],, a word of length m. Write Fj,,, = Fiy, 0 Fy, 0+ Fy,,
for [w]p, = wiws - - - wy,, each w; € {0,1,2}. We call Fj,),, K m-cell or cell of

length m. Then K satisfies the self-similar identity

K= |J Fu,.K
wEW*
This will be our decomposition of K into cells of length m. Note that distinct
cells of length m are either disjoint or intersect at a single point. We will call
such intersect points junction points. For any finite union of cells D, we write
0D for the boundary of D defined by a set of points in D that are not junction
point in D. We also define D for the interior of D such that D° = D\dD. In
particular, 0K = Vi = {po, p1,p2}, K° = K\OK = K\ V}, and for any m-cell
F[w]mK, 8F[w]mK = {F[w}m(po), F[w}m(]ﬁ), F[w]m(pg)}. Note that all points in

a set V., M D’ are junction point.

Definition 2.1.1. The Hausdorff measure p on K, normalized so that u(K) =
1, is the unique Borel measure on K such that jp(Fj,), /) = 37™ for all
m e N, we W,.

Throughout this paper we define fractal dimension(or Hausdorff dimen-
sion), a dimension of the walk, spectral dimension of K, and Holder’s expo-

nent by
dy =log3/log2,

dy, =logh/log?2,
ds = 2ds/d,, = 2log 3/ log 5,
B = (d — dg)/2 = log(5/3) /2 l0g 2,

respectively. We will require a certain amount of notation to proceed with

8
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our proof. We say that A =< B if there are some constants c¢;, ¢o > 0 such

that c;A < B < ¢y A. For any connected finite union of cells D, let us denote
Rp = diam(D).

If I = Fl,, K for some w € W, and m € N, then we call I is a single m;-cell
with length m; = m. If I C K is a single cell such that TNV, = (, then there
are three cells of equal size as I that meet the boundaries of I. We define I*
as the union of I and these three cells. It is clear that R; < Ry« < 27" and

p(I) =< p(I*) < 37™ = 27™14r Thus, we have
Rl = R (1) = (1) = 21 0) — g

when [ is a single my-cell. For any finite union of cells D and single cell I,

write
N(I; D) := p(D)/p(1).

If I C D, then N(I; D) means the number of [-sized cells contained in D.

2.1.2 Dirichlet forms and harmonic functions

Dirichlet forms on K can be defined as the limit of the sequence of energies.

For any function u : V,,, — R and any finite union of cells D C K, define

eV =200 % (ule) — u(y))

Tromy
z,y€EVimND

3 m
The scaling factor, where » = —, is chosen so that the sequence {51() )} of

forms is consistent. That is, for any function u on V,,,

EX (1) = min{EY"V (v) : v is a function on V.1 and vly, = u}.
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Hence, the sequence of energies {Ej(jm)} is increasing(non-decreasing) for any

function u defined on V, i.e.
EVW <P w) <P W) <. (2.1.1)
In view of the monotonicity, it makes sense to define

Ep(u) = lim Slgm)(u)

m—r0o0

allowing the value +o00. Let
F(D) = {u:uis a function on V, N D and Ep(u) < oo},

and

.Fo(D) = {U S ./T"(D) : u’aD = 0}
For simplicity, if D = K, we denote by Ex(u) = £(u). Then for any m-cell
Flu),, K and any function u € F(Fy,,, K), the following scaling property holds

En

[wlm

g(u) =r""E(uo Fy,,,).

Moreover, the following self-similar property holds: for subdivisions K =

Ulw]meP Flu),. K, for any partition P,

Ew)= Y 1 "E(uo Fy,) (2.1.2)

[w]meP

It is well known that every function v € F (D) is uniformly continuous on V,N
D, hence it has a unique continuous extension to D. In other words, we have
F(D) c C(D). The form (€, F(K)), called as the standard Dirichlet form
on K, is a local Dirichlet form on L*(K, ut). Moreover, the following Holder’s
inequality and Poincaré inequality hold, where the latter is a generalization

to the anomalous diffusion case of the standard Poincaré inequality.
Lemma 2.1.2 ([56], Holder inequality). Let D be a connected finite union

10
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of cells. Then for all u € F(K),

p [12) — )P

< c&Eplu
z,yeViND |$ - y|2/3 ! D( )

where = log(5/3)/2log2. In particular, if u(q;) = 0 on for some q; € Vj,
1=0,1,2 then
lu(z)|?> < e1€(u)  for all z € K.

Lemma 2.1.3 (Poincaré inequality). Let D be a connected finite union of
cells in K. Then for all u € F(K), writing up = p(D)~" [, udp,

[ (0= unldn < A REW(D)En(w)
D
In particular, if D is a single cell with length mp, then for I = D or I = D*,
/(u —up)?dp < R Er(u).
I

Proof. We know that u has a unique continuous extension to K from the
comment above this Lemma. Then by the density of V, in D and Lemma

2.1.2, we have
lu(z) — u(y)]® < csle — y|*PEp(u) < csRYEn(u)

for all x, y € D. On the other hand, since u is continuous on D and D is
path connected, there exists z € D such that u(z) = up. Therefore, from the

estimate above, we have
lu(z) — up|?* < csRZEp(u) for all z € D

and hence
[ (= un)du < xS u(D)En(w)
D

11
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We can also look at the renormalized bilinear form: for any u, v € F(D),

set
—m

5 (ww) == Y (ul2) — u(y)(v(x) - v(y)).

r~myY
z,y€VimND

then Cauchy’s inequality implies that

Ep(u,v) = lim €Y (u,v)

m— 00

exists and it is finite. Hence, F (D) forms a Hilbert space with inner product
[ uwvdp+Ep(u,v). In particular, F(D)/constants forms a Hilbert space with
inner product €p(u,v) by Lemma 2.1.2.

Remark 2.1.4. Combining Lemma 2.1.2 and the Arzeld-Ascoli theorem, we
can deduce that Fy(K) is compactly embedded in Cy(K).

We can define a dual space in the same way we did on Euclidean spaces.

Definition 2.1.5. For any v € L*(K, i), define

lv]| 71 (k) = sup {/ wvdp :u € F(K), ||lull ) < 1} ,
K

The space F~(K) is defined to be the || - || 7-1-completion of L*(K,u). We
will write (-, -),, to denote the pairing between F (K and Fo(K).

It is noteworthy to observe that we have three Hilbert spaces F~1(K),
L*(K, ), Fo(K) and the embeddings

Fo(K) C L*(K,p) ¢ FY(K).

By considering bilinear energy £(-, -) and Hausdorff measure i, we are in

position to define a Laplacian A, on K via the weak formulation.

Definition 2.1.6. Let u € Fy(K) and f € F'(K). Then write A,u = f if

E(u,v) = —(f,v), forallve Fy(K).

12
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This relation defines uniquely the isomorphism
A, Fo(K) ~ FY(K),

and we call this operator the Laplacian.

The weak formulation is defined by the assumption that v vanishes on
the boundary, and so it is just a special case of the Gauss-Green formula. It
is well known that both the Gauss-Green formula and a definition of normal

derivatives d,u at boundary points are well defined on SG.

Lemma 2.1.7 ([56], Gauss-Green formula). Suppose that A,u = f for some
f e L*(K,u). Then O u(x) exists for all x € Vi, where 0, is defined by

,r,—m

Opu(w) = lim —— > (u(z) — u(y)),

r~my

YEVm

and the Gauss-Green formula

E(u,v) = — /K(A#u)vd,u + Z vOu(z)

zeVy
holds for all v € F(K).

For any given function u on Vj, there exists a unique h € F(K) such that

hly, = u which has the minimum energy. In other words,
E(h) = min{&(v) : v € F(K) and v|y, = u}.

The function h € F(K) is called the harmonic function in K with boundary

value u, and satisfies
E(h) =E™(h) =EO(h) for all m € N.

The additivity in (2.1.2) suggests that we could think the energy as a

measure. We point out that the energy may be regarded as the integral

13
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of a certain energy measure. For a function u € F(K) we define vy, (1)
for any cell I by the same definition as £(u) on I. This defines a regular
measure on K using additivity. By the self-similarity of energy, we have
vy (FuK) =r'E(uo F,).

Definition 2.1.8. For any u € F(K), the energy measure vy, of u is a

unique Borel measure on K such that for any finite union of cells D C K,
1
/ ¢dvyy = Ep(Pu) — §5D(gb, u?) for all ¢ € F(K). (2.1.3)
D

For any u, v € F(K), the mutual energy measure v, is defined by the

polarisation Viuw)y = %(l/<u+v> — I/(u,w).

Remark 2.1.9. The energy measure of u on D, v, (D), may be identified
with the quantity § [}, |Vu|?dp on R™. That is, v,y = [Vu[*dp on Euclidean
spaces. Using the identity |Vu|? = LA(u?) — uAu and applying integration

by parts, we obtain
1
[ olvapdn= [ Viow - Vudu 5 [ Vo Vi)
D D 2Jp

which is exactly the same form as the (2.1.3).

However, note carefully that the analogy dv, = |Vul*dp breaks on K. In
fact, the identity dvy,y = |Vu[*dp on Euclidean spaces means that [Vul? € L!
is the Radon-Nikodym derivative of the energy measure v, of u with respect
to the Hausdorff measure p. But in the Sierpinski gasket, it is well known
that the energy measure v and the Hausdorff measure p are mutually singular
(see [8, 9]). Roughly speaking, this is because that the mass is concentrated

too much near junction points.

It is clear by definition that vy, (K) = E(u), and vy, ) (K) = E(u,v) is a
symmetric bilinear function of u and v with v,y = v, ). There is another

formula for these measures, namely carré du champs,

/ OV = E(Guv) + ~E(u, dv) — ~E(duv) (214
. 2 2 2
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for any ¢ € F(K). Moreover, by simple computation we also have the fol-

lowing representation

[ oy = 1 255 (M) (u(x) — u(y)(v() — v(y))

mooo 2 e 2
_ ,71120% 3" o) 3 (ulx) — uly)(w(z) — v(y)

From this fact, we can easily derive the following chain rule which is fre-

quently used in this paper.

Lemma 2.1.10 (Chain rule). Let D C K be any finite union of cells and

suppose f and g € CL (R). Then f(u), g(v) € F(K) and there holds

loc

/ AV ((u).g(v)) = / o f (w)g' (v)dviuv)
D D

for all ¢, u, and v € F(K).

2.2 Part II : Homogenization for fully non-

linear parabolic equations

2.2.1 Cell problem

We summarize the main properties of the homogenization for second order

equations, which frequently used in the thesis. Set 8™ be the space of all

real symmetric n x n matrices, endowed with (L?, L?)-norm. That is, || P|| =
1/2

(szzl p%) for any P € S§™. To investigate the basic techniques, let us

consider the model problem

w — F(D?>uf, x,t,x/e,t/e?) =0 in Sy,
PR 0 1) 2) : o)
u® = p(z,t) on 0,St

15
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where the state variable (x,t,x/¢,t/e?) splits into the slow variable (z,t) €
St and in the fast variable (x/e,t/e%) = (y,s) € R" x [0, 00). By Q denotes a
bounded smooth open domain of R™, S = Qx (0, T), the parabolic boundary
9,87 = (00 x [0,T))U(2 x {0}) and F : 8" x Sp x R" x [0, 00) — R is given
smooth function. The important assumption is that F(M,xz,t,-,-) is (y, s)-
periodic for all (M, x,t) € 8™ x Sy. We make the additional uniform ellipticity
assumption on F', that is, there are 0 < A < A such that A\||N|| < F(M +
N,z t,y,s)—F(M,x,t,y,s) < A||N| for any | N|| > 0, for all (M, x,t,y,s) €
S™ x Sp x R™ x [0,00). We finally assume that F is convex in M-variable,
¢ € C%Y(Sr), and F is Lipschitz on 8™ x Sp x R™ x [0, c0) such that for each
L > 0 with B, C §"

[ Fl| co By x5z xmn 0,000 < (1 + [[M]]).

Let Q,(wo,to) = {(z,t) : | — zo| < 7,0 <ty —t <7r?} and by Q, we denote
Q-(0,0). We define the parabolic distance between (x1,t;) and (z2,ts) in
R™ x R by

d((l’l,tl), (l‘g,tz)) = (|£L‘1 — ZL’2|2 + |t1 - t2|)1/2 .

For v € (0,1), u € C7(Sy) if

[u(w1,t1) — u(wa, t2)]
lullevisy) = lullpoesyy +  sup '
7(ST) (ST) (z1,t1),(z2,t2)EST d((l‘l,tl), (x27t2))7

Moreover, u € C'(Sy) if for all a, 8 such that |o| + 28 < I, D*D}u is con-

tinuous on Sy. By C7(Sr) we denote the usual Holder space on St

We first consider the following cell problem with respect to (2.2.1) : For
every (M, x,t) € 8" x Sy, find a constant F' = F(M,x,t) such that there

exists a (y, s)-periodic solution w = w(y, s; M, x,t) to

ws — F(M + Diw,x,t,y, s)=—F(M,z,t) in R" x [0, 00).

16
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We begin by using the standard perturbed test-function argument. Although

the proof can be found in [19, 20], we present the proof for completeness.

Lemma 2.2.1. For each (M,z,t) € S" x Sy there exist a unique (y, s)-

periodic solution w’(y, s; M, x,t) of following penalized problem,
sw’ +w’ — F(M + Diw‘s, z,t,y,s) =0 inR" x[0,00) (2.2.2)

for each § € (0,1). Moreover, w’(-,-; M, x,t) lies in C*7(R"™ x [0,00)) with

the uniform estimate
||5w5HCQ’"/(R"><[O,oo)) + OSCRnX[OyoO)wé <C (1 + ||MH) . (2.2.3)

Proof. For brevity, we omit the dependency of M, x and t variables in the
functions since these variables are fixed in this lemma. In view of [17], (2.2.2)
has a comparison principle that the function w’ := § '(o(1 + ||M])) and
w® = —0" (o (1 + ||M]|) are super- and sub-solution of (2.2.2), respectively.
Thus, there is a unique (y, s)-periodic viscosity solution w’ to (2.2.2) such

that w® < w’ <wf in R x [0,00) and
160° || o= R xj0,00)) < o1+ [IM]])

for all § € (0,1). To show that w® € C?7(R" x [0,00)) we make use of
classical regularity results. Since w? is a solution to (2.2.2) in R" x [0, 00), if
we restrict ourselves to the cylinder ()3, the regularity results for parabolic
equations([57]) ensures that w® € C7(Q,) and Hw‘SHm(Qz) < C6 Ho(1 +
| M]]). Since @ contains a periodic cube of w®, we obtain a uniform Hélder
estimate on 6w’ over R™ x [0,00). On the other hand, we know that F is
convex with respect to M and from hypothesis that for any (y, s), (vo, So0) €
R™ x [0, 00)

Q(ysy S)'— sup ‘F(M—FN,y,S)—F(M"—N,yo,S[))’
y 95 90,20) -—
Nesn L+ [Nl

< oL+ My = ol” + s = so[7?)

17
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for some 0 < v < 1. Now the regularity results for parabolic equations([58])
and the periodicity of domain apply to w® so that we get a constant C' > 0
for which

160° | ez xjo,00) < C (1 +[|M]]) - (2.2.4)

Define @°(y, s) := w’(y, s) — Mingax[p0)w’ > 0 in R™ x [0,00). Then @°

solves the equation

50 + @) — F(M + Da’,y, s) = -0 m&)n )uﬁ in R" x [0,00). (2.2.5)
"% |0,00

Let us restrict our domain to Q3(yo, so) where (o, So) is an arbitrary point
in R™ x [0, 00). Since Q, contains a periodic cube of w’, we have SUpg, Ws =
SUPRn «[0,00) w; and infg, W5 = infreyjoee)Ws = 0. We apply the Harnack

ineqaulity over Q3 to (2.2.5) then
sup @’ < C (1+ || M])).
Q2

Since the above bound is independent of § € (0,1), and since (yo, so) is an

arbitrary point, we have

SUp 08Crnx(0 o)W’ = sup sup @’ <C(1+|M]).
0<6<1 0<6<1 R™X[0,00)

Now we deal with a parabolic cell problem.

Lemma 2.2.2. For each (M,z,t) € S® x Sy there exists a (y, s)-periodic
function w(y, s; M,xz,t) such that w(-,-; M,z,t) € C*7(R" x [0,00)), and a
constant F(M,z,t) € R such that

||6w5('7 g M,SC,t) - F(M7x7t)HL°°(R"><[O,oo))
+ H’L/D(S<, '; M,l?,t) — w(-, ) M?'Q:at)HCQ(R"X[O,OO)) — 0 as 5 — O,

where W (y, s; M, z,t) = wd(y,s; M, x,t) — w’(0,0; M, x,t). Moreover, F is
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a unique constant where the equation has a unique solution w up to con-
stant addition. It then immediately followed from Lemma 2.2.1 that F, and

w satisfy

[E(M, 2, )]+ [[w(-, 5 M, 2, | o2 @n xj0.00)) < C (14 [[M])

and solve the following cell problem:

ws — F(M + Dw,x,t,y,s) = —F(M,z,t) inR" x [0,00). (2.2.6)

Proof. Set w°(y,s) = w’(y,s) — w’(0,0) and we will show that the fam-
ily {@’}se(0,1) is uniformly bounded in C*7. From Lemma 2.2.1, we have
|00 (-, s M, 2, 8) || Lo rrxo.00y) < C(1 4 [[M]]). Moreover, w° € C?*7(R™ x

[0,00)) and satisfies
sw’ 4+ (@°), — F(M + D2, y, s) = —6w’(0,0) in R™ x [0, 00).
Using the similar argument when proving (2.2.4), we obtain

sup H@(SHCQW(R"X[O,OO)) < C(l + HMH) (227)
0<o<1

In view of (2.2.3), we can take a subsequence {J,w’ }3°, of {0w’}o<5<; and a
number F(M,z,t) € R such that §w’(-,-; M,z,t) — F(M,z,t) uniformly
in R” x [0,00) as kK — oco. On the other hand, by (2.2.7) and the compact
embedding argument yield that there is a (y, s)-periodic function w and a
further subsequence of {Jx}7°,, which we denote again by {d;}72, for conve-

nience, such that
16510 = | Lo @nx o0y + 0% = w]lc2@rxppocy = 0 as k— o0, (2.2.8)

for some (y,s)-periodic w € C**(R™ x [0,00)). Then by the stability of
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viscosity solutions, the function w solves following equation
ws — F(M + Dzw,x,t,y, s)=—F(M,z,t) in R" x [0,00).

Now we show that the constant F' is unique. We assume to the contrary
that that there is another a subsequence of {§w’}o.5.1 converges to FeR
uniformly in R™ x [0, 00), where F' # F. Also, let w’ be the solution of (2.2.6)
corresponding limit of a subsequence of {w°}os1. Without loss of generality,
suppose that F > F. Since w and w' are bounded, add a constant hy to w

such that w'(yo, so) + ho < w(yo, So) at a point (yo, so) € R™ x [0, 00). Let
hy = inf{h:w'(y,s) +h > w(y,s)}.

Then w' 4+ hy touches w by above at a point (y;,s1). Therefore, we deduce
that

—ﬁ(M,iL‘,t) = (U)/ + h1)s(y1,31) - F<M+D§<w, + hl)(y1781>7x7t7y1781)
< ws(ylasl) - F(M+ Dzw(yhsl)vx)taylvsl)
= —F(M,z,t),

which is a contradiction. This shows that the constant F must be unique.
Finally, by the maximum principle we can also observe that the uniform
convergence (2.2.8) could be made along the full sequence. Consequently, the

limit function w is also unique (up to constant). ]

2.2.2 Effective operators and effective limits

The functional F : 8" x Sy — R in Lemma 2.2.2 is called the effective
operator. It is natural to predict that the effective operator F has similar

properties to F.

Lemma 2.2.3. (i) F is uniformly elliptic with the same ellipticity con-

stants of F' and convexr with respect to M-variable.
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(i) For each L >0, F € C%Y (B x Sr).

Proof. (i) In this proof, let us get rid of the dependence of (z,t)-variable

for convenience. It is enough to show that
F(M + N,z,t)— F(M,z,t) > M\|N| if N >0.

For fixed (z,t) € St, let wMN(y, ) := w(y, s; M+N, x,t) and wM (y, 5) :=

M+N

w(y, s; M, z,t). Adding a constant to w if necessary, we may as-

sume that wM+V < wM. Assume for a contradiction that
F(M + N,2,t) = F(M,z,t) < A[|N]|.
Then by the uniform ellipticity of F' we obtain

wM—F(M+N+D§wM,y,S) Swé‘/l—F(MqLD;wM,y,s)—/\HNH

S

in R" x [0,00). Hence by the comparison principle, we have w™ " >

wM | which is the desired contradiction.
Now we will prove the convexity of F. Let M, N € S" and (x,t) € Sy
be fixed. We write w™ as before. Suppose toward a contradiction that

there is some 0 € (0,1) and M, N € 8" such that
F(OM + (1 —0)N,z,t) > 0F (M, x,t) + (1 — 0)F(N, z,t).

Put X := M+ (1—0)N. We may assume that w™ > 0w + (1 —0)w™
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in R"” x R. Then we obtain from the convexity of F' that

(GwM+(1—0)wN)S—F(X+D§ (GwM—i-(l—Q)wN) ,y,s)
>9[w£/[—F(M+D§wM,y,s)] +(1-0) [wN—F(N+D§wN,y,s)}

S

= —0F(M,z,t) — (1 —0)F(N,x,t)
> _F(OM + (1= O)N, z,1)
= wg( —F<X+D§wX7y,8)

in R™ x [0,00). Hence the comparison principle implies that w® <

OuwM + (1 — 6)w? in R™ x [0, 00), which is a contradiction.
(ii) We drop the dependence of (y, s)-variable for convenience. Fix (M, x1,t;),

(My, 79, t5) € BpxSy. We denote v¢, v the functions w’ (y, s; My, 21, t1),

w?(y, 8; My, 19, t5) respectively for simplicity of notation, where w?’ is

in Lemma 2.2.2. By Lipschitz continuity of F', we have

(v9)s — F(M; + Df/v‘f, To, t3)
< (1)) — F(M; + ngf,azl,tl)
+o(l+ L) (||M1 — Msl|| + |x1 — zo| + |t1 — t2|1/2)
= —6v) + (1 + L) (||My — M| + |z1 — ma| + [t1 — ta]/?)

uniformly (y, s) € R™ x [0, 00), which means that
U(ls —5o(1+ L) (H]\/[1 — Ms|| + |z — 22| + |t — t2|1/2)
is a sub-solution of (2.2.2). Therefore, by comparison we obtain
vy — 0v] < o(1+ L) (| My — Mal| + |21 — ma| + |t — £2]'/?)
in R™ x [0, 00). By a similar argument for v3, we deduce that

|60y — vf| < a(1+ L) (|| My = Mal| + |1 — za| + [t — 1] /%) .
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Then the conclusion comes by taking limits on both sides.
]

Now we can find the effective limit u which solves the following homoge-

nized equation.

Lemma 2.2.4. Let {u®}..o C C(St) be the family of viscosity solutions to
(2.2.1). Then there exists a unique function u such that u® — u uniformly in

St, and u solves the following homogenized equation:

u, — F(D?>u,z,t) =0 wmn S,
R g (2.2.9)
u=p(z,t) on 0,Sr.

Proof. Owing to estimates [57], there exists ¥ > 0 for which

sup ||u®| 5 e < 00.
0<EI<)1 | ||Cv(ST)

Thus, we may extract a subsequence {u®}72; of {u®}.~¢ and a function u €
CY(Sr) with u® — w uniformly on Sr. Moreover, since u® = ¢ on 9,57 for all
e > 0, we have u = ¢ on 0,S7. For convenience, we will not use subsequencial
notation. Let P be a paraboloid with My = D?P which touches u by above
at (zo,to) in a neighborhood. Without loss of generality, we may assume that

P touches u strictly by above. Assume, to the contrary, that

P, — F(My, z9,t9) > 317 >0

for some n > 0. Put w(y, s) := w(y, s; My, xo,ty). Then by Lemma 2.2.2 we

can observe that w satisfies
Wy — F(My + D, o, to, y, s) = —F (M, z0,t9) in R" x [0,00). (2.2.10)

By the continuity of F' and F(Lemma 4.2.2), we can choose p > 0 in such
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way that Qp(l’o,to) C ST,

P, — F(My,x,t) > 3n, and
|F(M0 + D;@, xata Y, S) - F(MO + DZ&}\, Qfo,to,y, 8)‘ (2211)
+ |F(M0,l‘,t) — F(Mg,l‘g,to” <n

for any (x,t) € Q,(xo, to), uniformly (y, s) € R" x [0, 00). Moreover, u(z,t) —
P(x,t) < —p on 0Q),, for some p > 0. Define

. t
P(x,t) := P(x,t) + 0 (g, ;) : (2.2.12)

For a while, let us drop the dependency of (z/e,t/e*). Then in view of
(2.2.10), (2.2.11), and (2.2.12), we have

Pf — F(D2P®,x,t) = P+ W, — F (My + D}, x, t)
> P+ 1w, — F (Mo + D}, xo, to) — 1
- -Pt - F(MO,I‘O,tO) -1

> P, — F(Mo,a,t) — 21

>0

in Q,(xo,t). As v — w and P — P uniformly in Q),(xo, ), we can easily
check that for some ¢ € (0, 1) there holds

u(z,t) — P(x,t) < —p/2  on 0Q,(zo,ty), € < eo.

Hence P® — /4 is a super-solution to the following initial-boundary value

problem:

vy — F(D?v,x,t,x/e,t/e*) =0 in Q,(zo, %),
v =u(x,t) on 9,Q,(xo, to)-

Therefore, the comparison principle implies u® < P° — p/4 in Q,(x0, to).
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Letting e — 0 then u(xg, ty) < P(xo,to) — pt/4 which contradicts assumption
that u(zo, to) = P(xg,to). It shows that u is a viscosity sub-solution of (2.2.9).
In a similar manner, we are able to prove that u is a viscosity super-solution of
(2.2.9). Finally, the uniqueness of u is obtained by the comparison principle,
and hence the convergence of u® — u does not need to extract a subsequence.

This completes the proof. n
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Chapter 3

Non-linear operators of
divergence form on the

Sierpinski gasket

3.1 Introduction

In this paper, we consider one particular class of fractals, domains in R? which
are Sierpinski gaskets. The Sierpinski gasket(SG), also called the Sierpinski
triangle, is a kind of fractal sets with the overall shape of an equilateral
triangle, subdivided recursively into smaller equilateral triangles(see [27, 56]).
This is one of the basic examples of self-similar sets. There is a remarkable
difference between analysis on Euclidean spaces and that on fractals: different
measures are involved to measure the volume of sets and energy of functions,
and these measures are singular to each other in general. We develop an
analytic approach in which we used very strongly the energy measure, the
symmetry of the space, and the comparability of the non-linear operators.
We have chosen to work on SG since this makes the simplest context to
employ our methods. However, we expect that our methods will apply with

only minor changes to these other spaces of fractal type.
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3.1.1 Main results

It is natural to expect whether the Harnack inequality can be extended to
non-linear energy forms on SG. For example, the existence of p-harmonic
functions on SG has been proved in [25, 55], and [15, 16] proved the Harnack
inequality for non-negative p-harmonic functions on metric fractals, which
contain SG. But the study of non-linear operators of divergence type on
SG is new, to our best knowledge, hence we have to first define operators

properly. Consider the divergence form operator

A1 = 3 5 (w15 ) @
taking on functions on R", where a = (a;;(x)) is bounded, measurable, and
uniformly elliptic. Moser [53] states that an elliptic Harnack inequality holds
for non-negative functions u that are harmonic with respect to the operator
A. Classically, most of the proofs for the elliptic Harnack inequality use in
an essential way the fact that the energy forms for the Laplacian and the
divergence operator A, given by E(f) = [|Vf|* and Es(f) = [V -aV],
respectively, are comparable each other. In this way, it is reasonable to de-
fine non-linear operator L so that the energy forms of the L are comparable
to that of the existing Laplacian. Then we define a £-harmonic function u
to be one that minimizes the energy form of the operator L for the given
boundary values. In the next section, we will discuss more the operators L

and its energy forms.

The main result of this paper is the following elliptic Harnack inequality
for £-harmonic functions. We will use the symbol K to denote SG and let
Vo be a set of three boundary points of K.

Theorem 3.1.1. If K' is a compact subset of K that is contained in a

connected component of K'\Vy, then there exists a constant ¢; > 0 depending
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only on K', such that
u(z) < cru(y) =,y € K’

for any non-negative L-harmonic function u on K.

3.1.2 Main strategies

We now summarize the main strategies of this paper and make some remarks
on the key ingredients observed in achieving the result. In the following, we
mainly use Moser’s approaches [53] to prove the Harnack inequalities, but
the standard techniques of Moser iteration encounter difficulties in the fractal
case. Given a harmonic function v > 0, and for f = u”, the standard Moser
iteration argument uses the Caccioppoli inequality, Sobolev inequality, and

cut-off functions 7 with the minimum energy that satisfy

/ IVn|’dy ~ R *u(B(x,R)), R<1
B(z,R)

to bound

/ P < / IV Py < / P
B(x,R/2) B(x,R/2) B(x,R)

Iterating and passing to the limit, one obtains local boundedness of harmonic
functions. As hinted above, the key steps are to prove the Caccioppoli type
inequality and weighted Sobolev inequality. The Caccioppoli type inequality
on SG can be established by carrying out an interesting self-similarity prop-
erty, which suggests that we can consider energy as a measure. This special
characteristic of fractals allows us to link the energy of f to the L? norm of f
with respect to the energy measure of cut-off functions. On the other hand,

The difficulty in capturing the Sobolev inequality is that there is no suitable
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analogue of the following Newton-Leibniz formula

u(z) — uly) = / (3(s), Vi (s)))ds

for every curve v : [0,1] — R™ connecting = and y. Moreover, we notice that
the order of cut-off function, R~2, plays an important role in Moser’s method
since it cancels terms involving R? which arise from the Poincaré inequality.
But on fractal domains in R", for example, Sierpinski gasket, such functions
do not exist (see [36]). Instead, we focus on the “anomalous” scaling in the

Poincaré inequality

inf/ If —al*du < CRdw/ IV fPdp < 032/ IV f|?dp,
@ JB(z,R) B(x,R) B(z,R)

(3.1.1)
where d,, > 2, called ‘walk dimension’, means the space-time scaling rela-
tion for the diffusion process on SG. Since R < 1, (3.1.1) means that we
can establish a more appropriate estimate for the Poincaré inequality. Then
this estimate allows us to use cut-off functions derived from the potentials
associated with the Laplacian on SG. That is, a rescaled Poincaré inequality
implies the existence of enough ‘moderate energy’ cut-off functions on the
space. In fact, we can find a cut-off function with minimal energy of order
R4 > R~2. The important point is to create a cut-off function by using

Green functions and combine it with the Caccioppoli type inequality to prove

that
[ wrnsc [ gt
B(z,R/2) B(z,R)

for a new measure A = pu + R™%wy,, where v, is a energy measure of the
cut-off function defined as in Definition 2.1.8. The characteristic of the new
measure A is comparable to the existing Hausdorff measure p, and serves to
match the order R% of the Poincaré inequality. Then we prove a weighted

Sobolev inequality linking the L?¢ norm of f with respect to A to the energy
of f.
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We point out that the process to prove theorem 3.1.1 is similar to those
[6, 7], however in working with SG one faces several difficulties arising from
special characteristics of the domain. On SG and related fractals, most oper-
ators such as Laplacian or Green function will be defined as limits of discrete
operations on a sequence of graphs whose vertices approximate the fractal.
This approach occurs essentially because there is no gradient terminology. To
overcome this difficulty, we will use the concept of ‘cell’ to describe various
subsets of the domain. SG is a union of three smaller copies of cells(self-
similarity), and these copies intersect each other at a finite set of points.
This property allows us to define the energy measure on each cell, and we
can describe the local behavior of functions on the SG. In addition, by cap-
turing symmetric property of the cell, we can overcome the consistent issue

arising from [6].

3.1.3 Outline

This paper is organized as follows: In Section 3.2, we provide abstract formu-
lations of generalized energy forms and show existence and uniqueness results
for their minimizers. In Section 3.3, we formulate the construction of a cut-off
function and weighted measure \. We give the proof of the weighted Sobolev
inequality involving measure A in Subsection 3.3.2. In Subsection 3.4.1 we
present the proof of the local boundedness and weak Harnack inequality, and

finally prove main theorem in Subsection 3.4.2.

3.2 L-harmonic functions

In this section, we construct divergence structure non-linear operators and
their solutions. We begin by considering a general notion of energy on the
Sierpinski gasket. Suppose we are given functions L : R x V, x V, — R and

G : R x K — R which possess the following structure conditions,
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(a) There are positive real numbers cg, ¢; and ¢, such that

1/colp|* < Lip, x,y) < colp|*  for all z,y € V4,
G(z,z) > —¢ forall z€ Rand z € K, (3.2.1)
|D.G(z,2)| < a2 for all x € K.

(b) L is convex in p-variable.

Then we may consider the generalized energy on I',,: for any function u :

K — R and any finite union of cells D C K, define

E5M =5 3 Lule) —ulw)a) + [ Glule).a)i

r~my
I7y€VmﬂD

This is a natural extension if there is a weight on the Sierpinski gasket, but in
the case of generalized energy, monotonicity (2.1.1) is not clear since (2.1.2)

does not hold. So it makes sense to define generalized energy on D C K as

EE(u) := limsup(E5)™ (u).

m—r00

We also simply write £4(u) = ££(u). Then by the structure condition (3.2.1)

of L, it is obvious that
1 c
~Ep(u) < Ef(u) < cofplu),
0

hence for any u on V,, £5(u) < oo if and only if u € F(D). As a simplest

example, we can consider that
L(p,z,y) = azy|p]> and G =0

where a,, is a positive function defined on the Vi x V.. We call a = (ay,),
z, y € Vi, a conductance matrix if a,, > 0, azy = ay, for all z, y € V, and

azy = 0 if {z,y} is not an edge in I, for any m € N. If there exists ¢y > 0
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such that for any m € N,
1/co < azy < c¢o whenever {x,y} is an any edge in I',,,,

in a physical sense, we interpret a,, as conductances and the reciprocals of
resistances. Then we can think of the energy applied to the weight for each
edge of the Sierpinski gasket. In this case, for any u € F(K) the energy on
D C K are defined by

—m

c . r
En(u) = llnr?jolip N INZy ay(u(x) — u(y))?.
2,y EViD

In particular, if a,, = 1 for all z, y € Vi, then £5(u) = Ep(u).

What we can naturally expect is that, like a harmonic function, there
exists a function to be one that minimizes ££(-) for the given boundary
values on V. We can show that the answer is true, and we call a £-harmonic
function u to be one that minimizes £4(-) for the given boundary values on
Vo.

Lemma 3.2.1 (Existence of minimizer). Suppose that u € F(K) and define
B(u) :=={ve F(K):v=u on Vy}.

Suppose that the mapping p — L(p,x,y) is smooth and convex for each x,

y € Vi. Then there exists at least one function u € B(u) solving

Loy — i of
& (u)—vgga)c‘f (v).

Proof. Without loss of generality, assume u(gg) = 0 and it is convenient to
identify F(K)/constants with the space F(K) := {w € F(K) : w(g) = 0}.
Note that F(K) forms a Hilbert space with inner product Ep(-, ), which is
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1/2

endowed with the norm ||ul|p = Ep(u)'/?. We introduce the notation

—m

L(v) := limsup — Z L(v(z) —v(y), x,y),
m—00 2 Tromy
z,y€VimNK

and let us first claim that a function £(-) is lower semi-continuous on F(K),
ie, wy — w in .7?(K) implies £(w) < liminfy . £L(wy). To see this, suppose
wy — w in j-:(K) and set a := liminfy_,., £(wy). Upon passing to a subse-
quence if necessary, we may as well also suppose a = limy_,o, £(wy). Then
we must show L(w) < a.

Since L is convex with respect to p-variable, we can observe that

L(wy) > L(w) — limsup I”,

where
=" Y DyLw() — w(y),w o)) — w(y) - (ulr) — w)))

Let us estimate limsup,, ,.. I*. Note that
|D,L(p,x,y)| < cilp| forall z,y € V,,

which following from the structure conditions (3.2.1) and convexity of L. So

for each £ > 0, we have

1
Dyl = < capllp — a1 < o (252 + -0 0?)

for all p, ¢ € R. Therefore, we obtain

< (55(w) + 4ie(w o w— wk)) |

limsup ¥,
£

m—o0

Here, the second term of right-hand side goes to zero since w, — w in F (K).
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Hence limy,_, |lim SUD,, o0 [ﬁl| < c3e€(w) and since this inequality holds for

each € > 0, we obtain that

limsup I¥ — 0 as k — oo. (3.2.2)

m—ro0

Consequently, in view of (3.2.2) we deduce that

a= lim L(wg) > L(w) — lim (lim sup If@) = L(w).
k—o0 k—ro0 m—o00

Thus, £(-) is lower semi-continuous.

Now we prove the existence of minimizer. Set

l:= inf E(v).
velg(u) (U)

Select a minimizing sequence {vy}72 ;. Then
(c/*ll (’Uk> — 1.

Since E(v) < o (E5(v) +cq) for any v € F(K) and [ is finite, we have
||vk|l < ¢ for any k. Consequently, by the weak compactness theorem, there
exists a subsequence {vy, }22, of {v),}22, which converges weakly to 7w € F(K).
le.

E(vg,, ) = E(W, @) for all p € F(K).

On the other hand, lemma 2.1.2 allows us to use the Arzela-Ascoli theorem,
from which we deduce that there is a further subsequence of {vg, }5°,, which
we denote again by {vy, }2, for convenience, such that {vg, }5°, converges
uniformly to u € C(K), and thus u € B(u). Upon passing to a subsequence

if necessary, we may also suppose
I = lim &% (wvy).
k—o00
Now it remains to show that w is in fact the minimizer among functions in
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B(u). So we have to show that
EE(@) < L.

To see this, for each € > 0 let

K. = {wEB(u):E(w)+/

Gu(x),z)dp <1+ 5} .

Then the convexity of L and lower semi-continuity of £(-) imply that K is
convex and closed. Thus it is weakly closed according to Mazur’s Theorem.

Since {vg}32, converges uniformly to u we have

/K G (), 2)dp — /K Glii(x), z)dp,

and since {vy}72, converges weakly to u, we conclude that all but finitely

many of the points {vy}72, lie in K., w lies in K., and consequently
EX(w) = L(u) +/ GU(x), z)dp <1 +e.
K

This is true for each € > 0 and thus ££(u) < [. Finally, since u € B(u), it
follows that

L/~ — l — . L )
E(u) Jé}sl&)g (v)

]

We turn next to the problem of uniqueness. In general, there can be many

minimizers, and so to ensure uniqueness we require further assumptions.

Lemma 3.2.2 (Uniqueness of minimizer). Suppose that the mapping p
L(p,x,y) is smooth and uniformly convez for each x, y € V., and the mapping

z +— G(z,x) is smooth and convex for each x € K. Then a minimizer u €

B(u) of £(-) is unique.

Proof. Assume uy,uy € B(u) are both minimizer of ££(-) over B(u). Then
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_U1+U2
2

€ B(u). We claim

w

C Sﬁ(ul) +5£(UJ2)
£8(w) £ TS S

with a strict inequality, unless u; = us.
U —u ~
L2 It is easy to observe that @ € F(K). Put

Setting w =

L) =" 3 L) — o). 7.y)

T~YmyY
z,yEVm

In="o 3" DyLlw(e) — wly)w o)) - T()

Note from the uniform convexity assumption that for all p, ¢ € R and z,

y € V., there exists ¢; > 0 such that

C
L(p,z,y) > L(q,z,y) + D,L(q,z,y)(p — q) + 51|p —ql%.

Thus, the definition of £ and the convexity of G imply that for each € > 0

there exists an index NN that for all m > N we have
£ (w) + € 2 (5™ (w)
= L(uy) +/DG(u1)du
2&@+%+%WW&®+/GWMMD£WW@

D

:WWWM+%+%WW&®+LD£WW@,
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and
E-(u) + & > (5™ (uy)
— L(w) + /D G (un)dy
> L(w) — Ly + %8(’”)(@, @) + / G(w)dp — D,G(w)@dy
= (E5™ (w) — I, + 5<m /DG )wdy.
Here, each second inequality we used the uniform convexity of L. Add and
divide by 2, to deduce

Sﬁ(ul) + 5£(u2) 4

5 e > (EF)™) ()—|— 5 )(w, W)

and this inequality holds for all m > N so we have

5£(u1) —+ SE(UQ)

i +e> E5w) + 5 (@, ) = E5(w).

We now let € tend to zero we have

) L E) e,

As EF(uy) = EF(up) = minyepu) EX(v) < EX(w), we deduce that

Since w = 0 on Vj, by Lemma 2.1.2, |uy (x)—us(z)|* = 4|w(z) > < € (w,w) =
0 for all x € K so we deduce that u; = us. O

3.3 Weighted inequalities

In this section, we find a suitable cut-off function to obtain weighted Sobolev

and Poincaré inequalities. We can then use these inequalities to drive the

37



CHAPTER 3. NON-LINEAR OPERATORS OF DIVERGENCE FORM
ON THE SIERPINSKI GASKET

Moser iteration so that we can estimate the supremum and infimum of £-

harmonic functions.

3.3.1 Barriers

We begin to construct cut-off functions for which one has good enough control
of its energy. For given connected finite union of cells D, write Gp(x,y) for
the Green function on D. Then Gp is symmetric and continuous, and for

v € F(K) with support in D we have

E(Gola).0) = = [ A,Gladuty) = o)

Since Gp(z,y) = 0if y € D, so we can extend Gp to K x K by taking it
to be zero off D x D. A more general details of Green functions on SG is

contained in [33].

Now let A C D be connected finite union of cells. Define

Uz, A, D) :AGD(x,y)du(y) r € K.

Then we notice that U = 0 on 9D, U is strictly positive on L, and

In other words, for any v € F(K') with support in D we have

E(U(-, A, D),v) = / v,

A

Note also that U is monotone in L and D: if A’ and D’ be finite union of
cells which is connected respectively satisfying A C A’ € D C D', then

U(x,A,D) <U(z,A",D) < U(x,A", D).
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We now investigate some estimates of U.

Lemma 3.3.1. £(U) satisfies the bound
1(A) i%fU <EWU) < u(A)supU. (3.3.1)
A

Proof. Note that A,U = —14. Then by Gauss-Green formula in the domain
D

Y

Ep(U) = — / (A)Udp+> UU = / Udp+ Y U,U.
D oD A oD

As U =0 on 0D we have

E(U) = Ep(U) = /A Udp.

Since U > 0, we obtain (3.3.1). O
For any single cell I, recall that R; =< 2™ is the diameter of I.

Lemma 3.3.2. Let I be a single my-cell. Then

Uz, I,1) < R forx e K,
Uz, I, I") > coR™  forax el

Proof. We prove the first inequality. By Lemma 3.3.1, we have
EWU) < u(I) supU.
Thus, by Lemma 2.1.2 we have
Slep U < esRPEWU) < 3R (1) SLIlp U < cyRP SI}pU

and the result is now immediate.

Next we prove the second inequality. Suppose = € I°. The function Gp«(z,y)
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is super-harmonic in /, and, by the minimum principle,
inf G = min G- .
inf G- (2,y) = min G- (z, y)

Moreover, the function G«(z,-) is harmonic in I* \ I°, so by the behavior

near a boundary point of harmonic functions ([27] Lemma 2.7.1) we have
Gr(z,y) > csr™ = 527 2miB > CGRfﬁ for y € 1"\ I°.

Thus, if z € I°,

Uz, I,I7) :/ (z,y)du(y /lnfG]*(:E y)du(y)
Iy
= u( )Helg}GI (z,y) > R pu(I) > ¢ R%™.
Finally, by continuity of U on I, we obtain U(x, I, I*) > c¢;R% on I. O

3.3.2 Weighted inequalities

In this subsection, we will prove the weighted Sobolev and the Poincaré
inequalities by defining a new measure, called A, that involves the barrier
constructed in previous subsection. Let us fix two connected finite union of

cells Dy C D,, and set
w(z) =U(x,Dy,Ds), z€K. (3.3.2)
Then by a similar argument as the proof of Lemma 3.3.2 we have

sup [w| < ¢; R}y p(Ds), and
Do

) (3.3.3)
E(w) < p(Dy)sup lu] < 1Ry (D).

For the remainder of this subsection, we assume that for any single m;-

cell I, D, contains at least one cell of the same size as I. In other words, we
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can make [ to be included in D, by translation.

We will use the following elementary result.

Lemma 3.3.3. Let x, y, 2 > 0. If v < c1(2'/?22'/% + ), then
r <20y + 40%2.

We begin by proving a weighted Poincaré inequality.

Lemma 3.3.4 (Weighted Poincaré inequality). Let I be a single m-cell and
suppose f € F(K). Then we have

*

[ vy < b, uoo? (e R [ Pan). @3
I

Proof. For brevity, put
P = / f2d1/<w>.
I

Let ¢ = U(+,1,I"), and write &y = inf; ¢, &; = sup;. . Then by Lemma
3.3.2 we have
CQR?W S (I)O S (1)1 S CgR?w.

Set
A =/ P dv ),
b= / Py,
C= [ fdpu,
I*
D= [ fldvg,
[*
1
E - 55]* (f)
Then

P< (irllf ©)? /f2902dl/<w> < 9 2A.
I
If I* and D, are either disjoint or intersect at a single point, then P = 0 and
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A =0 since w =0 on (D39)°. So we assume that p(I* N Dy) > 0.
We begin by bounding L. Choose xy € I and set w defined by

W =w ifI*QD%

w=w — w(xo) if I* C Ds.
In either case we see that there exists a point in [* at which w is zero. Set

S =supw.
I*

Then by Lemma 2.1.2,
5?2 < e &(W, W)RY = c,€(w)RY < ¢5(Rp,R1)*’ u(Dy)?.
Now the definition of energy measure implies that
A = &0, (P9, T) — 50, (f6%,T7). (3.3.5)

We first consider the first term on the right-hand side of (3.3.5). If I* € Do,
then w = w = 0 on 9D,y and if I* C Dy, then f?¢? = 0 on dD,. So by

Gauss-Green formula,

Ep, (f2o*w, w) = —/ (A @) f2o%W dp.

Do

Hence

Ep,(fPPw,w) < | fPofwdu < S [ frofdp <SP / F2dp = SO2C.
I* I*

D,

Now consider the second term on the right-hand side of (3.3.5). Set F' = f.
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Then by Hélder’s inequality,

13 (@)~ Fu) @) - a())

T~myY

< S0 1F@) + FW)IF@) ~ Pl - @)
1 _ _ 5 /1 3
< (Z > |F(@)? + F(y)?] |w(a)? — w(y)2l2> (5 S IF(@) - F(y)|2> ,
(3.3.6)
By simple computation, the second term on the last line of (3.3.6) can be

bounded

(% > IF() - F<y>|2> < (i > (o) + o) () - f(y))2)

r~Ymy

r~mY

Thus, using the representation (2.1.4) we have
1 2 2 ~9
- §gD2(f Y ,w )
1/2
< ( f2902dV<w2>) Ep,(fe, fo)'?
Do
1/2 1/2 1/2
< ( f2902dV<w2>> [(/ 902d”<f>) + (/ f2d’/<so>) ]
Do Do Do
< (25214)1/2(31/2 + D1/2).

Consequently, we can obtain the bounds of L,

1 - ~ -
A= _§5D2(f29027 U}2) + gDz(f2§02w7 w)
< (28%A)Y2(BY? + DV?) 4+ 5%2C
< ¢5(S*A(B + D)% + S0,
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Then by Lemma 3.3.3,
A< c28*(B+ D) + ¢;SPIC.
We next bound D. We also obtain that D is of the form

D =&-(f*p, ) — %51*(1“2, ¥?).

We can bound each term on the right-hand side by using similar argument

as L. First, since f2p = 0 on 9I*, by Gauss Green formula

Er(fPo,0) = —/ (D) fPodp = /If2<pdu < @%/If%zu < 2.

*

Secondly, we calculate

LY (@)~ T ) — o))

r~myY

1/2
<2 (i D@+ F ) (p(x) - w(y))2>

T~mY

1/2
X (1 > (p@) + () (f(x) - f(y))2)

r~YmyY

and hence again using representation (2.1.4) we have

1/2 1/2
Er-(f%,¢%) <2 ( . f2d1/<¢>>> (/ gozdum) —opl2pl/2.

So we obtain
D < cs(BY2DY? 4 ®,0).

Using Lemma 3.3.3 again we conclude that

D < cy(B + ®,C).
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Finally, as B < ®?F, we deduce that

A < ¢;S*(B + D) + ¢;S9C
S 6752(@%E + CgB + CgCI)lC) + C7SCI)%C
< 01052®%E + Clo(S2CI)1 + S(I)%)C

Thus,
2 2 2
i) i)
P < ®52A < ¢105? PN By 52 (2 7 +5 (=) |C
@, D, D,

S 61182E + 611(82(1)1_1 + S)C
S 01152E + 011(131_1(52 + S<I>1)C

Since RS u(I) < R%Q p(D2) from the assumption above this lemma, we have
®; < 3R < c1pR7 (1) < cra(Rp,Rr)?(Ds).

Therefore, we conclude that

P < C1152E + 011(1)1_1(82 + S(I>1)C
< c13(Rp, R1)* (Do) (E 4 0710)

which verifies (3.3.4). O
Now we define a measure A as
My = i+ Ry (D) ™ vy

where the coefficient appears in the above definition is needed to cancel terms
involving R%i p(D2) which arise from the weighted Poincaré inequality. It is
clear that i < Ay Recall that N(I;Dy) = pu(D2)/p(I), and we denote
N := N(I; D,) > 1 for convenience.
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Lemma 3.3.5. The measure A, satisfies bounds
Awy(D2) < p(D2)  and  p(I) < Mwy(I) < o1+ N)u().  (3.3.7)
Proof. By definition of Ay, and (3.3.3),

Aw)(Ds) = w(Ds) + Rp2’ 1(Ds) ™ vy (D)
< u(Ds) + 1 R (Do) "' Ry u(Ds)*
CaM(D2>

IN

which proves the first inequality of (3.3.7). If we apply Lemma 3.3.4 with
f =1 to deduce

Ny (I) = (1) + Rp2 1(D2) ™ vy (1)
< u(I) + ca(Rp, Ry)* w(Da)* Ry u(Day) 'Ry ™ | 1dp

I*

= u(I) + ea(Rp, Rr)* 1(D2)* Ry (Do) ™ Ry (1)~ u(I7)
< cs(u(I) + p(Do))
=c5(1 4+ N)u(I).

Then the second inequality of (3.3.7) follows. O

Corollary 3.3.6. Let f, I, and I be as in Lemma 3.3.4. Then write fi« =
(1) f]* fdp = fl* fdu, we have

/(f - fl*)zd)ww) < ClNRfrlwgl*(f) (3.3.8)
I
and
/f Ay < ANRPER(f) + Ay (1 (/|f|d>\ U,)) . (3.3.9)
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Proof. By the Poincaré inequality Lemma 2.1.3 we have
/ (f = fr)%dp < 3R Er(f) < caRPEr(f).
Thus, applying Lemma 3.3.4 to f — f;- we deduce

/ (f = fr)2dviey < c5(RoyRe) u(Da)?Er-(f).

1

Consequently, by definition of A,y and assumption N > 1 we obtain

/(f = [ dA ) = /(f — f1-)?dp+ Ry (D) ™! /(f = fr) dvi)
I I I

< (R?w + R%(DQ)) & (f)

<7 (RP" + NR{) Er-(f)

< csNRYEr-(f)

which shows (3.3.8).
Let b= Ny (I)7! [, fd\@wy = f; fdA@w). Then using (3.3.8) we have

/f2d>\<w> = /(f—b)QdNu» +/deA<w>
I I I
< /(f — fro)2dN ) + 0 Ay (1)
I

2
- / (f = fi-VdMwy + Ay (1) ( / fdA<w>)
I I
< esNRPEr(f) + Ay (1) ™! (/IfdA<w>> :

This complete the proof of (3.3.9). O

Using the fact that [ is a single cell, we can obtain a sharper result. The

proof is based on the rotationally symmetric property of the cell.
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Corollary 3.3.7. Let I be a single my-cell and suppose f € F(K). Then

[ vy < eiro o (81004 7 [ Pa) @30
1 I

and

/f Ay < GNRIE(f) + A

(/|f|d/\ ) . (3.3.11)

Proof. Note that the left-hand sides of (3.3.10) and (3.3.11) do not depend
on the values of f outside I. Recall that I* is the union of the 4 single cells

of length m;, so extend f|; to a function fon K by rotation. Then

Pdj=14 / Pdu, En(F) < 46:(5)
I* I

and (3.3.10) and (3.3.11) now follow from Lemma 3.3.4 and Corollary 3.3.6
for f O]

Next we proceed to a Nash inequality for a single cell.

Lemma 3.3.8. Let I, f be as in Lemma 3.3.4 and suppose that [, f2dX ) <
0. Then write Ay (I)™" [} fdAwy = f; fd\w), we have

]€ FPd\ ) < ¢y Adr/de g20/du
where
2
A= NI RIE(f) + N¥I ][de)\M and B = (7[ \f|d/\<w>> :
I I
Proof. The result is trivial if A = 0, so we may assume A > 0. Let t € (0, Ry).

We can find a covering of I by cells I; such that t/2 < R;, <t, I =JI;, and
the I? are disjoint. Note that u(1;) < Rif = t%. As I[; C I, I; and I are both
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single cells, write V; = N(I;; Dy) we have

N\ 28/ds 26/d;
NiRf = Ry i(Ds) = R7 (D) ( ﬂ(—é;)) ) (%)

[) 25/df tdf 2ﬁ/df
et (Y (Y

and by Lemma 3.3.5,

C2N,U(I) . N(D2>
uen) > (I

~

<

We apply Corollary 3.3.7 and sum. Then write d(t) = t% /u(D;) we obtain

/f2d>\<w>
1

= Z/I f2d>\<w)

Ay (1 o ’
<y | NRPEL(S) + A; :éli))w(f) (/I |f|dA<w>) ]

dy 23

<es X [0 T 0T e + ey v [ 1fix ) ]

< s lu(Dz)”d(t)d?c‘?z(f) +d(t) T Ay (17 (/I\fldNu») ] :
(3.3.12)

49

#;rx_'! _CI:I_ 1_]| -_.fJ]_ T_III_



CHAPTER 3. NON-LINEAR OPERATORS OF DIVERGENCE FORM
ON THE SIERPINSKI GASKET

Since Ay (1) > p(1), we deduce

][de/\<w>
1

M(D2)% 7 1 2 ’
<o | | 22T ) atFeutr) + ey 3o ) ([ 1ares

dw 28 28

=cg | N M([)Wd(t)75](f) + d(t)fl)\<w>(f)72 ( . |f|d)\<w>) ]

< ¢ <d(t)‘2i?A + d(t)—lB) :

If t > Ry, then

28

AN Ry \" ([ u(Dy) i
AN Z(u(Da)> (u(D) =1

so the above inequality is trivial. If we choose t, so that d(ty)**/% A =
d(ty) ' B, then we have d(ty) = (B/A)%/® . Now let t = t; and substitute in
(3.3.12) to conclude the proof. O

Next, we use this to derive a weighted Sobolev inequality linking the L?*¢

norm of f with respect to Ay, to the energy of f.

Lemma 3.3.9 (Weighted Sobolev inequality). Let I be a single my-cell and
f be as above. Then for any q € (2,2 4 4/3/d,,) there exists c1(q) < oo such
that

2/q
<]{ |f\qd>\<w>> < ca(q) <N1+O‘R?551(f) + N ]{fzd)\w) -

where o = 25 /(dy, + 25).

Proof. Since E(f1, fT) < &(f) and |f| < ft + f~, it suffices to consider
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non-negative f. Write

Ao(f) = N®@/U R E (f) + N?/4s ][f2d>\<w>,
I

mi - (f |f|dA<w>>2-

Let us first assume that Ag(f) = 1. This assumption will be removed at the

end of the proof.

Fix 0 < ¢ < min | N™2%/dr %) Set I, C I be a finite union of cells with
the same size, containing {f > 2’} N I and satisfying f(z) +&/2° > 2" on I;.
This is possible since f is continuous and self-similarity structure of K (see

[52], Theorem 2.1). Without loss of generality, we may assume that I;,1 C I;.
Define

and  fo = ((f +¢/2") A2") = ((f +¢/2") A 2").

Note that f, < 2" on I, f, = 2" on I,11, and f, < ¢&/2" on (I2)¢. Therefore,

][fnd/\<w> = Ay (I)7" ( JndX gy + fnd/\<w))
I In (Ip)e

< Ny (D) 71 (2" A (In) + /2" A (17)°)) (3.3.13)
< Ay (D)7 (2w (Tn) + /2" Ay (1)
< 2"pn +¢/2",

while
][fﬁdm) = Ay (1) ( FRd ) + f,%dA<w>)
' " e (3.3.14)
Z )‘(w) (I)_l f5d>\<w) = 22npn+1'
In+1
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Since f, < f+¢/2" on I and &(fn, fn) < E1(f), we have

Ao(fa) = N/ BEL(f,, f) + N2/ ][ Pd\
I
< N RPE(f) + 2N ][ [£2 + (/2] dAwy
1

< 240(f) + 2N/ (g/2M)?

S Co.

So, from above (3.3.14) we deduce

< 2—2(n—1) ][led)\@u) < 2—2(n—1)N—2B/de0<fn_1> < CgN_Zﬂ/df2_2n.
I
(3.3.15)
Applying Lemma 3.3.8 to f,,

][f,%d)\@u) < C4A0(fn)df/deo(fn)2ﬁ/dw < C5Bo(fn)2/3/dw.
I
Using this, (3.3.13), (3.3.14) and (3.3.15) we obtain

22npn+1 S ffqsz(uO S CSBO(fn>26/dw S Cs (2npn + 8/2n)45/dw
I

S CS(CBN—Q,B/de—TL +N—2,B/df/2n)4ﬁ/dw S CGN_SﬁZ/dfdw2_4nﬁ/dw.

So we have
Do < g N~8%/dpduwo—n(2+46/dw) (3.3.16)
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where ¢7 = ¢7(8, dy, dy). Consequently,

—1\1g

]{!f|qd)\<w> < A<w>(f)12/l | f1dA w)
n=0 n

< )\<w>(I)_1 Z/ 2nqd)\<w>
I

n=0 nfl\lg

< Ay (D71 ) 2" Ay (1)
n=0
= Z 2nqpn_1
n=0
where I_; = I. Hence (3.3.16) shows that
][\ FlAdA y < cgN—87/dsdu (3.3.17)
I

if g € (2,2+45/dy).

In the general case, let g := Ag(f)""/2f. Then Ay(g) = 1 so g satisfies
(3.3.17). Since q € (2,2 + 4//d,,) we have

0o 8 2 du 8 dy dy _ —=88%+d3 +28d,
dfdw q df o dfdw dy + 28 df B df(dw + 26)
d(dy +28) dy + 20
and 862 2 2 8% 2 d
dedy q ' dy didy q  \dy

Therefore, since N > 1, we conclude that

2/q 2/q 85 2
(][|f|qu<w>) = Ao(f) (][Iglqdkw) < cgAg(f)N e
I I
—8,82

=8B~ 2
= N T (Ndw/deiﬁem + N2 f deA<w>)
1

< ¢ (N1+‘”R§ﬂ<‘/’z(f) + N© ][deNw) :
I
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which completes the proof. ]
We can also observe the following estimate.

Corollary 3.3.10. Let f and I be as in Lemma 3.3.9. Then for any q €
(2,2+48/d,) there exists c1(q) < oo such that

2/q
(fUWWw) s@wﬂ(ﬁ%xﬂ+fﬁw)
I I

Proof. Using Corollary 3.3.7 and the fact that R?ﬁ u(Dy) < N R?“’ we obtain

/IdeM» - /Ideu+RD§5u(Dz)l/lf2dV<w>
s/ﬁw+wﬁmm(&m+&%/ﬁw)
I I
S/Ide,u—l—cgNR?” (Ef(f)+RIdw/]f2du>
g@NQw&m+/ﬂm)
I

Now applying Lemma 3.3.9 and from the fact that A, (1) > p(I) we have

2/q
(fmwMQ
I

< ¢y (Nl—’_aR?Bg](f) + N¢ ][fzd)\<w>)
I
<y |:N1+QR?’B(9[(]£) + N1+a)\<w>([>71 (R?ng(f) + /\de/L)‘|
1
< ey N <R?551(f) + ][de,u) :
I

]

We now show the weighted Sobolev inequality on Dy;. We can find a
covering of Dy by cells I;, where each I; has the same size, such that Dy =
U;1; and the I? are disjoint. Then clearly, pu(D2)/p(l;) = p(D2)/pn(1;) and
R;, = Ry, for all 7 and j.
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Corollary 3.3.11. Suppose that f € F(K). If Dy is covered by cells I;,
where each I; has the same size, such that Dy = U;I; and the I are disjoint,
then

2/q
( \f]qu<w>) < ¢ NHe <R§B5D2(f) + N f2d,u> )
Do

Do
where N = u(Ds)/p(I;) and Ry := Ry, for any i.

Proof. Since I; C D, for all 7, applying Corollary 3.3.10 to each of the I;, we

obtain

£ 1sran, - > jj“j—(%)) (][ \frqu<w>)
-l )

<y Nq (1+a) /22 (R2551 /delu)

Since q/2 > 1,

F[tdA ) < caN10+)2 [Z (R eun)utty | 5 2‘“‘)]

Do i

= eyt (R?ﬁf:pz(f)w(f) )"
Do

a/2
< ¢z N9UF)/2 (RiﬁgDQ(fHN f%m) .

Do

3.4 Harnack inequality

In this section, we prove the Harnack inequality for non-negative £-harmonic
functions. Our basic approach is the ideas of Moser [53] from the general

metric measure space case [11]. We use the Moser method by using weighted

95



CHAPTER 3. NON-LINEAR OPERATORS OF DIVERGENCE FORM
ON THE SIERPINSKI GASKET

Sobolev inequality to estimate the supremum of L-harmonic functions by
their averaged L%-norms. Next by careful choice of appropriate cells and

iteration, we will obtain the result.

3.4.1 Caccioppoli type inequality and local bounded-

ness

The aim of this section is to prove two components of the Harnack inequality,
namely, Caccioppoli type inequality and local boundedness. We first need a
logarithmic Caccioppoli type inequality which is a special case of the following

Caccioppoli inequality for minimizers.

Lemma 3.4.1 (Caccioppoli inequality). Let D be a connected finite union
of cells in K, and suppose u > 0 is a minimizer of E(-). Let v # 0, and
suppose n € F(K) with support in D. Then

1 1
/ u TP dry < ¢ (—2/ u' Vv + il —; / n2u17du) . (3.4.1)
D 7 Jbp Y D

Proof. Using the homogeneity of (3.4.1) we can replace n by an and so we
can assume that 0 <7 <1 in D. We first assume that v > 0. We note that

u is continuous, and so u > § for some § = 6(u) > 0 due to compactness

of domain. Thus using the homogeneity again, we may assume that u >
|y 1/ (D)

Let w = u+n*u~" then by Lemma 2.1.10 w € F(K) and so £X(w) < co. Let

SIS i ule) £ )
0 if u(z) = u(y).

Then the assumption u > |y|*/("+D) implies that
w(z) +u(z)™ > uly) +uly)™”  if u(z) > u(y).

Thus, 0 < p,,, < 1. For brevity, let us denote by v,, = 1/2(v(z)+v(y)). Then
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(Vay)? = 1/4(v(z) + v(y))* < 1/2(v(x)* + v(y)?) = v?,, in our notation. By

elementary computation,

+

Uy (n(x)* = n(y)?)
= (1= 12, pay) (w(@) — u(y)) + u oy (n(@)? = n(y)?).

Since I—nypxy > 0, if u(z) # u(y) and max(n(z),n(y)) > 0 we then have by
the convexity of the function p — L(p,z,y) and structure conditions (3.2.1)
of L that

L(w(z) = w(y))

< (1= TPy L(u() — u(y)) + Paypay L (u—vmy<r:]_(2x)p— n(y) ))
< (1= oy L(u(2) — u(y)) + L2 02 22
T aybay
< (1= Py () — uly)) + 202 (1(2) — (y))?
o N zyPzxy L
< Lu(e) — u(y) - 22 ule) — u(y))? + 0 ) — ()

Due to the uniform continuity of u, given arbitrary £ > 0 we have
[Pay — yu(z) " < e

for any z, y € V,,, with x ~,, y if m is large enough. Hence the second term
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and the third term on the last line of (3.4.2) can be bounded

g X Fapalute) ~u(s)
= —& G;D n(x)? x;ypacy(u<x) —u(y))?
< g xe;m n(z)? (—yfyu(ﬂc)”1 +¢) $szy(u(x) —u(y))*
and |
o 3 ) ()
= % we;m u(z)™ x;y (n(x) ];yn(y))Q
<t G;Duwwwywu(x)v“ +9) 3 0@~

respectively. We notice that all of the following terms exist and are finite.

/772u—w—1d,/<u>7 /nQqu), /ul_’ydl/@), /u_z’ydl/@) < 00.
D D D D

On the other hand, since u'~7 > |y|u™7, and by the growth condition (3.2.1)
of G we obtain
G(w) = Gu) + G(u+n*u™") — G(u)
(u) + con®u " (u +n*u")

<G
1
< G(u) + ¢ (1 + m) nPul 7.
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Therefore, since u is a minimizer, u = w on 0K, and £X(w) < oo, we have

cS'E(u) < Eﬂ(w)

— limsup —— > L{w(x) —w(y) + / G(w)dy
m—00 2 Zromy K
z,YEVm
1
< E5(u) + —/ n* (—yu" 4 €) dvg,
€ Jp

1
+ 400/ u ('y*luﬂl + 8) Ay + / Co (1 + —> n*u'dp.
D D ol

So after subtracting £%(u) < oo from both sides we obtain

4 1
l/ n2u_7_1dl/<u> < ﬂ/ ul_Wdl/W —{—/ Co <1 + —) n*ut " dp
¢ Jp 7 Jb D 7]

1
+ e (—/ 772du<u> ~|—4co/ u_z'ydl/@)
€ Jp D

Letting ¢ tend to zero, the result follows. The argument for the v < 0 is

similar so we omit it to avoid the redundancy. This finishes the proof. O

Lemma 3.4.2 (Logarithmic Caccioppoli inequality). Assume that u > 0 is
a minimizer of E(-) and let w = logu. Then for any single my-cell I with

I* C K, there exists ¢, not depending on u, such that
Er(w) < erRy* (1),

Proof. Let ¢ = U(-,I,1*). Then by Lemma 3.3.2 ¢ > ;R on I and ¢ <
csR%™ on I*. So by applying Lemma 2.1.10 with f(z) = logz and Lemma
3.4.1 with v =1 we have

S[(U}) = /IdV<w> < CQRI_M“’ B

< c4R;2d” (/ dv g +/ ¢2du>

S C5RI_2dw (SI* (¢7 ¢> + R?dwlu(j)) :

G2 vy = c Ry 24 ; *u 2 dvy,
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From Lemma 3.3.1 and 3.3.2 we see that £«(¢, ¢) < ¢, R¥* u(I). Therefore,
Er(w) < esR7™ (R u(I) + Ri%™ (1)) < cgRy™ u(1).

[]

Let u be £-harmonic and non-negative in K. By looking at u+¢ fore > 0
and letting ¢ — 0 we may without loss of generality suppose w is strictly pos-

itive.

Now we are ready to prove the following local boundedness for £-harmonic
functions. To do this, we construct a family of shrinking cells and using the
weighted Sobolev inequality to find a recursive relation for averaged L?-norms
of solutions. We first discuss the construction of a family of shrinking cells
in more detail. Let I be a single mj-cell with I* C K and let 0 < k£ < o0.
Since [ has three boundary points, so there are three cells of length m; + &
that meet the boundaries of I. We define (); as the union of I and these
three cells. Then obviously Qy = I*, Qo = I and Qri1 C Q. We can
assume that @y is covered by cells IF, where each IF has the same size
with length m; + k, such that Q = U;I¥ and the (IF)° are disjoint. Then
Ny, i= N(IF; Q) = 2k + 3 < 20H0ds = ¢, (d )2k

The following is the local boundedness of Sierpinski gasket version for
L-harmonic functions when the domain is a single cell.
Lemma 3.4.3. (Local boundedness) Let I be a single m;-cell with I* C K

and let v be either uw or u™t. If 0 < q < 2, then there exists ¢; > 0 such that

sup v¥ < ¢ (R?ﬂé}* (v, v?) —I—][ qudu) )

I I*

Proof. For brevity, let us denote u(Qy) and Rg, by p and Ry, respectively.
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Note that Ry = (2+2%)2 ™% and py, = (34 3%)37™ =% For 0 < k < oo let

W = U(a Qk’-i—la Qk’)7 and /\(wk) =K + Rlzzﬁulzlyhuk)- (343)

Then wy, < U(-, I*,I*) < ¢;R% on K by Lemma 3.3.2. Let f = u?, where p €
R, p # 1/2. We notice that Corollary 3.3.11 can be applied for f by replacing
D5 to Qr and w to wy. So, applying Corollary 3.3.11 with ¢ € (2,2+4//d,,),

we have

2/t
(]é |f|td>\<w>) < Nt (Rifer<f>+Nk ]é f%m)
k k

(3.4.4)
< 2" (R??%(f) + 2kds f deﬂ) .
‘ Qk

If x € Qky1, then there exists a single cell J with length m; = m; + (k+ 1)
such that x € J C Qg41. Then J* C Qy, so by Lemma 3.3.2 again we have

wp =U(, Qry1,Qr) > U, J,J7) > C5R3“’ on Q1.

Thus, using (3.4.3), Lemma 2.1.10 and 3.4.1 with v = 1 — 2p we deduce that

ng+1(f) = /Q dV(f) < C6RJ2dw/ widl/<f>
k+1

Qrt1

< 06R}2d“’/ widum :C4R}2d“’/ pQw,%u2p_2du<u>
Qk Qk

< er(p) Ry ( / uPdv ) + / wiuz”du)
k k

< chjM” ( f2d1/<wk> + R?dw/ f2d,u)
Qr k

= cg Ry [Riﬁ ik / PPNy + (R3™ — R ) / fzdu]
Qk Qk
Rmuk
J Qk

Here, we use the relation R2’py, > R’u(I) > R*™ on the last inequality.
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From the definition of R and jy, we can easily check that R+ /Ry = 1,
Ryi1/Ry < Rp/Ry < 2(2 +2F) < 2, pn/u(J) < 3(3+ 3%) < 1028, and
M) (Qr) < cr1pu (Lemma 3.3.5). Therefore,

(R Ri)*
R?Idw Qk

28
le+1Rk m )2
<c : F2d (3.4.5)
( R} ) (uu) o

S 01322k,3+2kdf f2d>\<wk>
Qk

Ri?ﬂngH(f) < g f2d>‘<wk>

Moreover, since puy./ppr1 < 4, we have

f2d,u S C14 f2d>‘<wk>7 (346)
Qr+1 Qk

so applying (3.4.5) and (3.4.6) to (3.4.4) we obtain

2/t
(7[ |f|td>‘(wk+1)> < 0142k[(1+a)df+2,8+2df] f2d)\(wk>
Qs el (3.4.7)

< 01426k o de)‘(wk>
k

Choose ¢ > 0 such that infiez |¢'(t/2)! — 1/2] > c15 > 0. First set ¢ =
q'(t/2)7" for some i. Let py = 2qo(t/2)* for k > 0 and write

1/pk
U, = (f Upkd)\(wk>>
k

Note that pyy1/t = pr/2 # 1/2. Applying (3.4.7) to f = vPe1/t = Pr/2 we
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have

2/t 2/t
o=, e - (o)
Qut1 Qr+1

S 61426k f2d>\<wk> = 01426k][ ’Upkd)\(wk>
Qk Qrk
= 01426k\11£k .

Thus,
U < (61426k)t/2pk+4,gpikt/2pk+1 _ (C1426k)t/2pk+1 U,

or for every [
-1

log, ¥; < log, ¥y +
k=0

1/px 1/px
(/ vp’“du> < (/ vp’“d)\<wk>)
k k

we have sup; v = supy_ v < limsup,,_,, ¥x. Therefore, as (3.4.8) converges,

1/2q0
supv < ¢17¥y = c17 <][ U2q0d)‘<wo)) :
I *

Now let ¢ € (0,2). Take gy = ¢'S™" < ¢. Then by Holder’s inequality we have

q/q
][ U2q0d>\<w0> < ClS(Q) (][ U2qd>‘<w0>) :
I* *

Hence we obtain

3tk
cio(t) + 3tk (3.4.8)

Since

we obtain

sup v¥ < 019][ v2qd)\<w0>.

I
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Consequently, by Corollary 3.3.7 we conclude that

sup v¥ < 019][ v2qd)\(wo>

1
< CZOHJ(I*)_l </ UquM+RIdw/ UquV(wO))
I* I*

3.4.2 Harnack inequality

We now follow the ideas of Moser [53]. To use the Moser’s iteration method,
we need to construct suitable choice of ‘balls’ {Bjto<k<oo growing induc-
tively. For a given single mj-cell I with I* C K, construct inductively By,
0 < k < oo the finite union of cells as follows: First, let By = I. As I has
three boundary points, so there are three cells of length m; + 2 that meet
the boundaries of I. We define B; as the union of I and these three cells. In
general, for given 0 < i < oo, if 28 — 1 < k < 277! — 3 we consider all cells
of length m; + 27 that meet at the boundaries of By. Then we define By,
be the union of Bj and these cells. If k = 2!*! — 2, we consider all cells of
length m; + 2(i + 1) that meet at the boundaries of By. Then similarly By
be defined as the union of By and these cells inductively. Then we can easily

check that By C By C I* for any k.
In this subsection, for simplicity we denote p(By) and Rp, by py and Ry,

respectively. We first obtain a more general result for local boundedness to

link the L* norms of u.
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Lemma 3.4.4. For each 0 <i <00 and 20 —1 < k <21 — 2 et
Wy, = U(-, By, B].H_l), and >\<wk> =u+ R;ifﬂ;ill/@,w. (3.4.9)
Then if 0 < g < 1/3,

sup v¥ < 0124('3“”)"][ V2N () -
B, Biy1

Proof. Note that wy < U(-, [*,I*) < CQR?w on K by Lemma 3.3.2. Consider
all cells of length m;+2i+3 = m;+2(i+ 1) + 1 that meet at the boundaries
of By. Let By, be the union of By and these cells. Then since m; +2(i+1) <
mr+2i+3, By C B), C By1. Hence for each single cell J C By, with length
mr + 2i + 3, we have J* C By. Thus, by Lemma 3.4.3,

supv?? < c3 <R§B(€J* (v, v?) +][ v2qd,u) :
J *
We notice that ju(By)/p(J*) < p(I*)/u(J*) = 27mids j2=(mit2i+8)ds < ¢ 92dysi,

Therefore, an easy covering argument gives us

sup v* < c; (R%’BEB;C(U", v?) + 22dfi][

By B

U2qd,u> : (3.4.10)
k

If z € By, then there exist a single (m;+2(i+1))-cell Jy C By, and J§ C Bj4q
such that x € Jj. So by Lemma 3.3.2 we have w; > CGR%’ on Bj. Recall

that v = w or v = u™!

, and w, = 0 on OByy1. So if v = u then we have by
(3.4.9), Lemma 2.1.10 with f(x) = 2? and Lemma 3.4.1 with v = 1 —2¢ (We

can achieve the same result when v = u~! by applying Lemma 2.1.10 with
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f(:lY) =279 and Lemma 3.4.1 with y =1+ 2q),

(C/'ch (vq’vq> = /
By,

—2d,, 2 2 p—2dy 2. 2¢—2
< Ry, / widvey = ceq” Ry, /B wpu T dy gy
k+1

k+1

< er(q) Ry ( / WPy + / wiu%)
Bk+1 Bk+1

< CgR;OMw (/B Vv, + BRI /B v2qdu>
k+1 k+1

Riﬂ Hk

+1Hk+1 2

S ng/ (Y qd)\<wk>
Jo Bk+1

dviyay < CGR}OM” / w,%du<vq>

B

Here, we used the definition of A, (3.4.9), and the relation RZil,ukH >
R¥u(I) > R%w on the last inequality. Since M) (Biy1) < copt(Brya),
RJ/RJO < 61027(m1+2i+3)/27(m1+2i+2) — 1/27

Ry < Ry 3-27m

_ < 2i
Ry, — Ry, 2 (mi+2i+2) S en2”

and .
* L o—my

Pi+1 u(l”) _ 4-2 ' ! < ¢qp2%1

N(JO) - ,U(JO) 9—(mr+2i+2)dy — ’

so from these facts we obtain

RyRis1)*
R?]Bng (Uq’ Uq) < CS( Rj—;d)w +1 / U2qd)\(wk>
Jo Bri1

RJRkH)QB ( Hk+1 )2][ 9
<c VN, (3.4.11)
13 < R?jo ,U(JO) Beos (wg)

< 01424(5+df)i][ VXA (1) -

B4
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Moreover,

v¥dp < 1(Bri1) v¥dp < Lj*) v¥dp < 4 v d\
= B') = u(l) = (wg)>
B ( k Bit1 2 Bit1 Bit1

' (3.4.12)

so applying (3.4.11) and (3.4.12) to (3.4.10) we have

sup v < ¢q5 24(’3+df)i][ v2qd)\<wk> + 22dfi][ qud/\<wk>
By, B4 Bi41

S 61524(B+df)i][ Uqu)‘(wk)-

Bt
O

Set I; = I and I, = I*. Note that I is the union of I; and all cells of the
same size as [ that meet at the boundaries of I;. Likewise, we can define I,
as the union of I, and all cells of the same size as I that meet at the bound-
aries of Ij,. Recall that v =wu or v =u""'. Let a(k) = 1/u(Iy) [, logvdp.

Lemma 3.4.5. Let w = logv and I = I, be a single my-cell with I, C K.
For given 0 < g9 < M, let B¥ C By, be finite union of cells such that
{lw—a(3)| > M}N B, C BM and |w — a(3)] > M — &y on BM. Then

CLLL(I)

Nug) (BR') < M =2

(3.4.13)

Proof. Since |w — a(3)| > M — &g on BY and BY C By, C I,

_ 3)2
A BM:/ A </ w=aB) .
<k>( k) By (wg) = B M — g (wg)
w—a3)?
S/ ? d)\(wk)‘
I 0

Let J; C I, 1 < i < 4 be a single cell of the same size as [ such that
UL, J; = I,. We note that for any 0 < k < oo, Ry, = R; < Rj, < 3R; and
u(Ji) = p(l) < pp < 4p(l). Since I C By, we can make J;, 1 < i < 4, to be
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included in By by translation. Hence, we apply Lemma 3.3.4 with D, = By,

,Dy = Byy1 to w — «(3) for each J;, then we have
| w=a@ydv,
Ji
< co(Rrs1 Ry ) i (5}; (w) + Ry / (w— 04(3))2dﬂ>
Iy
< cy R <5Ji* (w) + Ry ™ / (w— a(3))2du> :
Ty

By the Poincaré inequality Lemma 2.1.3 we have

/ (w—a(3))du < / (w— a(3)du < cs R € (w)

i I3

and hence

4
/1 (w — a(3))2dviy,) = Z/J (w — a(3))2dvi,) < csR3™Ep, (w).
2 i=1 i
Therefore, we deduce that
[ w=a@ane, = [ w=a@) e Rl [ - a@)dv,
< 6o (R €, (w) + R B &, (w) )

< er R Er (w).

and by Lemma 3.4.2, &, (w) < cgR;™ u(I), so we obtain (3.4.13). O

For fixed a > 0, put @ := a~lu, Z(p,x, y) = a—gL(ap,x,y), and é(z,a;) =
G%G (az,x). Then L is convex with respect to p-variable, and we can also easily
check that L and G satisfy the structure conditions (3.2.1). By definition of
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Land G , we can define energy of L such that

) ::limsup% > Lu(x) —i(y),z,y) + /K G(u, z)dp

m—r0o0

m,yzEA{/Tn?rJﬁK
1 r-m
= e 30 )~ + /K G, x)dy
z,yeVmNK
1 L
_95 (u)

Hence we conclude that u is a minimizer of ££(+) if and only if @ is a minimizer

of ££ (+). So without loss of generality, for v = w or v = u~! we can assume

that a(3) = 1/u(13) flg log vdp = 0 by multiplying u for some constant a > 0.

Define

wr = sup logv.
By,

Lemma 3.4.6. For each 0 <i < oo and 2" — 1 < k < 21 — 2, there holds
3 A(B+dy)i
Vi S Pk 2T (3.4.14)

Proof. Choose 0 < g9 < min(pg1,€), and let ¢y > 4e satisfy 6log(co —gg) =

co. Since gy < e, ¢y exists. If pri1 < o then

3 1
< < — —
Ok S Or1 < 490k+1 + 402,

so that (3.4.14) holds provided ¢; > ¢y /4.

Now suppose @p41 > co. Let B,fﬂl C Bj41 be finite union of cells such that
{llogv| > ¢r41/2} N Bryr C Bii7' and [logv| = (prr1 — €0)/2 on BT
Note that |logv| < @gy1/2 on By \ (Bf51")°. Then from the facts that
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v? < e®+1 on By and 0¥ < e+ on By \ (B,

2q 2q 2q
VAN (pry < / VAN ) + / vd )\,
/Bkﬂ ) B/k+t ) B \(BFH)e o)

k+1 k+1

< 62‘1<Pk+1 /\<wk>(B/fﬁ1) + ePrt1 /\<wk>(3k+1)'

We note that Ap,) (Brt1) < c3p(Brgr) < 4esp(I) for any &, by Lemma 3.3.5.

Hence Lemma 3.4.5 implies that,

/ 2 e24Pk+1 o )
v9d My, §c4(—+e ’““),uf.
Br+t1 o) (Sﬁk+1 - 50)2

_ 2log(@r+1 — €0)

Let ¢ , so that e®+1 = (ppy1 — €9)%. As P > 2 we
Pr+1
2log(cy —
have ¢ < 2log(c, = €0) =1/3. Then
C2

][ qud)\<wk> < ,u([)l/ qud/\wk) < ¢y edPrtt,
Bgt1

Bi41

Hence by Corollary 3.4.4 we have

1 1 |
o = 5 log(supv™) < - log <C524(5+df”][ vwdi/w)
q By, q B+1

4(B+dy)i
< i log (0624(6+df)i611¢k+1) _ Pk+1 14 10g 062 (B+dy) |
S 2 2log(prt+1 — €o)

We may assume that cg > co. If @1 —e9 > cg2*PHdp)i then

k+1 1 3
PR 4 ) = P
o (1H3)= 1%

o <

If pri1 — o < 624PF4)7 then since gp < e, we have @), < @ < 7240+l
and also (3.4.14) holds. O

We now prove the Harnack inequality.

Theorem 3.4.7. Let I be a single my-cell with Iy, C K, and v > 0 is a
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minimizer of E-(-). Then there exists ¢y, not depending on u, such that

sup; u

< ¢g.

il’lf[ u “
Proof. Writing 8 = 4(8+d;) and multiplying u by a constant we may assume
flg log udp = 0. First let v = u. Then for each 0 < i < oo and 28 — 1 < k <
2i+1 o 27

0o < Sy + 2200

()

3
0o + 02229-0 + Z022291

IN

3 3\?
P3 + 02220'0 + ZCQQQQ'I —+ (Z_l) 02220.1

N N N
- w

W W W

IN
TN TN TN R W

3 3\ 2 3\*
S04_‘_62229-0_‘_1022291_‘_ (Z) 62220~1_|_ (Z) 022292

3\ " 16~ [/3\%  /3\*"
< (2 10 2 (?° . 920k
<()erads|G) )

Since ¢, < sup;«logv < oo, and
k k+1
00 3 2 3 2
2 [(4) -(3) ] s
k=0

sup logv < ¢4.
I

IA

IN

So we obtain

If v =", then logv = —logu so we still have [, logudyu = 0. The same

argument as above implies

suplogv < ¢4 or irllflogu > —¢y.
I
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Combining we deduce

e < irjlfu <supu < e*
I

hence we have desired results. O

Theorem 3.1.1 follows from Theorem 3.4.7 by covering argument.
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Chapter 4

Homogenization of fully
non-linear parabolic equations
with different oscillations in

space and time

4.1 Introduction

In this paper, we consider a periodic homogenization of fully non-linear
parabolic equations of non-divergence form with different scales in space
and time. Let 2 C R"™ be an open and connected domain with smooth
boundary. We denote Sy = €2 x (0,7), and the parabolic boundary 9,57 =
(02 x [0, 7)) U (2 x {0}). Let u® be the viscosity solution of

ue — F(D?uf, @, t,x/e,t/eF) =0 in Sr,
PR, 0,12/, 2 : "

u® = @(x,t) on 0,57

Here, the parameter k, which we call the space-time scaling factor, can be any
positive real number which affects the different oscillation in space and time.

It is well known that the case when k£ = 2 is a classical homogenization prob-
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lem for fully non-linear uniformly parabolic equations. In this case, various
results have already been well established for the homogenization problem
(see [20, 28, 35, 43, 50]). They proved that under the standard assumptions
on F' and ¢, the solution u® converges uniformly to the solution u of the

following homogenized equation:

uy — F(D?u,z,t) =0  in Sr,

u=p(x,t) on 0,57.

We call F and u the effective operator and the effective limit respectively,
which are uniquely defined by the cell problem. That is, with the slow spatial
and temporal variable (z,t) € Sr and fast spatial and temporal variable
(y,s) = (x/e,t/e?) € R"x|0, 00), we can find a unique (y, s)-periodic solution
(up to constant) w, which is said to be a corrector, and a unique value

F(M,x,t) satisfying the following equation:
w, — F(M + Dw,z,t,y,s) = —F(M,z,t) inR" x[0,00). (4.1.2)

Also, it is well known that the error between u® and u is of order € (see
[35, 43]). In other words, we can observe a rate of convergence in a such way
that

1 = ll sy < Ce.

The aim of this paper is to study the limiting behavior of solutions
u® = uf(z,t,7/e,t/e¥) as the space-time scaling factor k varies. Roughly
speaking, when k = 2, which is the natural space-time scaling factor, the ho-
mogenization process occurs simultaneously for time and space as we can see
above. But if £ # 2, we have to consider the homogenization process for space
and time separately. This is fundamentally because of the mismatch between
the highly oscillating spatial and temporal variables: When k = 2, the scaling
invariant property remains as € goes to zero. But in case of k € (0,2), the

spatial variable oscillates faster than the temporal variable, whereas when
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k € (2,00), the opposite occurs. As a result, we can expect that the ho-
mogenization process does not occur simultaneously when k # 2. In fact, by
looking at the asymptotic expansion, we can observe that the homogeniza-
tion occurs in the order of space followed by time when k € (0,2), whereas

in the case of k € (2, 00), homogenization occurs in the reverse order.

4.1.1 Main results

Let 8™ be the all real symmetric matrices of order n, endowed with (L% L?)-
norm. That is, ||P|| = (sz:1p?j>1/2 for any P = (p;;) € 8™ Let F be
a smooth functional on S". We denote by F,_ (P) the derivative of F' in
direction E;; at P, where {E" : 1 < 4,5 < n} be the set of standard basis
matrices. Let Q,.(zo,t0) = {(z,t) : |z — x| < r,0 < top —t < r?} and
St =Qx(0,7). By Q, we denote Q,.(0,0). We define the parabolic distance
between (z1,t;) and (z9,%2) in R™ x R by

d((z1,t1), (22, 12)) = (|21 — 22f* + |t — o)/

For v € (0,1), u € C7(Sy) if

|’LL(£L'1, tl) - u(ilfg, t2)’
[ullorisry = lullpoe gy + sup '
) e (z1,t1),(x2,t2)EST d((z1,t1), (22, 12))

Moreover, u € C'(Sy) if for all a, 8 such that |a| +28 < I, Dngu is con-

tinuous on Sy. By C7(Sr) we denote the usual Holder space on St

We assume that F : S” x Sp x R™ x [0,00) — R and ¢ : S; — R satisfy

the following structure conditions.

(a) (Uniformly ellipticity) F' is uniformly elliptic on S™:
AN < F(M + N, z,ty,s) — F(M,z,t,y,s) < AN
for any M, N € 8", N > 0.
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(b) (Periodicity) F'(M,z,t,y,s) is periodic in the (y, s)-variable: for every

(I,m) € Z™ X Z>y, we have

FM,z,t,y+1,s+m)=F(M,z,t,y,s).

(c) (Regularity) For each L > 0, F € C=(By, x S x R" x [0,00)) and
@ € C*°(Sr). Moreover, there is a constant C, > 0 such that

£

or@xsrarnmy S C(L+ L) andlgllerr < G

for each r > 0.

(d) (Convexity) F'is convex in M-variable.

In this section, we would like to propose the qualitative and quantitative
behavior of u® as k value changes. Interestingly, there are something remark-
able points in each behavior. In terms of effective operators, there are only
two type of homogenized equations depending on whether k is greater than
or less than 2. This is essentially because the cell problem which create the
effective operator does not depend on the value k. On the other hand, the
asymptotic expansion depends on k, which results in the convergence rate

being dependent on k.

Our first results concerning the homogenized equation are stated as fol-

lows.

Theorem 4.1.1 (Homogenization when k € (0,2)). Let {u®}.-o C C(Sr) be
the family of viscosity solutions to (4.1.1) when k € (0,2). Then there exist
a effective operator Fy : 8™ x Sp — R which is independent of k, such that
the u® converges to a function u; uniformly, where uy is the solution of the

following homogenized equation:

— F D2 s 7t =0 n S )
(w)e = Dy, @,1) T (4.1.3)
uy = p(z,t) on 0,Sr.
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Theorem 4.1.2 (Homogenization when k € (2,00)). Let {uf}.s0 C C(Sr)
be the family of viscosity solutions to (4.1.1) when k € (2,00). Then there
exist a effective operator F3 : S® x Sy — R which is independent of k, such
that the u® converges to a function uz uniformly, where us is the solution of

the following homogenized equation:

(us)e — Fs(Djuz,x,t) =0 in Sr, (4.1.4)
us = ¢(z,1) on Ot

The results for the rate of convergence are stated below.

Theorem 4.1.3 (Convergence rate for k € (0,2)). Assume that F' : 8™ x
St x R™ x [0,00) — R and ¢ : St — R satisfy the structure conditions. Let
{uf}os0 C C(St) be the family of viscosity solutions to (4.1.1), and u; be the
solution of homogenized equation (4.1.3). Then for any g > 0, € < &g, the
followings hold.

(i) The case k € (0,1] : Let m > 1 be an integer, and for k satisfying

+1’
limits {v'}7, on Sy, such that

|

where C' depends only on n, k, €9, \, A, F, ¢, and St. In particular,

1 1
k € ( 1 there exists a sequence of the lk-th order effective

ut —uy — Zekl ZHLOO 5 < Ck¢, (4.1.5)

we have

||U6 — u1|IL°°(ST) S CEk.

(ii)) The case k € (1,2) : Let m > 1 be an integer, and for k satisfying
ke <2m —1 2m+1

m m+ 1
effective limits {v'}7, on St, such that

1 , there exists a sequence of the [(2 — k)-th order

_ (2= k)L,
ut —uy — ZE HLOO(ST) < Ck¢, (4.1.6)

=1
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where C' depends only on n, k, €9, \, A, F, ¢, and St. In particular,

we have

||’LL6 — ulHLO"(ST) S 082_k.

Theorem 4.1.4 (Convergence rate for k € (2,00)). Assume that F : 8™ x
St x R" x [0,00) = R and ¢ : St — R satisfy the structure conditions. Let
{uf}os0 C O(St) be the family of viscosity solutions to (4.1.1), and us be the
solution of homogenized equation (4.1.4). Then for any eg > 0, € < &g, the
followings hold.

(i) The case k € (2,3) : Let m > 1 be an integer, and for k satisfying

2 3 2 1
ke [ m—:—l : mT >, there exists a sequence of the l(k — 2)-th order
m

effective limits {v'}7, on St, such that

e (k—2)i ZH <C
u® —u 5 v €,
H ’ ; L=(S1)

where C' depends only on n, k, €9, \, A, F, ¢, and St. In particular,

we have

|u® = us||Loo(5p) < ek,
(i) The case k € [3,00) : If k € [3,00), then
|u® — usl| Lo sy < Ce,
where C' depends only onn, k, €9, X\, A, F, ¢, and St.

4.1.2 Heuristics discussion and main strategies

Before we make our argument rigorous, we want to provide the heuristic
calculation to understand the key idea. We first investigate the two interesting

cases, where k = 1 or 3, and next look at the general case. Let us consider
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the following classical asymptotic expansion
ut(x,t) = ul(w,t,x/e,t/¥) + eut(x,t, 2 /e, t /) + 2uP(x, t, /e, t /") + - -

which occur inside and outside of the operator F'. Then a simple computation

gives following

u; — F(D2uwf) =~ (u’ + eu' + e*u?), — F [D2(u® + eu' + £%u?)]

= e M +ud + e Ful 4 eup + ¥Rl + 2l

— F [e?Du’ + e (D, Dy’ + D, Dyu’) + D2u®  (4.1.7)
+ e 'Du' + (DyDyu' + DyDyu') +eDou’
+D}u? + £(Dy Dyu? + DyDyu®) + €2 Diu?] .

Here we have dropped the dependency on (x,t, /e, /). By comparing the
e-power in (4.1.7), we will roughly look at how the effective operator varies
according to the values of k. Assume for a while that F' is linear with respect

to the Hessian.

The case when k£ = 1.

If we compare each of e-powers then first we can get the equation for u°,
— F(Dlu”) =0 inR" x [0,00),
which implies that u" is y-independent. Moreover, from the equation for u!,
u) — F(D2u') =0 in R" x [0,00),

To solve the above equation, we shall use the following elementary result.

Lemma 4.1.5 ([10]). The following equation

— F(Dw,y) =h inR"
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admits y-periodic solution only when h = 0.

Thanks to the above lemma, we obtain that u° is s-independent and u!

is y-independent. Finally, u? satisfies the following equation:
w) +uy — F(D2u’ + Diu?) =0 in R" x [0, 00). (4.1.8)

Note that the above equation becomes an elliptic equation for u? if we regard

the forcing term as —u? — u!. Therefore, by considering the cell problem for

an elliptic equation, we can obtain the s-periodic constant (M, z,t, s) for

each s € [0, 00) such that
F(M + Dzw, x,t,y,8) = Ey(M,z,t,5) in R™

In this case, we can expect the effective operator Fj : S® x Sr — R to be of

the form

1
Fl(M,:v,t):/ Ey(M,x,t,s)ds,
0

and the effective limit «° satisfies following homogenized equation

uw) — Fy (D> x,t) =0  in Sy,

u® = p(z,t) on 0,57.

The case when £ € (1,2).

Let’s look at the case of k € (1,3/2) first and then the general case. In this

case, the previously applied expansion is inappropriate since there is no term

i—k

to match the power =% or e#~% which would emergent. As a consequence, it

is natural to expect u° to be of the form

uf(z,t) = ul(w,t,x/e,t/e¥) + eut(x,t, 2 /e, t /) + U (x, t, /e, t /") + - -
+ ", t, /e, 1))
+ e Pl (x,t, /e, t)eR) + 3R (w b fe t)EN) + - -

+ €0zt a e, t)eR) + e (w t wfe b)) 4
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2 3

As before, identifying the coefficients of e2, €573, we obtain —F(D2u’) =

—F(D2?v) = 0 on R" x [0, 00), which gives that uy and ¥ are independent of

k

y. Similarly, identifying the coefficients of ¢ we obtain the equation

u) — F(Dv') =0 inR" x [0,00),

then Lemma 4.1.5 implies that «° is s-independent and v! is y-independent.

Next, from the e~! coefficients we obtain
Vs — F(Dzul) =0 in R" x [0,00),

and since v is y-independent, Lemma 4.1.5 again we can observe that v is
s-independent and u! is y-independent. Similarly, one can obtain that u' is
s-independent and v? is y-independent. We note that the coefficient of e¥~!

is only related to v, hence we have an equation which v satisfies:

% — F(D2)=0  in Sy,

v=>0 on 0,57.

Therefore, v = 0, so it can be considered that there is no ¢¥~! term. In short,

we have obtained

u’ =u0(x,t), u'=ul(x,t), v=0, o' =0l (x,t), v =v%(a,t,s).
Now let’s focus on the coefficients of € and €27*, each satisfies the following
equation:

ug + fg — F(Diuo + D§u2) =0 in R" x [0,00),

vf +ul — F(D2v' + Dv’) =0 inR" x [0,00).
As we can see, the two equations have the same form. That is, by repeating
the previous process when k = 1, we can find two effective limits u° (of £°-
order) and v! (of e2 % -order) corresponding effective operators. In particular,

the effective operator corresponding to u’ is exactly the same as F}, what
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this fact tells us that the effective operator and the effective limit does not
depend on k.

On the other hand, the difference from the case of k = 1 is the existence
of another effective limit v*, which order is €2=*. From this observation, we

can expect that the presence of v! affects the rate of convergence.

2m —1 2m+1
m  m+1
ansatz for the asymptotic expansion of u® will be

In general, when k € ( ) for each m € {1,2,---}, the

uf(z,t) = u(w,t,x/e,t/") + eut(x,t, 2 /e, t /) + 2uP(x, t, /e, t /") + - -

+ Zslm_k)yl(x,t,x/s,t/sk) 4o f Ot /e )R
=1

For each case, the effective operator F; and the effective limit u° does not

depend on k, but the structure of u° depends on k.

Now we investigate the one-dimensional simplest case to capture the
asymptotic behavior of solutions u® when k € (0,1). Let 2 = (0,1) and

consider the following initial boundary problem:

u§ — a(t/e")Dyp,us = f(t/€) in St,

ut = —122 on 0,57,

where we normalize the diffusion coefficient a and the forcing term f by

fol a(s)ds = fol f(s)ds = 1. From above heuristic computation, one can easily

find the effective limit u” = —2?/2 solving
u) — Dypu® =1 in Sr,
u’ = —12? on 9,5r.

Put £%(s) = [;(f(7) — a(r))dr. Then the asymptotic expansion of u* is
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u®(z,t) + e*€0(t/e¥) since
ui = a(t/e*)Dyeyu® =€) +alt/e") = f(t/") — alt/") + a(t/e*) = f(t/e")

in Sz, and u®(x,0) = u°(x,0) = —2?/2. To conclude, we get the convergence
rate ||u® — u°||p(sp) < Ce¥, in particular, u® cannot be faster than ¥ when
k € (0,1). Hence, this is the optimal rate of convergence when k € (0, 1).

The case when k=3

We will only look at the case of k = 3, since the general case proceeds along

the line of k € (0,2) case. First, we can easily check that

1 .
6—3u2:0 in R" x [0, 00),

by collecting highest order term, which means that u° is s-independent. Next,

if we see the equation for u',
uy — F(DJu”) =0 in R" x [0,00),

then Lemma 4.1.5 implies that u! is s-independent and u° is y-independent.

Similarly, from 7! order terms, we obtain
u? — F(Dju') =0 in R" x [0,00),

so by Lemma 4.1.5 again we conclude that u? is s-independent and u! is y-
independent. Finally, from £° order terms, we obtain the corrector equation

in such a way that

w) +ul — F(D2u’ + Diu?) =0 in R" x [0, 00). (4.1.9)
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0

Since u°, u? are independent on s-variable, and u® is s-periodic, we can

integrate the above equation with respect to s to obtain
1
ud — / F(D2u’ + D2u’)ds =0 in R™. (4.1.10)
0

Let ﬁ(M,:U, ty) = fol F(M, z,t,y,s)ds. Then we may expect that the effec-

tive operator Fj is given by the following cell problem
F(M + D*w) = Fy(M) in R",
and the effective limit «° satisfies following homogenized equation

uw) — F5(D%u°) =0  in Sr,

u = ¢ on 9,5r.

4.1.3 Outline

This paper is organized as follows: we review the basic scheme of homoge-
nization in Subsection 4.2. Section 4.3 and 4.4 are devoted to the cases when
k € (0,2) and k € (2,00) respectively. For each case we give the proof of
the homogenization in Subsection 4.3.1 and 4.4.1, and present the rate of

convergence in Subsection 4.3.2 and 4.4.2 respectively.

4.2 basic homogenization process

As we saw in the previous heuristic calculations, the cell problems change
depending on whether k is greater or less than 2. So we need to look at a
general homogenization scheme that can cover all of these cases. Fortunately,
we point out that the cell problems are always elliptic regadless of the value
k. So we present some general observations of the following homogenization
results for elliptic equation which will be frequently used throughout the
paper. We refer to [17, 19, 20] for proofs of Lemma 4.2.1 and Lemma 4.2.2.
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Lemma 4.2.1. Assume that F verifies the structure conditions. Then for

fized (M, z,t,5) € 8™ x Sr x [0,00), there exists a (y, s)-periodic function

w(y; M, x,t,s) such that w(-; M, z,t,s) € C°(R"), and a constant E(M, x,t,s) €

R which solve the following cell problem:
F(M + Diw,z,t,y,s) = E(M,z,t,s) inR" (4.2.1)

Moreover, E is a unique constant where the equation has a unique solution

w up to constant addition with the uniform estimate

[E(M,2,t,8)| + lw(; M, 2,1, 5) |l corza@n < C(1+[[M]])

forallc >0, v € (0,1), where C' depends only onn, 7, o, \, and A.

We notice that the structure of (4.2.1) and the uniqueness of E imply
that F is also a s-periodic function. Let us now observe additional properties

of the functional E.

Lemma 4.2.2. (i) E is uniformly elliptic with the same ellipticity con-

stants of F' and convexr with respect to M-variable.

(ii) For fived L > 0, suppose that FF € C%Y(By x Sy x R™ x [0,00)). Then
E, w(y;-,-,-,-) € COYBy x Sp x [0,00)) uniformly in y € R".

The next lemma summarizes the improved regularities of E and w. In fact,
from the regularity point of view, we only use Lemma 4.2.2 to find a effective
limit and the corresponding effective operator. More precisely, by freezing the
slow variable we just need a decoupled regularity of the slow variable (x,t)
and the fast variable (y, s) to accept standard arguments of perturbed test
function method. But in seeking the convergence rate the mixed regularity
occurs. By assuming that the operator F' has a good enough regularity, we

can present the appropriate regularities of F and w.

Lemma 4.2.3. ([34, 35]). For fived L > 0, suppose that F € C=(By, x St x
R"™ x [0,00)). Then E, w(y;-,-,-,-) € C®(BL, x Sy x [0,00)) uniformly in
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y € R™ and for any (M,x,t,5) € By x Sy x [0,00) there holds

> (IDLDLOYOE| + | DyDLOY 0w M, .1, 5)] oo )

l4+p+2v+2p=r
< oo (L4 [|M])
for allr, 0 >0, and vy € (0,1), where C, ,, depends on n, A, and A.

Remark 4.2.4. It is worth pointing out that the argument of C?7-regularity
of w(+; M, x,t,s) is valid by only assuming that F'(M, z,t,-,s) € C7(R").

4.3 Homogenization when k € (0, 2)

In this section, we consider the case of k € (0,2). From the heuristic calcu-
lation (4.1.8) we can observe that the second corrector u? solves the elliptic
equation. This fact implies that we first have to take a strategy of finding a

homogenization for space, then for time.

4.3.1 The effective operator and the effective limit
We start with the cell problem.

Lemma 4.3.1. Assume that F verifies the structure conditions. Then for
each (M, x,t,s) € 8" x Sy x [0,00) there exists a (y,s)-periodic function
w(y; M, x,t,s) such that w(-; M, z,t,s) € C*'(R"), and a s-periodic constant
E\(s; M, x,t) € R which solve the following cell problem.:

F(M + Diw, x,t,y,8) = Ey(s; M, x,t) in R" (4.3.1)
with the uniform estimate
|E1(M7 l’,t, S)| + ”w('; M7 l‘,t, S)HCZV(R”) S C (1 + ”M“) )

where C' depends only onn, v, o, X, and A. Moreover, E1 is a unique constant

where the equation has a unique solution w up to constant addition.
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This is a re-statement of Lemma 4.2.1. The s-periodicity of w and E;
comes directly from the fact that F' is also s-periodic, and the uniqueness of

w. Define

1
(M, z,t) ::/ E\(s; M, x,t)ds.
0

We will call F} the effective operator when & € (0,2). From Lemma 4.2.2, we
can observe that F; is uniformly elliptic with the same ellipticity constants
of F' and convex with respect to M-variable. Moreover, the regularity results
in Lemma 4.2.3 also hold for the w and Fj.

Recall that the heuristic calculation (4.1.8). If we consider of (4.1.8) as a
PDE for u°, we can observe that the forcing term of (4.1.8) is actually —u!.
This fact gives us that when constructing the solution of (4.1.1) using the
asymptotic expansion, we should make it reflect the influence on the k-th

order corrector ul. So, let us consider the function ¢ : [0,00) x 8" x S — R
defined by

E(s; M, z,t) ::/ E\(1; M,z t)dr — sFy (M, x,t). (4.3.2)
0
Since E,(s; M, x,t) is s-periodic, we can observe that

s+1
f(s—i—l,M,:v,t)—/ Ey(1; M,z t)dr — (s + 1)Fy (M, 2,t)
0

s+1
zg(s;M,x,t)Jr/ E\(1; M,z t)dr — Fy (M, z,t)

= 5(8; M? x? t)?

so &(s; M, x,t) is also s-periodic. Moreover, &(s; M, x,t) = E1(s; M, x,t) —

(M, x,t). Thus, we can expect that ¢ will serve as the k-th order corrector.

Let us now establish an homogenized equation.

proof of theorem 4.1.1. Owing to estimates [57], there exists 7 > 0 for which

SUPg<cct ||U]| o737 < 00. Thus, we may extract a subsequence {u®}7%; of
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{uf}.50 and a function u; € C7(Sy) with u® — u; uniformly on Sy. More-
over, since u® = ¢ on 0,57 for all € > 0, we have u; = ¢ on 9,5p. For
convenience, we will not use subsequencial notation. Let P be a paraboloid
with My = D2P which touches u; by above at (zg,%) in a neighborhood.
Without loss of generality, we may assume that P touches wu; strictly by

above. Assume, to the contrary, that
Py(wo, to) — F1 (Mo, z9,t0) > 317 >0

for some n > 0. Put w(y, s) := w(y; Mo, xo, o, s). Then from Lemma 4.3.1

we can observe that @ satisfies
F(M() + Dzﬁ;, $0,t07y, S) = El(S;Mo,l’o,to) in R". (433)

By the continuity of F and Fj, we can choose p > 0 in such way that
Qp(x07t0) C ST7

Pt(xat) _FI(MOMrat) > 37]7 and
’F(MO + DZU/L l’,t, Y, 5) - F<M0 + D;ﬁ)\, LCo,to, Y, 8)' (434)
+ |E(M0ax7t) - E(M()ax[bt()” < n

for any (z,t) € Q,(zo, to), uniformly (y, s) € R"x [0, 00). Moreover, u (x,t)—
P(x,t) < —p on 0Q),, for some p > 0.
Now define

~

£<S) = €<57M07x07t0)7 (4-35)
where the definition of £ is in (4.3.2), and set

x t

Pe(q;,t) = P(;U,t) +€ké\<;_k) +€2ﬁ)\ (g, 5_k) .

Note from the comment above this lemma that 5 is s-periodic, and gs(s) =

E1(s; My, 29, o) — F1(My, x9,ty). For a while, let us drop the dependency of
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(z/e,t/e"). Since 2 — k > 0, in view of (4.3.3), (4.3.4), and (4.3.5) we have
Pf — F (D2P%,a,t) = P, + & + 7%, — F (Mo + D, x,t)
= (1 - 29—k ~
> P+ Fy o My, o, to | — F1(Mo, xo,to) + "W
— F (MQ + Dzw, l’g,to) -1
_ t — ~
=P+ FE; (z—:_’f’ My, xo, to) — Fy(My, wo, to) + > F i,
— t
— b (E_k,;MO)xOvtO) -1
= P, — F1(My, o, to) + > i, —
> P, — Fl(Mo, x,t) + 2w, — 2n

> P — E(MOa xat) - 52_k||@8||L°°(R"X[0700)) —2n

> 0.

if £ is small enough, in Q,(zg,t). As u* — u; and P° — P uniformly in

Q. (xo,t0), we can easily check that for some gy € (0, 1) there holds
ut(x,t) — P (z,t) < —p/2 on 0Q,(xg,ty), € < &p.

Hence P — /4 is a super-solution to the following initial-boundary value

problem:

Ut —F(ng,x,t,x/e,t/ek) =0 in Qr(xmt(])?
v =u(x,t) on 0,Q, (o, to)-

Hence, the comparison principle implies u® < P® — u/4 in Q. (o, t). Letting
e — 0 then uy(zo,to) < P(x,t0) — p/4 which contradicts assumption that
uy (o, to) = P(xg, o). It shows that u, is a viscosity sub-solution of (4.1.3). In
a similar manner, we are able to prove that u; is a viscosity super-solution of
(4.1.3). The uniqueness of u; is clear, by the comparison principle, and hence

the convergence of u* — u does not need to extract a subsequence. Finally,
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since Fy (M, -,-) € C*(Sr), and Fi(-,z,t) is convex from the comment above
this proof, the fact that u; € C*(Sr) follows from the standard regularity
argument for fully non-linear parabolic equations (see [58]). This completes

the proof. O

As a corollary, we obtain the regularity of effective limit u;, which is

important later when calculating the convergence rate.

Corollary 4.3.2. Assume that F' and ¢ verify the structure conditions. Then
u; € C*(Sr) and

”ul HCT+2,’V(§) S Or

for each r > 0, where C,. depends only onn, v, A\, A, ¢, and St.

Remark 4.3.3. One can observe that u; and F} are independent of k €
(0,2), since k has no effect on the cell problem Lemma 4.3.1, and ¢. That is,
for any k € (0,2), u° — u converge uniformly in Sy, where u is the unique
solution of (4.1.3).

4.3.2 Rate of convergence for the homogenization

We are now in a position to give the proof of the convergence rate when
k € (0,2). We in particular suppose that & € (1,2), this is because the
process of k € (0, 1] case is similar to when k € (1,2). Before we start, let us
discuss the difficulties which arise given the effect of k. First, we emphasize
that the asymptotic expansion of u® depends on k. As we saw in the proof

2=k, emerges due to the influence of the second

of 4.1.1, a additional term ¢
corrector when we calculate (4.1.1) of u®, which induces an additional error
differ from the k£ = 2 case. This is essentially a problem that occurs because
k is not an integer, and the ansatz itself depends on k. Therefore we need
to find k-multiple effective limits and correctors to obtain e convergence rate

by offsetting (2 — k)-th order term.
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Now let us sketch our key idea. From now on, we write

V(2,t) = ui(z, 1),
£O(x7t7s) = 5(5; Diulaxvt)7

w’(z,t,y,s) = w(y; D2uy, x,t, ).
It is noteworthy to see that, we combine (4.1.3), (4.3.1), and (4.3.2) to get

v + & — F(D2W° + D2u”)

B B (4.3.6)
=) + E1(s; D20°, 2, t) — Fi (D’ x,t) — F(D3v" + Diuw’) = 0.
For fixed k € (1,2), choose m € {1,2,---} in a such way that
2m —1 2 1
ke ( mz—1amy } (4.3.7)
m m+1

and consider the following expansion:

= t z t
v¥(x,t) = ;e@ k) [ (z,t) + ¢! (m t, —) + 2! (x,t,g,g—k” ,
(4.3.8)
where the families {v' : St — R}i<icm, {& 1 Sr x [0,00) = R}i<i<m, and
{w!: S x R™ x [0,00) = R}1<j<p, will be determined later. In fact, each of
v, € and w' plays the role of the I-th effective limit w;, the correctors &, and
w. For a while, let us assume that all the functions v', ¢/, and w' are regular

enough. To simplify, let us drop the dependency of (z,t,z /e, t/e*). Put

t
X' = D%l (z,t) + DZwl (:B, t, L —> ,
£

’gk.

t xz t Tz t
Al = D3¢ (x,t, —k> +eD, (x,t, -, —k) + 2D (.CE t, = —k>
£ g€ g'e

ym=Xx!4... 4 mDE- k)Xm_Zgl D(2-k) x

(4.3.9)
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Here we have denoted by D, , the operator D,D, + D,D,. Then by the
assumption, it follows for fixed gy € (0,1) that

sup ZHAZ s fe /) e ) < Coleo, me.

0<e<eg I—0

Under these settings, we compute (4.3.8) with respect to the operator F' that

we have
DQ& _ (ZEZ(Q k)Xl+Z€2k >
=F (Xo+&7"Y™) + 0(e).
Moreover, a Taylor expansion of F' with respect to the Hessian gives
F(XO + 52—kym)

m__l(2-k)
- F XO +Z p’bljl iy (XO)Ym Y+ O(e m+1)(2fk)>

171 uJi

l
1
0 1(2—k) 2: E : 0y x "
= F(X ) + § 5( _l Fpi1j1“'pidjd (X )XH;l ' del;d
=1 d=1 d! ny+--+ng=l
ny ety

v _5 0 n n,
+ Z Z l‘ Fpiljl"'pil.n (X )X’Ll‘ljl ' le;l

I=1 m+1<ni+-+m<lm
+ O(emTHE=R)),
(4.3.10)
Since (m + 1)(2 — k) > 1, if we can control the m-th derivatives of F' with
respect to Hessian, then last two terms including the error term 0(5(m+1)(2_k))
are dominated by O(e). It illustrates the reason why we restrict the range of
k as in (4.3.7) and have to find correctors until [ < m. As we have observed

the heuristic calculation, the method of finding correctors is also to compare
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the order of . To do this, we rewrite each term in (4.3.10) as

l
1 n n,
Z E Z thh"'pidjd (X >X1131 ) de?d

l ni n
XO X + Z Z Fpiljl"'pidjd (XO)XZUl ’ de?d

d=2 d! ni+-+ng=l
Fp” (XO) (D-Tizjv + Dyiij ) + @y(z,, 9, 5).
where
‘1
CI)I(J;7 £y, S> - Z Al Fpiljl”'pidjd <X0)X1T]1 ’ XZT;?d

As a first step, put a;; = F(X?). Then similar to the way we found uy, &,
and w, we can choose the function v' : S — R, the s-periodic function &! :
St % [0,00) — R, and the (y, s)-periodic function w! : Sy x R x [0,00) — R

satisfying the following linear elliptic equation:
vf 4+ & = i (Do, v 4 Dyyw') = —w?  in Sp x R x [0, 00).

Note that this equation belongs to the same class of (4.3.6). Secondly, we will
choose the function v' : Sp — R, the s-periodic function &' : Sz x [0,00) — R,
and the (y, s)-periodic function w' : Sp x R x [0,00) — R to offset w! ™!
in an inductive manner. That is, v!, &, and w' satisfy the following linear

elliptic equation:

U +E& —aij (Dyyo,v' + Dy ') = —wl ' =@ in SpxR"x [0,00). (4.3.11)

Note that the term ®' does not contain the function w!,
(4.3.11) to obtain v!, &, and w'.

It is noteworthy to see that m — oo as k — 2. That is, we need a more

so we can solve the

correctors as k — 2, and we have to control the supremum norm of all these

correctors. This is the reason why we need a C'*°-regularity of F', f, and ¢.

93



CHAPTER 4. HOMOGENIZATION OF FULLY NON-LINEAR
PARABOLIC EQUATIONS WITH DIFFERENT OSCILLATIONS IN
SPACE AND TIME

Now we make our observation rigorous.

Lemma 4.3.4. Suppose that k € (1,2), and let m € Z be chosen to sat-
Sfy ke 2m—1 2m+1
is ,

Y m m+1
conditions. Then there exist families of {vl . St — Rlo<i<m, s-periodic

} Assume that F and ¢ satisfy the structure

functions {& : St x [0,00) = R}ocicm, and (y, s)-periodic functions {w' :
St x R™ x [0,00) = R}o<i<m, which satisfy following conditions:

(i) &, w'(-,-,y,") € C®(Sp x [0,00)), and w'(z,t,-,s) € C*>'(R") uni-
formly for all (z,t,s) € Sy x [0,00) with

> (IDEoyoce!| + | Dhoy ot (w,t, -, 8)llczagam) < Chr
p2v4+2p=r
for all v > 0, where Cy, depends only onn, v, A\, A, ¢, and Sr.
(ii) v € C>=(Sr) with
HUchr+2,v(§) < Chpr

for all v > 0, where Cy, depends only onn, v, A\, A, ¢, and St.

(iii) For each 1 <1 < m, v, & and w' satisfy the following recursive rela-

tion:

U+ & — aj (Dayo0' + Dy, w') = —wh ™ + @ in Sp x R™ x [0, 00),
(4.3.12)

where
X' (x,t,y,8) = D' (x, ) + Djwl (z,t,y,s),

aij(w,t,y,s) = Fp, (X°, 2,1y, ),
o' (z,t,y,s) =0,

0 n n
l’ by, s Z Z Fpiljl"'pidm (X )Xz131 deiﬁ (l 2 2)

= 'n1+ Fng=l
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Proof. In this proof, we are going to use a modification of the technique
introduced in [34]. As the first step, we linearize the equation (4.3.1). Pick
(z,t,5) € Sr x [0,00), and from now on we omit the dependence on (z,t, s)
for notational convenience. Let x5 (y) = A~ [w(y; D*v°+hE*®) —w(y; D*°)]
, where {E% : 1 < 4,57 < n} be the set of standard basis matrices. Then we

can observe from (4.3.1) that 0 satisfies
of —
@ijh Dyiy; X~ + Qapn = Tap,hs
where

1
aij,h:/ Fpij<N9,h>d8,
0

Ny, = 0D2w(y, D20° + hE*?) + (1 — ) Diw(y, D2v°) + D2v° + 0hE*”,

_ E,(D?0° + hE*) — B, (D)
QaB,h = h .

We can observe that a;; 5 is uniform elliptic with the same ellipticity constants
of F' uniformly in h. In addition, Lemma 4.2.3 and Theorem 4.1.1 imply that
for all r > 0, for any h with |h| small, a;;,(2,t,-,s) € C7(R") with

[@apnl + laijn(@,t, - 8)llen@n < C.
and
aij’h(x’ t’ y’ S) — a'ij(x7 ta y? S) - Fpij (DQQ:UO + Dzwa ZL‘, ta y7 S)

uniformly in R™ as h — 0. Consequently, by the same argument of the per-
turbed test function method as in Lemma 4.2.1 (see [34], Lemma 2.1.2),
there exists a unique constant @ag(z,t,s) = (E1)p,,(s; D2 z,t) and a
bounded (y, s)-periodic function x*(z,t,y, s) = D,_,w(y; D2v°, x,t, s) with
X (x,t,-,5) € C*7(R") such that

[@apn = Tapl + [1X5" = X llzn) — 0
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as h — 0. Then y*? satisfies
@i Dy, X7 + Gap = Tag.

Since we also have a;;(z,t,-,s) € C7(R") with ||a;;(z,t,-, s)||[cv@ny < C, then
from Lemma 4.2.3 we can observe that @, = Gas(z,t,s) € C*(Sr x [0, 00)),
and x*7 = x*(-, -, y,-) € C=(Sr x [0,00)) with

> (1D40y0aas| + | DR O (52, 8) || c2a@m) < Cr (4.3.13)

pu+2v+2p=r

for all » > 0. Now putting A%’ (z,t,s) = / Gop(z,t, 7)dT and we define a
0

additional function X** : Sy x [0,00) — R in a similar way to finding the

corrector & such that
X (z,t,8) = A% (z,t,8) — sA*P (2,1, 1).
Then Y*# is s-periodic, and we can deduce that

NP = ;i Dy X = Tap — AP (2,1,1) + Gap — Gag = —A (2,1,1) + aap.
(4.3.14)
Now we construct the family of functions {v! : Sp — R}ocicm, {€ : Sp x
[0,00) = R}ocicm, and {w! : Sy x R™ x [0,00) — R},<i<, by using an
induction argument. As we wrote before, we define v° = wy, £(x,t,s) =
&(s; D2uy, @, t), and w(z,t,y, s) = w(y, s; D?uy, x,t). Then the assertions (7)
and (i7) are then immediate from Lemma 4.2.3, Theorem 4.1.1, and Corollary
4.3.2. We choose 1 < [ < m and suppose that we have already found the
families {v! : St — R}ocicm, {& @ St x [0,00) = R}o<i<m, and {w' :
St x R" x [0,00) = R}o<i<m, which satisfy (4), (1), and (i7).
Consider the following problem: For each (x,t,s) € St x [0, 00), there exists
a (y, s)-periodic function ¢! : S x R™ x [0,00) — R such that ¢'(z,t,-,s) €
C?*7(R™), and a constant Ell (x,t,s) € R which solve the following linear cell
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problem:
aij(xa ta Y, S>Dyiyj¢l = Ell(l'a ta S) + wglsil<x? ta Y, 5) - (I)l(xa t? Y, 8) in R".

Note that ®' does not contain w!, and ®!(x,t,-,s) € C7(R"), wi(z,t,-,s) €

s

C7(R™) by the induction hypothesis. Hence the existence of ¢' and Fll follows

from the same argument as in Lemma 4.3.1 with the uniform estimate

—=l

‘El(.ilﬁ,t,S)’ + H¢l($,t, Y S)HCQ’W(R”)
= Tyl, 5 S)|lcr(Rr) ws_ Tyl S)llcv(rny) > Lk
< O (|9 (x,t,-, )| + w2t )| )<C

Moreover, the induction hypothesis again we get Ell € 0%(Sr x [0,00)), and
¢l('> Y, ) S COO(S_T X [0, OO)) with

3 (|Dga;a§ﬁ1\+HDga;ag(bz(x,t,.,S)HCQ,W(R”))gc,m (4.3.15)

p2v42p=r

for all » > 0. If we put

s 1
a(x,t,s):/ Eﬁ(x,t,T)dT—s/ By (z,t,7)dr
0 0

then we deduce that

1
é;l aiijiyj¢l :Ell(‘r7ta 8) _/ EI(ZL’,t,T>dT—El1(I7t, S) _wi_1+q)l
0

,3_

1
= —/ E(z,t,7)dr — w ! + 3L,
0

(4.3.16)
To this end, we choose the function v' : Sp — R by the solution of
vl — A (x,t,1) Dy 0 = o x,t,7)dr  in Sr,

vl =0 on 0,S7.

Recall from Lemma 4.2.3, Corollary 4.3.2 and (4.3.13) that AY(x,t,1) is

97



CHAPTER 4. HOMOGENIZATION OF FULLY NON-LINEAR
PARABOLIC EQUATIONS WITH DIFFERENT OSCILLATIONS IN
SPACE AND TIME

uniform elliptic in S¢ and A(z,t,1) € C*(Sy) whose C"7-norm is bounded
above by C, for all » > 0. Since we also have the same regularity for Ell
(depends on k), we obtain that v € C*(Sy) whose C"*27-norm is bounded
above by Cj, for all » > 0, which verifies (7). Now let

wl<x7 ta y7 8) - qbl(xa t7 y7 S) + XU<x7 ta y7 S)Dmimjvl(IJ t)?
e x,t,5) = g(x, t,s) + XY (w,t, S)Dmimjvl(a:, t).

Then (i) can be obtained by combining (i7), (4.3.13), and (4.3.15). Finally,
in view of (4.3.14), (4.3.16) and (4.3.17) that we have

v + & — aij (Dyyo,v' + Dy, 0') — @
=0 — @ Dray V' + @7 i Dy, ¢l> + (XY = ijDyy;X"7) Dy’ — @
1
= Uﬁ - aiijiijl - / Ei(l‘,t,’r)dT — wls_l + CI)l
0
o (Aij(l.a t? 1) - aij) Dgcixj’l)l — CI)Z

1
= (vi — AY(2,t,1) Dy, —/ Ell(x,t,T)dT) —
0

in S x R™ x [0,00), which shows (iii). O

We call the solution v' of (4.3.17) the I(2 — k)-th order effective limit. In
particular, the solution u; = v° of (4.1.3) is O-th order effective limit. Now

we are ready to prove Theorem 4.1.3.

proof of theorem 4.1.3. Here we only investigate when k € (1,2), since the

proof for the k € (0,1] case is very similar, so we omit it. Let us choose

2m —1 2 1
m € 7 to satisfy k € < m , mt } We choose the families {v! :

o m m+1 |
St — R}o<i<m, s-periodic functions {&' : St x [0, 00) = R}o<i<m, and (y, s)-

periodic functions {w' : St x R™ x [0,00) — R}o<i<n from Lemma 4.3.4.
Next, we define the families {X'}o<i<m, {A'}o<i<m, and the function Y™ as

in (4.3.9).
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We firstly observe from (4.3.6) that

v + & — F(XY) = 0. (4.3.18)
Now fix g9 € (0,1). Then Lemma 4.3.4 provide us the following uniform
bound

IX'C /e /) pogsry < Cs

sup ZHAl /€ /E) | poqam < Cue,

0<e<eg =0

(4.3.19)

where C] depends on k, g, n, v, A\, A, ¢, and Sy. Hence, we can easily check
that
sup [[Y™(, /e, /") || sy < Co, (4.3.20)

0<e<eo
where Cy also depends on k, €y, n, v, A\, A, ¢, and Sy. From now on, we
fix € € (0,&9), and we omit the dependency on (z,t, /¢, t/e") for simplicity.
Choose R > 0 in such a way that S; C Qg(0,0) and K > 0. Let us define
05% : Sy — R by

t xz t
Ze (x,t) + "¢ | z, +e*w' | x, s
+ Coe £ eK(R* — |z|* + )
ne, + Coe + e K (R — |z|* + 1).

where K will be determined later, and

£

M =

NE

Sl2=Fk) (Ul 4oekel 4 gsz)

N
I
o

NE

Co = (||§l”Loo(§x[o,oo)) + |’wl”L°°(§><R"><[0,oo))> :

l

I
o

We claim that 657 is a (viscosity) super-solution to (4.1.1). To do this, we
first take a look at the spatial Hessian of this function. We notice that each

¢! does not depend on y = z/e-variable. Hence, it then follows by a direct
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computation that

gl2=k) (Divl + ekDiél + 52Diwl + ng,ywl + Diwl)

NE

Din;, =

T
o

81(24@) (Xl + Al)

NE

l

Il
o

Thus, by the Lipschitz continuity of F' we obtain

F(D2rg)) = (Zsl@ ( Xl—l—Al))

=0
7 T 4.3.21

sE (Z gl(Q_k)Xl> + ngl@_k)HAlHLOO(E) ( )
=0

=0
<F (X0 +2FY™) + Cae.

As we have seen in (4.3.10), a Taylor expansion for the last term of (4.3.21)

gives

F(X°+e> ™) = F(X%) + > W' + kS + R, (4.3.22)

=1

where

l
1
l_ 0 n n
W= Z _l Z Fpilh'“pidfd (X >X1131 ) deojld’

d=1 'n1+ +ng=l
i 1(2—k)
R, = ( +1)! Fpis iy Pins1imn (X* Y Y
ij S R (XX X
il Piy gy Piggy 11]1 uJi
=1 m+1<ni+-+n;<lm

for some ¢, € [0, €]. Due to (4.3.19), (4.3.20), the fact that (m+1)(2—k) > 1

and the regularity assumption of F', there hold

R, + | By < Cle, (4.3.23)
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where Cy also depends on k, €9, n, v, A, A, ¢, and Sr. Moreover, one can

check that W' can be rewritten by

Z Z Fpiljl'”pidjd <X )XZE1 XZ?d

d=1 ‘n1+ Fng=l

0y y! n !
= X X +Z Z Fpnh"'Pidjd(X >‘)(71131' dec;d

= 'n1+ +ng=l

- Fpij (XO)ng + <D (%,t,y, S)a

(4.3.24)

where @ is as defined in Lemma 4.3.4.
On the other hand, the time derivative of 05" follows directly from the defi-

nition of 65" that

(077 )e = (5)e + Ke

= 251(2”“) (v + "¢ + & + 2wy + 27 Fwl) + Ke
1=0

ZUO+ 0+ 8l(2fk) Ul—|— l_i_,wlfl
t fs 121: (t 55 S ) (4325)

+ ) ) (R 4 SPw)) 4 TRy 4 Ke
1=0
=00 + &0+ Z @Rzl 4 éfn + Ke,
I=1

where
=l _

—
—

v+ &+l
Z 1(2—k) k€t+€ wt) 1 emin@E=h),, W™
=0

Since (m+1)(2—Fk)>1,and (2—k)+2>1(2—k)+k > 1 for any [ > 0,

we can deduce from Lemma 4.3.4 that

|R: | < Che. (4.3.26)
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Moreover, in view of the definition of W, (4.3.24) and combining the resul-

tant with the recursive equation (4.3.12) in Lemma 4.3.4, we arrive at

m

Zm: gl(ka)El . Z gl(2fk)Wl
=1

=1

NE

cl(2=Fk) [(Ui + gi + ,wlsfl) — Fpij (XU)ij - Q)l]

T (4.3.27)

o~

NE

£l(2=F) [(Ulle + fi + wiil) — Qyj (Dmxjvl + Dyiijl) o CDZ}
1

I
(a») ~
I

in Sp x R™ x [0, 00).
We have obtained so far the spatial Hessian and time derivative of 65", We
will mix these results. Choose K > (2A\)~}(C5+C;+C5). Then from (4.3.21),
(4.3.22), (4.3.23), and the uniform ellipticity of F' that

F(D305Y) < F(Dgnr,) — 20Ke

xT

< F(Xo+e>"Y™) + Cse — 20\Ke

eCPW 4 RE 4+ RS + Cye — 2)\Ke

NE

= F(X% +

=1

< F(XO) + €l(2_k)Wl.

NE

=1

Consequently, we combine (4.3.18), (4.3.25), (4.3.26), (4.3.27), and above
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estimate that

(05,5 — F(D2651)
> o) + €0+ PE L R 4 Ke— F(X°) =) @by

=1 =1

>+ &0 4> PP (E W) - F(XO)

= v/ +& - F(XY)
=0.

Now we investigate the boundary value of 65:". First, we note that v° = u; =
¢, and v' = 0 on 0,5t for all 1 <1 < m. Hence, by definition of C, we have
for € < g that

m

Ot — o= P (v 4+ Pul) + Cor + eK(R? — [o” +8) —
=0

> (W — ) +e|Co+ 251(2_’“) ("1 + e
1=0

> 0.

Thus, 651 is a viscosity super-solution of (4.1.1). In a similar manner, one can
verify that 65~ is a viscosity sub-solution of (4.1.1). Thus, the comparison

principle yields 65~ < u® < 65F in Sp. It then follows that

where C depends on k, €9, n, v, A\, A, ¢, and Sr. n

_ (2—k)l ZH <C
u —u 5 g,
b ; 1 (51)

Remark 4.3.5. The proofs of Lemma 4.3.4 and Theorem 4.1.3 for the case
k € (0,1] share the same idea presented above, when k € (1,2).There are

several differences from the case k € (1,2), which are as follows. First, the

1 1
interval to which &k belongs is changed to (—, —] , for each integer m >
m+1"m
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1. Second, the order of barriers constructed in the proof of Theorem 4.1.3 is

el* not =% That is,
= ielk vl (z,t) + e a,t L N o *
/r]m l:O ) ) 5k V) 87 E"k

where 77, is a function defined in the proof of Theorem 4.1.3. Therefore, the
order of the convergence rate is also changed to (4.1.5) compared to (4.1.6)
due to this effect.

4.4 Homogenization when £ € (2, 00)

In this section, we consider the case of k € (2,00). Contrary to the case of
k € (0,2), it is natural attempt to find a homogenization for time, then for

space. To do this, we consider following time homogenized operators:
R 1
F(M,x,ty) ::/ F(M,x,t,y,7)dr.
0
Then we can easily check that F satisfies the structure conditions of F.

4.4.1 The effective operator and the effective limit

Now we first look at the cell problem, the modified version of Lemma 4.2.1.
Before we start, we point out that the y-variable regularity of the corrector
should be improved since it is used importantly in the process of finding the

convergence rate.

Lemma 4.4.1. For each (M, x,t) € 8" x St there exists a y-periodic func-
tion w(y; M, xz,t) such that w(-; M,z,t) € C7T27(R") for any ¢ > 0, and a
constant Es(M, z,t) € R which solve the following cell problem:

F(M + Diw,x,t,y,s) = Es(M,x,t) inR" (4.4.1)
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with the uniform estimate
|Es3(M, 2, t)] + [Jw(; M, 2, 1) | crrzn@mny < Co (1+ | M]).

Moreover, E3 is a unique constant where the equation has a unique solution

w up to constant addition.

Proof. The proof of Lemma 4.4.1 is similar to that in Lemma 4.2.1, so the
details are omitted. We make a remark here that the regularity and the

uniform estimate of w only depend on the space fast variable . O]

Define
F3(M,x,t) :== E3(M, x,t).

We will call Fy the effective operator when k € (2, 00). By the same argument
as in the case of k € (0,2), we can observe that the effective operator Fj is
uniformly elliptic with the same ellipticity constants of F' and convex with
respect to M-variable. Moreover, the regularity results for the w and FEj
stated in Lemma 4.2.3 also hold.

Recall that the heuristic calculation (4.1.9) and (4.1.10), and let’s consider
of these two equations as PDEs for «°. If we know the functions u° and 2,
then the extra term u?, which has the information of the third correctors,
can be calculated explicitly by subtracting (4.1.10) from (4.1.9). So, let us
consider the function & : R™ x [0,00) x 8" x Sy — R defined by

E(y,s; M, x,t) = / F(M + Diw, x,t,y, 7)dr — sF3(M, x,t). (4.4.2)
0

It is clear that & is y-periodic. Moreover, since F' is s-periodic, and w is s-

independent, £ is also s-periodic.

Let us now establish an homogenized equation.

proof of theorem 4.1.2. We already proved the existence of uz and uniform

convergence(up to subsequence) u — uz on Sy in Theorem 4.1.3. Let P
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be a paraboloid with My = D2P which touches uz by above at (z,ty) in a
neighborhood. Without loss of generality, we may assume that P touches ug

strictly by above. Assume, to the contrary, that
Py(z0,t0) — F3(Mo, zo, o) > 31> 0

for some n > 0. Put w(y) := w(y; Mo, zo, to). Then from Lemma 4.4.1 we can

observe that w satisfies
F(M, + D2w, xo, to, y) = F5(Mo, z0, 1) in R", (4.4.3)

On the other hand, the continuity of F' and Fj imply that we can choose
p > 0 in such way that Q,(x¢, %) C Sr,

Pt - E(M();x?t) > 3777 and
|F<M0 + Diﬂj\ + N7 l’,t, Y, S) - F(MO + Diﬁ}\a 1’0775071% S)| (444)
+ [F3(My, 2, t) — F3(Mo, mo, to)| <7
for any (z,t) € Q,(xo,%), and N € 8™ with ||N|| < p, uniformly (y,s) €

R™ x [0, 00). Moreover, uz(z,t) — P(z,t) < —p on 0Q,, for some p > 0.
Now define

~

&y, s) = &(y, s; Mo, xo, Lo), (4.4.5)

where the definition of £ is in (4.4.2), and set
x ~fx t
Pe(z,t) := P(x,1 2A<—> kel =2, — ).
(x,t) (x,t) +e*w . + ¢ o

For a while, let us drop the dependency of (z/e,t/e*). Since k — 2 > 0, in
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view of (4.4.3), (4.4.4), and (4.4.5) we have

Pf—F(D2Pat) =P+ & —F <M0 + D2+ F2D2%E t>
= P+ [F (Mo + D}, xo, to) — F5(Mo, 2o, t0)]
2. k—2 12
— F (Mo + Dt + " *D2h, 2, t)
> P, — F3(Mo, o, to) — 1
> P _E(M07I7t) _27]

>0

if £ is small enough, in Q,(zg, ). As u* — uz and P° — P uniformly in

Q. (0, t), we can easily check that for some gy € (0, 1) there holds
ut(x,t) — P(x,t) < —pu/2 on 0Q,(xo,ty), € < &p.

Hence P — /4 is a super-solution to the following initial-boundary value

problem:

Uy — F(Div,x,t,l‘/E,t/Ek) =0 in QT(ant0)7

v =u(x,t) on 0,Q (o, to)-

Hence, the comparison principle implies u® < P* — u/4 in Q. (o, ty). Letting
e — 0 then us(xg,ty) < P(zo,to) — /4 which contradicts assumption that
uz(xo, to) = P(xo,to). It shows that ug is a viscosity sub-solution of (4.1.4).
In a similar manner, we are able to prove that us is a viscosity super-solution
of (4.1.4). The rest of the process follows the same argument as in Theorem

4.1.1, so is omitted. This completes the proof. O
We also have the following regularity result.

Corollary 4.4.2. Assume that F' and o verify the structure conditions. Then
uz € C=(Sr) and

lurllgrezn gy < G
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for each r > 0, where C,. depends only onn, v, A\, A, ¢, and Sr.

Remark 4.4.3. Like the case k € (0,2), we remark that u and Fj are
independent of k € (2,00).

4.4.2 Rate of convergence for the homogenization

From now on, we write

(2, t) = us(x,t),
w'(z,t,y) = wly; Dyu, 2,1),

Oz, t,y,s) = &(y, s; D2u, x,t).

Then in view of (4.4.1), (4.4.2), and (4.1.4) we have

v + & — F(D20° 4 D2w’)
=)+ F(D?° + Dzwo) — F5(D20° 2, t) — F(D*° + Diwo) = 0.
(4.4.6)
We are now in a position to state and give the proof of the convergence
rate when k € (2, 00). The overall process is similar to the case of k € (0, 2).
The only difference is the order in which the homogenization occurs first in

time or space, and this is reflected in the role of k-th order corrector &.

We first introduce the result similar to Lemma 4.3.4.

Lemma 4.4.4. Suppose that k € (2,3), and let m € Z be chosen to sat-
Sy ke 2m+3 2m+1
is

Y m+1" m
conditions. Then there exist families of {vl : St — Rli<icm, y-periodic

>, Assume that F and ¢ satisfy the structure

functions {w! : Sp x R*" — R}i<i<m, and (y,s)-periodic functions {& :

St x R" x [0,00) = R}1<i<m, which satisfy following conditions:

(Z) wl('u '7y> S OOO(S_T)f §l<'7"y7'> S COO(S_T X [07OO>> uniformly fOT’ y e
R", and w'(z,t,-), (x,t,-,s) € C®(R™) uniformly for all (x,t,s) €
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St x [0, 00) with

> (IDroyw!(a,t, Y lomeey + | DEO;OLE! (2,8, -, 8) [ omo ey

p+2v+2p=r

S Ck,r,o
forallr, o >0, where Cy,, depends only onn, v, X\, A, ¢, and Sr.

(ii) v € C=(Sr) with

[0l o257y < Chr

for all v > 0, where Cy, depends only on n, v, X\, A, ¢, and Sr.

(iii) For each 1 <1 < m, v, & and w' satisfy the following recursive rela-

tion:

vi—l—fi—aij (Dxixjvl + Dyiijl) = aiijiyjfl_l—I—CI)l in St xR"x [0, 00),

(4.4.7)
where
X0 (x,t,y) = D3v(w,t) + Dy’ (2,t,y)
X' (z,t,y) = D> (2, t) + Diwl (x,t,y) + D;fl_l (x,t,y,s), (1>1),
a/l] <x7 t? y7 s) = sz] <X07 x? t7 y? 8)
®1(x7 t’ y? S) = O?
!
1 ni n
(I)l(x’ 4y, 8> - Z _| Fpilh"'pidjd <‘XO)‘XZ'ljl o 'Xid?d’ <l = 2)

Proof. As the first step, we linearize the equation (4.4.1). Pick (x,t) € Sr,

and from now on we omit the dependence on (z, t) for notational convenience.
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Let x;’(y) = h'[w(y; D2° + hE?) — w(y; D2°)], and

1
aij,h:/ Fpij(Ng,h)dQ,
0

1
aij,h:/ Fy., (No.p)do,
0

Ny, = 0D w(y, D20 + hE*?) + (1 — 0) D2w(y, D2v°) + D2v° + 6hE”,

= Eg(Di’UO + hEaﬁ) — Eg(DiUO)
QaB,h = h 5

where {EY}1<; j<, be the set of standard basis matrices. Note that since ug

and w are independent of s-variable, we get

1
aijn(w,t,y) = / aijn(T,t,y, 7)dT.
0
We then deduce that xzﬁ satisfies
~ aﬁ -~ =
ijhDyiy; Xy~ + Gaph = Gap h-

We can observe that @;; j, is uniform elliptic with the same ellipticity constants
of F\(and so F) uniformly in h. In addition, Lemma 4.2.3 and Theorem 4.1.2

~

imply that for any h with |h| small, a;;x(x,t,-,s) € C®(R"), Gijn(x,t,-) €
C>(R™) with

Gapn| + llain(T,t, ), sllcomm@ny + [[@ijn (2, t, )|l con@n) < Co,
for all ¢ > 0, and

aijﬁ(l‘,t,y) - aij(l’,t7y) - ﬁp”(Df:u—i_ D5w7x7t7y)7
aij,h(xatay7s) - aij(x7t>y7 8) = szg(D?cu + DZw,x,t,y, S)

uniformly in R™ as h — 0. Note that we can easily check that

1
azg(x7t7y) - / aij(xat7y’7—)d7—'
0
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Consequently, by the same argument of the perturbed test function method
as in Lemma 4.2.1 (see [34], Lemma 2.1.2), there exists a unique constant
Qop(2,1) = (E3)p,,(D30°, z,t) and a bounded y-periodic function x** (z, t,y) =
Dy, ,w(y; D20°, x,t) with x*?(z,t,-) € C*(R") such that

[Gap.n — Qs + ||Xgﬁ - Xa6||L°°(R") — 0
as h — 0. Then y*? satisfies
aiijiijaﬁ + aag = Z\aﬁ.

Since we also have @;;(x,t,-) € C77(R") with ||@;;(x,t,-)||cer@n) < Co, then
from Lemma 4.2.3 we can observe that dus = dug(r,t) € C®(Sr), and
X =x(,,y) € C>(Sr) with

3 (|Dga;§a5\ + || DR X (x, 1, .)HCM,W(R”)) <c, (4.4.8)

p2v=r

for all 7, 0 > 0. Now putting AY(x,t,y,s) = / a;j(x,t,y, 7)dr and we define
. 0
a additional function Y*° : S x R x [0, 00) — R in a similar way to finding

the corrector £ such that
X\aﬁ(x’ t? Y, S) - Aij(xa 7(;7 Y, S) (Dyiijaﬁ + 5&6) - Sa\aﬁ(xa t)’

where §,5 is the Kronecker delta function. Then Y is the (y, s)-periodic

function, and we deduce that

X\?ﬂ - aiijiijaIB = Qij (Dyiijaﬁ + 5a6) - /E\aﬂ - aiijiijaB = Qap — E\aﬁ'

(4.4.9)
Now we construct the family of functions {v! : Sp — R}g<j<cm, {w! : Sp x
R" — R}icjcm, and {& : Sp x R® x [0,00) — R}o<i<m by using an in-
duction argument. As we wrote before, we define v° = wug, w®(x,t,y) =

w(y; D2ug, x,t), and & (z,t,y,s) = &(y,s; D2us, z,t). Then the assertions

111



CHAPTER 4. HOMOGENIZATION OF FULLY NON-LINEAR
PARABOLIC EQUATIONS WITH DIFFERENT OSCILLATIONS IN
SPACE AND TIME

(i) and (i7) are then immediate from Lemma 4.2.3, Theorem 4.1.2, and
Corollary 4.4.2. We choose 1 < | < m and suppose that we have already
found the families {v' : St — R}ocicm, {w' : S7 x R* — R}ocicm, and
{€: Sy x R™ x [0,00) — R}o<i<m, which satisfy (i), (ii), and (iii).
Consider the following problem: For each (z,t) € Sr, there exists a y-
periodic function ¢!(x,¢,y) such that ¢'(z,t,-) € C°27(R"), and a constant
Eg(x, t) € R which solve the following linear cell problem:

1
aij(x,t,y)Dyiyj¢l:/ aij(x,t,y,S)Dyiyjﬁl_lds—%ﬁé(:c,t)—@l(az,t,y) in R",
0

where

1
@l(x,t,y):/ <I>l(:17,t,y,7')d7'.
0

Note that ®' does not contain w' and &' In addition, we also know that
Oz, t,) € CoV(R"), & Y(x,t,-,5) € C7T27(R™) by the induction hypothe-
sis. Hence, the existence of ¢! and Eg follows from the same argument as in

Lemma 4.3.1 with the uniform estimate

—
B3z, )] + 16/ (5 2, ) | o2 any
<C (H@l(x,t, Moo + 1Dy a,t, -, S)HC‘"”(R"O < Cho

Moreover, the induction hypothesis again we get Fé, (-, y) € C=(Sr)
with

v 1
> <|D§8t Ea| + || DEOY ¢ (, ¢, .)||CU+2,7(RR)> < Chro (4.4.10)

pu2v=r

for all r, o > 0. If we put

(:757(1', t7 Y, S) = Aiijiyj ¢l - / Qjj (I7 tu Y, T)Dyiyjé.l_1<x7 tu Y, T)dT
0

—i—/ O (x,t,y, 7)dT — sEg(x,t),
0
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then which shows

_ —1
as - aiijiyﬁbl = aiijiyj(qbl - Sl 1) +@' - By — aiijingbl

- (4.4.11)
= —CLZ'ijiyjfl_l + q)l - Eg.
To this end, we choose the function v' : S7 — R by the solution of
vl — @i Dyp vt = El x,t in St,
LT 5(0:1) ! (4.4.12)
vl =0 on 0,S7.

Recall from Lemma 4.2.3, Corollary 4.4.2 and (4.4.8) that @;; is uniform
elliptic in S7 and /a\ij e C™ (S_T) whose C™7-norm is bounded above by C,
for all » > 0. Since we also have the same regularity for Eé (we choose o =,
depends on k), we obtain that v € C°°(Sr) whose C"*27-norm is bounded

above by Cj, for all » > 0, which verifies (7). Now let
w'(z,t,y) = ¢ (2,6, y) + X7 (2,4, y) Dy, 0' (2, ),
& tyy,s) = (2,8, 5) + X7 (@, t,y,5) Do, 0! (2, ).

Then (i) can be obtained by combining (i), (4.4.8), and (4.4.10). Finally, in
view of (4.4.9), (4.4.11) and (4.4.12) that we have
Ui + §i, — (mejvl + Dyiijl) — @
=v; — ijDaya v + <<gi B aiijiyj¢l> + (XY = 3Dy, X7) Dyyayv' — @'
= 0} = @i Dy 0 — a5 Dy &+ B — Fy + (aij - Eij) Dy vt — @
— (vi — a-ijmjvl — Eg(aj, t)) + a,;ijiyjfl_l

_ -1
= @ijDy.y, &,

in Sp x R" x [0, 00), which shows (ii1). O

We call the solution v' of (4.4.12) the I(k — 2)-th order effective limit. In

particular, the solution uz = v of (4.1.4) is O-th order effective limit. Now
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we are ready to prove 4.1.4.

proof of theorem 4.1.4. Let’s first assume that k € (2,3). Let us choose m €

2 3 2 1 _
m : m ) We choose the families {v' : Sp —
m+1

R} o<i<m, y-periodic functions {w! : S x R™ — R}o<icm, and (y, s)-periodic

7 to satisfy k € [

functions {&' : Sy x R™ x [0,00) — R}o<i<m from Lemma 4.4.4. Next, we
define the families X° : S7 x R — R, {X!: S7 x R™ x [0,00) — R}1<i<m,
{AV: S xR™ % [0, 00) = R}o<icm, and the function Y™ : Sy x R™ x [0, 00) —
R as

X% = D2z, t) + D;wO (:L',t, f) ,
€
! 2.1 2.1 z 2411 r o1
X! = D2\ (x, ) + D2w <:z:,t,g) + D (22,5 ) (=),
! 1 r 1 212, 1 r ot
A =eD ' (2, t,—, — | +eDyw' |z, t,—, —
g’ €

k lDwyg (

Ym:Xl +8(m1k2 Zg(lle

We firstly observe from (4.4.6) that
v) + &0 — F(XY) =0. (4.4.13)

Now fix 9 € (0,1). Then Lemma 4.4.4 provide us the following uniform
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bound
IX'( e /e /") oo oy < Ci,

sup ZHAl 77/5 /8 )HLOo (ST) <Ol€

0<e<eo =0

(4.4.14)

where C] depends on k, g, n, v, A\, A, ¢, and S7. Hence, we can easily check
that
sup (Y™ (-, /e, /") o5y < Cos (4.4.15)

0<e<eo
where Cy also depends on k, €9, n, v, A\, A, ¢, and Sy. From now on, we
fix € € (0,&0), and we omit the dependency on (x,t,z/e,t/e") for simplicity.
Choose R > 0 in such a way that Sp C Q(0,0) and K > 0. Let us define
05% : Sy — R by

ek (k—2) €z kel Tt
05 Zs { +5w<xt€>+6§(x,t,€,€k)}
+ Coe + eK(R? — |z|? + 1)
=05 (2,1) & Coe £ e K(R* — |]* + 1).

where K will be determined later, and
e, = Zgl(k—z) (Ul 12t 4 gkgl)
1=0

Co = D7 (Il grery + €' e Sk xioey)

=0

We claim that 65 is a (viscosity) super-solution to (4.1.1). To do this, we
first take a look at the spatial Hessian of this function. It then follows by a
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direct computation that
D2ne = Z glk=2) (Divl +e?D2w +eD, yu' + Df/wl
1=0
+5kD2€l + gkle%ygl + 8k72D§£l)

ikZXl—{—AZ)

=0

Thus, by the Lipschitz continuity of F' we obtain

F(D*p:,) = (Zsl(k 2( XZ+AZ)>

=0

" T 4.4.16
<F (Z 8l(k_2)Xl> + OZ €l(k_2)||Al||Loo(§) ( )
1=0 =0
< F (X0 +572Y™) + Cse.

As we have seen in (4.3.10), a Taylor expansion for the last term of (4.4.16)

gives
F(X+52ym) = F(X%) + Y W+ RS + R, (4.4.17)
=1
where
Z Z Fpim---pidm (X >X1731 ) Xfffydv
d=1 d! ni+-+ng=l
€(m+1)(k 2)
5 o * m m
Rm N meilh”'l’imﬂij <X )Yllﬂ Y;:m+1jm+l’
m 6nlJr~--+nl
. ni ny
- Z Z TFPhjl'"Pim (X >X21J1 ) X%zjl

=1 m+1<ni+-+n;<lm

for some €, € [0,¢]. Due to (4.4.14), (4.4.15), the fact that (m+1)(k—2) > 1,
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and the regularity assumption of F', there hold
R, + | By < Cle, (4.4.18)

where Cy also depends on k, €9, n, v, A, A, ¢, and Sr. Moreover, one can
check that W' can be rewritten by

L __ § - E 0 ni ng
W= d! Fpiljl“'Pidjd<X )th XZde
d=1 " ni+- +nd*l

0 l 0 n n
X X + Z Z Fpi1j1"'pidjd (X )Xh;l' de?d
d=2 ‘ ni+--+ng= l
Fpm (XO) (Dxixjv + Dyzyg ) + szg (XO)Dyingl_l + (Dl(l', ta Y, S)a
(4.4.19)
where @' is as defined in Lemma 4.4.4.
On the other hand, we will look at the time derivative of 5. Note that each
w' does not depend on s = x/g*-variable. Hence, it follows directly from the
definition of 05" that

(077 )e = (1)1 + Ke

= & (y 4 2w + ¢ + &) + Ke

=0

=) + &+ Zgl(k’” (v + &)+ Zgl(’“’Q ew, + &) + Ke
=1 1=

=) + 04+ P 4 R+ Ke,
=1

(4.4.20)

where
=l _ 1 l
= =v, + &,

ﬁfn = Z&tl(k’2 g2 wt + € ft)
1=0
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Since k € (2,00), we can deduce from Lemma 4.4.4 that
|RE | < Cse. (4.4.21)

Moreover, in view of the definition of W, (4.4.19) and combining the resul-

tant with the recursive equation (4.4.7) in Lemma 4.4.4, we arrive at

m

m
Z Slk=2)=t _ Z =2y
=1

=1

= Z‘gl(kim [(Ui + fé) — Qi (Dxﬂjvl + Dyiijl) - aiijiyjflil - (I)l}
=1
0.

(4.4.22)

We have obtained so far the spatial Hessian and time derivative of 65,

We will mix these results. Choose K > (2)\)7'(C3 + Cy + C5). Then from
(4.4.16), (4.4.17), (4.4.18), and the uniform ellipticity of F' that

F(D203;*) < F(D2,) — 2AKe

T

F
F(Xo+e"2Y™) + Cse — 2\Ke

IN

= F(X°) + Y * W'+ RE + RE + Cse — 20Ke

=1

< F(X%)+ 3l

=1

Consequently, we combine (4.4.13), (4.4.20), (4.4.21), (4.4.22), and above
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estimate that

(05,5 — F(D2651)
> o) + €0+ P L R 4 Ke — F(X°) =) t2p!

=1 =1

>+ &0+ D (E - - F(XO)
=1

= v/ +& - F(XY)
=0.

Now we investigate the boundary value of 65:". First, we note that v° = uz =
¢, and v' = 0 on 0,5t for all 1 <1 < m. Hence, by definition of C; we have
for € < g that

05t —p =) D (v 4 2wl + eF ) + Coe + eK(R2 — |2)* +t) — ¢

l

—0
> (W — ) +e|Co+ Zsl(k_Q) (ew' + &1
1=0

> 0.

Thus, 651 is a viscosity super-solution of (4.1.1). In a similar manner, one can
verify that 65~ is a viscosity sub-solution of (4.1.1). Thus, the comparison
principle yields 65~ < u® < 65F in Sp. It then follows that

where C depends only on k, €, n, v, A\, A, ¢, and Sr.

u® — us — e(k_z)lle < 55,

Finally, the proof for case k € [3, 00) is similar to the above, but rather easier.

In this case, we simply choose m = 0 and

t
n;(‘rJt) - U0($7t> +€2w0 (Z’,t, z) +€k§0 <Jf7t, E7 _k) .
g g €
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Thus, we can prove directly without an expansion (4.4.17). The rest of the

proof is exactly the same, so is omitted. O

120



Chapter 5

Higher order convergence rate
for the homogenization of soft
inclusions with non-divergence

structure

5.1 Introduction

In this paper, we study a homogenization problem of non-divergence type
elliptic partial differential equation defined in a perforated domain. On the
boundary of perforations, we consider an oblique boundary condition instead
of Neumann boundary condition. Let  be a domain whose boundary is C?,
0 < a < 1. We define a periodically perforated domain €2, as follows: let
B,(z), z € Z™, be holes distributed periodically and T'(r) = U,czn B,.(2) with
radius € (0,1/2). Let ¢ > 0 be a small parameter which eventually tends

to zero. Then the periodically perforated domain (2. is represented by
Q. :=Q\T., T. = T(r).

We consider the following non-divergence type equation with oblique con-

121



CHAPTER 5. HIGHER ORDER CONVERGENCE RATE FOR THE
HOMOGENIZATION OF SOFT INCLUSIONS WITH
NON-DIVERGENCE STRUCTURE

ditions on the boundary of the holes:

ai;(z)Dijus(x) + c(u®, x, v /e) = f*(x) in Q.,

b (z)Dius (z) = eg®(x) on Q2N IT, (Le)
u(x) = o(x) on 0N\ Ty.
Here, A*(z) := (aj;(z)) = (aij(z/e)) is a n x n matrix which is uniformly

elliptic with elliptic constants A, A, that is, A(y) := (a;;(y)) satisfies

MNEP < aii(y)&; < A€ (5.1.1)

for all £ € R™ and y € R™. Also, b°(z) := (bi(z)) = (bi(z/¢)) is a vector field
defined on OT satisfying

bl <A, and b-v>A (5.1.2)

for the unit-outward normal vector field v = (v;) of R" \ T', and ¢(z, z, z/¢),
fé(x) == f(z,z/e), ¢°(x) := g(x,x/e), and ¢(x) are all continuous functions.
Moreover, all of the coefficients and the functions are periodic in the fast
variable y = xz/e.

Non-divergence type elliptic equations can be applied in many fields, such
as optimal control, stochastic differential games, and geometry. For related
applications, see the [17] and [21]. Especially, the oblique condition is a gen-
eralization of the boundary condition in the well-known Skorokhod problem.
In probability theory, the Skorokhod problem is the problem of solving a
stochastic differential equation with a reflecting boundary condition, and
obliquely reflecting Brownian motions in the Skorokhod equations arise nat-
urally in the diffusion approximation in stochastic theory. For more detailed
explanation, see [47] and [53].

The authors of [38] suggest a sufficient condition, called a compatibility
condition to have a homogenization process under the oblique condition. The

compatibility condition will give the balance between the diffusion equation

122



CHAPTER 5. HIGHER ORDER CONVERGENCE RATE FOR THE
HOMOGENIZATION OF SOFT INCLUSIONS WITH
NON-DIVERGENCE STRUCTURE

in R™ \ T" and the drift effect by the oblique condition on 9T, and then it
gives the existence of global solution as it does in the standard divergence-

type equation.

Definition 5.1.1 (Compatibility condition). (A, b) satisfies a compatibility

condition if the following equation

aij(y)Dy,y,v = 0 in R"\ T,
bi(y) (& + Dy,v) =0 on 0T

(5.1.3)

admits a periodic solution v for any given £ € R™.

[38] showed that the homogenization takes place when the coefficients
(A,b) hold a compatibility condition and the size of holes r is less than a
constant ro = ro(n, A\, A). As a result, we obtain the existence of the effec-

tive(homogenized) equation given by

L(D*u,u,x) = @;;Dyp,u(z) + (U, z) — f(z) =0  inQ,
u(x) = p(z) on 02,

(5.1.4)

where the solution @, which is called an effective limit, is the uniform limit

of ue.

In this paper, we are going to study an estimate of the rate of convergence
between the solution u® and the effective limit w. We will show a rigorous

justification of the following asymptotic expansion of the solution u°:
u(w) = (x) + ewi(z) + - + My, (2) + 0, () + O™,

where w(x) = wi(z, x/e) and 65 (x) are the k-th order correctors which fix
the error occurring in the interior and on the boundary respectively. For the
homogenization theory in a perforated domain with oblique boundary con-
dition, [38] obtained the effective operator by introducing the compatibility

condition. However, the study of convergence rate including higher orders
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in homogenization theory is new, to our best knowledge, for second order
uniformly elliptic equations in non-divergence form with oblique conditions
on the boundary of the holes. As an important by-product we can provide
an estimate of the rate of convergence (namely, of ||u® — || ~) and establish

that the solutions u® converges uniformly to .

5.1.1 Main results

In order to find the higher order correctors, as mentioned in the introduction,
we have to use the basic method for the existence and the regularity of the
correctors for each order in an inductive manner. For the purpose, we need
regularity assumptions on the coefficients that play an essential role in our

analysis. The following conditions are assumed in this paper.

(C1) A(y), b(y), c(z,z,y), f(x,y) and g(x,y) are periodic in y-variable.
(C2) ¢(0,z,y) =0 and ¢(z,x,y) is non-increasing with z-variable.

(C3) a;; € C*(R™\ T) and b; € C1*(9T) for some « € (0,1).

For given any subsets X and Y of R"™ and a continuous function v(x,y)
defined on X x Y, we define the space C'(X;C**(Y)) of allv: X x Y — R
satisfying

||U||CZ(X;0k»a(Y)) := Ssup sup ||D3U(9U7 ')||ckva(y) < 0.
0<|y|<t zeX

Also, we set

B |DYv(21, ) — Div(wa, )| ok
[U]olvﬁ(x;ck’a(y)) = sup sup 3
|v|=l z1,22€X |$1 - x?‘

for some «, 5 € (0,1] and k,l € Z. With this semi-norm, we can define the
space OY9(X; CF(Y)) of all v : X x Y — R satisfying
[v]lcus (xicrayy = [Vllorxorapy) + [Vlons xomeayy) < 0.
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For simplicity we write C%#(X; C**(Y)) = C?(X; C**(Y))) when 3 € (0, 1).
Let us make few remarks on this space. By definition, we first note that if
v € CY(X;CH(Y)), then v(-,y) € C**(X) uniformly for all y € Y and
v(z,-) € CH(Y) uniformly for all z € X.

Suppose that v € C%(X;C**(Y)) and v(-,y) € CY(X) for any y € Y. let
Y = R"\ T with v(z, ) is y-periodic. Hence, we may assume that v(z, -) can
be considered to be defined on a compact metric space (R™\ T')/Z". Now we

put
U(.’L‘ + h€k7y) B U(l‘,y)
h

for fixed y € Y, and for some unit coordinate vector e;. Then the definition
of COY(X; C*(Y)) space implies that

ngv(:p,y) =

||D;Lkv(a;, ')Hck,a(y) S [’U]Co,l(X;Ck,a(y)) < Q. (515)

Therefore, the compact embedding result (or Arzeld-Ascoli theorem) ensures
the existence of a limit function w : X x Y — R along a subsequence of h,
which is y-periodic and belongs to C**(R™ \ T'). But since v(-,y) € C1(X),
we know that the limit of D! v(z,-) = w(z,-) (in C*-norm) takes place for
the full sequence of h. Consequently, by definition, w(z,y) = D,, v(z,y) and

from (5.1.5) we have

| Dyv(, ')HC’“%Y) < HUHCOJ(X;CM(Y))-

In general, suppose that v € C41(X; C**(Y)) and v(-,y) € C'"(X) for any
y € Y. Then we can deduce that

| Dyv(z, ')||ck7a(y) < ||U||Clvl(x;ck,a(y)),

where |y| =1+ 1.

Moreover, we also have
[v]lcus xiomay) < vllers (xore
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iftl+p5<U+p.

The followings are regularities on ¢, f and g:

(C4) ¢, f, and g satisfy
el gm.o@xa.co@mry) T I fllome@ca@nry) + 19llome@core@r) < oo

Now we can state our main results on the rate of convergence. Define
ne, 1 Q. — R by

ne(x) = u(z) + ewi(x) + - + e™w’, (x)

where wf, is an k-th order interior corrector defined by (5.3.1). In addition, to
correct the error occurring on the boundary, we need the boundary corrector
¢c, defined by the solution of (5.3.2). Then we can obtain the higher order

convergence rate.

Theorem 5.1.2 (Main theorem). Let m > 2 be an integer, {u®}.~q be family
of (viscosity) solutions of (L.), and @ is the effective limit of {u®}.~o which
solves (5.1.4). Assume the conditions (5.1.1), (5.1.2), (C1)-(C4) hold and
(A,b) satisfies a compatibility condition. Then there are interior corrector

ne (z) and boundary corrector 05, (x) such that for any e € (0,1)

s =5, — 05, || (o) < Ce™ !
where C'is a constant depending on n, m, a, X\, A, v, Q, ||aij||ce@\1),
[billcreory, Il oma@xaon@nry, 1flleme@cs @y, 19lleme@ereor) and

[llgm+2.a(my- In particular, we have

[ = oy < Ce.
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5.1.2 Heuristics discussion and main strategies

We now make a few remarks on the key features observed in achieving the
rates. In order to find the next order corrector, we consider the effective oper-
ator which can be derived from the equation given by the previous correctors
as source terms. In each step, all the effective operators are turn out to be
still in the same format of the previous one. For this reason, we are able to
employ the basic approach for the existence and the regularity of the correc-
tors for each order in an inductive manner. We notice that the compatibility
condition guarantees the solvability of a boundary value problem. That is, at
each step of finding the k-th order interior corrector, we need a compatibility
condition which uniquely determines the corrector.

The strategies to prove Theorem 5.1.2 are based on the barrier argument,
however there are several difficulties which arise given the oblique condition.
The classical proof presented by Evans ([19, 20]) can be established using a
appropriate test function created by adding a second corrector to the per-
turbed term. But in our case this is not enough due to the effect of the oblique
condition. The basic idea to overcome this hurdle is to reflect the influence of
the first corrector in the test function. We point out that the first corrector
wy depends on D,u(x), in other words, the first corrector cancels the effect
of the one-time derivative from the oblique condition. As a result, this allows
one to create a barrier that satisfies the oblique condition.

Concerning the regularity of the correctors, we are faced with the coupling
effect of the fast variable y = x/¢ and the slow variable = of the interior
correctors wg(z,y). The interior correctors wy can be represented in the form
of (5.2.33), which is the summation of the functions whose (z,y)-variable is
coupled. This phenomenon occurs due to the influence of the (z,y)-coupled
effect of the low order terms. As a result, the function y — D, wi(z,y) turns
out to have a lower regularity than that of y — wy(x,y) (see [34]). In order
to overcome this difficulty, we introduce the coupled regularity to the low
order terms, and by combining this with the basic homogenization scheme,

we can restore the regularity of the correctors.
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Finally, it is worth mentioning the need for the boundary correctors. We
have to correct the boundary oscillation occurred by the interior correctors by
solving the corresponding boundary value problem (5.3.2). One may notice
from the regularity results of the interior corrector in Section 5.2 that the
existence of the boundary correctors is guaranteed in the viscosity sense (see
(3, 17]).

5.1.3 Outline

This paper is organized as follows: Section 5.2 is devoted to the existence
and the regularity of correctors. In Subsection 5.2.1, we investigate the exis-
tence and the regularity of the solutions for the general corrector equations
and review the basic homogenization scheme via the viscosity method. And
then we apply the asymptotic expansion method to define the first and sec-
ond correctors and find an effective equation in Subsection 5.2.2. Subsection
5.2.3 we study the higher order interior correctors, especially find the explicit
formulas of the higher order correctors, which play crucial roles in the proof
of the main theorem. Finally, we present the proof of the main theorem in

Section 5.3.

5.2 Homogenization and correctors

5.2.1 Basic homogenization process and regularity of

solutions

In this subsection, we investigate the existence and the regularity of the

solutions w(z,y) and w.(z,y) of the general corrector equations

Qij (y)Dyiij - f(l’, y) in R” \ T,
bi(y) Dy, w = g(x,y) on T
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and
2 : n
a;;(yY) Dy, we — "W, = f(z,y in R\ T,
)y, (@) \ 5o
bi(y) Dy, we + e*w. = g(x,y) on IT.
Here, z € Q is a slow-variable, and all of the a;, b;, f(x,-), and g(x,-)
are periodic in the fast variable y = x/e. We also assume that (a;;(y)) is
uniformly elliptic, (b;(y)) is uniformly oblique, f and g are continuous.
We note that the equation (5.2.1) is obtained by subtracting and adding
e?w,(z,y) to the interior and boundary equations respectively. Due to the
auxiliary term 2w, in equation (5.2.1), we can use comparison principle and

hence we obtain the existence. For more details, one may refer to [19, 20] and

[38).

Lemma 5.2.1. (Comparison) Suppose that w*(x,y) is a super-solution of
(5.2.1) and w=(x,y) is a sub-solution of (5.2.1). Then for fived v € Q we
have

wh(z,y) >w (z,y) nR"\T.

Lemma 5.2.2. (Ezistence) There ezists a unique bounded y-periodic solution

we(x,y) of the equation (5.2.1) satisfying
le*we (x, MNee@nry) < 1f (@, )| e@nry + [l9(@, )l Leor)-
Lemma 5.2.3. The solution w. of the equation (5.2.1) satisfies

0scrm\7We (2, +) + |0 (2, ) | ora @m\1)

< C(If (s M zoe@mry + g (@, )llewor))-
Moreover, we have
[we(z, )| c20@vry < Cf (@, )co@mry + [l9(, )l craom))

where we(z,y) = w(x,y) — w(x,0) and C depends on n, o, \, A, r,

||6Lij ||Ca(Rn\T) 5 (md ||bZ ||Cl,a(aT).
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Remark 5.2.4. By Lemma 5.2.2 and 5.2.3 we can also obtain

le*we (@, Yoz @y < C (I1f (@, Miea@nry + 9@, lloreon) -

where C' depends on n, o, A\, A, 7, [|a||ce@m\1), and [|b; | c1.eor)-

Now we are ready to find the effective operator. We notice that w.(z,-)
(or we(x,-)) is y-periodic, hence, we may assume that w.(z,-) (or w.(z,-))
can be considered to be defined on a compact metric space (R™\ T')/Z".
Lemma 5.2.5. Assume that a;; € C*(R*\ T) and b; € CH*(9T) for some
a € (0,1]. Then there exist a y-periodic function w(z,y), w(z,-) € C**(R™\
T), and a constant y(x) € R such that

|e*w:(z, ) — v(@) || o @m\1) + | We (2, -) — w(z,)||c2@nmvry = 0 as € — 0
(5.2.2)
where W.(z,y) := w:(z,y) —w:(z,0). Moreover, v is a unique constant where

the equation (5.2.4) has a unique solution up to constant addition.

It then immediately followed from Lemma 5.2.5 that v(z), and w(zx,y)
satisfy

(@) + lw(z, )llcze@nry < CUf () lce@nr) + 9z, )llcre@r) (5.2.3)

and solve the following cell problem:

aij(y)Dyiij = 7(x> + f(:L‘, y) in R" \ T,
bi(y)Dy,w = —y(x) + g(x,y)  on IT.

(5.2.4)

Proof. Fix yo € R™\ T. Then in view of Lemma 5.2.2, we can take a sub-
sequence {ciwe, (y0)}72, of {e*w.}oce<1 and a number v € R such that
e2we, (o) — v as k — 0. Then Lemma 5.2.3 implies that efw., — 7 uni-
formly in R*\ T" as k — 0.

On the other hand, Lemma 5.2.3 allows us to use the compact embed-
ding theorem, from which we deduce that there is w(z,-) € C**(R" \ T)
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and a further subsequence of {g;}%2,, which we denote again by {ej}2, for

convenience, such that w., — w with respect to C*(R"™ \ T')-norm; i.e.
letwe, — V| zo@mr) + |We, — ||l c2@mry = 0 as k — oco.

Clearly, w satisfies (5.2.4) and by using proof of Lemma 5.2.3 similarly,
we have w(z,-) € C**(R"\ T).

Now we are going to show the uniqueness of v and w. Let w;(x,y) and
ws(x,y) be two solutions of the equation (5.2.4) with corresponding to con-
stants 71 (x) and ~o(z) respectively. To obtain contradiction, assume that
v1 # 72 and without loss of generality, assume v; < 7,. Since w; and wy
are bounded, we can find a constant ¢ such that w; + ¢ touches w, by above
at yo € R™\ T. Suppose that y, is a interior point, then w; + ¢ — wy has a
local minimum at yo. But since a;;(y)Dy,y, ((w1 + ¢ —w2)) (y) =11 —12 <0,
wy + ¢ — wy cannot have its minimum at interior point by the strong maxi-
mum principle. Hence yy cannot be in the interior point. Now suppose that

Yo € OT'. But in this case, since D,, (w1 + ¢ — w2) (yo) = 0, we have

bi(yo) Dy, wa(z, yo) + 72(x)
= bi(yo) Dy, (w1 + ¢)(z, yo) + 72(2)
= g(x,y0) = 11(2) + 72()
> g(, Yo)-

9(z,y0) =

So we get a contradiction and hence v; = 5.

Let v(x,y) = wi(x,y) — we(z,y). Then, since vy, = 72, v solves

aij(y)Dyy;v =0  in R*\ T,
bi(y)Dy,v =0 on T

Now, from the strong maximum principle and Hopf’s boundary maximum
principle in [21], we can conclude that v is a constant. Hence w is unique up

to a constant addition.
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Due to the normalization that w.(z,0) = 0, it is noteworthy to observe
that w(x,0) = 0. That is, the solution w of (5.2.4) is also unique, and
hence the uniqueness of (v, w) implies that every convergence subsequence
(e3we,, w,, ) has the same limit (v, w). Hence we can conclude that (5.2.2)
holds.

m

As the next step, we investigate the regularity of w and ~, in particular
in the z-variable. Roughly speaking, since the z-dependency of w(-,y) and
v(+) depends only on the f(-,y) and g(-,y), it is natural to ask whether a
higher regularity f and g in z-variable gives a higher regularity for w(-,y)
and 7(-), and we now prove that the answer is affirmative. This regularity
result plays the key role in the rest of this paper, especially in seeking higher

order interior correctors. To be precise, we observe the following.
Proposition 5.2.6. Lety(z), andw(x,y) be functions which solve a equation
(5.2.4). Assume that

[ fllems@co@mry + 19lloms@core@r) < oo

Then for any integer m > 0, v, w(-,y) € C™%(Q), where the Holder continu-
ity of the latter is uniform in y € R™ \ T'. Moreover, there holds

||’7||Cm75(§) + ||w||Cmv5(ﬁ;C2va(R"\T))

< C([[fllems@ce@mry + 19llems@coreor))
where C' depends only onn, m, o, A, A, r, ||lai;||ce@mry, and [|b;|cr.eor)-

Before we begin the proof, give an heuristics explanation of our argument.
First, we only assume that f(-,y) and g(-,y) are C? in Q for each y and end
up with the conclusion that w(-,%) and 7(-) are also C* in Q for each y. We
also observe that the equation, which involves the partial derivatives of w

and v in z-variable, satisfies same structure of the equation of w and ~. This
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implies that we can iterate the argument recursively to get C™#” regularity
of w and 7.

Lemma 5.2.7. Let w.(x,y) be a solution of (5.2.1) and w.(x,y) := w.(x,y)—
we(z,0). Assume that

[ flles@ce@nry + 19lles@creor) < oo (5.2.5)
Then for each x1,xo € Q, there holds
le?we (21, -) — e*we (s, )| c2o@mr) + 10(21, ) — We(@2, )| c20mm\T)
< Clay — IQlﬁ(Hﬂlcﬁ(ﬁ;Ca(R"\T)) + ||9||CB(§;CLa(aT)))
where C' depends on n, o, A\, A, 7, ||aij||ce@mry, and [|bi|lct.eor)-

Proof. Let v.(-) = we(x1, ) — we(xa, ). Then v, satisfies the following equa-
tion:

aij(y)Dyiija - 52U5 = f(xh y) - f($27 y) in R" \ T7

bi(y) Dy, ve + e*v. = g(x1,y) — g(22,Y) on 07T
Note that this equation belongs to the same class of (5.2.1). So by applying

Lemma 5.2.2 and 5.2.3 to v., we can see that v. € C**(R™ \ T). Moreover,
condition (5.2.5) implies that we have

||€21)5||C2,Q(Rn\T) + ||’176||CQ,Q(RTL\T)
< C(If (1, ) = f(@a, )lca@mr) + [lg(z1, ) — g(z2, ) lcre@r))
< Clay = a)° (I fllescn@nay + 19les@eragn) -
where 5a(y) = Us<y) - Ue(0> = {Ds(xlyy) - ws(x%y)' L

Since v and w solving equation (5.2.4) can be understood as limits of

e?w.(x,y) and w.(z,y), we obtain the following lemma from Lemma 5.2.5
and 5.2.7:
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Lemma 5.2.8. Let w(x,y) be a solution of (5.2.4). Assume all the conditions
in Lemma 5.2.7 hold. Then v, w(-,y) € C#(Q), where the Hélder continuity
of the latter is uniform in y € R\ T. Moreover, there holds

MM s @+ lwlles@.cze@nry) < C<||f||06(§;0a(Rn\T)) + “g“Cﬁ(ﬁ;CLa(aT)))

where C' depends only onn, a, A, A, 7, ||aij||ca@m\r), and ||b]|cre@r.

Proof. From Lemma 5.2.5 and 5.2.7, it is easily check that for each 1, x5 € Q
there holds

[v(71) = y(z2)| + [l (21, -) — w(2, ')||C2va(R"\T)

< Clz; — $2|B(||f||cﬁ(§;0a(Rn\T)) + HchB(ﬁ;CLa(aT)))-

Consequently, from Lemma 5.2.5 again and above estimate we obtain

”wHCﬂ(ﬁ;CQ»a(R"\T)) = Sup Jw(z, ')HCM(RH\T) + [w]Cﬁ(ﬁ;CQva(R”\T))
e

< C(”f“cﬁ(ﬁ;Ca(Rn\T)) + ||9H06(ﬁ;017a(a:r)))-
[

By Lemma 5.2.8, we have w(-,y) and corresponding effective operator
7(-) are Hélder continuous(uniform in y) on Q. Now we are left with proving
that the z-partial derivative of w(-,y) and v(-) are Holder continuous on

for each y € R™ \ T. Let us make our argument precisely.

Lemma 5.2.9. Let w.(z,y) be a solution of (5.2.1). Assume that f and g

are differentiable with respect to x-variable and

HfHCO’l(ﬁ;Ca(R”\T)) + ||9||0071(§;01,a(6T)) < 0.

Then Dy, w. (1 <k <n) ezist and satisfy

aij(y)DyiijJCkwE - 62D$kw€ = Dl'kf(x’ y) in R™ \ T, (5 9 6)
bi(y) Dy, Dy, we + €2 Dy, we = Dy, g(x, y) on OT. -
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Proof. For some unit coordinate vector e, let

we(z + hey, ) — we(z,-)

D" w.(z,) =
ka(l’,) h

Substituting x with = + hey in equation (5.2.1) and substracting original

equation, we have following equation:
aij () Dy, ngwg — azDﬁkws = ngf(a:, ) in R"\ T,

and from Lemma 5.2.7(8 = 1 case), there holds

ID2 we(z,)||c2o@mry < e °C (”f”co’l(ﬁ;Ca(R"\T)) + ||9||co,1(§;01»a(aT))> :

Then the Arzela-Ascoli theorem ensures the existence of a limit function v,
which is bounded y-periodic and belongs to C**(R™ \ T') for each ¢ along a

subsequence of h, satisfying following equation:

g (y)Dyiyj Ve — 521)5 = Dmkf(x, y) in R™ \ CT7
bi(y) Dy, ve + €*v. = Dy, g(x,y) on OT.
Note that above equation has the same form as (5.2.1). Therefore, due
to the uniqueness of the solution of above (5.2.1), we know that the limit
of D! we(x,-) = ve(x,-) (in C*norm) takes place for the full sequence of h.

Consequently, by definition, v.(z,y) = D,, w.(x,y) and hence D,, w. satisfies
(5.2.6). O

Lemma 5.2.10. Let w(z,y) and v(x) be solutions of (5.2.4). Assume that

f and g are differentiable with respect to x-variable and

||f||CO’1(§;Ca(R"\T)) + ||g||CO>1(§;C’1»“(8T)) < 0.
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Then Dy, and D, w (1 <k <n) exist and satisfy

aij(y>DyiijIkw = ka’y(x) + Dwkf<x7y) in R \ T?

(5.2.7)
bi(y)Dy, Dy, w = —Dy, y(x) + Dy, g(x, ) on OT.
Moreover, we have
[ Do, v(2)] + || Dayw(z, -) || 2@ 1)
(5.2.8)

<C <Hf”C’0«1(§;CO‘(]R”\T)) + ||9||oo,1(§;01»a(aT))>
where C' depends only onn, a, X\, A, 7, ||aij||ce@m\r), and ||b]|cre@r).
Proof. Fix x € Q and define

w(+;x + hey) — w(x, )

Then D! w satisfies
bi(y) Dy, Dy w = =Dy y(w) + Dy g(w,y)  on T

and from Lemma 5.2.8, we have

| D) ()| + 1| Dh w(z, )l c2.e @y
' ’ (5.2.9)

<C (”fHCO»l(ﬁ;Ca(R”\T)) + Hg“CO’l(ﬁ;Clva(BT))) :

Hence we deduce from the proof of Lemma 5.2.5 that there exist a unique
constant Jx(z) and a bounded y-periodic function wy(x,-) € C**(R™\ T)
such that

D! () = Ai(@)| + | DE w(z, -) — @z, )| oz@may — 0
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as h — 0 and 74, and w,, satisfy

ij(Y)Dy,y, Wi, = Yi(z) + Dy, f(2,9) in R*\ T,
bi(y) Dy, W, = —Ak(x) + Dy, g(,y) on 97T.

Due to the uniqueness of the solution of above (5.2.4), we know that the limit
of D! w(x,-) = @(z,-) (in C*-norm) takes place for the full sequence of h.
Consequently, by definition, Fx(z) = D, v(x) and w(z,y) = D, w(z,y).
Moreover, estimate (5.2.9) implies that D,, v and D,, w satisfy (5.2.8). [

We are now in position to show the proof of Proposition 5.2.6.

proof of Proposition 5.2.6. First, assume that

[fllors@ca@myry + l9llors@ora@r) < oc

Then from Lemma 5.2.10 the first order partial derivatives of w(-,y) with
respect to x-variable satisfies the equations (5.2.7) which belong to the same
class of (5.2.4), and admit the e-approximating equation (5.2.6). More pre-
cisely, the uniqueness of the solution w(z,y) implies that the limit of the
normalized function v.(z,y) = v.(z,y) — v.(x,0), where v. is the solution
of (5.2.6), solves (5.2.7). Consequently, we can apply Lemma 5.2.7 and 5.2.8

again to obtain

|De,¥(21) = Dy ¥(22)| + || Deyw (1, ) — Dyyw (22, -)||c2.0@e\r)

< Clay = al° (I fllcroqen @y + Igllcra@erary)
(5.2.10)

for each 71,2 € Q and k € {1,--- ,n}. Then in view of (5.2.3), (5.2.8) and
(5.2.10) we conclude that

||7||01,/a(§) + HwHClﬂ(ﬁ;CQ’“(R"\T))

< € (Iflorsgomgmay + Isllcrsgcraory )
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where C' depends only on n, a, A, A, r, [|a;||ce@\1), and ||b;||cr.e@r). Thus,

if the condition

[ fllem.s @co @y + 19llems@.creor) < 00

holds, then we can repeat the argument used through Lemma 5.2.8 and
Lemma 5.2.10 again to get the Holder continuity of the second order partial
derivatives of w(-,y). Hence for any m € {0,1,2,---}, we iterate this process

by m-times to reach the conclusion. O

Lemma 5.2.11. Let w(z,y) be a solution of the equation (5.2.4). Assume
that

Hf“Clvﬁ(ﬁ;Ca(R"\T)) + ||g||01ﬁ(§;0170<(8T)) < 0.

Then Dy, Dy,w = D, D, w (1 <k,l <n) and satisfies
||D$iDij||Cﬂ(§;Clvo‘(R”\T)) <C (HfHCOvl(ﬁ;CO‘(R”\T)) + ||9||00,1(§;017a(aT))>

where C' depends only on n, a, N\, A, v, ||ai||cemnr), and ||b]|c1.eor).-

Proof. From the proof of Lemma 5.2.10, it is clear that D,, D,, w exists and

satisfies

|1 Dy, Do w|l oo gcro@mmay < C <||f||CO’1(§;Ca(R"\T)) + ||9||0071(§;017a(aT))> ~

To show that existence of D,, D,w, fix + € Q and consider the following

difference quotient

D hey, ) — D :
D.}leDylw(x7.) = ylw(x+ ek’ ) ylw(x’ )

h
D, (w(m + hek,h') —w(z, )) _ Dleka(% ).
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We note that D} w(x, -) solves following equation:

aij(y)Dyiij:}nLkw = ng'y(x) + D;ka(ﬂf, y) in R” \ T,
bi(y)DyiD’;kw = —D;”kv(x) + D;‘kg(x, Y) on OT.

From Lemma 5.2.8, we know that

||Difkw(x, ')|’C’2»“(R’L\T) <C (”fHCOvl(ﬁ;C“(R"\T)) + ||9||0071(§;017a(8T))>
and hence

ID2 Dyw(@,)||cre@nr) = |Dy, D w(z,-)||cre@mm)

<C (HfHCOvl(ﬁ;C“(R"\T)) + ||9HCOJ(§;CLO¢(6T))> :

Consequently, the conditions for the Arzeld-Ascoli theorem met, which en-
sures the existence of a subsequence { D" Dy w}2e_, of {D! D, w},~ which
converges to v(z,-) in C'-norm. But the uniqueness of D,,D,, w (Lemma
5.2.10) implies that Dy, D! w(x,-) = Dy, Dy w(x,-) in C'-norm takes place
for the full sequence of h. Hence we conclude that v(z,y) = D,, Dy,w(z,y) =
Dy, D,, w(x,y). O

5.2.2 Asymptotic expansions and correctors

In this subsection, we define corrector equations from the asymptotic ex-
pansion of u®. We will take a heuristic approach first, and then rigorously
investigate the results. Assume that u® has the following asymptotic expan-

sions:
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where z € Q, y :=x/e € R"\ T, and

m—1

Im(x,x/e) = ui(x,x/e) + eug(x,x/e) + - - - €™ Uy (x, /).

To simplify our notation, let us drop the dependency of (x, z/¢). For a while,
let us assume that all the functions ¢ and {uy}o<k<m are regular enough.

Then a Taylor expansion of ¢(uf, x,z/¢) with respect to u® gives

6m—2 am—ZC

o Oc m—2 m—1

C(U ) - C(UO) + 802 (U())qm + + (m _ 2)' Hzm—2 <UO)Qm + 0(8 )

Oc Jc 1 9%
= c(ug) + 6&(u0)u1 + &2 (&(UO)M + Eﬁ(uo)u%) N
2 dic
m—2 m—1
t+e Zﬁazl(u@ Z UnyUpy *+ Up, | +O(E™)

=1 nlzlJrnﬁ:;réfQ

=c(ug) + Wy + -+ ™2, _» + 0™ )
(5.2.12)

where

" 10
U (ug, uy, -+ Ug, T, /) = E ﬁﬁ(uo,x,x/s) E Upy Upy ** + Up, -
=1 ni+tni=k
n, N #0

Then by putting (5.2.11) and (5.2.12) to our main equation (L), we have

az; (x)Djut + c(u®, x,x/¢e)

ij
_ 1 1 1
= az’j (.’L‘) DmiijQ + gDIiyqu + gDinjUO + gDyiijO + eszixjul
1
+ Dayyt + Dygyur + — Dyt + €” Dyt + €Dg ;s
+€Dyi:pju2 + Dyiyju2 + - ) + C(u07 €, ‘T/8>

+ €\D1(U0,U1,$,£L’/5) + 52\112(u0,u1,u2,x,33/8) +

= f(z,z/e)
(5.2.13)
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with oblique boundary condition

b; (x) - Dju® = b - (DinO + %Dyiufj +eDg,uy + Dy, uqg + - ) =eg(x,x/e).

(5.2.14)
From above expansions, we can expect to see the appropriate correctors
heuristically by comparing the order of e. If we focus on 1/¢% order terms,

we can obtain the following cell problem

aii(y)Dy g =0 i R\ T,
) D o ) (5.2.15)
bi(y)Dy,up =0 on 0T

As mentioned in the introduction, (5.2.15) admits solutions if (A, b) satisfies
the compatibility condition, hence we deduce that uy does not depend on y.
That is, ug(z, y) = up(x). From this fact, and by comparing 1/¢ order terms,

uy (z,y) satisfies the following equation

i (y) Dy,y;u1 = 0 in R\ T,
bl(y) (Din()(JT, ?J) + Dyiul) =0 on JT.

(5.2.16)
Let x¥ = x¥(y), 1 < k < n be a solution of the equation (5.2.16) when
ug(z) = xp. i.e. XV solves

ai;(y) Dy,y, X =0 in R"\ T,

(5.2.17)
br(y) + bi(y) Dy Xf =0 on OT.

We assume that x5(0) = 0 for the uniqueness of solution. Then the general

solution u; of (5.2.16) is represented by

w(,y) = Y X¥(y) Dayuo(w) + ¢n () (5.2.18)

for some function 1y defined in .

If we focus on the €% order terms, then we can obtain following cell prob-
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lem for uy(x,y):

aij(y> (D:le]u0<x> + Dxiyj Uy (:Ea y) + Dyizj Uy (xa y) + Dyiyqu)

+c(ug, x,y) = fx,y) in R*\ T,
bl(y) (Dxiul(x7y) + Dyiu2) = g(.??, y) on JT.
(5.2.19)

Now we investigate the homogenization process rigorously. Let v, be a

solution of the following corrector equation:

aij(y) (Mij + Mix Dy, X5 (y) + Dy, X3 (y) My + Dy 0c)
+c(z,z,y) — 2. = f(z,y) in R\ T,
bi(y) (Max$(y) + Dyve) + %o = g(z,y) on IT,
(5.2.20)

obtained by using (5.2.18) with an assumption that ¢y = 0, by freezing M =
D?ugy(z) and z = ug(z), and by subtracting and adding an auxiliary term e%v.
to the equation (5.2.19). Then from Lemma 5.2.2 there is a unique bounded
y-periodic solution v., which we denote v.(y; M, z, x) for given n x n matrix
M, z € Q and z € R. Additionally, Lemma 5.2.5 implies that there exist
a unique y-periodic function w(y; M, z, z) with w(-; M, z, z) € C**(R*\ T),
and a unique constant L(M, z, z) € R such that

||52v8(-; M,z z)— Z(M, 2, )| oo e\ 1)

+ [0 M, z,2) —w(-; M, 2,2) || c2emvry = 0 as € =0

where v (y; M, z,x) := v.(y; M, z,z) — v:(0; M, z, z). Now we define an effec-

tive operator L(M, z,z) as
L(M,z,x) = hII(l) 2. (y; M, z, 7). (5.2.21)
e—

In [38], the authors showed some properties which are related with the

existence of solutions of the effective equation.

Lemma 5.2.12. Let L(M, z,x) be an operator defined in (5.2.21) obtained
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from the coefficients in (L.). Assume that A(y), b(y), c(z,z,y), f(z,y), and
g(z,y) satisfy (5.1.1), (5.1.2), (5.1.3), (C1) and (C2). Then we have the

followings:

(i) For each v € Q and z € R, L(-, z,) is an affine function on the set of

n X n matrices S".
(ii)) L(M,z,x) is non-increasing with z variable.

(111) (Uniform ellipticity) There is a positive real number ro depending only
on n, A and A such that if the size of holes r is less than or equal to
To, then L(M, z,z) is uniformly elliptic for each v € Q and z € R, i.e.,

there is a positive constant X = \(ro) satisfying
L(M + N, z,x) > L(M, z,2) + || N|

for any M € 8", positive matrizc N, x € Q and z € R.

Let —f(x) = L(O,0,2) and &(z,2) = L(O, z,2) — L(O,0, ) where O is
the n x n zero matrix. Then, due to its linear structure of L, there exists a

constant matrix (a;;) such that
L(M,z,z) = a; My;; +¢(z,7) — f(z)
and hence we can find a solution u that solves following Dirichlet problem:

L(D*4, W, x) = @Dy, u(x) + (@, x) — f(x) =0 in©,
u(z) = o(x) on 0f).

(5.2.22)

We call L(M,z,x) as the effective operator in the sense of the following

theorem.

Theorem 5.2.13 (Effective operator). Let u® be a viscosity solution of (L.)
and u is a solution of (5.2.22). Assume all the conditions in Lemma 5.2.12

hold. Then u is unique and u® converges uniformly to w.
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Proof. See [38] for detailed proof. O

We finish this subsection by introducing the first and second interior
correctors by investigating their existence and regularity. Let ¢o(z,y) =
w(y; O,u, x) and x5 (y) = w(y; E*,0,2)—w(y; O, 0, z) where % is the solution
of the effective operator (5.2.22) and {E*|k,l = 1,--- ,n} is the standard

basis of 8. Then ¢, and YA! solve the following equations respectively,

aij(y) Dy, 02 + c(@ 2, y) — f(x,y) =c(@,z) — f(z)  inR"\T,

bi(y) Dy, s — g(,y) = f(z) — (U, z) on oT
(5.2.23)

and

ar(y) + ar; () Dy, Xt + ai(y) Dy, X5 + aij(y) Dyy, X5 =@ in R\ T,

bi(Y)x4 (y) + bi(y) Dy X5 = —ay on OT.
(5.2.24)

Now we are ready to define the first and second interior corrector. Define
w1, Wa QXRR\T%Rby

wi(w,y) = Xi(y) D, U(x) + 1 ()

wa(2,y) = d2(x,y) + X5 (Y) Deay () + X5 (y) Dy 001 () + ho()
(5.2.25)

where @ is the solution of (5.2.22), 1; and ¢y will be determined later. Then
we utilize (5.2.17), (5.2.22), (5.2.23) and (5.2.24) to obtain

Qg (y)Dyiijl =0 in R" \ T,
bi(y) (Dy,u(x) + Dy,wy) =0 on 9T
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and

Qi (y) (lewjﬂ(x) + Dxiijl (ZL’, y) + Dyixjwl (LL', y) + Dyiij2)
+e(w,z,y) = f(z,y) in R"\ T,
bi(y) (D wi(x, y) + Dy,w2) = g(z,y) on OT.

We call w; and wy as the first and second order interior corrector respectively

in the sense that w; and wy satisfy (5.2.16) and (5.2.19) respectively.

5.2.3 Higher order interior correctors

In this subsection, we are going to determine the k-th order interior correctors
when k > 3. Through the heuristic calculation of (5.2.13) and (5.2.14), we

obtain equations for ug, 3 < k < m:

;5 (Y) (Dayo;tn—2 + Doy, k-1 + Dy tty—1
+Dyiy].uk) + Uy o(ug, -+, up_2,2,9) =0 in Q. x (R*\T),
bi(y) (Dy,up—1 + Dy,u) =0 on IT. x OT.
(5.2.26)
We are going to construct a family of correctors {wy}s<r<n satisfying
equation (5.2.26). To see the structure of corrector equation, we assume that

wy, has the following representation:

wi(,y) = Ok(,y) + X5 (1) Dayy ) Yr—2(2) + X3 (4) Dy V1 () + Vi),
(5.2.27)
for 3 <k <m. If weset v 1 =0, ¢y9 =u, 1 = 0 and ¢, chosen as the
solution of (5.2.23), then wy and wy defined in (5.2.25) also can be represented
as in (5.2.27).
In order for {wy}s<k<m to satisfy equation (5.2.26), We will define Wy,

inductively using the k-th order correctors {wy }1<k<m, including the solution
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w of (5.2.22). So we assume that ¥ is of the form

k
_ 10
\I[k(uawla"' , Wk, T, y § - 2 u,r,y § Wy Wpy * + - Wy -
7! 8,2
1=1 n1+---+m:k
ni,,n 70

(5.2.28)
By putting (5.2.25) and (5.2.27) to equation (5.2.26), we obtain that

Ly :=a;; (Dyiijk + Dy, wi—1 + Dy, w1 + Dzim].wk_g) + W,
=aij (Dy,y, 0k + Dy, X5 Day ay, Wiz + Dapyyyy G
+Dy X3 Dayo, w, Wh-3 + Dy, XV Doy U2 + Dy, -1
+Dy, X5 Dy o, o Vs + Dy, X1 Dayay -2 + Doy, 2

+Xéli2 D:Eile'ilxig Yr_4 + Xill Dwimjl“ilwkfg + DxixjwkiQ)
80(
0z

Oc,
= (aiijiijﬁk + 8_<u7 x, y)¢k—2)
+ {(@i3j Dy, X3 + @iy Dy, X5 + Qigis X1') Day iy, s
+ 5 (Xé”szixjxilxiz wk74 + Dziyj ¢k71 + Dyix]‘ (bkfl
+Dxiwj¢k—2) + \Pk—2}
+ (aiijzy] XZ2”2 + az‘szyj Xzf + Qigy DijZf + amg) DmlxiQ Vr—2

dc _
= (aiijiyj¢k + &(uv x, y)¢k—2) - fk + ai1i2Dzi1$i2¢k_2

+ ﬂ? T, y)¢k—2 + Ejk—?

(5.2.29)
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and

Ny :=b; (Dy,wi—1 + Dy, wy,)
=b; (Do, -1 + X2 Doy w0, V=3 + X3 Davyaryy 2 + Do, 1)
+b; (Dy, ¢ + Dy X5 Dy, 4y, Yk + Dy X3 D, 1)
=b; Dy, 01, + (biy Xt + biDy,X3") D, 0y, Vi
+ {(bi, + b Dy, X}) Dy, g1 + biXéliszixilaciQ Vs + b; Dy, 1}
=biDy, o — @iyiy D, ) V-2 + b; (XéliQD:pixilmiQ Ur—3 + Do 1)

=b; Dy, & — Qiyiy Da; 2y, V-2 — G
(5.2.30)

where \T/k,% fr and gy are functions given by

Jc

{fjk—Q(xay) = \Pk—Q(ﬂv Wy, - - ,Wk_Q,.T,y> - %(ﬂ7x7y)¢k—2(‘r)7

Jr(z,y) === aij(y) (Dayy, S-1(2,y) + Dyo, bp—1(2,y) + Dao, br—2(, y)
X5 2 (Y) Doy, s, Vr-a () — (4,5 (1) Dy, X5 (y)
iy () Dy X5 (Y) + @iy (V)X (V) Dy, iy, Oi—3(2)

— Vg a(,y),

gk(x,y) === bi(y) (X4(Y) Dayo, o0, Vi3 (x) + D, b1 (2, 9)) -
(5.2.31)
Now we will see how to obtain ¢, and ¥_5 for 3 < k < m. We are
going to use an induction argument, so suppose that we have already found
the families {¢;_2}1<i<k—1 and {¢ }1<i<x—1. We then define fi, and g as in

(5.2.31) and consider v, as a solution of

aij(y) (Mij + My, Dy, X2 (y) + Dy, X3 (Y)Miyj 4 Dy, ve)
+CO(xay)Z_52UE - fk(xay) n Rn\Ta

bi(y) (Miilxlf + Dyivg) + 2. = gr(x,y) on 0T
(5.2.32)
where co(x,y) = %(E,x,y). One may notice that f; and gx do not involve
the functions ¥;_o and ¢y.
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As long as ¢, fr and g are regular enough, (5.2.32) belongs to the same
class of (5.2.20), only ¢(z,x,y), f(z,y) and g(x,y) are replaced by co(z,y)z,
fr(x,y) and gx(z,y). Consequently, from Lemma 5.2.1-5.2.5 there exists a
unique bounded y-periodic solution v.(y; M, z,x) of the equation (5.2.32)
and there exists a y-periodic function v(-; M, z,z) € C**(R™\ T'), a unique
number Ly (M, z,x) € R such that

H€2U€ - fk”Lm(Rn\T) + ||,17€ - UHCQ(Rn\T) —0 as ¢ > @

where U.(z,y) = v.(z,y) — v-(x,0). Then v(y; M, z,x) and Lj(M, 2, z) solve

following equation:

aij(y) (Mij + Mg, Dy X5 (y) + Dy X3 (y) Miyj + Dy, v)
+co(x,y)z = Li(M, z,7) + fu(z,y) in R\ T,

bz(y) (Mullel (y) + Dyiv) = _zk(Mv 2, .I‘) + gk(l‘7 y) on 7.
(5.2.33)
Due to Lemma 5.2.12, the operator Ly (M, z, z) is uniformly elliptic when
the size of holes are sufficiently small. Also, similar to the form of L, Lj, can

be represented by
Li(M, z,z) = a;jM;; + ¢p(x)z — [i()

where @; are in (5.2.22), f,(z) = —L(0,0,2) and ¢,(z) = Ly(O,1,7) —
zk<0,0,ZL’)

Now we define ¥_o(z) and ¢ (z,y) as solutions of

az‘ijﬂbk—z + Cr(2)p—o = Tk(x) in €,
Yp—o(z) =0 on Of)

(5.2.34)
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and

aij(y) Dy, &1 + co(2,y)thr—2(x) = Li(O, Yp—s, ) + fi(x,y) i R"\ T,
bi(y) Dy, b = —Li(O, Yr—2, %) + gu(,y) on OT
(5.2.35)
respectively for 3 < k < m. We notice that ¢,_» exists by the same argument
as the case of showing the existence of @. Finally, choose 9,1 € C>*(Q2) and
U € C%2(Q) arbitrary functions. For example, we can choose ¥y, 1 = ¥, =
0. We assume that v, 1 and 1, satisfy estimate (5.2.39) without any loss
of generality.
Now we make our argument rigorous. we must first enhance the regularity
of u since the regularity of u plays an essential role in proving the existence

of the higher order correctors.

Lemma 5.2.14. Let m > 2 with ¢ € C™2%(Q) and 90 € C™2<, Let
u be the solution of (5.2.22) and assume that condition (C4) holds. Then
u € C™2%(Q) and

[l gmreo @
) (5.2.36)

<C <HfHCm»a(§;Ca(R"\T)) + lglleme@cre@ry) + HSOHCT"Jr?’D‘(ﬁ))

where C' depends on n, m, a, A\, A, v, Q, |lay|co@mry, ||billcreer and
||C||Cmva(R><§;Ca(R"\T))'

Proof. From regularity assumptions of ¢, f and g, and from Proposition 5.2.6,
we obtain that ¢ — f € C™*(R x Q) and there holds

[ell cmo®xa) + IIfllcm,a@) <C <||f||cm»a(§;ca(Rn\T)) + ||g||Cm’°‘(ﬁ;Cl’a(8T))>

where C' depends only on n, m, a, A\, A, r, |lay|ce@n\r), ||bil|cre@r and
[ellema®@x@.co@mry)- On the other hand, since u satisfies equation (5.2.22),

the regularity theory in [21] implies that @ € C™*+2(Q) satisfying

llonsse < € (Flomem + Iellonsaem )

149



CHAPTER 5. HIGHER ORDER CONVERGENCE RATE FOR THE
HOMOGENIZATION OF SOFT INCLUSIONS WITH
NON-DIVERGENCE STRUCTURE

where C' depends only on n, m, a, A, A, Q and 12l .o (mxca))- Consequently,

combining above two estimates, we can obtain (5.2.36). O

Lemma 5.2.15. Assume that ¢ € C™+2%(Q), 9Q € C™ 2 and condition
(C4) holds. Then there exist families of {1y : QX R"\T — R} _1<p<pm defined
by the solutions of (5.2.34), y-periodic functions {¢y : QX R"\T — R} 1<pem
defined by the solutions of (5.2.35) respectively, which verify the following

conditions.

(i) For each 1 < k < m, ¢p(x,-) € C>*(R"\ T) uniformly for all x € Q,
i(-y) € C™F+22(Q) wuniformly for ally € R*\ T and

”¢k HcmkarQ,a(ﬁ;CQqa(R”\T))

= Ci(”f”cmﬂﬁica@v\T»‘FHg”cm&@ﬁcLa«nﬁ)*‘H¢Hom+%a@D>
(5.2.37)

(i) For each 0 < k < m, ¢ € C™*+22(Q) and

x| cm-r+20@)

<C <||f||c7n,a(§;0a(Rn\T)) + lglleme@.cre@ry) + ||¢||Cm+2’a(§)>
(5.2.38)

where C' depends on n, m, a, X\, A, v, Q, |lay|co@nry, ||billcre@er and

||C||cm»a(Rxﬁ;Ca(Rn\T)) :

Proof. We are going to use an induction argument. As we set ¥_; = 0,
o =T, 1 = 0 and ¢9 chosen as the solution of (5.2.23), we already know
V-1, Yo, ¢1 and ¢ satisfy the assertion (i) and (i) respectively, which im-
mediately follows from Lemma 5.2.5, 5.2.6 and 5.2.14. Thus, we consider
3 < k < m and in order to run the induction argument, suppose that
the families {¢;_s}o<i<k—1 and {¢;}1<;<k—1 satisfy above conditions (i) and
(77) respectively. Define f; and g as (5.2.31) and co(z,y) = %(H,x,y).
Then by induction hypotheses, Proposition 5.2.6, Lemma 5.2.11 and 5.2.14,

we can observe that co(z,-)z, fi(z,) € C*R"\T), gi(z,-) € C(0T),
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co(+y) € C"HR x Q), fu(-,y) € C™F22(Q), gi (-, y) € C™F+22(Q) and

HCUHCm*La(ﬁ;Ca(R”\T)) + ka||Cm*k+2’a(§;ca(Rn\T)) + Hgk”cm*k%a(ﬁ;ca(am)

<C (HfHCm’a(ﬁ;Ca(]R"\T)) + l9lleme@cra@ry) + ||<P||om+2,a(§)> :

From this observation and Lemma 5.2.1-5.2.5, we obtain that there exist a

function vg (y; M, 2, z), vp(-; M, 2, ) € C*>*(R™\T) and a constant Ly(M, z, ) €

R, which solve (5.2.33). Therefore, in the same way that we found @, there
exists ¥_p : Q — R which solves (5.2.34). Moreover, From Proposition 5.2.6,
Li(O, ) =e(-) - —f1.() € C™*22(R x Q) and there holds

||Ek ||Cm—k+2,a(§) + H?HC"‘_’”‘Q’O‘(Q)

<C <HCOHC’”*LO‘(@C@(R”\T)) + || fill gm—tr2.0 @.co 1))

gk llom-rsz@eniory) -

Hence by similar argument as in lemma 5.2.14, we can also observe that
V_9 € Cm_k+4’a(§) and

k-2l gm-r+a0(m
) (5.2.39)

<C (Hf“cmva(ﬁ;Ca(Rn\T)) + ||9||cm»a(ﬁ;clya(a:r)) + ||90||Cm+2»a(§)> :

On the other hand, if we set ¢y (z,y) = vi(y; D*Yy_2, Yr_2, ) then ¢, solves
(5.2.35). Hence we apply Lemma 5.2.5 and Proposition 5.2.6 to obtain that
or(z,-) € C**(R™ \ T) uniformly for all z € Q, ¢p(-,y) € C™F+22(Q)
uniformly for all y € R™\ T" and

|0kl gm—ts2.0 @020 Rm\T)
<C <||00¢k—2||Cm*k+4’a(§;CQ(R"\T)) + [ full em-rs2.0 @00 vy

gkl om-rsza@cnory) -

Consequently, ¢y satisfies (5.2.37). Finally, choose ¢,,,_; € C>%(Q) and ¢, €
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C%(Q) arbitrary functions that satisfy (5.2.38). Then the proof now finishes
by the induction principle. O

We are now in position to present the proof of our main lemma of this

subsection : The construction of the higher order correctors.

Lemma 5.2.16. There exist a family of y-periodic functions {wy, : Q x R™\
T — R}y<k<m defined by (5.2.27), which verify the following conditions.

(i) wy(x, ) € C*(R™\ T) uniformly for all v € Q,
wi(-,y) € O™ 22(Q) uniformly for ally € R* \ T and

[wrll gm—rs2.0 @20 @)
<C (Hfllcm»a@;ca(w\m +9lloma@craer) + ”90”0’”””@>
where C' depends onn, m, a, X\, A, r, Q, ||ay|| co@m1), [|billcrea@r and
||C||Cmva(R><§;C’a(R"\T))'

(ii) For each 3 <k < m, wy, solves

Qij (Dyiijk + Daziijk—l + Dyia:j Wr—1
—|—Dxﬂjwk_2) + \I/k_g =0 mn R" \ T x QE,
b; (Dy,wi—1 + Dy,wy) =0 on 0T x OT.

where Wy, be defined as in (5.2.28).

Proof. The assertion (i) immediately follows from the definition of wy and
Lemma 5.2.15. Now we prove the assertion (ii). In view of (5.2.27), (5.2.29),
(5.2.30), (5.2.31), (5.2.34) and (5.2.35) we obtain that

/:k = Qyj (Dyiijk + Dwiy].wk_1 + Dyizjwk_l + Dzizjwk—Q) + \I/k_g
oc _
= (aiijiyj Pk + &(U, x, y)¢k—2> — Jk + Qiyiy Doy 2y V2

= (Zk<07¢k—27‘f) + fk(xv y)) - fk(xa y) + ailthilfﬂz‘Ql/}k—?
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in R*\ T x €2, and

Ny = b (Dy,wi—1 + Dy, wy,)
= szyﬂSk - ailiQDIilxi2¢k—2 — 9k
= (—Li(O, -2, 2) + gr(2,y)) — @iriy Da, o,y -2 — gi(2,y)
=0

on 071 x 0T,. Hence we have desired result. O

5.3 Higher order convergence rate

In this section, we are going to prove the main theorem 5.1.2. Define the k-th

order interior corrector wy, for each 1 <k < m by
x
wi(z) = wy, (x, g> (x € Q) (5.3.1)

and define n°, : Q. — R by

Mu(@) = (o) + zwi (2, 5) e, (2, 2).
15 £

Now we are going to construct the boundary corrector. Define 62, : Q. — R
by the solution of the following PDE,

i (g) D;;0,, +c (?ﬁn + 0,7, g) =c (nfn, x, g) in Q.
bi (2) Difz, = 0 on 0T, (532)
05, = —nm T ¢ on 09.

Note from Lemma 5.2.11 and 5.2.16 that 1, € C%*%(€).), so this equation
belongs to the same class of (L.). Thus, the Comparison principle and Per-

ron’s method ensure the unique existence of a viscosity solution 65, € C(€).)
of (5.3.2), see [17].

proof of theorem 5.1.2. Fix € > 0. Define 7}, and 60;, as the comment above
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this lemma. Recall (5.2.28), the definition of Wy. i.e.
19
(x,x/e) = Zz'@zz u,z,x/e) Z W, Wy, W,

We omit the dependency (z,z/¢) for simplicity. We first observe from the
heuristic calculation (5.2.12) that

c(nt,,x,w/e) = c@) +eWy + -+ ™2, o+,

for some e, € [0,¢|. By Lemma 5.2.16, {¥)}o<x<m-1 have uniform bounds

independent of £, namely,

Wk Loo (o xRP\T)
< C (Iflomagen@moy + l9llenoa@erary + lelonzag)  (5:3.3)

< Cl (f7 g, S0)7
where C1(f, g, ) depends on n, m, a, A, A, 7, Q, ||ai;||ce@m\1), ||bs]|creor),

and. [|¢[| gm.o @m0 @7y From these observations, Lemma 5.2.16 (2), and
(5.3.2), it follows that

i
aiy (2) Dy, + 05,) + e (5, + 05)
T
— ai () Dy + ¢ (05,)
T T
= 5_1aij (g) Dyiij‘i + a,-j <g> (Dzlxjﬂ + 2Dziiji + Dyiijg) +c (ﬂ)

_ @ x
4 g2 {Z a;j (g) (Dzﬂjwi_Q + 2Dy, wy_y + DyiijZ) + \Ilk,_Q}

k=3
s
+5Wﬂw(g)u%%m;l+a%mw;+2amﬂ@)+ﬂ%w%4
= L(D*u,u,x) + f
s
+em gy (g) (Do s + €D 05 + 2D ) + €70,

=f+e""D,
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in 2., where

®,, (.7; f) = a;; (f) (Daoa w1 + €Dgin W, + 2Dy 05,
g g

Ex m—1
SR
g

From Lemma 5.2.16, and (5.3.3) we can observe that ®,,(x,-) € C*(R"\ T)
and
H(I)mHLOO(ngR”\T) < 027 (534)

where Cy depends on ¢, and Ci(f, g,¢). On the other hand,
z € € x — € 2, € m, €
b; <g> D;(n;,+0;,) =b (E) D; (u+ euwf + +e*w; + - - - + £™ws,)

()

eg

"1 (Dy,wi—1 + Dy,wy,)

NE

T

1

on JT., here we understand wg(x) = @(x). Thus, 15, + 0%, solves the following

equation:

.

aiy (2) Diglzy + 05,) + ¢ (5 + 0502, %)
= f @) F e, (52) O

" r (5.3.5)
bi <_) Dl(nfn + an) =&g (.CC, _) on aT€J
€ €
|7+ 6, = ¢(z) on 0f).
Consider the following problem: For each x € €2,
aij(y) (Mij + M Dy, X (y) + Dy x3(y) Mg + Dy,yv:)
—e2v, = @, (z,y) in R"\ T,

bl(y) (Msz’f(y) + Dyivs) + 52Us =0 on OT.

Then by the same argument as Lemma 5.2.1-5.2.5, there exist the v(-; M, x) €
C2*(R"\ T) and unique constant L(M, z) € R satisfying following equation
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and estimate:

Clz‘j(?/) (Mij + MikDij’f(y) + Dinlf(y)Mkj + Dyiij)
= L(M,z)+ ®,(z,y)  inR"\T,
bi(y) (Mirx¥(y) + Dy,v) = ~L(M,x) on J7T,

and

OSC]RTL\TUE + |Z(M, l')‘ S 03 (HMH —+ ||®m(1‘, )||L°°(R”\T))
< C3 (| M| + (| @l L= (2Rm\7)) (5.3.6)
< Gs([| M| + Cy)

where C5 = C3(n, A\, A, r). Here, we notice that L is an effective operator of
(L:) when ¢(z,z,y), g(z,y) = 0, and f(z,y) is replaced by ®,,(x,y). That
is, from Lemma 5.2.12 we can observe that there is a positive real number
ro depending only on n, A and A such that if the size of holes r is less than
or equal to rg, then E(M ,x) is uniformly elliptic for each € Q. In other

words, there is a positive constant A = X(T0> satisfying
L(M + N,z) > L(M,z) + | N|
for any M € S™, positive matrix N, and z € Q.

Now we will construct barriers. Fix 2 € © and choose d > diam(€2).

Define
ElR

and &(z) = DP(z) = —Kz, where K > 0 will be determined later. Set
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where x1(y) = (@), x3(y), -+, x7(y)). Now consider the functions Q= :
Q. — R defined by

m— x ~ (%
QE(x) = £ (P(a) +ex (2.2) +2%0 (2) + el Pl )

where v, <E> = (£> — min_ v.(y). Then we can easily check that Q (z) >
€ e/ yeRM\T

0 and Q- (x) <0.

We will show that u*+Q7 (z)[resp. u*+Q- (x)] is a viscosity super-solution|resp.

viscosity sub-solution| of equation (5.3.5) if we choose K properly. First, let

us check at the interior,

aij (g) Dyoo,(u(x) + Q1 (2)) + ¢ (us +Q7 =, g) —f (33, g)
=" ay <§) {(_K[n)ij + Dy, X4 (9 D) + (=K L) Dzxa <§>

T

=" ay <g) ((—Kfn)z‘j + Dy Xy (g) (=KL + (=K L)y Dy i (9

X
)

=& (B, (20, 2) + %0 (25 =K I, 30) )
5 5
Then by the uniform ellipticity of L, and (5.3.6) we get

~ ~ NEK NEK
82’215 (§7 —KIn,ﬂfo) S L(—KIn,l’(]) -+ 0(8) S L(O,LU()) — 7 S CQC — T
if ¢ is small enough, where Cy and C5 are constants as in (5.3.4) and (5.3.6)
respectively. It then follows from this estimate that if we put

K =2X7'Cy(C5 + 2)
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then

05 (2) De, (0 (0) + Q@) + ¢ (w8 + @2, ) = £ (2.2
<e¢

Dy, (P(a)+ex (o, 2) +<%. (2))

+e ((—Kfn)uxi (g) + Dy, e (g))}

Consequently, QF () is the super-solution of (5.3.5). In the same manner,
one can verify that Q- () is the sub-solution of (5.3.5). Thus, the comparison

principle yields u + Q- <5, + 65, < u® + Q7 in Q., in particular,

lu® =5 = Ol (e
< Q= [z a2
< "7 (1Pl pion + 2Ce|€ll () + €20sermrv: (= K Ty, 20))
<™ (CK 4 2CKe + £20scpmrve (+; — K Iy, 29))

e (CK +2CKe + 2Cy(K + ()

Ce™ 1,

IA

IN
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