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ABSTRACT

Multiscale Representation of Directional Scattered Data:

Use of Anisotropic Radial Basis Functions

Junhyeon Kwon

The Department of Statistics

The Graduate School

Seoul National University

Spatial inhomogeneity along the one-dimensional curve makes two-dimensional

data non-stationary. Curvelet transform, first proposed by Candes and

Donoho (1999), is one of the most well-known multiscale methods to rep-

resent the directional singularity, but it has a limitation in that the data

needs to be observed on equally-spaced sites. On the other hand, radial

basis function interpolation is widely used to approximate the underlying

function from the scattered data. However, the isotropy of the radial ba-

sis functions lowers the efficiency of the directional representation. This

thesis proposes a new multiscale method that uses anisotropic radial ba-

sis functions to efficiently represent the direction from the noisy scattered

data in two-dimensional Euclidean space. Basis functions are orthogonal-

ized across the scales so that each scale can represent a global or local

directional structure separately. It is shown that the proposed method is

remarkable for representing directional scattered data through numerical

experiments. Convergence property and practical issues in implementation

are discussed as well.

Keywords: Anisotropic radial basis functions, Directional scattered data,

Multiscale analysis, Nonparametric function estimation.
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Chapter 1

Introduction

Nonstationary data analysis is a big challenge in statistics because of their

inhomogeneous dependence structure. Multiscale methods can help us to

understand the nature of the nonstationary data by representing it in dif-

ferent resolutions. One can investigate the global trend from the represen-

tation in coarse resolution and identify the local activities from the newly

added features in finer resolution. Wavelet analysis is one of the most pop-

ular branches of multiscale approaches, and many researchers have demon-

strated the great utility of the method over the last few decades.

Wavelets are localized waveform functions that vary in their scales by

dilation and contraction and vary in locations through translation shift.

Collection of these wavelets at each scale span an orthogonal subspace

of L2(R), and the summation of these subspaces becomes L2(R). Thus,

the wavelet methods allow us to represent nonstationary phenomena such

as peaks, jumps, and varying frequency of oscillation by separating the

information in the data at different scales and locations. Furthermore, co-

efficients of the wavelet transform have a sparse structure, and we can

exploit this property for the denoising and compression of the data.

When the wavelet methods are extended to the two-dimensional data,
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we need to consider a new type of nonstationarity, which is present along

the curve on a two-dimensional domain. We name this singularity by the

term ‘directional structure.’ The tensor product of the one-dimensional

wavelets is the simplest extension to the two-dimensional case, but it can-

not efficiently capture the singularity unless it is vertical or horizontal. To

overcome this defect, Candes and Donoho (1999) proposed a curvelet trans-

form and Candes et al. (2006) improved the first version of the curvelet

transform to be less redundant.

This thesis focuses on representing two-dimensional data with direc-

tional structure when observed at irregularly scattered sites. Although

there are wavelet methods for the scattered data including the lifting

scheme (Sweldens, 1996, 1998) and the spherical wavelets (Narcowich and

Ward, 1996, Li, 1999, Oh, 1999), they also have limitations in reflecting

the directional structure. On the other hand, radial basis approximation

is a meshfree interpolation method to find underlying functions from the

scattered data. Floater and Iske (1996) suggested a multiscale approxima-

tion framework using radial basis functions, and its convergence to the

true function has been proved by Wendland (2010). However, circular sup-

ports of the radial functions are not adequate to reflect the directional

structure. Thus, this research suggests using anisotropic basis functions

with elliptic supports for multiscale approximation and proves its converg-

ing property. Furthermore, the proposed method can be coupled with the

shrinkage method as in ordinary wavelet transform so that we can remove

the noise when the data is contaminated by noise.

This thesis is organized as follows. Chapter 2 introduces basic concepts

of wavelet transform and its extension to the directional data and scattered

data separately. Chapter 3 briefly introduces a theoretical background of

the radial basis approximation that will be the cornerstone of the proposed

method. In Chapter 4, we propose to adopt the anisotropic basis functions

2



in a multiscale radial basis approximation scheme. We also discuss its the-

oretical properties and practical issues in implementation. Chapter 5 tests

the applicability of the proposed method by applying it to the simulation

datasets and temperature data in South Korea. Finally, Chapter 6 summa-

rizes and emphasizes the contributions of this thesis again and discusses a

few topics of future research.
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Chapter 2

Multiscale Analysis

This chapter reviews the basic concepts of multiscale analysis, focusing

mainly on the wavelet transform. Wavelets are basis functions that can

decompose L2(R) into multiple orthogonal levels. Although wavelets are

efficient tools for representing nonstationary data in virtue of their local-

ized property, they have limitations in representing the nonstationarity of

the two-dimensional data, such as singularity along with the directional

structure. Furthermore, most wavelet methods require the data to be ob-

served at equally-spaced grids and even dyadic.

This chapter is organized as follows. Section 2.1 introduces the classical

wavelet transform of the regularly spaced data both for one-dimensional

and two-dimensional data. Section 2.2 is about two-dimensional wavelet

transforms that overcome the limitation of the classical ones by reflecting

the directional structures. Section 2.3 discusses the wavelet methods for

the scattered data.
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2.1 Classical wavelet transform

The term ‘wavelet’ was first introduced in the domain of geophysics by

Morlet et al. (1982). It is a compound of the noun ‘wave’ and the postfix

‘-let’ which means ‘little’, so the wavelets are little waves in that they decay

rapidly to zero. A wavelet ψ ∈ L2(R) is a function which has zero average,∫ ∞
−∞

ψ(x)dx = 0,

is normalized, ∫ ∞
−∞
|ψ(x)|2dx = 1,

and meets the admissibility condition,∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω <∞,

where ψ̂ is a Fourier transform of ψ. A wavelet can be dilated and translated

to form a basis in L2(R). If it is dilated with a scale s and translated by

u, we denote it by

ψs,u(x) =
1√
s
ψ(
x− u
s

).

2.1.1 Continuous wavelet transform

Continuous wavelet transform of the function f at a scale s and a location

u is

Wf(s, u) =

∫ ∞
−∞

f(x)ψ∗s,u(x)dx.

Under the admissibility condition, we can reconstruct the given function

f(x) by

f(x) =

[∫ ∞
−∞

|ψ̂(ω)|2

|ω|
dω

]−1 ∫ ∞
0

∫ ∞
−∞

s−5/2Wf(s, u)ψs,u(x)duds. (2.1)
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Figure 2.1: Haar scaling function and wavelet function

Continuous Haar wavelet transform

Haar wavelet function is one of the most well-known and intuitive wavelets.

Figure 2.1 depicts the Haar scaling and wavelet functions, and their square

shape helps us appreciate the meaning of wavelet transform. Haar scaling

function is defined as

φ(x) =

1, if x ∈ [0, 1),

0, otherwise,

and Haar wavelet function is defined as

ψ(x) =


1, if x ∈ [0, 1/2),

−1, if x ∈ [1/2, 1),

0, otherwise.

Thus, the continuous Haar wavelet transform at scale s and location u,

Wf(s, u), gives us the difference between the average values of f(x) on

[u, u+ s/2) and [u+ s/2, u+ s). In other words, we can extract the infor-

mation about the variation of f at any scale s ∈ (0,∞) and any location

u ∈ R.
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2.1.2 Multiresolution analysis

The concept of multiresolution analysis (MRA) was first suggested by Mal-

lat (1989) for the construction of wavelets and the approximation of a

function in L2(R). MRA projects a function f ∈ L2(R) orthogonally on a

sequence of approximation spaces {V`}`∈Z that differs in resolution. Hence,

the approximation space V` contains all the approximants at the `-th reso-

lution, and we obtain the approximant of f in V` by minimizing ‖f−f`‖ for

all f` ∈ V`. Below is the formal definition of multiresolution approximation

from Mallat (1999).

Definition 2.1.1. A sequence of closed subspaces {V`}`∈Z of L2(R) is a

multiresolution approximation if the following properties holds:

(1) Nestedness

V` ⊂ V`+1, ∀` ∈ Z

(2) Completeness

∞⋃
`=−∞

V` = L2(R) and

∞⋂
`=−∞

V` = {0}

(3) Dilation invariance

f(x) ∈ V` ⇔ f(2x) ∈ V`+1, ∀` ∈ Z

(4) Translation invariance

f(x) ∈ V` ⇔ f(x− 2−`k) ∈ V`, ∀(`, k) ∈ Z2

(5) Existence of Riesz basis

There exists θ such that {θ(x− k)}k∈Z is a Riesz basis of V0.
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To give a brief explanation for each property, nestedness means that

more functions will be contained in the approximation space V` as ` gets

larger. Completeness implies that the function approximation converges to

the original function as ` goes to the positive infinity in the nested relation,

and to 0 as ` goes to the negative infinity. Invariance in dilation ensures

that dilating a function by 2 leads to an approximation at a one-level

coarser scale, and invariance in translation of implies that V` is invariant

by any translation proportional to 2−`. Riesz basis is a relaxed concept of

orthogonal basis. We can orthogonalize and normalize it to construct the

orthonormal basis {φ(x− k)}k∈Z of V0.

Let us abuse the notation and denote the function φ(t) dilated at scale

s = 2−` and translated by u = 2−`k with

φ`,k(t) = 2`/2φ(2`t− k), `, k ∈ Z.

Based on this expression, we will sometimes use the term ‘level’ for the

integer `. Then, from the properties above, we observe that {φ`,k(x)}k∈Z
becomes an orthonormal basis of V` through the dilation at level `, or

scale 2−`. Thus the orthonormal basis {φ(x−k)}k∈Z satisfies the two-scale

relation

φ(x) =

∞∑
k=−∞

hkφ1,k(x) (2.2)

because φ(x) ∈ V0 ⊂ V1, and {φ1,k(x)}k∈Z is a basis of V1.

On the other hand, let us consider an orthogonal complement W` =

V`+1 ∩ V⊥` for ` ∈ Z and call it a detail space at the `-th level. From the

nested structure of the approximation space V`, we have

VL = V−L ⊕
L−1⋃
`=−L

W`.

Then, from the completeness condition of MRA, we have⊕
`∈Z

W` = L2(R).
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Since we can find an orthonormal basis of the detail space W`, and the col-

lection of these basis functions over the entire levels becomes an orthonor-

mal basis of L2(R). These are called wavelets, and Daubechies (1992) pre-

sented the existence and construction of them. If {ψ(x− k)}k∈Z is a basis

of W0, then it also satisfies the two-scale relation

ψ(x) =

∞∑
k=−∞

gkφ1,k(x), gk = (−1)k−1h1−k (2.3)

because ψ(x) ∈W0 ⊂ V1, and {φ1,k(x)}k∈Z is a basis of V1.

Let ψ`,k(x) denote a wavelet function ψ(t) dilated at scale s = 2−` and

translated by u = 2−`k. Then {ψ`,k}k∈Z is an orthonormal basis of W`

while {φ`′,k}k∈Z is an orthonormal basis of V`′ . Thus, for any f ∈ L2(R2),

we have

f(x) =
∞∑

`=−∞

∞∑
k=−∞

d`,kψ`,k(x), (2.4)

and

P`f(x) =

∞∑
k=−∞

c`,kφ`,k(x),

where d`,k = 〈f, ψ`,k〉, c`,k = 〈f, φ`,k〉, and P` is an operator that projects

on V`. As the square-integrable space is decomposed as

L2(R) = V`0 ⊕
∞⋃
`=`0

W`,

we can express any f ∈ L2(R) as

f(x) =
∞∑

k=−∞
c`0,kφ`0,k(x) +

∞∑
`=`0

∞∑
k=−∞

d`,kψ`,k(x). (2.5)

The first term of (2.5) can be thought of as a coarse, but overall, ap-

proximation of the function f at the `0-th level, and the second term is

sequentially added detail of the function f from the level `0 to infinity.
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2.1.3 Discrete wavelet transform

Frame

The frame is a concept suggested by Duffin and Schaeffer (1952) for the

reconstruction of band-limited function, and it ensures a complete and sta-

ble representation of a function f in Hilbert space. If the wavelet ψ(x) is

a frame, then we can represent a function f ∈ L2(R) through the summa-

tion form in (2.4). This implies that the integral form (2.1) is redundant

compared to (2.4). The formal definition of the frame is given below.

Definition 2.1.2. Let H be a Hilbert space and {θk}k∈Z be a set of vectors

in H. Then {θk}k∈Z is a frame if there exist A,B ∈ (0,∞) such that for

any f ∈ H

A‖f‖2 ≤
∑
k

|〈f, θk〉|2 ≤ B‖f‖2.

We say that the frame {θk}k∈Z is tight if A = B holds.

We can further remove the redundancy to the extent that the basis is

said to be exactly enough if the frame becomes linearly independent. This

frame is called Riesz basis, and we give the formal definition of it below.

Definition 2.1.3. A sequence of linearly independent vectors {θk}k∈Z is

a Riesz basis of a Hilbert space H if there exists A,B ∈ (0,∞) such that

any f ∈ H is represented by

f(x) =

∞∑
k=−∞

akθk(x),

where {ak}k∈Z satisfies

A‖f‖2 ≤
∞∑

k=−∞
|ak|2 ≤ B‖f‖2.

10



Forward and inverse transform

Coefficients at consecutive levels also have two-scale relations

c0,0 =
∞∑

k=−∞
hkc1,k,

and

d0,0 =
∞∑

k=−∞
gkc1,k,

which are derived from the two-scale relations of the orthonormal bases

{φ`,k}k∈Z and {ψ`,k}k∈Z. Thus, if we can extend the two-scale relation of

the coefficients to general levels and translations, one only needs the scaling

coefficients at the finest level, and the filters {hk}k∈Z and {gk}k∈Z for the

(forward) discrete wavelet transform.

Since c`,k = 〈f, φ`,k〉 and c`−1,k = 〈f, φ`−1,k〉, we first need to relate

{φ`,k}k∈Z and {φ`−1,k}k∈Z. From the nested structure of the approximation

spaces {V}`∈Z and the two-scale relation of {φ`,k}, we obtain

φ`,k(x) = 2`/2φ(2`x− k)

= 2`/2
∑
n∈Z

hnφ1,n(2`x− k)

= 2(`+1)/2
∑
n∈Z

hnφ(2`+1x− 2k − n)

=
∑
n∈Z

hnφ`+1,n+2k(x),

and this leads to

c`,k =
∑
n∈Z

hn−2kc`+1,n. (2.6)

In the same way, we can derive the two-scale relation of the detail coeffi-

cients, which is

d`,k =
∑
n∈Z

gn−2kc`+1,n. (2.7)
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Mallat (2009) showed that the relation that helps us to calculate the

finer scaling coefficients from the one-level coarser coefficients. It is used

for the inverse discrete wavelet transform and expressed as

c`,k =
∑
n

hk−2nc`−1,n +
∑
n

gk−2nd`−1,n,

with the same filters in (2.6) and (2.7).

Discrete Haar wavelet transform

Suppose that we want to approximate f ∈ L2(R) in the form of (2.5). But,

if we limit the details to be added up to the (L − 1)-th level, then the

approximant fL ∈ VL will have the form

fL(x) =
∞∑

k=−∞
c`0,kφ`0,k(x) +

L−1∑
`=`0

∞∑
k=−∞

d`,kψ`,k(x).

We can obtain the coefficients of this discrete wavelet transform from the

scaling coefficients at the finest level. However, calculating {cL,k}k is not

simple unless wavelet transform is based on the Haar basis functions.

Let {xk}Nk=1, N = 2L, be equally-spaced data locations and yk = f(xk)

be an observation on each data site. Then we can regard {yk}Nk=1 as the

finest level (the L-th level) approximation with the Haar scaling function.

Note that the Haar scaling function φ(x) satisfies the two-scale relation

φ(x) = φ(2x) + φ(2x− 1) =
1√
2

(φ1,0(x) + φ1,1(x))

and the Haar wavelet function ψ(x) satisfies

ψ(x) = φ(2x)− φ(2x− 1) =
1√
2

(φ1,0(x)− φ1,1(x)) .

Hence, the filter {hk}k∈Z in (2.6) satisfies

hk =

1/
√

2, for k = 0, 1

0, otherwise,
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and the filter {gk}k∈Z in (2.7) satisfies

gk =


1/
√

2, for k = 0,

−1/
√

2, for k = 1,

0, otherwise.

Thus, we obtain the coefficients at the coarser level ` = L− 2, · · · , 0 by

c`,k =
1√
2

(c`+1,2k + c`+1,2k−1),

and

d`,k =
1√
2

(c`+1,2k − c`+1,2k−1),

for k = 1, 2, · · · , 2`. Original observations {yk}Nk=1 can be reconstructed by

the inversion relations

c`+1,2k = (c`,k + d`,k)/
√

2,

and

c`+1,2k−1 = (c`,k − d`,k)/
√

2.

2.1.4 Two-dimensional wavelet transform

Note that a tensor product of the bases, {θ(1)
k ⊗ θ

(2)
k′ }(k,k′)∈Z2 , becomes

a Riesz basis of a tensor product space H = H1 ⊗ H2 if {θ(1)
k }k∈Z and

{θ(2)
k }k∈Z are Riesz bases of the Hilbert spaces H1 and H2, respectively.

Based on this fact, we can define a multiresolution approximation {V2
`}`∈Z

of L2(R2) as in the one-dimensional case and find an orthonormal basis

{φ`,k(x1, x2)}(`,k)∈Z3 of a tensor product space V2
` , which is

φ`,k(x1, x2) = φ`,k1(x1)⊗ φ`,k2(x2).

Here, {φ`,k}k∈Z is an orthonormal basis of V2
` , and we say that it is sepa-

rable.
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On the other hand, let W2
` be the detail space which is an orthogonal

complement

W2
` = V2

`+1 ∩ V2⊥
` .

Then the next theorem from Mallat (1999) shows how we can construct a

separable wavelet basis for W2
` .

Theorem 2.1.1. Let {φ`,k}(`,k)∈Z2 and {ψ`,k}(`,k)∈Z2 be orthonormal bases

of the approximation space V` and the detail space W` of L2(R), respec-

tively. Define three types of wavelets

ψ(1) = φ⊗ ψ, ψ(2) = ψ ⊗ φ, ψ(3) = ψ ⊗ ψ.

Then {ψ(1)
`,k , ψ

(2)
`,k , ψ

(3)
`,k}k∈Z2 is an orthonormal basis of W2

` , and {ψ(1)
`,k , ψ

(2)
`,k , ψ

(3)
`,k}(`,k)∈Z3

is an orthonormal basis of L2(R2).

2.2 Wavelets for equally-spaced directional data

Data observed on a two-dimensional domain can have a relatively com-

plicated type of singularity compared to the data on a one-dimensional

domain. In one-dimensional space, the classical wavelet transform can de-

tect and represent pointwise jump discontinuity of the underlying func-

tion effectively. However, in two-dimensional space, discontinuity can oc-

cur along a line or a curve on the domain, and the simple tensor product

of one-dimensional classical wavelets is not capable of representing this in

a sparse manner. We use the term ‘directional structure’ to refer to the

discontinuity along a curve, and we call the data with directional structure

‘directional data.’
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2.2.1 Ridgelets

Ridgelets

Ridgelet transform was proposed in Candes (1998) to detect the disconti-

nuity along a line on a two-dimensional domain. Ridgelet transform of a

function f is defined as

Cf (a, b, θ) =

∫ ∫
f(x1, x2)ψa,b,θ(x1, x2)dx1dx2,

where

ψa,b,θ(x1, x2) = a−1/2ψ((x1 cos θ + x2 sin θ − b)/a)

is a ridgelet function at scale a which has constant value along the line

parallel to

x1 cos θ + x2 sin θ = b.

Multiscale ridgelets

Orthonormal ridgelets were proposed by Donoho (2000). Let these ridgelets

have length 1 and arbitrarily finer width, and partition the domain smoothly

into 22j squares with side lengths 2−j . Based on this, we will define the mul-

tiscale ridgelets by windowing, transporting, and normalizing the ridgelets

for each square and each scale. Then the resulting ridgelets can have arbi-

trary values for the lengths as well.

However, multiscale ridgelets are not orthogonal to each other if these

are derived from overlapping partitioning squares from different scales. In

other words, multiscale ridgelets are too massive to be frameable and suffer

from ‘energy blow-up’ problem∑
µ∈M
〈ψµ, f〉2 =∞,

where M is a dictionary of multiscale ridgelets.
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2.2.2 Curvelets

Curvelet transform was first proposed in Candes and Donoho (1999). It is

a combination of multiscale ridgelets and bandpass filtering to represent

the discontinuity along a curve on a two-dimensional domain. Let ∆j be

a subband filter which extracts the frequency |ω| ∈ [2j , 2j+1] and P0 be a

filter for the frequency |ω| ≤ 1. Then we have an equation

‖f‖22 = ‖P0f‖22 +
∑
j

‖∆jf‖22.

Candes and Donoho (1999) overcame the ‘energy blow-up’ problem by de-

composing f into multiple subbands and applying monoscale ridgelet dic-

tionary for each subband. We have to note that, among these curvelets, only

the ones with approximate length 2−j/2 and width 2−j have non-negligible

norms. Thus, we observe that the width of a curvelet is approximately the

square of the length.

Candes et al. (2006) suggested second-generation curvelets by further

developing the original ones to be faster and less redundant. We will con-

sider windows in the frequency domain based on a polar coordinate system.

Let W (r) be a radial window supported on r ∈ (1/2, 2) and V (t) be an

angular window supported on t ∈ [−1, 1], and assume that these windows

meet some certain admissibility conditions. Then, for j ≥ j0, we can define

a wedge-shaped frequency window

Uj(r, θ) = 2−3j/4W (2−jr)V (bj/2cθ/π). (2.8)

We rotate this window by θ`, ` = 0, 1, · · · , for each level j to make a tiling

of two-dimensional frequency domain based on concentric circles. Figure

2.2 is an illustrative example of this concept.

Waveform of the curvelet ψj(x1, x2) is obtained by the rotation and

translation of the inverse Fourier transform of Uj . Let the rotation angles be

denoted by a sequence θ` = 2π · 2−bj/2c` ∈ [0, 2π) for ` = 0, 1, · · · , and the
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Figure 2.2: Illustrative example of tiling in the frequency domain. The

shaded wedge on the left plot is at level j and makes the corresponding

waveforms in the original Cartesian plane to have approximate supports

with length 2−j/2 and width 2−j as in the right plot. This figure is origi-

nated from Candes et al. (2006).

translation parameters be denoted by k = (k1, k2) ∈ Z2. Then the curvelet

function at scale 2−j , angle θ`, and position x
(j,`)
k = R−1

θ`
(2−jk1, 2

−j/2k2)

is defined as

ψj,`,k(x) = ψj(Rθ`(x− x
(j,`)
k )),

where Rθ` is a matrix which rotates a vector by θ`. Thus, we can obtain

curvelet coefficients by

c(j, `, k) := 〈f, ψj,`,k〉 =

∫
R2

f(x)ψj,`,k(x)dx

= (2π)−2

∫
R2

f̂(ω)ψ̂j,`,k(ω)dω

= (2π)−2

∫
R2

f̂(ω)Uj(Rθ`ω) exp(iωTx
(j,`)
k )dω.

On the other hand, tiling of the frequency domain in (2.8) uses concen-

tric circles, and it is difficult to directly use it to compute the curvelet co-
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efficients from discrete Cartesian observations. Hence, Candes et al. (2006)

uses concentric squares instead to make Cartesian coronae as in Figure 2.3.

Based on this tiling, Candes et al. (2006) proposed two different implemen-

tations of discrete curvelet transform. One is based on unequally-spaced

fast Fourier transform (USFFT), and it follows the original curvelet trans-

form faithfully by tilting a rectangular grid for each scale and angle. The

other one is based on wrapping a data into a rectangular grid, making the

implementation easier.

Figure 2.3: A modified version of frequency domain tiling for discrete Carte-

sian observations. This figure is originated from Candes et al. (2006).

18



2.3 Wavelets for scattered data

Many wavelet methods assume that the data is regularly observed, and

one can consider two simple cases of extension when the data is observed

on irregularly scattered locations. One is applying classical wavelets on the

scattered data as if it is observed on an equally-spaced grid. The other is

constructing basis functions on a regular grid and evaluating them on each

observation site. However, Jansen and Oonincx (2005) pointed out that

both of these approaches may not work well as they are for the equally-

spaced data.

Let the observation sites {xj : 1, 2, · · · , N} ⊂ [0, 1] be expressed as

xj = x(uj), j = 1, 2, · · · , N,

for a regular grid uj = j/N and increasing function x(u). If we consider a

heavy sine function

f(x) = 4 sin(4πx)− sign(x− 0.3)− sign(0.72− x)

observed on these sites with random measurement errors, then applying

the wavelet shrinkage method on this data is the same as applying it on

g(u) = f(x(u)). Jansen and Oonincx (2005) compared the wavelet shrink-

age results both for equally-spaced data and scattered data. We reproduce

this simulation for 512 observations on an interval [0, 1] when the errors

are independently and identically from N(0, 0.52). The wavelet coefficients

are from the Daubechies least-asymmetric phase wavelet with 10 vanish-

ing moments, and we have replaced the ones below universal threshold

with zeroes. Figure 2.4 shows the plots of heavy sine function and wavelet

shrinkage results. A plot in the middle is from the data which is equally-

spaced, and a plot in the bottom is from the data which is scattered while

being regarded as it is not. Based on Figure 2.4, we observe that regard-

ing the scattered data as equally-spaced one results in unintended wiggly
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output, and this is because the basis function φ(x) is not as smooth as it

is supposed to be after it is remapped from u 7→ x(u).

Figure 2.4: Top: Plot of the heavy sine function, Middle: Equally-spaced

data and wavelet shrinkage result, Bottom: Irregularly scattered data and

wavelet shrinkage result

On the other hand, according to Jansen and Oonincx (2005), evalu-

ating equally-spaced basis functions on the scattered sites can affect the

independence (or dependence) of the data and make it impossible to use

the fast algorithms for the discrete wavelet transform.
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2.3.1 Lifting scheme

Lifting scheme, or second-generation wavelets, was first introduced by

Sweldens (1996). It is capable of multiscale representation of scattered

data and does not require the data to be dyadic. It is a generalization of

classical (first generation) wavelets which do not require dilation and trans-

lation of wavelet functions, and it preserves powerful properties of the first

generation. Sweldens (1998) summarized those preserved properties in four

aspects.

1. The wavelets are Riesz basis of L2(R), and unconditional basis of

Lebesgue, Lipschitz, Sobolev, and Besov spaces.

2. The wavelets are (bi-)orthogonal, and this leads to explicit informa-

tion about the synthesizing wavelet ψ̃(x).

3. The wavelets have localized property both in the time and frequency

domain.

4. The wavelets are constructed by the multiresolution analysis frame-

work, which makes a fast algorithm feasible for the corresponding

transform.

On the other hand, Sweldens (1998) listed three desirable properties

that the second generation wavelets should possess through the general-

ization.

1. More generalized domain (e.g., curves, surfaces, or manifolds) where

the wavelets are defined on.

2. Generalized basis adapted to weighted measures.

3. Applicability to the data with irregularly scattered observation sites.
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Sweldens (1998) observed that translation and dilation of the wavelet

functions are not essential for the second generation wavelets, which pre-

serves four powerful characteristics of the first generation and possesses

three new desirable properties. So, the Fourier transform cannot be used,

and this leads to the need for another approach for the construction of the

wavelets.

The term ‘lifting scheme’ is used as a framework for the construction

of second-generation wavelets or as a second-generation wavelet transform

itself. It achieves a sparse representation of the data by removing the redun-

dancy through the prediction of one half by the other half. There are three

steps in the lifting scheme: split, predict (dual lifting), and update (primal

lifting). Figure 2.5 shows a diagram of these three steps. In the split step,

we split the input values {s`+1,k}k∈Z at level ` + 1 based on whether the

index k is odd or even. In the prediction step, each input with an odd index

is predicted by using the nearby input with even indexes. Then we calcu-

late how much the odd-indexed observations are apart from the predicted

values and regard these differences as details at level `. Finally, we update

the even-indexed observations to reflect large-scale features. In this step,

we use detail coefficients d`,k’s to make coarser level scaling coefficients

s`,k’s reflect the local averages. The inverse transform is straightforward,

and it is done by undoing the steps in the lifting scheme in reversed order.

When the data is observed on two-dimensional space or other general-

ized domains, it becomes difficult to split the observations based on their

indexes to determine which are to be predicted and which are used for

prediction. Thus, we usually need to find neighbors of an observation that

needs to be predicted, and we use an approach based on triangulation when

the data is scattered on its domain. We do not cover the splitting stage

of the two-dimensional lifting scheme in detail in this thesis, and you can

refer to Jansen and Oonincx (2005) if needed.
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s`+1,k
Input Split

Odd

s`+1,2k+1
−

Even
s`+1,2k

+

P U

Detail
d`,k

Scalings`,k

Figure 2.5: Diagram of lifting scheme procedure. ‘P’ stands for prediction,

and ‘U’ stands for update.

2.3.2 Spherical wavelets

There are wavelets developed for the data observed on a sphere, which

we call spherical wavelets. These are based on the construction of ba-

sis functions that considers the geometrical characteristics of its domain.

Schröder and Sweldens (1995) suggested a spherical wavelet using the ap-

proach of lifting scheme. It uses triangulation-based construction, which

results in non-smooth representation. On the other hand, Narcowich and

Ward (1996) proposed spherical wavelets based on spherical basis functions

of the Legendre series

G(n1, n2) = G(n1 · n2) =
∞∑
n=0

gnPn(n1 · n2),

where Pn is a Legendre polynomial of degree n such that∫ 1

−1
P 2
n(x)dx = 1,

and n1 = (cosφ1 cos θ1, cosφ1 sin θ1, sinφ1) is a vector on a unit sphere

for latitude θ1 and longitude φ1. Although both of these two methods can

represent scattered data on a sphere, the method proposed by Narcowich

and Ward (1996) has advantages in theoretical aspects and smooth repre-

sentation of the data.
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Li (1999) further improved this method by determining the nested net-

work of observations

N1 ⊂ N2 ⊂ · · · ⊂ NL,

where N` =
⋃`
k=1{nk,j}

Nk
j=1, based on geodesic distance through bottom-

up design procedure, and adjusted the bandwidth of each spherical basis

function based on the level it belongs to. Since the bandwidth of spherical

basis function changes as the level (or density of observations) increases,

we find that the level has spatial interpretation. Initialization of spherical

basis function representation

fL(n) =

L∑
k=1

Nk∑
j=1

βk,jGk(n · nk,j),

and implementation of the bottom-up design procedure are discussed in

detail at Li (2001). On the other hand, spherical field at level ` is from the

spanned space

V` = span {Gk(n · nk,j) : j = 1, · · · , Nk; k = 1, · · · , `} ,

and this space also has a nested structure

V1 ⊂ V2 ⊂ · · · ⊂ VL.

Let us define an inner product between the spherical fields U(n) and V (n)

as

〈U(n), V (n)〉 =

∫
U(n)V (n)dΩ(n)

for
∫
dΩ(n) = 1. Then, for each level `, we can obtain an orthogonal

decomposition

V` = V`−1 ⊕W`−1,

where W` is a detail space at level `, and fL−1(n) is obtained from the

minimization of∫
|fL(n)−

L−1∑
k=1

Nk∑
j=1

βk,jGk(n · nk,j)|2dΩ(n).
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Thus, we have

fL(n) = fL−1(n) +

NL−1∑
j=1

γL−1,jWL−1(n · nL−1,j), (2.9)

where WL−1 is a spherical wavelet whose linear combination becomes the

detail space at level L − 1, and recursive application of (2.9) leads to the

representation of a spherical field fL(n) with spherical wavelets at multiple

scales as

fL(n) = f1(n) +
L−1∑
k=1

Nk∑
j=1

γk,jWL−1(n · nk,j).

In this way, we can express the global field as a summation of coarse-level

approximant and local activities at different levels.

25



Chapter 3

Radial Basis Function

Approximation

Interpolation with radial basis functions (RBFs) is one of the most com-

monly used meshfree methods to approximate a given multivariate function

when the data is observed on irregularly scattered sites. We place a basis

function on each data site and evaluate it based on the Euclidean distance

from the center. Then the linear combination will superpose these basis

functions upon each other and interpolate the given data. Its applications

include geodesy, solving partial differential equations, computer graphics,

and neural networks.

Fasshauer (2007) discussed the related mathematical theory and MATLAB

implementation concisely while Wendland (2004) focused on the theoretic

parts in detail. This chapter is mostly based on these two monographs

and organized as follows. In Section 3.1, we introduce the RBF interpola-

tion with some examples and present the upper bound of the interpolation

error. Section 3.2 illustrates the multiscale approximation method with

RBFs and its error bounds.
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3.1 Radial basis function interpolation

3.1.1 Radial basis functions and scattered data interpola-

tion

Suppose that we have a continuous function f on a bounded domain Ω ⊂

R2, and its noise-free scattered observations yj = f(xj) for j = 1, 2, · · · , N .

We can approximate f by interpolating with certain basis functions. Radial

functions are one of the most commonly used basis functions, and they are

symmetric about their centers so that every point has the same value if it

is same distance apart from the center. The formal definition of a radial

function is given below.

Definition 3.1.1. A function G : Rd → R is radial if there exists a uni-

variate function g : [0,∞)→ R such that

G(x) = g(‖x‖2), x ∈ Rd,

where ‖x‖2 = (xTx)1/2.

Now, we can define an interpolant f̂(x) using RBF G in the form

f̂(x) =

N∑
j=1

β̂jG(x− xj), (3.1)

which satisfies f̂(xj) = yj for j = 1, · · · , N . Thus, the observations yj ’s

can be expressed as below.
y1

y2

...

yN

 =


G(x1 − x1) G(x1 − x2) · · · G(x1 − xN )

G(x2 − x1) G(x2 − x2) · · · G(x2 − xN )
...

...
. . .

...

G(xN − x1) G(xN − x2) · · · G(xN − xN )




β̂1

β̂2

...

β̂N


Coefficients β̂j ’s are determined uniquely if the matrix G = (G(xi −

xj))1≤i,j≤N is non-singular. For better theoretical characterization, we fur-

ther require G to be positive definite.
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Definition 3.1.2. A function G : Rd → R is positive definite if

N∑
i=1

N∑
j=1

αiαjG(xi − xj) > 0, ∀α ∈ RN \ {0}

for all sets of pairwise distinct {x1, · · · , xN} ⊂ Rd and for all N ∈ N.

From Bochner’s theorem, we can characterize positive definite functions

as below.

Theorem 3.1.1. If h ∈ L1(Rd)∩C(Rd) is nonnegative and nonvanishing,

then its d-dimensional Fourier transform

G(x) =

∫
Rd
h(ω) exp(−ixTω)dω, x ∈ Rd,

is positive definite.

For example, suppose that we observe a function defined in Franke

(1979)

f(x1, x2) =
3

4
exp

(
−(9x1 − 2)2 + (9x2 − 2)2

4

)
+

3

4
exp

(
−(9x1 + 1)2

49
− (9x2 + 1)

10

)
+

1

2
exp

(
−(9x1 − 7)2 + (9x2 − 3)2

4

)
− 1

5
exp

(
−(9x1 − 4)2 − (9x2 − 7)2

)
on 20 scattered sites on [0, 1] × [0, 1]. It is called ‘Franke function’ and

used as a testbed for scattered data interpolation. We can approximate f

by interpolation with positive definite RBFs, and the Gaussian function

G(x) = exp(−a‖x‖22), a > 0, is one of the most well-known functions. We

can show its positive definiteness with Theorem 3.1.1 because

G(x) =
1

(4πa)d/2

∫
Rd

exp(−‖ω‖22/(4a)) exp(−ixTω)dω.

Figure 3.1 shows perspective plots of a Franke function and its interpolant

with Gaussian RBF G(x) = exp(−16‖x‖22). Black dots represent 20 obser-

vations used for interpolation.
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Figure 3.1: Perspective plots of a Franke function (left) and its interpolant

(right). Black dots represent observations.

3.1.2 Compactly supported radial basis functions

We use RBFs with compact support to reflect the local activities only.

Moreover, the advantages of using compactly supported radial basis func-

tions (CSRBFs) are a sparse interpolation matrix G = (G(xi−xj))1≤i,j≤N

and the chance of fast interpolant evaluation (Wendland, 2004). Among

many CSRBFs (Wendland, 1995, Wu, 1995, Gneiting, 2002), we will intro-

duce piecewise polynomial functions with compact support and call them

Wendland functions.

Positive definiteness on Rd

The positive definiteness of Wendland functions depends on the dimen-

sion of the space where the data sites reside. Thus, we will characterize

the positive definiteness of RBFs on a specific dimension before defining

Wendland functions. It is known that an integrable continuous function is

positive definite if and only if it is bounded and its Fourier transform is

nonnegative and nonvanishing. Since we consider a bounded, integrable,

and continuous radial function G, we present a useful theorem for identi-
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fying the positive definiteness of an RBF in a specific dimension.

Theorem 3.1.2. Let us say that univariate function g : [0,∞) → R is

positive definite on Rd if the corresponding radial function G(x) = g(‖x‖2)

is positive definite for x ∈ Rd. This condition holds if and only if the

d-dimensional Fourier transform

Fdg(‖ω‖2) =

∫
Rd
G(x) exp(−ixTω)dx

= ‖ω‖−(d−2)/2
2

∫ ∞
0

g(t)td/2J(d−2)/2(t‖ω‖2)dt. (3.2)

is nonnegative and nonvanishing.

We skip the proof of Theorem 3.1.2 for now and discuss it later in the

proof of Theorem 4.1.2 of Section 4.

Dimension walk

We need to define two function operators and discuss their properties to

define Wendland functions and calculate their multidimensional Fourier

transforms.

Definition 3.1.3. Let I and D be function operators which map the non-

negative parts of a given function as below.

(a) For a function g such that t 7→ tg(t) is integrable on [0,∞),

(Ig)(r) =

∫ ∞
r

tg(t)dt, for r ≥ 0.

(b) For an even function g in C2(R),

(Dg)(r) = −1

r
g′(r), for r ≥ 0.

We call I integral operator and D differential operator. The integral

operator works as an inverse of the differential operator and vice versa.
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We usually extend the resultants of these operators to be even functions.

Based on this relation, dimension can vary for multidimensional Fourier

transform of a univariate function g such that G = g(‖ · ‖2). This is called

dimension walk, and the precise statement below is from Wendland (2004).

Proposition 3.1.3. Suppose that g is continuous.

(a) Fd(g) = Fd−2(Ig) for d ≥ 3 if t 7→ g(t)td−1 ∈ L1[0,∞).

(b) Fd(g) = Fd+2(Dg) if g ∈ C2(R) is even and t 7→ g′(t)td ∈ L1[0,∞).

Wendland functions

Wendland functions are piecewise polynomial functions that have nonzero

values on [0, 1). We derive the Wendland functions from the truncated

power functions

g`(r) = (1− r)`+, ` ∈ N,

where x+ = max{x, 0}, with the integral operator I as below.

Definition 3.1.4. We define the Wendland function gd,k to be

gd,k(r) = (Ikgbd/2c+k+1)(r).

Apart from the compactness of supports, Wendland functions are pos-

itive definite and piecewise polynomial with minimal degrees. These are

advantages in theoretical and numerical aspects, respectively, and Wend-

land (1995) states these properties as in the theorem below.

Theorem 3.1.4. Wendland functions gd,k are positive definite on Rd, and

their derivatives are continuous up to order 2k. They are piecewise poly-

nomial functions with minimal degrees for given space dimension d and

smoothness 2k.

Wendland functions are uniquely determined up to a constant multipli-

cation. Table 3.1 gives a few examples of Wendland functions when d = 2

and Figure 3.2 plots each of these functions simultaneously.

31



Table 3.1: Examples of Wendland functions g2,k for k = 0, 1, · · · , 3.

Wendland functions Smoothness

g2,0 = (1− r)2
+ C0

g2,1 = (1− r)4
+(4r + 1) C2

g2,2 = (1− r)6
+(35r2 + 18r + 3) C4

g2,3 = (1− r)8
+(32r3 + 25r2 + 8r + 1) C6

3.1.3 Error bounds

The approximation error of the interpolant (3.1) depends on data sites,

underlying function, and the RBF. To find the upper bound of this error,

Wu and Schaback (1993) suggested expressing the interpolant in Lagrange

form

f̂(x) =
N∑
j=1

f(xj)u
∗
j (x),

where u∗j is a cardinal basis function such that u∗j (xi) = δij . If the RBF

G is positive definite, we can obtain the cardinal basis functions from the

system of linear equations

G(x− xi) =

N∑
j=1

G(xi − xj)u∗j (x), i = 1, 2, · · · , N.

On the other hand, the interpolant (3.1) has RBFs centered on each

data site. Thus, with abuse of notation, we can consider G as a kernel

function such that G(·, ·) = G(·− ·). Furthermore, note that every positive

definite kernel is associated with reproducing kernel Hilbert space (RKHS),

and we call it a native space of the given kernel. In other words, if G is a

positive definite kernel, its native space is the completion of the spanned

space of {G(·, x) : x ∈ Ω} with respect to the norm 〈·, ·〉G such that

〈
N1∑
i=1

αiG(·, x1i),

N2∑
j=1

αjG(·, x2j)〉G =

N1∑
i=1

N2∑
j=1

αiαjG(x1i, x2j).
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Figure 3.2: Plots of Wendland functions g2,k for k = 0, 1, · · · , 3.

We denote this space by NG(Ω) and its corresponding norm by 〈·, ·〉NG(Ω),

which satisfies ‖f‖NG(Ω) = ‖f‖G for all f ∈ span{G(·, x) : x ∈ Ω}. Thus,

if f belongs to NG(Ω), we have

f̂(x) =

N∑
j=1

f(xj)u
∗
j (x)

=
N∑
j=1

u∗j (x)〈f,G(·, xj)〉NG(Ω)

= 〈f,
N∑
j=1

u∗j (x)G(·, xj)〉NG(Ω),
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from the definition of the RKHS. This leads to the inequality

|f(x)− f̂(x)| = |〈f,G(·, x)−
N∑
j=1

u∗j (x)G(·, xj)〉NG(Ω)|

≤ ‖f‖NG(Ω)‖G(·, x)−
N∑
j=1

u∗j (x)G(·, xj)‖NG(Ω). (3.3)

We can decompose the right-hand side of (3.3) into two parts. One is the

effect of the underlying true function, ‖f‖NG(Ω), and the other is the effect

of the data sites, ‖G(·, x)−
∑N

j=1 u
∗
j (x)G(·, xj)‖NG(Ω).

Once the kernel G is specified, one can further bound the second term

of the inequality (3.3) with respect to the fill distance

hX,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2.

Fill distance implies the largest radius of a ball in the domain Ω which does

not have any observation X = {x1, x2, · · · , xN} inside, and it measures

how densely X is scattered over Ω. Wendland (1998) has shown that the

native space of Wendland function Gd,k is a Sobolev space Hτ (Ω) of degree

τ = d/2 + k + 1/2 and found the upper bound of (3.3).

Proposition 3.1.5. Suppose that integrable and continuous function G on

Rd satisfies an inequality

0 < c1 ≤ (1 + ‖ω‖22)τ Ĝ(ω) ≤ c2, ω ∈ Rd,

for τ > d/2. Then the native space NG(Rd) corresponding to G coincides

with the Sobolev space Hτ (Rd), and their respective norms are equivalent.

Wendland (1998) has shown that the Fourier transform of the Wend-

land function gd,k decays with the rate of (1 + ‖ · ‖22)−d/2−k−1/2, and

this leads to the fact that NGd,k(Ω) is norm equivalent to Hτ (Ω) for

τ = d/2 + k + 1/2. Now we can bound the error of the RBF interpolant

based on the Wendland functions if the underlying function is from the

associated native space.
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Theorem 3.1.6. Suppose that Ω ⊆ Rd is bounded and satisfies an interior

cone condition, and X = {x1, x2, . . . , xN} ⊆ Ω is a set of pairwise distinct

observations on Ω. Let Gd,k : Rd → R be a Wendland function in space

dimension d with smoothness 2k. If f is from its associated native space

and f̂ is the interpolant of X based on Gd,k, there exist constants h0, C > 0

such that

|f(x)− f̂(x)| ≤ Chk+1/2
X,Ω |f |NG(Ω)

holds for every x ∈ Ω provided that hX,Ω ≤ h0.

Note that the interior cone condition in Theorem 3.1.6 is necessary for

bounding the remainder term of the Taylor expansion. It implies that we

can find a cone of a certain radius and angle contained in Ω for every point

in Ω. The formal definition of this condition is given below.

Definition 3.1.5. A domain Ω satisfies an interior cone condition if there

exist radius r > 0, angle θ ∈ (0, π/2), and a unit vector ξ(x) for every point

x ∈ Ω so that the cone

C = {x+ λy : x ∈ Ω, y ∈ Rd, ‖y‖2 = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, r]}

is contained in Ω.

3.2 Multiscale representation with radial basis func-

tions

3.2.1 Multiscale approximation

Consider interpolating the data with CSRBFs with a fixed bandwidth.

This guarantees the convergence of an interpolant, but the interpolation

matrix will not be sparse anymore and become numerically unstable as the

data gets denser. On the other hand, the interpolant will not converge to
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the underlying function if one varies the bandwidth based on how densely

the data is observed. One can find a detailed discussion on this trade-off

relation in Schaback (1997) both theoretically and numerically.

Multiscale RBF approximation for the scattered data was first sug-

gested by Floater and Iske (1996) to overcome the trade-off relation and

represent the nature of the underlying function. As a result, it has a well-

conditioned interpolation matrix, not a too heavy computational burden,

and convergence property. Furthermore, different areas of the basis func-

tion supports can extract different scales of patterns. In other words, one

can identify the global behavior of the data with large basis functions and

the local features with small ones.

Suppose that X1, X2, · · · , XL are data sites in Ω ⊆ Rd whose fill dis-

tance h` = hX`,Ω decreases as ` gets larger. Note that we will assume that

X1, X2, . . ., XL are mutually disjoint even if it was not required in Floater

and Iske (1996). We illustrate the multiscale approximation algorithm be-

low. At the `-th level, it interpolates the residuals from the previous level,

f −
∑`−1

k=1 ŝk, at the points in X` = {x`,1, x`,2, · · · , x`,N`}.

Algorithm 1: Multiscale approximation of scattered data

1 Set f̂0 = 0, e0 = f .

2 for ` = 1, 2, · · · , L do

3 Obtain an interpolant ŝ` to e`−1 at X`.

4 Set f̂` = f̂`−1 + ŝ`.

5 Set e` = e`−1 − ŝ`.

6 end

As an example, let us consider a modified Franke function f̆ that ex-

aggerates bumps and dips compared to the original one. It is defined as

f̆(x1, x2) = 15 exp

(
− 1

1− (2x1 − 1)2
− 1

1− (2x2 − 1)2

)
f(x1, x2),
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where

f(x1, x2) =
3

4
exp

(
−(9x1 − 2)2 + (9x2 − 2)2

4

)
+

3

4
exp

(
−(9x1 + 1)2

49
− (9x2 + 1)2

10

)
+

1

2
exp

(
−(9x1 − 7)2 + (9x2 − 3)2

4

)
− 1

5
exp

(
−(9x1 − 4)2 − (9x2 − 7)2

)
.

Suppose that we approximate f̆ with Algorithm 1 from the uniformly scat-

tered 9, 25, and 81 observations from X1, X2, and X3, respectively. Figure

3.3 shows a perspective plot of the modified Franke function, and Figure

3.4 illustrates the approximant of the modified Franke function at each

level. We can observe from Figure 3.4 that the approximant gets more

similar to the true function f̆ as the level increases.

3.2.2 Error bounds

There had been numerous researches on the convergence property of mul-

tiscale RBF approximation. Fasshauer and Jerome (1999) discussed the

converging property after the additional smoothing step, and Narcowich

et al. (1999) obtained the convergence rate when the smoother radial func-

tions are used as the scale gets coarser. Hales and Levesley (2002) proved

the convergence theorem when the scattered data is approximated with

multilevel polyharmonic splines. For the methods based on the Wendland

functions, Gia et al. (2010) and Wendland (2010) derived the convergence

rate for the domains of sphere and plane, respectively.

Before introducing the convergence theorem of multiscale approximant

and its assumptions, we need to know when the bounded extension op-

erator can be defined on the Sobolev space. Consider two Sobolev spaces

of degree τ defined on R2, Hτ (R2), and its open subset Ω, Hτ (Ω). If Ω
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Figure 3.3: A perspective plot of the modified Franke function f̆

has a Lipschitz boundary, then there exists a bounded extension operator

E : Hτ (Ω) → Hτ (R2) such that, for all f ∈ Hτ (Ω), (i) Ef |Ω = f |Ω, and

(ii) ‖Ef‖Hτ (R2) ≤ Cτ‖f‖Hτ (Ω).

In Wendland (2010), three assumptions are required for the convergence

of the approximant

f̂L(x) =
L∑
`=1

N∑̀
j=1

β̂`,jG`(x, x`,j), (3.4)

which is obtained from the Algorithm 1.

Assumption 1. Domain Ω ⊂ R2 is bounded and has Lipschitz boundary.

Assumption 2. Assume that the function f ∈ Hτ (Ω) is observed at a se-
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Figure 3.4: Approximants of the modified Franke function from the multi-

scale radial basis approximation algorithm.

quence of data sites X1, X2, · · · on Ω whose fill distances h1, h2, · · · satisfy

cµh` ≤ h`+1 ≤ µh`

for fixed µ ∈ (0, 1) and c ∈ (0, 1).

Assumption 3. For each X`, we will use different bandwidth δ` that is

proportional to h`. Denote the scaled Wendland functions by

G`(x, y) = δ−2
` G2,k((x− y)/δ`), ` = 1, 2, · · · ,

for δ1 ≤ 1, and h`/δ` = 1/ν ≤ µ/γ for a fixed γ > 0.

Assumption 1 assures the existence of the bounded extension operator

as stated before, and Assumption 2 states that the data sites are get-

ting denser within the specified range as the level increases. Assumption 3

scales the bandwidths of the RBFs at each level to be proportional to the

corresponding fill distance. Now, we state the convergence theorem.

Theorem 3.2.1. Let the target function f belong to Hτ (Ω), τ = k + 3/2.

Then, under the Assumptions 1 - 3, there exists C1 = C1(γ) > 0 such that

‖Ee`‖G`+1
≤ α‖Ee`−1‖G` for ` = 1, 2, · · · ,
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where α = C1µ
τ and ‖ · ‖G` is a norm in the native space associated with

G` : R2 → R. Hence, there exists C > 0 such that

‖f − f̂n‖L2(Ω) ≤ Cαn‖f‖Hτ (Ω) for ` = 1, 2, · · · .

Thus the multiscale approximant f̂n converges to f in L2 norm if α =

C1µ
τ < 1.
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Chapter 4

Multiscale Representation of

Directional Scattered Data

This chapter introduces a multiscale method to represent the noisy scat-

tered data with a directional structure. Most of the RBF interpolation

methods are based on isotropic functions, and this makes the directional

representation inefficient. To overcome this limitation, we define and em-

ploy a compactly supported anisotropic radial basis function (ARBF) for

a new multiscale representation.

Section 4.1 extends the methods introduced in Chapter 3 by making

the basis functions anisotropic. Section 4.2 decomposes the approximation

space into orthogonal detail spaces to denoise the contaminated noisy data.

4.1 Anisotropic radial basis function approxima-

tion

This section modifies the Wendland functions to define compactly sup-

ported ARBFs and prove their positive definiteness. We then suggest an

interpolation method based on these ARBFs and discuss its theoretical
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properties.

4.1.1 Representation of a single linear directional structure

Wendland functions Gd,k(x) = gd,k(‖x‖2) have isotropic supports, and this

results in inefficient representation of the directional structure. However,

one can reflect the direction of an unknown function f with fewer basis

functions if the supports of them become anisotropic. Thus, we define

ARBF which has an elliptic support whose major axis reflects the dominant

direction. It has the form GS(x) = gd,k(‖x‖S), where ‖x‖S = (x′S−1x)1/2

is a Mahalanobis distance and S is a symmetric positive definite matrix

with |S| = 1.

Suppose that we have a continuous function f with directional struc-

ture on a bounded domain Ω ⊂ R2, and its noise-free scattered observations

yj = f(xj) for j = 1, 2, · · · , N . Assume further that it has a single linear

direction, and the first eigenvector of S reflects it. Then we can approxi-

mate f along with its directional structure by interpolating the data with

GS . The interpolant is expressed as

f̂(x) =
N∑
j=1

β̂jGS(x− xj), (4.1)

which satisfies f̂(xj) = yj for j = 1, 2, · · · , N .

Positive definiteness on Rd

We can determine the coefficients of (4.1) uniquely if the ARBF GS is

positive definite on R2. Before introducing an anisotropic version of The-

orem 3.1.2, we need to note the positive definiteness of a truncated power

function from the lemma below.

Lemma 4.1.1. The truncated power function

φ`(r) = (1− r)`+, ` ≥ bd/2c+ 1,
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is positive definite on Rd.

To prove this lemma, one needs to check whether F2n+1φn+1 is non-

negative and nonvanishing when the space dimension is d = 2n + 1, and

use the fact that φb2n/2c+1 = φb(2n+1)/2c+1. We will skip the detailed proof

of the lemma in this thesis, and you can see Wendland (2004) if interested.

The next theorem states the positive definiteness of the anisotropic

Wendland functions, and the proof of it is based on the modification of the

results in Wendland (1995) and Wendland (1998).

Theorem 4.1.2. The anisotropic radial basis function GS(x) = gd,k(‖x‖S)

is positive definite on Rd.

Proof. We prove the positive definiteness of GS(x) = gd,k(‖x‖S) based on

the dimension walk from Proposition 3.1.3

Fdgd,k = Fd+2kφbd/2c+k+1,

where φ`(r) = (1− r)`+ is a truncated power function. To this end, we will

show that the Fourier transform of anisotropic truncated power function

ΦS(x) = φ`(‖x‖S) has the form

Φ̂S(ω) = ‖ω‖−(d−2)/2
S−1

∫ ∞
0

φ`(t)t
d/2J(d−2)/2(t‖ω‖S−1)dt, (4.2)

where ‖ · ‖S is a Mahalanobis norm, and S is a symmetric positive definite

matrix whose determinant is unity. Then the Lemma 4.1.1 will complete

the proof.

Fourier transform of ΦS can be simply obtained when d = 1. In this
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case, we have ΦS(x) = φ`(|x|) so that

Φ̂S(ω) =

(
1

2π

)1/2 ∫ ∞
−∞

ΦS(t) exp(−iωt)dt

=

(
2

π

)1/2 ∫ ∞
0

φ`(t) cos(ωt)dt

= ω1/2

∫ ∞
0

φ`(t)t
1/2

(
2

πωt

)1/2

cos(ωt)dt

= ω1/2

∫ ∞
0

φ`(t)t
1/2J−1/2(ωt)dt,

where Jν is a Bessel function of the first kind of order ν. If d ≥ 2, we have

Φ̂S(ω) = (2π)−d/2
∫
Rd

ΦS(x) exp(−iω′x)dx

= (2π)−d/2
∫ ∞

0
td−1

∫
Ed−1

φ`(t‖x‖S) exp(−itω′x)dE(x)dt

= (2π)−d/2
∫ ∞

0
φ`(t)t

d−1

∫
Ed−1

exp(−itω′x)dE(x)dt

for a unit ellipsoid Ed−1 = {x ∈ Rd : ‖x‖S = 1}. If we eigendecompose

the matrix S = V DV ′ and let P = V D−1/2, the ellipsoid Ed−1 can be

transformed to a unit sphere

Sd−1 = {y ∈ Rd : y = P ′x, x ∈ Ed−1}.

This enables the inner integration to be calculated as∫
Ed−1

exp(−itω′x)dE(x) =

∫
Sd−1

exp(i(−tP−1ω)′y)dS(y)

=
2π(d−1)/2

Γ((d− 1)/2)

∫ π

0
exp(itr cos θ) sind−2 θdθ

=
2π(d−1)/2

Γ((d− 1)/2)

{ ∞∑
k=0

(−1)k(tr)2k

(2k)!

∫ π

0
cos2k θ sind−2 θdθ

}
,

where r = ‖P−1ω‖2 = ‖ω‖S−1 , by change of variables and Taylor expan-

sion. The Equation (4.2) is then derived by the additional fact that∫ π

0
cos2k θ sind−2 θdθ =

Γ((2k + 1)/2)Γ((d− 1)/2)

Γ(k + d/2)

=
(2k)!Γ(1/2)

22kk!

Γ((d− 1)/2)

Γ(k + d/2)
,
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and the definition of a Bessel function of the first kind.

Native spaces

Anisotropic Wendland function GS has its associated native space because

it is positive definite. Recall that we determine the order of the associated

Sobolev space from the Fourier transform of the basis function. However,

ĜS is expressed as an equation of ‖ω‖S−1 , and it satisfies the inequality

0 < c1 ≤ ĜS(ω)(1 + ‖ω‖2S−1)d/2+k+1/2 ≤ c2.

Since we have

λ2 ≤
1 + ωTSω

1 + ωTω
≤ λ1,

where λ1 and λ2 are the first and the second eigenvalues of S, we can easily

derive that ĜS decays at the rate of (1 + ‖ · ‖22)−d/2−k−1/2, and the native

space of GS is Hτ (Ω) for τ = d/2 + k + 1/2.

Error bounds

We can obtain an error bound of the interpolant (4.1) as in Theorem 3.1.6.

Note that the convergence order is the same with the interpolant based on

the isotropic Wendland functions.

Theorem 4.1.3. Suppose that Ω ⊆ Rd is bounded and satisfies an interior

cone condition, and X = {x1, x2, . . . , xN} ⊆ Ω is a set of pairwise distinct

observations on Ω. Let GS : Rd → R be an anisotropic Wendland function

in space dimension d with smoothness 2k such that GS(x) = gd,k(‖x‖S)

where S is a symmetric positive definite matrix with unit determinant. If

f is from its associated native space and f̂(x) is the interpolant of X based

on GS, there exist constants h0, C > 0 such that

|f(x)− f̂(x)| ≤ Chk+1/2
X,Ω |f |NGS (Ω)

holds for every x ∈ Ω provided that hX,Ω ≤ h0.
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4.1.2 Representation of complex directional structure

In general, the directional structure in the data can be multiple lines,

curves, or circles. Hence, it is not a good approach to fix the direction of

the basis functions and represent the data. However, the convergence of the

approximation is not guaranteed if we use the basis functions of different

directions for different data sites. In this thesis, we suggest dividing the

domain Ω into several non-overlapping subdomains Ω1, Ω2, · · · ,ΩM based

on the similarity of the directional structure, and using the anisotropic

basis of the most representative direction for each subdomain. Then, on

each subdomain Ωm, the convergence of an approximant

f̂ (m)(x) =

N(m)∑
j=1

β̂
(m)
j GSm(x− x(m)

j )

to the restriction of f to Ωm is retained by Theorem 4.1.3, and so is it for

the approximant on the global domain

f̂(x) =
M∑
m=1

f̂ (m)(x)I(x ∈ Ωm). (4.3)

Here, N (m) is number of the elements of the set X(m) = Ωm ∩ X =

{x(m)
1 , x

(m)
2 , · · · , x(m)

N(m)}, and GSm is an anisotropic Wendland basis which

best reflects the local direction on Ωm with symmetric positive definite

matrix Sm whose determinant is unity. This still has the same convergence

order with the interpolant based on isotropic Wendland functions with

respect to max{hX(m),Ωm
: m = 1, 2, . . . ,M}.

4.1.3 Multiscale representation of the directional structure

As explained in Section 3.2, multiscale representation can have sparse inter-

polation matrix and convergence property at the same time by overcoming

the trade-off relation. It also has the advantage of reflecting the inhomoge-

neous patterns both globally and locally. One can obtain global behavior
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if the basis functions with large supports are employed, while the local

features are identified by the functions with small supports.

In this subsection, we construct a multiscale approximant based on

compactly supported ARBFs to represent the complex directional struc-

tures with inhomogeneous nature. To this end, we couple the Algorithm 1

with the directional approximant (4.3). The entire data locations X will

be partitioned into X(1), X(2), · · · , X(M) based on the directional similar-

ity, and each X(m) will be divided into a disjoint sequence of data sites

X
(m)
1 , X

(m)
2 , · · · , X(m)

L whose fill distance h
(m)
` = h

X
(m)
` ,Ωm

decreases as `

gets larger.

On the other hand, isotropic Wendland functions in Algorithm 1 is

replaced by anisotropic ones for the directional representation. Then we

approximate an unknown function on each subdomain Ωm using elliptic

Wendland functions with multiple scales. The global approximant using

multiscale ARBFs can be expressed as

f̂L(x) =

M∑
m=1

f̂
(m)
L (x) =

M∑
m=1

L∑
`=1

N
(m)∑̀

j=1

β
(m)
`,j G`,Sm(x, x

(m)
`,j ), (4.4)

where N
(m)
` is number of the elements of the set X

(m)
` = Ωm ∩ X`, and

G`,Sm = G`,d,k,Sm is a basis which best reflects the local direction on Ωm in

the `-th scale. In addition, we can easily derive the convergence property

of (4.4) when M = 1 because the basis G`,Sm is positive definite and the

RBF-based approximant (3.4) converges to f in L2-norm.

4.2 Directional wavelets for scattered data

Let f be a function on Ω ⊆ R2 with a directional structure which is ob-

served at uniformly, but irregularly, distributed data sites over Ω. Assume
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further that the data is observed with independent measurement error as

yj = f(xj) + εj , j = 1, 2, . . . , N.

In this section, we propose a method to estimate the underlying true func-

tion f in the presence of noise. We use compactly supported ARBFs at L

different scales and orthogonalize them across the scales to separate the lo-

cal activities from the global trend. The shrinkage method is suggested for

the noise removal, and the practical implementation issues are discussed

as well.

4.2.1 Directional wavelets

Without loss of generality and for the simplicity of notation, let us as-

sume that the function f has a single linear directional structure, and let

X1 = {x1,j}N1
j=1, X2 = {x2,j}N2

j=1, · · · , XL = {xL,j}NLj=1 be a sequence of data

sites on Ω which is getting denser. Then, in the context of multiresolution

analysis, an approximation space at the `-th level is defined as

V` = span{Gk,S(·, x) : x ∈ Xk, k = 1, 2, · · · , `},

and it contains the approximant

f̂`(x) =
∑̀
k=1

Nk∑
j=1

β̂k,jGk,S(x, xk,j),

where G`,S = δ−2
` GS(·/δ`), δ` is a bandwidth of the basis functions at

the `-th level, and GS is an anisotropic Wendland function which best

reflects the directional structure. The approximation spaces have a nested

structure

V1 ⊂ V2 ⊂ · · · ⊂ VL,

and we can show the completeness,
⋃∞
`=1 V` = L2(Ω), as in Gia et al.

(2010). On the other hand, we can characterize the detail space W` =
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V`+1 ∩ V⊥` by the span of W`,S(x, x`,j) which satisfy∫
W`,S(x, x`,j)W`′,S(x, x`′,j′)dx = 0, ` 6= `′, ∀x`,j ∈ X`, ∀x`′,j ∈ X`′ .

Since W`,S are orthogonal across the levels by definition, we call these

functions the directional wavelets and obtain them by the Gram-Schmidt

process

W`,S(x, x`,j) = G`,S(x, x`,j)−
`−1∑
`′=1

N`′∑
j′=1

e`(`
′, j′, j)G`′(x, x`′,j′),

where e`(`
′, j′, j) can be seen as a filter in classical wavelet transform. Thus,

we can decompose the approximant at the `-th level as

f̂`(x) = f̂`−1(x) +

N∑̀
j=1

γ̂`,jW`,S(x, x`,j),

for ` = 2, · · · , L, so that the approximant at the finest level can be ex-

pressed as

f̂L(x) =

N1∑
j=1

β̂1,jG1,S(x, x1,j) +
L∑
`=2

N∑̀
j=1

γ̂`,jW`,S(x, x`,j). (4.5)

4.2.2 Estimation of coefficients

We use the least squares approach to estimate the coefficients in (4.5), and

this leads to the interpolation of the entire data observed atX1, X2, · · · , XL.

However, since the measurement errors contaminate the observations, we

cannot directly make an inference about the underlying function f from the

interpolation. The estimated coefficient of the directional waveletW`,S(·, x`,j)

from the least squares method are expected to contain the noise as

γ̂`,j = γ`,j + η`,j .

Since the localized direction of W`,S causes γ`,j ’s to be sparse, we can

threshold γ̂`,j ’s with small values and remove the noise. Thus, it is impor-

tant to determine the rule of thresholding because optimal values of the
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threshold vary for the nature of the underlying function of interest, noise

level, and the type of basis functions in use. In our case, the noise η`,j ’s

might be correlated with one another, even if ε`,j ’s are not, because the di-

rectional structure of f is represented only with the elliptic basis functions.

In this respect, we suggest conducting the level-dependent thresholding of

Johnstone and Silverman (1997) and determining the thresholding value

at each level based on cross-validation.

4.2.3 Practical issues in implementation

This subsection will introduce practical approaches that we suggest to re-

flect the local directional structure, divide the basis functions into multiple

levels disjointly, avoid the multicollinearity problem, and remove the noise.

Construction of anisotropic Wendland functions

In practice, it is challenging to explicitly divide the domain Ω based on

the directional similarity and specify the representative direction for each

subdomain. So, we will instead set the direction of each basis based on

the neighboring observations around the center in Ω × R to reflect local

directional information implicitly.

Let Y` = {y`,j}N`j=1 and X` = {x`,j}N`j=1 denote the observations and data

sites at the `-th level, respectively. In this research, for each (x`,j , y`,j) ∈

(X`, Y`), we find seven nearest neighbors in Ω × R, project them on Ω,

and obtain the symmetric positive definite matrix S`,j whose determinant

is scaled to unity from the covariance matrix of projected observations.

Then we can define Mahalanobis distance from x`,j and make anisotropic

Wendland function

G`,S(·, x`,j) = δ−2
` g2,k


√

(· − x`,j)′S−1
`,j (· − x`,j)

δ`

 ,
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where g2,k is a Wendland function in space dimension 2 and smoothness

2k, and δ` is a bandwidth which is proportional to the fill distance

hX`,Ω = sup
x∈Ω

min
x`,j∈X`

‖x− x`,j‖2.

Level division

Since the basis functions are centered on observation sites, dividing them

into multiple levels implies dividing the corresponding observations. We ex-

pect the data sites X` at each level to be uniformly distributed so that the

basis functions defined on them can cover Ω with close to minimal band-

width while reflecting directional structure. To this end, we will remove

the observations progressively using non-adaptive and adaptive thinning

algorithms sequentially and make a nested structure of the data sites as

X =
L⋃
`=1

X` ⊃
L−1⋃
`=1

X` ⊃ · · · ⊃ X1.

Non-adaptive thinning (Floater and Iske, 1998) is an algorithm that re-

moves observations while preserving uniformity of data sites as much as

possible, and adaptive thinning (Dyn et al., 2001) is an algorithm that

removes less significant observations first based on 2-dimensional linear in-

terpolation on Delaunay triangulation. Detailed descriptions of these two

algorithms can be found in Iske (2004).

We will first apply non-adaptive thinning algorithm and remove NL,

NL−1, . . ., N2 observations sequentially, and denote their observation sites

by XL, XL−1, . . ., X2, respectively. The remaining N1 observations are

located on X1, and these will be the centers of basis functions at the coars-

est level. Though non-adaptive thinning makes X` uniformly distributed

in Ω, we cannot guarantee that the basis functions at each level, especially

the ones on the coarsest level, are reflecting the local directional struc-

ture because only a few nearest observations around the center are used to

determine the direction of the basis functions.
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To overcome this limitation, we use adaptive thinning locally to switch

the center of each basis at the coarse level with the one at the finer level

and adjust the direction of the basis function accordingly. New centers

of basis functions at the coarse level should be close enough to the origi-

nal centers and are able to represent the local directional structure. The

detailed description is stated in Algorithm 2.

For example, suppose that we observe two-dimensional directional data

as in the top middle plot in Figure 4.1. The number of observations is

115, and the non-adaptive thinning divides this into three levels. First, 81

observations will be removed, and these will be allocated to level 3 (bottom

right plot in Figure 4.1). Next, we remove 25 observations in the next step,

and these will be the data at level 2 (bottom middle plot in Figure 4.1).

Finally, the remaining 9 observations will naturally be at level 1 (bottom

right plot in Figure 4.1).

We will then exchange the data at level 1 with the other observations at

the finer levels if it can improve the directional representation at the coars-

est level (Algorithm 2). We want the exchange of the observations locally

to keep the data uniformly scattered. Hence, we will restrict the domain of

exchange by the circular neighborhood of each observation at level 1. We

consider that the adequate area of the circle should be slightly larger than

Area(Ω)/N1 = 1/9. To this end, we will make a circle whose diameter is√
2Area(Ω)/N1 =

√
2/3 for each x1,j , and this will be the domain of ex-

change in this specific setting. Since the area of the neighborhoods is π/18,

there will be approximately 18 observations for each of them. Hence, for

each neighborhood, we will remove 9 observations by the adaptive thinning

and find a medoid of the remaining ones. If this medoid belongs to level 2

or 3, we will exchange the level it belongs with the original center of the

circular neighborhood. If it belongs to level 1, nothing will happen. Figure

4.2 plots the supports of anisotropic basis functions at each level after local
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Figure 4.1: An illustrative example of non-adaptive thinning. First row

presents, from left to right, the plots of a function with simple directional

structure, scattered observations of the function, and the result of non-

adaptive thinning. Second row shows the data at each level.

adaptive thinning. We can observe that the basis functions at every level

reflect the underlying directional structure very well.

Rank deficiency problem

We orthogonalize the basis functions across the levels using the Gram-

Schmidt process after the construction. Thus, the coefficients in (4.5) can

be estimated at each level separately. However, one should not estimate
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Figure 4.2: Supports of anisotropic basis functions at each level after local

adaptive thinning.

the coefficients by directly minimizing

‖Y −
N1∑
j=1

β̂1,jG1,S(X − x1,j)‖2,

or

‖Y −
N∑̀
j=1

γ̂`,jW`,S(X − x`,j)‖2,

for ` = 2, 3, . . . , L, because linear dependency among basis functions

results in unstable predicted values on the points far from the observation

sites. In this research, we examine multicollinearity by the ratio between

the smallest and the largest eigenvalues of the covariance matrix of predic-

tors at each level. If the ratio is less than 0.01, we use principal component

regression instead of least square regression to alleviate the effect of mul-

ticollinearity.

For example, let β = (β1,1, β1,2, . . . , β1,N1)T ,

G =


{GS(x1,j , x1,1)}N1

j=1 {GS(x1,j , x1,2)}N1
j=1 · · · {GS(x1,j , x1,N1)}N1

j=1

{GS(x2,j , x1,1)}N2
j=1 {GS(x2,j , x1,2)}N2

j=1 · · · {GS(x2,j , x1,N1)}N2
j=1

...
...

. . .
...

{GS(xL,j , x1,1)}NLj=1 {GS(xL,j , x1,2)}NLj=1 · · · {GS(xL,j − x1,N1)}NLj=1

 ,
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Algorithm 2: Center adjustment of basis functions in the coarse

level to reflect the local directional structure

1 for ` = 1, 2, . . . , `0 do

2 for j = 1, 2, . . . , N` do

3 Find a circle whose center is x`,j and diameter is the length

of a square’s diagonal whose area is Area(Ω)/N`.

4 Remove half of the observations in the circle by adaptive

thinning.

5 Find a medoid of remaining observations and identify the

level it belongs to, denoting it by `′.

6 Exchange the levels of the basis functions if `′ > `.

x`,j ↔ x`′,j′

7 end

8 end

and V be a matrix of eigenvectors of the covariance matrix

1

N1
(G− 1

N1
11′G)′(G− 1

N1
11′G)

whose corresponding eigenvalues are larger than one-hundredth of the

largest eigenvalue. If we let

Z = (G− 1

N1
11′G)V

and estimate the corresponding coefficients by least squares criterion as

α̂ = (Z ′Z)−1Z ′Y , estimator of β from the principal component regression

is obtained by

β̂ = V α̂.
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Similar method can be applied to estimate γ` = {γ`,j}N`j=1 from

W ` =


{W`,1(x1,j)}N1

j=1 {W`,2(x1,j)}N1
j=1 · · · {W`,L1(x1,j)}N1

j=1

{W`,1(x2,j)}N2
j=1 {W`,2(x2,j)}N2

j=1 · · · {W`,L1(x2,j)}N2
j=1

...
...

. . .
...

{W`,1(xL,j)}NLj=1 {W`,2(xL,j)}NLj=1 · · · {W`,L1(xL,j)}NLj=1


for ` = 2, 3, . . ., L.
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Chapter 5

Numerical Experiments

5.1 Simulation study

Let’s consider a domain Ω = {(x1, x2) : (x1, x2) ∈ [0, 1] × [0, 1]} and five

different directional structures lying on it including straight line, sine curve,

circle, crossing lines, and the Greek letter φ. We constitute this set of

structures for the simulation to consider various forms of lines and curves.

Sine curve and circle are to cover curves with different curvatures. Crossing

lines and φ represent directions that cross each other. Figure 5.1 illustrates

these structures, which are generated from the bivariate functions below.

• Straight line

f0(x1, x2) = exp

(
−(x2 − (0.6x1 + 0.2))2

2w2

)
• Sine curve

f0(x1, x2) = exp

(
−(x2 − (0.25 sin(2πx1) + 0.5))2

2w2

)
• Circle
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f0(x1, x2) = exp

(
−((x1 − 0.5)2 + (x2 − 0.5)2 − 1/9)2

0.5w2

)
• Crossing lines

f0(x1, x2) = max

{
exp

(
−(x1 − x2)2

2w2

)
, exp

(
−(x1 + x2 − 1)2

2w2

)}
• φ

f0(x1, x2) = max { exp

(
−(x1 − (0.6x2 + 0.2))2

w2

)
,

exp

(
−((x1 − 0.5)2 + (x2 − 0.5)2 − 1/9)2

0.5w2

)
}

(a) (b)

(c) (d) (e)

Figure 5.1: Five different directional structure of simulation data: (a)

straight line, (b) sine curve, (c) circle, (d) crossing lines, (e) φ.

We further assume that the structure has intensity α(x1, x2) and con-

sider two scenarios of it: constant intensity α(x1, x2) = 0.5 and non-

constant intensity α(x1, x2) = 0.5 + 0.15 cos(2πx1). Hence, there are 10
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different types of underlying functions and we observe them in the form of

yj = f(x1j , x2j) + εj , j = 1, 2, . . . , N, (5.1)

where f = αf0 and εj is a Gaussian white noise from N(0, σ2). Figure 5.2

illustrates the surface of underlying bivariate functions with perspective

plots. These functions have a directional structure of the shape φ and have

constant and non-constant intensity, respectively.

Figure 5.2: Perspective plots of φ-shaped bivariate functions with constant

and non-constant directional intensity.

As a specific simulation setting, we set the width of direction by w =

1/90, and the standard deviation of noise to be σ = 0.025 or 0.05. The

proposed method, directional wavelets, works not only on the irregularly

scattered sites but also on the equally-spaced grid. Hence, in this section,

we generate the simulation data for both designs and prove the applicability

and efficiency of the proposed method by the comparison with existing

methods. These methods are listed below.

• 2-dimensional wavelet transform: We use the tensor product of one-

dimensional Daubechies least-asymmetric orthonormal compactly sup-
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ported wavelets with 10 vanishing moments. For the noise removal,

empirical Bayes thresholding is used. This can be easily implemented

by wavethresh and EbayesThresh packages in R, respectively.

• Curvelet transform: Candes and Donoho (1999) generalized the ridgelet

transform to analyze the singularity along the curves efficiently. CurveLab

Toolbox (Candes et al., 2005) in MATLAB implements the second gen-

eration of this transform (Candes et al., 2006) and we use wrapping-

based one for our simulation experiments.

• Adaptive weights smoothing (AWS): Polzehl and Spokoiny (2000)

suggested a smoothing method that gradually expands and smooths

the local constant model. This method can be easily implemented by

aws package in R.

• Patch-wise adaptive weights smoothing (PAWS): Polzehl et al. (2020)

suggested a method that overcomes the limitation of local constant

assumption in AWS and can represent a smooth function. This method

can also be easily implemented by aws package in R.

• Thin-plate smoothing splines (TPS): TPS is a minimizer of

1

N

N∑
j=1

(yi − f(x1i, x2i))
2 + λ

∫ ∫ (
d2f

dx2
1

+ 2
d2f

dx1dx2
+
d2f

x2
2

)
dx1dx2.

It penalizes the roughness of the data measured by the sum of second-

order derivatives. We implement TPS by the fields package in R.

5.1.1 Scattered observation sites

We consider two cases for the number of observation sites (N = 1024, 4096).

Each coordinate of observation sites follows uniform distribution on [0, 1]

independently so that the observations are randomly scattered over the
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domain Ω. We generate the simulation data and estimate the underly-

ing function f 50 times for each combination of direction and intensity.

Since curvelet transform, discrete wavelet transform, and PAWS requires

equally-spaced observation sites, we consider 128×128 equally-spaced grid

points {z1, z2, . . . , z16384} on Ω and linearly interpolate these points based

on Delaunay triangulation before applying the aforementioned methods.

Evaluation on the grid points which is not inside of any Delaunay triangle

is substituted by the average of interpolated values on the nearest grid

points. Figure 5.3 shows an example of scattered observations and their

2-dimensional interpolated values on 128×128 grid for the function of sine

curve direction with constant intensity.

Figure 5.3: Scattered observations and their 2-dimensional interpolated val-

ues on 128×128 grid for the function of sine curve direction with constant

intensity

To estimate the underlying true function f by the directional wavelets,

we apply the non-adaptive thinning first to divide the observed values and

sites into multiple levels {y`,j , x`,j}N`j=1 for ` = 1, · · · , L. We let L = 3 when

N = 1024, and L = 4 when N = 4096. We describe the detailed number
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of observations at each level for each N in Table 5.1. Then, we switch the

Table 5.1: The number of observations at each level in the simulation.

N1 N2 N3 N4

N = 1024 64 196 764 -

N = 4096 64 225 784 3023

centers of basis functions at level 1 (` = 1) with the ones in the other levels

by adaptive thinning to reflect the local directional structure in the respec-

tive supporting areas. Anisotropic Wendland basis functions and wavelets

are constructed based on this division of observations. To estimate the

coefficients, principal component regression is used in the case of multi-

collinearity as in the subsection 4.2.3. Figure 5.4 illustrates an example of

the disposition of basis functions and the consequently estimated struc-

ture at each level. We observe that the basis functions and their resultant

estimates reflect the underlying directional structure as we intended.

Coefficients of the wavelets are soft thresholded based on predeter-

mined numbers, which vary between the shapes of directions, not by their

intensities. To alleviate the computation burden, we have determined the

values of thresholds on an ad hoc basis and stated them in Table 5.2. These

numbers are obtained by a grid search for the first 10 simulation data. The

Figure 5.5 shows the denoised result of estimation at each level and their

cumulative sums for the function of sine curve direction with constant in-

tensity. We find that the thresholded estimate at each level has a much

more distinct direction than before the denoising, and their cumulative

sums become more and more precise as the details are added.

Figure 5.6 is an example of resultant estimates from the aforementioned

methods for the function of sine curve direction with constant intensity.

Each method is evaluated on 128× 128 equally-spaced grid points, and we
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Figure 5.4: Disposition of bases and estimated structure from them on each

level

can compare the results qualitatively from this. The proposed method rep-

resents a sharp directional structure more efficiently and provides the most

accurate estimate of the underlying function compared to the other meth-

ods. Curvelet transform, PAWS, and TPS express the directional structure

by and large but not as precisely as a directional wavelet. On the other

hand, AWS provides the most smooth and accurate estimate for the back-

ground region with no directional structure. However, it has a limitation

on a continuous representation of the direction because it approximates the

function based on a locally constant model. The two-dimensional wavelet

transform expresses the upper left part of the directional structure quite

well, but it fails for the lower right part. Since the transform is applied only

horizontally and vertically, we conjecture that this is because of vague inter-
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Table 5.2: Thresholding value at each level for the scattered data simula-

tion. Values are based on directional intensity, shape, and noise level.

Intensity Direction

Noise level

σ = 0.025 σ = 0.05

Level 2 Level 3 Level 4 Level 2 Level 3 Level 4

Constant

line .0045 .0025 .0011 .0130 .0065 .0056

sine .0075 .0030 .0007 .0160 .0060 .0024

circle .0050 .0025 .0005 .0110 .0050 .0021

cross .0015 .0020 .0007 .0080 .0050 .0033

φ .0050 .0025 .0005 .0090 .0055 .0016

Non-constant

line .0050 .0020 .0011 .0145 .0065 .0051

sine .0075 .0025 .0007 .0170 .0070 .0022

circle .0055 .0025 .0005 .0120 .0055 .0023

cross .0030 .0020 .0007 .0070 .0045 .0030

φ .0045 .0025 .0005 .0090 .0050 .0017

polation results on the lower right part of the direction due to the random

observation sites.

For the quantitative comparison, we compute the mean squared error

on 128× 128 equally-spaced grid points in Ω as

1

16384

16384∑
j=1

(
f(zj)− f̂(zj)

)2
,

where f̂ is the estimated function. Table 5.3 shows the simulation results for

the data with constant directional intensity, and Table 5.4 shows the ones

with non-constant directional intensity. We find that the proposed method

approximates the underlying true function f more accurately than the

other methods for almost every combination of direction and its intensity

variation.
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Figure 5.5: Denoised result of estimation on each level and their cumulative

sums
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Figure 5.6: Resultant estimates from the comparing methods for the func-

tion of sine curve direction with constant intensity.
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5.1.2 Equally-spaced observation sites

Directional wavelets can be constructed for the equally-spaced data as

well and give comparable results with curvelets and AWS. We verify this

by another simulation data whose observation sites are all the points of

32× 32 grid over Ω. Based on the model (5.1), we generate 50 simulation

datasets for the direction φ with both intensity types and estimate these

underlying functions by the same methods used above. Figure 5.7 shows

the true function and an example noise-contaminated (σ = 0.05) data with

constant directional intensity.

Figure 5.7: Plots of an underlying function (left) and its noise-contaminated

observations (right). Directional shape: φ, Intensity: constant, Noise level:

σ = 0.05

To define directional wavelets, we divide 1024 observations into three

levels with sizes N1 = 64, N2 = 196 and N3 = 764 using non-adaptive and

adaptive thinning methods sequentially. Coefficients are estimated by least-

square regression (or principal component regression in the case of multi-

collinearity) and thresholded based on the predetermined values. When the

intensity is constant, thresholding values are 0.0105 and 0.0040 for ` = 2
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and ` = 3, respectively. When the intensity is non-constant, thresholding

values are 0.0110 and 0.0040 for ` = 2 and ` = 3, respectively.

Table 5.5 shows the simulation results for constant and non-constant

directional intensity, respectively, with directional wavelets and the other

comparing methods. Though the state-of-the-art method PAWS gives the

best result, the proposed method works better than 2-dimensional DWT,

curvelet transform, AWS, and TPS. Figure 5.8 shows an example of the

resultant estimate from each method when the intensity is constant.

Table 5.5: Simulation results for equally-spaced 32× 32 observations from

φ-shaped directional structure with two intensity types. Values presented

in the table are averages (standard deviation in the parentheses) of mean

squared error multiplied by 1000.

Intensity
Method

DirW CURVELET 2-D DWT PAWS AWS TPS

Constant 1.08 (0.08) 1.60 (0.09) 3.17 (0.29) 0.79 (0.14) 1.17 (0.13) 5.55 (0.28)

Non-constant 1.04 (0.07) 1.56 (0.08) 2.99 (0.28) 0.99 (0.24) 1.17 (0.12) 4.78 (0.27)

5.2 Real data analysis

5.2.1 Temperature data in South Korea

A large proportion of South Korea is covered with mountains, and because

of this, a variety of climates appear despite the small territory. Taebaek

Mountains, one of the major mountain ranges in South Korea, stretch

along the east coast, and this geological factor makes this region have a

distinctive climate from other regions. In particular, the mountainous re-

gions have a cool climate in the summer, making temperature data have

a directional structure. We have collected daily low temperatures of June,

July, and August in 2018–2020 from 392 mainland (or near mainland) sta-
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Figure 5.8: An example of the resultant estimate from each method when

the intensity is constant

tions operated by the Automatic Weather System of Korea Meteorological

Administration. Figure 5.9 illustrates the observatory location and the av-

erage value of collected temperature data on each site over the map of

South Korea.

As expected, the northeastern region of the country shows a direc-

tional structure along with the mountain range. We intend to represent

this through the proposed method and compare it with TPS based on a

cross-validation approach. We consider TPS as a comparing method be-

cause it gives one of the best estimates other than directional wavelets

in the simulation study and does not require equally-spaced observations

on a rectangular domain as curvelets and PAWS do. For the comparison

based on 10-fold cross-validation, we remove 12 observations near Seoul

via non-adaptive thinning and permute the remaining 380 observations.
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Figure 5.9: Three-year average of daily low temperature from June to Au-

gust in South Korea

Then every 38 observations become the validation data, and the residuals

are calculated from the estimates based on the training data. We repeat

this process 20 times and obtain the cross-validation errors of the proposed

method and TPS.

To construct the directional wavelets, we divide the 342 stations in

the training data into two levels and construct the basis functions with

different scales depending on the level they belong to. Locations of obser-

vatories are represented by longitude and latitude and we denote them by

{x`,j}N`j=1 for the level ` = 1, 2, where N1 = 75, N2 = 267. We construct

the anisotropic Wendland functions G`,S(·, x`,j) as illustrated in subsection

4.2.3 and orthogonalize them between the levels. Estimated coefficients will

be denoised by the same thresholding value for each permutation, and we
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use these denoised coefficients to represent the underlying structure with

less noise.

Figure 5.10 shows the fitted result when both methods are applied to

the entire data, and we can observe that the proposed method represents a

more distinct direction. However, after 20 repetitions of the 10-fold cross-

validation, we find that mean-squared errors of the proposed method and

TPS are 1.077 and 0.915, respectively. (Standard deviations are 0.032 and

0.014, respectively.) We conjecture that the proposed method works poorly

because it captures insignificant direction excessively and the temperature

distribution does not have dramatic directional contrast as in the simu-

lation setting. Based on this analysis, we conclude that our method still

has room for improvement and the basis functions need to be constructed

more elaborately and data-adaptively.

Figure 5.10: Fitted results from the proposed method and the thin-plate

smoothing spline.
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Chapter 6

Concluding Remarks

6.1 Summary of results

This thesis studies the problem of estimating a bivariate function on a

plane when it has a directional structure and is observed on scattered

sites with random noise. The proposed method employs the basis functions

with anisotropic compact supports which are orthogonal across multiple

resolution levels. The convergence property is derived for the interpolant

when it is based on a single type of anisotropic Wendland functions. For

implementation, we divide the scattered observations into several levels

and construct basis functions while keeping them to reflect the directional

structure and not to be clustered. Numerical study demonstrates the appli-

cability and efficiency of the proposed method regardless of the directional

structure and design of observation sites.

6.2 Future research

The proposed method has a few limitations, and we will introduce them as

future research topics in this section. First, we choose some parameters of
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the proposed method in an ad hoc sense in the proposed method. Thus, we

need to identify an adaptive rule for choosing appropriate level-dependent

threshold values and bandwidths.

Second, although the proposed method represents the directional struc-

ture very well, we find that it performs relatively poorly for the planar

regions. We find this phenomenon through the representation of the tem-

perature data in South Korea. We assume the main reason for this is the un-

necessary and excessive reflection of the directional structure. To improve

our method, we consider setting a threshold for the ratio of eigenvalues

of a local covariance matrix. We will make the basis function anisotropic

if the ratio exceeds the threshold and leave it as an isotropic radial basis

function if the ratio does not exceed. We also consider calculating the lo-

cal covariance matrix with weights based on the distance from the center.

We expect these modifications to improve the current method by the less

excessive and more accurate reflection of the direction.

Third, it would improve the directional representation if we construct

a basis function that reflects a more general local direction. Though the

proposed method can estimate a function with a nonlinear curved direction,

it is natural to expect that we can represent it more efficiently if we bend

the major axes of elliptic basis functions. So, we consider aligning the

basis along the nonlinear direction by using the principal curve proposed

by Hastie and Stuetzle (1989). We expect it will help us to determine how

much the basis should be bent using the principal curve. However, it is hard

to identify the convergence property when the curved basis functions are

employed. Thus, in this thesis, we will leave this topic as future research.

Lastly, we intend to generalize the domain where the function lies. Our

current method is limited to estimating a function on a domain in R2. This

can further be extended to a sphere or even a Riemannian manifold. Once

the method is generalized, we may be able to represent the directional
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structure of the data on a broad domain without ignoring the Earth’s

curvature.
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국문초록

2차원 공간에서 관측되는 비정상 자료는 그 공간적 비동질성이 1차원 곡선을

따라 나타난다. 이러한 방향적 특이성을 표현하기 위한 다중척도 방법론으로

는 Candes and Donoho (1999)가 처음 제시한 커브렛 변환이 널리 알려져

있지만 이는 자료가 일정한 간격으로 관측되어야 한다는 제약이 있다. 한

편 산재된 자료에 내재된 함수를 근사하기 위해서는 방사기저함수를 이용한

내삽법이 흔히 이용되지만 등방성이 있는 방사기저함수로는 방향성을 효율

적으로 표현할 수 없다. 본 학위논문에서는 2차원 유클리드 공간에서 잡음과

함께 산재되어 관측되는 방향성 자료의 효율적인 표현을 위해 비등방성 방사

기저함수를 이용한 새로운 다중척도 방법론을 제안한다. 이때 각 스케일에서

전반적인 방향성 구조와 국소적인 방향성 구조를 분리하여 표현하기 위해

기저함수의 스케일 간 직교화가 이루어진다. 제안된 방법이 산재된 방향성

자료를 표현하는 데 있어 우수함을 보이기 위해 모의실험과 실제 자료에 대

한수치실험을한결과를제시하였다.한편제안된방법의수렴성과실제구현

방법에 관한 사안들도 다루었다.

주요어 :다중척도방법론,방향성자료,비등방성방사기저함수,산재된자료

학 번 : 2015–20286
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