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Abstract

A fully-connected neural network (NN) is used to develop a subgrid-scale

model which maps the relation between the subgrid-scale stress and filtered flow

variable in a turbulent channel (Part I) and backward-facing-step (Part II) flows.

For turbulent channel flow, DNS (direct numerical simulation) database of

Re� = 178 is used to develop an NN-based subgrid-scale (SGS) model, and

a priori and a posteriori tests are performed to investigate its prediction per-

formance. In a priori test, an NN-based SGS model with the input of filtered

velocity gradient or strain rate tensor at multiple grid points provides high cor-

relation coefficients between the true and predicted SGS stresses. However, this

model provides an unstable solution in a posteriori test, as the model produces

a non-negligible backscatter which is known to induce numerical instability in

large eddy simulation (LES). To ensure a stable LES solution with this model, a

special treatment like backscatter clipping is required. On the other hand, an NN-

based SGSmodel with the input of filtered strain rate tensor at a single grid point

shows an excellent prediction performance for the mean velocity and Reynolds

shear stress in a posteriori test, although it gives low correlation coefficients be-
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tween the true and predicted SGS stresses in a priori test. This NN-based SGS

model trained at Re� = 178 is applied to a turbulent channel flow at Re� = 723

using the same grid resolution in wall units, providing fairly good agreements of

the solutions with the filtered DNS data. When the grid resolution in wall units is

different from that of trained data, this NN-based SGS model does not perform

well. This is overcome by training an NN with the datasets having two filters

whose sizes are larger and smaller than the grid size in large eddy simulation.

For turbulent flow over a backward-facing step (BFS), an NN-based SGS

model is developed with the filtered DNS data at Reℎ = 5100. Two input vari-

ables, the filtered strain rate and velocity gradient tensors at a single grid point,

respectively, are adopted, where the NN-based SGS models with these inputs

provide a stable LES solution in the turbulent channel flow without any spe-

cial treatment. In the LES at Reℎ = 5100, those NN-based SGS models show

similar performance, and provide good predictions for the reattachment length

and root-mean-square velocity fluctuations. Then, we assess the performance

of the NN-based SGS model with the input of filtered strain rate tensor for the

LES at Reℎ = 24000, and this model provides fairly good results, compared to

those from the LES with dynamic Smagorinsky model (DSM). Finally, we ap-

ply this model for LES of controlled BFS flow with multiple taps installed at the

step edge. LES with this NN-based SGS model predicts the amount of reduc-

tion in the reattachment length better than by LES with DSM, showing that the

NN-based model trained with uncontrolled BFS flow maintains its prediction

performance in LES of controlled BFS flow.

Keywords: Large eddy simulation, subgrid-scale modeling, machine learning,

neural network, turbulent channel flow, backward facing step flow
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Part I.

Modeling of the subgrid-scale stresswith a neural

network: application to turbulent channel flow

This part is based on “Park, J., & Choi, H. 2021 Toward neural-network-based large eddy

simulation: application to turbulent channel flow. J. Fluid Mech. 914, A16".
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Chapter 1

Introduction

In large eddy simulation (LES), the effect of the subgrid-scale (SGS) velocity

fluctuations on the resolved one should be modeled, and thus the aim of SGS

modeling is to find the relations between the resolved flow variables and SGS

stresses. A conventional approach for SGS modeling is to approximate the SGS

stresses with the resolved flow variables in an arithmetic form based on turbu-

lence theory and hypothesis. For example, an eddy viscosity model is based on

the Boussinesq hypothesis that linearly relates the SGS stress tensor � with the

resolved strain rate tensor S̄, i.e., � − 1
3 tr (�) I = −2�tS̄, where I is the identity

tensor, and �t is an eddy viscosity to be modeled with the resolved flow variables

(see, for example, Smagorinsky 1963; Nicoud & Ducros 1999; Vreman 2004;

Nicoud et al. 2011; Verstappen 2011; Rozema et al. 2015; Trias et al. 2015; Sil-

vis et al. 2017). Somemodels dynamically determine the coefficients of the eddy

viscosity models (Germano et al. 1991; Lilly 1992; Ghosal et al. 1995; Piomelli

& Liu 1995; Meneveau et al. 1996; Park et al. 2006; You & Moin 2007; Lee

et al. 2010; Verstappen et al. 2010). Other types of SGS model include the sim-

ilarity model (Bardina et al. 1980; Liu et al. 1994; Domaradzki & Saiki 1997),
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the mixed model (Bardina et al. 1980; Zang et al. 1993; Vreman et al. 1994; Liu

et al. 1994, 1995; Salvetti & Banerjee 1995; Horiuti 1997; Akhavan et al. 2000),

and the gradient model (Clark et al. 1979; Liu et al. 1994). These models have

been successfully applied to various turbulent flows, but there are still drawbacks

to overcome. For example, the eddy viscosity model always produces either the

wrong SGS stresses or the wrong energy spectrum Jiménez & Moser (2000).

In addition, the eddy viscosity model is purely dissipative, and thus the energy

transfer from subgrid to resolved scales (i.e., backscatter) cannot be predicted.

On the other hand, the scale similarity model provides the backscatter but does

not dissipate energy sufficiently, and thus simulations often diverge or produce

inaccurate results. Therefore, an additional eddy-viscosity term is introduced and

usually coupled with the scale similarity model to properly dissipate the energy

(Bardina et al. 1980; Liu et al. 1994; Langford & Moser 1999; Sarghini et al.

1999; Meneveau & Katz 2000; Anderson & Domaradzki 2012). The dynamic

version of the eddy viscosity model can predict local backscatter with negative

�t, but an averaging procedure or ad hoc clipping on negative �t is required in ac-

tual LES to avoid numerical instability (Germano et al. 1991; Lilly 1992; Ghosal

et al. 1995;Meneveau et al. 1996; Park et al. 2006; Thiry &Winckelmans 2016).

An alternative approach for SGSmodeling is to use high-fidelity DNS (direct

numerical simulation) data. The optimal LES (Langford &Moser 1999; Völker,

Moser & Venugopal 2002; Langford & Moser 2004; Zandonade, Langford &

Moser 2004; Moser et al. 2009), based on the stochastic estimation (Adrian et al.

1989; Adrian 1990), is such an approach, where a prediction target, e.g., the SGS

force (divergence of the SGS stress tensor), is expanded with input variables (ve-

locity and velocity gradients). The coefficients of the input variables are found

by minimizing the mean-squared error between the true and estimated values of

the prediction target. Another example is to use a machine-learning algorithm
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such as the fully connected neural network (FCNN). The FCNN is a nonlinear

function that maps the predefined input variables and prediction target, where the

target can be the SGS stresses or SGS force. Like the optimal LES, the weight

parameters of the FCNN are found by minimizing a given loss function such

as the mean-squared error. In the case of two-dimensional decaying isotropic

turbulence, Maulik et al. (2018) applied an FCNN-based approximate decon-

volution model (Stolz & Adams 1999; Maulik & San 2017) to LES, where the

filtered vorticity and streamfunction at multiple grid points were the inputs of

FCNNs and the corresponding prediction targets were the deconvolved vorticity

and streamfunction, respectively. This FCNN-based LES showed a better pre-

diction of the kinetic energy spectrum than LES with the dynamic Smagorinsky

model (DSM, Germano et al. 1991; Lilly 1992). Maulik et al. (2019) used the

same input together with eddy-viscosity kernels, but had the SGS force as the

target. In a posteriori test, this FCNN model reasonably predicted the kinetic

energy spectrum even though the prediction performance was not much better

than those of the Smagorinsky and Leith models (Leith 1968) with the model

coefficients of Cs = 0.1 − 0.3 in �t = (CsΔ̄)2|S̄|, where Δ̄ is the grid spac-

ing and |S̄| =
√

2S̄ijS̄ij . Pawar et al. (2020) trained an FCNN to predict SGS

stress directly with the inputs of ū,∇ū, and ∇2ū, where ū is the filtered velocity.

They only conducted a priori test, and showed that using inputs at multiple grid

points provided better prediction performance for SGS stresses than using inputs

at a point. In the case of three-dimensional forced isotropic turbulence, Vollant

et al. (2017) used an FCNN with the target of the SGS scalar flux divergence

∇ ⋅
(

u� − ū�̄
)

and the input of S̄, where �̄ is the filtered passive scalar. They

showed that the results from FCNN-based LES were very close to those from

the filtered DNS. Zhou et al. (2019) reported that using the filter size as well

as the velocity gradient tensor as the input variables was beneficial to predict
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the SGS stresses for the flow having a filter size different from that of trained

data. Xie et al. (2020a) used an FCNN to predict the SGS force with the in-

put of ∇ū at multiple grid points, and this FCNN performed better than DSM

for the prediction of energy spectrum. In the case of three-dimensional decaying

isotropic turbulence,Wang et al. (2018) adopted the velocity and its first and sec-

ond derivatives for the input of FCNN to predict the SGS stresses, and showed

better performance in a posteriori test than that of DSM. Beck et al. (2019) used

a convolutional neural network (CNN) to predict the SGS force with the input

of the velocity in whole domain, and showed in a priori test that the CNN-based

SGS model predicted the SGS force better than an FCNN-based SGS model did.

In the case of compressible isotropic turbulence, Xie et al. (2019a) used FCNNs

to predict SGS force and divergence of SGS heat flux, respectively, with the in-

puts of ∇ũ, ∇2ũ, ∇T̃ , ∇2T̃ , �̄, and ∇�̄ at multiple grid points, where � is the

fluid density, and ũ and T̃ are the mass-weighting-filtered velocity and temper-

ature, respectively. Xie et al. (2019b) applied FCNNs to predict the coefficients

of a mixed model with the inputs of |!̃|, �̃,
√

�̃ij �̃ij ,
√

S̃ijS̃ij , |∇T̃ |, where |!̃|,

�̃, �̃ij , and S̃ij are the mass-weighting-filtered vorticity magnitude, velocity di-

vergence, velocity gradient tensor, and strain rate tensor, respectively. Xie et al.

(2019c) trained FCNNs with ∇ũ, ∇2ũ, ∇T̃ , and ∇2T̃ at multiple grid points as

the inputs to predict SGS stresses and SGS heat flux, respectively. Xie et al.

(2020c) used FCNNs to predict SGS stresses and SGS heat flux with the inputs

of∇ũ,∇ ̂̃u,∇T̃ , and∇ ̂̃T at multiple grid points, where the filter size of Δ̂ is twice

that of Δ̃. They (Xie et al. 2019a,b,c, 2020c) showed that the FCNN-based LES

provided more accurate kinetic energy spectrum and structure function of the

velocity than those based on DSM and dynamic mixed model.

Unlike for isotropic turbulence, the progress in LES with an FCNN-based

SGS model has been relatively slow for turbulent channel flow. Sarghini, de Fe-
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lice & Santini (2003) trained an FCNNwith the input of filtered velocity gradient

and ū′iū
′
j to predict the model coefficient of the Smagorinsky model for a turbu-

lent channel flow, where ū′i is the instantaneous filtered velocity fluctuations. Pal

(2019) trained an FCNN to predict �t in the eddy viscosity model with the in-

put of filtered velocity and strain rate tensor. In Sarghini et al. (2003) and Pal

(2019), however, FCNNs were trained by LES data from traditional SGS mod-

els, i.e., mixedmodel (Bardina et al. 1980) and DSM, respectively, rather than by

filtered DNS data. Wollblad & Davidson (2008) trained an FCNN with filtered

DNS data to predict the coefficients of the truncated POD (proper orthogonal

decomposition) expansion of the SGS stresses with the input of ū′i, wall-normal

gradient of ū′i, filtered pressure (p̄), and wall-normal and spanwise gradients of

p̄. They showed from a priori test that the predicted SGS stresses were in good

agreements with those from filtered DNS data. However, the FCNN alone was

unstable in a posteriori test, and thus the FCNN combined with the Smagorin-

sky model was used to conduct LES, i.e., �ij = cb�FCNNij + (1 − cb)�
Smag
ij , where

�FCNNij and �Smag
ij were the SGS stresses from the FCNN and Smagorinsky model

(with Cs = 0.09), respectively, and cb was a weighting parameter needed to be

tuned. Gamahara & Hattori (2017) used FCNNs to predict the SGS stresses with

four input variable sets, {∇ū, y}, {∇ū},
{

S̄, R̄, y
}

, and
{

S̄, y
}

, where R̄ is the

filtered rotation rate tensor, and y is the wall-normal distance from the wall. They

showed in a priori test that the correlation coefficients between the true and pre-

dicted SGS stresses from {∇ū, y} were highest among four input sets, and even

higher than those from traditional SGS models (gradient and Smagorinksy mod-

els). However, a posteriori test (i.e., actual LES) with {∇ū, y} did not provide

any advantage over the LES with the Smagorinsky model. Stoffer et al. (2020)

used FCNNs to predict the SGS stresses with the input of ū at 5 × 5 × 5 points.

This FCNN provided SGS stresses highly correlated with the true one in a priori
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test, but it produced numerically unstable results in actual LES. This kind of the

inconsistency between a priori and a posteriori tests had been also observed dur-

ing the development of traditional SGS models (Liu et al. 1994; Vreman, Geurts

& Kuerten 1997; Park, Yoo & Choi 2005; Anderson & Domaradzki 2012).

Previous studies (Wollblad & Davidson 2008; Gamahara & Hattori 2017;

Stoffer et al. 2020) showed that FCNN is a promising tool for modeling SGS

stresses from a priori test, but it is unclear why FCNN-based LESs did not per-

form better for a turbulent channel flow than LESs with traditional SGS models.

Thus, a more systematic investigation on the SGS variables such as the SGS dis-

sipation and transport is required to diagnose the performance of FCNN. The

input variables for the FCNN should be also chosen carefully based on the char-

acteristics of the SGS stresses. Therefore, the objective of the present study is

to develop an FCNN-based SGS model for a turbulent channel flow, based on

both a priori and a posteriori tests, and to find appropriate input variables for

the successful LES with FCNN. We train FCNNs with different input variables

such as S̄ and ∇ū, and the target to predict is the SGS stress tensor. We also test

ū and )ū∕)y as the input for FCNN (note that these were the input variables of

the optimal LES for a turbulent channel flow by Völker et al. (2002)). The input

and target data are obtained by filtering the data from DNS of a turbulent chan-

nel flow at the bulk Reynolds number of Reb = 5600 (Re� = u��∕� = 178),

where u� is the wall-shear velocity, � is the channel half height, and � is the kine-

matic viscosity. In a priori test, we examine the variations of the predicted SGS

dissipation, backscatter, and SGS transport with the input variables, which are

known to be important variables for successful LES of a turbulent channel flow

(Piomelli, Yu & Adrian 1996; Völker et al. 2002; Park et al. 2006). In a poste-

riori test, we perform LESs with FCNN-based SGS models at Re� = 178 and

estimate their prediction performance by comparing the results with those from
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the filtered DNS data and LESs with DSM and scale similarity model (Liu et al.

1994). The details about DNS and FCNN are given in §2. The results from a pri-

ori and a posteriori tests atRe� = 178 are given in §3. Applications of the FCNN

trained at Re� = 178 to LES of a higher Reynolds number flow (Re� = 723)

and to LES with a different grid resolution at Re� = 178 are also discussed in

§3, followed by conclusions in §4.
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Chapter 2

Numerical details

2.1. Neural-network-based SGS model

The governing equations for LES are the spatially filtered continuity and

Navier-Stokes equations,
)ūi
)xi

= 0, (2.1)

)ūi
)t
+
)ūiūj
)xj

= −
)p̄
)xi

+ 1
Re

)2ūi
)xj)xj

−
)�ij
)xj

, (2.2)

where x1(= x), x2(= y), and x3(= z) are the streamwise, wall-normal, and span-

wise directions, respectively, ui(= u, v,w) are the corresponding velocity com-

ponents, p is the pressure, t is time, the overbar denotes the filtering operation,

and �ij(= uiuj − ūiūj) is the SGS stress tensor. We use a fully connected neural

network (denoted as NN hereafter) with the input of the filtered flow variables

to predict �ij . The database for training NN is obtained by filtering the instan-

taneous flow fields from DNS of a turbulent channel flow at Re� = 178 (see

§2.2). To estimate the performance of the present NN-based SGS model, we

perform two additional LESs with the dynamic Smagorinsky (Germano et al.

1991; Lilly 1992) and scale similarity (Liu et al. 1994) models. For the dy-
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namic Smagorinsky model (DSM), �ij −
1
3�kk�ij = −2C

2
|

|

S̄|
|

S̄ij , where C2 =

− 1
2
⟨LijMij⟩ℎ∕⟨MijMij⟩ℎ, ||S̄|| =

√

2S̄ijS̄ij , S̄ij =
1
2

(

)ūi∕)xj + )ūj∕)xi
)

, Lij =

̃̄uiūj − ̃̄ui ̃̄uj ,Mij =
(

Δ̃∕Δ̄
)2
|

|

|

̃̄S||
|

̃̄S ij − |̃

|

S̄|
|

S̄ij , Δ̄ and Δ̃(= 2Δ̄) denote the grid

and test filter sizes, respectively, and ⟨⟩ℎ denotes averaging in the homogeneous

(x and z) directions. For the scale similarity model (SSM), �ij = ̃̄uiūj − ̃̄ui ̃̄uj ,

where k̃cut = 0.5k̄cut and kcut is the cut-off wavenumber.

The NN adopted in the present study has two hidden layers with 128 neurons

per hidden layer, and the output of the NN is the six components of �ij (figure

2.1). Previous studies used one (Gamahara & Hattori 2017; Maulik & San 2017;

Maulik et al. 2018; Zhou et al. 2019; Stoffer et al. 2020) or two (Sarghini et al.

2003; Wollblad & Davidson 2008; Vollant et al. 2017; Wang et al. 2018; Maulik

et al. 2019; Xie et al. 2019a,b,c, 2020a,c; Pawar et al. 2020) hidden layers, and

Gamahara & Hattori (2017) showed that 100 neurons per hidden layer were suf-

ficient for the accurate predictions of �ij for a turbulent channel flow in a priori

test. We also tested NN with three hidden layers, but more hidden layers than

two did not further improve the performance both in a priori and a posteriori

tests (see figure 2.3).

In the present NN, the output of the mth layer, h(m), is as follows:

ℎ(1)i = qi (i = 1, 2, ..., Nq);

ℎ(2)j = max[0, r(2)j ], r
(2)
j = 
 (2)j

(

∑Nq

i=1
W (1)(2)
ij ℎ(1)i + b(2)j − �(2)j

)

∕�(2)j + �(2)j

(j = 1, 2, ..., 128);

ℎ(3)k = max[0, r(3)k ], r
(3)
k = 
 (3)k

(

∑128

j=1
W (2)(3)
jk ℎ(2)j + b(3)k − �(3)k

)

∕�(3)k + �(3)k

(k = 1, 2, ..., 128);

ℎ(4)l = sl =
∑128

k=1
W (3)(4)
kl ℎ(3)k + b(4)l (l = 1, 2, ..., 6),

where qi is the input, Nq is the number of input components, W (m)(m+1) is the
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weight matrix between the mth and (m + 1)th layers, b(m) is the bias of the mth

layer, sl is the output, and �(m), �(m), 
(m), and �(m) are parameters for a batch

normalization (Ioffe & Szegedy 2015). We use a rectified linear unit (Relu; Nair

& Hinton 2010), h(m) = max[0, r(m)], as the activation function at the hidden

layers. We also tested other typical activation functions such as sigmoid and

hyperbolic tangent functions, but the convergence of the loss function (2.3) was

faster with the Relu than with others. W (m)(m+1), b(m), 
(m), and �(m) are trainable

parameters which are optimized to minimize the loss function defined as

L = 1
2Nb

1
6
∑6

l=1

∑Nb

n=1

(

sfDNSl,n − sl,n
)2

+ 0.005
∑

o
w2o , (2.3)

where sfDNSl, n is the SGS stresses obtained from filtered DNS data,Nb is the num-

ber of minibatch data (128 in this study following Kingma & Ba 2014), and wo

denotes the components of W (m)(m+1). An adaptive moment estimation (Kingma

& Ba 2014), which is a variant of gradient descent method, is applied to update

the trainable parameters, and the gradients of the loss function with respect to

those parameters are calculated through the chain rule of derivatives (Rumelhart,

Hinton & Williams 1986; LeCun, Bengio & Hinton 2015). All training proce-

dures are conducted using the python-opensource-library TensorFlow.

We choose five different input variables (corresponding to NN1 - NN5),

as listed in table 2.1. Six components of S̄ij and nine components of �̄ij(=

)ūi∕)xj) at each grid point are the inputs to NN1 and NN2, respectively, and

the output is six components of �ij at the same grid location. The input �̄ij
is selected for NN2 because �ij can be written as �ij = 2
�̄ik�̄jk + O(
2),

where 
 (� ) = ∫ ∞−∞ �
2G (�, �)d� and G (�, �) is the kernel of the filter (Bedford

& Yeo 1993). On the other hand, a general class of SGS model based on the

local velocity gradient (Lund & Novikov 1992; Silvis et al. 2019) can be ex-

pressed as �ij =
∑5
k=0 c

(k)T (k)ij , where c(k) is the model coefficient, T (0)ij = �ij ,

11



T (1)ij = S̄ij , T
(2)
ij = S̄ikS̄kj , T

(3)
ij = R̄ikR̄kj , T

(4)
ij = S̄ikR̄kj − R̄ikS̄kj , T

(5)
ij =

S̄ikS̄klR̄lj − R̄ikS̄klS̄lj , and R̄ij is the filtered rotation rate tensor. Thus, NN1

can be regarded as an SGS model including T (0)ij , T (1)ij and T (2)ij , but it directly

predicts �ij through a nonlinear process of NN rather than predicting c(k). In NN3

and NN4, a stencil of data at 3(x) × 3(z) grid points are the input, and �ij at the

center of this stencil is the output. In NN5, the filtered velocity and wall-normal

velocity gradient at 3(x) × 3(z) grid points are the input variables, and the out-

put is the same as that of NN3 and NN4. The use of a stencil of data for NN3 -

NN5 is motivated by the results of Xie et al. (2019c) that using a stencil of input

variables (�̄ij and temperature gradient) predicted �ij better than using the same

input only at one grid point. The choice of ūi and )ūi∕)y as the input of NN5 is

also motivated by the results of optimal LES by Völker et al. (2002), in which

LES with the input of both ūi and )ūi∕)y outperformed that with the input of ūi
alone. We also considered an NN with the input of ūi at nx(x)×3(y)×nz(z) grid

points, where nx = nz = 3, 5, 7, or 9. The results with these three-dimensional

multiple input grid points were little different in a priori tests from that of NN5.

As shown in §3, the results with NN3 - NN5 in a priori tests are better than

those with NN1 and NN2 (single input grid point), but actual LES (i.e. a pos-

teriori test) with NN3 - NN5 are unstable. Therefore, we did not seek to adopt

more input grid points. Note also that we train a single NN for all y locations

using pairs of the input and output variables. The relations between these vari-

ables are different for different y locations, and thus y locations are implicitly

embedded in this single NN. One may train an NN at each y location, but this

procedure increases the number of NNs and the memory size. On the other hand,

Gamahara & Hattori (2017) provided y locations as an additional input variable

for a single NN, but found that the result of a priori test with y location was

only slightly better than that without y location. Therefore, we do not attempt to

12



include y location as an additional input variable in this study.

While training NN1 - NN5, the input and output variables are normalized in

wall units, which provides successful results because the flow variables in turbu-

lent channel flow are well scaled in wall units (see §3). Since the performance of

anNN depends on the normalization of input and output variables (see, for exam-

ple, Passalis et al. 2019), we considered two more normalizations: one was with

the centerline velocity (Uc) and channel half height (�), and the other was such

that the input and output variables were scaled to have zero mean and unit vari-

ance at each y location, e.g., �∗ij(x, y, z, t) =
(

�ij(x, y, z, t) − �meanij (y)
)

∕�rmsij (y)

(no summation on i and j), where the superscripts of mean and rms denote the

mean and root-mean-square values, respectively. The first normalization was not

successful for the prediction of a higher Reynolds number flow with an NN

trained at lower Reynolds number, because the near-wall flow was not prop-

erly scaled with this normalization. The second normalization requires a priori

knowledge on �meanij (y) and �rmsij (y) even for a higher Reynolds number flow to

predict. Thus, we did not take the second normalization either.

Figure 2.2 shows the variations of the training error �� with the epoch, and

the correlation coefficients �� between true and predicted SGS stresses for NN1

- NN5, where �� and �� are defined as

�� =
1

2Ndata

1
6

6
∑

l=1

Ndata
∑

n=1

(

sfDNSl,n − sl,n
)2
, (2.4)

�� =
6
∑

l=1

Ndata
∑

n=1

(

sfDNSl,n sl,n
)

∕
⎛

⎜

⎜

⎝

√

√

√

√

6
∑

l=1

Ndata
∑

n=1

(

sfDNSl,n

)2

√

√

√

√

6
∑

l=1

Ndata
∑

n=1

(

sl,n
)2
⎞

⎟

⎟

⎠

. (2.5)

Here, one epoch denotes one sweep through the entire training dataset (Hastie,

Tibshirani & Friedman 2009), andNdata is the number of entire training data. The

training errors nearly converge at 20 epochs (figure 2.3a). In terms of computa-

tional time using a single graphic process unit (NVIDIA GeForce GTX 1060),
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about one minute is spent for each epoch. The correlation coefficients from the

training and test datasets are quite similar to each other (figure 2.3b), indicating

that severe overfitting is not observed for NN1 - NN5. The training error and

correlation coefficient are smaller and bigger, respectively, for NN3 - NN5 than

those for NN1 and NN2.

Sarghini et al. (2003) and Pal (2019) indicated that required computational

time for their LESs with NNs was less than that with traditional SGS models.

When an NN is used for obtaining the SGS stresses, its cost depends on the

numbers of hidden layers and neurons therein as well as the choices of input and

output variables. Actually, in the present study, the computational time required

for one computational-time-step advancement with NN1 is approximately 1.3

times that with a traditional SGS model like DSM.

Figure 2.3 shows the effects of the number of hidden layers of NNs (NN1,

NN3 and NN5) on the mean SGS and Reynolds shear stresses from a priori and

a posteriori tests, respectively. The details of a priori and a posteriori tests are

described in §3. The Reynolds shear stress fromNN3 andNN5 are obtained from

LES with clipping the backscatter (see equation (3.1)). For all NNs considered,

one hidden layer is not sufficient for accurately predicting the mean SGS shear

stress, and at least two hidden layers are required. In actual LES, one hidden layer

seems to be sufficient for NN1 and NN3, and two hidden layers are required for

NN5. Therefore, two hidden layers are taken for the present study for all NNs

considered.

2.2. Details of DNS and input and output variables

A DNS of turbulent channel flow at Reb = 5600 (Re� = 178) is conducted

to obtain the input and output of NN1 - NN5 (table 2.1), where Reb is the bulk

Reynolds number defined by Reb = Ub(2�)∕�, Ub is the bulk velocity, and
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Re� = u��∕� is the friction Reynolds number. The Navier-Stokes and continuity

equations are solved in the form of the wall-normal vorticity and the Laplacian

of the wall-normal velocity, as described in Kim et al. (1987). The dealiased

Fourier and Chebyshev polynomial expansions are used in the homogeneous (x

and z) and wall-normal (y) directions, respectively. A semi-implicit fractional

step method is used for time integration, where a third-order Runge-Kutta and

second-order Crank-Nicolson methods are applied to the convection and dif-

fusion terms, respectively. A constant mass flux in a channel is maintained by

adjusting the mean pressure gradient in the streamwise direction at each time

step.

Table 2.2 shows the computational parameters of DNS, whereNxi’s are the

numbers of grid points in xi directions, Lxi’s are the corresponding computa-

tional domain sizes, Δx and Δz are the uniform grid spacings in x and z di-

rections, respectively, and Δy+min is the smallest grid spacing at the wall in the

wall-normal direction.Δx andΔz are the filter sizes in x and z directions, respec-

tively, and they are used for obtaining filtered DNS (called fDNS hereafter) data.

We apply the spectral cut-off filter only in the wall-parallel (x and z) directions

as in the previous studies (Piomelli et al. 1991, 1996; Völker et al. 2002; Park

et al. 2006). The use of only wall-parallel filters can be justified because small

scales are efficiently filtered out by wall-parallel filters and wall-normal filtering

through the truncation of the Chebyshev mode violates the continuity unless the

divergence-free projection is performed (Völker et al. 2002; Park et al. 2006).

The Fourier coefficient of a filtered flow variable ̂̄f is defined as

̂̄f
(

kx, y, kz, t
)

= f̂
(

kx, y, kz, t
)

H
(

kx,cut − |

|

kx||
)

H
(

kz,cut − |

|

kz||
)

, (2.6)

where f̂ is the Fourier coefficient of an unfiltered flow variable f , H is the

Heaviside step function, and kx,cut and kz,cut are the cut-off wavenumbers in x
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and z directions, respectively. The filter sizes in table 2.2, Δ+x and Δ+z , are the

same as those in Park et al. (2006), and the corresponding cut-off wavenumbers

are kx,cut = 8 (2�∕Lx) and kz,cut = 8 (2�∕Lz), respectively. Figure 2.4 shows the

mean velocity profile and turbulence intensities from the DNS and fDNS. Since

the filtering is only applied in x and z directions, the mean velocity profile of

fDNS is the same as that of DNS. The turbulence intensities of fDNS, however,

are smaller than those of DNS, as the filtering smooths out velocity fluctuations.

We use the input and output database at Re� = 178 to train NN1 - NN5.

The training data are collected at every other grid point in x and z directions to

exclude highly correlated data, and at all grid points in y direction from 200 in-

stantaneous fDNS fields. Then, the number of training data from 200 fDNS fields

is 1,241,600 (= 200 ×N fDNS
x ∕2 ×N fDNS

z ∕2 ×Ny), whereN fDNS
x = Lxkx,cut∕�

andN fDNS
z = Lzkz,cut∕�. We have also tested 300 fDNS fields for training NNs,

but their prediction performance for the SGS stresses is not further improved,

so the number of training data used is sufficient for the present NNs. A DNS at

a higher Reynolds number of Re� = 723 is also carried out, and its database is

used to estimate the prediction capability of the present NN-based SGS model

for untrained higher Reynolds number flow.
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FIGURE 2.1. Schematic diagram of the present NN with two hidden layers (128 neurons

per hidden layer). Here, q(= [q1, q2, ..., qNq
]T ) is the input of NN, Nq is the number of

input components (see table 2.1) and s(= [s1, s2, ..., s6]T ) is the output of NN.
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FIGURE 2.2. Training error and correlation coefficient by NN1 - NN5: (a) training error

vs. epoch; (b) correlation coefficient. In (a), , NN1; , NN2; , NN3; , NN4;

, NN5. In (b), gray and black bars are the correlation coefficients for training and test

datasets, respectively, where the number of test data is the same as that of the training

data (Ndata = 1, 241, 600 (§2.2)).
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NN model input variable(s) input grid point(s) Nq

NN1 S̄ij 1 6

NN2 �̄ij 1 9

NN3 S̄ij 3(x) × 3(z) 54

NN4 �̄ij 3(x) × 3(z) 81

NN5 ūi and )ūi∕)y 3(x) × 3(z) 54

TABLE 2.1. Input variables of NN models. Here,Nq is the number of input

components.
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Reb Re� Nx, Ny, Nz Lx∕�, Lz∕� Δx+,Δz+,Δy+min ΔT + Δ+x ,Δ
+
z

5600 178 96, 97, 96 2�, � 11.7, 5.8, 0.1 9.4 69.9, 35.0

27600 723 192, 193, 192 �, 0.5� 11.8, 5.9, 0.1 11.4 71.0, 35.5

TABLE 2.2. Computational parameters of DNS. Here, the superscript + denotes the

wall unit, and ΔT is the sampling time interval of the instantaneous DNS flow fields for

constructing the input and output database.
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Chapter 3

Results

In §3.1, we perform a priori tests for two different Reynolds numbers, Re� =

178 and 723, in which the SGS stresses are predicted by NN1 - NN5 with the

input variables from fDNS at each Reynolds number, and compared with the

SGS stresses from fDNS. Note that NN1 - NN5 are constructed at Re� = 178,

and Re� = 723 is an untrained higher Reynolds number. The filter sizes used

in a priori tests, Δ+x and Δ+z , are given in table 2.2. In §3.2, a posteriori tests

(i.e., actual LESs solving (2.1) and (2.2)) with NN1 - NN5 are performed for a

turbulent channel flow at Re� = 178 and their results are compared with those

of fDNS. Furthermore, LES with NN1 (trained at Re� = 178) is carried out for

a turbulent channel flow atRe� = 723 and its results are compared with those of

fDNS. Finally, in §3.3, we provide the results when the grid resolution in LES

is different from that used in training NN1, and suggest a way to obtain good

results.
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3.1. A priori test

Figure 3.1 shows the mean SGS shear stress ⟨�xy⟩ and dissipation ⟨"SGS⟩

predicted by NN1 - NN5, together with those of fDNS and from DSM and SSM,

where "SGS = −�ijS̄ij and ⟨ ⟩ denotes the averaging in the homogeneous direc-

tions and time. Predictions of ⟨�xy⟩ by NNs (except that by NN2) are better than

those by DSM and SSM, and NN5 provides an excellent prediction of ⟨"SGS⟩ al-

beit other NNmodels are also good in the estimation of ⟨"SGS⟩. Table 3.1 shows

the correlation coefficients � between the true and predicted �xy and "SGS , re-

spectively. �xy’s predicted by DSM and SSM have very low correlations with

true �xy, as reported by Liu et al. (1994) and Park et al. (2005). On the other

hand, NN1 - NN5 have much higher correlations of �xy and "SGS than those by

DSM and SSM, indicating that instantaneous �xy and "SGS are relatively well

captured by NN1 - NN5. These SGS variables are even better predicted by hav-

ing the input variables at multiple grid points (NN3 - NN5) than at single grid

point (NN1 and NN2). As we show below, however, high correlation coefficients

of �xy and "SGS in a priori test do not necessarily guarantee excellent prediction

performance in actual LES. Figure 3.2(a) shows themean SGS transport ⟨TSGS⟩,

where TSGS = )(�ij ūi)∕)xj . Völker et al. (2002) indicated that a good prediction

of ⟨TSGS⟩ is necessary for an accurate LES, and the optimal LES provided good

representation of ⟨TSGS⟩ in a posteriori test. Among NN models considered,

NN5 shows the best agreement of ⟨TSGS⟩ with that of fDNS, but NN1 and NN2

are not good at accurately predicting ⟨TSGS⟩ although they are still better than

SSM. Figure 3.2(b) shows the mean backward SGS dissipation (backscatter, i.e.,

energy transfer from subgrid to resolved scales), ⟨"−SGS⟩ =
1
2⟨"SGS −

|

|

"SGS ||⟩.

⟨"−SGS⟩ = 0 for DSM due to the averaging procedure in determining the model

coefficient. The mean backscatters from SSM and NN3 - NN5 show reason-

able agreements with that of fDNS, but NN1 and NN2 severely underpredict the
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backscatter. An accurate prediction of backscatter is important in wall-bounded

flows, because it is related to the bursting and sweep events (Härtel et al. 1994;

Piomelli et al. 1996). However, SGS models with non-negligible backscatter

such as SSM do not properly dissipate energy and incur numerical instability

in actual LES (Liu et al. 1994; Meneveau & Katz 2000; Akhavan et al. 2000;

Anderson & Domaradzki 2012). For this reason, some NN-based SGS models

suggested in the previous studies clipped the backscatter to be zero for ensuring

stable LES results (Maulik et al. 2018, 2019; Zhou et al. 2019). Therefore, the

accuracy and stability in the solution from LES with NN3 - NN5 may not be

guaranteed, even if these models properly predict the backscatter and produce

high correlation coefficients between the true and predicted SGS stresses.

Figure 3.3 shows the statistics from a priori test for Re� = 723 with NN-

based SGS models trained at Re� = 178. The statistics predicted by NN1 - NN5

for Re� = 723 show very similar behaviors to those for Re� = 178, except for

an underprediction of ⟨�xy⟩ by NN1 (similar to that by DSM) which does not

degrade its prediction capability in a posteriori test (see §2.2).
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FIGURE 3.1. Mean SGS shear stress and dissipation predicted by NN1 - NN5 (a priori

test at Re� = 178): (a) mean SGS shear stress ⟨�xy⟩; (b) mean SGS dissipation ⟨"SGS⟩.

●, fDNS; , NN1; , NN2; , NN3; , NN4; , NN5; +, DSM; ▿, SSM.
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FIGURE 3.2. Mean SGS transport and backward SGS dissipation predicted by NN1 -
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SGS dissipation (backscatter) ⟨"−SGS⟩.●, fDNS; , NN1; , NN2; , NN3; ,
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SSM. Here, NN1 - NN5 are trained with fDNS at Re� = 178.

28



NN1 NN2 NN3 NN4 NN5 DSM SSM

��xy 0.231 0.432 0.414 0.630 0.600 0.090 -0.016

�"SGS 0.358 0.472 0.507 0.624 0.576 0.165 0.081

TABLE 3.1. Correlation coefficients between the true and predicted �xy and "SGS .
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3.2. A posteriori test

In this section, a posteriori tests (i.e., actual LESs) with NN-based SGS

models are conducted for a turbulent channel flow with a constant mass flow

rate (Reb = 5600 or 27600). Numerical methods for solving the filtered Navier-

Stokes and continuity equations are the same as those of DNS described in §2.2.

Table 3.2 shows the computational parameters of LES. The grid resolution for

the cases of LES178 is the same as that of Park et al. (2006). The cases of LES178

have nearly the same grid resolutions in wall units (because of slightly different

values of Re�’s) in x and z directions as those of fDNS used in training NNs,

and the cases of LES178c and LES178f use larger and smaller grid sizes in x

and z directions than those of trained data, respectively. In the case of LES723

(Re� = 723), the grid sizes in wall units in x and z directions are nearly the same

as those of trained data.

In the present LESs with NN3 - NN5 and SSM, we clip the SGS stresses to

be zero wherever backscatter occurs, i.e., �ij = 0 when "SGS < 0, as done in

the previous studies (Maulik et al. 2018, 2019; Zhou et al. 2019). Otherwise, the

solution diverges. While removing the backscatter, we rescale the SGS stresses

to maintain the net amount of SGS dissipation in the computational domain V

as follows:

�∗ij =
1
2
[

1 + sign("SGS)
]

�ij ⋅
∫V "SGS dV

1
2
∫V

(

"SGS + |"SGS |
)

dV
. (3.1)

This backscatter clipping and rescaling on �ij is similar to that of Akhavan et al.

(2000) in their development of dynamic two-component model. For the cases

of LESs with NN1 and NN2, we obtain stable solutions without any special

treatment such as the clipping, wall damping or averaging over homogeneous

directions, and thus we perform LESs with and without clipping, respectively.

In LES with DSM, an averaging procedure is included to determine the model
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coefficient, as mostly done in previous studies. Since the present simulations are

conducted for a constant mass flow rate in a channel, the wall-shear velocity or

Re� changes depending on the choice of SGS models. Those Re�’s are listed

in table 3.3. For Reb = 5600, Re�’s from LES178 are well predicted by NN1

and NN2 even without clipping (less than 2 % error) and by NN3 - NN5 with

clipping (less than 3% error). On the other hand, Re� from no SGS model has

about 10 % error.

Figure 3.4 shows the mean velocity profiles from LES178 for various SGS

models without andwith clipping the backscatter, respectively.Without clipping,

LESs with NN1 and NN2 show excellent predictions of the mean velocity, but

those with NN3 - NN5 and SSM diverge. On the other hand, with clipping, LESs

with all the SGS models considered provide very good predictions of the mean

velocity, which clearly indicates that backscatter incurs numerical instability in

LES. Therefore, in the following, we present the results of LESs with clipping

for NN3 - NN5, and without clipping for NN1 and NN2, respectively.

Figure 3.5 shows the statistics of various turbulence quantities from LES178

with NN1 - NN5, together with those of fDNS and from LESs with DSM and

SSM. All NNs considered show good predictions of the root-mean-square (rms)

velocity fluctuations (figure 3.5a). While LES without SGS model (i.e., coarse

DNS) fortuitously well predicts ūrms due to overpredicted friction velocity, LES

with DSM overpredicts it (Park et al. 2006). Since DSM determines the model

coefficientC2(y) to be uniform in the homogeneous directions ignoring the local-

ity ofC2(x, y, z), its prediction performance of local SGS dissipation is degraded

and may result in the overprediction of ūrms. For the predictions of the Reynolds

shear stress and SGS shear stress, NN1 performs the best among all the SGS

models considered (figures 3.5b and c). On the other hand, NN2 underpredicts

the Reynolds shear stress and significantly overpredicts the SGS shear stress.
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This result is consistent with that of a priori test (figure 3.1a). The overpredic-

tion of ⟨�xy⟩ results in the underprediction of −⟨ū′v̄′⟩ from the total shear stress

equation, d⟨ū+⟩∕dy+−⟨ū′v̄′⟩∕u2�−⟨�xy⟩∕u
2
� = 1−y∕�. NN3 - NN5 slightly over-

predict the Reynolds shear stress but underpredict the SGS shear stress. These

NN models (NN3 - NN5) are forced not to produce the backscatter due to the

clipping as described before. NN1 and NN2 provide backscatter but underpre-

dict it (figure 3.5d). Note that DSM and SSM also require an averaging over the

homogeneous directions and clipping the backscatter, respectively, for stable so-

lution, and thus "−SGS = 0. Therefore, NN1 is the most promising SGSmodel for

LES of turbulent channel flow among the NN models considered, even though

NN3 - NN5 show better prediction performance in a priori test. NN1 also shows

the best prediction of the mean SGS transport ⟨TSGS⟩ (figure 3.5e), confirming

that a good prediction of ⟨TSGS⟩ is necessary for a successful LES (Völker et al.

2002). On the other hand, LESs with all SGSmodels underpredict the mean SGS

dissipation ⟨"SGS⟩ (figure 3.5f ), unlike the results of a priori test (figure 3.1b),

indicating that an excellent prediction of ⟨"SGS⟩ is not a necessary condition for

the accurate prediction of the turbulence statistics in LES of turbulent channel

flow, as also reported by Park et al. (2006).

Figure 3.6 shows the instantaneous vortical structures identified by the iso-

surfaces of �2 = −0.005u4�∕�
2 (Jeong & Hussain 1995). As compared to the

flow field from DNS, the arches of the hairpin-like vortices disappear in the

fDNS flow field, caused by the larger filter size in x direction (Δ+x ≈ 70) than

the diameter of the arch (d+ ≈ 20) (Park et al. 2006). The instantaneous flow

fields from LESs with DSM and NN1 are similar to that of fDNS, whereas more

vortical structures are observed from no SGS model due to insufficient dissipa-

tion. Since NN1 produces the best results among the NN models considered, we

provide the results from NN1 hereafter. Figure 3.7 shows one-dimensional en-
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ergy spectra of the velocity fluctuations at y+ = 15 and 30 from LES with NN1,

together with those of fDNS and from LES with DSM. Overall agreements of

the velocity spectra fromNN1with those of fDNS are very good, like those from

DSM.

Figures 3.8 and 3.9 show the probability density function (PDF) of stream-

wise and wall-normal velocity fluctuations, respectively, at four different wall-

normal locations. For the streamwise component, NN1 shows similar predictions

for PDF to that of DSM, but this NN model has better performance for the wall-

normal component than that of DSM. Figure 3.10 shows the skewness S(ū′i) and

flatness F (ū′i) of the velocity fluctuations, where S
(

ū′i
)

=
⟨

(ū′i)
3⟩ ∕ū3i, rms and

F
(

ū′i
)

=
⟨

(ū′i)
4⟩ ∕ū4i, rms. Overall, both statistics from NN1 have good agree-

ments with those of fDNS for the streamwise and spanwise components. For the

skewness of wall-normal component, NN1 slightly overpredicts it near the wall.

This overprediction, however, is not significant to be detected in the PDF near

the wall. In the case of the flatness of wall-normal component, NN1 shows better

performance than that of DSM, as expected by PDF in figure 3.9.

Now, we apply NN1 to a turbulent channel flow at a higher Reynolds number

of Reb = 27600 (Re� = 723 from DNS). LES is conducted at nearly the same

resolution in wall units as that of trained data at Re� = 178 (see table 3.2).

The predictions of Re� from NN1 and DSM are excellent, showing about 0.8%

and 2.2% errors, respectively, while the error from no SGS model is about 6%.

Figures 3.11 and 3.12 show the turbulence statistics and energy spectra from

LES723 with NN1, respectively, together with those of fDNS and from LESs

with DSM and no SGSmodel. As shown, NN1 accurately predicts the turbulence

statistics and energy spectra even at higher Reynolds number, even though the

training is performed at a lower Reynolds number of 178. This result indicates

that an NN-based SGSmodel trained at a lower Reynolds number flowmaintains
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their prediction performance for a higher Reynolds number flow, once the grid

resolution in wall units is kept to be nearly the same (Gamahara & Hattori 2017).
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NN3; , NN4; , NN5; +, DSM; ▿, SSM; ⚪, no SGS model. LESs with NN3 -

NN5 and SSM without clipping diverged.
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case Reb (Lx, Lz) (Nx, Nz, Ny) (Δx+,Δz+)

LES178 5600 (2��, ��) (16, 16, 49) (69.9, 35.0)

LES178c 5600 (2��, ��) (12, 12, 49) (93.2, 46.6)

LES178f 5600 (2��, ��) (24, 24, 49) (46.6, 23.3)

LES723 27600 (��, 0.5��) (32, 32, 97) (71.0, 35.5)

TABLE 3.2. Computational parameters of LES. Here, the computations are performed at

constant mass flow rates (i.e., Reb = 5600 and 27600). Δy+min = 0.4 for all simulations,

and Δy+min, Δx
+ and Δz+ in this table are computed with u� from DNS (table 2.2).
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case SGS model Re� (w/o clipping) Re� (with clipping)

LES178 NN1 181 175

NN2 177 170

NN3 diverged 183

NN4 diverged 177

NN5 diverged 178

DSM 174 -

SSM diverged 176

no 195 -

LES178c NN1 175 175

DSM 171 -

no 190 -

LES178f NN1 192 176

DSM 177 -

no 193 -

LES723 NN1 729 -

DSM 707 -

no 763 -

TABLE 3.3. Re� ’s (Re� = u��∕�) from LES.
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3.3. LES with a grid resolution different from that of trained data

We test the performance of NN1 when the grid resolution in LES is different

from that of trained data. We consider two different grid resolutions (LES178c

and LES178f) as listed in table 3.2. LESs with NN1 are conducted without and

with clipping the backscatter, respectively, to examine how the clipping affects

the turbulence statistics for the cases with different resolutions. With LES178c,

Re� is well predicted with and without clipping, whereas Re� is overpredicted

with LES178f by about 8% without clipping but becomes closer to that of DNS

with clipping (table 3.3). Predictions of Re� by DSM are not very good with

coarser grids but become very good with denser grids, whereas no SGS model

overpredicts Re� .

Figures 3.13 and 3.14 show the changes in the turbulence statistics fromNN1

due to different grid resolutions, LES178c and LES178f, respectively, together

with the statistics from fDNS and LES with DSM. When the grid resolution

is coarser (LES178c) than that of trained data, NN1 predicts the mean veloc-

ity quite well, but significantly overpredicts the rms velocity fluctuations and

Reynolds shear stress, which is similar to the results from DSM. The backscatter

clipping does not improve the results.When the grid resolution is finer (LES178f)

than that of trained data, NN1 without clipping significantly underpredicts the

mean velocity due to the increased wall-shear velocity (Re�), but reasonably

predicts the rms velocity fluctuations and Reynolds shear stress. Since NN1 is

trained with S̄ij and �ij at a given grid resolution, it provides a (trained) amount

of energy transfer between the larger and smaller scales than the grid size. Al-

though LES178f is performed at a finer grid resolution, NN1 still provides an

amount of energy transfer trained at a coarser grid resolution. This may cause the

increase in the amount of energy transfer and accordingly in the wall-shear ve-

locity. On the other hand, when the grid resolution is coarser than that of trained
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data, the trained amount of energy transfer given to the grid scale is smaller than

the real one. For this reason, with clipping the backscatter, changes in the turbu-

lence statistics including the mean velocity are notable for LES178f but not for

LES178c.

From this result, it is clear that the NN-based LES requires a special treat-

ment when the grid resolution is different from that of trained data. So, we con-

sider an NN1 trained by two fDNS datasets from two different filter sizes with

the input and output variables of S̄ij and �ij . Here, we do not include the filter

size as an additional input variable. Table 3.4 shows various NN1’s considered in

the present study. NN16 was already tested by LES178c and LES178f. NN12 and

NN24 are trained using fDNS datasets having the same grid resolutions as those

of LES178c and LES178f, respectively. On the other hand, NN8,16 is trained by

both fDNS datasets with two filters corresponding to larger and smaller sizes

(N = 8 and 16) than the grid resolution in LES178c (N = 12), and NN16,32
is trained by two fDNS datasets with N = 16 and 32 (N = 24 for LES178f),

respectively.

We conduct LES178c’s with NN12 and NN8,16, and LES178f’s with NN24
and NN16,32, respectively, and compare the results with those of fDNS and from

LESs with NN16 and DSM. All LESs with NNs are conducted without clipping

the backscatter. Figure 3.15 shows the results of LES178c’s. As shown, LES

with NN8,16 provides much more accurate predictions of the rms velocity fluc-

tuations and Reynolds shear stress than those from NN16 and DSM, showing the

performance almost similar to that from NN12. In the case of LES178f (figure

3.16), NN16,32 shows better prediction performance for the mean velocity, rms

velocity fluctuations, and Reynolds shear stress than those from NN16, and has

similar predictions to those from NN24. We have also tested NN8,16 for LES178f

(N = 24) and NN16,32 for LES178c (N = 12), respectively. In these cases, LESs
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with NN8,16 and NN16,32 do not show better performance than that with NN16.

Therefore, when the resolution in LES is not similar to that of trained data, it

is suggested that the datasets having two different resolutions, coarser and finer

than that of LES, should be constructed and used to train an NN for successful

LES.
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NN12; , NN8,16; +, DSM.
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FIGURE 3.16. Turbulence statistics from LES178f (a posteriori test): (a) mean veloc-

ity; (b) rms velocity fluctuations; (c) Reynolds shear stress.●, fDNS; , NN16; ,

NN24; , NN16,32; +, DSM.
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NN1 model fDNS(s) for trained data LES(s)

NN16 fDNS16 LES178c and LES178f

NN12 fDNS12 LES178c

NN8,16 fDNS8 and fDNS16 LES178c

NN24 fDNS24 LES178f

NN16,32 fDNS16 and fDNS32 LES178f

TABLE 3.4. NN1 trained with different fDNS dataset(s). Here, fDNSN denotes the fil-

tered DNS data with the number of grid pointsN (= Nx = Nz). Note that the numbers

of grid points (Nx×Nz) for LES178c and LES178f are 12×12 and 24×24, respectively,

as listed in table 3.2.
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Chapter 4

Conclusions

In the present study, we applied a fully connected neural network (NN) to the

development of a subgrid-scale (SGS) model of predicting the SGS stresses for

a turbulent channel flow, and conducted a priori and a posteriori tests to estimate

its prediction performance. Five different NNswith different input variables were

trained with filtered DNS data atRe� = 178 using a spectral cut-off filter, where

the input variables considered were the strain-rate tensor at single and multiple

grid points (NN1 and NN3, respectively), velocity gradient tensor at single and

multiple points (NN2 and NN4, respectively), and the velocity and wall-normal

velocity gradient vectors at multiple points (NN5), respectively.

In a priori tests, the NN-based SGS models with the input variables at mul-

tiple grid points (NN3, NN4 and NN5) had higher correlations between the true

and predicted SGS stresses, and better predicted backscatter than those with the

input variables at single grid point (NN1 and NN2). However, actual LESs (i.e.

a posteriori tests) with NN3 - NN5 were unstable unless a special treatment such

as the backscatter clipping was taken. On the other hand, NN1 and NN2 showed

excellent prediction performance without any ad hoc clipping or wall damping
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function, although the correlations between the true and predicted SGS stresses

were relatively low. AmongNNmodels considered, NN1 (input of the strain-rate

tensor at single grid point) performed best, and thus we applied NN1 (trained at

Re� = 178) to LES at a higher Reynolds number of Re� = 723 with the same

grid resolution in wall units, providing successful results. Finally, we applied

NN1 to LESs at Re� = 178 with coarser and finer grid resolutions, respectively.

Although the results were generally good as compared to those from LES with

the dynamic Smagorinsky model (DSM), they clearly showed a limitation in

accurately predicting the turbulence statistics when LES was conducted with a

resolution different from that used for training NN. To overcome this limitation,

NN1was trained by filtered DNS datasets with two filter sizes (larger and smaller

than the grid size in LES), providing a successful result. Therefore, once mul-

tiple filtered datasets with various filter sizes are constructed and used to train

an NN, one may expect a successful NN-based LES for turbulent channel flow,

even if the grid resolution at hand is different from those used to construct the

NN.
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Part II.

Modeling of the subgrid-scale stresswith a neural

network: application to turbulent flowover a

backward-facing step
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Chapter 1

Introduction

Turbulent flow over a backward-facing step (BFS) contains a variety of flow phe-

nomena such as flow separation, shear layer, reattachment, and turbulent bound-

ary layer which are of great importance in many engineering applications. Be-

cause the flow is complex but the geometry is simple, extensive studies on the

flow over BFS have been carried out both numerically and experimentally (Chen

et al. 2018). In particular, as there aremany available experimental data, this flow

has been considered one of the most important problems in testing turbulence

models (Eaton & Johnston 1981; Akselvoll & Moin 1995; Spalart et al. 2006).

In large eddy simulation (LES), the effect of subgrid-scale (SGS) flows on

the dynamics of the resolved one is predicted through an SGS model. To test

the performance of the SGS model, there have been studies that carried out

LES of the flow over BFS. Friedrich & Arnal (1990) used the SGS model of

Schumann (1975) for LES of BFS flow at Reℎ = 165000 and ER = 2, where

Reℎ(= U0ℎ∕�) is the step-height Reynolds number, U0 is the free-stream ve-

locity at the upstream of the step, ℎ is the step height, ER(= Ly∕(Ly − ℎ)) is

the expansion ratio, and Ly is the channel height at the downstream of the step.
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They applied a wall-shear stress boundary condition at the wall, similar to that by

Schumann (1975). The reattachment length Xr and turbulence intensities were

not much agreed well with those found in experiments (Tropea 1982; Durst &

Schmitt 1985), but they demonstrated the feasibility of LES for high-Reynolds-

number separated flow. Note also that the discrepancy between the LES and the

experiments appears to be due to the combination of coarse grid resolution, wall

boundary condition, inflow condition, and the SGS model, not just a problem

of the SGS model. Kobayashi et al. (1992) conducted the LES at Reℎ = 40000

and ER = 1.5 using the Smagorinsky model (Smagorinsky 1963) with two dif-

ferent model coefficients (Cs = 0.1 and 0.15). Here, the Smagorinsky model is

�ij = −2�tS̄ij with �t = (CsΔ̄)2
√

2S̄ijS̄ij , where �ij is the SGS stress tensor, �t is

the eddy viscosity, S̄ij is the resolved strain rate tensor, and Δ̄ is the characteristic

grid size. A two-layer wall function model was used for wall boundary condition.

They showed that Xr was predicted better with Cs = 0.15 (Xr = 8ℎ) than with

Cs = 0.1 (Xr = 9ℎ), where Xr = 7ℎ was found in the experiment (Kim et al.

1980). Neto et al. (1993) applied the structure-function SGS model by Métais

& Lesieur (1992) to the LES at Reℎ = 6000 (ER = 5) and at Reℎ = 38000

(ER = 1.67), respectively. At solid walls, an approximate boundary condition

based on the law of the wall was used. In the case of Reℎ = 38000, the in-

flow boundary condition was imposed at the step edge, consisting of a mean

velocity profile (found in the experiment by Eaton & Johnston 1980) with su-

perimposed a white noise, whereas Friedrich & Arnal (1990) and Kobayashi

et al. (1992) imposed a fully-developed turbulent flow at the upstream of the

step by conducting a separate simulation of turbulent channel flow. The LES re-

sult from the structure-function SGS model did not agree much well with the

experimental data (Eaton & Johnston 1980), but this SGS model predicted the

turbulent kinetic energy and the Reynolds shear stress better than the Smagorin-
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sky model with Cs = 0.2. Akselvoll & Moin (1995) conducted a wall-resolved

LES at Reℎ = 5100 (ER = 1.2) and Reℎ = 28000 (ER = 1.25), respectively.

They tested two different dynamic versions of the Smagorinskymodel: one is the

method by Germano et al. (1991) and Lilly (1992) and the other is the method

by Ghosal et al. (1995), denoted as DSM and DLM hereafter, respectively. For

Reℎ = 5100, LES results with both SGS models showed an excellent agreement

with the results of DNS (Le&Moin 1994) and experiment (Jovic &Driver 1994)

for quantities such as skin-friction coefficient, mean velocity, and turbulence in-

tensities. ForReℎ = 28000, both SGSmodels provided also good predictions for

the mean velocity and streamwise turbulence intensity compared to the experi-

mental result (Adams et al. 1984). Later, the DSM has been the most widely used

SGS model for the LES of BFS flow to investigate passive or active flow control

methods (Kang & Choi 2002; Neumann & Wengle 2003), numerical schemes

(Meri &Wengle 2002; Panjwani et al. 2009; Yang et al. 2020), and heat transfer

characteristics (Avancha & Pletcher 2002; Keating et al. 2004). The DSM has

been also the reference SGS model in developing a new SGS model. For ex-

ample, Toschi et al. (2006), Inagaki et al. (2005) and Rasthofer & Gravemeier

(2013) compared the performance of the new SGS model to that of the DSM for

the LES of BFS flow, where the shear-improved Smagorinsky model, the mixed-

time-scale model, and the multifractal model was the new SGS model in their

studies, respectively.

Since there is no analytic solution for the SGS stress with resolved flow vari-

ables, the traditional SGS models have been based on certain simplifying as-

sumptions or hypotheses. For example, the eddy viscosity SGS model is based

on Boussinesq’s hypothesis even though this hypothesis is almost not verified

in real turbulence (Schmitt 2007). In this regard, an SGS model based on ma-

chine learning techniques, such as a neural network, has been developed so far.
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The neural network (NN) is a nonlinear function that maps the SGS stress and

the predefined input variables (e.g., strain rate), and the weight parameters of

the NN are optimized by minimizing a given loss function such as the mean-

squared error between the predicted and true SGS stresses. Therefore, the NN-

based SGSmodel is intended to predict the realistic nature of SGS stress found in

high-fidelity data better than the traditional SGS models. Previous studies have

shown that an NN-based SGS model predicts the SGS stresses better than the

traditional SGS models in a priori test (Wollblad & Davidson 2008; Gamahara

& Hattori 2017; Beck et al. 2019; Pawar et al. 2020; Stoffer et al. 2020) and that

LES using an NN-based SGS model has a good performance in predicting tur-

bulence statistics such as the kinetic energy spectrum and velocity fluctuations

(Maulik et al. 2018; Wang et al. 2018; Maulik et al. 2019; Zhou et al. 2019; Xie

et al. 2019a,b,c, 2020a,b,c; Park & Choi 2021). However, the development of

NN-based SGS model has been limited to two- and three-dimensional isotropic

turbulence (Beck et al. 2019; Pawar et al. 2020; Stoffer et al. 2020; Maulik et al.

2018;Wang et al. 2018;Maulik et al. 2019; Zhou et al. 2019; Xie et al. 2019a,b,c,

2020a,b,c), and turbulent channel flow (Sarghini et al. 1999; Wollblad & David-

son 2008; Gamahara & Hattori 2017; Stoffer et al. 2020; Park & Choi 2021).

Therefore, it is necessary to verify the performance of NN-based SGS model

for the LES of more complex turbulent flows such as the flow over a backward-

facing step.

To the best of our knowledge, there has been no attempt to conduct LES

of BFS flow with an NN-based SGS model. Therefore, we apply the NN to the

modeling of the SGS stress in the BFS flow, conduct LES of the BFS flow, and

compare its performance with that of the traditional SGS model. Like the NN-

based SGS model in part I, the NN in this part is the fully-connected neural

network and predicts the SGS stress directly using the predefined input variables
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which are strain rate or velocity gradient tensors. The input and target data are

obtained by filtering the data from DNS of BFS flow at step-height Reynolds

number of Reℎ = 5100. The computational details for the DNS of BFS flow are

presented in §2, together with the training details of the NN-based SGS model.

In §3, the results from the LES of BFS flow at Reℎ = 5100 are given, where

the step-height Reynolds number and expansion ratio of the LES are the same as

those of training data. Applications of the NN trained at Reℎ = 5100 to LES of

a higher Reynolds number flow (Reℎ = 24000) and to LES of BFS flow having

a passive control device are also discussed in §4, followed by conclusions in §5.
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Chapter 2

Computational details

2.1. Outline of the NN-based SGS model

The governing equations for LES are the filtered Navier-Stokes and continu-

ity equations:
)ūi
)xi

− q = 0, (2.1)

)ūi
)t
+
)ūiūj
)xj

= −
)p̄
)xi

+ 1
Reℎ

)2ūi
)xj)xj

−
)�ij
)xj

+ fi, (2.2)

where t is time, xi(= x, y, z) is the Cartesian coordinates for the streamwise,

wall-normal, and spanwise directions, respectively, ui(= u, v,w) are the corre-

sponding velocity components, p is the pressure, the overbar denotes the filtering

operation, and �ij(= uiuj− ūiūj) is the SGS stress tensor. In the present study, we

use the immersed boundary method to describe the backward-facing step, and

fi and q are the momentum forcing and the mass source/sink terms, which are

used to satisfy the no-slip boundary condition and the local mass conservation,

respectively (for details, see Kim et al. 2001).

A fully-connected neural network is used to predict �ij , and we consider two

different NNs having different input variables: NNwith the input of filtered strain
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rate S̄ij (NN1) and NN with the input of filtered velocity gradient �̄ij (NN2),

where �̄ij = )ūi∕)xj and S̄ij = 0.5(�̄ij + �̄ji). Six components of S̄ij and nine

components of �̄ij at each grid point are the inputs to NN1 and NN2, respec-

tively, and the output is six components of �ij at the same grid location. While it

is possible to use those input variables at multiple grid points (Xie et al. 2019c,

2020a,b; Beck et al. 2019; Pawar et al. 2020; Park & Choi 2021), Park & Choi

(2021) showed that the use of those inputs at multiple grid points provided un-

stable LES results in turbulent channel flow unless special treatment is applied

to the predicted SGS stresses. Therefore, we only test those two inputs (S̄ij and

�̄ij) at a grid point, considering the turbulent boundary layer at the upstream of

step edge and at the downstream of the flow reattachment in the BFS flow.

The main hyperparameters of an NN are the numbers of hidden layers and

neurons per hidden layer,Nℎl andNnr, respectively. We have conducted a para-

metric test for Nℎl and Nnr, and the NN with Nℎl = 2 and Nnr = 32 are used

for LES of BFS flow (see §2.3). The database for training NN is obtained by

filtering the instantaneous flow fields from DNS of BFS flow (see §2.2).

We also perform LESwith the dynamic Smagorinsky model (Germano et al.

1991; Lilly 1992) to estimate the performance of the present NN-based SGS

model. For the dynamic Smagorinsky model (DSM),

�ij −
1
3
�kk�ij = −2�tS̄ij = −2(CsΔ̄)2

√

2S̄ijS̄ijS̄ij ,

(CsΔ̄)2 = −
1
2
⟨LijMij⟩ℎ

⟨MijMij⟩ℎ
,

Lij = ̃̄uiūj − ̃̄ui ̃̄uj ,

Mij =
(

Δ̃∕Δ̄
)2
|

|

|

̃̄S||
|

̃̄S ij − |̃

|

S̄|
|

S̄ij

where, Δ̄ and Δ̃ (Δ̃∕Δ̄ > 1) are the grid and test filter sizes, respectively, and

⟨⟩ℎ denotes averaging in the homogeneous directions (spanwise direction in BFS
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flow). Since the negative (CsΔ̄)2 incurs the numerical instability (Akselvoll &

Moin 1995), (CsΔ̄)2 is forced to be zero wherever it is negative. The grid and test

filter sizes are Δ̄2 = Δ̄1Δ̄3 and Δ̃2 = Δ̃1Δ̃3, respectively, where Δ̄i and Δ̃i are

the grid and test filter sizes in each directions, respectively. The test filtering is

conducted in both x and z directions using Simpson’s rule, as suggested by Ak-

selvoll & Moin (1995) who conducted LES of BFS flow at Reℎ = 5100, 28000.

2.2. Details of DNS for training data

2.2.1. Computational domain and grid spacing

Figure 2.1 shows the schematic diagram of the computational domain used

for the DNS of BFS flow, where the location of the step edge is (x, y) = (0, ℎ).

The step-height Reynolds number Reℎ and the expansion ratio ER are Reℎ =

5100 and ER = 1.2, respectively. The BFS flow with those Reℎ and ER has

been widely used to test LES techniques (Akselvoll &Moin 1995; Kang & Choi

2002; Simons et al. 2002; Aider et al. 2007; Panjwani et al. 2009; Yang et al.

2020), since both DNS (Le et al. 1997) and experimental results (Jovic & Driver

1994) are available. Thus, we adopt this BFS flow for training and testing NN-

based SGS models. The size of the computational domain is −2.5 ≤ x∕ℎ ≤ 20,

0 ≤ y∕ℎ ≤ 6 and 0 ≤ z∕ℎ ≤ 4, and the numbers of grid points used in DNS

are 449 × 193 × 128 in the streamwise, wall-normal and spanwise directions,

respectively, where 70 and 64 computational cells are placed within y < ℎ and

x < 0, respectively. Figure 2.2 shows the distribution of grid spacing in stream-

wise and wall-normal directions, and table 2.1 lists grid spacings in wall units.

Non-uniform grid spacings are used in both the streamwise and wall-normal di-

rections, where grids are dense near the wall. The uniform grid distribution is

used in spanwise direction. The number of grid points in spanwise direction is

twice that used in DNS by Le et al. (1997), since they pointed out that a higher
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spanwise resolution was desirable to resolve the small-scale structures near the

wall.

2.2.2. Boundary conditions and numerical methods

The inflow boundary condition at x = −2.5ℎ is the time series of fully-

developed turbulent boundary-layer flow (TBL). To provide a realistic inlet tur-

bulence, a separate DNS of TBL flow is conducted. With this inflow condition,

a short inlet section (Lxi) could be used (Akselvoll & Moin 1995; Kang & Choi

2002), as compared to that used with a prescribed mean velocity and random

fluctuations as the inflow (Le et al. 1997). The DNS of TBL flow is performed

using the recycling method by Lund et al. (1998), where the inlet turbulent flow

is generated using the velocity field at a downstream location based on empirical

scaling laws. At the inlet of TBL simulation,Re�(= U0�∕�) and �∕ℎ are approx-

imately 670 and 1.25, where � and � are momentum and boundary layer thick-

nesses, respectively, and these parameters are similar to those of inflow in DNS

by Le et al. (1997). The domain sizes for the DNS of TBL flow are 14.5ℎ, 5ℎ

and 4ℎ in streamwise, wall-normal and spanwise directions, respectively, and

the recycling location is placed at 10.4ℎ downstream of the inlet. The velocity

fields at 7.5ℎ downstream of inlet are stored in advance and provided in time at

the inlet of the computational domain for the BFS flow.

The periodic boundary condition is used in the spanwise direction, and the

no-slip boundary condition is used at the wall at (y = 0). The immersed bound-

ary method by Kim et al. (2001) is used to satisfy the no-slip condition at the

backward-facing step (gray colored in figure 2.1), i.e., the location of (x ≤ 0, y =

ℎ) and (x = 0, y ≤ ℎ). At the upper boundary of the computational domain

(y = 6ℎ), the following no-stress condition is applied:

)u
)y

= 0, v = 0, )w
)y

= 0. (2.3)
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The boundary condition at the domain exit (x = 20ℎ) is the convective boundary

condition,
)ui
)t
+ Uc

)ui
)x

= 0, (2.4)

where Uc is the plane-averaged streamwise velocity at the exit.

The governing equations of DNS for the backward-facing-step flow are the

continuity and Navier-Stokes equations, i.e., the equations (2.1) and (2.2) with-

out filtering operation and SGS stress term.A semi-implicit fractional stepmethod

is used to solve the governing equations, where a third-order Runge-Kutta and

the Crank-Nicolson schemes are used for the convection and diffusion terms, re-

spectively. For spatial derivatives, the second-order central difference scheme is

used. we used the time step of Δt = 0.002ℎ∕U0 which is similar to that used by

Le et al. (1997). Initial flow fields for 400ℎ∕U0 are discarded, and then the flow

fields are averaged over 400ℎ∕U0 to obtain the mean statistics.

2.2.3. Filtered DNS flow fields

A filtered flow variable f̄ (x, y, z, t) based on the box filter is defined as

f̄ (x, y, z, t) = 1
Δ̄1Δ̄2Δ̄3

0.5Δ̄3

∫
−0.5Δ̄3

0.5Δ̄2

∫
−0.5Δ̄2

0.5Δ̄1

∫
−0.5Δ̄1

f
(

x + x′, y + y′, z + z′, t
)

dx′dy′dz′,

(2.5)

where f (x, y, z, t) is an unfiltered flow variable, Δ̄i is the filter width in each di-

rection at the position of (x, y, z). To obtain filtered DNS (fDNS, hereafter) flow

field, we first should set the filter width Δ̄i, i.e., the distribution of grid spacings

of the fDNS flow field. The number of grid points used for fDNS is 161×57×64

in the streamwise, wall-normal and spanwise directions, respectively, where 24

and 40 computational cells are placed within y < ℎ and x < 0, respectively. The

grid distributions of fDNS in streamwise and wall-normal directions are shown

in figure 2.2, and grid spacings in wall units are given in table 2.1, together with
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those used in previous LES studies. Note that the domain size of fDNS is the

same as that of DNS.

Figure 2.3 shows the skin-friction coefficient Cf , the pressure coefficient

Cp at the wall, and the mean streamwise velocity profiles. Here, Cf and Cp are

defined as

Cf =
�w

1
2�U

2
0

, (2.6)

Cp =
⟨p⟩zt − P0
1
2�U

2
0

, (2.7)

respectively, where �w = ⟨�)u∕)y⟩zt, ⟨⟩zt denotes averaging in time and z direc-

tion, and P0 is a reference mean pressure. In the previous DNS (Le et al. 1997)

and experiment (Jovic & Driver 1994), the reference pressure P0 was the wall

pressure at x = −5ℎ, but this location does not exist in the present DNS. There-

fore, P0 in the present study is obtained so thatCp at (x, y) = (−2ℎ, ℎ) is the same

as that of previous DNS (Le et al. 1997). Figure 2.3 indicates that Cf , Cp and

mean streamwise velocity have excellent agreements with those from previous

DNS and experiment. Figure 2.4 shows the root-mean-square (rms) streamwise

and wall-normal velocity fluctuations, and the Reynolds shear stress from DNS

and fDNS, together with those from previous DNS and experiment. Those statis-

tics from DNS have good agreement with those from previous studies (Jovic &

Driver 1994; Le et al. 1997). In the case of fDNS, the magnitude of those statis-

tics are reduced due to the filtering. For the Reynolds shear stress of fDNS, its

maximum values are reduced by 17%, 14%, 14% and 22% at x∕ℎ = 4, 6, 10 and

19, respectively, compared to those from DNS. The order of magnitude of those

reduction rates seems to be reasonable, as Akselvoll &Moin (1995) showed that

the contribution of the SGS shear stress to the Reynolds shear stress was approx-

imately 8-10% in LES of BFS flow at Reℎ = 5100.
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FIGURE 2.1. Computational domain for DNS of flow over a backward-facing step

(Reℎ = 5100, ER = 2).
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(b) vrms; (c) the Reynolds shear stress. ●, DNS (Le et al. 1997); ⚪, experiment (Jovic

& Driver 1994); , present DNS; , present fDNS.
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Case Δx+min Δx+max Δy+min Δy+max Δz+

present DNS 7.6 25.6 0.3 31.5 7.9

DNS (Le et al. 1997) 9.9 9.9 0.3 31.4 15.8

present fDNS 11.4 72.7 1.4 117.1 15.8

LES (Akselvoll & Moin 1995) 11.4 71.9 1.5 117.3 31.6

LES (Kang & Choi 2002) 11.4 72.3 1.4 117.0 15.8

LES (Simons et al. 2002) 11.4 71.1 1.5 117.8 31.6

LES (Aider et al. 2007) 4.0 66.7 1.3 50.5 16.9

LES (Yang et al. 2020) 39.5 39.5 4.6 75.9 31.6

TABLE 2.1. Grid spacings in wall units for DNS and fDNS (Reℎ=5100), together with

those used in previous DNS and LES studies. Δx+i = Δxiu�∕�, and the friction velocity

u� at the inlet of the computational domain (DNS) is used (u� = 4.9619 × 10−2U0).
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2.3. Training details and hyperparameter optimization

In this section, we describe the training details for an NN and the results of

a priori test, in which the SGS stresses are predicted by NN1 and NN2 with the

inputs from fDNS flow field of BFS flow atReℎ = 5100. We should mention that

in a priori test, we do not focus on howwell the NNworks, but rather on whether

the performance of the NN converges with varying Nℎl and Nnr, because the

performance of an SGS model in a priori test is not consistent with that in actual

LES (Park et al. 2005).

The fDNS flow fields with the time interval of 5ℎ∕U0 are used to collect

training data (S̄ij , �̄ij , �ij). It has been observed that the formation and detach-

ment of coherent structures from the step edge causes the periodic oscillation

in the reattachment location (Eaton & Johnston 1980; Le et al. 1997), and the

frequency corresponding to this oscillation is approximately 0.06U0∕ℎ (Le et al.

1997). Therefore, the sampling time interval of 5ℎ∕U0 corresponds to about a

third of this oscillation period. The training data are collected at every 8th grid

point in z direction (corresponding to Δz = 0.5) to exclude highly correlated

data, and at all grid points in x and y directions from 40 instantaneous fDNS

fields, excluding grid points inside the immersed boundary. The number of grid

points outside the immersed boundary is 8,000 in one xy-plane, so the number

of training data is 2,560,000 (40 × 8000 × 64∕8). We have also tested 60 fDNS

fields for training NN’s (3,840,000 data), but their prediction performance for

the SGS stresses is not further improved (see below), so the number of training

data used is sufficient for the present NN’s. All flow variables in training data

are non-dimensionalized with U0 and ℎ.

The weight parameters of NN are optimized to minimize the loss function
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L, defined as

L = 1
2Nb

1
6
∑

j≥i

∑Nb

n=1

(

�fDNSij,n − �NNij,n
)2

+ 0.005
∑

o
w2o , (2.8)

where �fDNSij, n and �NNij, n is the SGS stresses obtained from fDNS and predicted by

the NN, respectively, Nb is the number of minibatch data (8000 in this study),

and wo denotes the components of trainable weight parameters in the NN. Note

that Nb = 8000 is the same as the number of training data in one xy-plane of

fDNS flow field. We use a rectified linear unit (Relu; Nair & Hinton 2010) as

the activation function, and use a batch normalization (Ioffe & Szegedy 2015).

An adaptive moment estimation (Kingma & Ba 2014) is applied to update the

trainable parameters, and the gradients of the loss function with respect to those

parameters are calculated through the chain rule of derivatives (Rumelhart et al.

1986; LeCun et al. 2015).

In the previous studies, a wide range ofNnr was used withNℎl = 1 (Gama-

hara & Hattori 2017; Maulik & San 2017; Maulik et al. 2018; Zhou et al. 2019)

or Nℎl = 2 (Sarghini et al. 2003; Wollblad & Davidson 2008; Vollant et al.

2017; Wang et al. 2018; Maulik et al. 2019; Xie et al. 2019a,b,c, 2020a,c; Park

& Choi 2021), but the order of Nnr was roughly Nnr = O(10) − O(103). We

test both NN1 and NN2 for different Nℎl and Nnr, where Nℎl = 1, 2, 3 and

Nnr = 16, 32, 64, 128 are considered. Here, we present only four representative

cases for clarity, which are given in table 2.2.

Figure 2.5 shows the variations of the training error �� with the epoch for

NN1 and NN2, where �� is defined as

�� =
1

2Ndata

1
6
∑

j≥i

Ndata
∑

n=1

(

�fDNSij,n − �NNij,n
)2
. (2.9)

Here, one epoch denotes one sweep through the entire training dataset (Hastie

et al. 2009), and Ndata is the number of data used to obtain �� . The errors ��
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nearly converge with 100 epochs for both NN1 and NN2 regardless of Nℎl and

Nnr. The errors from the training and test datasets converge to nearly the same

value, indicating that severe overfitting is not observed for both NN1 and NN2

for all cases considered. Since �� alone does not represent the prediction perfor-

mance of the NN, we investigate the mean SGS shear stress and dissipation.

Figures 2.6 and 2.7 show the mean SGS shear stress ⟨�xy⟩zt and dissipation

⟨"SGS⟩zt, respectively, predicted by NN1 and NN2 with different Nℎl and Nnr,

where "SGS = −�ijS̄ij . Here, 600 fDNS fields with the time interval of 0.5ℎ∕U0
are used for obtaining those statistics. Results show that one hidden layer (case

CS1) even with Nnr = 128 is not sufficient for showing converged prediction

performance. ForNℎl = 2, performance of NN1 and NN2 withNℎl = 16 (case

CS2) is not converged also. On the other hand, for both NN1 and NN2,Nℎl = 2

andNnr = 32 (case CR) are sufficient for showing converged prediction perfor-

mance, as the performance of case CL is almost similar to that of case CR. Note

that the case CL has more Nℎl, Nnr and training data than those used for case

CR. Therefore, two hidden layers with 32 neurons per hidden layer are used for

both NN1 and NN2 in the present study.
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FIGURE 2.5. Training error �� by different Nℎl and Nnr: (a) NN1; (b) NN2. and

, CS1; and , CS2; and , CL; and , CR. The solid and dashed

lines are �� for training and test datasets.
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(b) NN2. ⚪, fDNS; +, DSM; , CS1; , CS2; , CL; , CR.

76



+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 0.008 0.016 0.024 0.032 0.04 0.048
0

1

2

3

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 0.008 0.016 0.024 0.032 0.04 0.048
0

1

2

3

2.2.7

fDNS

hl3_node128(60fld)

hl2_node32(40fld)

hl1_node128(40fld)

hl2_node16(40fld)

DSM

SGS dissipation by Nhl and Nnr (a priori test)

v19=v12+0.008
v20=v19+0.008
v21=v20+0.008
v22=v21+0.008
v23=v22+0.008
v24=v23+0.008

ijS

ijα

D:\OneDrive - SNU\000_Research\00_deep 
learing\01_ML_SGS\05_TBL&BWFS\03_BFS_Reh5100_a_priori_test\01_D9__to__L3_grid\__layouts_apriori
_test

layout_fap_1D_prof_along_y__final___SGS_dissipation_Aij0.lay
layout_fap_1D_prof_along_y__final___SGS_dissipation_Sij0.lay

(a)

(b)

y

h

y

h

x/h = -1 x/h =1 x/h = 4 x/h = 6 x/h = 10 x/h = 15

3
0SGS zt

ε h / U
0 0 0 0 0.00800

x/h = -1 x/h =1 x/h = 4 x/h = 6 x/h = 10 x/h = 15

3
0SGS zt

ε h / U
0 0 0 0 0.00800

FIGURE 2.7. Mean SGS dissipation by differentNℎl andNnr (a priori test): (a) NN1;

(b) NN2. ⚪, fDNS; +, DSM; , CS1; , CS2; , CL; , CR.
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case Nℎl Nnr Ntraining
data Ntest

data

CR 2 32 2,560,000 256,000

CS1 1 128 2,560,000 256,000

CS2 2 16 2,560,000 256,000

CL 3 128 3,840,000 256,000

TABLE 2.2. Parametric-study cases for NN1 and NN2 to determineNℎl andNnr. Here,

CR is the reference case to be used in the LES of BFS flow. Ntraining
data and Ntest

data are the

numbers of training and test datasets, respectively, and those are used to obtain training

error �� for training and test datasets, respectively. The test dataset is collected from 4

instantaneous fDNS fields with the time interval of 5ℎ∕U0.
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Chapter 3

LESof flowover a backward-facing step at

Reℎ = 5100

This chapter describes the results of a posteriori test (i.e., actual LES) with an

NN-based SGS models. Two NN-based SGS models, NN1 and NN2, are tested,

where S̄ij and �̄ij at a grid point are the inputs of those models, respectively. We

first test those NNs for the LES with the same grid resolution as that of trained

data, and then test those NNs for the LES having coarser grid resolution than

that of trained data. Computational details of the LES are given in §3.1, and the

results of LES for two different grid resolutions are described in §3.2.

3.1. Computational details

Numericalmethods for solving the filtered continuity andNavier-Stokes equa-

tions, eqs. (2.1) and (2.2), respectively, are the same as those for DNS. The com-

putational domain sizes for LES in x, y and z directions are the same as those

of DNS, and the computational time step is Δt = 0.01ℎ∕U0 for the LES. Initial

flow fields for 400ℎ∕U0 are discarded, and then the flow fields are averaged over

1200ℎ∕U0 to obtain the mean statistics. To provide realistic inlet turbulence, a
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LES case Nx, Ny, Nz Δx+min Δx+max Δy+min Δy+max Δz+

LES51GR 161, 57, 64 11.4 72.7 1.4 117.1 15.8

LES51GC 137, 41, 32 18.5 75.4 2.4 123.0 31.6

TABLE 3.1. Two LES cases having different grid resolutions (Reℎ=5100). Nx, Ny and

Nz are the numbers of grid points in streamwise, wall-normal and spanwise directions,

respectively. Friction velocity u� at the inlet of the computational domain (DNS) is used

(u� = 4.9619 × 10−2U0) for calculating grid spacing in wall units.

separate LES of TBL flow is conducted using DSM as the SGS model, and the

other boundary conditions are the same as those used in DNS. The domain sizes

for the LES of TBL and the recycling location are the same as those used in the

DNS of TBL (see §2.2.2).

Table 3.1 shows two different grid resolutions for the LES of the backward-

facing-step flow at Reℎ = 5100. The grid resolution of LES51GR is the same

as that of the fDNS used for training NN1 and NN2. On the other hand, the

grid resolution of LES51GC is coarser than that of the trained data. For both

LES51GR and LES51GC, we conduct four LESs with different SGS models:

noSGS, DSM, NN1 and NN2, where the noSGS denotes the LES without SGS

model. Unless otherwise mentioned, for the LES with NN1 and NN2, we do not

use any special treatment such as the ad hoc clipping, wall damping or averaging

over homogeneous directions.
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3.2. Results and discussions

3.2.1. LES51GR case

Table 3.2 shows the reattachment lengths (Xr) fromLES51GR, together with

those from DNS, fDNS, and previous studies, where Xr in the present study is

the distance from the step to the location of zero wall-shear stress. In the present

study, Xr’s from DNS and fDNS are 6.23ℎ and 6.17ℎ, respectively, which are

in good agreement with those from previous experiment (Jovic & Driver 1994)

and DNS (Le et al. 1997). Here, the Xr of fDNS is obtained by filtering the

mean velocity field from DNS, and it is smaller than that of DNS due to filtering

in y direction near the wall. The Xr’s from LES with NN1 and NN2 are well

predicted, whereas the LES without SGS model overpredicts Xr.

Figure 3.1(a) shows the distribution of skin-friction coefficient along thewall

from the LES, together with that of fDNS. All LES conducted provide similar

minimum Cf (≈ −0.0035), which is lower than -0.0027 from fDNS, but is sim-

ilar to -0.0034 from the experiment (Jovic & Driver 1994) (see figure 2.3). The

discrepancy between LES and fDNS seems to be mainly due to the coarse grid

resolution in LES together with the limitations of SGS models for the accurate

predictions for Cf . On the other hand, the discrepancy may be also due to the

difference in the inflow. In the present study, the recycling method of Lund et al.

(1998) is used to generate inflow data for DNS and LES, respectively, but the

inflow turbulence is not identical due to the difference in grid resolution. For

example, the wall-normal and spanwise turbulence intensities of LES inflow are

lower than those of DNS inflow (not shown here). Kang & Choi (2002) also

pointed out that the difference in the inflow could contribute to the overpredic-

tion of minimum Cf . Figure 3.1(b) shows the distribution of pressure coefficient

Cp at the wall. Both NN1 and NN2 show reasonable agreement with that fDNS,
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and provide almost similar predictions to that of DSM. On the other hand, LES

without the SGS model slightly underpredicts Cp at x∕ℎ = 3 − 10.

Figure 3.2 shows profiles of the mean streamwise velocity and rms stream-

wise velocity fluctuation at several x locations. For the mean streamwise veloc-

ity, a good agreement is found between fDNS and LESs with NN1 and NN2,

whereas the LES without SGS model shows slightly different mean velocity

near the wall at x∕ℎ = 6, expected by the large reattachment length. For the

rms streamwise velocity, all LES conducted show similar predictions. On the

other hand, for rms vertical and spanwise velocity fluctuations and the Reynolds

shear stress, given in figure 3.3, the LES without SGS model overpredicts them

near the step edge (x∕ℎ = 1), whereas LES with NN1, NN2 and DSM shows

similar predictions for them. This overprediction for rms vertical velocity fluc-

tuation near the step was also observed in the previous LES without SGS model

(Akselvoll & Moin 1995). Figure 3.4 shows the one-dimensional energy spectra

of the velocity fluctuations at three locations: (x∕ℎ, y∕ℎ) = (1, 1.04), (4, 1.04)

and (6, 0.017). Overall agreements of the velocity spectra from NN1 and NN2

with those of fDNS are similar to those of DSM, whereas the noSGS overpre-

dicts the spectra at high wavenumber indicating that dissipation is insufficient.

Figure 3.5 shows the mean SGS dissipation ⟨"SGS⟩zt and the mean backscat-

ter ⟨"−SGS⟩zt = 0.5⟨"SGS − |

|

"SGS ||⟩zt. A reasonable agreement is found among

the NN-based SGS models and fDNS for the SGS dissipation generated in the

shear layer. For the backscatter, NN1 and NN2 provide non-negligible backscat-

ter compared to that of fDNS. It has been pointed out that the non-negligible

backscatter incurs the numerical instability in actual LES (Liu et al. 1994; Akha-

van et al. 2000; Meneveau & Katz 2000; Anderson & Domaradzki 2012; Park

& Choi 2021). For the filtered DNS of the turbulent channel flow at Re� ≈ 180,

Park & Choi (2021) showed that the magnitude of the backscatter was compara-

82



ble to that of the mean SGS dissipation, but figure 3.5 indicates that, for the BFS

flow at Reℎ = 5100, the backscatter is approximately 10% of the mean SGS dis-

sipation. Therefore, although NN1 and NN2 provide non-negligible backscatter,

this does not incur the numerical instability in the LES of BFS flow. In this re-

gard, the NN1 andNN2 have the advantages over the DSM that those NNmodels

can predict backscatter in the LES, whereas the DSM does not provide it due to

the averaging procedure for obtaining Cs. Note also that the LESs with NN1 and

NN2 do not require special treatments such as the ad hoc clippings, wall damp-

ing, and averaging over homogeneous directions, which is another advantage

over the DSM.
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Data from method SGS model Xr∕ℎ

present study DNS - 6.23

present study fDNS - 6.17

present study LES noSGS 6.54

present study LES DSM 6.27

present study LES NN1 5.96

present study LES NN2 6.21

Jovic & Driver (1994) Experiment - 6 ± 0.15

Le et al. (1997) DNS - 6.28

Akselvoll & Moin (1995) LES DSM 6.36

Kang & Choi (2002) LES DSM 6.20

Simons et al. (2002) LES SM 6.6

Aider et al. (2007) LES SFM 5.29 -5.80

Panjwani et al. (2009) LES DSM, SFM 7.2 - 7.4

Yang et al. (2020) LES DSM 6.64

TABLE 3.2. Reattachment length (Xr) of BFS flow at Reℎ = 5100 and ER = 1.2. Here,

LES of the present study is the LES51GR case. For the SGSmodel, SM is the Smagorin-

sky model with constant model coefficient, SFM is the structure function model. Note

that a large scatter inXr’s from previous LES studies is due to the combination of differ-

ent computational setups such as numerical schemes, inflow boundary condition, grid

resolutions, and the SGS model.
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3.2.2. LES51GC case

Figure 3.6 shows the coefficients of skin-friction and wall pressure from the

LES51GC, together with those from DNS and fDNS. Here, fDNS is the fil-

tered DNS with the same grid resolution as that of LES51GC. Both NN1 and

NN2 show better predictions for Cf and Cp than noSGS and DSM, especially

in the regions of x∕ℎ < 3 and near the reattachment location. The reattachment

lengths from fDNS, NN1 and NN2 are Xr = 6.12ℎ, 6.18ℎ and 5.97ℎ, respec-

tively, whereas reattachment lengths are 5.68ℎ and 6.82ℎ from noSGS andDSM,

respectively. TheXr’s from NN1 and NN2 are quite well predicted, even though

those models are trained by using fDNS data whose grid sizes are different from

that of LES51GC. On the other hand, the LES without SGS model significantly

underpredictsXr. The prediction forXr with DSM is also poor, and this may be

attributed to the limitation of the eddy-viscosity model in the LES with coarse

grid resolution, where Jiménez &Moser (2000) indicated that the grid resolution

should be high enough for most of the SGS stresses to be carried by the resolved

scales in application of the eddy-viscosity model.

Figure 3.7 shows themean streamwise velocity and the Reynolds shear stress,

and figure 3.8 shows the rms velocity fluctuations. For the mean streamwise ve-

locity, a good agreement is found between fDNS and LESs with NN1 and NN2,

whereas the DSM shows negative velocity at x∕ℎ = 6, expected by its large reat-

tachment length. For prediction of the Reynolds shear stress and rms streamwise

velocity fluctuation, the difference between SGS models are small. For the rms

vertical and spanwise velocity fluctuations, the LES without SGS model signifi-

cantly overpredicts those statistics near the step edge (x∕ℎ = 1) and in the recir-

culation regions (x∕ℎ = 4), whereas LESs with NN1 and NN2 overpredict them

compared to those of fDNS. The DSM shows good agreement of those statis-

tics with those of fDNS, but this may not much meaningful since the DSM does
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not predict well the mean streamwise velocity near the reattachment location. To

improve the performance of NNmodels, we have trained another NNs using two

different fDNS datasets together whose grid sizes are bigger and smaller than the

grid size of LES51GC, as suggested by Park & Choi (2021), where they showed

significant improvement on the performance an NN for the LES having different

grid resolution from that of trained data. Figure 3.9 shows the rms vertical and

spanwise velocity fluctuations, with this new NN. Here, only NN1 is shown for

clarity. The predictions of this new NN1 (NN1n) are slightly better than that of

the previous NN1 (NN1o) for those statistics, but the difference in predictions is

not significant. Note that Park & Choi (2021) applied the spectral-cutoff filter in

the streamwise and spanwise directions with only one filter size for making one

fDNS dataset in the turbulent channel flow, where the filter sizes are uniform in

those directions, respectively. On the other hand, for the BFS flow in the present

study, the box filter is applied in all x, y and z directions, where the filter sizes are

different by location. Therefore, various filter sizes are already used for making

one fDNS dataset, and this may be a reason for quite good performance of the

NN1o for the LES having different grid resolution from that of trained data.

91



+ + + + + + +
+
+
+
+
+
+
+
+
+
+
+
+ +

+ +
+ + + + + + + + + + + + + + + + + + + + + + +

0 5 10 15 20
-0.1

0

0.1

0.2

0.3

+
+ + + +

+
+
+
+
+
+
+ + + +

+
+
+
+
+
+
+
+
+
+ +

+ +
+ +

+ + + + + + + + + + + + + + + + + + + +

0 5 10 15 20
-0.004

-0.002

0

0.002

0.004

2.3.6LES – 5100 at L6

D:\OneDrive - SNU\000_Research\00_deep 
learing\01_ML_SGS\05_TBL&BWFS\02_BFS_Reh5100_LES\20210316_Li2.5_L6

layout_layout_fap1D_wall_variable_Cf.lay
layout_fap1D_wall_variable_CP.lay

fDNS
noSGS
DSM
SIJ0
AIJ0

(a)

(b)

Cf

Cp

x/h

x/h
DNS

FIGURE 3.6. Coefficients of skin friction and wall pressure, Cf and Cp, respectively,

from LES51GC: (a) skin-friction coefficient; (b) wall-pressure coefficient. +, DNS; ⚪,

fDNS; , noSGS; , DSM; , NN1; , NN2.
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FIGURE 3.8. The rms velocity fluctuations from LES51GC: (a) streamwise; (b) wall

normal; (c) spanwise. +, DNS; ⚪, fDNS; , noSGS; , DSM; , NN1; ,

NN2.
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2.3.9LES – 5100 at L6
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FIGURE 3.9. The rms wall-normal and spanwise velocity fluctuations from LES51GC:

(a) wall-normal; (b) spanwise. +, DNS; ⚪, fDNS; , noSGS; , DSM; ,

NN1o; , NN1n. The numbers of grid points of fDNS for training NN1o are

161(x) × 57(y) × 64(z), whereas the numbers of two different fDNS for training NN1n

are 145(x)×45(y)×48(z) and 129(x)×37(y)×24(z), respectively. The numbers of grid

points used in LES51GC are 137(x) × 41(y) × 32(z).
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Chapter 4

LESof controlled backward-facing-step flowby

multiple taps

One of the essential issues in research of turbulent flow over a backward-facing

step is the flow-separation control to increase mixing (or to enhance the heat and

mass transfer) behind the step, where the reduction of the reattachment length

has been an indirect measure of the mixing increase. Many control devices have

been investigated to enhance the mixing in an active or passive manner. For the

active control, the blowing/suction is imposed at the step edge, for example, with

a specific blowing/suction frequency (Bhattacharjee et al. 1986; Roos & Kegel-

man 1986; Hasan & Khan 1992; Chun & Sung 1996) or by the feedback control

theory (Kang & Choi 2002; Neumann & Wengle 2003; Gautier & Aider 2013).

Those active control methods, however, are difficult to install and require addi-

tional energy input, so in terms of practical use, a passive control device may be

preferable to those active ones (Park et al. 2007). Various passive control devices

have been suggested so far; for example, segmented step face (Gai & Sharma

1984), upstream cavity or rod (Isomoto & Honami 1989), surface rib or groove

(Selby et al. 1990; Kim & Chung 1995), upstream fence (Neumann & Wengle
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2003) and fence at the step edge (Park et al. 2007). Park et al. (2007) indicated

that the three-dimensional disturbance on the flow separation has been more ef-

ficient for the mixing enhancement than the two-dimensional one, and one of the

most successful devices for the three-dimensional disturbance is the small taps

(Zaman et al. 1994; Foss & Zaman 1999; Park et al. 2006, 2007). Meanwhile,

Park et al. (2007) conducted experimental study for the BFS Flow with single

tap or multiple taps at Reℎ = 24000 and ER = 1.12, and showed that multiple

taps were more effective on the mixing increase than the single tap. They showed

that the multiple taps could reduce the reattachment length by 51% from that of

the uncontrolled flow, where vertical height and spanwise width of the tap were

ly = 0.3ℎ and lz = 0.3ℎ, respectively, and the spanwise spacing between two

adjacent taps was � = 2.33ℎ (see figure 4.1a for the schematic of the taps).

Having confirmed the successful application of an NN-based SGS model

for the BFS flow at Reℎ = 5100, the performance of NN-based SGS model is

assessed for the LES of BFS flow having multiple taps, where the flow and tap

parameters are similar to those used in the experiment by Park et al. (2007).

Here, we only assess the performance of the NN1, because NN1 performs better

than NN2 in turbulent channel flow (part I), even though the difference between

the two models in the LES of BFS flow at Reℎ = 5100 is not significant. The

NN1 is trained using the filtered DNS at Reℎ = 5100, as described in §2. The

numerical methods for solving the filtered Navier-Stokes equations are the same

as those used in §3, and other computational details are given in §4.1, followed

by the LES results in §4.2.

4.1. Computational details

The schematic of the computational domain is the same as figure 2.1, and

the size of the computational domain is −2.5 ≤ x∕ℎ ≤ 20, 0 ≤ y∕ℎ ≤ 9.33
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and, 0 ≤ z∕ℎ ≤ 4.67. The step-height Reynolds number and the expansion

ratio are Reℎ = 24000 and ER = 1.12, respectively, which are same as those

of the experiment (Park et al. 2007). We consider three configurations of the

backward-facing step: 1) without tap (uncontrolled), 2) with taps having � =

4.67ℎ, and 3) with taps having � = 2.335ℎ. The taps are applied at the step

edge, as shown in figure 4.1, where the vertical height and the spanwise width

of the tap are ly = 0.3ℎ and lz = 0.3ℎ, respectively. The streamwise thickness

of the tap is set to be lx = 0.05ℎ, to adequately describe the tap by the immersed

boundary method. This lx is greater than that used in the experiment (lx = 0.03ℎ

in Park et al. 2007), but this difference in lx’s may not much affect the flow

disturbance generated by the tap, since the ly and lz are still much larger than

lx. The numbers of grid points used are 241 × 129 × 128 in the streamwise,

wall-normal and spanwise directions, respectively. For the grid resolution, we

refer to the grid resolution used in the previous LES for the high-Reynolds BFS

flow (Akselvoll & Moin 1995). The grid spacings normalized by ℎ and in wall

units, respectively, are given in table 4.1, together with those of training data

for the NN1 and with those of previous LES by Akselvoll & Moin (1995). The

numbers of grid points located inside a tab are 3 × 33 × 9 in the streamwise,

vertical and spanwise directions, respectively. The computational time step is

Δt = 0.003ℎ∕U0. Initial flow fields for 210ℎ∕U0 are discarded, and then the

flow fields are averaged over 1500ℎ∕U0 to obtain the mean statistics. The LESs

for each BFS configuration are conducted with noSGS, DSM and NN1, and for

the NN1, the backscatter is forced to be zero by eq. (3.1) in part I to ensure the

stable LES for this high-Reynolds number BFS flow. For the DSM, we keep

using the averaging in z direction for obtaining the model coefficient in the LES

of BFS flowwith taps, even though it is no longer homogeneous in the z direction

with the taps. This is based on the previous observation (Park et al. 2006) that
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the LES result was not sensitive to the detailed averaging procedure. They also

indicated that this insensitivitymay be attributed to the self-adjustingmechanism

of dynamic model described in Park et al. (2005).

In the experiment (Park et al. 2007), inflow was the full-developed turbu-

lent boundary layer, where �∕ℎ = 0.6 and Re� = 1230 at 0.5ℎ upstream of

the step edge. To provide realistic turbulence at the domain inlet for the LES of

BFS flow, a separate LES of TBL flow is conducted using DSM, where Re� at

the inlet of this simulation is Re� = 1000. The domain size is 0 ≤ x∕ℎ ≤ 12,

0 ≤ y∕ℎ ≤ 8.33 and , 0 ≤ z∕ℎ ≤ 2.335 and the numbers of grid points are

192 × 81× 64 in streamwise, wall-normal and spanwise directions, respectively.

Since the inlet is located at 2.5ℎ upstream of the step edge in the LES of BFS

flow, the TBL flow fields at 2ℎ upstream of the location having Re� = 1230

are stored. Note also that the spanwise domain size of this TBL simulation is

half of that used in the LES of BFS flow, so the flow fields are combined in

the spanwise direction based on the periodic boundary condition. The resulting

boundary layer thickness and Re� of the inflow are �∕ℎ = 0.5 and Re� = 1140,

respectively. Figure 4.2 shows the mean velocity and the turbulence intensities

from the LES of TBL flow, together with DNS data (Schlatter & Örlü 2010).

The LES result show reasonable agreement with that of DNS data for the mean

velocity. For the turbulence intensities and the Reynolds stress, the LES results

show reasonable predictions, as the over- and under predictions for the stream-

wise and the cross flow components, respectively, are commonly observed in the

LES of wall-bounded flows with a coarse grid resolution (Bae et al. 2018).
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FIGURE 4.1. Tap configurations: (a) parameters of multiple taps; (b) taps on BFS with

� = 4.67ℎ; (c) taps on BFS with � = 2.335ℎ. In (b), the location of the tap center is

z = 2.335ℎ, and in (c), the locations of the tap centers are z = 1.1675ℎ and 3.5025ℎ,

respectively.
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directions, respectively.
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4.2. Results

In the experiment (Park et al. 2007), the reattachment length of the uncon-

trolled flow (i.e., without taps) wasXr = 5.8ℎ±0.25ℎ, and the NN1well predicts

the reattachment length showingXr = 6.02ℎ. The DSM and noSGS provide the

reattachment lengths of Xr = 6.45ℎ and Xr = 6.66ℎ, respectively, which are

larger than those of the experiment and NN1. Figure 4.3 shows the profiles of

mean streamwise velocity and rms streamwise velocity fluctuation for the un-

controlled flow, together with those from the experiment. For both statistics, the

difference between DSM and NN1 is not significant, but the DSM shows the

backflow at x = 6ℎ, as expected by the overpredicted Xr. On the other hand,

the noSGS severely overpredicts the rms streamwise velocity fluctuation albeit

showing similar performance for the mean velocity to that of the DSM. The LES

results for the uncontrolled flow indicate that the NN1 provides fairly good pre-

dictions for a higher Reynolds number, even though the training is performed at

a lower Reynolds number of Reℎ = 5100. This may indicate that the relation

between the SGS stress and strain rate which are non-dimensionalized by ℎ and

U0 is not much varied by the Reynolds number in the BFS flow (especially near

the flow separation and shear layer). Meanwhile, the grid spacings for the LES at

Reℎ = 24000 also differ from those of the training data. In §3.2.2, the NN1 for

LES51GC has shown fairly good predictions for the reattachment length and the

turbulence statistics, even though the grid resolution of the LES51GC is coarser

than that of the training data. For the LES at Reℎ = 24000, the grid spacings in

wall units are similar to those of the LES51GC (see tables 3.1 and 4.1), and this

could also be one of the reasons that the NN1 works well in the LES of a higher

Reynolds number.

Figures 4.4 and 4.5 show the profiles of mean streamwise velocity and rms

streamwise velocity fluctuation for the controlled flow with � = 2.335ℎ, at the

103



tap center (z∗ = 0) and at the middle of two adjacent tabs (z∗ = 0.5), respec-

tively, where z∗ = |z − zc|∕� and zc is the location of tap center. For those

statistics, the predictions of noSGS are significantly different from those of DSM

and NN1, clearly indicating that the contribution of the SGS model is of great

importance in the LES of the controlled flow. On the other hand, the NN1 shows

almost similar predictions to those of DSM for those statistics, even though a

slight difference in the predictions is observed for urms at z∗ = 0.5. Figure 4.6

shows the variation of the wall-pressure coefficient Cp along the spanwise direc-

tion at several streamwise locations. Here, the results of noSGS are not shown

for clarity. In the cases of NN1 and DSM, the reference pressures are obtained

so that the Cp’s of NN1 and DSM at (x∕ℎ, z∕ℎ) = (1, 4.67) are the same as those

of the experiment. Both NN1 and DSM show qualitatively good predictions for

the spanwise variation of the Cp, where the Cp is relatively low at the tap-center

z locations for both controlled cases.

Figure 4.7 shows the variations ofXr in the spanwise direction for controlled

flows, together with those from the experiment. The NN1 shows the best pre-

diction performance for the spanwise variation of Xr among considered SGS

models. For example, the NN1 could capture the local minimum of Xr for the

case of � = 4.67ℎ albeit the z location for this minimum is different from that of

the experiment. For the controlled flow with � = 4.67ℎ, the spanwise-averaged

reattachment lengths, X̄r’s, are 5.70ℎ, 5.18ℎ and 4.77ℎ from noSGS, DSM and

NN1, respectively. Since the experiment did not present X̄r for � = 4.67ℎ, we

have numerically integrated the Xr along the spanwise direction, and this X̄r

is 3.90. The X̄r’s for the case of � = 2.335ℎ are 4.75ℎ, 4.60ℎ and 3.78ℎ from

noSGS, DSM and NN1, respectively, where X̄r = 2.84ℎ from the experiment.

The X̄r’s from the NN1 are closer to the experimental results than those from

the noSGS and DSM, but the X̄r’s have a large deviation from those of the ex-
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periment. This deviation is greater for � = 2.335ℎ than for � = 4.67ℎ, and this

may be originated from insufficient spanwise domain size, where we use a much

smaller domain size (Lz = 4.67ℎ) than that of the experiment (Lz = 14ℎ) for

the BFS with multiple taps. Although the periodic boundary condition is used to

describe the periodicity over the taps, an artificial effect on the controlled flow

may have increased as the number of taps increases, resulting in the different pre-

diction for the spanwise variation of Xr to that of the experiment. Besides the

spanwise domain size, the grid resolutions near the tap may also be insufficient

to accurately resolve flow there, as the grid resolutions are the same as those of

the uncontrolled flow. Nevertheless, the present LES with NN1 could capture

the qualitative behaviors of the controlled flows, and this LES result would be

enough to estimate the performance of NN1 for the LES of the controlled flows.

Therefore, we have not further attempted to accurately reproduce the experimen-

tal data, and we investigate the performance of NN1 for other flow statistics by

comparing it with that of the DSM.

Figure 4.8 shows the Reynolds shear stress from the LESwith NN1 andDSM

for three BFS configurations. This quantity is calculated to check the similarity

between NN1 and DSM, as there is no available experimental data. At z∗ = 0,

NN1 and DSM provide nearly identical results, whereas non-negligible differ-

ences are observed at z∗ = 0.5 where the Xr is smaller than that at z∗ = 0. For

both cases of controlled flow, the DSM provides a larger Reynolds shear stress

at z∗ = 0.5 (especially at x∕ℎ = 2 and 4) than that of the NN1, and this may

result in a larger Xr from DSM than that from the NN1. Figures 4.9 and 4.10

show the mean SGS shear stress and SGS dissipation, respectively, from the LES

with NN1 and DSM. Both SGS models yield the highest SGS shear stress and

SGS dissipation near the separation point. For the SGS shear stress, significant

differences are observed between NN1 and DSM, where DSM produces much
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smaller stress than that of the NN1. Although the magnitude of SGS stress is

much smaller than that of the Reynolds stress, the contribution of the SGSmodel

in BFS flow is of great importance, considering the poor performance of noSGS

(as shown in figures 4.3-4.5). Therefore, the different performances of NN1 and

DSM for the LES of controlled flow shall be based on the different predictions

for the SGS stress. For the SGS dissipation, the NN1 and DSM have similar

predictions at z∗ = 0, but non-negligible differences are observed at z∗ = 0.5.

For example, the peak value from NN1 at x∕ℎ = 0.05 for the controlled flow

with � = 2.335ℎ are 70% of that from the DSM, but the NN1 produces big-

ger SGS dissipation than that of the DSM further downstream locations. Figure

4.11 shows the ratio of the SGS dissipation to molecular dissipation, where the

molecular dissipation is defined as �M = 2�S̄ijS̄ij , as also used by Akselvoll

& Moin (1995) in the LES of BFS flow at Reℎ = 28000. The ratios from the

NN1 andDSM show significantly different behavior for all streamwise locations,

clearly indicating that the NN1 has a different prediction performance from that

of the DSM. It is also noticeable that the kinks near y = ℎ are observed for

NN1, which are also observed in the LES with the Smagorinksy model in the

previous LES by Akselvoll & Moin (1995). They pointed out that these kinks

were originated from the small grid sizes in the wall-normal direction, which is

directly used for calculating the eddy viscosity, as �t = (CsΔ)2|S̄|, resulting in

very sensitive changes in this ratio. Although the grid size in wall-normal direc-

tion is not the input variable of the NN1, the relation between SGS stress and the

grid size seems to be implicitly included in the NN1, resulting in those kinks as

the Smagorinsky model. On the other hand, Akselvoll & Moin (1995) showed

that the DSM does not have these kinks, because the (CsΔ)2|S̄| is obtained by

the dynamic procedure which uses the ratio of test- to grid-filter sizes, not the

grid-filter size itself.
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Figure 4.12 shows the instantaneous vortical structures identified by the iso-

surfaces of �2 = −10U 2
0∕ℎ

2 (Jeong & Hussain 1995) from LESs with noSGS,

DSM and NN1. More vortical structures are observed from the noSGS due to

insufficient dissipation, as the LES without SGS model has only the molecular

dissipation. On the other hand, the instantaneous flow fields from LESs with

DSM and NN1 show similar vortical structures to each other, because the mag-

nitudes of the SGS dissipation from DSM and NN1 are similar to each other

albeit having different predictions for the SGS dissipation in detail.
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FIGURE 4.6. Spanwise distribution of the wall-pressure coefficient Cp with multiple

taps at several streamwise locations: (a) x∕ℎ = 1; (b) x∕ℎ = 2.5; (c) x∕ℎ = 3.5; (d)

x∕ℎ = 4.5; (e) x∕ℎ = 8; (f ) x∕ℎ = 12. The lines with cross, square and triangle

denote the uncontrolled flow, controlled flow with � = 4.67ℎ and controlled flow with

� = 2.335ℎ, respectively. The black, blue and red colors denote the experiment (Park

et al. 2007), DSM and NN1, respectively.
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(z∗ = 0.5). The black, blue and red colors denote the uncontrolled flow, controlled flow

with � = 4.67ℎ and controlled flow with � = 2.335ℎ, respectively.
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FIGURE 4.9. The SGS shear stress from the LES with DSM (dashed lines) and NN1

(solid lines): (a) at the center of the tab (z∗ = 0); (b) at the middle of two adjacent tabs

(z∗ = 0.5). The black, blue and red colors denote the uncontrolled flow, controlled flow

with � = 4.67ℎ and controlled flow with � = 2.335ℎ, respectively.
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(solid lines): (a) at the center of the tab (z∗ = 0); (b) at the middle of two adjacent tabs
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FIGURE 4.11. The ratio of SGS dissipation to molecular dissipation from the LES with

DSM (dashed lines) and NN1(solid lines): (a) at the center of the tab (z∗ = 0); (b) at

the middle of two adjacent tabs (z∗ = 0.5). The black, blue and red colors denote the

uncontrolled flow, controlled flow with � = 4.67ℎ and controlled flow with � = 2.335ℎ,

respectively.
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FIGURE 4.12. Instantaneous vortical structures from the LES with noSGS, DSM and

NN1: (a−c) uncontrolled flow; (d−f ) controlled flowwith � = 4.67ℎ; (g−i) controlled

flow with � = 2.335ℎ. (a, d, g), (b, e, ℎ) and (c, f , i) are the results of noSGS, DSM and

NN1, respectively.
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Chapter 5

Concluding remarks

In the present study, we applied a fully-connected neural network (NN) to the

modeling of a subgrid-scale (SGS) stress for turbulent flow over a backward-

facing step (BFS). Based on the NN-based SGS modeling conducted in the tur-

bulent channel flow (Part I, Park & Choi 2021), two different NNs were trained

with filtered DNS data atReℎ = 5100, where the input variables considered were

the strain-rate and velocity-gradient tensors at single grid point (NN1 and NN2,

respectively). The results in Part I indicated that the performance of NN for a

priori test is not consistent with that for the actual large eddy simulation (LES),

so we conducted a priori test only to check the convergence of the prediction

performance of NN by varying its numbers of hidden layers and neurons. A pri-

ori test showed that two hidden layers with 32 neurons per layer were sufficient

for both NN1 and NN2 to yield converged prediction performance for the mean

SGS stress and SGS dissipation. These NN1 and NN2 were applied to the LES

of BFS flow at Reℎ = 5100, and showed good prediction performance for the

reattachment length (Xr), where the NN1 and NN2 provided Xr = 5.96ℎ and

6.21ℎ, respectively (Xr = 6.0ℎ ± 0.15ℎ from the experiment by Jovic & Driver
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1994 and Xr = 6.17ℎ from the present filtered DNS). The predictions for root-

mean-square velocity fluctuation were also generally good as compared to those

from LESwith the dynamic Smagorinsky model (DSM). Then, we applied those

NNs to the LES at Reℎ = 5100 with a coarser grid resolution than that of the

training data. The results were generally good as compared to those from LES

with the DSM, where the NNs predicted the reattachment length better than the

DSM. Meanwhile, we additionally trained the NNs with two different filtered

DNS datasets together to improve the performance in the coarse-grid LES, as

done in Part I. However, the improvement in this LES was not significant, and

this might be because, unlike the turbulent channel flow, various filter sizes were

already used to construct one fDNS dataset.

To assess the performance of the NN for a higher-Reynolds-number flow, we

applied the NN1 trained at Reℎ = 5100 to LES at Reℎ = 24000. Although the

Reynolds number and grid resolution were not the same as those of the training

data, the LES on this Reynolds number provided fairly good results, compared to

those from the experiment (Park et al. 2007) and LES with DSM. For example,

the reattachment length was better predicted by the NN1 (Xr = 6.02ℎ) than by

the DSM (Xr = 6.45ℎ) comparing to that of the experiment (Xr = 5.8ℎ±0.25ℎ).

Therefore, the NN trained at a lower-Reynolds-number BFS flow maintained

its prediction performance for a high-Reynolds-number BFS flow. This might

indicate that in the separated flows, the relation between the SGS stress and strain

rate did not vary significantly by the Reynolds number. Finally, we applied the

NN1 for the LES of controlled BFS flow by multiple taps installed at the step

edge. At the Reynolds number of Reℎ = 24000, we used taps having similar

geometries to those of the experiment (Park et al. 2007), and the LES with NN1

could provide good results, where the amount of reduction of the reattachment

length was better predicted by NN1 than by DSM.
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In the present study, an NN-based SGS modeling was developed for tur-

bulent channel (Part I) and backward-facing-step (Part II) flows and showed a

promising LES resulting using the developed model. However, limitations of

NN-based SGS modeling or NN-based LES was also clearly observed. So, let

us discuss current limitations of NN-based LES and future research directions.

Some limitations were also reported in Wollblad & Davidson (2008), Gamahara

& Hattori (2017) and Zhou et al. (2019). First, the performance of NN-based

SGS model depends on the input variables. In the present study, we considered

the filtered strain-rate tensor S̄ij and filtered velocity gradient tensor �̄ij as in-

put variables, and showed that S̄ij performs better than �̄ij in turbulent channel

flow. Since the SGS stress tensor �ij is a symmetric tensor, one may also con-

sider other combinations of S̄ij and R̄ij (filtered rotation rate tensor) as input

variables, as described in §2.1. So, a further study in this direction is needed.

Second, the results of a priori and a posteriori tests on NN-based SGS mod-

els are inconsistent with each other. Traditional physics-based SGS models have

also the same inconsistency. That is, some traditional SGS models having a poor

performance in a priori test perform very well in a posteriori test. However,

this poor performance in a priori test does not mean the failure of such models,

but indicates the fundamental limitation of a priori test itself (Park et al. 2005).

The present NN-based SGS model is constructed using a database containing

static (i.e., instantaneous) flow information, thus lacking dynamic (i.e., tempo-

ral) information of filtered flow variables which is important in actual LES (i.e.,

a posteriori test). Therefore, the present model is not free from the inconsistency

observed in traditional SGS models, and a database containing more static in-

formation does not necessarily provide better output. In this regard, a different

approach of constructing NN-based SGS models may be searched for. In tradi-

tional physics-based SGS modeling, Meneveau et al. (1996) proposed to accu-
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mulate the flow information over flow pathlines and constructed a Lagrangian

dynamic SGS model. Thus, a Lagrangian approach or reinforcement learning

with a target statistics may be a way to overcome this inconsistency. To the best

of our knowledge, there has been no attempt of constructing such an NN-based

SGS model. This approach may provide an improved performance in NN-based

LES. Third, an NN-based SGS model should be trained by databases containing

different flow characteristics such as shear-driven, rotation-driven, and separated

flow characteristics. The present SGS model was trained by a database of turbu-

lent channel flow, and thus may not be applicable to other types of flows. Thus,

more databases should be generated and used for training an NN. Here, we do

not mean that almost all the flow databases should be trained for successful LES,

but we suggest that some representative flow databases such as rotating channel

flow, flow over a backward-facing step, flow over a circular cylinder and jet may

be sufficient to build a successful NN for flow inside/over a complex geometry.

However, how to combine different flow databases in an NN-based SGS model

is still a difficult problem. The present NN-based SGS model was trained by the

input and output variables normalized by wall units, but it may not be applica-

ble to complex flow (e.g., a circular cylinder) because this flow cannot be scaled

in wall units. To overcome this limitation, one should develop a universal non-

dimensionalization of input and output variables for different flow types. This

is an important task for the use of NN-based SGS model to flow inside/over a

complex geometry.
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Appendix A

Parametric study on the neural-network-based SGS

model in turbulent channel flow

In the present appendix, results of several parametric studies on the neural net-

work (NN) are presented, where the NN is trained with fDNS database of the

turbulent channel flow at Re� = 178. Details of fDNS database are presented

in Part I §2.2. For five NNs trained with different input variables listed in Part I

table 2.1, we first test the prediction performance of those NNs by varying the

numbers of training data and hidden layers. Here, the number of neurons per

hidden layer is fixed at 128, which are comparable or larger than those used in

the previous NN-based SGS modeling in turbulent channel flow (Gamahara &

Hattori 2017; Stoffer et al. 2020). Figure A.1 shows the mean SGS shear stress

⟨�xy⟩ predicted by NNs from a priori test, where those NNs have two hidden

layers. Here, NfDNS is the number of instantaneous fDNS flow fields used for

collecting training data, and one fDNS field contains 6,208 training data. For

NN1 and NN2,NfDNS = 50 is sufficient, butNfDNS = 200 is required for NN3.

Figure A.2 shows ⟨�xy⟩ predicted by NN1 - NN5 from a priori test, where four

different number of hidden layers (Nℎl = 1, 2, 3, 4) are considered. A single hid-
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den layer is sufficient for NN1 and NN2, but more than one hidden layer seems

to be required for NN3 and NN5. Finally, we test the performance of NN1 - NN5

by varying bothNfDNS andNℎl, whereNfDNS = 200, 500 andNℎl = 2, 3, 4 are

considered. Figure A.3 shows ⟨�xy⟩ from a priori test, and figures A.4 and A.5

show themean velocity and Reynolds shear stress from a posteriori test. Compu-

tational details for a posteriori test are the same as those for LES178 case in Part

I §3.2. The backscatter clipping by eq. (3.1) in Part I is used for LES with NN3 -

NN5, because more hidden layers and training data do not reduce the backscat-

ter produced by NN3 - NN5. For all NNs considered, two hidden layers and 200

fDNS fields are sufficient for showing converged prediction performance for the

statistics considered. Therefore, Nℎl = 2 and NfDNS = 200 are taken for the

present study for all NNs considered in turbulent channel flow.

For NN3 - NN5, the numbers of input grid points in x and z directions, nx
and nz respectively, have an effect on the prediction performance for the SGS

stresses. Therefore, we test NN3 - NN5 for four different numbers of the input

grid points nx = nz = 3, 5, 7, 9. Here, we also test two additional NNs (NN6 and

NN7 hereafter) which have different input variables from those of NN3 - NN5,

where NN6 and NN7 use only velocity components ūi at nx × nz and nx ×3(y) ×

nz input grid points, respectively. Like NN3 - NN5, NN6 and NN7 predict six

components of the SGS stress tensor, which is located at the center of input grid

points considered. Figures A.6-A.8 show the results of a priori and a posteriori

tests for NN3 - NN7 with different nx(= nz). Here, the backscatter clipping is

used for LES with those NNs because more input grid points for NN3 - NN7

do not make LES with these NNs stable. For NN3 - NN7 except NN6, nx = 3

provides fairly good predictions for ⟨�xy⟩ in a priori test. In the actual LES, nx =

3 is sufficient for showing good prediction performance for the mean velocity

and Reynolds shear stress for all NNs considered. Therefore, we determine to
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use nx(= nz) = 3 for NNs which use multiple input grid points, and the use of

nx(= nz) = 3 for NN3-NN5 is enough to compare their prediction performance

to those of NN1-NN2 in Part I.

We have investigated the effects of bias, activation function, and differently

initialized weights on the performance of the NN-based SGS model. For NN1

- NN5, we test three different usages of bias: 1) using bias at both hidden and

output layers (Casebs1), 2) no bias at all layers (Casebs2), 3) using bias only at

hidden layers (Casebs3). Figures A.9 and A.10 show the effect of bias on the

mean SGS and Reynolds shear stresses from a priori and a posteriori tests, re-

spectively. For all NNs considered, the bias has little effect on the prediction

performance for those statistics. Figures A.11 and A.12 show the effect of acti-

vation function fN on the mean SGS and Reynolds shear stresses from a priori

and a posteriori tests, respectively, where ReLU, sigmoid and hyperbolic tangent

functions are used. For all NNs considered, the prediction performance of NNs

by different activation functions is almost similar. However, figure A.13 shows

that the convergence of the loss function for the test dataset is faster using ReLU

than using other functions, where the loss function is defined as eq. (2.4) in Part

I. Therefore, we use ReLU as the activation function for all NNs considered.

Figures A.14 and A.15 show the mean SGS and Reynolds shear stresses from a

priori and a posteriori tests, respectively, where four different random seeds are

used for the random initialization of trainable weights in NNs.

The output of NNs in Part I is six components of the SGS stress tensor �ij .

It is also possible to train six NNs separately for predicting each component

of SGS stress tensor, as done in previous study (Gamahara & Hattori 2017).

Figure A.16 shows the effect of the different number of output components on

the prediction performance of NN1 and NN2 for the ⟨�xy⟩ and ⟨"SGS⟩ in a priori

test. For those NNs, Case6o denotes the NN whose output is six components of
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�ij , whereas Case1o denotes the NN whose output is one component of �ij . Note

that to predict six components of �ij , Case1o requires six NNs, resulting in more

computational time for the prediction of �ij than with Case6o. Figure A.17 shows

the correlation coefficients between true and predicted �ij and �SGS fromCase1o

and Case6o. Overall, the correlation coefficients from Case6o are slightly lower

than those from Case1o, but both cases have similar prediction performance for

the mean SGS statistics. So, considering the computational cost in LES, we train

NNs to predict six components of �ij at once.

The performance of an NN depends on the loss function to be minimized.

We test several loss functions, which are defined as follows:

LFr = 1
2N

1
6

N
∑

3
∑

i≤j

(

�fDNSij − �Mij
)2
; (A.1)

LF1 = 1
2N

1
6

N
∑

3
∑

i≤j

|

|

|

�fDNSij − �Mij
|

|

|

; (A.2)

LF2 = 1
2N

N
∑

(

"fDNSSGS − "
M
SGS

)2; (A.3)

LF3 = LFr + LF2; (A.4)

LF4 = 1
2N

N
∑

[

0.5
(

"fDNSSGS +
|

|

|

"fDNSSGS
|

|

|

)

− "MSGS
]2
; (A.5)

LF5 = LFr + LF4, (A.6)

where LFr is the reference loss function used in Part I,N is the number of mini-

batch data. Here, the L2 norm regularization term of weights is used for all loss

functions tested, but this term is omitted in above equations for clarity. Figures

A.18-A.20 show the results of a priori test, showing the effect of different loss

functions on the performance. The NNs trained with LF1 and LF3 do not show a

significant difference in prediction performance from that with LFr. On the other

hand, NNs with LF2 predict well the SGS dissipation, but show poor predictions
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for the SGS shear stress. For NNs with LF4 and LF5, the backscatter is reduced,

whereas the prediction performance for the SGS shear stress and dissipation is

worse than that with LFr. In the actual LES, NNs with LF1 and LF3 provide

almost similar results to those from NNs with LFr. For LF2, LES with NN1 and

NN2 shows numerical instability which does not occur with LFr. Figure A.21

shows the mean velocity profile and Reynolds shear stress from LES with NNs

trained by LFr, LF4 and LF5. In the case of LF4, all LES with NN1-NN5 do not

diverge without backscatter clipping, but LESs with NN1 and NN2 provide very

poor predictions for the mean velocity. In the case of LF5, LESs with NN3-NN5

diverge unless the backscatter clipping is used, and the LES results with LF5 are

similar to those with LFr. Overall, NNs trained with loss functions of LF1-LF5

do not show better prediction performance in LES than those with LFr.
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FIGURE A.18. Mean SGS shear stress predicted by NN1 - NN5 with different loss

functions (a priori test at Re� = 178): (a) NN1; (b) NN2; (c) NN3; (d) NN4; (e) NN5.
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FIGURE A.19. Mean SGS dissipation predicted by NN1 - NN5 with different loss

functions (a priori test at Re� = 178): (a) NN1; (b) NN2; (c) NN3; (d) NN4; (e) NN5.
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FIGURE A.20. Mean backscatter predicted by NN1 - NN5 with different loss functions

(a priori test at Re� = 178): (a) NN1; (b) NN2; (c) NN3; (d) NN4; (e) NN5.
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Appendix B

Normalizationmethodbased on a resolved-scale

dissipation toward auniversalNN-basedSGSmodel

In Part I, we use the wall unit normalization for the input and output variables of

the NN in TCF, so this NN cannot be applied to other flows such as homogeneous

isotropic turbulence (HIT). Therefore, to overcome this limitation, the normal-

ization (or non-dimensionalization) of input and output variables shall be impor-

tant, and a universal normalization method should be developed for the general

application of an NN-based SGS model to LES of flows different from trained

data. In this appendix, a normalization method based on the resolved-scale vis-

cous dissipation is described, and using this normalization, an NN-based SGS

model trained with TCF (HIT) database is applied to the LES of HIT (TCF).

Figure B.1 shows the invariants �b and �b of the Reynolds-stress anisotropy

tensor bReyij fromDNS of TCF atRe� = 178 and the SGS-stress anisotropy tensor

bSGSij from fDNS of TCF, together with the Lumley triangle (Pope 2000), where

bReyij =

⟨

u′iu
′
j

⟩

xzt

⟨
u′ku

′
k⟩xzt

− 1
3�ij , b

SGS
ij = ⟨

�ij⟩xzt
⟨�kk⟩xzt

− 1
3�ij . Unless otherwise mentions, the

fDNS of TCF are obtained with the same filter sizes as those described in Part

I §2.2. The invariants �b and �b of an anisotropy tensor bij are defined as 3�2b =
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−�(1)b �
(2)
b − �(2)b �

(3)
b − �(3)b �

(1)
b , 2�3b = �

(1)
b �

(2)
b �

(3)
b , where �(i)b ’s are eigenvalues of

tensor bij . The invariants of isotropic turbulence are (�b, �b) = (0, 0), and further

details for the state of turbulence by �b and �b are described in Pope (2000).

Figure B.1 indicates that the state of turbulence near the channel center is close

to isotropic for not only bReyij but also bSGSij . This may indicate that an NN trained

with TCF database can be applied to LES of HIT with a proper normalization

method. On the other hand, an NN trained with HIT database may work for LES

of TCF by using a wall-damping function, considering that the Smagorinsky

model works well for HIT but the wall-damping function is required for this

model in LES of TCF.

For the normalization (non-dimensionalization) method which is applicable

to both HIT and TCF flows, the length and velocity scales used in the normal-

ization must be able to be calculated from both HIT and TCF flows. Among

various scales for turbulent flows, the Kolmogorov scales represent the smallest

turbulent scales, and the Kolmogorov scales can be calculated in any turbulent

flow regardless of the geometry around the flow. Inspired by the universality of

the Kolmogorov scales, but using only information of the resolved flow in LES,

a resolved-dissipation length and velocity scales, lrd and urd, respectively, are

defined as follows: lrd =
(

�3∕"̄
)0.25, urd = (�"̄)0.25, � is kinematic viscosity,

and "̄ = 2�⟨S̄′ijS̄
′
ij⟩. These definitions are similar to those of the Kolmogorov

length and velocity scales, but unlike the Kolmogorov scales, the filtered strain

rate fluctuation S̄′ij is used to represent the dissipation of the resolved flows.

Figure B.2 shows lrd and urd from DNS and fDNS of TCF, normalized by

characteristics grid size Δc and resolved turbulent kinetic energy ke, respec-

tively, where Δc = (ΔxΔyΔz)1∕3 and ke = 1∕3(ūrms + v̄rms + w̄rms). Note

that lrd and urd of DNS are the same as Kolmogorov length and velocity scales.

The lrd∕ΔHIT and urd∕
√

ke from DNS of forced HIT at the Reynolds number of
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Re� = u′�∕� = 73 are about 0.48 and 0.19, respectively, where 1283 grid points

are used for the DNS, u′ is the rms velocity fluctuation, � is the Taylor micro

scale, andΔHIT is the grid size of the DNS. Computational details for the DNS of

HIT is given in appendix C. In the case of fDNS of HIT,
(

lrd∕ΔHIT, urd∕
√

ke
)

=

(0.13, 0.17), (0.11, 0.18), (0.08, 0.18) for the fDNS with grid points of 323, 243,

163, respectively, where the spectral cutoff filter is applied to DNS flow fields to

obtain fDNS. Although lrd and urd are varied in wall-normal direction in TCF,

their order of magnitude are similar to those in HIT for both DNS and fDNS

considered.

We first apply an NN trained with fDNS of TCF to LES of forced HIT whose

grid points are 243 or 323. The NN has the input of filtered strain rate tensor at

a single grid point, and the output is six components of SGS stress tensor. All

flow variables used for training this NN are non-dimensionalized by lrd and urd
obtained from fDNS of TCF. During LES of HIT, the input and output of this

NN are re-normalized using lrd and urd from fDNS of HIT having the same grid

points as those of LES. Figure B.3 shows the three-dimensional energy spec-

trum from LES of HIT. For the LES, we do not use any special treatment such

as backscatter clipping. The NN model trained with fDNS of TCF shows good

prediction for the energy spectrum, indicating that the normalization based on

lrd and urd works well.

Then, we test an NN trained with fDNS of HIT in LES of TCF whose grid

points are 16(x) × 49(y) × 16(z). The NN has the input of filtered strain rate

tensor at a single grid point, and the output is six components of SGS stress ten-

sor. We apply two NNs to the LES of TCF, where one is trained with TCF flow

using wall unit normalization, and the other is trained with HIT flow using the

normalization based on lrd and urd. The former NN (TCFNN hereafter) is the

same NN1 in Part I. For the latter NN (HITNN hereafter), the input and output

160



variables are re-normalized using lrd and urd from fDNS of TCF, and the wall

damping function of 1 − exp−(y+∕25)
3
is multipled to the predicted SGS stress

by the NN. Figure B.4 shows the statistics of various turbulence quantities from

LES of TCF with TCFNN and HITNN. The LES with HITNN shows an excel-

lent prediction for the mean velocity, and good predictions for the turbulence

statistics. For the mean SGS shear stress, the HITNN underpredict it ,but the y+

location of its maximum value is captured. Therefore, the NNmodel trained with

fDNS of HIT can be applied to the TCF with the normalization based on lrd and

urd, showing fairly successful predictions for the mean velocity and turbulence

statistics. The present results suggest that a general normalization of flow vari-

ables for different types of turbulent flow may be possible, and this important

subject should be further investigated in the near future.
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DNS and fDNS.
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fDNS; +, DSM; ⚪, no SGS model; , TCFNN; , HITNN.

163



Appendix C

Computational details forDNSof a forced

homogeneous isotropic turbulence

DNS database of a forced homogeneous isotropic turbulence (HIT) is required to

train an NN in appendix B, so we performance DNS of HIT using the dealiased

pseudo-spectral method. The numbers of grid points used are 1283 on a periodic

box whose sizes are
(

2�Lref
)3. The spatial resolution parameter kmax� is 1.5

which is good resolution for the smallest scales (Pope 2000), where kmax is the

maximum wavenumber and � is the Kolmogorov length scale. For the time inte-

gration, third-order Runge-Kutta and second-order Crank-Nicolson schemes are

applied to the convection and viscous terms, respectively. The simulation starts

with a random-phase Gaussian field that satisfies the k−5∕3 energy spectrum. The

large-scale forcing fi at a low wavenumber (k ≤ 2) is added to the momentum

equations to retain statistically stationary HIT. The fi is defined as

f̂i (k) = "f
ûi (k)

∑

k≤2
|

|

ûi (k)||
2
, (C.1)

where x̂ is a Fourier coefficient of a physical variable x, and "f is the prescribed

dissipation rate. The Reynolds numberRe� = u′�∕� is approximately 73, where
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FIGURE C.1. Three dimensional energy spectrum from DNS of a forced HIT (solid

line). Vertical dashed lines indicate cutoff wavenumbers for filtering.

u′ is the rms velocity fluctuation, � is the Taylor micro scale. The integral length

scaleLI is 1.02Lref and u′ is 1.24uref . The Taylor micro andKolmogorov scales

are � = 0.39Lref and � = 0.02Lref , respectively. The dissipation rate "f is set

to 1 non-dimensionalized by Lref and uref .

Figure C.1 shows energy spectrum normalized by the Kolmogorov scales,

together with three cutoff wavenumbers kc normalized by Lref . The kc = 32

is within the dissipation range, so LES with this cutoff wavenumber is a well-

resolved LES. Since LES with coarse grid resolution shows the performance of

the SGSmodel more clearly than LES with fine grid resolution, we preform LES

of HIT with maximum wavenumber smaller than kc = 32 in appendix B.
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Appendix D

SGS stress fromNNmodel in laminar shear flow

The SGS stress is theoretically zero in laminar shear flow. To investigate whether

the NN-based SGS model provides zero SGS stress in laminar shear flow or not,

we conduct a numerical experiment using a prescribed velocity profile. The ex-

periment is conducted with the NNmodel trained with BFS flow atReℎ = 5100,

where the input is the strain-rate tensor (see Part II §2.3 for details about this NN

model). The velocity profile used is the mean streamwise velocity profile at the

inlet of BFS flow at Reℎ = 5100, and the wall-normal and spanwise velocities

are zero. Figure D.1(a) shows the prescribed velocity profile, and figures D.1(b)

shows the SGS shear stresses predicted by DSM, CSM, and NN model, where

CSM is the Smagorinsky model with Cs = 0.1. The SGS shear stress is exactly

zero from DSM along y direction, whereas the stress does not vanish with CSM.

The SGS shear stress fromNNmodel is close to zero, but the stress is not exactly

zero, as shown in figure D.1(c). This is one of the limitations of NN model to be

overcome, and special treatments should be developed so that the SGS stresses

are predicted to be exactly zero for certain input variables such as laminar shear

flow.
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인공신경망을 이용한 아격자스케일 응력 모델링과

난류 채널 및 후향 계단 유동에의 적용

서울대학교대학원

기계항공공학부

박 종 환

요약

본연구에서는난류채널유동과후향계단주위난류유동에대해,필터링된

유동변수를입력변수로하여아격자스케일 (subgrid scale, SGS)응력을예측하

는인공신경망기반 SGS모델을개발하였다.

난류 채널 유동의 경우, 필터링 된 직접수치모사 데이터베이스(Re� = 178)

를사용하여인공신경망기반 SGS모델을개발하고,본모델의성능을평가하기

위해 사전 및 사후 테스트를 수행하였다. 사전 테스트에서, 여러 격자점에 있는

필터링된속도기울기또는속도변형률텐서를입력변수로하는인공신경망모델

은실제 SGS응력과높은상관계수를보이는 SGS응력을예측하였다.그러나이

모델은 사후 테스트에서 불안정한 수치계산 결과를 보여주었고, LES 솔루션을

얻기위해서는후방산란(backscatter)을강제적으로없애는등의임의적인처리

를 필요로 했다. 반면, 단일 격자점에서의 필터링 된 속도변형률 텐서를 입력변

수로한인공신경망모델은,사전테스트에서실제값과낮은상관계수를보이는

SGS응력을예측하였으나,사후테스트에서평균속도프로파일과 Reynolds전
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단응력에대해우수한예측성능을보였다.더높은Reynolds수에서인공신경망

모델의 성능을 확인하기 위하여, Re� = 178에서 훈련된 인공신경망 기반 SGS

모델(입력변수: 단일 격자점의 필터링 된 속도변형률 텐서)을, Re� = 723의 큰

에디 모사에 적용하였다. 벽 단위 격자 크기를 학습데이터의 것과 같도록 설정

한경우,인공신경망모델의큰에디모사는필터링된직접수치모사의솔루션과

상당히잘일치하였다.한편,벽단위격자크기가훈련데이터의것과다른경우,

인공신경망모델의성능이저하되었으나,큰에디모사의격자크기보다격자크

기가 큰 그리고 작은 학습데이터를 한꺼번에 인공신경망 학습에 사용하게 되면

좋은성능을보여주었다.

후향 계단 주위 난류 유동의 경우, Reℎ = 5100의 필터링 된 직접수치모사

데이터베이스를 사용하여 인공신경망 기반 SGS 모델을 개발하였다. 인공신경

망의입력변수로는,난류채널유동의큰에디모사에서안정적이고좋은성능을

보여준,단일격자점의필터링된속도기울기그리고속도변형률을각각시험해

보았다. Reℎ = 5100에서 큰 에디 모사를 수행한 결과, 두 개의입력변수로 각각

학습된 인공신경망 모델 모두 재부착 길이 및 난류 섭동량에 대해서, 가장 널리

사용되는 동적 Smagorinksy 모델(DSM)과 비교하여 좋은 예측 성능을 보였다.

속도변형률을 입력변수로 하는 인공신경망 모델을 Reℎ = 24000의 큰 에디 모

사에적용한결과, DSM을사용한큰에디모사와비교하여여전히좋은결과를

보여주었다. 마지막으로, 후향 계단 모서리에 탭이 설치된 유동에 대한 큰 에디

모사를 수행하였다. 그 결과, SGS 모델을 사용하지 않은 경우에는, 평균속도와

난류섭동량에대해기존실험결과및DSM을사용한 LES와매우큰차이를보였

으나,인공신경망모델은DSM과유사한유동예측성능을보여주었으며,재부착

길이감소량의경우,인공신경망모델이 DSM보다실험값과더잘일치하였다.

주요어: 큰 에디 모사, 아격자스케일 모델링, 기계학습, 머신러닝, 인공신경망,

난류채널유동,후향계단유동

학 번: 2015-20699
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