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Abstract

A fully-connected neural network (NN) is used to develop a subgrid-scale
model which maps the relation between the subgrid-scale stress and filtered flow
variable in a turbulent channel (Part I) and backward-facing-step (Part II) flows.

For turbulent channel flow, DNS (direct numerical simulation) database of
Re, = 178 is used to develop an NN-based subgrid-scale (SGS) model, and
a priori and a posteriori tests are performed to investigate its prediction per-
formance. In a priori test, an NN-based SGS model with the input of filtered
velocity gradient or strain rate tensor at multiple grid points provides high cor-
relation coefficients between the true and predicted SGS stresses. However, this
model provides an unstable solution in a posteriori test, as the model produces
a non-negligible backscatter which is known to induce numerical instability in
large eddy simulation (LES). To ensure a stable LES solution with this model, a
special treatment like backscatter clipping is required. On the other hand, an NN-
based SGS model with the input of filtered strain rate tensor at a single grid point
shows an excellent prediction performance for the mean velocity and Reynolds

shear stress in a posteriori test, although it gives low correlation coefficients be-



tween the true and predicted SGS stresses in a priori test. This NN-based SGS
model trained at Re, = 178 is applied to a turbulent channel flow at Re, = 723
using the same grid resolution in wall units, providing fairly good agreements of
the solutions with the filtered DNS data. When the grid resolution in wall units is
different from that of trained data, this NN-based SGS model does not perform
well. This is overcome by training an NN with the datasets having two filters
whose sizes are larger and smaller than the grid size in large eddy simulation.
For turbulent flow over a backward-facing step (BFS), an NN-based SGS
model is developed with the filtered DNS data at Re;, = 5100. Two input vari-
ables, the filtered strain rate and velocity gradient tensors at a single grid point,
respectively, are adopted, where the NN-based SGS models with these inputs
provide a stable LES solution in the turbulent channel flow without any spe-
cial treatment. In the LES at Re, = 5100, those NN-based SGS models show
similar performance, and provide good predictions for the reattachment length
and root-mean-square velocity fluctuations. Then, we assess the performance
of the NN-based SGS model with the input of filtered strain rate tensor for the
LES at Re;, = 24000, and this model provides fairly good results, compared to
those from the LES with dynamic Smagorinsky model (DSM). Finally, we ap-
ply this model for LES of controlled BFS flow with multiple taps installed at the
step edge. LES with this NN-based SGS model predicts the amount of reduc-
tion in the reattachment length better than by LES with DSM, showing that the
NN-based model trained with uncontrolled BFS flow maintains its prediction

performance in LES of controlled BFS flow.

Keywords: Large eddy simulation, subgrid-scale modeling, machine learning,
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Part1.

Modeling of the subgrid-scale stress with a neural

network: application to turbulent channel flow

This part is based on “Park, J., & Choi, H. 2021 Toward neural-network-based large eddy

simulation: application to turbulent channel flow. J. Fluid Mech. 914, A16".



Chapter 1

Introduction

In large eddy simulation (LES), the effect of the subgrid-scale (SGS) velocity
fluctuations on the resolved one should be modeled, and thus the aim of SGS
modeling is to find the relations between the resolved flow variables and SGS
stresses. A conventional approach for SGS modeling is to approximate the SGS
stresses with the resolved flow variables in an arithmetic form based on turbu-
lence theory and hypothesis. For example, an eddy viscosity model is based on
the Boussinesq hypothesis that linearly relates the SGS stress tensor 7 with the
resolved strain rate tensor S, i.e., T — %tr (ol = —2\/,3, where I is the identity
tensor, and v, is an eddy viscosity to be modeled with the resolved flow variables
(see, for example, Smagorinsky 1963; Nicoud & Ducros 1999; Vreman 2004;
Nicoud et al. 2011; Verstappen 2011; Rozema et al. 2015; Trias et al. 2015; Sil-
vis et al. 2017). Some models dynamically determine the coefficients of the eddy
viscosity models (Germano et al. 1991; Lilly 1992; Ghosal et al. 1995; Piomelli
& Liu 1995; Meneveau et al. 1996; Park et al. 2006; You & Moin 2007; Lee
et al. 2010; Verstappen et al. 2010). Other types of SGS model include the sim-
ilarity model (Bardina ef al. 1980; Liu et al. 1994; Domaradzki & Saiki 1997),



the mixed model (Bardina et al. 1980; Zang et al. 1993; Vreman et al. 1994; Liu
et al. 1994, 1995; Salvetti & Banerjee 1995; Horiuti 1997; Akhavan et al. 2000),
and the gradient model (Clark et al. 1979; Liu et al. 1994). These models have
been successfully applied to various turbulent flows, but there are still drawbacks
to overcome. For example, the eddy viscosity model always produces either the
wrong SGS stresses or the wrong energy spectrum Jiménez & Moser (2000).
In addition, the eddy viscosity model is purely dissipative, and thus the energy
transfer from subgrid to resolved scales (i.e., backscatter) cannot be predicted.
On the other hand, the scale similarity model provides the backscatter but does
not dissipate energy sufficiently, and thus simulations often diverge or produce
inaccurate results. Therefore, an additional eddy-viscosity term is introduced and
usually coupled with the scale similarity model to properly dissipate the energy
(Bardina et al. 1980; Liu et al. 1994; Langford & Moser 1999; Sarghini et al.
1999; Meneveau & Katz 2000; Anderson & Domaradzki 2012). The dynamic
version of the eddy viscosity model can predict local backscatter with negative
v, but an averaging procedure or ad hoc clipping on negative v, is required in ac-
tual LES to avoid numerical instability (Germano et al. 1991; Lilly 1992; Ghosal
etal. 1995; Meneveau et al. 1996; Park et al. 2006; Thiry & Winckelmans 2016).

An alternative approach for SGS modeling is to use high-fidelity DNS (direct
numerical simulation) data. The optimal LES (Langford & Moser 1999; Volker,
Moser & Venugopal 2002; Langford & Moser 2004; Zandonade, Langford &
Moser 2004; Moser et al. 2009), based on the stochastic estimation (Adrian et al.
1989; Adrian 1990), is such an approach, where a prediction target, e.g., the SGS
force (divergence of the SGS stress tensor), is expanded with input variables (ve-
locity and velocity gradients). The coefficients of the input variables are found
by minimizing the mean-squared error between the true and estimated values of

the prediction target. Another example is to use a machine-learning algorithm



such as the fully connected neural network (FCNN). The FCNN is a nonlinear
function that maps the predefined input variables and prediction target, where the
target can be the SGS stresses or SGS force. Like the optimal LES, the weight
parameters of the FCNN are found by minimizing a given loss function such
as the mean-squared error. In the case of two-dimensional decaying isotropic
turbulence, Maulik er al. (2018) applied an FCNN-based approximate decon-
volution model (Stolz & Adams 1999; Maulik & San 2017) to LES, where the
filtered vorticity and streamfunction at multiple grid points were the inputs of
FCNNs and the corresponding prediction targets were the deconvolved vorticity
and streamfunction, respectively. This FCNN-based LES showed a better pre-
diction of the kinetic energy spectrum than LES with the dynamic Smagorinsky
model (DSM, Germano et al. 1991; Lilly 1992). Maulik et al. (2019) used the
same input together with eddy-viscosity kernels, but had the SGS force as the
target. In a posteriori test, this FCNN model reasonably predicted the kinetic
energy spectrum even though the prediction performance was not much better
than those of the Smagorinsky and Leith models (Leith 1968) with the model
coefficients of C; = 0.1 — 0.3 in v, = (C,A)?|S|, where A is the grid spac-
ing and |S| = /25, jS‘i ;- Pawar er al. (2020) trained an FCNN to predict SGS
stress directly with the inputs of &, Vit, and V2iz, where i is the filtered velocity.
They only conducted a priori test, and showed that using inputs at multiple grid
points provided better prediction performance for SGS stresses than using inputs
at a point. In the case of three-dimensional forced isotropic turbulence, Vollant
et al. (2017) used an FCNN with the target of the SGS scalar flux divergence
V- (ﬂ - ﬁ([)) and the input of S, where ¢ is the filtered passive scalar. They
showed that the results from FCNN-based LES were very close to those from
the filtered DNS. Zhou et al. (2019) reported that using the filter size as well

as the velocity gradient tensor as the input variables was beneficial to predict



the SGS stresses for the flow having a filter size different from that of trained
data. Xie et al. (2020a) used an FCNN to predict the SGS force with the in-
put of Vi at multiple grid points, and this FCNN performed better than DSM
for the prediction of energy spectrum. In the case of three-dimensional decaying
isotropic turbulence, Wang et al. (2018) adopted the velocity and its first and sec-
ond derivatives for the input of FCNN to predict the SGS stresses, and showed
better performance in a posteriori test than that of DSM. Beck et al. (2019) used
a convolutional neural network (CNN) to predict the SGS force with the input
of the velocity in whole domain, and showed in a priori test that the CNN-based
SGS model predicted the SGS force better than an FCNN-based SGS model did.
In the case of compressible isotropic turbulence, Xie et al. (2019a) used FCNNs
to predict SGS force and divergence of SGS heat flux, respectively, with the in-
puts of Vii, VZia, VT, V*T, p, and Vj at multiple grid points, where p is the
fluid density, and & and T are the mass-weighting-filtered velocity and temper-
ature, respectively. Xie et al. (2019b) applied FCNNss to predict the coefficients
of a mixed model with the inputs of |&|, 0, NG S'US‘U, |VT |, where |®|,

0, &,

and S, ; are the mass-weighting-filtered vorticity magnitude, velocity di-
vergence, velocity gradient tensor, and strain rate tensor, respectively. Xie et al.
(2019¢) trained FCNNs with Vii, VZii, VT, and V2T at multiple grid points as
the inputs to predict SGS stresses and SGS heat flux, respectively. Xie et al.
(2020c¢) used FCNNss to predict SGS stresses and SGS heat flux with the inputs
of Vit, Vi, VT, and VT at multiple grid points, where the filter size of A is twice
that of A. They (Xie et al. 2019a,b,c, 2020c) showed that the FCNN-based LES
provided more accurate kinetic energy spectrum and structure function of the
velocity than those based on DSM and dynamic mixed model.

Unlike for isotropic turbulence, the progress in LES with an FCNN-based

SGS model has been relatively slow for turbulent channel flow. Sarghini, de Fe-



lice & Santini (2003) trained an FCNN with the input of filtered velocity gradient
and ﬁl’ﬁ; to predict the model coefficient of the Smagorinsky model for a turbu-
lent channel flow, where ﬁ: is the instantaneous filtered velocity fluctuations. Pal
(2019) trained an FCNN to predict v, in the eddy viscosity model with the in-
put of filtered velocity and strain rate tensor. In Sarghini er al. (2003) and Pal
(2019), however, FCNNs were trained by LES data from traditional SGS mod-
els, i.e., mixed model (Bardina et al. 1980) and DSM, respectively, rather than by
filtered DNS data. Wollblad & Davidson (2008) trained an FCNN with filtered
DNS data to predict the coefficients of the truncated POD (proper orthogonal
decomposition) expansion of the SGS stresses with the input of 12§ , wall-normal
gradient of &, filtered pressure (p), and wall-normal and spanwise gradients of
p. They showed from a priori test that the predicted SGS stresses were in good
agreements with those from filtered DNS data. However, the FCNN alone was
unstable in a posteriori test, and thus the FCNN combined with the Smagorin-

sky model was used to conduct LES, i.e., 7;; = ch’.FjCNN +1- cb)risjmag, where

TF_CNN
tj

s
and 7>
ij

were the SGS stresses from the FCNN and Smagorinsky model
(with C; = 0.09), respectively, and ¢, was a weighting parameter needed to be
tuned. Gamahara & Hattori (2017) used FCNNss to predict the SGS stresses with
four input variable sets, { Vi, y}, {Vir}, {._9, R, y}, and {S, y}, where R is the
filtered rotation rate tensor, and y is the wall-normal distance from the wall. They
showed in a priori test that the correlation coefficients between the true and pre-
dicted SGS stresses from { Vi, y} were highest among four input sets, and even
higher than those from traditional SGS models (gradient and Smagorinksy mod-
els). However, a posteriori test (i.e., actual LES) with { Vi, y} did not provide
any advantage over the LES with the Smagorinsky model. Stoffer et al. (2020)
used FCNNs to predict the SGS stresses with the input of # at 5 X 5 X 5 points.

This FCNN provided SGS stresses highly correlated with the true one in a priori



test, but it produced numerically unstable results in actual LES. This kind of the
inconsistency between a priori and a posteriori tests had been also observed dur-
ing the development of traditional SGS models (Liu ef al. 1994; Vreman, Geurts
& Kuerten 1997; Park, Yoo & Choi 2005; Anderson & Domaradzki 2012).
Previous studies (Wollblad & Davidson 2008; Gamahara & Hattori 2017;
Stoffer et al. 2020) showed that FCNN is a promising tool for modeling SGS
stresses from a priori test, but it is unclear why FCNN-based LESs did not per-
form better for a turbulent channel flow than LESs with traditional SGS models.
Thus, a more systematic investigation on the SGS variables such as the SGS dis-
sipation and transport is required to diagnose the performance of FCNN. The
input variables for the FCNN should be also chosen carefully based on the char-
acteristics of the SGS stresses. Therefore, the objective of the present study is
to develop an FCNN-based SGS model for a turbulent channel flow, based on
both a priori and a posteriori tests, and to find appropriate input variables for
the successful LES with FCNN. We train FCNNs with different input variables
such as § and Vi, and the target to predict is the SGS stress tensor. We also test
i and du/dy as the input for FCNN (note that these were the input variables of
the optimal LES for a turbulent channel flow by Volker ef al. (2002)). The input
and target data are obtained by filtering the data from DNS of a turbulent chan-
nel flow at the bulk Reynolds number of Re, = 5600 (Re, = u,6/v = 178),
where u_ is the wall-shear velocity, 6 is the channel half height, and v is the kine-
matic viscosity. In a priori test, we examine the variations of the predicted SGS
dissipation, backscatter, and SGS transport with the input variables, which are
known to be important variables for successful LES of a turbulent channel flow
(Piomelli, Yu & Adrian 1996; Volker er al. 2002; Park et al. 2006). In a poste-
riori test, we perform LESs with FCNN-based SGS models at Re, = 178 and

estimate their prediction performance by comparing the results with those from



the filtered DNS data and LESs with DSM and scale similarity model (Liu et al.
1994). The details about DNS and FCNN are given in §2. The results from a pri-
oriand a posteriori tests at Re, = 178 are given in §3. Applications of the FCNN
trained at Re, = 178 to LES of a higher Reynolds number flow (Re, = 723)
and to LES with a different grid resolution at Re, = 178 are also discussed in

§3, followed by conclusions in §4.



Chapter 2

Numerical details

2.1. Neural-network-based SGS model

The governing equations for LES are the spatially filtered continuity and
Navier-Stokes equations,
ol

Zi_o, 2.1
o @1

%+aaiaj %1 AU (2.2)
ot 0x; Ox; Reodx;ox; 0x; '

where x(= x), x,(= y), and x;(= z) are the streamwise, wall-normal, and span-
wise directions, respectively, u;(= u, v, w) are the corresponding velocity com-
ponents, p is the pressure, ¢ is time, the overbar denotes the filtering operation,

and 7;;(= wu; — u;i;) is the SGS stress tensor. We use a fully connected neural
network (denoted as NN hereafter) with the input of the filtered flow variables
to predict 7;;. The database for training NN is obtained by filtering the instan-
taneous flow fields from DNS of a turbulent channel flow at Re, = 178 (see
§2.2). To estimate the performance of the present NN-based SGS model, we

perform two additional LESs with the dynamic Smagorinsky (Germano et al.

1991; Lilly 1992) and scale similarity (Liu et al. 1994) models. For the dy-



namic Smagorinsky model (DSM), z;; — %Tkkéij = —2C?|S| S,;, where C* =

— (L M)/ (M M), | S| = /28 ‘,15,1,5.. = 3 (0@, /9x; + 9a,;/ox;) , Ly
ity — i, My, = (&/5)2 |§‘| S, - |S| S.;» A and A(= 2A) denote the grid
and test filter sizes, respectively, and (), denotes averaging in the homogeneous
(x and z) directions. For the scale similarity model (SSM), z;; = 51\1/_!; — il
where k,,, = 0.5k,,, and k_,, is the cut-off wavenumber.

The NN adopted in the present study has two hidden layers with 128 neurons
per hidden layer, and the output of the NN is the six components of z;; (figure
2.1). Previous studies used one (Gamahara & Hattori 2017; Maulik & San 2017;
Maulik et al. 2018; Zhou et al. 2019; Stoffer et al. 2020) or two (Sarghini et al.
2003; Wollblad & Davidson 2008; Vollant et al. 2017; Wang et al. 2018; Maulik
et al. 2019; Xie et al. 2019a,b,c, 2020a,c; Pawar et al. 2020) hidden layers, and
Gamahara & Hattori (2017) showed that 100 neurons per hidden layer were suf-
ficient for the accurate predictions of z;; for a turbulent channel flow in a priori
test. We also tested NN with three hidden layers, but more hidden layers than
two did not further improve the performance both in a priori and a posteriori

tests (see figure 2.3).

In the present NN, the output of the mth layer, ™™, is as follows:

Y =q,(i=1,2,.,N,);

@ _ @y @ _,0 N, D@ 5 (M) 2 @) 2 (@)
R =max[0,r"], r” =, (Zi:lVI/ij b+ b7 — )/aj +5;

J
(G =12,..128);

3 3y 0B _ .03 128 . (2)3) @ LB _ B 3, 203
h =max[0,r "], r," =y, <2J 1W h +b =) o+ B,

(k=1,2,...,128);

W =s5= Y 2 WD 16 (1=1.2,...6)

where g; is the input, N, is the number of input components, Wmn+) g the
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weight matrix between the mth and (m + 1)th layers, b is the bias of the mth
layer, s, is the output, and ,u('”), o™, y('”), and ,B(’") are parameters for a batch
normalization (Ioffe & Szegedy 2015). We use a rectified linear unit (Relu; Nair
& Hinton 2010), A" = max[0, r™], as the activation function at the hidden
layers. We also tested other typical activation functions such as sigmoid and
hyperbolic tangent functions, but the convergence of the loss function (2.3) was
faster with the Relu than with others. W+ pm 5 (m) and g™ are trainable

parameters which are optimized to minimize the loss function defined as

2
2N,, Zz 12 ( e Sz,n> + O-OOS;wﬁ, (2.3)

where slff)fl\js is the SGS stresses obtained from filtered DNS data, N, is the num-
ber of minibatch data (128 in this study following Kingma & Ba 2014), and w,
denotes the components of W+ Ap adaptive moment estimation (Kingma
& Ba 2014), which is a variant of gradient descent method, is applied to update
the trainable parameters, and the gradients of the loss function with respect to
those parameters are calculated through the chain rule of derivatives (Rumelhart,
Hinton & Williams 1986; LeCun, Bengio & Hinton 2015). All training proce-
dures are conducted using the python-opensource-library TensorFlow.

We choose five different input variables (corresponding to NN1 - NNJ),
as listed in table 2.1. Six components of S, ; and nine components of a;;(=

dii;/0x;) at each grid point are the inputs to NN1 and NN2, respectively, and

the output is six components of ;

;; at the same grid location. The input @;;

is selected for NN2 because 7;; can be written as 7;; = 2ya,a; + o(r?),
where y (0) = [ £2G (£,0)dé and G (&,() is the kernel of the filter (Bedford
& Yeo 1993). On the other hand, a general class of SGS model based on the
local velocity gradient (Lund & Novikov 1992; Silvis et al. 2019) can be ex-

pressed as 7; = > c(k)Ti(jk), where ¢¥) is the model coefficient, Tl.(jo) =6,
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ij
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.S_’,-kS’k,R,j - RikSk,S,j, and R,-j is the filtered rotation rate tensor. Thus, NN1
can be regarded as an SGS model including Tl.(jo), Tl.(jl) and Ti(jz), but it directly
predicts 7;; through a nonlinear process of NN rather than predicting ¢*). In NN3
and NN4, a stencil of data at 3(x) X 3(z) grid points are the input, and 7;; at the
center of this stencil is the output. In NNS35, the filtered velocity and wall-normal
velocity gradient at 3(x) X 3(z) grid points are the input variables, and the out-
put is the same as that of NN3 and NN4. The use of a stencil of data for NN3 -
NN5 is motivated by the results of Xie ef al. (2019¢) that using a stencil of input
variables (a;; and temperature gradient) predicted ;; better than using the same
input only at one grid point. The choice of &; and di; /0y as the input of NN5 is
also motivated by the results of optimal LES by Vélker et al. (2002), in which
LES with the input of both #; and 0ii; /dy outperformed that with the input of &;
alone. We also considered an NN with the input of #; at n,(x) X 3(y) X n,(z) grid
points, where n, = n, = 3,5,7, or 9. The results with these three-dimensional
multiple input grid points were little different in a priori tests from that of NNS5.
As shown in §3, the results with NN3 - NN5 in a priori tests are better than
those with NN1 and NN2 (single input grid point), but actual LES (i.e. a pos-
teriori test) with NN3 - NN5 are unstable. Therefore, we did not seek to adopt
more input grid points. Note also that we train a single NN for all y locations
using pairs of the input and output variables. The relations between these vari-
ables are different for different y locations, and thus y locations are implicitly
embedded in this single NN. One may train an NN at each y location, but this
procedure increases the number of NNs and the memory size. On the other hand,
Gamahara & Hattori (2017) provided y locations as an additional input variable
for a single NN, but found that the result of a priori test with y location was

only slightly better than that without y location. Therefore, we do not attempt to
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include y location as an additional input variable in this study.

While training NN1 - NNS5, the input and output variables are normalized in
wall units, which provides successful results because the flow variables in turbu-
lent channel flow are well scaled in wall units (see §3). Since the performance of
an NN depends on the normalization of input and output variables (see, for exam-
ple, Passalis ef al. 2019), we considered two more normalizations: one was with
the centerline velocity (U,) and channel half height (6), and the other was such
that the input and output variables were scaled to have zero mean and unit vari-
ance at each y location, e.g., ri*j(x, Y, Z,t) = <TU (x,y,z,1)— Tme””(y)> /T””S(y)
(no summation on i and j), where the superscripts of mean and rms denote the
mean and root-mean-square values, respectively. The first normalization was not
successful for the prediction of a higher Reynolds number flow with an NN
trained at lower Reynolds number, because the near-wall flow was not prop-
erly scaled with this normalization. The second normalization requires a priori
knowledge on Ti';?e“”(y) and T,.’j "S(y) even for a higher Reynolds number flow to
predict. Thus, we did not take the second normalization either.

Figure 2.2 shows the variations of the training error €, with the epoch, and
the correlation coefficients p, between true and predicted SGS stresses for NN1

- NN5, where €, and p_ are defined as

N ata

6
1 fDNS 2
com S () e

I=1 n=

Nddtd Ndata ddtd
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~
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Here, one epoch denotes one sweep through the entire training dataset (Hastie,
Tibshirani & Friedman 2009), and Ny, is the number of entire training data. The
training errors nearly converge at 20 epochs (figure 2.3a). In terms of computa-

tional time using a single graphic process unit (NVIDIA GeForce GTX 1060),
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about one minute is spent for each epoch. The correlation coefficients from the
training and test datasets are quite similar to each other (figure 2.35), indicating
that severe overfitting is not observed for NN1 - NNS5. The training error and
correlation coefficient are smaller and bigger, respectively, for NN3 - NN5 than
those for NN1 and NN2.

Sarghini et al. (2003) and Pal (2019) indicated that required computational
time for their LESs with NNs was less than that with traditional SGS models.
When an NN is used for obtaining the SGS stresses, its cost depends on the
numbers of hidden layers and neurons therein as well as the choices of input and
output variables. Actually, in the present study, the computational time required
for one computational-time-step advancement with NN1 is approximately 1.3
times that with a traditional SGS model like DSM.

Figure 2.3 shows the effects of the number of hidden layers of NNs (NN,
NN3 and NN5) on the mean SGS and Reynolds shear stresses from a priori and
a posteriori tests, respectively. The details of a priori and a posteriori tests are
described in §3. The Reynolds shear stress from NN3 and NNS5 are obtained from
LES with clipping the backscatter (see equation (3.1)). For all NNs considered,
one hidden layer is not sufficient for accurately predicting the mean SGS shear
stress, and at least two hidden layers are required. In actual LES, one hidden layer
seems to be sufficient for NN1 and NN3, and two hidden layers are required for
NNS5. Therefore, two hidden layers are taken for the present study for all NNs

considered.

2.2. Details of DNS and input and output variables

A DNS of turbulent channel flow at Re, = 5600 (Re, = 178) is conducted
to obtain the input and output of NN1 - NN5 (table 2.1), where Re, is the bulk
Reynolds number defined by Re, = U,(26)/v, U, is the bulk velocity, and
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Re, = u,6/v is the friction Reynolds number. The Navier-Stokes and continuity
equations are solved in the form of the wall-normal vorticity and the Laplacian
of the wall-normal velocity, as described in Kim et al. (1987). The dealiased
Fourier and Chebyshev polynomial expansions are used in the homogeneous (x
and z) and wall-normal (y) directions, respectively. A semi-implicit fractional
step method is used for time integration, where a third-order Runge-Kutta and
second-order Crank-Nicolson methods are applied to the convection and dif-
fusion terms, respectively. A constant mass flux in a channel is maintained by
adjusting the mean pressure gradient in the streamwise direction at each time
step.

Table 2.2 shows the computational parameters of DNS, where N, ’s are the
numbers of grid points in x; directions, L, s are the corresponding computa-
tional domain sizes, Ax and Az are the uniform grid spacings in x and z di-
rections, respectively, and Ay:”.n is the smallest grid spacing at the wall in the
wall-normal direction. A, and A, are the filter sizes in x and z directions, respec-
tively, and they are used for obtaining filtered DNS (called fDNS hereafter) data.
We apply the spectral cut-off filter only in the wall-parallel (x and z) directions
as in the previous studies (Piomelli et al. 1991, 1996; Volker et al. 2002; Park
et al. 2006). The use of only wall-parallel filters can be justified because small
scales are efficiently filtered out by wall-parallel filters and wall-normal filtering
through the truncation of the Chebyshev mode violates the continuity unless the
divergence-free projection is performed (Volker ef al. 2002; Park et al. 2006).

The Fourier coefficient of a filtered flow variable f is defined as

f (kg yidept) = f (ko vk t) H (Ky g = [k|) H (Kgour = |K2|) . (26)

where f is the Fourier coefficient of an unfiltered flow variable f, H is the

Heaviside step function, and k, ., and k, ., are the cut-off wavenumbers in x
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and z directions, respectively. The filter sizes in table 2.2, AT and A7, are the
same as those in Park ef al. (2006), and the corresponding cut-off wavenumbers

arek, ., =8Q2r/L,)and k., =8 (2r/L,), respectively. Figure 2.4 shows the

x,cut
mean velocity profile and turbulence intensities from the DNS and fDNS. Since
the filtering is only applied in x and z directions, the mean velocity profile of
fDNS is the same as that of DNS. The turbulence intensities of fDNS, however,
are smaller than those of DNS, as the filtering smooths out velocity fluctuations.

We use the input and output database at Re, = 178 to train NN1 - NNS5.
The training data are collected at every other grid point in x and z directions to
exclude highly correlated data, and at all grid points in y direction from 200 in-
stantaneous fDNS fields. Then, the number of training data from 200 fDNS fields
is 1,241,600 (= 200 X NIPNS /2 5 NIPNS /2 5 N ), where N'PNS = L k. ../7
and N'PNS = I k_ ./=. We have also tested 300 fDNS fields for training NN,
but their prediction performance for the SGS stresses is not further improved,
so the number of training data used is sufficient for the present NNs. A DNS at
a higher Reynolds number of Re, = 723 is also carried out, and its database is

used to estimate the prediction capability of the present NN-based SGS model

for untrained higher Reynolds number flow.
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input layer hidden layer hidden layer  output layer
(1%t layer) (2" layer) (31 Jayer) (4t layer)

FIGURE 2.1. Schematic diagram of the present NN with two hidden layers (128 neurons
per hidden layer). Here, q(= [q;, ¢5, ..., 4 Nq]T) is the input of NN, N, q is the number of

input components (see table 2.1) and s(= [sy, 55, ..., sé]T) is the output of NN.
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FIGURE 2.2. Training error and correlation coefficient by NN1 - NN5: (a) training error
vs. epoch; (b) correlation coefficient. In (@), ==, NN1; ==, NN2; = = =, NN3; = = - NN4;
——, NNS. In (b), gray and black bars are the correlation coefficients for training and test
datasets, respectively, where the number of test data is the same as that of the training

data (Ny,, = 1,241,600 (§2.2)).
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02 0.8

FIGURE 2.3. Effects of the number of hidden layers (IV;): (a, c, e) the mean SGS shear
stress (a priori test at Re,. = 178); (b,d, f) Reynolds shear stress (a posteriori test;
LES178). (a, b) NN1; (c,d) NN3; (e, f) NN5. @, fDNS; =—, N;; = 1; =, Ny; = 2;
—, N,; =3.
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FIGURE 2.4. Results of DNS and fDNS at Re, = 178: (a) Mean velocity profile; (b)
root-mean-square velocity fluctuations and the Reynolds shear stress. ===, DNS; =—,

fDNS; @, previous DNS (Moser et al. 1999).
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NN model input variable(s) input grid point(s) N,
NN1 ./ 1 6
NN2 a;; 1 9
NN3 Ay 3(x) X 3(2) 54
NN4 a;j 3(x) X 3(2) 81
NN5 i; and 0u; /dy 3(x) X 3(z) 54

TABLE 2.1. Input variables of NN models. Here, N, is the number of input

components.
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Re, Re, N.N,N, L./8L/[6 Ax*, Azt Ay" — AT* A+ AF
5600 178 96,97,96 27,7 117,58,01 94 699,350
27600 723 192,193,192 7,05z 11.8,59,01 114 710,355

TABLE 2.2. Computational parameters of DNS. Here, the superscript + denotes the
wall unit, and AT is the sampling time interval of the instantaneous DNS flow fields for

constructing the input and output database.
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Chapter 3

Results

In §3.1, we perform a priori tests for two different Reynolds numbers, Re, =
178 and 723, in which the SGS stresses are predicted by NN1 - NN5 with the
input variables from fDNS at each Reynolds number, and compared with the
SGS stresses from fDNS. Note that NN1 - NN5 are constructed at Re, = 178,
and Re, = 723 is an untrained higher Reynolds number. The filter sizes used
in a priori tests, AT and AT, are given in table 2.2. In §3.2, a posteriori tests
(i.e., actual LESs solving (2.1) and (2.2)) with NN1 - NNS5 are performed for a
turbulent channel flow at Re, = 178 and their results are compared with those
of fDNS. Furthermore, LES with NN1 (trained at Re, = 178) is carried out for
a turbulent channel flow at Re, = 723 and its results are compared with those of
fDNS. Finally, in §3.3, we provide the results when the grid resolution in LES
is different from that used in training NN1, and suggest a way to obtain good

results.
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3.1. A priori test

Figure 3.1 shows the mean SGS shear stress (z,,) and dissipation (£g¢s)
predicted by NN1 - NNS5, together with those of fDNS and from DSM and SSM,

where € 55 = —7;,S;

1j9;; and () denotes the averaging in the homogeneous direc-

tions and time. Predictions of (z,,) by NNs (except that by NN2) are better than
those by DSM and SSM, and NN provides an excellent prediction of (€ g al-
beit other NN models are also good in the estimation of (& g;¢). Table 3.1 shows
the correlation coefficients p between the true and predicted 7, and € g5, re-
spectively. z,,’s predicted by DSM and SSM have very low correlations with
true 7,,, as reported by Liu et al. (1994) and Park et al. (2005). On the other
hand, NN1 - NN5 have much higher correlations of 7, and £ g ¢ than those by
DSM and SSM, indicating that instantaneous 7, and € ¢ are relatively well
captured by NN1 - NN5. These SGS variables are even better predicted by hav-
ing the input variables at multiple grid points (NN3 - NN5) than at single grid
point (NN1 and NN2). As we show below, however, high correlation coefficients
of 7, and £ g5 In a priori test do not necessarily guarantee excellent prediction
performance in actual LES. Figure 3.2(a) shows the mean SGS transport (Tg),

where T'g; g = d(7;;i1;)/0x i Volker et al. (2002) indicated that a good prediction

ijUi
of (Tgs) is necessary for an accurate LES, and the optimal LES provided good
representation of (Tqs¢) in a posteriori test. Among NN models considered,
NNS shows the best agreement of (T ¢) with that of fDNS, but NN1 and NN2
are not good at accurately predicting (Tg¢) although they are still better than
SSM. Figure 3.2(b) shows the mean backward SGS dissipation (backscatter, i.e.,
energy transfer from subgrid to resolved scales), (e.¢) = %(e s6s — |€sas])-
(€565) = 0 for DSM due to the averaging procedure in determining the model
coefficient. The mean backscatters from SSM and NN3 - NN5 show reason-

able agreements with that of fDNS, but NN1 and NN2 severely underpredict the
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backscatter. An accurate prediction of backscatter is important in wall-bounded
flows, because it is related to the bursting and sweep events (Hértel ef al. 1994;
Piomelli et al. 1996). However, SGS models with non-negligible backscatter
such as SSM do not properly dissipate energy and incur numerical instability
in actual LES (Liu et al. 1994; Meneveau & Katz 2000; Akhavan et al. 2000;
Anderson & Domaradzki 2012). For this reason, some NN-based SGS models
suggested in the previous studies clipped the backscatter to be zero for ensuring
stable LES results (Maulik et al. 2018, 2019; Zhou et al. 2019). Therefore, the
accuracy and stability in the solution from LES with NN3 - NN5 may not be
guaranteed, even if these models properly predict the backscatter and produce
high correlation coefficients between the true and predicted SGS stresses.
Figure 3.3 shows the statistics from a priori test for Re, = 723 with NN-
based SGS models trained at Re_ = 178. The statistics predicted by NN1 - NN5
for Re, = 723 show very similar behaviors to those for Re, = 178, except for
an underprediction of (z,,) by NN1 (similar to that by DSM) which does not

degrade its prediction capability in a posteriori test (see §2.2).
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FIGURE 3.1. Mean SGS shear stress and dissipation predicted by NN1 - NN5 (a priori
test at Re, = 178): (a) mean SGS shear stress (z,,); (b) mean SGS dissipation (€ g5.5)-
@, fDNS; =, NN1; ==, NN2; = = -, NN3; = = -, NN4; —, NN5; +, DSM; v, SSM.
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FIGURE 3.2. Mean SGS transport and backward SGS dissipation predicted by NN1 -
NNS (a priori test at Re, = 178): (a) mean SGS transport (Tg5g); (b) mean backward
SGS dissipation (backscatter) (eEGS). @, {DNS; —, NN1; =, NN2; = = =, NN3; = = =,
NN4; —, NN5; +, DSM; v, SSM.
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FIGURE 3.3. Statistics from a priori test at Re, = 723: (a) mean SGS shear stress (z,,,);
(b) mean SGS dissipation (€ g5¢); (¢) mean SGS transport (T'gs); (d) mean backscatter
(€565 @ IDNS; — NN1; —, NN2; - - -, NN3; - - -, NN4; —, NN5; +, DSM; v,
SSM. Here, NN1 - NN5 are trained with fDNS at Re, = 178.
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NN1 NN2 NN3 NN4 NN5 DSM SSM
Pz, 0.231 0432 0414 0.630 0.600 0.090 -0.016
0.358 0.472 0.507 0.624 0.576 0.165 0.081

P £5GS

TABLE 3.1. Correlation coefficients between the true and predicted 7, and £ g6.

Ralks L
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3.2. A posteriori test

In this section, a posteriori tests (i.e., actual LESs) with NN-based SGS
models are conducted for a turbulent channel flow with a constant mass flow
rate (Re, = 5600 or 27600). Numerical methods for solving the filtered Navier-
Stokes and continuity equations are the same as those of DNS described in §2.2.
Table 3.2 shows the computational parameters of LES. The grid resolution for
the cases of LES 178 is the same as that of Park ef al. (2006). The cases of LES178
have nearly the same grid resolutions in wall units (because of slightly different
values of Re_’s) in x and z directions as those of fDNS used in training NN,
and the cases of LES178c and LES178f use larger and smaller grid sizes in x
and z directions than those of trained data, respectively. In the case of LES723
(Re, = 723), the grid sizes in wall units in x and z directions are nearly the same
as those of trained data.

In the present LESs with NN3 - NN5 and SSM, we clip the SGS stresses to
be zero wherever backscatter occurs, i.e., 7;; = 0 when 555 < 0, as done in
the previous studies (Maulik ez al. 2018, 2019; Zhou et al. 2019). Otherwise, the
solution diverges. While removing the backscatter, we rescale the SGS stresses
to maintain the net amount of SGS dissipation in the computational domain V'

as follows:

*

1 i € dv
=5 [1 + mgn(sSGS)] T T /V SGS ‘
L], (esas + lessl) 4V

This backscatter clipping and rescaling on 7;; is similar to that of Akhavan ez al.

3.1)

(2000) in their development of dynamic two-component model. For the cases
of LESs with NN1 and NN2, we obtain stable solutions without any special
treatment such as the clipping, wall damping or averaging over homogeneous
directions, and thus we perform LESs with and without clipping, respectively.

In LES with DSM, an averaging procedure is included to determine the model
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coefficient, as mostly done in previous studies. Since the present simulations are
conducted for a constant mass flow rate in a channel, the wall-shear velocity or
Re, changes depending on the choice of SGS models. Those Re_’s are listed
in table 3.3. For Re, = 5600, Re_’s from LES178 are well predicted by NN1
and NN2 even without clipping (less than 2 % error) and by NN3 - NN5 with
clipping (less than 3% error). On the other hand, Re, from no SGS model has
about 10 % error.

Figure 3.4 shows the mean velocity profiles from LES178 for various SGS
models without and with clipping the backscatter, respectively. Without clipping,
LESs with NN1 and NN2 show excellent predictions of the mean velocity, but
those with NN3 - NN5 and SSM diverge. On the other hand, with clipping, LESs
with all the SGS models considered provide very good predictions of the mean
velocity, which clearly indicates that backscatter incurs numerical instability in
LES. Therefore, in the following, we present the results of LESs with clipping
for NN3 - NNS5, and without clipping for NN1 and NN2, respectively.

Figure 3.5 shows the statistics of various turbulence quantities from LES178
with NN1 - NNS5, together with those of fDNS and from LESs with DSM and
SSM. All NN considered show good predictions of the root-mean-square (rms)
velocity fluctuations (figure 3.5a). While LES without SGS model (i.e., coarse

DNS) fortuitously well predicts i, due to overpredicted friction velocity, LES

rms
with DSM overpredicts it (Park et al. 2006). Since DSM determines the model
coefficient C2(y) to be uniform in the homogeneous directions ignoring the local-
ity of C?(x, y, z), its prediction performance of local SGS dissipation is degraded
and may result in the overprediction of i,,, .. For the predictions of the Reynolds
shear stress and SGS shear stress, NN1 performs the best among all the SGS
models considered (figures 3.5b and c¢). On the other hand, NN2 underpredicts

the Reynolds shear stress and significantly overpredicts the SGS shear stress.
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This result is consistent with that of a priori test (figure 3.1a). The overpredic-
tion of (z,,) results in the underprediction of —(&#'0") from the total shear stress
equation, d(a*)/dy*—(i'0') Ju>—(z,,) /u? = 1—y/6.NN3 - NN5 slightly over-
predict the Reynolds shear stress but underpredict the SGS shear stress. These
NN models (NN3 - NNS5) are forced not to produce the backscatter due to the
clipping as described before. NN1 and NN2 provide backscatter but underpre-
dict it (figure 3.5d). Note that DSM and SSM also require an averaging over the

homogeneous directions and clipping the backscatter, respectively, for stable so-

lution, and thus & S

s = 0. Therefore, NN1 is the most promising SGS model for
LES of turbulent channel flow among the NN models considered, even though
NN3 - NNS5 show better prediction performance in a priori test. NN1 also shows
the best prediction of the mean SGS transport (Tg;g) (figure 3.5¢), confirming
that a good prediction of (T'g;g) is necessary for a successful LES (Volker et al.
2002). On the other hand, LESs with all SGS models underpredict the mean SGS
dissipation (€ g5 ¢) (figure 3.5 ), unlike the results of a priori test (figure 3.1b),
indicating that an excellent prediction of (€ 4 ¢) is not a necessary condition for
the accurate prediction of the turbulence statistics in LES of turbulent channel
flow, as also reported by Park et al. (2006).

Figure 3.6 shows the instantaneous vortical structures identified by the iso-
surfaces of 4, = —0.005u?/v? (Jeong & Hussain 1995). As compared to the
flow field from DNS, the arches of the hairpin-like vortices disappear in the
fDNS flow field, caused by the larger filter size in x direction (A;r ~ 70) than
the diameter of the arch (d* ~ 20) (Park et al. 2006). The instantaneous flow
fields from LESs with DSM and NN1 are similar to that of fDNS, whereas more
vortical structures are observed from no SGS model due to insufficient dissipa-
tion. Since NN1 produces the best results among the NN models considered, we

provide the results from NN1 hereafter. Figure 3.7 shows one-dimensional en-
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ergy spectra of the velocity fluctuations at y* = 15 and 30 from LES with NN,
together with those of fDNS and from LES with DSM. Overall agreements of
the velocity spectra from NN1 with those of fDNS are very good, like those from
DSM.

Figures 3.8 and 3.9 show the probability density function (PDF) of stream-
wise and wall-normal velocity fluctuations, respectively, at four different wall-
normal locations. For the streamwise component, NN1 shows similar predictions
for PDF to that of DSM, but this NN model has better performance for the wall-
normal component than that of DSM. Figure 3.10 shows the skewness .S (12; ) and
flatness F(it)) of the velocity fluctuations, where S (&) = {(@))*) /122 s aNd
F (@) = <(12l’.)4> / L_ti ms- Overall, both statistics from NN1 have good agree-
ments with those of fDNS for the streamwise and spanwise components. For the
skewness of wall-normal component, NN1 slightly overpredicts it near the wall.
This overprediction, however, is not significant to be detected in the PDF near
the wall. In the case of the flatness of wall-normal component, NN1 shows better
performance than that of DSM, as expected by PDF in figure 3.9.

Now, we apply NNI1 to a turbulent channel flow at a higher Reynolds number
of Re, = 27600 (Re, = 723 from DNS). LES is conducted at nearly the same
resolution in wall units as that of trained data at Re, = 178 (see table 3.2).
The predictions of Re, from NN1 and DSM are excellent, showing about 0.8%
and 2.2% errors, respectively, while the error from no SGS model is about 6%.
Figures 3.11 and 3.12 show the turbulence statistics and energy spectra from
LES723 with NN1, respectively, together with those of fDNS and from LESs
with DSM and no SGS model. As shown, NN1 accurately predicts the turbulence
statistics and energy spectra even at higher Reynolds number, even though the
training is performed at a lower Reynolds number of 178. This result indicates

that an NN-based SGS model trained at a lower Reynolds number flow maintains
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their prediction performance for a higher Reynolds number flow, once the grid

resolution in wall units is kept to be nearly the same (Gamahara & Hattori 2017).
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FIGURE 3.4. Mean velocity profiles from LES178 (a posteriori test): (a) without clipping
the backscatter; (b) with clipping the backscatter. @, fDNS; ==, NN1; ==, K NN2; = = =,
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FIGURE 3.6. Instantaneous vortical structures from LES178 (a posteriori test): (a) DNS;
(b) fDNS; (¢) NN1; (d) DSM; (e) no SGS model. For the visual clarity, the vortical struc-
tures from fDNS and LES are plotted at the same grid resolutions in x and z directions

as those of DNS by padding high wavenumber components of the velocity with zeros.
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FIGURE 3.7. One-dimensional energy spectra of the velocity fluctuations at y* = 15
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FIGURE 3.9. Probability density function of the wall-normal velocity fluctuation from
LES178 (a posteriori test): (a) y* = 1.5; (b) y* = 13.5; (¢) y* = 18.3; (d) y* = 30. @,
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FIGURE 3.10. Skewness and flatness of the velocity fluctuations from LES178 (a
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case Re, (L, L,) (Ny, N, Ny (Ax*,Az")
LES178 5600 (276, 78)  (16,16,49)  (69.9,35.0)
LES178¢ 5600  (2#6, n6) (12,12,49)  (93.2,46.6)
LES178f 5600 (276, x6) (24,24,49)  (46.6,23.3)
LES723 27600 (x6,0.576) (32,32,97) (71.0,35.5)

TABLE 3.2. Computational parameters of LES. Here, the computations are performed at

constant mass flow rates (i.e., Re, = 5600 and 27600). Ay;m = 0.4 for all simulations,

and Ay::”.n, Ax™T and Az in this table are computed with u, from DNS (table 2.2).
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case SGS model  Re, (w/o clipping)  Re, (with clipping)

LES178 NNI1 181 175
NN2 177 170
NN3 diverged 183
NN4 diverged 177
NN5 diverged 178
DSM 174 -
SSM diverged 176
no 195 -
LES178¢ NN1 175 175
DSM 171 -
no 190 -
LES178f NN1 192 176
DSM 177 -
no 193 -
LES723 NNI1 729 -
DSM 707 -
no 763 -

TABLE 3.3. Re.’s (Re, = u,6/v) from LES.
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3.3. LES with a grid resolution different from that of trained data

We test the performance of NN1 when the grid resolution in LES is different
from that of trained data. We consider two different grid resolutions (LES178c
and LES178f) as listed in table 3.2. LESs with NN1 are conducted without and
with clipping the backscatter, respectively, to examine how the clipping affects
the turbulence statistics for the cases with different resolutions. With LES178c,
Re_ is well predicted with and without clipping, whereas Re_ is overpredicted
with LES178f by about 8% without clipping but becomes closer to that of DNS
with clipping (table 3.3). Predictions of Re, by DSM are not very good with
coarser grids but become very good with denser grids, whereas no SGS model
overpredicts Re,.

Figures 3.13 and 3.14 show the changes in the turbulence statistics from NN1
due to different grid resolutions, LES178c and LES178f, respectively, together
with the statistics from fDNS and LES with DSM. When the grid resolution
is coarser (LES178c) than that of trained data, NN1 predicts the mean veloc-
ity quite well, but significantly overpredicts the rms velocity fluctuations and
Reynolds shear stress, which is similar to the results from DSM. The backscatter
clipping does not improve the results. When the grid resolution is finer (LES178f)
than that of trained data, NN1 without clipping significantly underpredicts the
mean velocity due to the increased wall-shear velocity (Re,), but reasonably
predicts the rms velocity fluctuations and Reynolds shear stress. Since NN1 is
trained with S, ; and 7;; at a given grid resolution, it provides a (trained) amount
of energy transfer between the larger and smaller scales than the grid size. Al-
though LES178f is performed at a finer grid resolution, NN1 still provides an
amount of energy transfer trained at a coarser grid resolution. This may cause the
increase in the amount of energy transfer and accordingly in the wall-shear ve-

locity. On the other hand, when the grid resolution is coarser than that of trained
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data, the trained amount of energy transfer given to the grid scale is smaller than
the real one. For this reason, with clipping the backscatter, changes in the turbu-
lence statistics including the mean velocity are notable for LES178f but not for
LES178c.

From this result, it is clear that the NN-based LES requires a special treat-
ment when the grid resolution is different from that of trained data. So, we con-
sider an NNI1 trained by two fDNS datasets from two different filter sizes with
the input and output variables of S, ; and 7;;. Here, we do not include the filter
size as an additional input variable. Table 3.4 shows various NN1’s considered in
the present study. NN, was already tested by LES178c and LES178f. NN, and
NN,, are trained using fDNS datasets having the same grid resolutions as those
of LES178c and LES178f, respectively. On the other hand, NN ¢ is trained by
both fDNS datasets with two filters corresponding to larger and smaller sizes
(N = 8 and 16) than the grid resolution in LES178¢c (N = 12), and NN¢ 3,
is trained by two fDNS datasets with N = 16 and 32 (N = 24 for LES178f),
respectively.

We conduct LES178c¢’s with NN, and NNy ¢, and LES178f’s with NN,
and NN 3, respectively, and compare the results with those of fDNS and from
LESs with NN, and DSM. All LESs with NNs are conducted without clipping
the backscatter. Figure 3.15 shows the results of LES178c’s. As shown, LES
with NNg ;¢ provides much more accurate predictions of the rms velocity fluc-
tuations and Reynolds shear stress than those from NN, and DSM, showing the
performance almost similar to that from NN,. In the case of LES178f (figure
3.16), NNy 3, shows better prediction performance for the mean velocity, rms
velocity fluctuations, and Reynolds shear stress than those from NN ¢, and has
similar predictions to those from NN,,. We have also tested NNg ;¢ for LES178f
(N =24)and NN g 3, for LES178c (N = 12), respectively. In these cases, LESs
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with NNg ;¢ and NN¢ 3, do not show better performance than that with NN¢.
Therefore, when the resolution in LES is not similar to that of trained data, it
is suggested that the datasets having two different resolutions, coarser and finer
than that of LES, should be constructed and used to train an NN for successful

LES.
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NNI model fDNS(s) for trained data LES(s)

NN4 fDNS ¢ LES178c and LES178f
NNIZ fDNS]2 LES178¢c

NNg 16 fDNSg and fDNS ¢ LES178c

NN,y fDNS,, LES178f
NN16,32 fDNS]6 and fDNS32 LES 178f

TABLE 3.4. NN trained with different fDNS dataset(s). Here, fDNS 5, denotes the fil-

tered DNS data with the number of grid points N (= N, = N_). Note that the numbers

of grid points (N, X N,) for LES178c and LES178f are 12X 12 and 24 X 24, respectively,

as listed in table 3.2.
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Chapter 4

Conclusions

In the present study, we applied a fully connected neural network (NN) to the
development of a subgrid-scale (SGS) model of predicting the SGS stresses for
a turbulent channel flow, and conducted a priori and a posteriori tests to estimate
its prediction performance. Five different NNs with different input variables were
trained with filtered DNS data at Re, = 178 using a spectral cut-off filter, where
the input variables considered were the strain-rate tensor at single and multiple
grid points (NN1 and NN3, respectively), velocity gradient tensor at single and
multiple points (NN2 and NN4, respectively), and the velocity and wall-normal
velocity gradient vectors at multiple points (NNS5), respectively.

In a priori tests, the NN-based SGS models with the input variables at mul-
tiple grid points (NN3, NN4 and NN5) had higher correlations between the true
and predicted SGS stresses, and better predicted backscatter than those with the
input variables at single grid point (NN1 and NN2). However, actual LESs (i.e.
a posteriori tests) with NN3 - NN5 were unstable unless a special treatment such
as the backscatter clipping was taken. On the other hand, NN1 and NN2 showed

excellent prediction performance without any ad hoc clipping or wall damping
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function, although the correlations between the true and predicted SGS stresses
were relatively low. Among NN models considered, NN1 (input of the strain-rate
tensor at single grid point) performed best, and thus we applied NN1 (trained at
Re, = 178) to LES at a higher Reynolds number of Re, = 723 with the same
grid resolution in wall units, providing successful results. Finally, we applied
NNI1 to LESs at Re, = 178 with coarser and finer grid resolutions, respectively.
Although the results were generally good as compared to those from LES with
the dynamic Smagorinsky model (DSM), they clearly showed a limitation in
accurately predicting the turbulence statistics when LES was conducted with a
resolution different from that used for training NN. To overcome this limitation,
NN1 was trained by filtered DNS datasets with two filter sizes (larger and smaller
than the grid size in LES), providing a successful result. Therefore, once mul-
tiple filtered datasets with various filter sizes are constructed and used to train
an NN, one may expect a successful NN-based LES for turbulent channel flow,
even if the grid resolution at hand is different from those used to construct the

NN.
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PartIl.

Modeling of the subgrid-scale stress with a neural
network: application to turbulent flow over a

backward-facing step
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Chapter 1

Introduction

Turbulent flow over a backward-facing step (BFS) contains a variety of flow phe-
nomena such as flow separation, shear layer, reattachment, and turbulent bound-
ary layer which are of great importance in many engineering applications. Be-
cause the flow is complex but the geometry is simple, extensive studies on the
flow over BFS have been carried out both numerically and experimentally (Chen
etal. 2018). In particular, as there are many available experimental data, this flow
has been considered one of the most important problems in testing turbulence
models (Eaton & Johnston 1981; Akselvoll & Moin 1995; Spalart et al. 2006).
In large eddy simulation (LES), the effect of subgrid-scale (SGS) flows on
the dynamics of the resolved one is predicted through an SGS model. To test
the performance of the SGS model, there have been studies that carried out
LES of the flow over BFS. Friedrich & Arnal (1990) used the SGS model of
Schumann (1975) for LES of BFS flow at Re,, = 165000 and ER = 2, where
Re,(= Uyh/v) is the step-height Reynolds number, U, is the free-stream ve-
locity at the upstream of the step, h is the step height, ER(= L,/(L, — h)) is

the expansion ratio, and L, is the channel height at the downstream of the step.

57



They applied a wall-shear stress boundary condition at the wall, similar to that by
Schumann (1975). The reattachment length X, and turbulence intensities were
not much agreed well with those found in experiments (Tropea 1982; Durst &
Schmitt 1985), but they demonstrated the feasibility of LES for high-Reynolds-
number separated flow. Note also that the discrepancy between the LES and the
experiments appears to be due to the combination of coarse grid resolution, wall
boundary condition, inflow condition, and the SGS model, not just a problem
of the SGS model. Kobayashi et al. (1992) conducted the LES at Re, = 40000
and ER = 1.5 using the Smagorinsky model (Smagorinsky 1963) with two dif-
ferent model coefficients (C; = 0.1 and 0.15). Here, the Smagorinsky model is
t,; = —2v,8;; withv, = (C;A)?1/28,,8;,, where 7;; is the SGS stress tensor, v, is
the eddy viscosity, S; ; 1s the resolved strain rate tensor, and A is the characteristic
grid size. A two-layer wall function model was used for wall boundary condition.
They showed that X, was predicted better with C; = 0.15 (X, = 8h) than with
C, = 0.1 (X, = 9h), where X, = 7h was found in the experiment (Kim et al.
1980). Neto et al. (1993) applied the structure-function SGS model by Métais
& Lesieur (1992) to the LES at Re, = 6000 (ER = 5) and at Re; = 38000
(ER = 1.67), respectively. At solid walls, an approximate boundary condition
based on the law of the wall was used. In the case of Re, = 38000, the in-
flow boundary condition was imposed at the step edge, consisting of a mean
velocity profile (found in the experiment by Eaton & Johnston 1980) with su-
perimposed a white noise, whereas Friedrich & Arnal (1990) and Kobayashi
et al. (1992) imposed a fully-developed turbulent flow at the upstream of the
step by conducting a separate simulation of turbulent channel flow. The LES re-
sult from the structure-function SGS model did not agree much well with the
experimental data (Eaton & Johnston 1980), but this SGS model predicted the

turbulent kinetic energy and the Reynolds shear stress better than the Smagorin-

58



sky model with C; = 0.2. Akselvoll & Moin (1995) conducted a wall-resolved
LES at Re;, = 5100 (ER = 1.2) and Re;, = 28000 (ER = 1.25), respectively.
They tested two different dynamic versions of the Smagorinsky model: one is the
method by Germano et al. (1991) and Lilly (1992) and the other is the method
by Ghosal et al. (1995), denoted as DSM and DLM hereafter, respectively. For
Re;, = 5100, LES results with both SGS models showed an excellent agreement
with the results of DNS (Le & Moin 1994) and experiment (Jovic & Driver 1994)
for quantities such as skin-friction coefficient, mean velocity, and turbulence in-
tensities. For Re;, = 28000, both SGS models provided also good predictions for
the mean velocity and streamwise turbulence intensity compared to the experi-
mental result (Adams et al. 1984). Later, the DSM has been the most widely used
SGS model for the LES of BES flow to investigate passive or active flow control
methods (Kang & Choi 2002; Neumann & Wengle 2003), numerical schemes
(Meri & Wengle 2002; Panjwani et al. 2009; Yang et al. 2020), and heat transfer
characteristics (Avancha & Pletcher 2002; Keating et al. 2004). The DSM has
been also the reference SGS model in developing a new SGS model. For ex-
ample, Toschi et al. (2006), Inagaki et al. (2005) and Rasthofer & Gravemeier
(2013) compared the performance of the new SGS model to that of the DSM for
the LES of BFS flow, where the shear-improved Smagorinsky model, the mixed-
time-scale model, and the multifractal model was the new SGS model in their
studies, respectively.

Since there is no analytic solution for the SGS stress with resolved flow vari-
ables, the traditional SGS models have been based on certain simplifying as-
sumptions or hypotheses. For example, the eddy viscosity SGS model is based
on Boussinesq’s hypothesis even though this hypothesis is almost not verified
in real turbulence (Schmitt 2007). In this regard, an SGS model based on ma-

chine learning techniques, such as a neural network, has been developed so far.
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The neural network (NN) is a nonlinear function that maps the SGS stress and
the predefined input variables (e.g., strain rate), and the weight parameters of
the NN are optimized by minimizing a given loss function such as the mean-
squared error between the predicted and true SGS stresses. Therefore, the NN-
based SGS model is intended to predict the realistic nature of SGS stress found in
high-fidelity data better than the traditional SGS models. Previous studies have
shown that an NN-based SGS model predicts the SGS stresses better than the
traditional SGS models in a priori test (Wollblad & Davidson 2008; Gamahara
& Hattori 2017; Beck et al. 2019; Pawar et al. 2020; Stoffer et al. 2020) and that
LES using an NN-based SGS model has a good performance in predicting tur-
bulence statistics such as the kinetic energy spectrum and velocity fluctuations
(Maulik et al. 2018; Wang et al. 2018; Maulik et al. 2019; Zhou et al. 2019; Xie
et al. 2019a,b,c, 2020a,b,c; Park & Choi 2021). However, the development of
NN-based SGS model has been limited to two- and three-dimensional isotropic
turbulence (Beck ef al. 2019; Pawar et al. 2020; Stoffer et al. 2020; Maulik et al.
2018; Wang et al. 2018; Maulik et al. 2019; Zhou et al. 2019; Xie et al. 2019a,b,c,
2020a,b,c), and turbulent channel flow (Sarghini et al. 1999; Wollblad & David-
son 2008; Gamahara & Hattori 2017; Stoffer et al. 2020; Park & Choi 2021).
Therefore, it is necessary to verify the performance of NN-based SGS model
for the LES of more complex turbulent flows such as the flow over a backward-
facing step.

To the best of our knowledge, there has been no attempt to conduct LES
of BFS flow with an NN-based SGS model. Therefore, we apply the NN to the
modeling of the SGS stress in the BFS flow, conduct LES of the BFS flow, and
compare its performance with that of the traditional SGS model. Like the NN-
based SGS model in part I, the NN in this part is the fully-connected neural

network and predicts the SGS stress directly using the predefined input variables
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which are strain rate or velocity gradient tensors. The input and target data are
obtained by filtering the data from DNS of BFS flow at step-height Reynolds
number of Re;, = 5100. The computational details for the DNS of BFS flow are
presented in §2, together with the training details of the NN-based SGS model.
In §3, the results from the LES of BFS flow at Re, = 5100 are given, where
the step-height Reynolds number and expansion ratio of the LES are the same as
those of training data. Applications of the NN trained at Re;, = 5100 to LES of
a higher Reynolds number flow (Re; = 24000) and to LES of BFS flow having

a passive control device are also discussed in §4, followed by conclusions in §5.
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Chapter 2

Computational details

2.1. Outline of the NN-based SGS model
The governing equations for LES are the filtered Navier-Stokes and continu-
ity equations:

—L_g=0, 2.1

oii. O, oD 1 0%, or. .
oo T T Reaxar ax t I @2
t X; X; ey, 0x;0X; X;

where ¢ is time, x,(= x,, z) is the Cartesian coordinates for the streamwise,
wall-normal, and spanwise directions, respectively, u;(= u, v, w) are the corre-
sponding velocity components, p is the pressure, the overbar denotes the filtering
operation, and z;;(= u;u; —i;i;) is the SGS stress tensor. In the present study, we
use the immersed boundary method to describe the backward-facing step, and
f; and g are the momentum forcing and the mass source/sink terms, which are
used to satisfy the no-slip boundary condition and the local mass conservation,
respectively (for details, see Kim et al. 2001).

A fully-connected neural network is used to predict z;;, and we consider two

ij°

different NNs having different input variables: NN with the input of filtered strain
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rate S‘,- ; (NN1) and NN with the input of filtered velocity gradient &; j (NN2),
where @;; = dii;/0x; and S’,-j = 0.5(@;; + a;;). Six components of .S_’,-j and nine
components of @;; at each grid point are the inputs to NN1 and NN2, respec-
tively, and the output is six components of 7;; at the same grid location. While it
is possible to use those input variables at multiple grid points (Xie ef al. 2019c,
2020a,b; Beck et al. 2019; Pawar et al. 2020; Park & Choi 2021), Park & Choi
(2021) showed that the use of those inputs at multiple grid points provided un-
stable LES results in turbulent channel flow unless special treatment is applied
to the predicted SGS stresses. Therefore, we only test those two inputs (S, ; and
a;;) at a grid point, considering the turbulent boundary layer at the upstream of
step edge and at the downstream of the flow reattachment in the BFS flow.

The main hyperparameters of an NN are the numbers of hidden layers and

neurons per hidden layer, N,; and N, respectively. We have conducted a para-

ro

metric test for Ny; and N, and the NN with N, = 2 and N, = 32 are used

for LES of BFS flow (see §2.3). The database for training NN is obtained by
filtering the instantaneous flow fields from DNS of BFS flow (see §2.2).
We also perform LES with the dynamic Smagorinsky model (Germano et al.

1991; Lilly 1992) to estimate the performance of the present NN-based SGS
model. For the dynamic Smagorinsky model (DSM),

1 _ - .
7y = 3Ty = ~2vSy; = —2(C,A)*4/25,,S,; 5.,

5y = -2 i,
2(M;;M;;),

~ —\21=z] = =

M,; = (8/8)°|S] 5, - 3]S,

where, A and A (A/A > 1) are the grid and test filter sizes, respectively, and

(), denotes averaging in the homogeneous directions (spanwise direction in BFS
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flow). Since the negative (CSA)2 incurs the numerical instability (Akselvoll &
Moin 1995), (C SA)Z is forced to be zero wherever it is negative. The grid and test
filter sizes are A2 = A;A; and A% = A|A;, respectively, where A; and A, are
the grid and test filter sizes in each directions, respectively. The test filtering is
conducted in both x and z directions using Simpson’s rule, as suggested by Ak-

selvoll & Moin (1995) who conducted LES of BFS flow at Re;, = 5100, 28000.

2.2. Details of DNS for training data
2.2.1. Computational domain and grid spacing

Figure 2.1 shows the schematic diagram of the computational domain used
for the DNS of BFS flow, where the location of the step edge is (x,y) = (0, h).
The step-height Reynolds number Re,, and the expansion ratio ER are Re;, =
5100 and ER = 1.2, respectively. The BFS flow with those Re, and ER has
been widely used to test LES techniques (Akselvoll & Moin 1995; Kang & Choi
2002; Simons et al. 2002; Aider et al. 2007; Panjwani et al. 2009; Yang et al.
2020), since both DNS (Le et al. 1997) and experimental results (Jovic & Driver
1994) are available. Thus, we adopt this BFS flow for training and testing NN-
based SGS models. The size of the computational domain is —2.5 < x/h < 20,
0<y/h<6and0 < z/h < 4, and the numbers of grid points used in DNS
are 449 x 193 x 128 in the streamwise, wall-normal and spanwise directions,
respectively, where 70 and 64 computational cells are placed within y < A and
x < 0, respectively. Figure 2.2 shows the distribution of grid spacing in stream-
wise and wall-normal directions, and table 2.1 lists grid spacings in wall units.
Non-uniform grid spacings are used in both the streamwise and wall-normal di-
rections, where grids are dense near the wall. The uniform grid distribution is
used in spanwise direction. The number of grid points in spanwise direction is

twice that used in DNS by Le et al. (1997), since they pointed out that a higher
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spanwise resolution was desirable to resolve the small-scale structures near the

wall.

2.2.2. Boundary conditions and numerical methods

The inflow boundary condition at x = —2.5A is the time series of fully-
developed turbulent boundary-layer flow (TBL). To provide a realistic inlet tur-
bulence, a separate DNS of TBL flow is conducted. With this inflow condition,
a short inlet section (L ;) could be used (Akselvoll & Moin 1995; Kang & Choi
2002), as compared to that used with a prescribed mean velocity and random
fluctuations as the inflow (Le et al. 1997). The DNS of TBL flow is performed
using the recycling method by Lund et al. (1998), where the inlet turbulent flow
is generated using the velocity field at a downstream location based on empirical
scaling laws. At the inlet of TBL simulation, Re,(= U,0/v) and 6/ h are approx-
imately 670 and 1.25, where 6 and 6 are momentum and boundary layer thick-
nesses, respectively, and these parameters are similar to those of inflow in DNS
by Le et al. (1997). The domain sizes for the DNS of TBL flow are 14.5h,5h
and 4h in streamwise, wall-normal and spanwise directions, respectively, and
the recycling location is placed at 10.4h downstream of the inlet. The velocity
fields at 7.5h downstream of inlet are stored in advance and provided in time at
the inlet of the computational domain for the BFS flow.

The periodic boundary condition is used in the spanwise direction, and the
no-slip boundary condition is used at the wall at (y = 0). The immersed bound-
ary method by Kim ez al. (2001) is used to satisfy the no-slip condition at the
backward-facing step (gray colored in figure 2.1), i.e., the location of (x < 0,y =
h) and (x = 0,y < h). At the upper boundary of the computational domain
(y = 6h), the following no-stress condition is applied:

M _0p=02% =0 (2.3)
dy dy
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The boundary condition at the domain exit (x = 20h) is the convective boundary
condition,
% + UC% =0, 2.4)
ot 0x
where U, is the plane-averaged streamwise velocity at the exit.

The governing equations of DNS for the backward-facing-step flow are the
continuity and Navier-Stokes equations, i.e., the equations (2.1) and (2.2) with-
out filtering operation and SGS stress term. A semi-implicit fractional step method
is used to solve the governing equations, where a third-order Runge-Kutta and
the Crank-Nicolson schemes are used for the convection and diffusion terms, re-
spectively. For spatial derivatives, the second-order central difference scheme is
used. we used the time step of At = 0.002A4/U,, which is similar to that used by
Le et al. (1997). Initial flow fields for 400 /U, are discarded, and then the flow

fields are averaged over 4004 /U, to obtain the mean statistics.

2.2.3. Filtered DNS flow fields

A filtered flow variable f(x, y, z, ) based on the box filter is defined as

05, 054, 054,
r 1 / / / / / !
Sy, z,t) = ——— / / / f(x+x",y+y,z+2,t)dx'dy'dZ,
A MA, ( )
~0.5A; —0.5A, —0.54,

2.9)
where f(x, y, z,1) is an unfiltered flow variable, A, is the filter width in each di-
rection at the position of (x, y, z). To obtain filtered DNS (fDNS, hereafter) flow
field, we first should set the filter width A, i.e., the distribution of grid spacings
of the fDNS flow field. The number of grid points used for fDNS is 161 x 57 x 64
in the streamwise, wall-normal and spanwise directions, respectively, where 24
and 40 computational cells are placed within y < A and x < 0, respectively. The
grid distributions of fDNS in streamwise and wall-normal directions are shown

in figure 2.2, and grid spacings in wall units are given in table 2.1, together with
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those used in previous LES studies. Note that the domain size of fDNS is the
same as that of DNS.
Figure 2.3 shows the skin-friction coefficient C I the pressure coefficient

C, at the wall, and the mean streamwise velocity profiles. Here, C, and C, are

defined as
T
Cr=1%, 2.6)
3PV
Pz — B
C, = —F—. 2.7
2PY,

respectively, where 7,, = (udu/0y),,, (),, denotes averaging in time and z direc-
tion, and P, is a reference mean pressure. In the previous DNS (Le ef al. 1997)
and experiment (Jovic & Driver 1994), the reference pressure P, was the wall
pressure at x = —5h, but this location does not exist in the present DNS. There-
fore, P, in the present study is obtained so that C,at(x,y) =(=2h, h) is the same
as that of previous DNS (Le er al. 1997). Figure 2.3 indicates that Cy, C, and
mean streamwise velocity have excellent agreements with those from previous
DNS and experiment. Figure 2.4 shows the root-mean-square (rms) streamwise
and wall-normal velocity fluctuations, and the Reynolds shear stress from DNS
and fDNS, together with those from previous DNS and experiment. Those statis-
tics from DNS have good agreement with those from previous studies (Jovic &
Driver 1994; Le et al. 1997). In the case of fDNS, the magnitude of those statis-
tics are reduced due to the filtering. For the Reynolds shear stress of fDNS, its
maximum values are reduced by 17%, 14%, 14% and 22% at x/h = 4,6, 10 and
19, respectively, compared to those from DNS. The order of magnitude of those
reduction rates seems to be reasonable, as Akselvoll & Moin (1995) showed that
the contribution of the SGS shear stress to the Reynolds shear stress was approx-

imately 8-10% in LES of BES flow at Re;, = 5100.
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Case Axiin Axpa Avmin Avna Az
present DNS 7.6 25.6 0.3 31.5 7.9
DNS (Le et al. 1997) 9.9 9.9 0.3 314 158
present fDNS 11.4 72.7 1.4 117.1 158
LES (Akselvoll & Moin 1995) 11.4 71.9 1.5 117.3  31.6
LES (Kang & Choi 2002) 114 72.3 1.4 117.0 158
LES (Simons et al. 2002) 114 71.1 1.5 117.8  31.6
LES (Aider et al. 2007) 4.0 66.7 1.3 50.5 169
LES (Yang et al. 2020) 39.5 39.5 4.6 759 316

TABLE 2.1. Grid spacings in wall units for DNS and fDNS (Re;=5100), together with
those used in previous DNS and LES studies. Ax;" = Ax;u, /v, and the friction velocity

u, at the inlet of the computational domain (DNS) is used (1, = 4.9619 x 1072U,).
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2.3. Training details and hyperparameter optimization

In this section, we describe the training details for an NN and the results of
a priori test, in which the SGS stresses are predicted by NN1 and NN2 with the
inputs from fDNS flow field of BFS flow at Re;, = 5100. We should mention that
in a priori test, we do not focus on how well the NN works, but rather on whether
the performance of the NN converges with varying N, and N,,, because the
performance of an SGS model in a priori test is not consistent with that in actual
LES (Park et al. 2005).

The fDNS flow fields with the time interval of 5h/U,, are used to collect

training data (.S, > @, 7;;)- It has been observed that the formation and detach-

ij
ment of coherent structures from the step edge causes the periodic oscillation
in the reattachment location (Eaton & Johnston 1980; Le ef al. 1997), and the
frequency corresponding to this oscillation is approximately 0.06U,,/h (Le et al.
1997). Therefore, the sampling time interval of 5h/U,, corresponds to about a
third of this oscillation period. The training data are collected at every 8th grid
point in z direction (corresponding to Az = 0.5) to exclude highly correlated
data, and at all grid points in x and y directions from 40 instantaneous fDNS
fields, excluding grid points inside the immersed boundary. The number of grid
points outside the immersed boundary is 8,000 in one xy-plane, so the number
of training data is 2,560,000 (40 x 8000 x 64/8). We have also tested 60 fDNS
fields for training NN’s (3,840,000 data), but their prediction performance for
the SGS stresses is not further improved (see below), so the number of training
data used is sufficient for the present NN’s. All flow variables in training data
are non-dimensionalized with U and A.

The weight parameters of NN are optimized to minimize the loss function
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L, defined as

1 1 N 2
L= 585 Qs D (Tifff - T}fﬂ) +0.005 Y w?,  (28)
b - [

where Tif]?ljs and r}j’Nn is the SGS stresses obtained from fDNS and predicted by
the NN, respectively, IV, is the number of minibatch data (8000 in this study),
and w, denotes the components of trainable weight parameters in the NN. Note
that N, = 8000 is the same as the number of training data in one xy-plane of
fDNS flow field. We use a rectified linear unit (Relu; Nair & Hinton 2010) as
the activation function, and use a batch normalization (Ioffe & Szegedy 2015).
An adaptive moment estimation (Kingma & Ba 2014) is applied to update the
trainable parameters, and the gradients of the loss function with respect to those
parameters are calculated through the chain rule of derivatives (Rumelhart et al.
1986; LeCun et al. 2015).

In the previous studies, a wide range of N, was used with N;; = 1 (Gama-
hara & Hattori 2017; Maulik & San 2017; Maulik et al. 2018; Zhou et al. 2019)
or Ny, = 2 (Sarghini et al. 2003; Wollblad & Davidson 2008; Vollant et al.
2017; Wang et al. 2018; Maulik et al. 2019; Xie et al. 2019a,b,c, 2020a,c; Park
& Choi 2021), but the order of N,, was roughly N,. = O(10) — 0(10%). We

test both NN1 and NN2 for different N,; and N,,., where N, = 1,2,3 and

N,, =16,32,64, 128 are considered. Here, we present only four representative
cases for clarity, which are given in table 2.2.
Figure 2.5 shows the variations of the training error e, with the epoch for

NNT and NN2, where ¢, is defined as

Ndala
11 fDNS NN>2
= _— .. - .. . 2-9
€ 2Ny, 6 Z Z <Tu,n Fijon (2.9)

_/Zl n=1

Here, one epoch denotes one sweep through the entire training dataset (Hastie

et al. 2009), and N, is the number of data used to obtain €,. The errors e,
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nearly converge with 100 epochs for both NN1 and NN2 regardless of N, and
N,,. The errors from the training and test datasets converge to nearly the same
value, indicating that severe overfitting is not observed for both NN1 and NN2
for all cases considered. Since €, alone does not represent the prediction perfor-
mance of the NN, we investigate the mean SGS shear stress and dissipation.
Figures 2.6 and 2.7 show the mean SGS shear stress (z,,),, and dissipation
(€sGs) - respectively, predicted by NN1 and NN2 with different N,; and N,,,.,

where €565 = —7;;5;;.

Here, 600 fDNS fields with the time interval of 0.52/Uj
are used for obtaining those statistics. Results show that one hidden layer (case
CS1) even with N, = 128 is not sufficient for showing converged prediction
performance. For N, = 2, performance of NN1 and NN2 with N, = 16 (case
CS2) is not converged also. On the other hand, for both NN1 and NN2, N, =2
and N, = 32 (case CR) are sufficient for showing converged prediction perfor-
mance, as the performance of case CL is almost similar to that of case CR. Note
that the case CL has more N,,;, N, and training data than those used for case
CR. Therefore, two hidden layers with 32 neurons per hidden layer are used for

both NN1 and NN2 in the present study.
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case N, N, Ng::mg N

CR 2 32 2,560,000 256,000
CS1 1 128 2,560,000 256,000
cS2 2 16 2,560,000 256,000
CL 3 128 3,840,000 256,000

TABLE 2.2. Parametric-study cases for NN1 and NN2 to determine Nj; and N,,.. Here,

CR is the reference case to be used in the LES of BFS flow. N g:ti:ing and N® are the

data

numbers of training and test datasets, respectively, and those are used to obtain training

error €, for training and test datasets, respectively. The test dataset is collected from 4

instantaneous fDNS fields with the time interval of 54 /Uj,.
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Chapter 3

LES of flow over a backward-facing step at

Re, = 5100

This chapter describes the results of a posteriori test (i.e., actual LES) with an
NN-based SGS models. Two NN-based SGS models, NN1 and NN2, are tested,
where S; ; and a;; at a grid point are the inputs of those models, respectively. We
first test those NNs for the LES with the same grid resolution as that of trained
data, and then test those NNs for the LES having coarser grid resolution than
that of trained data. Computational details of the LES are given in §3.1, and the

results of LES for two different grid resolutions are described in §3.2.

3.1. Computational details

Numerical methods for solving the filtered continuity and Navier-Stokes equa-
tions, egs. (2.1) and (2.2), respectively, are the same as those for DNS. The com-
putational domain sizes for LES in x, y and z directions are the same as those
of DNS, and the computational time step is At = 0.012/U,, for the LES. Initial
flow fields for 400k /U, are discarded, and then the flow fields are averaged over

1200k /U, to obtain the mean statistics. To provide realistic inlet turbulence, a
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LEScase  N,,N,, N, Ax*t Axt Ayt Ay AZT

min max min

LES51GR 161,57,64 114 72.7 1.4 117.1 158
LES51GC 137,41,32 185 75.4 24 123.0 31.6

TABLE 3.1. Two LES cases having different grid resolutions (Re,=5100). N, N, and
N, are the numbers of grid points in streamwise, wall-normal and spanwise directions,
respectively. Friction velocity u, at the inlet of the computational domain (DNS) is used

(u, = 4.9619 x 1072U,) for calculating grid spacing in wall units.

separate LES of TBL flow is conducted using DSM as the SGS model, and the
other boundary conditions are the same as those used in DNS. The domain sizes
for the LES of TBL and the recycling location are the same as those used in the
DNS of TBL (see §2.2.2).

Table 3.1 shows two different grid resolutions for the LES of the backward-
facing-step flow at Re;, = 5100. The grid resolution of LES51GR is the same
as that of the fDNS used for training NN1 and NN2. On the other hand, the
grid resolution of LES51GC is coarser than that of the trained data. For both
LES51GR and LES51GC, we conduct four LESs with different SGS models:
noSGS, DSM, NN1 and NN2, where the noSGS denotes the LES without SGS
model. Unless otherwise mentioned, for the LES with NN1 and NN2, we do not
use any special treatment such as the ad hoc clipping, wall damping or averaging

over homogeneous directions.
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3.2. Results and discussions
3.2.1. LES51GR case

Table 3.2 shows the reattachment lengths (X,) from LES51GR, together with
those from DNS, fDNS, and previous studies, where X, in the present study is
the distance from the step to the location of zero wall-shear stress. In the present
study, X,’s from DNS and fDNS are 6.23/ and 6.17h, respectively, which are
in good agreement with those from previous experiment (Jovic & Driver 1994)
and DNS (Le et al. 1997). Here, the X, of fDNS is obtained by filtering the
mean velocity field from DNS, and it is smaller than that of DNS due to filtering
in y direction near the wall. The X,’s from LES with NN1 and NN2 are well
predicted, whereas the LES without SGS model overpredicts X,.

Figure 3.1(a) shows the distribution of skin-friction coefficient along the wall
from the LES, together with that of fDNS. All LES conducted provide similar
minimum C ’ (~ —0.0035), which is lower than -0.0027 from fDNS, but is sim-
ilar to -0.0034 from the experiment (Jovic & Driver 1994) (see figure 2.3). The
discrepancy between LES and fDNS seems to be mainly due to the coarse grid
resolution in LES together with the limitations of SGS models for the accurate
predictions for C. On the other hand, the discrepancy may be also due to the
difference in the inflow. In the present study, the recycling method of Lund et al.
(1998) is used to generate inflow data for DNS and LES, respectively, but the
inflow turbulence is not identical due to the difference in grid resolution. For
example, the wall-normal and spanwise turbulence intensities of LES inflow are
lower than those of DNS inflow (not shown here). Kang & Choi (2002) also
pointed out that the difference in the inflow could contribute to the overpredic-
tion of minimum C - Figure 3.1(b) shows the distribution of pressure coefficient

C, at the wall. Both NN1 and NN2 show reasonable agreement with that fDNS,
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and provide almost similar predictions to that of DSM. On the other hand, LES
without the SGS model slightly underpredicts C,, at x/h = 3 — 10.

Figure 3.2 shows profiles of the mean streamwise velocity and rms stream-
wise velocity fluctuation at several x locations. For the mean streamwise veloc-
ity, a good agreement is found between fDNS and LESs with NN1 and NN2,
whereas the LES without SGS model shows slightly different mean velocity
near the wall at x/h = 6, expected by the large reattachment length. For the
rms streamwise velocity, all LES conducted show similar predictions. On the
other hand, for rms vertical and spanwise velocity fluctuations and the Reynolds
shear stress, given in figure 3.3, the LES without SGS model overpredicts them
near the step edge (x/h = 1), whereas LES with NN1, NN2 and DSM shows
similar predictions for them. This overprediction for rms vertical velocity fluc-
tuation near the step was also observed in the previous LES without SGS model
(Akselvoll & Moin 1995). Figure 3.4 shows the one-dimensional energy spectra
of the velocity fluctuations at three locations: (x/h,y/h) = (1,1.04),(4,1.04)
and (6,0.017). Overall agreements of the velocity spectra from NN1 and NN2
with those of fDNS are similar to those of DSM, whereas the noSGS overpre-
dicts the spectra at high wavenumber indicating that dissipation is insufficient.
Figure 3.5 shows the mean SGS dissipation (€g45),, and the mean backscat-
ter (€5.¢)z = 0.5(€565 — |€s65|) 2 A reasonable agreement is found among
the NN-based SGS models and fDNS for the SGS dissipation generated in the
shear layer. For the backscatter, NN1 and NN2 provide non-negligible backscat-
ter compared to that of fDNS. It has been pointed out that the non-negligible
backscatter incurs the numerical instability in actual LES (Liu et al. 1994; Akha-
van et al. 2000; Meneveau & Katz 2000; Anderson & Domaradzki 2012; Park
& Choi 2021). For the filtered DNS of the turbulent channel flow at Re_ ~ 180,

Park & Choi (2021) showed that the magnitude of the backscatter was compara-
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ble to that of the mean SGS dissipation, but figure 3.5 indicates that, for the BFS
flow at Re;, = 5100, the backscatter is approximately 10% of the mean SGS dis-
sipation. Therefore, although NN1 and NN2 provide non-negligible backscatter,
this does not incur the numerical instability in the LES of BES flow. In this re-
gard, the NN1 and NN2 have the advantages over the DSM that those NN models
can predict backscatter in the LES, whereas the DSM does not provide it due to
the averaging procedure for obtaining C,. Note also that the LESs with NN1 and
NNZ2 do not require special treatments such as the ad hoc clippings, wall damp-
ing, and averaging over homogeneous directions, which is another advantage

over the DSM.
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FIGURE 3.1. Coefficients of skin friction and wall pressure, C and C,, respectively,
from LES51GR: (a) skin-friction coefficient; (b) wall-pressure coefficient. O, fDNS;
=== 1noSGS; =—, DSM; =—, NN1; —, NN2.

84



(@ xh=1 xh=4 xh=6 xh=10 xh=15

o<

(b) xh=10 xh=15

Il

H
| I SRR B

o

FIGURE 3.2. (@) Mean streamwise velocity and (b) rms streamwise velocity fluctuation

from LES51GR. +, DNS; O, fDNS; = = =, noSGS; ==, DSM; =, NN1; =, NN2.

85



(a) xh=10 xh=15

=lBS

(b) xh=10 xh=15

=33

H
| A BN R B R

w, /U,

rms

© x/h=1 xh=4 xXh=6 x/h=10 x/h=15

=3B

T
0 0.01
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Data from method SGS model X,/h
present study DNS - 6.23
present study fDNS - 6.17
present study LES noSGS 6.54
present study LES DSM 6.27
present study LES NNI1 5.96
present study LES NN2 6.21
Jovic & Driver (1994) Experiment - 6+0.15
Le et al. (1997) DNS - 6.28
Akselvoll & Moin (1995) LES DSM 6.36
Kang & Choi (2002) LES DSM 6.20
Simons et al. (2002) LES SM 6.6
Aider et al. (2007) LES SFM 5.29-5.80
Panjwani et al. (2009) LES DSM,SFM  7.2-74
Yang et al. (2020) LES DSM 6.64

TABLE 3.2. Reattachment length (X,) of BES flow at Re;, = 5100 and ER = 1.2. Here,

LES of the present study is the LES51GR case. For the SGS model, SM is the Smagorin-

sky model with constant model coefficient, SFM is the structure function model. Note

that a large scatter in X,’s from previous LES studies is due to the combination of differ-

ent computational setups such as numerical schemes, inflow boundary condition, grid

resolutions, and the SGS model.
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3.2.2. LES51GC case

Figure 3.6 shows the coefficients of skin-friction and wall pressure from the
LES51GC, together with those from DNS and fDNS. Here, fDNS is the fil-
tered DNS with the same grid resolution as that of LES51GC. Both NN1 and
NN2 show better predictions for C; and C, than noSGS and DSM, especially
in the regions of x/h < 3 and near the reattachment location. The reattachment
lengths from fDNS, NN1 and NN2 are X, = 6.12h,6.18h and 5.97h, respec-
tively, whereas reattachment lengths are 5.68h and 6.82A4 from noSGS and DSM,
respectively. The X,’s from NN1 and NN2 are quite well predicted, even though
those models are trained by using fDNS data whose grid sizes are different from
that of LES51GC. On the other hand, the LES without SGS model significantly
underpredicts X,.. The prediction for X, with DSM is also poor, and this may be
attributed to the limitation of the eddy-viscosity model in the LES with coarse
grid resolution, where Jiménez & Moser (2000) indicated that the grid resolution
should be high enough for most of the SGS stresses to be carried by the resolved
scales in application of the eddy-viscosity model.

Figure 3.7 shows the mean streamwise velocity and the Reynolds shear stress,
and figure 3.8 shows the rms velocity fluctuations. For the mean streamwise ve-
locity, a good agreement is found between fDNS and LESs with NN1 and NN2,
whereas the DSM shows negative velocity at x/h = 6, expected by its large reat-
tachment length. For prediction of the Reynolds shear stress and rms streamwise
velocity fluctuation, the difference between SGS models are small. For the rms
vertical and spanwise velocity fluctuations, the LES without SGS model signifi-
cantly overpredicts those statistics near the step edge (x/h = 1) and in the recir-
culation regions (x/h = 4), whereas LESs with NN1 and NN2 overpredict them
compared to those of fDNS. The DSM shows good agreement of those statis-

tics with those of fDNS, but this may not much meaningful since the DSM does
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not predict well the mean streamwise velocity near the reattachment location. To
improve the performance of NN models, we have trained another NNs using two
different fDNS datasets together whose grid sizes are bigger and smaller than the
grid size of LES51GC, as suggested by Park & Choi (2021), where they showed
significant improvement on the performance an NN for the LES having different
grid resolution from that of trained data. Figure 3.9 shows the rms vertical and
spanwise velocity fluctuations, with this new NN. Here, only NN1 is shown for
clarity. The predictions of this new NN1 (NN1n) are slightly better than that of
the previous NN1 (NN1o) for those statistics, but the difference in predictions is
not significant. Note that Park & Choi (2021) applied the spectral-cutoff filter in
the streamwise and spanwise directions with only one filter size for making one
fDNS dataset in the turbulent channel flow, where the filter sizes are uniform in
those directions, respectively. On the other hand, for the BFS flow in the present
study, the box filter is applied in all x, y and z directions, where the filter sizes are
different by location. Therefore, various filter sizes are already used for making
one fDNS dataset, and this may be a reason for quite good performance of the

NNTo for the LES having different grid resolution from that of trained data.
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FIGURE 3.6. Coefficients of skin friction and wall pressure, C and C,, respectively,
from LES51GC: (a) skin-friction coefficient; (b) wall-pressure coefficient. +, DNS; O,
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FIGURE 3.9. The rms wall-normal and spanwise velocity fluctuations from LES51GC:
(a) wall-normal; (b) spanwise. +, DNS; O, fDNS; ===, noSGS; =—, DSM; —,
NNlo; ===, NNIn. The numbers of grid points of fDNS for training NNlo are
161(x) X 57(y) X 64(z), whereas the numbers of two different fDNS for training NN1n
are 145(x) x45(y) x48(z) and 129(x) X 37(y) X 24(z), respectively. The numbers of grid
points used in LES51GC are 137(x) X 41(y) X 32(z).
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Chapter 4

LES of controlled backward-facing-step flow by
multiple taps

One of the essential issues in research of turbulent flow over a backward-facing
step is the flow-separation control to increase mixing (or to enhance the heat and
mass transfer) behind the step, where the reduction of the reattachment length
has been an indirect measure of the mixing increase. Many control devices have
been investigated to enhance the mixing in an active or passive manner. For the
active control, the blowing/suction is imposed at the step edge, for example, with
a specific blowing/suction frequency (Bhattacharjee et al. 1986; Roos & Kegel-
man 1986; Hasan & Khan 1992; Chun & Sung 1996) or by the feedback control
theory (Kang & Choi 2002; Neumann & Wengle 2003; Gautier & Aider 2013).
Those active control methods, however, are difficult to install and require addi-
tional energy input, so in terms of practical use, a passive control device may be
preferable to those active ones (Park et al. 2007). Various passive control devices
have been suggested so far; for example, segmented step face (Gai & Sharma
1984), upstream cavity or rod (Isomoto & Honami 1989), surface rib or groove

(Selby et al. 1990; Kim & Chung 1995), upstream fence (Neumann & Wengle
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2003) and fence at the step edge (Park et al. 2007). Park et al. (2007) indicated
that the three-dimensional disturbance on the flow separation has been more ef-
ficient for the mixing enhancement than the two-dimensional one, and one of the
most successful devices for the three-dimensional disturbance is the small taps
(Zaman et al. 1994; Foss & Zaman 1999; Park et al. 2006, 2007). Meanwhile,
Park et al. (2007) conducted experimental study for the BFS Flow with single
tap or multiple taps at Re, = 24000 and ER = 1.12, and showed that multiple
taps were more effective on the mixing increase than the single tap. They showed
that the multiple taps could reduce the reattachment length by 51% from that of
the uncontrolled flow, where vertical height and spanwise width of the tap were
I, = 03h and I, = 0.3h, respectively, and the spanwise spacing between two
adjacent taps was A = 2.33h (see figure 4.1a for the schematic of the taps).
Having confirmed the successful application of an NN-based SGS model
for the BFS flow at Re, = 5100, the performance of NN-based SGS model is
assessed for the LES of BFS flow having multiple taps, where the flow and tap
parameters are similar to those used in the experiment by Park et al. (2007).
Here, we only assess the performance of the NN1, because NN1 performs better
than NN2 in turbulent channel flow (part 1), even though the difference between
the two models in the LES of BFS flow at Re;,, = 5100 is not significant. The
NNI is trained using the filtered DNS at Re;, = 5100, as described in §2. The
numerical methods for solving the filtered Navier-Stokes equations are the same
as those used in §3, and other computational details are given in §4.1, followed

by the LES results in §4.2.

4.1. Computational details

The schematic of the computational domain is the same as figure 2.1, and

the size of the computational domain is —2.5 < x/h < 20,0 < y/h < 9.33
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and, 0 < z/h < 4.67. The step-height Reynolds number and the expansion
ratio are Re, = 24000 and ER = 1.12, respectively, which are same as those
of the experiment (Park er al. 2007). We consider three configurations of the
backward-facing step: 1) without tap (uncontrolled), 2) with taps having 4 =
4.67h, and 3) with taps having A = 2.335h. The taps are applied at the step
edge, as shown in figure 4.1, where the vertical height and the spanwise width
of the tap are /, = 0.3h and /, = 0.3h, respectively. The streamwise thickness
of the tap is set to be [, = 0.05A, to adequately describe the tap by the immersed
boundary method. This /, is greater than that used in the experiment (/, = 0.03h
in Park et al. 2007), but this difference in /,’s may not much affect the flow
disturbance generated by the tap, since the /, and [, are still much larger than
[.. The numbers of grid points used are 241 X 129 x 128 in the streamwise,
wall-normal and spanwise directions, respectively. For the grid resolution, we
refer to the grid resolution used in the previous LES for the high-Reynolds BFS
flow (Akselvoll & Moin 1995). The grid spacings normalized by 4 and in wall
units, respectively, are given in table 4.1, together with those of training data
for the NN1 and with those of previous LES by Akselvoll & Moin (1995). The
numbers of grid points located inside a tab are 3 X 33 X 9 in the streamwise,
vertical and spanwise directions, respectively. The computational time step is
At = 0.003h/U,. Initial flow fields for 210h/U,, are discarded, and then the
flow fields are averaged over 1500h /U, to obtain the mean statistics. The LESs
for each BFS configuration are conducted with noSGS, DSM and NN1, and for
the NN1, the backscatter is forced to be zero by eq. (3.1) in part I to ensure the
stable LES for this high-Reynolds number BFS flow. For the DSM, we keep
using the averaging in z direction for obtaining the model coefficient in the LES
of BFS flow with taps, even though it is no longer homogeneous in the z direction

with the taps. This is based on the previous observation (Park et al. 2006) that
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the LES result was not sensitive to the detailed averaging procedure. They also
indicated that this insensitivity may be attributed to the self-adjusting mechanism
of dynamic model described in Park et al. (2005).

In the experiment (Park et al. 2007), inflow was the full-developed turbu-
lent boundary layer, where 6/h = 0.6 and Re, = 1230 at 0.5h upstream of
the step edge. To provide realistic turbulence at the domain inlet for the LES of
BFS flow, a separate LES of TBL flow is conducted using DSM, where Re, at
the inlet of this simulation is Rey, = 1000. The domain size is 0 < x/h < 12,
0 <y/h<833and,0 < z/h < 2.335 and the numbers of grid points are
192 x 81 x 64 in streamwise, wall-normal and spanwise directions, respectively.
Since the inlet is located at 2.5h upstream of the step edge in the LES of BFS
flow, the TBL flow fields at 2A upstream of the location having Re, = 1230
are stored. Note also that the spanwise domain size of this TBL simulation is
half of that used in the LES of BFS flow, so the flow fields are combined in
the spanwise direction based on the periodic boundary condition. The resulting
boundary layer thickness and Re, of the inflow are 6/h = 0.5 and Re, = 1140,
respectively. Figure 4.2 shows the mean velocity and the turbulence intensities
from the LES of TBL flow, together with DNS data (Schlatter & Orlii 2010).
The LES result show reasonable agreement with that of DNS data for the mean
velocity. For the turbulence intensities and the Reynolds stress, the LES results
show reasonable predictions, as the over- and under predictions for the stream-
wise and the cross flow components, respectively, are commonly observed in the

LES of wall-bounded flows with a coarse grid resolution (Bae et al. 2018).
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FIGURE 4.1. Tap configurations: (a) parameters of multiple taps; (b) taps on BFS with
A = 4.67h; (c) taps on BFS with 4 = 2.335A. In (b), the location of the tap center is
z = 2.335h, and in (c), the locations of the tap centers are z = 1.1675h and 3.5025#h,

respectively.
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FIGURE 4.2. Inflow statistics from LES of TBL flow: (@) mean velocity; (b) rms velocity
fluctuations. The Rey of the inflow is 1140. In (a, b), the solid line denotes the present
LES, whereas the closed and open circles denote the previous DNS results by Schlatter
& Orlii (2010) at Rey = 1000 and Rey = 1410, respectively. In (b), black, blue and red
colors denote the rms velocity fluctuations in streamwise, wall-normal and spanwise

directions, respectively.
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4.2. Results

In the experiment (Park et al. 2007), the reattachment length of the uncon-
trolled flow (i.e., without taps) was X, = 5.81+0.25h, and the NN1 well predicts
the reattachment length showing X, = 6.02A4. The DSM and noSGS provide the
reattachment lengths of X, = 6.45h and X, = 6.66h, respectively, which are
larger than those of the experiment and NN1. Figure 4.3 shows the profiles of
mean streamwise velocity and rms streamwise velocity fluctuation for the un-
controlled flow, together with those from the experiment. For both statistics, the
difference between DSM and NNI1 is not significant, but the DSM shows the
backflow at x = 6h, as expected by the overpredicted X,. On the other hand,
the noSGS severely overpredicts the rms streamwise velocity fluctuation albeit
showing similar performance for the mean velocity to that of the DSM. The LES
results for the uncontrolled flow indicate that the NN1 provides fairly good pre-
dictions for a higher Reynolds number, even though the training is performed at
a lower Reynolds number of Re;, = 5100. This may indicate that the relation
between the SGS stress and strain rate which are non-dimensionalized by A and
U, is not much varied by the Reynolds number in the BES flow (especially near
the flow separation and shear layer). Meanwhile, the grid spacings for the LES at
Re;, = 24000 also differ from those of the training data. In §3.2.2, the NN1 for
LES51GC has shown fairly good predictions for the reattachment length and the
turbulence statistics, even though the grid resolution of the LES51GC is coarser
than that of the training data. For the LES at Re;, = 24000, the grid spacings in
wall units are similar to those of the LES51GC (see tables 3.1 and 4.1), and this
could also be one of the reasons that the NN1 works well in the LES of a higher
Reynolds number.

Figures 4.4 and 4.5 show the profiles of mean streamwise velocity and rms

streamwise velocity fluctuation for the controlled flow with 4 = 2.335h, at the
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tap center (z* = 0) and at the middle of two adjacent tabs (z* = 0.5), respec-
tively, where z* = |z — z,|/A and z, is the location of tap center. For those
statistics, the predictions of noSGS are significantly different from those of DSM
and NN1, clearly indicating that the contribution of the SGS model is of great
importance in the LES of the controlled flow. On the other hand, the NN1 shows
almost similar predictions to those of DSM for those statistics, even though a
slight difference in the predictions is observed for u,,, at z* = 0.5. Figure 4.6
shows the variation of the wall-pressure coefficient C, along the spanwise direc-
tion at several streamwise locations. Here, the results of noSGS are not shown
for clarity. In the cases of NN1 and DSM, the reference pressures are obtained
so that the C,’s of NN1 and DSM at (x/h, z/h) = (1,4.67) are the same as those
of the experiment. Both NN1 and DSM show qualitatively good predictions for
the spanwise variation of the C,, where the C), is relatively low at the tap-center
z locations for both controlled cases.

Figure 4.7 shows the variations of X, in the spanwise direction for controlled
flows, together with those from the experiment. The NN1 shows the best pre-
diction performance for the spanwise variation of X, among considered SGS
models. For example, the NN1 could capture the local minimum of X, for the
case of 4 = 4.67h albeit the z location for this minimum is different from that of
the experiment. For the controlled flow with 4 = 4.67h, the spanwise-averaged
reattachment lengths, X,’s, are 5.70h,5.18h and 4.77h from noSGS, DSM and
NN1, respectively. Since the experiment did not present X, for A = 4.67h, we
have numerically integrated the X, along the spanwise direction, and this X,
is 3.90. The X,’s for the case of A = 2.335h are 4.75h,4.60h and 3.78h from
noSGS, DSM and NNI, respectively, where X, = 2.84A from the experiment.
The X,’s from the NN1 are closer to the experimental results than those from

the noSGS and DSM, but the X,’s have a large deviation from those of the ex-
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periment. This deviation is greater for A = 2.335h than for A = 4.67h, and this
may be originated from insufficient spanwise domain size, where we use a much
smaller domain size (L, = 4.67h) than that of the experiment (L, = 14h) for
the BFS with multiple taps. Although the periodic boundary condition is used to
describe the periodicity over the taps, an artificial effect on the controlled flow
may have increased as the number of taps increases, resulting in the different pre-
diction for the spanwise variation of X, to that of the experiment. Besides the
spanwise domain size, the grid resolutions near the tap may also be insufficient
to accurately resolve flow there, as the grid resolutions are the same as those of
the uncontrolled flow. Nevertheless, the present LES with NN1 could capture
the qualitative behaviors of the controlled flows, and this LES result would be
enough to estimate the performance of NN1 for the LES of the controlled flows.
Therefore, we have not further attempted to accurately reproduce the experimen-
tal data, and we investigate the performance of NN1 for other flow statistics by
comparing it with that of the DSM.

Figure 4.8 shows the Reynolds shear stress from the LES with NN1 and DSM
for three BFS configurations. This quantity is calculated to check the similarity
between NN1 and DSM, as there is no available experimental data. At z* = 0,
NNI and DSM provide nearly identical results, whereas non-negligible differ-
ences are observed at z* = 0.5 where the X, is smaller than that at z* = 0. For
both cases of controlled flow, the DSM provides a larger Reynolds shear stress
at z* = 0.5 (especially at x/h = 2 and 4) than that of the NN1, and this may
result in a larger X, from DSM than that from the NN1. Figures 4.9 and 4.10
show the mean SGS shear stress and SGS dissipation, respectively, from the LES
with NN1 and DSM. Both SGS models yield the highest SGS shear stress and
SGS dissipation near the separation point. For the SGS shear stress, significant

differences are observed between NN1 and DSM, where DSM produces much
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smaller stress than that of the NN1. Although the magnitude of SGS stress is
much smaller than that of the Reynolds stress, the contribution of the SGS model
in BFS flow is of great importance, considering the poor performance of noSGS
(as shown in figures 4.3-4.5). Therefore, the different performances of NN1 and
DSM for the LES of controlled flow shall be based on the different predictions
for the SGS stress. For the SGS dissipation, the NN1 and DSM have similar
predictions at z* = 0, but non-negligible differences are observed at z* = 0.5.
For example, the peak value from NN1 at x/h = 0.05 for the controlled flow
with A = 2.335h are 70% of that from the DSM, but the NN1 produces big-
ger SGS dissipation than that of the DSM further downstream locations. Figure
4.11 shows the ratio of the SGS dissipation to molecular dissipation, where the
molecular dissipation is defined as €,, = 2v.S; jS'i ;» as also used by Akselvoll
& Moin (1995) in the LES of BFS flow at Re;, = 28000. The ratios from the
NNT1 and DSM show significantly different behavior for all streamwise locations,
clearly indicating that the NN1 has a different prediction performance from that
of the DSM. It is also noticeable that the kinks near y = & are observed for
NN1, which are also observed in the LES with the Smagorinksy model in the
previous LES by Akselvoll & Moin (1995). They pointed out that these kinks
were originated from the small grid sizes in the wall-normal direction, which is
directly used for calculating the eddy viscosity, as v, = (C;A)?|.S|, resulting in
very sensitive changes in this ratio. Although the grid size in wall-normal direc-
tion is not the input variable of the NN1, the relation between SGS stress and the
grid size seems to be implicitly included in the NN1, resulting in those kinks as
the Smagorinsky model. On the other hand, Akselvoll & Moin (1995) showed
that the DSM does not have these kinks, because the (C;A)?|S| is obtained by
the dynamic procedure which uses the ratio of test- to grid-filter sizes, not the

grid-filter size itself.
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Figure 4.12 shows the instantaneous vortical structures identified by the iso-
surfaces of 4, = —10U§/h2 (Jeong & Hussain 1995) from LESs with noSGS,
DSM and NNI1. More vortical structures are observed from the noSGS due to
insufficient dissipation, as the LES without SGS model has only the molecular
dissipation. On the other hand, the instantaneous flow fields from LESs with
DSM and NN1 show similar vortical structures to each other, because the mag-
nitudes of the SGS dissipation from DSM and NN1 are similar to each other

albeit having different predictions for the SGS dissipation in detail.
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FIGURE 4.3. LES results for the uncontrolled flow at Re;, = 24000: (a) mean streamwise
velocity; (b) rms streamwise velocity fluctuation. @, experiment (Park ez al. 2007); =,

noSGS; =—, DSM; —, NNI1.
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FIGURE 4.4. LES results for the controlled flow with A = 2.335A at the center of the
tap (z* = 0): (@) mean streamwise velocity; (b) rms streamwise velocity fluctuation. @,
experiment (Park et al. 2007); ==, noSGS; =, DSM; =—, NN1. Here, (),., denotes

the averaging over the same z* position and time.
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FIGURE 4.5. LES results for the controlled flow with 4 = 2.335h at middle of two
adjacent tabs (z* = 0.5): (a) mean streamwise velocity; (b) rms streamwise velocity

fluctuation. @, experiment (Park et al. 2007); ==, noSGS; =——, DSM; =, NN1.
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FIGURE 4.6. Spanwise distribution of the wall-pressure coefficient C,, with multiple
taps at several streamwise locations: (a) x/h = 1; (b) x/h = 2.5; (¢) x/h = 3.5; (d)
x/h = 4.5; (e) x/h = 8; (f) x/h = 12. The lines with cross, square and triangle
denote the uncontrolled flow, controlled flow with A = 4.67h and controlled flow with
A = 2.335h, respectively. The black, blue and red colors denote the experiment (Park
et al. 2007), DSM and NN, respectively.
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trolled flow with A = 4.67h; (b) controlled flow with 4 = 2.335A. @, experiment (Park
et al. 2007); ==, noSGS; =, DSM; — NNI1. Note that X,’s for the uncontrolled
flow are 5.8h,6.66h,6.45h and 6.02A for the experiment, noSGS, DSM and NN, re-

spectively.
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FIGURE 4.8. The Reynolds shear stress from the LES with DSM (dashed lines) and NN1
(solid lines): (a) at the center of the tab (z* = 0); (b) at the middle of two adjacent tabs
(z* = 0.5). The black, blue and red colors denote the uncontrolled flow, controlled flow

with A = 4.67h and controlled flow with 4 = 2.335h, respectively.
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FIGURE 4.9. The SGS shear stress from the LES with DSM (dashed lines) and NN1
(solid lines): (a) at the center of the tab (z* = 0); (b) at the middle of two adjacent tabs
(z* = 0.5). The black, blue and red colors denote the uncontrolled flow, controlled flow

with A = 4.67h and controlled flow with A = 2.335h, respectively.
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FIGURE 4.10. The SGS dissipation from the LES with DSM (dashed lines) and NN1
(solid lines): (a) at the center of the tab (z* = 0); (b) at the middle of two adjacent tabs
(z* = 0.5). The black, blue and red colors denote the uncontrolled flow, controlled flow

with A = 4.67h and controlled flow with A = 2.335h, respectively.
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FIGURE 4.11. The ratio of SGS dissipation to molecular dissipation from the LES with
DSM (dashed lines) and NN1(solid lines): (a) at the center of the tab (z* = 0); (b) at
the middle of two adjacent tabs (z* = 0.5). The black, blue and red colors denote the
uncontrolled flow, controlled flow with A = 4.67h and controlled flow with A = 2.335h,

respectively.
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FIGURE 4.12. Instantaneous vortical structures from the LES with noSGS, DSM and
NNI1: (a—c)uncontrolled flow; (d — f) controlled flow with A = 4.67h; (g—i) controlled
flow with A = 2.335h. (a,d, g), (b, e, h) and (c, f, i) are the results of noSGS, DSM and
NNI1, respectively.
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Chapter 5

Concluding remarks

In the present study, we applied a fully-connected neural network (NN) to the
modeling of a subgrid-scale (SGS) stress for turbulent flow over a backward-
facing step (BFS). Based on the NN-based SGS modeling conducted in the tur-
bulent channel flow (Part I, Park & Choi 2021), two different NNs were trained
with filtered DNS data at Re, = 5100, where the input variables considered were
the strain-rate and velocity-gradient tensors at single grid point (NN1 and NN2,
respectively). The results in Part I indicated that the performance of NN for a
priori test is not consistent with that for the actual large eddy simulation (LES),
so we conducted a priori test only to check the convergence of the prediction
performance of NN by varying its numbers of hidden layers and neurons. A pri-
ori test showed that two hidden layers with 32 neurons per layer were sufficient
for both NN1 and NN2 to yield converged prediction performance for the mean
SGS stress and SGS dissipation. These NN1 and NN2 were applied to the LES
of BFS flow at Re;, = 5100, and showed good prediction performance for the
reattachment length (X, ), where the NN1 and NN2 provided X, = 5.96A and
6.21h, respectively (X, = 6.0h + 0.15A from the experiment by Jovic & Driver
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1994 and X, = 6.17h from the present filtered DNS). The predictions for root-
mean-square velocity fluctuation were also generally good as compared to those
from LES with the dynamic Smagorinsky model (DSM). Then, we applied those
NN s to the LES at Re, = 5100 with a coarser grid resolution than that of the
training data. The results were generally good as compared to those from LES
with the DSM, where the NN predicted the reattachment length better than the
DSM. Meanwhile, we additionally trained the NNs with two different filtered
DNS datasets together to improve the performance in the coarse-grid LES, as
done in Part I. However, the improvement in this LES was not significant, and
this might be because, unlike the turbulent channel flow, various filter sizes were
already used to construct one fDNS dataset.

To assess the performance of the NN for a higher-Reynolds-number flow, we
applied the NN1 trained at Re;, = 5100 to LES at Re, = 24000. Although the
Reynolds number and grid resolution were not the same as those of the training
data, the LES on this Reynolds number provided fairly good results, compared to
those from the experiment (Park ef al. 2007) and LES with DSM. For example,
the reattachment length was better predicted by the NN1 (X, = 6.02A) than by
the DSM (X, = 6.45h) comparing to that of the experiment (X, = 5.8h+0.25A).
Therefore, the NN trained at a lower-Reynolds-number BFS flow maintained
its prediction performance for a high-Reynolds-number BFS flow. This might
indicate that in the separated flows, the relation between the SGS stress and strain
rate did not vary significantly by the Reynolds number. Finally, we applied the
NN1 for the LES of controlled BFS flow by multiple taps installed at the step
edge. At the Reynolds number of Re;, = 24000, we used taps having similar
geometries to those of the experiment (Park ef al. 2007), and the LES with NN1
could provide good results, where the amount of reduction of the reattachment

length was better predicted by NN1 than by DSM.
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In the present study, an NN-based SGS modeling was developed for tur-
bulent channel (Part I) and backward-facing-step (Part II) flows and showed a
promising LES resulting using the developed model. However, limitations of
NN-based SGS modeling or NN-based LES was also clearly observed. So, let
us discuss current limitations of NN-based LES and future research directions.
Some limitations were also reported in Wollblad & Davidson (2008), Gamahara
& Hattori (2017) and Zhou et al. (2019). First, the performance of NN-based
SGS model depends on the input variables. In the present study, we considered
the filtered strain-rate tensor S; ; and filtered velocity gradient tensor @;; as in-
put variables, and showed that S, ; performs better than @;; in turbulent channel
flow. Since the SGS stress tensor 7;; is a symmetric tensor, one may also con-
sider other combinations of S, ; and R, ; (filtered rotation rate tensor) as input
variables, as described in §2.1. So, a further study in this direction is needed.
Second, the results of a priori and a posteriori tests on NN-based SGS mod-
els are inconsistent with each other. Traditional physics-based SGS models have
also the same inconsistency. That is, some traditional SGS models having a poor
performance in a priori test perform very well in a posteriori test. However,
this poor performance in a priori test does not mean the failure of such models,
but indicates the fundamental limitation of a priori test itself (Park et al. 2005).
The present NN-based SGS model is constructed using a database containing
static (i.e., instantaneous) flow information, thus lacking dynamic (i.e., tempo-
ral) information of filtered flow variables which is important in actual LES (i.e.,
a posteriori test). Therefore, the present model is not free from the inconsistency
observed in traditional SGS models, and a database containing more static in-
formation does not necessarily provide better output. In this regard, a different
approach of constructing NN-based SGS models may be searched for. In tradi-

tional physics-based SGS modeling, Meneveau et al. (1996) proposed to accu-
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mulate the flow information over flow pathlines and constructed a Lagrangian
dynamic SGS model. Thus, a Lagrangian approach or reinforcement learning
with a target statistics may be a way to overcome this inconsistency. To the best
of our knowledge, there has been no attempt of constructing such an NN-based
SGS model. This approach may provide an improved performance in NN-based
LES. Third, an NN-based SGS model should be trained by databases containing
different flow characteristics such as shear-driven, rotation-driven, and separated
flow characteristics. The present SGS model was trained by a database of turbu-
lent channel flow, and thus may not be applicable to other types of flows. Thus,
more databases should be generated and used for training an NN. Here, we do
not mean that almost all the flow databases should be trained for successful LES,
but we suggest that some representative flow databases such as rotating channel
flow, flow over a backward-facing step, flow over a circular cylinder and jet may
be sufficient to build a successful NN for flow inside/over a complex geometry.
However, how to combine different flow databases in an NN-based SGS model
is still a difficult problem. The present NN-based SGS model was trained by the
input and output variables normalized by wall units, but it may not be applica-
ble to complex flow (e.g., a circular cylinder) because this flow cannot be scaled
in wall units. To overcome this limitation, one should develop a universal non-
dimensionalization of input and output variables for different flow types. This
is an important task for the use of NN-based SGS model to flow inside/over a

complex geometry.
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Appendix A

Parametric study on the neural-network-based SGS

model in turbulent channel flow

In the present appendix, results of several parametric studies on the neural net-
work (NN) are presented, where the NN is trained with fDNS database of the
turbulent channel flow at Re, = 178. Details of fDNS database are presented
in Part I §2.2. For five NN trained with different input variables listed in Part I
table 2.1, we first test the prediction performance of those NNs by varying the
numbers of training data and hidden layers. Here, the number of neurons per
hidden layer is fixed at 128, which are comparable or larger than those used in
the previous NN-based SGS modeling in turbulent channel flow (Gamahara &
Hattori 2017; Stoffer et al. 2020). Figure A.1 shows the mean SGS shear stress
(y,) predicted by NNs from a priori test, where those NNs have two hidden
layers. Here, NN is the number of instantaneous fDNS flow fields used for
collecting training data, and one fDNS field contains 6,208 training data. For
NNI1 and NN2, Npng = 50 is sufficient, but Niyng = 200 is required for NN3.
Figure A.2 shows (z,,) predicted by NN1 - NN5 from a priori test, where four
different number of hidden layers (N, = 1,2, 3,4) are considered. A single hid-
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den layer is sufficient for NN1 and NN2, but more than one hidden layer seems
to be required for NN3 and NNS5. Finally, we test the performance of NN1 - NN5
by varying both Npng and Ny, where Ngyng = 200,500 and Ny, = 2,3,4 are
considered. Figure A.3 shows (z,,) from a priori test, and figures A.4 and A.5
show the mean velocity and Reynolds shear stress from a posteriori test. Compu-
tational details for a posteriori test are the same as those for LES178 case in Part
I §3.2. The backscatter clipping by eq. (3.1) in Part I is used for LES with NN3 -
NNS5, because more hidden layers and training data do not reduce the backscat-
ter produced by NN3 - NNS5. For all NNs considered, two hidden layers and 200
fDNS fields are sufficient for showing converged prediction performance for the
statistics considered. Therefore, N, = 2 and Nyng = 200 are taken for the
present study for all NNs considered in turbulent channel flow.

For NN3 - NNS, the numbers of input grid points in x and z directions, n,
and n, respectively, have an effect on the prediction performance for the SGS
stresses. Therefore, we test NN3 - NNS5 for four different numbers of the input
grid points n, = n, = 3,5,7,9. Here, we also test two additional NNs (NN6 and
NN7 hereafter) which have different input variables from those of NN3 - NNS5,
where NN6 and NN7 use only velocity components i; at n, X n, and n, X 3(y) X
n, input grid points, respectively. Like NN3 - NN5, NN6 and NN7 predict six
components of the SGS stress tensor, which is located at the center of input grid
points considered. Figures A.6-A.8 show the results of a priori and a posteriori
tests for NN3 - NN7 with different n,(= n,). Here, the backscatter clipping is
used for LES with those NNs because more input grid points for NN3 - NN7
do not make LES with these NN stable. For NN3 - NN7 except NN6, n, = 3
provides fairly good predictions for (z, ) in a priori test. In the actual LES, n, =
3 is sufficient for showing good prediction performance for the mean velocity

and Reynolds shear stress for all NNs considered. Therefore, we determine to
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use n, (= n,) = 3 for NNs which use multiple input grid points, and the use of
n,(= n,) = 3 for NN3-NN35 is enough to compare their prediction performance
to those of NN1-NN2 in Part I.

We have investigated the effects of bias, activation function, and differently
initialized weights on the performance of the NN-based SGS model. For NN1
- NN35, we test three different usages of bias: 1) using bias at both hidden and
output layers (Casebsl), 2) no bias at all layers (Casebs2), 3) using bias only at
hidden layers (Casebs3). Figures A.9 and A.10 show the effect of bias on the
mean SGS and Reynolds shear stresses from a priori and a posteriori tests, re-
spectively. For all NNs considered, the bias has little effect on the prediction
performance for those statistics. Figures A.11 and A.12 show the effect of acti-
vation function f, on the mean SGS and Reynolds shear stresses from a priori
and a posteriori tests, respectively, where ReLU, sigmoid and hyperbolic tangent
functions are used. For all NNs considered, the prediction performance of NNs
by different activation functions is almost similar. However, figure A.13 shows
that the convergence of the loss function for the test dataset is faster using ReLU
than using other functions, where the loss function is defined as eq. (2.4) in Part
I. Therefore, we use ReLLU as the activation function for all NNs considered.
Figures A.14 and A.15 show the mean SGS and Reynolds shear stresses from a
priori and a posteriori tests, respectively, where four different random seeds are
used for the random initialization of trainable weights in NNs.

The output of NNs in Part I is six components of the SGS stress tensor 7;;.
It is also possible to train six NNs separately for predicting each component
of SGS stress tensor, as done in previous study (Gamahara & Hattori 2017).
Figure A.16 shows the effect of the different number of output components on
the prediction performance of NN1 and NN2 for the (z, ) and (£ g;5) in a priori

test. For those NNs, Case6o denotes the NN whose output is six components of
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7;;» whereas Caselo denotes the NN whose output is one component of 7;;. Note

that to predict six components of ;;,

Caselo requires six NNs, resulting in more
computational time for the prediction of 7;; than with Case6o. Figure A.17 shows
the correlation coefficients between true and predicted 7;; and e g from Caselo
and Case6o. Overall, the correlation coefficients from Case6o are slightly lower
than those from Caselo, but both cases have similar prediction performance for
the mean SGS statistics. So, considering the computational cost in LES, we train
NN to predict six components of z;; at once.

The performance of an NN depends on the loss function to be minimized.

We test several loss functions, which are defined as follows:

LFr = %é i i (rifj'?NS _ r}‘jﬂ)z; (A1)
11w K
LFl = 7= > Z fPNS — oM (A2)
N i<j
LF2= == 3 (el - o) (A3)
LF3 = LFr + LF2; (A4)
| < 2
LFa = = 3 [0.5 (55 + 2] ) - el (A5)
LF5 = LFr + LF4, (A.6)

where LFr is the reference loss function used in Part I, N is the number of mini-
batch data. Here, the L2 norm regularization term of weights is used for all loss
functions tested, but this term is omitted in above equations for clarity. Figures
A.18-A.20 show the results of a priori test, showing the effect of different loss
functions on the performance. The NNs trained with LF1 and LF3 do not show a
significant difference in prediction performance from that with LFr. On the other

hand, NNs with LF2 predict well the SGS dissipation, but show poor predictions
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for the SGS shear stress. For NNs with LF4 and LF5, the backscatter is reduced,
whereas the prediction performance for the SGS shear stress and dissipation is
worse than that with LFr. In the actual LES, NNs with LF1 and LF3 provide
almost similar results to those from NNs with LFr. For LF2, LES with NN1 and
NN2 shows numerical instability which does not occur with LFr. Figure A.21
shows the mean velocity profile and Reynolds shear stress from LES with NNs
trained by LFr, LF4 and LF5. In the case of LF4, all LES with NN1-NNS5 do not
diverge without backscatter clipping, but LESs with NN1 and NN2 provide very
poor predictions for the mean velocity. In the case of LF5, LESs with NN3-NN5
diverge unless the backscatter clipping is used, and the LES results with LF5 are
similar to those with LFr. Overall, NNs trained with loss functions of LF1-LF5

do not show better prediction performance in LES than those with LFr.
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Appendix B

Normalization method based on a resolved-scale

dissipation toward a universal NN-based SGS model

In Part I, we use the wall unit normalization for the input and output variables of
the NN in TCEF, so this NN cannot be applied to other flows such as homogeneous
isotropic turbulence (HIT). Therefore, to overcome this limitation, the normal-
ization (or non-dimensionalization) of input and output variables shall be impor-
tant, and a universal normalization method should be developed for the general
application of an NN-based SGS model to LES of flows different from trained
data. In this appendix, a normalization method based on the resolved-scale vis-
cous dissipation is described, and using this normalization, an NN-based SGS
model trained with TCF (HIT) database is applied to the LES of HIT (TCF).
Figure B.1 shows the invariants #, and &, of the Reynolds-stress anisotropy
tensor b?jey from DNS of TCF at Re, = 178 and the SGS-stress anisotropy tensor
bl.sjGS from fDNS of TCF, together with the Lumley triangle (Pope 2000), where

!0
Rey —_ <uiuj>xzt 1 SGS —_— (Tij>xzt l
b = ke Ly p3OS = il L
J <ukuk xzt 3 J <Tkk>xzt ~

fDNS of TCF are obtained with the same filter sizes as those described in Part

ijo 6;;- Unless otherwise mentions, the

I §2.2. The invariants 7, and &, of an anisotropy tensor b; ; are defined as 3112 =
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—A(bl)/léz) - /122)/123) - /1(b3)/l(bl), 252 = /121)/122)/1(;), where Ag)’s are eigenvalues of
tensor b;;. The invariants of isotropic turbulence are (1, £,) = (0, 0), and further
details for the state of turbulence by #, and &, are described in Pope (2000).
Figure B.1 indicates that the state of turbulence near the channel center is close
to isotropic for not only bi.ey but also bl.Sf’S . This may indicate that an NN trained
with TCF database can be applied to LES of HIT with a proper normalization
method. On the other hand, an NN trained with HIT database may work for LES
of TCF by using a wall-damping function, considering that the Smagorinsky
model works well for HIT but the wall-damping function is required for this
model in LES of TCF.

For the normalization (non-dimensionalization) method which is applicable
to both HIT and TCF flows, the length and velocity scales used in the normal-
ization must be able to be calculated from both HIT and TCF flows. Among
various scales for turbulent flows, the Kolmogorov scales represent the smallest
turbulent scales, and the Kolmogorov scales can be calculated in any turbulent
flow regardless of the geometry around the flow. Inspired by the universality of
the Kolmogorov scales, but using only information of the resolved flow in LES,

a resolved-dissipation length and velocity scales, /.4 and u,,, respectively, are

)0.25 )0.25

defined as follows: /4 = (v3 /) T, uy = (V€)= v is kinematic viscosity,
and £ = 2v(S l.’j.S_' 1’1> These definitions are similar to those of the Kolmogorov
length and velocity scales, but unlike the Kolmogorov scales, the filtered strain
rate fluctuation S‘i’j is used to represent the dissipation of the resolved flows.
Figure B.2 shows [ 4 and u 4 from DNS and fDNS of TCF, normalized by

characteristics grid size A, and resolved turbulent kinetic energy k,, respec-

c
tively, where A, = (AxAyAz)'/3 and k, = 1/3(d,,, + D, + W0,,,). Note
that / ; and u4 of DNS are the same as Kolmogorov length and velocity scales.

The 1.4/ Ay and w4/ 4/ k, from DNS of forced HIT at the Reynolds number of
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Re, =u' /v = 73 are about 0.48 and 0.19, respectively, where 1283 grid points
are used for the DNS, «’ is the rms velocity fluctuation, A is the Taylor micro
scale, and Ay is the grid size of the DNS. Computational details for the DNS of
HIT is given in appendix C. In the case of fDNS of HIT, (l cd/ Durrs Ura/ \/k—e ) =
(0.13,0.17), (0.11,0.18), (0.08, 0.18) for the fDNS with grid points of 323, 243,
163, respectively, where the spectral cutoff filter is applied to DNS flow fields to
obtain fDNS. Although /4 and u 4 are varied in wall-normal direction in TCF,
their order of magnitude are similar to those in HIT for both DNS and fDNS
considered.

We first apply an NN trained with fDNS of TCF to LES of forced HIT whose
grid points are 243 or 323. The NN has the input of filtered strain rate tensor at
a single grid point, and the output is six components of SGS stress tensor. All
flow variables used for training this NN are non-dimensionalized by /4 and u,4
obtained from fDNS of TCF. During LES of HIT, the input and output of this
NN are re-normalized using /.4 and u,4 from fDNS of HIT having the same grid
points as those of LES. Figure B.3 shows the three-dimensional energy spec-
trum from LES of HIT. For the LES, we do not use any special treatment such
as backscatter clipping. The NN model trained with fDNS of TCF shows good
prediction for the energy spectrum, indicating that the normalization based on
l.q and u 4 works well.

Then, we test an NN trained with fDNS of HIT in LES of TCF whose grid
points are 16(x) X 49(y) X 16(z). The NN has the input of filtered strain rate
tensor at a single grid point, and the output is six components of SGS stress ten-
sor. We apply two NNs to the LES of TCF, where one is trained with TCF flow
using wall unit normalization, and the other is trained with HIT flow using the
normalization based on /4 and u4. The former NN (TCFNN hereafter) is the

same NN1 in Part I. For the latter NN (HITNN hereafter), the input and output
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variables are re-normalized using /4 and u,4 from fDNS of TCF, and the wall
damping function of 1 — exp~ "/ 25)" s multipled to the predicted SGS stress
by the NN. Figure B.4 shows the statistics of various turbulence quantities from
LES of TCF with TCFNN and HITNN. The LES with HITNN shows an excel-
lent prediction for the mean velocity, and good predictions for the turbulence
statistics. For the mean SGS shear stress, the HITNN underpredict it ,but the y*
location of its maximum value is captured. Therefore, the NN model trained with
fDNS of HIT can be applied to the TCF with the normalization based on / 4 and
u.4, showing fairly successful predictions for the mean velocity and turbulence
statistics. The present results suggest that a general normalization of flow vari-
ables for different types of turbulent flow may be possible, and this important

subject should be further investigated in the near future.
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FIGURE B.1. The invariants # and & of the Reynolds-stress and SGS-stress anisotropy
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Appendix C

Computational details for DNS of a forced

homogeneous isotropic turbulence

DNS database of a forced homogeneous isotropic turbulence (HIT) is required to
train an NN in appendix B, so we performance DNS of HIT using the dealiased
pseudo-spectral method. The numbers of grid points used are 1283 on a periodic
box whose sizes are (ZnLre f)3. The spatial resolution parameter k,,,,# is 1.5
which is good resolution for the smallest scales (Pope 2000), where k,,,, is the
maximum wavenumber and # is the Kolmogorov length scale. For the time inte-
gration, third-order Runge-Kutta and second-order Crank-Nicolson schemes are
applied to the convection and viscous terms, respectively. The simulation starts
with a random-phase Gaussian field that satisfies the k=>/3 energy spectrum. The
large-scale forcing f; at a low wavenumber (k < 2) is added to the momentum
equations to retain statistically stationary HIT. The f; is defined as
i; (k)
AT

k<2

N

Jitk)=¢€; (C.1

where % is a Fourier coefficient of a physical variable x, and € ; is the prescribed

dissipation rate. The Reynolds number Re, = u’ /v is approximately 73, where
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FIGURE C.1. Three dimensional energy spectrum from DNS of a forced HIT (solid

line). Vertical dashed lines indicate cutoff wavenumbers for filtering.

u’ is the rms velocity fluctuation, A is the Taylor micro scale. The integral length
scale Ly is 1.02L,, and ' is 1.24u,, ;. The Taylor micro and Kolmogorov scales
are A =0.39L,,, and n = 0.02L,, /s, respectively. The dissipation rate € ; is set
to 1 non-dimensionalized by L, and u,, ;.

Figure C.1 shows energy spectrum normalized by the Kolmogorov scales,
together with three cutoff wavenumbers k. normalized by L,, ;. The k., = 32
is within the dissipation range, so LES with this cutoff wavenumber is a well-
resolved LES. Since LES with coarse grid resolution shows the performance of
the SGS model more clearly than LES with fine grid resolution, we preform LES

of HIT with maximum wavenumber smaller than k, = 32 in appendix B.
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Appendix D

SGS stress from NN model in laminar shear flow

The SGS stress is theoretically zero in laminar shear flow. To investigate whether
the NN-based SGS model provides zero SGS stress in laminar shear flow or not,
we conduct a numerical experiment using a prescribed velocity profile. The ex-
periment is conducted with the NN model trained with BFS flow at Re;, = 5100,
where the input is the strain-rate tensor (see Part I §2.3 for details about this NN
model). The velocity profile used is the mean streamwise velocity profile at the
inlet of BFS flow at Re, = 5100, and the wall-normal and spanwise velocities
are zero. Figure D.1(a) shows the prescribed velocity profile, and figures D.1(b)
shows the SGS shear stresses predicted by DSM, CSM, and NN model, where
CSM is the Smagorinsky model with C; = 0.1. The SGS shear stress is exactly
zero from DSM along y direction, whereas the stress does not vanish with CSM.
The SGS shear stress from NN model is close to zero, but the stress is not exactly
zero, as shown in figure D.1(c). This is one of the limitations of NN model to be
overcome, and special treatments should be developed so that the SGS stresses
are predicted to be exactly zero for certain input variables such as laminar shear

flow.
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FIGURE D.1. Numerical experiment with prescribed velocity: (a) velocity profile;

(b, ¢) SGS shear stresses predicted by DSM (+), CSM (=), NN (=—).
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