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Abstract 
 

North Korea, as an inaccessible area, has little research on land 

cover change, but it is very important to understand the changing 

trend of LULCC and provide information previously unknown to 

North Korea. This study therefore aimed to construct and analyze a 

30-m resolution modern time-series land use land cover (LULC) 

map to identify the LULCCs over long time periods across North 

Korea and understand the forest change trends. A land use and land 

cover (LULC) map of North Korea from 2001 to 2018 was 

constructed herein using semi-permanent point classification and 

machine learning techniques on satellite image time-series data. 

The resultant relationship between cropland and forest cover, and 

the LULC changes were examined. The classification results show 

the effectiveness of the methods used in classifying the time series 

of Landsat images for LULC, wherein the overall accuracy of the 

LULC classification results was 97.5% ± 0.9%, and the Kappa 

coefficient was 0.94 ± 0.02. Using LULC change detection, our 

research effectively explains the change trajectory of North 

Korea’s current LULC, providing new insights into the change 

characteristics of North Korea’s croplands and forests. Further, 

our results show that North Korea’s urban area has increased 
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significantly, its forest cover has increased slightly, and its cropland 

cover has decreased. We determined that North Korea’s Forest 

protection policies have led to the forest restoration. Thus, as 

agriculture is one of North Korea’s main economic contributors, 

croplands have been forced to relocate, expanding to other regions 

to compensate for the land loss caused by forest restoration. 
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Chapter 1. Introduction 

 
Forests cover approximately one-third of the Earth's land area 

but account for about two-thirds of the Earth's total 

photosynthesis; they have a very large exchange with the 

atmosphere and are sensitive to climate change and human 

activities [1]. Forests provide vital organic infrastructure for the 

planet such as climate control, disaster prevention, and carbon 

balance. Human activities, such as deforestation, land use, land-use 

change, and forestry, affect changes in carbon stocks between the 

carbon pools of the terrestrial ecosystem and the atmosphere [2]. 

The detection of changes in the magnitude of LULC by 

deforestation can help solve the current greenhouse gas emissions 

problem. Further, protecting and restoring forests could play a 

crucial role in the solution [3, 4].  

Land use and land cover (LULC) is one of the important studies 

that can analyze the trend of forest change. LULC data, which are 

closely related to social and human activities, provide important 

information for environmental assessments [64]. Variation 

detections based on LULC data allows researchers to better 

understand the relationship between nature and humans in a specific 

area [58, 60, 63, 65, 66] . Several studies have shown that, globally, 
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approximately 60% of land changes are related to direct human 

activities, while the remaining 40% are related to indirect driving 

forces, such as climate factors [63]. In the Asian region, more than 

50% of the land is covered by cropland, and the deforestation rate 

is high [67]. Therefore, reducing the negative environmental impact 

of land-use changes while maintaining economic viability and social 

acceptability is the main challenge faced by most developing 

countries in Asia [67]. 

North Korea (the Democratic People’s Republic of Korea 

(DPRK) is known to have some of the most degraded forests in the 

world, converted to croplands from mountainous areas, 

approximately 80% of North Korea's terrain [5]. It is the 

mountainous cropland which is the one of characteristic in North 

Korea cropland. Many researchers have studied LULC to identify 

deforestation in North Korea [6-9]. However, large uncertainties 

arise from variations among the types of land use change processes, 

stemming from a lack of consistent measurements of land change 

processes at regional scales spanning sufficiently long time periods.  

Remote sensing combining classification algorithms and indices 

obtained from multitemporal data makes it possible to reduce 

uncertainties associated with LULC changes in inaccessible areas. 

Previous studies have been widely applied to LULC, including a 
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variety of data, indices, and algorithms of classification in 

deforestation regions [10-12]. There is still insufficient 

information to identify LULC change reflected forest phenology of 

growing season during long time-periods because it is difficult to 

collect cloud-free data at a macro level during rainy season and 

apply suitable indices and algorithms [13]. In particular, collecting 

data from long time series at a macro scale for LULC in large-scale 

area has some limitations because of the extensive resource 

requirement such as manpower, time, and big data processing.  

To address these challenges, the Google Earth Engine (GEE) 

platform can be used by combining time-series satellite images and 

geospatial datasets [14]. These also provide many cloud-free data 

for long periods of time and improve the accuracy of LULC by 

combining phenological information using various environmental 

variables, such as the normalized difference vegetation index 

(NDVI), normalized difference water index (NDWI), and digital 

elevation models (DEM) [7, 15]. 

Traditional classification algorithms are parametric classifiers 

that assume a normal distribution for training data such as 

ISODATA and K-Means, which have problems of over-fitting, 

highly collinear, sensitivity to outliers, high dimensionality, and 

noise compared to machine learning (MLEA) and ensemble 
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algorithms [16, 17]. The advantage of MLEA is non-parametric 

based on non-linear data , such as random forest based on ma-

chine learning, support vector machines(SVM), K-nearest neighbor 

(KNN), artificial neural network (ANN), and classification and 

regression tree (CART), which have the ability to improve 

classification accuracy by reducing the collinear and noise 

processing of time-series data without overfitting. In particular, RF 

combined with phenological information could improve the 

classification of farmland and semi-arid vegetation by capturing the 

specific seasonal patterns of each landscape type compared to other 

MLEAs [18, 7, 19, 20].  

In existing North Korean studies, owing to the characteristics of 

the region, there is a limitation that on-site investigations cannot be 

performed [7, 21, 22]. Jin et al. [7] used a MODIS dataset and 

Random Forest machine learning technology to classify the LULC 

data for North Korea by utilizing the China side of the North Korea 

and China border to obtain field survey points to verify their 

findings. Jeong et al. [5] used a MODIS dataset, as well as 

normalized difference vegetation index (NDVI), normalized 

difference snow Index (NDSI), and normalized difference water 

index (NDWI), which are indices, and iterative self-organizing data 

analysis technique (ISODATA) unsupervised classification method 
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to classify North Korea’s LULC, and the verification sample points 

and Kappa coefficient obtained by stratified random sampling were 

used to validate the accuracy of their results. However, these 

studies are generally limited to a certain year. In the existing North 

Korean LULC classification research, some studies have used an 

LULC dataset provided by South Korea's Ministry of Environment 

(MOE) to analyze the time series of LULC changes [6, 8] to 

analyze the trend of forest changes in North Korea. Therefore, due 

to the lack of verification measures such as on-site investigation or 

documentation, there is some uncertainty in the estimation results, 

such as correct LULCC patterns or status observations [23]. In this 

regard, our research method helps to reduce uncertainty and 

classify and observe the forests of North Korea. 

Synthetically, RF and phenological information such as NDVI 

and NDWI can be used to improve the accuracy of the mapping of 

specific forest types for LULC using various environmental 

variables based on the GEE platform and build sample data for 

LULC across North Korea using existing LULC products and semi-

permanent sample point classification methods. Using this method, 

the long-term time-series LULC classification and verification can 

help identify LULC pattern changes in inaccessible areas. 

The purpose of our research is to examine the LULCC across 
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North Korea in order to understand the changing pattern of modern 

North Korea's agriculture and forest, which is of great significance 

for understanding the changing trend of LULCC and providing 

previously unknown information. We posed the following key 

questions for North Korea’s LULCC regarding its inaccessible area: 

(1) How to conduct verifiable and highly accurate LULC data in an 

inaccessible area? (2) What is the modern changing pattern of 

North Korea's cropland and forest? 

To answer these questions, we (1) used semi-permanent 

sample point classification methods and machine learning algorithms 

to classify and verify inaccessible areas, producing North Korean 

LULC data from 2001 to 2018 at a resolution of 30 m, (2) 

investigated and collected relevant information regarding North 

Korea’s forests and agriculture from the literature, (3) used change 

detection methods to analyze the LULCC results, and (4) assessed 

and analyzed the change patterns of North Korea’s modern cropland 

and forest based on the existing literature. 
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Chapter 2. Study Area 

 
North Korea is located in the northern part of the Korean 

peninsula in East Asia, accounting for 55.1% of the total area of the 

Korean peninsula and covers nine districts and counties. More than 

80% of North Korea’s land is mountainous and is primarily 

concentrated in the north (Figure 1). The height of the mountains in 

the region gradually decreases from north to south, creating plains 

and croplands in the southern and western regions. North Korea has 

a temperate monsoon climate, with an average annual temperature 

of 8 – 12 °C and an annual rainfall of 600 – 1000 mm [24]. The 

rainy season is concentrated in the summer, from July to August, 

and the dry season occurs in spring, from April to May. 

 

 

 
 

Figure 1 Study area: North Korea, Korean Peninsula. (Democratic 

People's Republic of Korea; DPRK) 
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Chapter 3. Materials and Methods 
 

 

3.1. Study overview 
 

Due to the various limitations of the study region, especially its 

inaccessibility and lack of geographic information data [43], there 

are few verified long-term time series land cover maps with high 

resolution. Although some studies have classified the land cover in 

North Korea [7, 44], their results are generally limited to a certain 

year. Therefore, in this study, to obtain a verified long-term time 

series land cover map, the classification method proposed by hu et 

al. [28], with the addition of some improvements, was used. This 

method is based on "complete consistency" and "temporal stability" 

principles for processing sample points for high-precision long-

term land cover classification, even when limited data or on-site 

surveys are not possible. Based on a LULC map, we assessed and 

analyzed the change patterns of the study area between 2001 and 

2018.  

Research flowchart (Figure 2) outlines the research steps of 

the LULC classification method and change detection. First, Landsat 

TOA reflectance products are used for land classification based on 

cloud mosaic, and multi-year image synthesis methods were ap-

plied. Second, semi-permanent training sample points and 
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validation sample points are filtered from five types of 30 m 

resolution LULC products according to the principles of “complete 

consistency” and “temporal stability” Third, based on the filtered 

semi-permanent sample points, random forest machine learning 

was used to classify the input bands for LULC classification in 

North Korea. The accuracy of the classification results was 

validated using training data. Finally, a change detection method 

was used to assess and analyze LULCC patterns. 

 
 

  Figure 2 Research Flow Chart 

 

 

3.2. Data Collection 
 

The method we applied relies on the use of multi-temporal and 

multi-spectral images for classifying forest areas by combining the 

land-cover type characteristics identified in the study area. We 

obtained the Landsat TOA product dataset and the Shuttle Radar 
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Topography Mission V3 product (SRTM Plus) [25] digital elevation 

data, Defense Meteorological Program (DMSP), Operational Line-

Scan System (OLS) [26], and NPOESS Preparatory Project (NPP) 

data. We also used visible infrared imaging radiometer suite 

(VIIRS) [27] data, which provided two different night lighting 

products (Table 1). 

Based on Hu and Hu’s [28] classification method, all land cover 

products had a 30 m resolution, with the exception of the MODIS 

land cover products. Thus, we used 500 m low resolution MODIS 

Land Cover Type Product (MCD12Q1) data in combination with 30 

m high resolution products such as the Global Forest Change 

dataset (GFCD) [29], global land cover (GLC30) [30], Finer 

Resolution Observation and Monitoring of Global Land Cover 

(FROM-GLC) [31, 32], and Global Food Security-support Analysis 

Data Extent Southeast and Northeast Asia (GFSAD30SEACE) [33] 

(Table 1).  

 

Table 1 Classification of Data Sources 

Class Data Year Term Resolution 

Satellite Image 

Landsat 
2000 – 
2019 

16 days 30 m 

Defense 
Meteorological 

Program 
(DMSP)/Operational 

Line-Scan System 
(OLS) 

2001 – 
2012 

1 year 30 arc seconds 
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NPOESS 
Preparatory Project 

(NPP)/Visible 
Infrared Imaging 
Radiometer Suite 

(VIIRS) 

2012 – 
2017 

1 month 15 arc seconds 

Shuttle Radar 
Topography 

Mission V3 product 
(SRTM3) 

2000 - 30 m 

Land use and 
land cover 

(LULC) 
Product 

MCD12Q1.006 
2001 – 
2018 

1 year 500 m 

Finer Resolution 
Observation and 

Monitoring of 
Global Land Cover 

(FROM-GLC) 

2017 - 30 m 

Global land cover 
(GLC30) 

2010 - 30 m 

Global Forest 
Change dataset 

(GFCD) 
2000 - 30 m 

Global Food 
Security-support 

Analysis Data 
Extent Southeast 

and Northeast Asia 
(GFSAD30SEACE) 

2015 - 30 m 

Satellite 
Index 

Normalized 
Difference 

Vegetation Index 
(NDVI) 

2001 – 
2018 

- 30 m 

Normalized 
Difference Water 

Index (NDWI) 

2001 – 
2018 

- 30 m 

 

 

3.3. Data Processing 
 

During satellite image pre-processing, we first sorted the 

image data from April to July of a predetermined year, as well as 

the year before and after, to identify pixels with cloud coverage 
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below 40%. Using these selected images, we obtained high-quality 

no-cloud satellite image data and reclassified the land cover types 

into the six LULC classification products: built-up, cropland, forest, 

grassland, bare land, and water bodies. In this study, wetland cover 

was included in the water body cover based on the research method 

used and the regional characteristics. These land cover types were 

used to filter the semi-permanent training and verification sample 

points. According to the limitations of the classification method used 

and the characteristics of the study area, water bodies were 

included in the wetland cover type. Reclassifying the MCD12Q1, 

GFCD, GLC30, FROM-GLC, and GFSAD30SEACE data into LULC 

types generated overlay products and filter sample points. From 

10,000 randomly selected sample points, we were able to filter 

4,853 sample points for classification.  

 

 

 

3.4. Classification Process 
 

Successful classification requires the selection of an efficient 

classifier for classifying spatial properties of spectra and other 

variables using a small number of training samples [68, 69]. Using 

machine learning-based classifiers is very useful for finding 

patterns in complex feature spaces while minimizing data-
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dimensional problems [70]. Previous studies have shown that RF 

performed well in LULC classification [20, 34]. Therefore, in this 

study, we used the Random Forest [71] machine learning algorithm 

for LULC classification. The RF It can handle predictors with 

different characteristics, not sensitive to noise and outliers, and 

overtraining, fast, and efficient [34, 72, 73]. The classifier 

generates multiple decision trees, and the generated decision trees 

are classified into a random subset of training data and input 

variables. To verify that 80% of the sample points were used for 

training, 20% were used for validation. The number of decision 

trees (ntree) was set to 500, which was found to have been 

sufficient in previous experiments [35]. Furthermore, the NDVI 

[36], NDWI [37], SRTM products, DMSP/OLS, and NPP/VIIRS 

products were entered as input data for the random forest 

classification.  

 

 

The NDVI was determined as follows:  

 (1) 

 

 

and the NDWI was determined as follows: 

 (2) 
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where green, red, and NIR are the surface reflectance of the 3, 

4, and 5 bands of the Landsat OLI products, and the surface 

reflectance of the two, three, and four bands of Landsat TM 

products, respectively. 

In this study, most of these methods applied the Google Earth 

Engine (GEE) [14], which is a highly efficient free cloud platform 

for processing and analyzing satellite image data [38]. 

 

 

3.5. LULCC Analysis 
 

For change detection using the classification results to observe 

the trend of forest changes in North Korea, the LULC classification 

results of this study were analyzed based on the ArcGIS platform. 

From these pixel-based classification result images, the total area 

and change of each LULC class in the study area were calculated. In 

the change detection, formulas (1) and (2) are used to calculate the 

total area and change of each LULC class in the study area from 

these pixel-based classification result images, and formula (3) was 

used to calculate the rate of change in the study area from 2001 to 

2018.  

 

 

The proportion of each LULC type used was calculated as 

follows: 
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 (3) 

 

 

The change for each LULC type was calculated as follows: 

 (4) 

 

 

The annual rate of change for each LULC type was calculated 

as follows: 

 (5) 

 

 

where A_i refers to the area of the LULC type i, A_t denotes the 

total study area, and A_i% denotes the proportion of each LULC 

type area. A_i t1 and A_i t2 refer to the total area of LULC type i in 

specific years 1 and 2, respectively [39]. A_ir refers to the rate of 

change, which is the magnitude of change between the specified 

years, and the range of change from 2001 to 2018 was analyzed in 

this study [40]. 

 

 

3.6. Reference Data Collection and Classification 
Accuracy Validation 
 

Post-classification accuracy evaluation for LULC is the most 

important part of LULC classification results, and LULC maps with 

high accuracy play an important role in successful environmental 

management and planning [74]. Confusion Matrix is the most widely 
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applied accuracy evaluation method in existing LULC research [77]. 

The Confusion Matrix is a very effective method of indicating 

accuracy in that the accuracy of each category is clearly described, 

along with the inclusion errors (commission errors) and exclusion 

errors (missing errors) present in the classification [76]. 

Therefore, the Confusion Matrix can derive a set of descriptive and 

analytical statistics for the LULC classification results, which can 

explain the reliability of the data used in the study [75, 76, 78]. To 

verify the time-series classification results, a confusion matrix 

including the over-all accuracy (OA), user’s accuracy (UA), 

producer’s accuracy (PA), and kappa coefficient [41] was used. We 

evaluated the accuracy of classification for a total of five 

classification types in the level 1 classification system, except for 

bare land, which could not be classified in this study. The five 

classification types were built-up, cropland, forest, grassland, and 

water bodies; wetlands were included in the water bodies category 

in this study. In addition, visual interpretation was conducted 

through comparison with other existing LULC classification 

products, MOD12Q1, FROMGLC2017, and high-resolution satellite 

images obtained via Google Earth [28]. Global LULC products such 

as FROMGLC still require further verification at the international 

level to determine whether they are useful in other applications 
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[42]. For example, the GlobCover 2009 LULC product with a 

resolution of 300 m was not included in this study after confirming a 

visual critical classification error at the study site. 

There are few verified long-term time series land cover maps 

with high resolution on account of the various limitations of the 

study region, especially North Korea’s inaccessibility and lack of 

geographic information data [43]. Although some studies have 

classified the land cover in North Korea [44, 7], their results are 

generally insufficient for a certain year. Therefore, in this study, to 

obtain a verified long-term time series land cover map, the 

classification method proposed by Hu and Hu [28], with some 

improvements, was used. This method is based on "complete 

consistency" and "temporal stability" principles for processing 

sample points for high-precision long-term land cover 

classification, even when limited data is available or when onsite 

surveys are not possible. Based on an LULC map, we assessed and 

analyzed the change patterns in the study area between 2001 and 

2018.  

Chapter 4. Results 
 

 

4.1. LULC Classification Accuracy Assessment 
 

The classification results in Table 2 show that the classification 
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accuracy of cropland, forest, and water bodies was higher than that 

of the other land cover types in North Korea from 2001 to 2018. 

The overall accuracy and kappa coefficient were _97.5% ± 0.9% and 

0.94 ± 0.02, respectively. The accuracy satisfies the standard 

proposed by researchers in other studies [45, 46, 7]. Both 

producer`s and user`s accuracies of all classes were higher than 

90%. The results of the classes are presented in Table 2. The 

built-up area type also had high accuracy, where the user’s and 

producer’s accuracies were 91.5% ± 8.3% and 85.9% ± 14.7%, 

respectively. Meanwhile, the classification accuracy of the 

grassland was low, with user and producer accuracies of 72. ± 

27.1% and 49. ± 15.9%, respectively. Because land cover 

classification uses semi-permanent sample points that are filtered 

from a land area that has remained unchanged for many years, the 

accuracies of the stable classes such as croplands, forests, and 

water bodies are very high after verification [28].  

 

 

Table 2 Land Cover Classification Accuracy from 2001 to 2018 

 

Land Cover User’s Accuracy Producer’s Accuracy 
built-up  91.7% ± 8.3% 85.3% ± 14.7% 

Cropland 93.8% ± 2.8% 97.5% ± 1.9% 
Forest 98.9% ± 1.1% 99.7% ± 0.3% 

Grassland 72.9% ± 27.1% 49.3% ± 15.9% 
Water bodies 96.8% ± 3.2% 95% ± 5% 
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Overall Accuracy 97.5% ± 0.9% 
Kappa Coefficient  

0.94 ± 0.02 
 

 

 
 

Figure 3 Image validation and comparison of different land cover 

products in 2017 

 

 

Our classification results were then visually compared with the 

MOD12Q1 and FROMGLC land cover classification products, as well 

as high-resolution images obtained via Google Earth. As shown in 

Figure 3, compared to Google Earth's high-resolution satellite 

images, the classification result largely reflects the real land type. 

Furthermore, the quality of our land cover classification is better 

than that of the MOD12Q1 product and somewhat similar to that of 

the FROMGLC product. However, note that our results are better 

than the FROMGLC products with regard to classification 

aggregation. 
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4.2. LULC Classification Results 
 

The 30 m resolution land cover map was classified using semi-

permanent sample points and the random forest algorithm with in 

long term timeseries in 2001-2018, sorting the data into built-up, 

cropland, forest, grassland, and water bodies (wetland), as shown in 

Figure 4. Note that bare land is not reflected in the classification 

results of the study area. The reason is that the bare land and 

grassland in the study area are similar in spectrum and the bare 

land area is very small, so the bare land in the LULC product used 

in this study is so different that the semi-permanent point 

classification method applied cannot filter out the bare land sample. 
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Figure 4 Land use and land cover classification maps for 2001 to 

2018 

 

 

Figure 5 shows that the main land types of LULC in North 

Korea are forest and cropland. The largest change in the 18-year 

study period was the restoration of the forest cover type in the 

south and central mountains. Further, the concentrated expansion of 
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croplands in the north and west regions were also large changes. 

 

 

 
 

Figure 5 Land use and land cover classification maps for 2001 and 

2018 

 

 

4.3. LULC Change Detection 
 

Figure 6 shows that the year-to-year change trend of the land 

cover area shows that the forest cover change is relatively stable. 

Including a decrease in forest area from 2011 to 2015, the total 

forest area increased compared with that in 2001. The decrease in 

2011-2015 can be attributed to deforestation [47], and the overall 

growth trend can be attributed to the recent launch of forest 

restoration projects [48]. This result is also consistent with 

existing research results [49]. 

The change in cropland cover showed a different trend of an 
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initial increase and then decrease in cover. After increasing from 

2003 to 2013, it began to gradually decrease in 2014. Cropland 

increased from 2003-2014 due to the reclamation of mountainous 

cropland, but since 2014, forest restoration seems to have 

increased due to abandoned farmland [50]. 

The grassland cover area underwent a fluctuating decrease 

from 2003 to 2012, and in 2013, the decreasing trend became more 

stable. The area in 2012 experienced a larger decrease compared 

with the initial year, while the area change from 2015 to 2016 

underwent a larger increase compared with that in the initial year. 

The area covered by the water body (and wetland) did not 

significantly change compared to the initial year. With the exception 

of an area decrease from 2006 to 2008, the area increased 

compared to that in 2001. 
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Figure 6 Land use and land cover change plot between 2001 to 

2018 

 

 

The built-up area increased significantly from 2001 to 2018, 

with a change rate of 37.26 %. In addition, the forest and water 

body areas increased at rates of 2.59% and 4.73%, respectively. 

Conversely, the cropland and grassland areas showed decreasing 

trends at change rates of −5.17% and −7.11%, respectively. In 

general, built-up expansion was evident from 2001 to 2018, and 

cropland, forest, grassland, and water bodies did not change 

significantly. Nevertheless, forest and water body areas are 

increasing, and farmland and grassland areas are decreasing (Table 
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3). 

 

 

Table 3 Land use and land cover area percentage and change rate 

for 2001 and 2018 

 

Class Area 2001 Area 2018 Change Rate 
Built-up  0.789% 1.083% 37.26% 

Cropland 30.832% 29.237% -5.17% 
Forest 61.917% 63.520% 2.59% 

Grassland 5.126% 4.761% -7.11% 
Water bodies 1.336% 1.399% 4.73% 

 

 

Figure 7 illustrates the spatial distribution of LULCC from 2001 

to 2018, wherein significant changes occurred primarily in built-up, 

cropland, and forest areas. The cropland area experienced a loss 

caused by both the expansion of major cities and cropland changing 

into forest land. This is due to the formulation and improvement of 

North Korea’s forest policies, which began in the 1990s [48]. Since 

2000, a series of amendments and additions such as the “10-year 

plan for forest restoration” [51] resulted in the restoration of 

farmlands into forests [50]. Overall, North Korea has seen 

significant changes in forest and cropland land cover from 2001 to 

2018, although the total area has not changed to a large extent. 

This lack of total area change is because, although most of the 

cropland in the southern and central mountainous areas have been 

converted to forest, the croplands in the western and northern 
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regions have begun to expand, leading to forest loss. 

 

 

 
 

Figure 7 (a) Land use and land cover change map for 2001 and 

2018, and (b) Forest land loss and gain, and (c) cropland land loss 

and gain 

 

 

 

 

4.4. Relation with mountainous cropland and elevation 
 

Figure 8 shows the relationship between forest and cropland 

areas with elevation from 2001 to 2018. Here, it is clear that below 

900 m, the overall area change is uniform, while there is a clear 

decrease in cropland below 300 m. This decrease occurred because 

around the time of this study period, new watersheds gradually 
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began to appear. There-fore, the land that was originally cropland 

in 2001 was replaced by new watersheds in low-elevation areas in 

2018. Above 900 m, there was an increase in forest area and a de-

crease in cropland, indicating a decrease in croplands in the 

mountainous areas of North Korea concomitant with forest 

restoration. In other words, the mountainous cropland gradually 

decreased over time as forest restoration continued. In general, at 

an elevation greater than or equal to 900 m, mountainous croplands 

were reduced, and forest restoration increased. Meanwhile, the 

overall change in cropland at less than 900 m was balanced. 

 

 

 
 

Figure 8 Forest and cropland area loss and gain related to elevation 
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Chapter 5. Discussion 
 

 

5.1. Interpretation and explanation of the forest 
change in North Korea 
 

North Korea is a developing country, with primary industries, 

including mining, light industry, and agriculture, accounting for its 

main economic income. According to statistics from 1990 to 2014, 

agriculture, forestry, and fisheries comprised the second-highest 

economic income ranking after the service industry. Further, based 

on estimates from the Bank of Korea, the industrial structure of 

North Korea, based on the nominal GDP in 2014, comprises 21.8% 

agriculture, forestry, and fishing; 13.1% mining; 21.3% 

manufacturing; 31.3% service; and 8.2% construction [52]. This 

could explain the high contribution of agriculture to North Korea's 

major economic resources. Since the mid-1970s, North Korea has 

expanded its mountainous farmlands. On December 11, 1992, North 

Korea officially enacted the "Forest Law," the first dedicated North 

Korean forest law [48]. North Korea's continuous expansion of 

mountainous cropland is somewhat unavoidable, as more than 80% 

of its land area is mountainous and agriculture is one of its major 

economic industries. Nevertheless, in June 2000 and October 2001, 

the Forest Law was strengthened through amendments and 
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supplements [48]. These amendments were included owing to 

continued food and energy shortages, as well as the expansion of 

mountainous cropland and deforestation. The resultant increases in 

forest areas and human activity have led to a rapidly increasing 

number of wildfires. In fact, many studies on North Korea have 

revealed various fundamental problems, including a lack of disaster 

response capabilities [57], energy shortages [48], a decline in 

agricultural production [9, 53], and water resource depletion [54, 

55], which seems to have had an indirect effect on the 

strengthening of the Forest Law. Later, on August 2, 2005, in a 

supplement to a Forest Law amendment, afforestation, reforestation, 

and restrained logging were emphasized. 

Therefore, the development of agriculture, one of North 

Korea’s main economic industries, does not comply with the 

imposed forest law, which was formulated to reduce deforestation 

caused by excessive mountainous cropland expansion and 

deforestation. Therefore, as North Korea enters the modern era, it 

must conduct reforestation while simultaneously maintaining 

agriculture as an important economy [56]. Thus, constructing 

modern geospatial information for North Korea and analyzing its 

land cover changes is of utmost importance. Through the spatial and 

geographic analysis of major land cover changes, this study 
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addresses both the restoration of the southern and central 

agricultural areas to forest areas and the expansion of western and 

northern forest areas to agricultural areas. 

 

 

5.2. Importance of spatial analysis and future 
research directions 
 

Figures 7 and 8 as well as Table 3 illustrate the differences 

between the overall numerical LULC change trend and the spatial 

LULC change trend across North Korea. In the de-tailed spatial 

analysis, the specific areas and ranges of specific growth or 

reduction of each LULC type can be determined at the spatial level, 

and further relevant analyses can be performed according to the 

characteristics of the change area, such as the driving mechanism 

[28, 40], or according to the national or regional policy of the 

change trend [40, 58]. As shown in Figure 8, the change trend can 

be analyzed on a multi-dimensional level via the spatial analysis, 

such as via elevation or slope related analysis, to discover more 

LULCC information [6, 61]. The changes in North Korea’s forests 

and farmland illustrate this aspect. The area changes in North 

Korea’s forests from 2001 to 2018 as shown in Ta-ble 3 are very 

small, ranging from 61.917% in 2001 to 63.520% in 2018 and 

increasing only by 1.603%. However, from the spatial change 
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trends shown in Figure 7, although the overall area of North 

Korea’s forests changes only slightly, the increase in forest cover 

in southern and central Korea is very clear on a spatial level. The 

area of farmland in North Korea has also not changed significantly. 

Table 3 shows a change from 30.832% in 2001 to 29.237% in 2018, 

implying a decreased by only 1.595%. However, Figure 7 shows 

that the southern and central regions have decreased significantly in 

area, and the area of North Korea has increased significantly in the 

western and northern regions. This shows that in a large-scale 

LULCC analysis, relying solely on the overall judgment of the data 

change trend does not yield entirely accurate results. Rather, 

combining the multi-dimensional space can yield a more accurate 

judgement of the growth or decrease trend of the LULC. Most of 

the changes in North Korea’s LULC are related to human 

interference and the impact of national and regional policies [59, 

63]. In this regard, more research on spatial change analysis is 

required in the future. For example, future research can focus on 

the analysis of the geographical characteristics or related changes 

in policies according to the division in administrative regions or the 

location or the watershed [58, 62], and an analysis of the main 

driving mechanism of the LULC changes according to spatial 

geographic data, such as the combination of biophysical data 



 

 ３２ 

(climate, geology) and human factors (society, economy, politics, 

culture, and population) [60].  

 

 

5.3. Limits and Advantages 
 

The semi-permanent point classification method used in this 

study uses the same pixel values for various data. This may result 

in land cover classification not being possible in some situations if 

the land cover class of the study site is diverse and complex or the 

class area occupied is small. Thus, for North Korea, we 

incorporated wetland areas in the waterbody land cover type, as 

wetlands occupy only a small area and cannot be classified. 

Regarding the overall LULC classification accuracy, as it is difficult 

to distinguish bare land, grassland, and shrub, which all have similar 

spectra, the overall accuracy for grassland is much lower than that 

for the other land cover types [28]. In addition, the timing of 

satellite image data capture and the amount of data accumulation 

significantly affect the efficacy of the semi-permanent point 

classification method. Therefore, data analysis is only available 

within a limited time series; thus, for LULC classification, only 

major land cover types can be classified. However, this method is 

very useful for observing time-series changes, constructing data 
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for inaccessible areas, and producing highly accurate and reliable 

results for the major types of land cover. Thus, we can not only 

obtain high-accuracy time-series LULC maps for inaccessible 

areas, but also analyze the characteristics of land cover change in 

the study region. 
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Chapter 6. Conclusions 

 
An LULC map of North Korea for the period 2001–2018 was 

constructed using semi-permanent point classification and machine 

learning techniques based on satellite image time-series data. 

Using the LULCC detection technique, the overall change in North 

Korean land cover between 2001 and 2018 and its forest changes 

were evaluated. Following a classification of land cover of the study 

area into five categories, built-up, cropland, forest, grassland, and 

waterbodies (wetland included), our classification accuracy was 

97.5% ± 0.9%, and the Kappa coefficient was 0.94 ± 0.02. From 

2001 to 2018, the rates of change in the built-up, agricultural, 

forest, grassland, and waterbody areas were 37.26%, 5.17%, 2.59%, 

7.11%, and 4.73%, respectively. In general, with the exception of 

built-up expansion, land-cover type coverage did not vary 

considerably. However, distinct spatial changes were observed. The 

most evident spatial change was the restoration of forests in the 

southern and central regions and the increase in cropland in the 

north and west.  

By examining the current literature related to North Korea's 

forests and croplands, we constructed an elevation correlation to 

make further inferences based on the analysis of land cover change. 
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Based on this, we propose that one of North Korea’s main economic 

industries is agriculture, which conflicts with the forest protection 

laws currently in place. To maintain its agricultural industry, North 

Korea has expanded cropland areas in its mountainous terrain, 

which comprises 80% of the region. However, with the 

strengthening of forest protection policies, this mountainous 

cropland is now the target of reforestation. Furthermore, a 

correlation analysis between changing cropland and forest areas 

with elevation revealed that cropland cover is decreasing while 

forest cover is increasing at elevations above 900 m. 

The main purpose of this study was to construct and analyze a 

modern time-series LULC map and understand forest change trend 

for North Korea, which is an inaccessible area, using a resolution of 

30 m. By examining the characteristics related to cropland and 

forest cover, we determined that forests in modern North Korea are 

being restored in certain areas. This indicates that North Korea’s 

forest protection law has begun to have an impact, and cropland 

cover is being converted to forest cover. Therefore, this result 

could provide a reference for the study of North Korea's 

deforestation.  
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Appendix 

 
Table A 1 Reclassification between different LULC projects used in 

this study 

 

Class FROMGLC20
17 

GLC3
0 

GFCD GFSAD30SEA
CE 

MCD12Q1.0
06 

Urban 8 80 - - 13 
Croplan
d 

1 10 - 2 12 
14 

Forest 2 20 treecover20
00 

- 1 
2 
3 
4 
5 

Grasslan
d 

3 
4 

30 
40 

- - 6 
7 
8 
9 
10 

Bareland 7 
9 

90 - - 16 

Water 
bodies 
add 
Wetland 

5 
6 

50 
60 

- 0 11 
17 

Finer Resolution Observation and Monitoring of Global Land Cover 

(FROM-GLC) code: 1 Cropland, 2 Forest, 3 Grassland, 4 Shrubland, 

5 Wetland, 6 Water, 7 Tundra, 8 Impervious surface, 9 Bareland, 10 

Snow/Ice 

Global land cover (GLC30) code: 10 Cultivated land, 20 Forest, 30 

Grassland, 40 Shrubland, 50 Wetland, 60 Water bodies, 80 Artificial 

surfaces, 90 Bareland 

Global Forest Change dataset (GFCD) code: treecover2000 

Global Food Security-support Analysis Data Extent Southeast and 

Northeast Asia (GFSAD30SEACE) code: 0 Water, 1 Non-Cropland, 

2 Cropland 

MCD12Q1.006 code: 1 Evergreen Needleleaf Forests: dominated by 
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evergreen conifer trees (canopy >2m). Tree cover >60%, 2 

Evergreen Broadleaf Forests: dominated by evergreen broadleaf 

and palmate trees (canopy >2m). Tree cover >60%, 3 Deciduous 

Needleleaf Forests: dominated by deciduous needleleaf (larch) 

trees (canopy >2m). Tree cover >60%, 4 Deciduous Broadleaf 

Forests: dominated by deciduous broadleaf trees (canopy >2m). 

Tree cover >60%, 5 Mixed Forests: dominated by neither deciduous 

nor evergreen (40-60% of each) tree type (canopy >2m). Tree 

cover >60%, 6 Closed Shrublands: dominated by woody perennials 

(1-2m height) >60% cover, 7 Open Shrublands: dominated by 

woody perennials (1-2m height) 10-60% cover, 8 Woody 

Savannas: tree cover 30-60% (canopy >2m), 9 Savannas: tree 

cover 10-30% (canopy >2m), 10 Grasslands: dominated by 

herbaceous annuals (<2m), 11 Permanent Wetlands: permanently 

inundated lands with 30-60% water cover and >10% vegetated 

cover, 12 Croplands: at least 60% of area is cultivated cropland, 13 

Urban and Built-up Lands: at least 30% impervious surface area 

including building materials, asphalt and vehicles, 14 

Cropland/Natural Vegetation Mosaics: mosaics of small-scale 

cultivation 40-60% with natural tree, shrub, or herbaceous 

vegetation, 15 Permanent Snow and Ice: at least 60% of area is 

covered by snow and ice for at least 10 months of the year, 16 

Barren: at least 60% of area is non-vegetated barren (sand, rock, 

soil) areas with less than 10% vegetation, 17 Water Bodies: at least 

60% of area is covered by permanent water bodies. 
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Figure A 1 Reclassification of Land Use Land Cover Products: Finer 

Resolution Observation and Monitoring of Global Land Cover 

(FROM-GLC) 
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Figure A 2 Reclassification of Land Use Land Cover Products: 

Global land cover (GLC30) 

 

 



 

 ４８ 

 

 

Figure A 3 Reclassification of Land Use Land Cover Products: 

Global Forest Change dataset (GFCD) 
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Figure A 4 Reclassification of Land Use Land Cover Products: 

Global Food Security-support Analysis Data Extent Southeast and 

Northeast Asia (GFSAD30SEACE) 
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Figure A 5 Reclassification of Land Use Land Cover Products: 

MCD12Q1.006 
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Abstract in Korean 

  

북한은 세계에서 가장 심각하게 황폐화된 산림 중 하나를 포함하고 

있지만 최근에는 산림 복원을 강조하고 있다. 산림 복원이 일어나는 

정도를 이해하기 위해서는 토지 이용과 토지 피복 변화 경향 

(LULCC)을 이해해야 한다. 따라서 본 연구는 30m 해상도의 현대 

시계열 토지 이용 토지 피복 (LULC)지도를 구성 및 분석하여 북한 

전역의 장기 LULCC를 식별하고 산림 변화 추세를 이해하는 것을 

목표로 한다. 2001 - 2018 년 기간 동안 국가의 LULC지도는 30m 

해상도 위성 이미지 시계열 데이터를 기반으로 반영구적 포인트 분류 및 

기계 학습을 사용하여 구성되었으며, 이는 GEE (Google Earth 

Engine)에서 수집 한 현상 학적 정보와 함께 사용되고 있다. 또한 

LULCC 탐지기 법과 경작지 변화와 고도의 관계를 고려하여 2001 - 

2018 년 북한의 산림 변화를 평가하였다. LULC 맵 결과의 전체 분류 

정확도는 97.5 % ± 0.9 %이고, Kappa 계수는 0.94 ± 0.02 이다. 

LULCC 탐지는 또한 2001 - 2018 년에 북한의 산림 면적이 약간 

증가한 것으로 나타났다. 일반적으로 산림 피복 면적은 크게 변하지 

않았으나 남부와 중부 지역의 산림 복원과 북부와 서부의 경작지 상대적 

증가 측면에서 뚜렷한 공간적 변화가 관찰되었다. 북한의 특성과 산림 

정책 문서를 검토 한 결과 북한 근대 산림의 일부 지역이 복원되고 

있음을 확인하였다. 
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