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Abstract
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One e�ective way of understanding the characteristics of high-dimensional data

is to embed it onto a low-dimensional space. Amongmany existing dimensional-

ity reductionalgorithms,UniformManifoldApproximationandProjection (UMAP)

has gained the most attention because of its fast and stable projection result.

However, still it is too slow to be adopted for an interactive visual analytics sys-

tem as it takes for a few minutes to embed even for a toy dataset (e.g., MNIST).

Moreover, UMAP is vulnerable to di�erent configurations of hyperparameters, es-

pecially to the initializationmethods and the number of epochs, which can bring

about a serious bias mining insights from the embedding result.

To achieve the responsiveness,wepropose a progressive algorithm forUMAP,

called Progressive UMAP, for the exploration of datasets by updating the embed-

ding with a batch of points through a progressive computation. Next, to guaran-

tee less biases and the robustness in the embedding, we present a novel dimen-

sionality reduction algorithm called Uniform Manifold Approximation with Two-

phase Optimization (UMATO). We discover that the vulnerability comes from the

approximationof cross-entropy loss function.UMATO, instead, takes a two-phase

optimization approach: global optimization to obtain the overall skeletonof data,

and local optimization to identify regional characteristics of a local area. In our ex-

perimentwithone synthetic and three real-worlddatasets, UMATOoutperformed

widely-used baseline algorithms, such as PCA, t-SNE, UMAP, topological autoen-
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coders and Anchor t-SNE, in terms of global quality metrics and 2D projection

results. We further examine a case study of UMATO on real-world biological data

and the extension to multi-phase optimization.

Our work makes the original contributions to the field of dimensionality re-

duction, as well as the progressive visual analytics. Lastly, the thesis discusses

the future research directions for improving the proposed algorithms.

Keywords: Dimensionality Reduction, Manifold Learning, Topological Data Anal-

ysis, Visualization, UMAP

Student Number: 2019-24961
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Chapter 1

Introduction

We live in a era of big data. As people have more chance to deal with large-

scale datasets, new algorithms and tools are required every year to extract

useful information from them efficiently. One effective way to understand

high-dimensional data is to reduce its dimensionality and project onto a

low-dimensional space. If the properties of high-dimensional data are well-

captured, we can lose a least amount of information, also attaining useful in-

sights investigating projection results. Many dimensionality reduction algo-

rithms – such as t-StochasticNeighbor Embedding (t-SNE [36]), LargeVis [56],

UniformManifold Approximation and Projection (UMAP [39]), topological

autoencoders [43], and Anchor t-SNE (At-SNE [14]) – are invented for this

aim, and used in diverse fields such as life sciences [1, 4, 37], physics [40],

and computer science [21].

1.1 Motivation

Based on the theory of Riemannian geometry and algebraic topology, UMAP

is an emerging dimensionality reduction technique. Among many existing
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algorithms, UMAP has gained the most attention these days by offering bet-

ter versatility and stability than t-SNE [11].

Although UMAP is also more efficient than t-SNE, it still suffers from an

initial delay of a few minutes to produce the first projection, which limits its

use in interactive data exploration. This hinders UMAP’s further researches

on interactive visual analytics using large-scale datasets. Moreover, likemost

existing dimensionality reduction algorithms, UMAP embedding result is

susceptible to different hyperparameter settings (e.g., number of epochs, ini-

tialization method); in most cases, it focuses on capturing local structures

(i.e., the relationships between neighboring points in a high-dimensional

space), while ignoring the global structures (i.e., the pairwise distance in

a high-dimensional space) of datasets. However, such insufficiency can pro-

vide a biased and unstable view, leading to misinterpreting important pat-

terns (e.g., a distance between clusters).

In this thesis, we tackle the problems of UMAP: 1) UMAP is not fast

enough to satisfy the users who want to see the visualization result within

a few seconds, as it is not an online nor a progressive algorithm, 2) UMAP

is not accurate since it provides a biased result that is sensitive to different

hyperparameter settings. By providing solutions to these critical problems,

we offer a means to better understand the characteristics of dimensionality

reduction algorithms, and pave a way on which to focus for future research

directions.

1.2 Research Questions and Approaches

To address the aforementioned problems of UMAP, we postulate two re-

search questions:
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Figure 1.1:Responsive2DProjectionsof theFashionMNISTdataset [65]usingProgressive
UMAP.

RQ1. How should we explore high-dimensional data through UMAP with-

out long initial computation delays? How do we make UMAP fast and

interactive?

RQ2. How should we design a dimensionality reduction algorithm which

is less biased and robust over different initialization methods? How do

we make UMAP more accurate in terms of the preservation of both

global and local structures into the projection?

1.2.1 Progressive Algorithm for UMAP

To answer on RQ1, we present a progressive algorithm for the UMAP, called

the Progressive UMAP (Figure 1.1). We improve the sequential computa-

tions in UMAP by making them progressive, which allows people to incre-

mentally append a batch of data points into the projection at the desired

pace. In our experiment with the Fashion MNIST dataset, we found that

Progressive UMAP could generate the first approximate projection within

a few seconds while also sufficiently capturing the important structures of

the high-dimensional dataset.
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Figure 1.2: 2D projection results of UMATO using one synthetic Spheres [43], and three
real-world image datasets [9, 30, 65].

1.2.2 Less Biased and Robust Dimensionality Reduction Algorithm

Addressing RQ2, we present a dimensionality reduction algorithm called

UniformManifold Approximation with Two-phase Optimization (UMATO,

Figure 1.2),which aims to preserve the global aswell as the local structures of

high-dimensional data. UMATO takes a two-phase optimization approach:

global optimization to obtain the overall skeleton of data, and local optimiza-

tion to identify regional characteristics of a local area. In our experiments

with one synthetic and three real-world datasets, UMATO outperformed

widely-used baseline algorithms, such as PCA, t-SNE, UMAP, topological

autoencoders and Anchor t-SNE, in terms of global quality metrics and 2D

projection results. We further discuss a case study to test UMATO on real-

world biological data to show its usefulness and its extension to multi-phase

optimization.

1.3 Contributions

The contributions of this thesis are as follows:
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1. Development of Progressive UMAP, whxich can embed and visualize

high-dimensional data responsively onto a 2D space, with its quanti-

tative and qualitative evaluation.

2. Design, development, and evaluation of UMATO, which is less biased

and robust over different initialization method.

Thesis Statement: The expansion of UMAP to progressive visual analytics

and two-phase optimization enable an interactive exploration and produce

less biased and robust embedding result.

1.4 Thesis Overview

Chapter 2 briefly describes the UMAP algorithm and its computational steps

as a background. Next, the main parts of the thesis presents two applica-

tions of UMAP. Chapter 3 presents a progressive algorithm for UMAP, called

the Progressive UMAP, which enables an interactive exploration of high-

dimensional data through embedding a batch of points into the projection

without a long initial delays. Chapter 4 delineates the UMATO, a dimension-

ality reduction algorithm aimed to capture both the global and local struc-

tures of high-dimensional data. After finishing the core of thesis, Chapter 5

discusses the lessons learned through the entire studies, and the limitations

of each algorithm. Finally, Chapter 6 summarizes the contributions of the

thesis.
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Chapter 2

Background: UMAP

Although UMAP [39] is grounded in a complex mathematical foundation,

its computation can be divided into two parts, graph construction and layout

optimization, a configuration similar to t-SNE. In this section, we briefly ex-

plain the computation in an abstract manner. For more details about UMAP,

please consult the original paper [39].

2.1 Graph Construction

UMAP starts by generating a weighted k-nearest neighbor graph that de-

scribes the distances between data points in the high-dimensional space.

Given an input dataset X = {x1, . . . , xN}, the number of neighbors to con-

sider k and a distance metric d : X ×X → [0,∞), UMAP first computes Ni,

the k-nearest neighbors of xi with respect to d. Then, UMAP computes two

parameters, ρi and σi, for each data point xi to identify its local metric space.

ρi is a nonzero distance from xi to its nearest neighbor:

ρi = min
j∈Ni

{d(xi, xj) | d(xi, xj) > 0}, (2.1)
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and the σi that satisfies the condition below is found using binary search:

∑
j∈Ni

exp(
−max(0, d(xi, xj)− ρi)

σi
) = log2(k). (2.2)

Using ρi and σi, UMAP computes vj|i, theweight of the edge from a point

xi to another point xj :

vj|i = exp(
−max(0, d(xi, xj)− ρi)

σi
). (2.3)

To make it symmetric, UMAP computes a single edge with combined

weight using vj|i and vi|j :

vij = vj|i + vi|j − vj|i · vi|j . (2.4)

Note that vij indicates the similarity between points xi and xj in the origi-

nal space. Let yi be the projection of xi in a low-dimensional projection space.

The similarity between two projected points yi and yj is:

wij = (1 + a||yi − yj ||2b2 )−1, (2.5)

where a and b are positive constants defined by the user. Setting both a and

b to 1 is identical to using Student’s t-distribution to measure the similarity

between two points in the projection space as in t-SNE [36].

2.2 Layout Optimization

The goal of layout optimization is to find the yi that minimizes the difference

(or loss) between vij andwij . In contrast to t-SNEwhere theKullback-Leibler

divergence between vij and wij is measured as the loss of the projection,
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UMAP measures the cross entropy between vij and wij :

CUMAP =
∑
i 6=j

[vij · log(
vij
wij

)− (1− vij) · log(
1− vij
1− wij

)]. (2.6)

The authors ofUMAPargued thatUMAP returns clearer separation between

clusters than t-SNE since CUMAP gives penalties for forming both local and

global structures.

yi is initialized through spectral embedding [5] and iteratively optimized

to minimize CUMAP . Given the output weight wij as 1/(1+ ad2bij ), the attrac-

tive gradient is:

CUMAP

yi

+

=
−2abd2(b−1)ij

1 + ad2bij
vij(yi − yj), (2.7)

and repulsive gradient is:

CUMAP

yi

−
=

2b

(ε+ d2ij)(1 + ad2bij )
(1− vij)(yi − yj), (2.8)

where ε is a small value added to prevent division by zero and dij is a Eu-

clidean distance between yi and yj . For efficient optimization, UMAP lever-

ages the negative sampling technique from Word2Vec [41]. After choosing

a target point and its negative samples, the position of the target is updated

with the attractive gradient, while the positions of the latter do so with the

repulsive gradient. Moreover, UMAP utilizes edge sampling [56, 57] to ac-

celerate and simplify the optimization process. In other words, UMAP ran-

domly samples edges with a probability proportional to their weights, and

subsequently treats the selected ones as binary edges. Considering the pre-
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vious sampling techniques, the modified objective function is:

O =
∑

(i,j)∈E

vij(log(wij) +
M∑
k=1

Ejk∼Pn(j)γ log(1− wijk)). (2.9)

Here, vij and wij are the similarities in the high and low-dimensional spaces

respectively, M is the number of negative samples and Ejk∼Pn(j) indicates

that jk is sampled according to a noisy distribution,Pn(j), fromWord2Vec [41].
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Chapter 3

Progressive UMAP: A Progressive
Algorithm for UMAP

3.1 Introduction

This chapter presents a novel progressive algorithm for UMAP, called Pro-

gressive UMAP, to answer on the first research question; how should we ex-

plore high-dimensional data through UMAP without long initial computa-

tion delays? how do we make UMAP fast and interactive?.

We bring the UMAP [39], a popular nonlinear dimensionality reduc-

tion technique, into Progressive Visual Analytics (PVA). For more than a

decade, t-Distributed StochasticNeighbor Embedding (t-SNE [36]) has been

one of themost widely-used dimensionality reduction techniques. However,

UMAP, which is based on Riemannian geometry and algebraic topology, has

recently emerged as an alternative to t-SNE, offering better efficiency and ap-

plicability [11]. UMAP stands out for its fast computation time. It is approxi-

mately three times faster than the state-of-the-art t-SNE implementation [33]

and has a better stability between runs and support for non-metric distance

measures, such as the cosine distance and correlation distance. Since its in-
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troduction, UMAP has been quickly adopted by diverse disciplines, such as

life sciences [4], physics [40], and computer science [21], attesting to its use-

fulness. Although performance benchmarks [39] demonstrated that UMAP

is much faster than t-SNE, it still is too slow to be used in interactive analysis

effectively; when tested on a Macbook Pro with a 3.1 GHz Intel Core i7 and

8GB of RAM, UMAP took about 87 seconds to project the MNIST dataset

onto a 2D space, far exceeding the time window of 10 seconds needed to

keep the user’s attention [42, 52]. The problem compounds as users often

have to run the algorithm several times to tune its hyperparameters. To ad-

dress this issue, we present a progressive algorithm for UMAP (Progressive

UMAP). First, we identify a number of sequential computations in UMAP

and explain how we improve each one by making it (Section 3.3). Next, we

show that Progressive UMAP can yield partial projections of data every few

seconds with a quality comparable to the original UMAP (Section 3.4).

3.2 RelatedWork

3.2.1 Progressive Visual Analytics

A series of studies have introduced and refined the concept of PVA [12, 13,

44, 55] to manage the computational delay caused by a large amount of data

or the high complexity of algorithms. Progressive computation is defined as

a computation that reports intermediate outputs within a bounded latency

that converges towards the true resultwith an ability to control the execution.

One of the popular applications of PVA is the progressive projection of

high-dimensional data. Among the existing dimensionality reduction tech-

niques, t-SNE [36] has received the most attention from PVA researchers.

Kim et al. [25] introduced a per-iteration visualization environment inwhich
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Figure 3.1: Projection of the Fashion MNIST dataset using UMAP and Progressive
UMAP. Seventy thousand data points (784 dimensions) of the Fashion MNIST dataset
have been projected onto a 2D space. UMAP took 27.7 s for initialization (i.e., neighbor
computation and graph construction) that can interrupt interactive data exploration. In
contrast, Progressive UMAP allowed users to project a small fraction of the points with
shorter initialization time (2.9 s) and progressively append the remaining points to the
projection. Although UMAP produced a smaller average loss at the end of iterations, Pro-
gressiveUMAPcouldproject thedatapoints in a reasonable time-bound, su�iciently cap-
turing the characteristics of the data.

users can interact in real time with algorithms that require complex com-

putation, such as multidimensional scaling, t-SNE and latent Dirichlet allo-

cation. Inspired by Ingram and Munzner’s Q-SNE [22], Pezzotti et al. [49]

presented a controllable t-SNE approximation, which enabled the interac-

tive manipulation of t-SNE results, such as adding, removing and modify-

ing data points. Similarly, Jo et al. [23] proposed a progressive algorithm for

indexing and querying the approximated k-nearest neighbors. They also in-

troduced responsive t-SNE, an application of their algorithm, which further

reduced the initial delay of t-SNE using progressive neighbor computation.

Motivated by these studies, we aim to develop a progressive algorithm for

a popular dimensionality reduction technique, UMAP [39], which is more

efficient and flexible than t-SNE [11].
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Algorithm 1 Progressive Uniform Manifold Approximation and Projection
1: procedure PROGRESSIVEUMAP(X , num_iterations, ops)

Input: High-dimensional dataX , number of iterations num_iterations, the al-
lowed number of tasks per iteration ops

Output: Low-dimensional projection Y
2: KNNTable← new KNNTable(X), iterations← 0
3: while iterations++ < num_iterations do
4: if size(KNNTable) < size(X) then
5: Xnew,Xupdated = KNNTable.run(ops)
6: set initial yi for points inXnew

7: update ρi (Equation 2.1) and σi (Equation 2.2)
8: compute vj|i (Equation 2.3)
9: compute vij (Equation 2.4)
10: end if
11: compute CUMAP

yi
(Equation 2.7, Equation 2.8)

12: update yi
13: endwhile
14: return yi
15: end procedure

3.3 Progressive UMAP

We found that the current implementation of UMAP [39] could suffer a long

initial delay depending on the size of the dataset, because it only works on a

fixed set of data points with no support for adding new points progressively.

In this section, we elaborate on our novel algorithm, Progressive UMAP (Al-

gorithm 1), which allows users to feed small batches of data points into

UMAP incrementally to obtain the desired latency between intermediate

projection outputs. To this end,we identify sequential procedures in the orig-

inal UMAP algorithm and transform them into progressive procedures. The

source code for Progressive UMAP is publicly available 1.

1https://www.github.com/hyungkwonko/progressive-umap
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3.3.1 ComputingNi

To build and maintain the k-nearest neighbor graph, we leverage the KNN

lookup table fromPANENE[23]. PANENEemploys randomized k-d trees [45]

to approximate and update the k-nearest neighbors of an increasing number

of data points. PANENE accepts a parameter called ops that indicates the al-

lowed number of tasks per iteration that can be controlled to find the balance

between latency and accuracy. For example, setting ops to a larger number

will index more points per iteration, which will yield a more accurate pro-

jection at the cost of longer latency. Progressive UMAP starts with calling the

update procedure of the KNN lookup table which returns two sets of points:

Xnew for newly inserted points and Xupdated for points whose neighbors are

changed due to the insertion.

3.3.2 Computing ρi and σi

For every data point inXupdated andXnew, we recompute ρi and σi according

to Equation 2.1 and Equation 2.2. For space efficiency, UMAP used the coor-

dinate list (COO) that only stores row, column, and value information as a

list of tuples. Progressive UMAP updates the COO recalculating vj|i (Equa-

tion 2.3) for the selected points –Xupdated andXnew – and changing the cor-

responding values if there is a change from the previous ones. Last, wemake

the COO symmetric (Equation 2.4).

3.3.3 Layout Initialization

Although spectral embeddingproduces an effective initial projection, its quadratic

time-complexity causes severe delay. Progressive UMAP initializes the posi-

tions of newly inserted points in two stages. For the first batch of points, 1)we

run the algorithmwith a large value of ops (e.g., 15,000), using the same spec-
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tral embedding technique as UMAP. Since we start with a relatively small

number of points, this would take much less time than the original UMAP’s

spectral embedding. Hereafter, 2) we lower the value of ops (e.g., 1,000) not

to focus on the appending process but to obtain an optimized projection out-

put fast. Starting with the second batch, we set the initial projected position

of each newly inserted point equal to its closest neighbor’s position disturbed

by a small Gaussian random noise to prevent collisions.

3.3.4 Layout Optimization

Analogously, we go through two stages for layout optimization. As it affects

the overall time for convergence and increases the stability of the final output,

it is very important to position the first batch of points well so that clusters

are unambiguously separated. To this end, 1) we run more iterations (e.g.,

40) in the first batch so each cluster can settle its position. Afterwards, 2)

we run fewer iterations (e.g., 4) to focus on attaining the projection result

fast. However, users can control the number of iterations for each stage; for

example, if the size of data is small enough, they can set the algorithm to use

the same number of iterations for both stages.

Based on the originalUMAP implementation [38], our ProgressiveUMAP

iswritten in Python.We leveragedPyNENE, a Python binding of PANENE [23],

for the KNN lookup table as well as Numba [29] for parallel computation of

distances, graph weights and optimization.

3.4 Evaluation and Discussion

To measure the loss of our method and UMAP at run-time we employ the

objective function suggested by Tang et al. [57]. In their study, the authors

proposed an objective function that subsumes all the edges (both observed

15



Figure 3.2: Average loss over time UMAP generated its first projection with an initial
delay of 27.7 s (dotted line) while Progressive UMAPminimized the delay to 2.9 s. The loss
of Progressive UMAP converged to 0.42 which was higher than that of UMAP (0.25). For
ease of comparison, the loss at 100, 200 and 500 iterations wasmarkedwith grey vertical
lines. A�er all points are added, the final loss of Progressive UMAP was 0.38.

and unobserved) to optimize a graph layout. As summing up all the edges

in a complete graph is computationally expensive, they further suggested

a fast method based on edge sampling, described as in Equation 2.9. How-

ever, applying the objective function directly to both algorithms induces bias

since the total numbers of edges in UMAP and Progressive UMAP are differ-

ent when data points are being inserted progressively in Progressive UMAP.

To make the calculations comparable, we divide the loss by the number of

sampled edges, a quantity which we will call unbiased loss or average loss.

For the evaluation, we ran both UMAP and Progressive UMAP on the

Fashion MNIST dataset [65] which has 70,000 rows of 784 dimensions (28×

28), each row describing an item from 10 classes (e.g., t-shirt, trouser, etc.).

As a baseline, we used the original UMAP implementation [38]. Both algo-
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rithms were tested on a machine equipped with an Intel Core i7-4790K CPU

(4.0 GHz) and 16 GB of main memory.

UMAP has several important hyperparameters: k (the number of neigh-

bors to consider), min_dist (the minimum distance between points in the

low-dimensional space) and metric (a metric to compute the distance be-

tween points in the high-dimensional space). We set k to 5, min_dist to 0.1,

and metric to the Euclidean distance.

Figure 3.1 shows intermediate 2D projection outputs generated by each

algorithm over time. Each point denotes a single row of 784 dimensions in

the high-dimensional space, color-coded by class. The initialization process

of UMAP took 27.7 seconds as it considered all the data points at the begin-

ning. In contrast, Progressive UMAP took 2.9 seconds to initialize because it

could incrementally append data points in later iterations. Similarly, the time

required to reach the same average losswas faster in Progressive UMAP; Pro-

gressive UMAP took 11.1 seconds to obtain the average loss of 0.5, while the

original UMAP took 52.8 seconds (Figure 4.1). Although Progressive UMAP

produced a bigger average loss at the end, it located points much faster than

UMAP and converged in a reasonable time-bound, sufficiently capturing the

important characteristics of the dataset; for example, the intermediate out-

puts of Progressive UMAP at the 200th iteration (Figure 3.1) manifest a clear

separation of data points between clusters.

Next, we tested the effect of ops (i.e., the parameter passed to the KNN

lookup table) and the number of iterations on optimizing the first projec-

tion. We gradually changed ops from 300 to 1,000 with an interval of 100. We

found it is possible to control the computation time of an iteration by chang-

ing ops. However, if ops is too small, it can harm the stability of the projection

result since, if we insert too few points at a time, it is impossible to choose
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the nearest neighbors that capture the local manifold robustly. We also ex-

amined the effect of the number of iterations on optimizing the projection

(yi) for the first batch by changing it from 20 to 60 with an interval of 10. As

expected, keeping the number of iterations small in the first batch worsened

the convergence speed and stability of the projection result. On the other

hand, having a large number of iterations in the first batch helped achieve

better projection quality but also slowed down convergence. The results of

these experiments are also available in our repository.

To sum up, we found that Progressive UMAP is able to not only generate

intermediate projection outputs whose quality is comparable to the original

UMAP within a reasonable time-bound but also provides an ability to con-

trol the trade-off between computation time and the quality of projection.

3.5 Summary

We present a progressive algorithm for the Uniform Manifold Approxima-

tion and Projection (Progressive UMAP). Through our quantitative evalu-

ation, we found that Progressive UMAP can generate the approximate pro-

jection and update it every few seconds.
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Chapter 4

UMATO: A Less Biased and Robust
Dimensionality Reduction
Algorithm Based on UMAP

4.1 Introduction

This chapter presents a novel dimensionality reduction method, Uniform

Manifold Approximation with Two-phase Optimization (UMATO) that ob-

tains less biased and robust embedding over diverse initialization methods.

One effective way of understanding high-dimensional data in various do-

mains is to reduce its dimensionality and investigate the projection in a lower-

dimensional space [24, 35, 56]. Dimensionality reduction techniques have

become the most useful tool for exploring data in applications of many vi-

sual analytics systems [15, 23]. Widely-used previous approaches such as

t-Stochastic Neighbor Embedding (t-SNE [36]) and Uniform Manifold Ap-

proximation and Projection (UMAP [39]) have their innate limitation that

they are susceptible to initialization methods, generating considerably dif-
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ferent embedding results depending on the initialization method. (Equa-

tion 4.6).

t-SNE adopts Kullback-Leibler (KL) divergence as its loss function. The

fundamental limitation of the KL divergence is that the penalty for the points

that are distant in the original space being close in the projected space is too

little (Section 4.3). This results in only the local manifolds being captured,

while clusters that are far apart change their relative locations from run to

run. Meanwhile, UMAP leverages the cross-entropy loss function, which is

known to charge a penalty for points that are distant in the original space

being close in the projection space and for points that are close in the origi-

nal space being distant in the projection space (Section 4.3). Since comput-

ing the loss with all points requires too much time, UMAP utilizes diverse

sampling techniques (i.e., negative sampling and edge sampling). Although

the approximation techniques inUMAP optimizationmake the computation

much faster, this raises another problem that the clusters in the embedding

become dispersed as the number of epochs increases (Figure 4.6), which can

lead to misinterpretation. UMAP tried to alleviate this by using a fixed num-

ber (e.g., 200), which is chosen ad hoc, and by applying a learning rate decay.

However, the optimal number of epochs and decay schedule for each initial-

ization method needs to be found in practice.

To solve the aforementioned problems, we avoid using approximation

during the optimization process, but it normally would result in greatly in-

creased computational cost. Instead, we first run optimization only with a

small number of points that represent the data (i.e., hub points). Finding the

optimal projection for a small number of points using a cross-entropy func-

tion is relatively easy and robust, making the additional techniques (e.g.,

negative sampling, edge sampling) employed in UMAP unnecessary. Fur-
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thermore, it makes UMAP less sensitive to the initialization method used

(Table 4.5).After capturing the overall skeleton of the high-dimensional struc-

ture with the hub points, we gradually append the rest of the points in sub-

sequent phases. Although the same approximation techniques as UMAP are

used for these points, the projection becomes more robust and unbiased

since we have already embedded the hub points and use them as anchors.

The gradual addition of points can in fact be done in a single phase; we found

additional phases do not meaningfully improve the performance while in-

creasing computation time (Table 4.6). Therefore, we used only two phases

in UMATO; the first is global optimization to capture the global structures

(i.e., the pairwise similarities in a high-dimensional space) and the second

is local optimization to retain the local structures (i.e., the relationships be-

tween neighboring points in a high-dimensional space) of the data.

We comparedUMATOwith popular dimensionality reduction techniques

including PCA, Isomap [59], t-SNE, UMAP, topological autoencoders [43]

and At-SNE [14]. We used one synthetic (101-dimensional spheres) and

three real-world (MNIST, Fashion MNIST, and Kuzushiji MNIST) datasets

and analyzed the projection results with several quality metrics. In conclu-

sion,UMATOdemonstrated better performance than the baseline techniques

in all datasets in terms of KLσ with different σ values,meaning that it reason-

ably preserved the density of data over diverse length scales. We also pre-

sented the 2D projections of each dataset, including the replication of an ex-

periment using the synthetic Spheres dataset introduced by Moor et al. [43]

where data points locally constitute multiple small balls globally contained

in a larger sphere. Here, we demonstrate that UMATO can better preserve

both structures compared to the baseline algorithms (Figure 4.1). Finally, we
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Figure 4.1: 2D projections produced by UMATO and six baseline algorithms. t-SNE,
At-SNE, and UMAP showed as if the points from a surrounding sphere were attached to
inner spheres, not reflecting thedata’s global structures. PCA, Isomapand topological au-
toencoders attempted to preserve the global structures, but failed to manifest the com-
plicatedhierarchical structures.UMATOwas theonly algorithmtocaptureboth theglobal
and local structures among all di�erent sphere classes; this is best viewed in color.

apply UMATOon a real-world biological dataset as a case study to show that

it can reveal the hidden structures faithfully (Section 4.5.2).

4.2 RelatedWork

4.2.1 Dimensionality Reduction

There is a body of research in the field of dimensionality reduction which

spans out from machine learning to visualization communities [11, 47, 63].

Most previous dimensionality reduction algorithms focused on preserving

the data’s local structures. For example, Maaten et al. [36] proposed t-SNE,

focusing on the crowding problem with which previous attempts [10, 20]

have struggled, to visualize high-dimensional data through projection pro-

duced by performing stochastic gradient descent on the KL divergence be-

tween two density functions in the original and projection spaces. L. van

der Maaten [62] accelerated t-SNE developing a variant of the Barnes-Hut

algorithm [3] and reduced the computational complexity from O(N2) into

O(N logN). After that, grounded in Riemannian geometry and algebraic

topology, McInnes et al. [39] introduced UMAP as an alternative to t-SNE.

Leveraging the cross-entropy function as its loss function, UMAP reduced

22



the computation time by employing negative sampling fromWord2Vec [41]

and edge sampling fromLargeVis [56, 57].Moreover, they showed thatUMAP

can generate stable projection results compared to t-SNE over repetition.

On the other hand, there also exist algorithms that aim to capture the

global structures of data. Isomap [59]was proposed to approximate the geodesic

distance of high-dimensional data and embed it onto the lower dimension.

Global t-SNE [67] converted the joint probability distribution,P , in the high-

dimensional space from Gaussian to Student’s-t distribution, and proposed

a variant of KL divergence. By adding it with the original loss function of t-

SNE, Global t-SNE assigns a relatively large penalty for a pair of distant data

points in high-dimensional space being close in the projection space. An-

other example is topological autoencoders [43], a deep-learning approach

that uses a generative model to make the latent space resemble the high-

dimensional space by appending a topological loss to the original reconstruc-

tion loss of autoencoders. However, they required a huge amount of time for

hyperparameter exploration and training for a dataset, and only focused on

the global aspect of data. Unlike other techniques that presented a variation

of loss functions in a single pipeline, UMATO is novel as it preserves both

global and local structures by dividing the optimization into two phases; this

makes it outperform the baselines with respect to quality metrics in our ex-

periments.

4.2.2 Hubs, landmarks, and anchors

Many dimensionality reduction techniques have tried to draw sample points

to better model the original space; these points are usually called hubs, land-

marks, or anchors. Silva et al. [53] proposed Landmark Isomap, a landmark

version of classical multidimensional scaling (MDS) to alleviate its compu-
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tation cost. Based on the Landmark Isomap, Yan et al. [66] tried to retain the

topological structures (i.e., homology) of high-dimensional data by approx-

imating the geodesic distances of all data points. However, both techniques

have the limitation that landmarks were chosen randomly without consider-

ing their importance. Hierarchical Stochastic Neighbor Embedding (Hierar-

chical SNE [48]) chose meaningful landmarks using the k-nearest neighbor

graph and transitionmatrix to increase the interactivity of ongoing process at

the cost of accuracy. To take advantage of the computational efficiency in han-

dling big data, Hierarchical SNE aimed at exploring the projection results in

diverse scales using filtering and drilling down. Similarly, UMATO extracts

significant hubs that can represent the overall skeleton of high-dimensional

data, but our goal, however, is to generate a less biased and robust projection

using two-phase optimization compared to the onewith single optimization.

The most similar work to ours is At-SNE [14], which optimized the anchor

points and all other points with two different loss functions. Nonetheless,

since the anchors wander during the optimization and the KL divergence

does not care about distant points (Section 4.3), it hardly captures the global

structure. UMATO separates the optimization process into two phases so

that the hubs barelymoves but guides other points so that the subareasman-

ifest the shape of the high-dimensional manifold in the projection. Apply-

ing different cross-entropy functions to each phase also helps preserve both

structures.
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Low d
Largewij Smallwij

High d
Large vij a. Small penalty

b. Big penalty
(preserves local structures)

Small vij
c. Small penalty

(ignores global structures) d. Small penalty

Table 4.1: Analysis of the KL divergence and the first term of cross-entropy loss
function for imposing penalties when updating the positions of points in low-
dimensional space. Both impose a big penalty whenwij is small but vij is large.

Low d
Largewij Smallwij

High d
Large vij e. Small penalty

f. Small penalty
(ignores local structures)

Small vij
g. Big penalty

(preserves global structures) h. Small penalty

Table 4.2: The same analysis as Table 4.2 for the second term of cross-entropy loss
function. The second term of cross-entropy function imposes a big penalty when vij is
small butwij is large.

4.3 The Meaning of Using Di�erent Loss Functions in
Dimensionality Reduction

4.3.1 t-SNE

t-SNE is one of the most popular nonlinear dimensionality reduction algo-

rithms that is widely used for data analysis. Given a set of high-dimensional

points X = {x1, x2, . . . , xn}, t-SNE maps it into a set of low-dimensional

points Y = {y1, y2, . . . , yn}. Next, t-SNE calculates the similarity between

the points in high-dimensional space (vij) and low-dimensional space (wij).

Note that vij indicates the similarity between points xi and xj in the original
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Figure 4.2: The illustration of overall UMATO pipeline. 2© We first find the k-nearest
neighbors for each point. 3© Then,we count the frequency of each point in the KNN table
and sort them in decreasing order. The reason for doing this is to find the most popular
points that are largely connected to other ones. 4© Next, we divide the points into three
di�erent classes: hub points, expanded nearest neighbors, and outliers. 5©We initialize
the positions of hub point, and optimize their positions through global optimization. 6©
Using the hubs’ positions, we embed the expanded nearest neighbors, and run local op-
timization. 7© Finally, we embed the outliers.

space and wij refers to the similarity between points yi and yj in the pro-

jection space. To compensate the crowding problem [36], it uses a Student

t-distribution with one degree of freedom to compute the similarity in low-

dimensional space. Lastly, it optimizes the embedded points by minimizing

the differences between vij and wij using KL divergence:

KL =
∑
i 6=j

vij · log(vij/wij). (4.1)

The KL divergence (Equation 4.1) and the first term of cross-entropy

(Equation 2.6) are exactly the same. If vij and wij are both large (Table 4.1a)

or both small (Table 4.1d), this means that the relationship between points

in the original space is well-retained in the projection space. Thus, the posi-

tions of points in the projection space do not have to move. As vij andwij are

similar, log(vij/wij) becomes zero, producing a small cost in the end. How-

ever, we need tomodify the position ofwij if vij andwij are different (e.g., vij

is large, but wij is small; or vij is small, but wij is large). The KL divergence

imposes a big penalty when vij is large but wij is small (Table 4.1b). That is,
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Algorithm 2 Uniform Manifold Approximation with Two-phase Optimiza-
tion (UMATO)
1: procedure UMATO(X , kX , d,min_dist, nh, eg, el)

Input: High-dimensional dataX , number of nearest neighbors k, projection di-
mension d, minimum distance in projection resultmin_dist, number of hub
points nh, epochs for global and local optimization eg, el

Output: Low-dimensional projection Y
2: Compute k-nearest neighbors ofX
3: Obtain sorted list using indices’ frequency of k-nearest neighbors
4: Build k-nearest neighbor graph structure
5: Classify points into hubs, expanded nearest neighbors, and outliers
6: OptimizeCE(f(Xh)||g(Yh)) to preserve global configuration (??)
7: Initialize expanded nearest neighbors using hub locations
8: Update k-nearest neighbors & compute weights (Equation 2.3)
9: OptimizeCE(f(X)||g(Y )) to preserve local configuration (Equation 2.9)
10: Position outliers
11: return Y
12: end procedure

if the neighboring points in the high-dimensional space are badly captured

in the low-dimensional space, the KL divergence imposes a high penalty to

move the point (vij) into the right position. Thus, we can understand why

t-SNE is able to capture the local characteristics of high-dimensional space,

but not the global ones.However, the second termof cross-entropy imposes a

big penalty when vij is small butwij is large (Table 4.2g). Therefore, it moves

points that are close together in the high-dimensional space but far apart in

the low-dimensional one so that wij becomes small in the final projection.

4.4 UMATO

In UMATO, as a novel approach, we split the optimization into global and

local so that it could generate a low-dimensional projection keeping both

structures well-maintained. For the ease of understanding, we provide an
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Figure 4.3: Points classification using Spheres dataset. Each point is classified into a
hub (red circles), an expanded nearest neighbor (green squares), or an outlier (blue tri-
angles). Best viewed in color.

illustration of UMATO pipeline in Figure 4.2. We present the pseudocode of

UMATO in Algorithm 2, andmade the source codes of it publicly available1.

4.4.1 Points Classification

In the big picture, UMATO follows the pipeline of UMAP. We first find the

k-nearest neighbors in the sameway asUMAP, by assuming the local connec-

tivity constraint, i.e., no single point is isolated and each point is connected

to at least a user-defined number of points. After calculating ρ (Equation 2.1)

and σ (Equation 2.2) for each point, we obtain the pairwise similarity for ev-

ery pair of points. Once the k-nearest neighbor indices are established, we

unfold it and check the frequency of each point to sort them into descending

order so that the index of the popular points come to the front.
1https://www.github.com/hyungkwonko/umato
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Then, we build a k-nearest neighbor graph by repeating the following

steps until no points remain unconnected: 1) choose the most frequent point

as a hub among points that are not already connected, 2) retrieve the k-

nearest neighbors of the chosen point (i.e., hub), and the points selected from

steps 1 and 2 will become a connected component. The gist is that we divide

the points into three disjoint sets: hubs, expanded nearest neighbors, and

outliers (Figure 4.3). Thanks to the sorted indices, the most popular point in

each iteration—but not too densely located—becomes the hub point. Once

the hub points are determined, we recursively seek out their nearest neigh-

bors and again look for the nearest neighbors of those neighbors, until there

are no points to be newly appended. In other words, we find all connected

points that are expanded from the original hub points, which, in turn, is

called the expanded nearest neighbors. Any remaining point that is neither

a hub point nor a part of any expanded nearest neighbors is classified as an

outlier. The main reason to rule out the outliers is, similar to the previous

approaches [16, 48], to achieve the robustness of the manifold learning al-

gorithm in practice. As the characteristics of these classes differ significantly,

we take a different approach for each class of points to obtain both structures.

That is, we run global optimization for the hub points (Section 4.4.2), local

optimization for the expanded nearest neighbors (Section 4.4.3), and no op-

timization for the outliers (Section 4.4.4). In the next section we explain each

in detail.

4.4.2 Global Optimization

After identifying hub points, we run the global optimization to retrieve the

skeletal layout of the data. First, we initialize the positions of hub points us-

ing PCA, which makes the optimization process more stable than using ran-
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dom initial positions [28]. Next, we optimize the positions of hub points by

minimizing the cross-entropy function (Equation 2.6). Let f(X) = {f(xi, xj)|

xi, xj ∈ X} and g(Y ) = {g(yi, yj)|yi, yj ∈ Y } be two adjacency matrices in

high- and low-dimensional spaces. If Xh represents a set of points selected

as hubs in high-dimensional space, and Yh is a set of corresponding points in

the projection,weminimize the cross entropy—CE(f(Xh)||g(Yh))—between

f(Xh) and g(Yh).

UMAP computes the cross-entropy between all existing points using two

sampling techniques, edge sampling and negative sampling, for speedup

(Table 4.7). However, this often ends up capturing only the local proper-

ties of data because of the sampling biases and thus it cannot be used for

cases that require a comprehensive understanding of the data. On the other

hand, in its first phase, UMATO only optimizes for representatives (i.e., the

hub points) of data, which takes much less time but can still approximate

the manifold effectively.

4.4.3 Local Optimization

In the second phase, UMATO embeds the expanded nearest neighbors to the

projection that is computed using only the hub points from the first phase.

For each point in the expanded nearest neighbors, we retrieve its nearest m

(e.g., 10) hubs in the original high-dimensional space and set its initial po-

sition in the projection to the average positions of the hubs in the projection

with small random perturbations. We follow a similar optimization process

as UMAP in the local optimization with small differences. As explained in

Section 2.1, UMAP first constructs the graph structure; we perform the same

task but only with the hubs and expanded nearest neighbors. While doing

this, since some points are excluded as outliers, we need to update the k-
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Global quality metrics Local quality metrics (k = 5)

Dataset Algorithm DTM KL0.01 KL0.1 KL1 Cont Trust MRREX MRREZ

Spheres

PCA 0.9950 0.7568 0.6525 0.0153 0.7983 0.6088 0.7985 0.6078
Isomap 0.7784 0.4492 0.4267 0.0095 0.9041 0.6266 0.9039 0.6268
t-SNE 0.9144 0.6091 0.5399 0.0130 0.8916 0.7078 0.9045 0.7241
UMAP 0.9209 0.6100 0.5383 0.0134 0.8760 0.6499 0.8805 0.6494
TopoAE 0.6890 0.2063 0.3340 0.0076 0.8317 0.6339 0.8317 0.6326
At-SNE 0.9448 0.6584 0.5712 0.0138 0.8721 0.6433 0.8768 0.6424

UMATO (ours) 0.3888 0.1341 0.1434 0.0014 0.7884 0.6558 0.7887 0.6557

Fashion
MNIST

PCA 0.2315 0.6929 0.0454 0.0006 0.9843 0.9117 0.9853 0.9115
Isomap 0.2272 0.6668 0.0446 0.0010 0.9865 0.9195 0.9872 0.9196
t-SNE 0.2768 0.8079 0.0663 0.0017 0.9899 0.9949 0.9919 0.9955
UMAP 0.2755 0.8396 0.0641 0.0016 0.9950 0.9584 0.9955 0.9584
TopoAE 0.2329 0.7301 0.0446 0.0008 0.9908 0.9591 0.9913 0.9590
At-SNE 0.2973 0.8389 0.0702 0.0017 0.9826 0.9847 0.9849 0.9848

UMATO (ours) 0.2035 0.6852 0.0342 0.0008 0.9911 0.9500 0.9919 0.9502

MNIST

PCA 0.4104 1.4981 0.1349 0.0014 0.9573 0.7340 0.9605 0.7342
Isomap 0.3358 1.0361 0.0857 0.0012 0.9743 0.7527 0.976 0.7528
t-SNE 0.4263 1.4964 0.1523 0.0024 0.9833 0.9954 0.9869 0.9963
UMAP 0.4172 1.5734 0.1430 0.0026 0.9891 0.9547 0.9907 0.9547
TopoAE 0.3686 1.3818 0.1048 0.0011 0.9716 0.9429 0.9732 0.9429
At-SNE 0.4328 1.5623 0.1482 0.0018 0.9768 0.9765 0.9830 0.9777

UMATO (ours) 0.3525 1.2785 0.1017 0.0014 0.9792 0.8421 0.9813 0.8422

Kuzushiji
MNIST

PCA 0.4215 0.1710 0.1317 0.0014 0.9380 0.7213 0.9420 0.7211
Isomap 0.3458 0.2171 0.0906 0.0012 0.9573 0.7638 0.9589 0.7635
t-SNE 0.4254 0.0483 0.1369 0.0025 0.9843 0.9688 0.9871 0.9693
UMAP 0.3873 0.0417 0.1148 0.0026 0.9893 0.9563 0.9908 0.9564
TopoAE 0.3730 0.1495 0.1027 0.0011 0.9755 0.9442 0.9768 0.9440
At-SNE 0.3505 0.0807 0.0978 0.0013 0.9786 0.9671 0.9824 0.9676

UMATO (ours) 0.3231 0.1365 0.0815 0.0016 0.9865 0.8888 0.9881 0.8895

Table 4.3: Quantitative results of UMATO and six baseline algorithms. The hyperpa-
rameters of the algorithms are chosen to minimize KL0.1. The best one is in bold and
underlined, and the runner-up is in bold. Only first four digits are shown for conciseness.

nearest neighbor indices. This is fast because we recycle the already-built

k-nearest neighbor indices by replacing the outliers to the newnearest neigh-

bor.

Oncewe compute the similarity between points (e.g., vij andwij), to opti-

mize the positions of points, similar to UMAP, we use the cross-entropy loss

function with edge sampling and negative sampling (Equation 2.9). Here,

we try to fix the positions of hubs as much as possible since they have al-

ready formed the global structure. Thus, we only sample a point p among
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the expanded nearest neighbors as one end of an edge, while the point q at

the other end of the edge can be chosen from all points except outliers. In

UMAP implementation, when q pulls in p, p also drags q to facilitate the op-

timization (Equation 2.7). When updating the position of q, we only give a

penalty to this (e.g., 0.1), if q is a hub point, not letting its position exces-

sively be affected by p. In addition, because the repulsive force can disperse

the local attachment, making the point veer off for each epoch and eventu-

ally destroying the well-shaped global layout, we multiply a penalty (e.g.,

0.1) when calculating the repulsive gradient (Equation 2.8) for the points

selected as negative samples.

4.4.4 Outliers Arrangement

Since the isolated points, which we call outliers, mostly have the same dis-

tance to all the other data points in high-dimensional space, due to the curse

of dimensionality, they both sabotage the global structure we have already

made and try to mingle with all other points, thus distorting the overall pro-

jection.We do not optimize these points but instead simply append them us-

ing the already-projected points (e.g., hubs or expanded nearest neighbors),

that belong to each outlier’s connected component of the nearest neighbor

graph. That is, if xi ∈ Cn where xi is the target outlier and Cn is the con-

nected component to which xi belongs, we find xj ∈ Cn that has already

been projected and is closest to xi. We arrange yi which corresponds to xi in

low-dimensional space using the position of yj in the same component offset

by a random noise. In this way, we can benefit from the comprehensive com-

position of the projection that we have already optimized when arranging

the outliers. We can ensure that all outliers can find a point as its neighbor

since we picked hubs from each connected component of the nearest neigh-

32



bor graph and thus at least one point is already located and has an optimized

position (Section 4.4.2).

4.5 Experiments

4.5.1 Quantitative and Qualitative Evaluation of UMATO Compared
to Six Baseline Algorithms

We conducted experiments on one synthetic and three real-world datasets to

evaluate UMATO’s ability to capture the global and local structures of high-

dimensional data [51]. We compared UMATO with six baseline algorithms,

PCA, Isomap, t-SNE, UMAP, topological autoencoders, andAt-SNE in terms

of global (i.e., DTMandKLσ) and local (i.e., trustworthiness, continuity, and

MRREs) quality metrics.

Datasets

Synthetic SpheresDataset.We leveraged the same Spheres dataset thatMoor

et al. [43] used in their experiments of topological antoencoders. The Spheres

dataset contains eleven high-dimensional spheres which reside in 101 di-

mensional space having 10,000 rows of 101 dimensions. We first generated

ten spheres of radius of 5, and shifted each sphere by adding the same Gaus-

sian noise to a random direction. For this aim, we created d-dimensional

Gaussian vectors X ∼ N(0, I(10/
√
d)), where d is 101 and the number of

points in each sphere is 500. As to embed an interesting geometrical struc-

ture to the dataset, the ten spheres of relatively small radii of 5 were enclosed

by another larger sphere of radius of 25. The number of points in this outer

sphere was set to 5,000.

Real-world Image Datasets. To test UMATO on real-world datasets we used

three well-known image datasets for the experiments: MNIST [30], Fashion
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Figure 4.4: 2D visualization of UMATO, UMAP and t-SNE onmouse neocortex dataset
[58]. t-SNE separates clusters well but does not explicitly present class information:
GABAergic (red/purple), Endothelial (brown), Glutamatergic (blue/green), Non-Neuronal
(dark green). UMAP moderately captures both the clusters and classes. In the case of
UMATO, it demonstrates the relationship between classes much better than t-SNE and
UMAP, retaining some of the local manifolds as well. When the number of epochs for
UMAP is changed from the default value (200) to 2,000, the distance between clusters
becomes exaggerated. However, UMATO generates more consistent projections regard-
less of the number of epochs, which does not induce any bias in analyzing inter-cluster
distances.

MNIST [65], andKuzushijiMNIST [9]. The datasets represent images of dig-

its, fashion items, and Japanese characters where each of which consists of

60,000 rows of 784-dimensional (28 × 28) images from 10 classes.

Experimental setting

Evaluation Metrics. As UMATO presents a dimensionality reduction tech-

nique that can capture both the global and local structures of high-dimensional

data, we used several quality metrics to evaluate UMATO from diverse as-

pects. We refer to previous review papers [18, 32] for the best use and im-

plementation of the quality metrics. To assess how well projections preserve

the global structures of high-dimensional data, we computed the density es-

timates, so-called Distance To a Measure (DTM [7, 8]), between the orig-

inal data and the projections. DTM considers the dispersion of high- and

low-dimensional data, where it is defined for a given point as fXσ (x) :=∑
y∈X exp (−dist(x, y)2/σ). By summing up the element-wise absolute val-
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ues between two distributions,
∑

x∈X,z∈Z f
X
σ (x)− fZσ (z)where x is the point

in high-dimensional spaceX and the z is the corresponding projected point

in low-dimensional spaceZ, we can examine the similarity of twodatasets. In

our experiments, we used the Euclidean distance and the values were nor-

malized between 0 and 1. The σ ∈ R>0, which represents the length scale

parameter, was set to 0.1.Moor et al. [43] adopted theKullback-Leibler diver-

gence between density estimates with different scales (KLσ := KL(fXσ ||fZσ ))

to evaluate the global structure preservation. Following the same notion of

the experiments in the paper [43], we used three σ values, 1.0, 0.1, and 0.01,

to test whether each algorithm can capture the global aspect with respect to

diverse density estimates.

Next, to evaluate the local structure preservation of projections, we used

the mean relative rank errors (MRREs [31]), trustworthiness, and continu-

ity [64].All of these local qualitymetrics estimate howwell the nearest neigh-

bors in one space (e.g., high- or low-dimensional space) are preserved in the

other space. In out experiments, for ease of comparing local quality metrics

at once, we defined MRREs := 1−MRREs, so that a projection with higher

MRREs has better retained the k-nearest neighbors like trustworthiness and

continuity. The metrics require a hyperparameter k, the number of nearest

neighbors. We set it as 5 for our experiment for the fair comparison [43].

Please refer to the supplementary materials for different values (k = 10, 15)

Baselines.We set themostwidely used dimensionality reduction techniques

as our baselines, including PCA, Isomap [59], t-SNE [36], UMAP [39], and

At-SNE [14]. In the case of t-SNE, we leveraged Multicore t-SNE [60] for

fast computation. To initialize a projection, we used PCA for t-SNE, follow-

ing the recommendation in the previous work [34], and spectral embedding

for UMAP which was the default. In addition, we compared with topologi-
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cal autoencoders (TopoAE [43]) that were developed to capture the global

properties of the data using a deep learning-based generative model. Fol-

lowing the convention of visualization in dimensionality reduction, we de-

termined our result projected onto 2D space. We tuned the hyperparameters

of each technique to minimize the KL0.1.

Hyperparameter Setting.We generated projections for each dimensionality

reduction algorithm that had the lowest KL0.1 measure for the fair compar-

ison to previous work [43]. To tune each algorithm’s hyperparameters, we

employed the grid search for t-SNE, UMAP, and At-SNE. For t-SNE and At-

SNE, we changed the perplexity from 5 to 50 with an interval of 5, and the

learning rate from 0.1 to 1.0 with a log-uniform scale. In the case of UMAP,

we changed the number of nearest neighbors from 5 to 50 with an interval

of 5, and the minimum distance between points in the projection from 0.1 to

1.0 with an interval of 0.1. We used the Python library scikit-optimize [19]

to find the best hyperparameters for topological autoencoders. UMATO has

several hyperparameters such as the number of hub points, the number of

epochs, and the learning rate for global and local optimization. In our ex-

periments, we configured everything except the number of hub points to the

same setting for UMATO. We empirically decided to use 200 hub points for

the Spheres dataset and 300 hubs for others.Weused fewer hubpoints for the

Spheres since it has only 10,000 data points in total, while the other datasets

have 60,000 data points. We set the number of epochs to 100 for global opti-

mization and to 50 for local optimization. Lastly, the global learning rate was

set to 0.0065, and the local learning rate was set to 0.01.
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Figure 4.5: 2Dprojections producedbyUMATOand six baseline algorithmson3 real-
world datasets. UMATO generated similar projections to PCA but with the points more
locally connected; this is best viewed in color.

Quantitative Results

Table 4.3 displays the quantitative evaluation results. For the Spheres and

Fashion MNIST dataset, UMATO was the only method that showed sur-

passing performance both in the global and local quality metrics. For lo-

cal metrics, t-SNE, At-SNE, and UMAP generally had the upper-hand, but

UMATO showed comparable performance in terms of MRREX and continu-

ity for Fashion MNIST and Kuzushiji MNIST datasets. Meanwhile, Isomap

and topological autoencoders were good at global quality metrics although

UMATOhad the lowest (best) KL0.1 andDTM except for theMNIST dataset.

We noted that UMATO can show the best or comparable performance to

Isomap in global quality metrics without computing the geodesic distance.
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Figure 4.6: Comparing result of UMATO and UMAP with varying number of epochs
(Top row) UMAP is susceptible to the number of epochs so that the clusters get dispersed
as the epochs increases. (Bottom row) On the other hand, regardless of the number of
epochs in the global optimization, UMATO results in almost the same embedding result.

Qualitative Results

Among the five algorithms, only UMATO could preserve both the global

and local structures of the Spheres dataset. If we look at the Figure 4.1 made

by UMATO, the outer sphere encircles the inner spheres in a circular form,

which is the most intuitive to understand the relationship among different

classes and the local linkage in detail. In the results from Isomap, t-SNE,

UMAP, and At-SNE, the points representing the surrounding giant sphere

mix with those representing the other small inner spheres, thus failing to

capture the nested relationships among different classes. Meanwhile, topo-
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Figure4.7: UMATOresults on theSpheresdataset usingdi�erent initializationmeth-
ods. Although the average value of the normalized Procrustes distance of UMATO results
is higher than the baselines because of the equidistant clusters of inner spheres, both
global and local structures are well-captured with all di�erent initialization methods.
Best viewed in color.

logical autoencoders are able to realize the global relationship between classes

in an incomplete manner; the points for the outer sphere are too spread out,

thus losing the local characteristics of the class. From this result, we can ac-

knowledge how UMATO can work with high-dimensional data effectively

to reveal both global and local structures.

For the real-world datasets, UMATO showed a similar projection to PCA

but with better captured local characteristics (Figure 4.5). The results from

topological autoencoders showed some points detached far apart from their

centers, even though the best hyperparameterswere used for each. Although

At-SNE claimed that it could capture both structures, the results were not

significantly different from those of the original t-SNE algorithm when pro-

jecting the Spheres and Fashion MNIST datasets.

4.5.2 Case Study: UMATO on Real-world Biological Data

To test UMATO on a real-world biological dataset, we adopted a paired an-

alytics methodology [2, 26] where a visual analytics expert and a subject

matter expert work in pair to accomplish an analytical task using a visual-
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Sample (%) 1 2 5 10 20

t-SNE 0.9835 0.9944 0.9544 0.9736 0.9824
UMAP 0.4002 0.3319 0.2341 0.1324 0.1327
At-SNE 0.8958 0.9510 0.7593 0.7980 0.9062

UMATO (ours) 0.3153 0.1528 0.1206 0.0988 0.0520

Sample (%) 30 50 60 80 100

t-SNE 0.9924 0.9959 0.9819 0.9944 0.9765
UMAP 0.1577 0.1109 0.0713 0.0951 0.0597
At-SNE 0.9376 0.9999 0.9460 0.9599 0.9999

UMATO (ours) 0.1411 0.0526 0.1732 0.0529 0.0535

Table4.4:ThenormalizedProcrustesdistancebetween twoprojection resultsby the
percentage of sub-samples. From four dimensionality reduction techniques, we mea-
sured the normalized Procrustes distance to check the projection stability using the Flow
Cytometry dataset. The winner is in bold.

ization tool. We collaborated with an expert who has a Ph.D. in Bioinfor-

matics with more than 5 years of research experience. We have run UMATO

and the baseline algorithms (t-SNE, UMAP) on 23,822 single-cell transcrip-

tomes from two areas at distant poles of the mouse neocortex [58]. Each cell

belongs to one of 133 clusters defined by Jaccard–Louvain clustering (for

more than 4,000 cells) or a combination of k-means and Ward’s hierarchi-

cal clustering. Likewise, each cluster belongs to one of 4 classes: GABAer-

gic (red/purple), Endothelial (brown), Glutamatergic (blue/green), Non-

Neuronal (dark green).

The embedding result for each method is given in Figure 4.4. In the case

of t-SNE, clusters are well-captured, but the classes are much dispersed,

while UMAP adequately separates both classes and clusters. Compared to

these baseline algorithms, UMATO is able to capture the relationship be-

tween classesmuch better, retaining some of the local manifolds as well. This

proves that the hub points worked as the representatives that explain well
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about the overall dataset, and the algorithm focused more on the manifold

at a higher level than the baselines.

Moreover, in biological data analysis, researchers oftenwant to derive se-

mantic meanings from the distance between samples in a low-dimensional

embedding [17, 61]. However, UMAP embedding results are susceptible to

the number of epochs that changing it could easily lead to exaggerated or re-

duced distance between clusters (Figure 4.6). As the proper number should

be different for every dataset, the user cannot be sure of what value is appro-

priate. If wrong one is selected, this can induce a misinterpretation that the

user considers the distance between clusters as something meaningful. The

two-phase optimization of UMATO can solve the problem since the global

optimization (first phase) is easy to converge as it runs only with a small

portion of points. Therefore, the increasing number of epochs in the global

optimization does not harm the final embedding. As the UMAP embedding

results are susceptible to the number of epochs, this may cause a negative

impact on the accurate interpretation of the results. On the other hand, as

UMATO is robust over the number of epochs, we do not have to worry about

such biases.

4.6 Discussion

UMATO Compared to t-SNE and UMAP. In case of t-SNE, as denoted in

many researches [28, 34], the initialization method matters a lot to the final

projection result.Moreover, because of themathematical defect of leveraging

KL divergence as its optimization function, the relative positions of clusters

are often mixed up as it mostly focus on capturing the nearest neighbors.

On the other hand, by adopting the cross-entropy loss function, UMAP ar-
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Figure 4.8: 2D projections of the Fashion MNIST dataset using UMATO and UMATO
withmulti-phaseoptimizations.Although therewas a small di�erence suchas the loca-
tions of outliers, we observed that the projection results were quite similar to each other.

gued that it can capture both the global and local properties of the high-

dimensional data. However, the approximation techniques harm the origi-

nal effect of loss function that they affect the algorithm to care more about

the nearest neighbors which often results in projections with a biased repre-

sentation of cluster structures. The projection seems to demonstrate a clear

separation between clusters so that the result is good, but their positions are

often disarranged that the high-level structures become biased in terms of

the overall relationship between clusters.

As we have seen throughout the experiments, UMATO can be used to re-

veal the most obvious relationship between clusters or individual points of

high-dimensional data. Since we only use the hub points to shape the skele-

ton of projection,we can capture the overall skeleton fast as it runswith small

number of points. Compared to the two algorithms, UMATO is more stable,

and robust over diverse initialization methods.

Projection Stability. Table 4.4 denotes the results of our experiment on the

projection stability ofUMATOandother dimensionality reduction techniques.
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Algorithm Spheres MNIST FMNIST KMNIST

t-SNE 0.7878 0.8665 0.8284 0.8668
UMAP 0.7726 0.7767 0.7793 0.8213

UMATO (ours) 0.9504 0.4808 0.0120 0.2037

Table 4.5: The average value of normalized Procrustes distance between diverse
dimensionality reduction techniques over four datasets. In all real-world datasets,
UMATO has shown the most robust embedding results over di�erent initialization meth-
ods. Although the UMATO results in the highest normalized Procrustes distance in the
Spheres dataset, the embedding results look quite similar (Figure 4.7). The winner is in
bold.

When the data size grows, we want to sample a portion of it to speed up

the visualization. However, the concern is whether the projection that runs

with the sampled indices is consistent with the corresponding part of the

projection made with the full dataset. If the algorithm can generate stable

and consistent results, the two projections should contain the least bias pos-

sible. To compute the projection stability of dimensionality reduction tech-

niques, we used the normalized Procrustes distance to measure the distance

between two comparable distributions. Specifically, given two datasets X =

{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}, we define the Procrustes distance

between the two distributions as

dP (X,Y ) =

√√√√ n∑
i=1

(xi − y′i)2. (4.2)

We optimized Y ′ = {y′1, y′2, . . . , y′n} using translation, uniform scaling, and

rotation to minimize the squared error
∑n

i=1 (xi − y′i)2. To replicate the ex-

periment byMcinnes et al. [39],weused the sameFlowCytometry dataset [6,

54], and ran optimal translation, uniform scaling, and rotation to minimize

the Procrustes distance between the two distributions. As we can see in Ta-
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ble 4.4, UMATO outperformed t-SNE and At-SNE for all sub-sample sizes.

Moreover, although UMAP is known as stable among existing algorithms,

UMATO showed even better (lower) Procrustes distance except for one sub-

sample size (60%). From this result, we can acknowledge that UMATO can

generate more stable and consistent results regardless of sub-sample size

than other dimensionality reduction techniques.

Projection Robustness over Diverse Initialization Methods. We tested the

robustness of each dimensionality reduction technique with different initial-

ization methods such as PCA, spectral embedding, random position, and

class-wise separation. In class-wise separation, we initialized each class with

a non-overlapping random position in 2-dimensional space, adding random

Gaussian noise. In our results, UMATO embeddings were almost the same

on the real-world datasets, while the UMAP and t-SNE results relied highly

upon the initialization method. We report this in Table 4.5 with a quantita-

tive comparison using the normalized Procrustes distance (Equation 4.2).

In the case of the Spheres dataset, the clusters were equidistant from each

other. The embedding results have to be different from run to run due to the

limitation of the 2-dimensional space since there is no way to express this

relationship (i.e., the crowding problem [36]). However, as we report in Fig-

ure 4.7, the global and local structures of the Spheres data can be manifested

by UMATO regardless of different initialization methods.

Multi-phase Optimization. The optimization of UMATO can be easily ex-

panded to multiple phases (e.g., three or more phases). Since we have a re-

cursive procedure to expand the nearest neighbors, we can insert the opti-

mization process each time we expand the neighbors to create a multi-phase

algorithm. However, our experiment with three- and four-phase optimiza-
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tion using the Fashion MNIST dataset showed that there is no big difference

between two-phase optimization and that with more than two phases.

We report the experimental result ofmulti-phase optimization (e.g., three

and four-phase) using the Fashion MNIST dataset both quantitatively (Ta-

ble 4.6) and qualitatively (Figure 4.8). As in Figure 4.8, there are no signif-

icant differences between the 2D projections, although some outliers were

located in different places. In the quantitative results (Table 4.6), the origi-

nal UMATO (with 2 Phases) was the winner in DTM, KL0.1, KL1, continu-

ity, and MRREZ but came last in other quality metrics. However, the differ-

ence between the original UMATO and the multi-phase optimizations was

imperceptible. Therefore, we concluded that developing a multi-phase opti-

mization for UMATO does not bring about any notable improvement in the

projection result.

Applying UMATO in Progressive Visual Analytics Systems by Consider-

ing the Data Sequence.As the size of data at hand grows enormously these

days, researchers have sought tominimize the interaction latency byprogres-

sively computing projections. However, most progressive systems achieve

progressiveness by randomly splitting data into small batches[23, 27]. This

can cause a severe problem in the final projection in case where the batch

projected in the early phase are outliers, as they cumulatively affect the other

points in the stochastic optimization process. UMATO can provide a remedy

to the current PVA systems, as it can consider the sequence of batches follow-

ing the importance of each point. By leveraging UMATO, the detection and

visualization of outliers in a projection result will become much easier and

explainable. This is reasonable as UMATO is a PVA-friendly algorithm since

it can be easily expanded to multiple phases without losing the aforemen-
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Dataset Algorithm DTM KL0.01 KL0.1 KL1

Fashion
MNIST

2 Phases (UMATO) 0.2035 0.6852 0.0342 0.0008
3 Phases 0.2058 0.6546 0.0343 0.0008
4 Phases 0.2095 0.6533 0.0359 0.0008

Algorithm Cont Trust MRREX MRREZ

2 Phases (UMATO) 0.9911 0.9500 0.9919 0.9502
3 Phases 0.9900 0.9556 0.9909 0.9561
4 Phases 0.9895 0.9532 0.9904 0.9536

Table 4.6: Quantitative evaluation ofUMATOandUMATOwithmulti-phase optimiza-
tions. Although the optimization process of UMATO can be simply expandable for multi-
ple phases, no apparent distinctions are found in the the results with di�erent numbers
of optimization phases. The winner is in bold.

tioned advantages (e.g., stability, robustness over initialization methods) of

the algorithm.

4.7 Summary

We present a two-phase dimensionality reduction algorithm called UMATO

that can effectively preserve the global and local properties of high-dimensional

data. In our experimentswith diverse datasets, we have proven that UMATO

can outperform previous widely used baselines (e.g., t-SNE and UMAP)

both quantitatively and qualitatively.

46



Algorithm Runtime (s)

Isomap 3 hours>
t-SNE 374.85± 11.38
UMAP 26.10± 3.97

UMATO (ours) 73.32± 8.39

Table 4.7: The runtime for each algorithm using MNIST dataset. UMAP and UMATO
takemuch less time thanMulticoreT-SNE [60] when tested on a Linux server with 40-core
Intel Xeon Silver 4210 CPUs. The runtimes are averaged over 10 runs. Isomap [59] took
more than 3 hours to get the embedding result.
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Chapter 5

Discussion

5.1 Lessons Learned

It is very hard to explore a large scale of high-dimensional data with inter-

action. This is a practical issue in the visualization community, as the users

can get distracted easily with such a long and boring waiting. We found that

a progressive computation can be a good solution to this problem, by allevi-

ating the heavy computation but to retain the characteristics of final result.

In UMAP, the different configurations often yield inconsistency over em-

bedding results. This is a huge problem as it can mislead the users because

the analysis of embedding can be incompatible or confusing from run to run.

We identified that using the cross-entropy function without any approxima-

tion can mitigate the problem, but the computational cost increases enor-

mously. Leveraging hub points is a detour, as it offers a competitive compu-

tation time, but less biases and more robustness.

48



5.2 Limitations

In the current implementation of Progressive UMAP, not all computation

steps are bounded (e.g., the matrix multiplication) in time. For this reason,

the algorithmmight not be able to handle a dataset that is too large. In future

work, we are to identify such problematic computational steps and speed

them up using, for example, hardware acceleration.

For UMATO, we plan to provide an application of UMATO for the pro-

gressive computation of high-dimensional data to consider the importance

or sequence of data points when projecting them. To use UMATO in PVA

systems, it should support fast computation for the real-time analysis of the

high-dimensional data. The running time of UMATO was faster than Multi-

core t-SNE [60], but about 3 times slower than UMAP implementation [38]

(Table 4.7). To this end, we plan to accelerate UMATO, as in previous at-

tempts with other dimensionality reduction techniques [46, 50], by imple-

menting it on a heterogeneous system (e.g., GPU) for speedup.
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Chapter 6

Conclusion

The thesis endeavored to support the thesis statement (The expansion of

UMAP to progressive visual analytics and two-phase optimization enable

an interactive exploration and produce less biased and robust embedding

result.), with the results from two researches where each of them answering

one of our research questions. As a summary, the contributions of the thesis

are as follows: 1) Development of Progressive UMAP, which can embed and

visualize high-dimensional data responsively onto a 2D space, with its quan-

titative and qualitative evaluation. 2) Design, development, and evaluation

of UMATO, which enables to produce less biased and robust embedding

over diverse initialization method. Through our researches, we shed a light

to the further research of UMAP. We believe this will become more valuable

asset in the future where the size of data grows.
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국문초록

고차원데이터의특성을파악하는효과적인방법중하나는저차원공간에임

베딩을 하는 것이다. 많은 차원 축소 알고리즘이 있지만, 균일 매니폴드 근사 및

투영법 (UMAP)은 빠른 속도와 안정적인 투영 결과로 인해 많은 주목을 받았

다.그러나현재의 UMAP은실험용데이터셋인MNIST에도수분이걸리는등,

인터랙티브시각적분석시스템에도입되기에는너무느리다.또한 UMAP은하

이퍼파라미터 설정이 (특히, 초기화 방법과 epoch 수) 달라지는 것에 취약한데,

이것은임베딩결과로부터통찰을얻는과정에서큰오류를범할수있게한다.

UMAP의즉각적인반응성을얻기위해서, UMAP의점진적인알고리즘인Pro-

gressive UMAP을 제안한다. 이로써 한 배치의 데이터를 추가할 때마다 임베딩

결과를 업데이트 하게되는 점진적인 계산이 가능해진다. 다음으로 적은 편향과

강건한 임베딩을 보장하기 위해 UMATO를 제안한다. 먼저 우리는 이러한 취약

함이최적화를근사하는과정에서일어나는것을밝힌다. UMATO는, UMAP과

다르게,두단계에걸친최적화를통해서처음으로전체적인구조를잡고,그다음

지역적특성을파악한다.실험을통해UMATO가 PCA, t-SNE, UMAP, topolog-

ical autoencoders그리고Anchor t-SNE와같은기존알고리즘에비해전체구조

평가 지표와 2차원 임베딩 결과에서 더 나음을 보인다. 추가적으로 여러 단계로

최적화하는것과임베딩의안정성역시실험으로파악한다.

이연구는차원축소뿐만아니라점진적시각화분야에도독창적인공헌을한

다.마지막으로연구의향후연구방향을도모한다.

주요어:차원축소,매니폴드학습,위상적데이터분석,시각화, UMAP

학번: 2019-24961
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