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Abstract

Image restoration is an important technology which can be used as a pre-processing

step to increase the performances of various vision tasks. Image super-resolution is one

of the important task in image restoration which restores a high-resolution (HR) im-

age from low-resolution (LR) observation. The recent progress of deep convolutional

neural networks has enabled great success in single image super-resolution (SISR). its

performance is also being increased by deepening the networks and developing more

sophisticated network structures. However, finding an optimal structure for the given

problem is a difficult task, even for human experts. For this reason, neural architec-

ture search (NAS) methods have been introduced, which automate the procedure of

constructing the structures. In this dissertation, I propose a new single image super-

resolution framework by using neural architecture search (NAS) method. As the per-

formance improves, the network becomes more complex and deeper, so I apply NAS

algorithm to find the optimal network while reducing the effort in network design.

In detail, the proposed scheme is summarized to three topics: image super-resolution

using efficient neural architecture search, multi-branch neural architecture search for

lightweight image super-resolution, and neural architecture search for image super-

resolution using meta-transfer learning.

At first, I expand the NAS to the super-resolution domain and find a lightweight

densely connected network named DeCoNASNet. I use a hierarchical search strategy

to find the best connection with local and global features. In this process, I define a

complexity-based-penalty and add it to the reward term of REINFORCE algorithm.

Experiments show that my DeCoNASNet outperforms the state-of-the-art lightweight

super-resolution networks designed by handcraft methods and existing NAS-based de-

sign.

I propose a new search space design with multi-branch structure to enlarge the
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search space for capturing multi-scale features, resulting in better reconstruction on

grainy areas. I also adopt parameter sharing scheme in multi-branch network to share

their information and reduce the whole network parameter. Experiments show that

the proposed method finds an optimal SISR network about twenty times faster than

the existing methods, while showing comparable performance in terms of PSNR vs.

parameters. Comparison of visual quality validates that the proposed SISR network

reconstructs texture areas better than the previous methods because of the enlarged

search space to find multi-scale features.

Lastly, I apply meta-transfer learning to the NAS procedure for image super-resolution.

I train the controller and child network with the meta-learning scheme, which enables

the controllers to find promising network for several scale simultaneously. Further-

more, meta-trained child network is reused as the pre-trained parameters for final

evaluation phase to improve the final image super-resolution results even better and

search-evaluation gap problem is efficiently reduced.

keywords: Neural architecture search, image restoration, image super-resolution,

deep learning

student number: 2014-22565
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Chapter 1

INTRODUCTION

Nowadays, numerous images and videos are taken from smartphones and shared to

the internet. Due to the lack of mobile data, images and videos are compressed or

resized when they are uploaded to SNS. Once the image is resized to small size, the

information is disappeared and they can’t be up-sampled simply. The image super-

resolution algorithms are used in this situation, to reconstruct the high-resolution im-

age from low-resolution input. It is also an important technology that can be widely

used as a pre-processing step of various tasks such as medical image analysis [8], satel-

lite image recognition [9], security image processing [10], etc. with the development

of deep learning area, the SISR algorithms also change their paradigm from conven-

tional interpolation-based [11] or reconstructuion-based method [12] to learning-based

methods which train the neural networks with many LR-HR image pairs to create high-

resolution images.

Many deep neural networks for SISR have been proposed [1–5,13–18]. The convo-

lution layer and its variants such as dilated convolution or depth-separable convolution

is used as a basic operation of the deep learning-based algorithms. Researchers have

proposed specific structures to achieve better performance.

However, in designing a deep network, I should select a considerable number of

network configurations such as connection, operation type, the number of feature chan-
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nels, depth, etc. Researchers have designed their structures through a large number of

trials to achieve a competent performance. It is a tedious task and difficult to find an

optimal system for a given task. The NAS algorithms have been proposed to alleviate

this burden, especially in the case of image classification researches [19–26].

Some researchers expanded the neural architecture search scheme to the other tasks

such as object detection (Auto-deeplab) [27] and image SR (MoreMNAS, FALSR) [6,

7]. Specifically, they used a reinforced evolution algorithm and solved the image SR

task as a multi-objective problem. However, these reinforced evolution algorithms

need more than 1 GPU month to find optimal architectures. Furthermore, FALSR eval-

uated the network approximately because they did not use a complete training strategy.

To overcome these drawbacks, I propose a new NAS-based SR method by tak-

ing the idea of ENAS [21] as my baseline search framework. The ENAS consists of

two components: a controller and child network. The controller is composed of LSTM

blocks to generate a sequence used to construct child network. The REINFORCE [28]

algorithm is used to train the controller to create optimal child network which results

in high-quality SR results. As in the original ENAS for the classification problems,

child networks share their parameters during the training and evaluation. In addition,

I propose a complexity-based penalty to reduce the rewards of the networks that need

a large number of parameters. I exclude redundant hierarchical information by pre-

dicting connections for local and global feature fusion through the controller. I Also

create the densely connected search space on the baseline of residual dense network

(RDN) [17]. The proposed search space consists of mix nodes for densely connected

network blocks (DNB), local feature fusion, and global feature fusion. In addition to

the convolution layer with 3times3 filters in the baseline network, dilated convolu-

tion [29] and depth separable convolution [30] are included in the search space.

To further achieve better performance, I propose a new search space for image

super-resolution. I find that unlike most of earlier learning-based SR methods which

used single-branch network, some methods [15, 18, 31, 32] constructed multi-branch
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networks to extract multi-scale features from low-resolution input. These methods tend

to perform better with fewer parameters than single-branch networks. Based on this,

in this dissertation, I propose an automated multi-branch search space design for the

neural architecture search (NAS) scheme. To be specific, I propose a Multi-Branch

Neural Architecture Search (MBNAS) algorithm, which tries to find optimal connec-

tions in multi-branch structures. The MBNAS search space consists of partially shared

nodes (PSN) for multi-scale block, local feature fusion layer, and global feature fusion

layer. The PSNs share their parameters with different branches to transmit information

efficiently to them. For simplicity, I use only 3× 3 convolution and 3× 3 dilated con-

volution as the basic operation, and let the search algorithm find optimal connections.

Lastly, I adopt meta transfer-learning scheme to my NAS-SR method to con-

duct simultaneous search for image super-resolution of various scales. Existing NAS-

SR methods can only perform network search for one scale at a time. Unlike previ-

ous methods, I train the controller and the child network with meta-transfer learning

scheme. After meta-training, the parameters of the controller are able to adapt rapidly

to the image super-resolution task of specific scale. Furthermore, the parameters of

the child network can be used as the promising initial point for final evaluation and

achieve better result.

1.1 contribution

The main contributions of this dissertation are summarized as follows:

1. New NAS-based SR:I propose a new NAS-based SR network design, which

searches for networks with higher performance by combining hierarchical and

local information efficiently.

2. Complexity-based penalty: I propose a complexity-based penalty and add it to

the reward signal of the REINFORCE algorithm. This enables us to search for

an efficient network that has high performance with a lightweight structure.
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3. Feature Fusion Layer Search: I search for connection of feature fusion layer.

instead of connecting all the global/local feature fusion layers. I design the con-

nection to be predicted through the controller, which removes redundant hierar-

chical information and hence reduce network complexity.

4. Multi-branch structure for multi-scale feature extraction: I construct the network

with a multi-branch structure, and each branch learns how to restore patterns of

different scales.

5. Partially shared node (PSN): I partially share the parameters of branches to con-

nect each other’s information and construct a lightweight structure. The partially

shared structure efficiently reduces the searched network’s parameter without

performance degradation.

6. Meta-transfer learning for simultaneous search of various scale image super-

resolution: I apply meta-transfer learning to the controller and the child network

of my framework, and find the promising structure for image SR network of

various scale at the same time.

1.2 contents

The rest of this dissertation is organized as follows. In chapter 2, the proposed NAS-

based image SR framework with single-branch structure, DeCoNAS is explained. I

search for multi-branch image SR network named as MBNASNet in chapter 3. In

chapter 4, I applied meta-learning scheme to the NAS-SR framework and achieve the

simultaneous architecture search for various scale image super-resolution. Finally, this

dissertation is concluded in chapter 5.
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Chapter 2

Neural Architecture Search for Image Super-Resolution

Using Densely Constructed Search Space: DeCoNAS

2.1 Introduction

Single image super-resolution (SISR) is a task that creates a clearer high-resolution

image from a single low-resolution input. It is an important technology that can be

used as a pre-processing step to increase performances of various tasks such as medical

image analysis [8], satellite image recognition [9], security image processing [10], etc.

The SISR is an ill-posed problem because multiple HR images can be mapped to a

single LR image. Hence, learning-based methods trained with many LR-HR image

pairs are generally more effective than the interpolation-based [11] or reconstruction-

based methods [12].

Recently, many deep neural networks for SISR have been developed [1–5,13–18],

where Dong et al.’s SRCNN [1] is the first convolutional neural network (CNN) for

the SISR. It consists of three convolution layers and yet outperformed conventional

non-learning methods by a large margin. FSRCNN [13] and ESPCN [14] tried to re-

duce the computational cost of the structure. They used LR images directly as the input

of their neural networks. Then, deconvolution and sub-pixel convolution layers were
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used for upsampling their results. VDSR [2] dramatically increased the depth of the

model by residual learning and gradient clipping strategy. Lim et al. [15] further im-

proved performance by a residual block composed of extensive features (EDSR) and

multi-scale structure (MDSR). In MemNet [4], MSRN [18], and DenseSR [16], they

proposed specific blocks in their models, such as memory block, multi-scale residual

block or dense block. SelNet [33] used selection unit instead of conventional Relu op-

eration. Zhang et al. proposed RDN [17], which consists of residual dense block and

dense feature fusion that extract abundant information from the input. RCAN [34] ap-

plied channel attention mechanism to improve representational ability of CNNs. It is

believed that most of these networks have been designed through laborious trials of hu-

man experts, by tuning a large number of network hyperparameters such as operation

type, the number of channels, connection, depth, etc. However, a network designed by

human labor may not be optimal for the given resources.

In the case of image classification research fields, neural architecture search (NAS)

methods have been proposed [19–26], which automatically find an optimal network to

alleviate human labors [19–26]. As a pioneering study, Zoph et al. [19] proposed a

controller network that generates a child network structure based on reinforcement

learning (RL). The NAS trained the controller network by REINFORCE [28], which

is a kind of policy gradient algorithm. But, this method took a tremendous amount of

time to evaluate the candidate models because they trained the models from scratch.

To reduce the time it takes to measure the accuracy, Liu et al. [20] proposed the PNAS,

which used the sequential model-based optimization (SMBO) and learned a surrogate

model to predict its performance directly. Also, ENAS [21] reduced the evaluation

time by about a thousand times, by applying a weight sharing scheme. The ENAS

constructed a large graph and regarded each model as a sub-graph of the main graph.

In this way, child networks can share their parameters while being trained separately.

Another branch of NAS algorithms is the evolutionary-based methods [22–24],

which pick a population of neural networks randomly. Then, they encode the network

6



structures as binary sequences and apply genetic modifications such as mutation and

crossover to find better models. Additionally, NSGA-Net [23] used Bayesian optimiza-

tion to get an advantage from its search history. Real et al. [24] introduced Amoeba-

Net, which use an aging evolution algorithm to discard the earliest trained network.

DARTS [25] and NAO [26] are also promising architectures that are approached dif-

ferently from RL and evolutionary-based algorithm. DARTS optimized all parameters

and connections in the neural architecture jointly with a continuous relaxation of the

search space. NAO proposed a learnable embedding space of architectures and found

the best model from it.

Recently, some researchers expanded the NAS to other domains such as object

detection [27] (Auto-deeplab) and image SR [6] (MoreMNAS), [7] (FALSR). Specif-

ically, they used a reinforced evolution algorithm and solved the image SR task as a

multi-objective problem. However, these reinforced evolution algorithms need more

than 1 GPU month to find optimal architectures. Furthermore, FALSR evaluated the

network approximately because they did not use a complete training strategy.

To overcome these drawbacks, I take the idea of ENAS [21] as my baseline search

framework. The ENAS consists of a controller and child networks, where the con-

troller is composed of LSTM blocks to generate a child network sequence. I also use

the REINFORCE [28] algorithm to train the controller in the direction of increasing

PSNR of the SR results. As in the original ENAS for the classification problems, child

networks share their parameters during the training and evaluation. In addition, I pro-

pose a complexity-based penalty to reduce the rewards for the networks that need a

large number of parameters. I exclude redundant hierarchical information by predict-

ing connections for local and global feature fusion through the controller.

SR is a type of regression that generally needs a deeper and more complex network

than classification. Hence, in this dissertation, I search for a new SR architecture on the

densely constructed search space. Specifically, I propose a Densely Connected Neural

Architecture Search (DeCoNAS) method, which attempts to find optimal connections

7
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Figure 2.1: The architecture of the proposed DeCoNASNet system.

on the baseline of residual dense network (RDN) [17]. The proposed DeCoNAS search

space consists of mix nodes for densely connected network blocks (DNB), local feature

fusion, and global feature fusion. In addition to the convolution layer with 3× 3 filters

in the baseline network, dilated convolution [29] and depth separable convolution [30]

are included in the search space for better performance. Experiments show that my

DeCoNASNet performs better than human-crafted networks and the existing NAS-

based SR network [6, 7]

my main contributions are summarized as follows:

1. A New NAS-Based SR: I propose a new NAS-based SR network design, named

DeCoNAS, which searches for networks with higher performance by combining

hierarchical and local information efficiently.

2. Complexity-Based Penalty: I design a complexity-based penalty and add it to

the reward of the REINFORCE algorithm, which enables us to search for an

efficient network that has high performance and fewer parameters.

3. Feature Fusion Layer Search: I also search for efficient feature fusion method.

Instead of connecting all the global/local feature fusion layers, I design the con-

nection to be predicted through the controller, which removes redundant hierar-

chical information and hence reduce network complexity.
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2.2 Proposed Method

As a typical RL framework, the proposed architecture consists of two parts: a child

network (denoted as DeCoNASNet) for reward measurement and a controller for net-

work structure generation. Following ENAS [21], I try to save time by using parameter

sharing when training a child network. Also, I regard the SR as a multi-objective task.

That is, I design a complexity-based penalty to consider not only the PSNR but also

the parameter complexity of the network for calculating the reward.

I use a two-layer LSTM network in my controller to generate the DeCoNASNet

structure. Supposing that the child network c consists of N blocks, M mix nodes, and

K mix node operations, the controller sequence Sc for c is

Sc = {SM ,SF },

SM = {Ski,j}, 0 < i ≤M, 0 ≤ j < i, 0 ≤ k < K,

SF = {Sl0 : SlM−1, Sg0 : SgN−1},

(2.1)

where SM is the sequence for mix node configuration, and SF is the sequence for

the feature fusion layer. SF consists of two sequences, Sl and Sg, which denote the

sequence for local feature fusion and global feature fusion, respectively.

2.2.1 Overall structure of DeCoNASNet

DeCoNASNet consists of three parts as shown in Fig. 2.1, inspired by the RDN [17]

architecture: shallow feature extractor network (SFENet), densely connected network

(DeCoNet), and UPNet. The output of SFENet can be represented as

F0 = HSFE2(HSFE1(ILR)), (2.2)

where H(·) denotes the convolution operation. SFENet converts the input image ILR

into a shallow feature F0, which is used as the input to the DeCoNet. Then, the output
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Figure 2.2: Detailed structure of the densely connected network blocks (DNB).

of the d-th DNB in DeCoNet, denoted by Fd is expressed as

Fd = HDNB,d(H1(concat(F0, F1, . . . , Fd−1))), (2.3)

where HDNB(·) denotes the DNB operation and H1(·) is 1× 1 convolution to match

the input channels of DNBs. I will explain the operation HDNB(·) in the next subsec-

tion. I omit H1(·) and concatenation operation in Fig. 2.1 for simplicity. The global

feature fusion layer follows after the N -th DNB to combine the information of the

features of DNB. The output of the global feature fusion layer, denoted by FGF is

described as

FGF = HGFF (FC),

FC = concat(Sg
0 · F0, . . . , Sg

N−1 · FN−1, FN ),
(2.4)

where HGFF (·) denotes the 1 × 1 convolution and 3 × 3 convolution operation,

Sg
i denotes the output global feature fusion sequence of controller, and concat(·)

denotes the concatenation of features. I omit Fi when concatenating features if Sgi is

zero. All of the Sgi equal to one if I do not use the feature fusion search strategy. The

UPNet combines the output of DeCoNet and F−1, which is the shallow feature from

the SFENet. I use periodic shuffling operation and applied 3 × 3 convolution as in

10



ESPCN [14], to convert LR features to high-resolution images. I fix the SFENet and

the UPNet, while I search for the DeCoNet. In all of my figures, I use dashed arrows

to depict that the connection is to be searched.

2.2.2 Constructing the DNB

I apply the same operation HDNB(·) through all the DNBs. Each DNB consists of M

mix nodes as shown in Fig. 2.2, where there are three element candidates in the mix

node:

• 3× 3 2D convolution,

• 3× 3 depth separable convolution,

• 3× 3 dilated convolution with rate 3.

Also, Fd,m over the arrow is the output of the m-th mix node in the d-th DNB with K

candidate mix node operations, which are obtained as

Fd,m =


Fd,m−1, if S0:K−1

m,0:m−1 = 0

CA(Relu(average(Finter))), else
(2.5)

where

Finter = F 0:K−1
d,m ,

F id,m = Hi(concat(S
i
m,0 · Fd,0, . . . , Sim,m−1 · Fd,m−1))

(2.6)

where Hi(·) denotes the i-th operation in K operations, and S0:K−1
m,0:m−1 is the sequence

for the m-th mix node configuration. Same as the Eq. (2.4), I omit F id,m or Fd,m if

Sim,0:m−1 = 0 or Sim,j = 0 in Eq. (2.6). CA(·) in Eq. (2.5) denotes channel attention

network used in RCAN [34].
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2.2.3 Constructing controller for the DeCoNASNet

Controller output of the mix node

I need i×K sequences to create the i-th mix node. Hence, my controller is composed

of
∑M

i=1 i =
M(M+1)

2 LSTM blocks, and K fully connected layers are connected to

each LSTM block. For example, As shown in Fig. 2.3(a), I use 3 LSTM blocks and 9

outputs to create the connections for two mix nodes.

Controller output of the feature fusion layer

There are two LSTM blocks for feature fusion layer search. These blocks are con-

nected to the last LSTM block for mix node, in order to include the information about

the mix node structure. Like the mix node, I connect N and M fully connected lay-

ers to two LSTM blocks, respectively. The output from each LSTM block denotes the

connection between the mix node and the feature fusion layer. Fig. 2.3(b) shows an

example connection of local/global feature fusion layer.

2.2.4 Training DeCoNAS and complexity-based penalty

Following ENAS [21], the DeCoNAS has two learnable parameters. The parameter

of the controller is θ, and the parameter of the child network is w. To learn θ and w

alternately, I use a two-step learning strategy. In the first step, I train w using training

data. I use an RL scheme to train θ, with the reward signal consisting of peak signal to

noise ratio (PSNR) and complexity-based penalty.

Training child network

As the first step to training DeCoNAS, I need to learn w, which is the parameter of the

child network, c. This problem is defined as

min
w

E
c∼π(c;θ)

[L(c;w)]. (2.7)
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To optimize w, I fix the controller’s policy π(c;θ) and use Adam optimizer [35]. In

this case, I use the L1 loss for L(c;w), calculated on training data and model c gener-

ated by π(c;θ). Gradient of Ec∼π(c;θ)[L(c;w)] is calculated by Monte Carlo estimate

5w E
c∼π(c;θ)

[L(c;w)] ≈ 1

M

M∑
i=1

5wL(ci;w), (2.8)

where ci’s are sampled by the controller’s policy π(c;θ). As mentioned in ENAS [21],

w can be optimized by calculating the gradient for only one model c generated by

π(c;θ) for each mini-batch.

Training controller with performance reward and complexity-based penalty

In the second step, I need to train θ, which is the controller’s parameter. This problem

is to maximize the expected reward as

max
θ

EP (a1:T ;θ)[R], (2.9)

where a1:T is the controller output for the child network c, which follows the distribu-

tion of π(c;θ). I compute the gradient of the problem by using the approximation of

gradients in REINFORCE [28] as

5θ E
P (a1:T ;θ)

[R] =

T∑
t=1

[5θ logP (at|at−1:1;θ)(R− b)] (2.10)

where b is the baseline for reducing the variance, which is the moving average of the

reward. While ENAS used classification accuracy for R, I calculate it differently as

R = p(c,w)–α ∗ cb(c), (2.11)

where p(c,w) is the PSNR of model c. I calculate the PSNR using the validation set

rather than the training set to prevent overfitting. Also, cb(c) is the complexity-based
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penalty, calculated as

cb(c) =
nm
ncm

, (2.12)

where nm denotes the number of parameters in the generated model c and ncm indi-

cates the number of parameters in the most complex model in the search space. I also

multiply α by cb(c), allowing the user to set a trade-off between the performance and

model complexity. Finally, I use Adam optimizer [35] to maximize the reward.

2.3 Experimental results

2.3.1 Settings

Datasets and metrics

I use DIV2K dataset [36] for the training, which has been widely used for training im-

age restoration networks. The DIV2K contains 800 training images, 100 validation im-

ages, and 100 test images. I use all images in the training set to train my DeCoNASNet,

and use all of the validation images when calculating the reward and training the con-

troller. Experiments are conducted on four benchmark datasets, Set5 [37], Set14 [38],

B100 [39], and Urban100 [40], where I compute PSNR and SSIM [41] on the Y chan-

nel.

Implemenation details

My proposed DeCoNASNet has 4 DNBs, and each DNB has 4 mix nodes. The output

channel of SFENet and DNB are both 64. The 3 × 3 convolution layer in UPNet also

has 64 output channels, and I conduct periodic shuffling on the feature maps. The

final convolution layer has 3 × 3 filters and three output channels to restore the high-

resolution images.

The LSTM block in the controller is made of two stacked LSTM layers with 64

hidden states. Fully connected layers for one operation in each LSTM block are sharing
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their parameters. I tie the LSTM outputs with word embeddings [42] to make the input

of the next LSTM block.

Training setting

In the search phase, I need to train controller and DeCoNASNet together. I use variance

scaled initialization [43] with 0.02 scaling value for DeCoNASNet parameter w and

controller parameter θ. To train the controller, I apply 100 iterations for one epoch,

and the learning rate is fixed to 3× 10−4.

For training the DeCoNASNet, I randomly extract 16 LR patches of size 64 × 64

from the DIV2K training image as the input to the network. After extracting the

patches, I apply horizontal flip and 90°, 180°, 270° rotations to each patch randomly

for data augmentation. I conduct 1,000 backpropagation for an epoch, where Adam

optimizer [35] is used for updating parameters. The learning rate is initialized to 10−4

and decreased by half for every 5 × 105 iterations (50 epochs), and 200 epochs are

conducted for the search phase. I sample 100 candidate structures by the trained con-

troller and choose the best architecture as my DeCoNASNet structure. After choosing

the best architectures, I train the DeCoNASNet for 1,000 epochs. The learning rate is

initialized to 10−4 and decreases by half for every 200 epochs. The other settings are

the same as the search phase.

2.3.2 Results

DeCoNAS search result

I use 16 DNBs (N = 16) and 8 mix nodes in each DNB (M = 8) to verify the effect of

feature fusion strategy and complexity-based penalty. Table 2.1 and Fig. 2.4 show the

performance of total 400 DeCoNAS structures in four settings (100 structures each).

The baseline setting (denoted as FF0 CB0), which omitted the feature fusion search

(FF) and complexity-based penalty (CB), shows the best performance with 23.2 M

parameters. I add one of CB or FF to FF0 CB1 and FF1 CB0. From the results, I can
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Table 2.1: Performance comparison between search settings.

Search setting CB0 FF0 CB0 FF1 CB1 FF0 CB1 FF1

Best
PSNR 35.919 35.602 35.894 35.436

Parameters 22.9 M 25.4 M 18.0 M 25.9 M

Mean
PSNR 35.294 35.168 35.324 35.025

Parameters 22.5 M 28.4 M 17.1 M 24.9M
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Figure 2.4: Scatter plot of 100 samples for each search setting.

also see that FF0 CB1 achieves almost the same performance as the baseline search

strategy, with 20% less parameters, and FF1 CB0 has slightly lower performance with

large parameters. Finally, I apply both strategies, resulting in FF1 CB1, which is shown

to have fewer parameters than the FF1 CB0 model, but yields inferior performance

than the others. Further discussions about CB and FF strategies are at the ablation

study section.

I use 4 DNBs (N = 4) and 4 mix nodes (M = 4) in each DNB to make De-
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Table 2.2: Public benchmark test results (PSNR/SSIM) for ×2 SR. The red color
means the best performance and the blue means the second best. The “Design time” at
the last column indicates the times taken by the NAS approaches.

Model Params Set 5 Set 14 B100 Uban100 Design time

Bicubic - 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 -
SRCNN [1] 57K 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 -
VDSR [2] 665K 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 -
LapSRN [3] 813K 37.52 / 0.9591 33.08 / 0.9130 31.80 / 0.8950 30.41 / 0.9101 -
MemNet [4] 677K 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 -
SelNet [33] 970K 37.89 / 0.9598 33.61 / 0.9160 32.08 / 0.8984 - / - -
CARN [5] 1,582K 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 -
MoreMNAS-A [6] 1,039K 37.63 / 0.9584 33.23 / 0.9138 31.95 / 0.8961 31.24 / 0.9187 56 GPU days
FALSR-A [7] 1,021K 37.82 / 0.9595 33.55 / 0.9168 32.12 / 0.8987 31.93 / 0.9256 24 GPU days
DeCoNASNet (mine) 1,713K 37.96 / 0.9594 33.63 / 0.9175 32.15 / 0.8986 32.03 / 0.9265 12 GPU hours

(j)(i)(h)(g)(f)

(e)(d)(c)(b)(a)

Figure 2.6: Qualitative comparison of the conventional methods and mine. (a) HR
image, (b) bicubic LR image, (c) SRCNN [1], (d) VDSR [2], (e) LapSRN [3], (f)
MemNet [4], (g) CARN [5], (h) MoreMNAS [6], (i) FALSR [7], (j) DeCoNASNet
(mine).

CoNASNet structure. I choose the best architecture which belongs to FF0 CB1 set-

ting. Fig. 2.5 shows the DNB structure of DeCoNASNet:{7, 6, 4, 3, 0, 2, 2, 3, 4, 1}.

The local/global feature fusion connections are all connected because I do not use the

feature fusion search strategy. I regard three outputs of each controller LSTM block

as the binary number and convert it to a decimal number for simplicity. For example,

four in the sequence means {1, 0, 0} and six is {1, 1, 0}. It takes about 12 hours by 1

Titan XP GPU to search for the DeCoNASNet structure, which is far less than other

NAS-based methods.
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Figure 2.7: Ablation analysis about effect of the complexity-based penalty.

Comparison with state-of-the-art methods

I compare my DeCoNASNet with six lightweight networks (SRCNN [1], VDSR [2],

MemNet [4], LapSRN [3], SelNet [33], CARN [5]) and two NAS-based methods

(MoreMNAS [6], FALSR [7]). The results are shown in Table 2.2, where I can see

that DeCoNASNet outperforms other hand-crafted lightweight models and existing

NAS-based ones while using somewhat more parameters, still within 2M. The most

important advantage of my method is that it finds the optimal structure within 16

hours, which is×50 faster than other NAS-based methods. I compare the visual results

of my model with the others (SRCNNN [1], VDSR [2], LapSRN [3], MemNet [4],

CARN [5], MoreMNAS [6], FALSR [7]) in Fig. 2.6. I find that DeCoNASNet suc-

cessfully restores the details in images. Specifically, DeCoNASNet and CARN restore

the double curves at the black arrow, while others do not.
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Figure 2.8: Ablation analysis about the feature fusion search strategy.

2.3.3 Ablation study

Fig. 2.7 shows a comparison between different complexity-based penalty coefficients,

α. I conduct two experiments in the DeCoNAS search space (N = 16, M = 8) to

analyze the effect of the complexity-based penalty. The baseline strategy is denoted as

CB0 FF0, and the other strategy using CB coefficient α = 2 is described as CB1 FF0.

The parameters of the searched model are decreased, but the performance difference is

small when I change the CB strategy. Hence, I can validate that the complexity-based

penalty efficiently controls the trade-off between the performance and the number of

parameters. Users can choose α to find models that fit their purpose.

I also show the effect of feature fusion search (FF) strategy in Fig. 2.8. The red

and orange dots in the figure denote CB0 FF0 and CB0 FF1, respectively. It can be

seen that the FF strategy tends to find more complex models than no FF strategy. This

is mainly because the controller tries to compensate for the information loss from the
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feature fusion layer disconnection. I can verify that the connections to the global/local

feature fusion layer are more important than the connections in the mix node.

2.4 Summary

I have proposed an RL-based neural architecture search algorithm for image SR, named

as DeCoNAS. It is shown that the proposed method can find a promising lightweight

SR network (DeCoNASNet) within 16 hours, which is a lot faster than other NAS-

based algorithms. I have also proposed a feature fusion search strategy in the proposed

searching scheme, which verified the importance of global/local fusion structure for

the SR. Moreover, the complexity-based penalty to the reward could reduce the net-

work complexity, which enabled lightweight network architecture. Experiments show

that the resulted DeCoNASNet yields higher performance in terms of PSNR vs. com-

plexity among the recent handcrafted lightweight SR networks and other NAS-based

ones.
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Chapter 3

Multi-Branch Neural Architecture Search for Lightweight

Image Super-resolution

3.1 Introduction

Single image super-resolution (SISR) is a task that restores a high-resolution (HR)

image from a single low-resolution (LR) observation. It is widely used as a prepro-

cessing step of various tasks such as medical image analysis [8], security image pro-

cessing [10], satellite image recognition [9], etc. Most of the recent researches adopt

learning-based methods that use LR-HR image pairs for training [1–5, 13–18], which

generally show better performance than the classic interpolation-based [11] or reconstruction-

based [12] methods.

Most earlier learning-based SR methods used single-branch neural networks for

their simplicity and straightforwardness. However, when the single branch is deep-

ened to increase the performance, there can be a gradient vanishing problem, and the

resulting network needs too many parameters. Thus, instead of using the single branch

network, some methods exploited multi-branch networks for extracting multi-scale

features from the LR input [15,18,31,32], thereby achieving better performances with

fewer parameters. But due to the increased complexity of the network structure, it
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needs many trials and errors to find the optimal connection between the elements man-

ually. Based on this, in this dissertation, I propose an automated multi-branch SISR

network design based on the neural architecture search (NAS) scheme [19], unlike the

conventional manual design of single-branch or multi-branch networks. I include the

multi-branch networks to expand the search space and propose a new NAS-based SISR

network design while existing search methods attempted to find the optimal connection

within the single-branch networks.

Neural architecture search (NAS) algorithm has been developed for the purpose

of reducing the effort put into designing the neural architecture of certain tasks [19–

26, 44]. They focus on the image classification task and try to find promising network

automatically by adopting reinforcement learning, evolutionary algorithm or gradient

descent method.

Recently, researchers have expanded the NAS to other tasks such as image restora-

tion [6,7,45,46] (MoreMNAS, FALSR, HNAS, Improved DARTS), and object detec-

tion [27]. For the SISR, FALSR and MoreMNAS used a reinforced evolution algorithm

and solved the image SR task as a multi-objective problem. However, the reinforced

evolution method took a tremendous amount of time to derive an optimal network.

Additionally, FALSR did not use a complete training scheme, but they measured the

performance of the network approximately.

To alleviate these problems in my application, I adopt the weight-sharing scheme

of ENAS [21] as my baseline search algorith because it is known to provide faster de-

sign time than its predecesors. As in the original ENAS for the classification problems,

I configure a controller and a child network in the search process. The controller gener-

ates a sequence for a child network, and a child network is constructed by the generated

controller sequence. REINFORCE algorithm is used to train the controller network to

generate a better child network. For the SISR task, The reward signal in REINFORCE

is the PSNR between the generated child network’s output and the ground-truth. I share

the parameters of each child network during the search phase. In addition, I propose a
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complexity-based penalty to reduce the reward from the network that needs a huge pa-

rameter. By applying the complexity-based penalty, the controller tends to recommend

powerful but lightweight networks.

Image super-resolution is a kind of regression task that generally requires a more

precise and complex network than a classification task. For this reason, I search for a

new SR architecture on a multi-branch search space as stated above. To be specific, I

propose a Multi-Branch Neural Architecture Search (MBNAS) algorithm, which tries

to find optimal connections of multi-scale features. The MBNAS search space consists

of partially shared nodes (PSN) for multi-scale block, local feature fusion layer, and

global feature fusion layer. The PSNs share their parameters with different network

branches to transmit information efficiently with fewer parameters. For simplicity, I

use only 3×3 convolution and 3×3 dilated convolutions [29] as basic building blocks,

and let the search algorithm find optimal connections. Still, I obtain an efficient archi-

tecture as a result of the search algorithm, which is validated by extensive experiments.

The experimental results show that my network obtained by the MBNAS, named as

MBNASNet, performs comparably to human-crafted networks and the existing NAS-

based SR networks [6, 7, 45].

My main contributions are summarized as follows:

1. New NAS-based SR: I propose a new NAS-based SR network design method,

named MBNAS, which searches for networks with higher performance by com-

bining multi-scale information efficiently. The resulting SR network is the MB-

NASNet.

2. Complexity-based penalty: I propose a complexity-based penalty and add it to

the reward signal of the REINFORCE algorithm. This enables us to search for

an efficient network that has high performance with a lightweight structure.

3. Multi-branch structure for multi-scale feature extraction: I construct the network

with a multi-branch structure, and each branch learns how to restore patterns of
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different scales.

4. Partially shared node (PSN): I partially share the parameters of branches to con-

nect each other’s information and construct a lightweight structure. The partially

shared structure efficiently reduces the searched network’s parameter without

performance degradation.

I presented a preliminary work of NAS-based image super-resolution with a single-

branch network in [47], called DeCoNASNet. The major difference of this work from

my previous version is that I propose an expanded search space for NAS to capture

multi-scale information, which brings a significant performance gain with reduced pa-

rameters. For this, I modify the algorithm to include the multi-braches into the search

space. Also, I provide detailed analysis and explanations of the search process and

results, and exhibit more experimental results, including the results on higher rate SR.

The rest of this chapter is organized as follows. Section 2 summarizes related

works on the single image super-resolution and neural architecture search methods.

In section 3, I explain my proposed search method for SISR. Section 4 includes the

details about my implementation settings and dataset configurations, followed by ex-

periment results. I discuss my main contributions and conduct ablation experiments in

section 5. Finally, I provide a summary and concluding remarks in section 6.

3.2 Related Work

3.2.1 Single image super-resolution

A number of methods have been proposed for learning the mapping function from LR

images to the appropriate HR counterparts [1–5, 13–18]. Dong et al. proposed SR-

CNN [1], which is the first deep learning structure for the SISR. It used three layers of

convolutional neural networks (CNNs) and outperformed non-learning-based conven-

tional methods by a large margin. FRCNN [13] and ESPCN [14] used specific struc-

26



tures to reduce the computational cost of deep neural networks in the SISR networks.

They proposed deconvolution layers and sub-pixel convolution layers to upsample LR

features to an HR image. VDSR [2] used residual learning and gradient clipping strat-

egy to increase the depth and thus the performance. Lim et al. [15] introduced residual

blocks with extensive features (EDSR) and multi-scale structure (MDSR) to improve

the performance further. MemNet [4], MSRN [18], and DenseSR [16] proposed mem-

ory block, multi-scale residual block, and dense block, respectively, for a better SR

restoration. SelNet [33] improved the performance by replacing the Relu operation

with the selection unit. Zhang et al. proposed residual dense block and dense feature

fusion algorithm in RDN [17] to extract abundant information from the input image.

RCAN [34] proposed a channel attention scheme that improved the representational

ability of the neural network.

3.2.2 Neural architecture search

In designing a deep network, I should select a considerable number of network config-

urations such as connection, operation type, the number of feature channels, depth, etc.

Researchers have designed their structures through a large number of trials to achieve

a competent performance. However, it is a tedious task and difficult to find an opti-

mal system for a given task. The NAS algorithms have been proposed to alleviate this

burden, especially in the case of image classification researches [19–26].

As the first study of NAS, Zoph et al. [19] proposed a reinforcement learning (RL)

based algorithm. They configured a controller network to generate a child network

and trained it by REINFORCE [28], which is a kind of policy gradient algorithm.

The performance of the child network was used as a reward signal of the controller

network, where the child network was trained from scratch. Therefore, it took a huge

amount of time to get a reward signal from the child network. To reduce the time to

measure the performance, PNAS by Liu et al. [20] used the sequential model-based

optimization (SMBO) with a surrogate model which predicts its performance instantly.
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On the other hand, Pham et al. [21] proposed ENAS that constructs a weight sharing

child network to reduce the reward calculation time. This method configured a large

graph and regarded each child network as a sub-graph. The parameters of the child

network were shared in the search phase by storing their weights in the main graph.

Evolutionary methods [22–24] are another trend of the NAS algorithm. They pick

a population of architectures randomly at first and then encode these networks as bi-

nary codes. Genetic modifications such as crossover or mutations are applied to the

sequence, suggesting a better structure. Lu et al. [23] proposed another method that

takes advantage of search history by using a Bayesian optimization algorithm. Amoe-

baNet [24] applies an aging evolution method to NAS to discard the earliest trained

network.

DARTS [25], SGAS [48], NAO [26] and CSA-NAS [44] proposed different ap-

proaches from RL and evolutionary methods. Specifically, DARTS applies continuous

relaxation to the neural architecture’s connections for optimizing the connections and

parameters simultaneously. SGAS applies a greedy operation selection method to the

DARTS and obtains the best architecture without retraining. NAO projects the encoded

sequence to the learnable embedding space of structures and recommends the best ar-

chitecture as a result. CSA-NAS adopts a binary crow search algorithm to find the

optimal architecture.

Regarding the search space design, neural architecture search methods can be cat-

egorized into two groups: methods dealing with (1) flat search space or (2) cell-based

search space. The methods with flat search space [19, 21–23] aim to find the opti-

mal setting for the number of channels (width), number of layers (depth), types of

operations (convolution or max pooling) for the whole structure, while cell-based al-

gorithms [20, 21, 23–26] try to find a structure of the cell before stacking them to

form the final architecture. The cell-based search space design is inspired by the split-

transform-merge strategy used in Inception block [49], hence it can approximate the

optimal solution for a given task.
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Unlike the above algorithms, CSNAS [50], UnNAS [51], and SSNAS [52] dis-

card supervised settings which suffer from the high cost of data labeling. CSNAS and

SSNAS adopt a self-supervised setting, and UnNAS applies unsupervised learning to

search for promising architectures with unlabeled data. Recently, researchers are also

trying to overcome the reproduction challenge and fairly compare search methods by

proposing benchmarks for the NAS and providing some important principles for sci-

entific research in the community [53–55].

There have been many NAS methods as stated above, among which I choose ENAS

as my SR design baseline for its fast design time and also for including the network

complexity in the design constraints. Regarding the design time, DARTS [25], FB-

Net [56], and FBNetV2 [57] also provide fast design time for practical use. But, I

choose ENAS as my SR design baseline because I can easily include the complexity

constraint into consideration within the ENAS framework. Specifically, as the ENAS is

based on the REINFORCE, I modify the reward signal of the REINFORCE to consider

the network complexity as well as the SR performance.

3.2.3 Image super-resolution with neural architecture search

Some researchers recently adopted NAS methods to design image super-resolution

CNNs [6, 7, 45]. MoreMNAS [6] adopted multi-objective genetic algorithm NSGA-

II [58] for the model generation and proposed a reinforced mutation method. FALSR [7]

used a hybrid controller instead of a reinforced controller and proposed an elastic

search space for macro and micro search. The search space complexity of both meth-

ods is 9.6× 1015. HNAS [45] adopted a hierarchical search algorithm with reinforce-

ment learning to simultaneously find promising cell structure and upsampling layer

positions. They also considered the computational cost (FLOPS) to meet the require-

ments about resources constraint. HNAS searches the network from 1.03× 109 candi-

date networks.

Regarding the architecture and the search space thereof, these previous NAS-based
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Figure 3.1: The overall structure of MBNASNet. It consists of a shallow feature ex-
traction network (SFENet), a multi-branch network (MBNet), and an upscaling net-
work (UPNet). The result of each branch is combined and upsampled by the periodic
shuffling layer. The MSB (multi-scale block) is a basic building block, detailed in
Fig. 3.2(a).

methods prepare basic building blocks, which consist of convolutional layers, ReLu,

etc., in cascade. Then, they let the NAS algorithm determine the number of layers

and connections inside the cells. Meanwhile, I prepare a sophisticated architecture to

have expanded search space, i.e., a structure with more different functional elements

to connect. Specifically, I prepare several branches of building blocks, consisting of

multi-rate dilated convolutions, ReLu, and attention, and let the NAS algorithm find the

connections among the various-scale convolutions. By expanding search space through

the multi-branch of dilated convolutions, I can exploit multi-scale features for better

SR reconstruction than conventional single-branch architecture.
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Figure 3.2: The upper part of (a) shows details of my MSB, and the lower part is
illustrating that a controller determines the connections inside the MSBs of branch 1
according to the controller sequence (outputs of FC layers), with an example that there
are two partially shared nodes (PSNs) (M = 2) and two branches (B = 2). (b) shows
the example for branch 2, where the elements inside the MSB are differently connected
than the above case according to the corresponding controller. Two branches share the
parameters of the light purple box. The dashed arrows and colored arrows mean that
these connections are to be searched.
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3.3 Method

3.3.1 Overview of the Proposed MBNAS

My MBNASNet (a child network) is shown in Fig. 3.1, whose components (MSBs) are

designed by a controller in Fig. 3.2, according to the MBNAS algorithm of Fig. 3.3.

The automated design cycle in Fig. 3.3 illustrates that the controller is trained to gen-

erate a potent network, and the child network is trained to get the performance, which

is used to calculate the reward signal.

Fig. 3.1 shows the overview of MBNASNet, which consists of a shallow fea-

ture extraction network (SFENet), an upscaling network (UPNet), and a multi-branch

network (MBNet). The MBNet is designed by the NAS, which consists of several

branches. The MSB (multi-scale block) in the figure is the basic building block de-

tailed in Fig. 3.2. I extract a shallow feature by the SFENet that is fed to each branch.

The partially shared parameters in each branch extract the multi-scale features with

different receptive fields. Results from each branch are combined and upsampled by

pixelshuffle layers [14] to create HR residual information. Finally, the residual infor-

mation is added to the upsampled LR input to make the final HR result.

Fig. 3.2 shows the details of MSB and illustrates their internal connections ac-

cording to sequences from the controller. In each of Fig. 3.2(a) and (b), the upper part

shows a branch of MBNASNet in Fig. 3.1, where three consecutive MSBs are shown.

The central part details the structure of the d-th MSB, and the left and right are the

(d − 1)-th and (d + 1)-th MSBs. The lower part shows the controller that outputs a

sequence to determine the internal connections of the MSB. Fig. 3.2(a) and (b) show

different examples of the output sequences from the controller and the corresponding

connections inside the MSBs.

I use Long Short Term Memory (LSTM) [59] to create the controller, where the

parameters are updated by REINFORCE algorithm. While conventional RL methods

calculate the reward signal of REINFORCE as the performance of validation sets, I
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Figure 3.3: The overview of the search cycle and training. In the search phase, the
controller and constructed child network are trained alternatively. In the training phase,
the searched final architecture is trained from scratch.

consider both performance and network complexity. For this, I design a complexity-

based penalty and add it to the reward signal to find a more efficient architecture. The

details of the controller, MBNASNet, and design procedure are explained in the rest

of this Section.

3.3.2 Controller and complexity-based penalty

Controller configuration

I use a two-layer LSTM as my controller as shown in the lower part of Fig. 3.2. It

generates a sequence for creating a child network at the end of the fully connected

layer (FC). The output sequence Sc for a child network c is defined as

Sc = {s0, s1, . . . , sb, . . . , sB},

sb = {(sb)m,n}, 0 < m ≤M, 0 ≤ n < N,
(3.1)

in the case that the child network consists of B branches, M PSNs in one multi-scale

block (MSB), and each node has N layers. Sc consist of B sequences, and each sb
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denotes the sequence of the b-th branch structure. I need N sequences to create the

m-th PSN for one branch. As a result, my controller consists of M × N × B LSTM

blocks, where each block is followed by an FC layer. The FC layer has K outputs,

where K is the candidate operations of my network. The example sequence and the

constructed block architecture are shown in Fig. 3.2, which generate eight outputs for

a two-branch structure (B = 2) with two PSNs (M = 2) that have two layers (N = 2).

In my search space, the total number of possible directed acyclic graphs (DAGs)

is |K|B×M×N . The set of all possible neural architecture is enormously expanded by

a factor of |K|M×N when increasing the number of branches. The search space is also

expanded if I increase the number of PSNs or their layers. Hence, to limit the number

of possible architectures to a manageable size, I choose B = 3, M = 2 and N = 2

in my MBNASNet. Because I have three candidate operations (|K| = 3), as will be

addressed in Sec. III-D, the possible set of the architecture is 5.3 × 105. Finally, to

ensure that the number of parameters is less than 2M, I construct my MBNASNet with

four multi-scale blocks (D = 4).

Complexity-based penalty

The REINFORCE algorithm uses a reward signal to train the parameters of the con-

troller. While ENAS uses only a task performance as the reward signal, I modify the re-

ward signal to find a more powerful and lightweight architecture, as stated in overview

section. Specifically, I propose a complexity-based penalty to penalize a structure with

large parameters, and define a reward signal R as

R = p(c;w)− λ× cb(c), (3.2)
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where p(c;w) is the PSNR of model c and w is the parameters of a child network. The

complexity-based penalty, cb(c) is defined as

cb(c) =
nc
nmax

, (3.3)

where nmax denotes the number of the model’s parameters, which uses all candidates

in the search space, and nc is the number of parameters of the designed child network.

To set a trade-off between the parameters and the performance, I multiply λ to the

complexity-based penalty.

3.3.3 MBNASNet

As shown in Fig. 3.1, I first extract a shallow feature F0 from an input low-resolution

image (ILR) by the SFENet (3 × 3 convolution layers). The F0 is then fed to the first

MSB of each branch. Formally, the F0 is expressed as

F0 = H3(ILR) (3.4)

where H3(·) denotes the 3× 3 convolution operation.

The MBNet is constructed to have B branches, where each branch is a cascade of

MSBs followed by their outputs’ concatenation and 1 × 1 convolution to make a fea-

ture map. The searched MSBs in each branch have different receptive fields, and thus

each branch learns multi-scale characteristics for image super-resolution. I multiply an

independent scalar weight to the outputs of each node and block to adjust the gradient

magnitude in back-propagation. A similar technique was used in [18]. I name these

weights as gradient flow control weights and denote them as α, as illustrated in the last

part of the MBNet block in Fig. 3.1.

35



Formally, the output of the d-th MSB in the b-th branch, Fb,d is

Fb,d = (αskip)b,d×Fb,d−1+

(αres)b,d×H1(concat(Fb,d,1, . . . , Fb,d,M )),
(3.5)

where Fb,d,m denotes the output of the m-th PSN of the d-th multi-scale block (MSB)

in the b-th branch, and H1(·) denotes the 1 × 1 convolution operation for the local

feature fusion layer. Also, αskip and αres are the gradient flow control weights for

residual feature and skip connection, respectively. Fb,d,m will be detailed in the fol-

lowing subsection, with Fig. 3.2 and Eq. 3.9.

Then, the output of the MBNet is a weighted sum of all the branch outputs:

FMB =
B∑
b=1

(αgff )b × (Fgff )b (3.6)

where

(Fgff )b = H1(concat(Fb,1, . . . , Fb,D)), (3.7)

and (αgff )b is a gradient flow control weights for global feature fusion layer. Also,

(Fgff )b is the output of global feature fusion layer of the b-th branch.

Finally, I obtain the reconstructed high-resolution image IHR by combining the

up-sampled low-resolution image ILR and residual information in the UPNet FMB .

Formally, the IHR is computed as

IHR = Hps(ILR) +Hps(FMB), (3.8)

whereHps(·) denotes 3×3 convolution and periodic shuffling layer as in ESPCN [14].

I fix the structure of SFENet and UPNet while searching the connection of MBNet.
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3.3.4 Multi-scale block with partially shared Nodes

I apply a cell structure for the MSB, which means that all MSBs in the same branch

have the same connection and operation. Each MSB consists of M PSNs as shown in

the upper part of Fig. 3.2 (a) and (b). The dashed arrows and colored arrows in Fig. 3.2

mean that these connections are to be searched. The candidate operations of the PSN

are

1. 3× 3 convolution,

2. 3× 3 dilated convolution with rate two,

3. 3× 3 dilated convolution with rate three.

Following the signal flow in Fig. 3.2, Fb,d,m in Eq. 3.5 is calculated as

Fb,d,m = (αskip)b,d,m × Fb,d,m−1+

(αres)b,d,m × (Hb)PSN,m(Fb,d,m−1),
(3.9)

where (Hb)PSN,m(·) denotes the operation of the m-th PSN in the b-th branch. The

(Hb)PSN,m(·) can be expressed as

(Hb)PSN (·) = CA(H(sb)m,2
(Relu(H(sb)m,1

(·)))), (3.10)

where H(sb)m,n
(·) denotes the k-th operation among K candidates, which is chosen

by the configuration sequence (sb)m,n. I construct the PSN with two operations and

one Relu activation as shown in Eq. 3.10. CA(·) denotes channel attention layer of

RCAN [34].

To reduce the number of network parameters and spread the information through

the branches, the parameters of PSNs have common weights if the configuration se-

quence of different branches activates an identical position in their sequence. For ex-

ample, if two branches’ configuration sequences are ’001’ and ’011,’ the operation
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corresponding to the first and the third digit share their weights. In Fig. 3.2, I empha-

size the shared positions in the controller sequence (FC outputs) by big bold digits.

3.3.5 MBNAS

Like conventional RL-based NAS methods [19,21], my algorithm has θ and w, which

represents the parameter of the controller and the child network, respectively. In the

search phase, θ and w are trained alternately for each epoch. After the search phase

is finished, I sample the sequences by the trained controller. Then, the best sequence

among the sampled ones is chosen and trained from scratch.

Training the child network

I first train the parameters of a child network to calculate the reward signal of the

controller. The problem is formulated as

min
w

Ec∼π(c;θ)[L(c;w)], (3.11)

where L(·) denotes the loss function for the task which is the L1 loss in my setting.

The controller’s policy π(c;θ) is fixed when training the child network. The Adam

optimizer [35] is used to optimize w. I estimate the gradient of Ec∼π(c;θ)[L(c;w)]

with the Monte Carlo estimate

5wEc∼π(c;θ)[L(c;w)] ≈ 1

M

M∑
i=1

5wL(ci;w), (3.12)

where ci denotes a sampled child network by the controller’s policy. I choose M = 1,

which means that I sample just one child network for each mini batch.
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Training the controller

In the controller training phase, w is fixed, and θ is trained by REINFORCE [28]

algorithm. I optimize θ to maximize the expectation of reward signal, which can be

expressed as

max
θ

EP (a1:T ;θ)[R], (3.13)

where a1:T is the configuration sequence for the child network c. In the REINFORCE,

the gradient of the expected reward is approximated as

5θEP (a1:T ;θ)[R] =
T∑
t=1

[5θ logP (at|at−1:1;θ)(R− b)] (3.14)

where b is the baseline which is used to reduce the variance. The moving average of the

reward signal is used for the baseline in my algorithm. As explained with Eq. 3.2, I use

the PSNR of validation set and complexity-based penalty to calculate reward signal.

Adam [35] is used to optimize the reward.

3.4 datasets and experiments

3.4.1 Settings

Datasets, degradation methods, and metrics

I choose DIV2K [36] dataset for the training and validation. The DIV2K dataset is

widely used as a training set of various image restoration tasks. It contains 1,000 im-

ages, consisted of 800 for training, 100 for validation, and the other 100 images for test.

The validation images are used as the data for measuring reward signal of controller

network.

I measure the performance on four different benchmark dataset; Set5 [37], Set14 [38],

BSDS100 [39], and Urban100 [40]. To compare the performances with others, I mea-

sure the PSNR and SSIM [41] of the test image on the Y channel of YCbCr color
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domain. I create the synthetic low-resolution image by applying Matlab’s imresize

function [60].

Implemenatation details

I construct the controller by a two-stacked LSTM network with 64 hidden states. I

connect three fully connected layers to the end of each LSTM block to get the configure

sequence for the child network. I use word embedding [42] to make the input of the

LSTM layer from the previous LSTM block’s output.

I construct my MBNASNet with three branches (B = 3), four multi-branch blocks

(D = 4), and two PSNs (M = 2) which have three operations as the candidate

operations. The number of output feature maps for SFENet and MSNet is unified to

32. The number of intermediate features in PSNs is 128, which is four times bigger

than the number of the output feature maps.

Hyper-parameter settings

In the search phase, I alternatively train the controller and child network for one epoch

each. I initialize both the controller parameter θ and the child network parameter w

by using the variance scaled initialization [43] with 0.02 scaling value. I train the

controller and the child network for 500 epochs. For one epoch, I apply 100 iterations

for the controller, and 1,000 iterations for the child network. The learning rate of the

controller is fixed to 3 × 10−4. The learning rate of the child network initialized to

3 × 10−4 and decreased by half for every 100 epochs. I use 16 low-resolution image

patches of size 64×64 from DIV2K train images as a mini-batch of the child network. I

augment the patches by randomly applying horizontal flip and 90°, 180°, 270° rotation.

The λ in Eq. 3.2 is set to 2, and p(c;w) is the validation PSNR of child network. I

randomly extract 1,000 low-resolution image patches from DIV2K validation images

and compute PSNR to calculate the reward.

In the training phase, I sample 500 configuration sequences from the trained con-
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Table 3.1: Mean and variance of searched networks from three controllers which are
trained from different random seeds.

Experiment mean PSNR mean CBP var. PSNR

1 34.134 0.561 0.00143
2 34.131 0.543 0.00096
3 34.130 0.554 0.00097

troller network and choose the architecture which has the best performance in the

DIV2K validation set as my MBNASNet. I train the selected network for 1,000 epochs

and finetune the trained network for 1,000 more epochs. The hyper-parameter settings

are the same as the search phase except for the learning rate. The learning rate of the

child network is initialized to 3× 10−4 and decreased half by 200 epochs.

3.4.2 Experiments on single image super-resolution (SISR)

MBNAS search reseult

The proposed MBNASNet has four multi-scale blocks (D = 4) and two PSNs (M =

2) with three branches (B = 3). I sample 500 architectures and choose the best archi-

tecture from them. For ×2 scale, the configuration sequence of each branch is found

to be

s1 = {0, 0, 1, 2},

s2 = {0, 0, 1, 2},

s3 = {2, 0, 1, 2}.

(3.15)

I note that my searched structure has two same blocks with different channel attention

and one block with a larger receptive field to capture multi-scale features efficiently.
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On the other hand, the searched configuration sequence for ×3 scale is

s1 = {1, 1, 0, 2},

s2 = {1, 1, 0, 2},

s3 = {1, 1, 2, 2}.

(3.16)

The ×3 scale SR task generally needs a larger receptive field than the ×2 to extract

multi-scale features, and my searched×3 network satisfies this property. It takes about

24 hours to train the controller and the child network by one Tesla V100 GPU in

the search phase, which is far less than other NAS-based methods such as MoreM-

NAS [6] and FALSR [7]. To show the robustness of my search algorithm, I search

three times from different random seeds. Table 3.1 indicates the mean and variance of

500 searched networks from three different controllers for ×3 image super-resolution

of Set5.

Image super-resolution results

Bicubic image down-sampling is widely used as the image degradation setting of

super-resolution task. I measure PSNR and SSIM on four public benchmark dataset

to compare my method with eleven state-of-the-art methods: SRCNN [1], VDSR [2],

LapSRN [3], MemNet [4], MSAN [31], SelNet [33], CARN [5], A2F [61], MoreM-

NAS [6], FALSR [7], HNAS [45], and DeCoNASNet [47]. Among these, MoreMNAS,

FALSR, DeCoNASNet, HNAS, and mine is NAS-based aproaches. HNAS uses large

training patch (96×96) when training and applies self-ensemble to get better perfor-

mances.

The proposed NAS-based approach has efficient search algorithm, which is about

twenty times faster than MoreMNAS and FALSR. For this reason, I can conduct exper-

iments on ×3 super-resolution task while other NAS-based methods do not. As shown

in Table 3.2, MBNASNet performs comparable to hand-crafted state-of-the-art meth-

ods and outperforms the NAS-based methods for ×2 and ×3 super-resolution task.
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Figure 3.4: The graphical result of conventional lightweight methods and my MBNAS-
Net on Set14 dataset. The Blue dots are conventional lightweight methods, and the red
star is my MBNASNet method.

HNAS shows good performance for Set5 dataset, but MBNASNet performs better for

complex datasets such as Urban100 and B100 dataset because I extract multi-scale

features successfully.

Since different initial conditions may lead to different results, I perform the design

four times with different initial hyperparameters. But, there are just slight differences

for all the cases in Table 3.2, with PSNR variance under 10−4, validating the robust-

ness of my method against different initial conditions. Hence, I denote the best PSNR

among the four experiments, following the convention.

In Fig. 3.5 and Fig. 3.8, I display the qualitative result of my method and conven-

tional methods. As shown in the figures, MBNASNet successfully restores the struc-

tures of the images. Specifically, my network recovers the gray vertical lines and holes

in each image while other methods do not. In summary, I compare the overall ×2
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Table 3.2: PSNR and SSIM on the public benchmark test data for ×2 and ×3 SR
tasks. I emphasize the best and the second-best performances with the red and blue
colors, respectively. Methods with bold characters are NAS-based methods, and the
“Design time” at the last column indicates the times taken for the search process. All
four indicated design times are calculated with the same GPU (NVIDIA Tesla V100).
Other NAS-based methods do not report more than ×3 SR results due to huge search
times, whereas I could. *In the case of the HNAS, the complexity is an estimated one
because they do not explicitly reveal the number of parameters. Also, the + sign at the
HNAS denotes that they used self-ensemble, which generally gives higher PSNR than
the baseline.

Model scale Params Set 5 Set 14 B100 Urban100 Design time
Bicubic

×2

- 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 -
SRCNN [1] 57K 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 -
VDSR [2] 665K 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 -
LapSRN [3] 813K 37.52 / 0.9591 33.08 / 0.9130 31.80 / 0.8950 30.41 / 0.9101 -
MemNet [4] 677K 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 -
MSAN-X [31] 870K 37.86 / 0.8909 33.52 / 0.9167 32.12 / 0.8983 31.91 / 0.9255 -
SelNet [33] 970K 37.89 / 0.9598 33.61 / 0.9160 32.08 / 0.8984 - / - -
CARN [5] 1,582K 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 -
A2F-M [61] 1,000K 38.04 / 0.9607 33.67 / 0.9184 32.18 / 0.8996 32.27 / 0.9294 -
*HNAS-C+ [45] ∼400K 38.11 / 0.964 33.60 / 0.920 32.17 / 0.902 31.93 / 0.928 -
MoreMNAS-A [6] 1,039K 37.63 / 0.9584 33.23 / 0.9138 31.95 / 0.8961 31.24 / 0.9187 56 days
FALSR-A [7] 1,021K 37.82 / 0.9595 33.55 / 0.9168 32.12 / 0.8987 31.93 / 0.9256 24 days
DeCoNASNet [47] 1,713K 37.96 / 0.9594 33.63 / 0.9175 32.15 / 0.8986 32.03 / 0.9265 12 hours
MBNASNet(mine) 999K 38.04 / 0.9595 33.70 / 0.9178 32.19 / 0.8992 32.17 / 0.9281 24 hours

Bicubic

×3

- 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349 -
SRCNN [1] 57K 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989 -
VDSR [2] 665K 33.66 / 0.9213 29.77 / 0.8314 28.82 / 0.7976 27.14 / 0.8279 -
MemNet [4] 677K 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376 -
MSAN-X [31] 1,054K 34.19 / 0.9246 30.27 / 0.8403 29.03 / 0.8030 27.96 / 0.8473 -
SelNet [33] 1,159K 34.27 / 0.9257 30.30 / 0.8399 28.97 / 0.8025 - / - -
CARN [5] 1,582K 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493 -
A2F-M [61] 1,000K 34.50 / 0.9278 30.39 / 0.8427 29.11 / 0.8054 28.28 / 0.8546 -
MBNASNet(mine) 1,003K 34.30 / 0.9255 30.25 / 0.8415 29.08 / 0.8042 28.08 / 0.8501 30 hours

performance of lightweight models graphically in Fig. 3.4.

3.5 Discussion

In this section, I discuss the effect of the proposed method’s contributions; complexity-

based penalty, multi-branch structure, and partially shared parameters.
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Figure 3.9: The result of three experiments for the controller. The blue dots are from
the CBP, the reds are the Baseline, and the greens are Random settings. The ”Relative
Complexity” is defined the same as cbp in equation(3.3), meaning the cbp in the case
of NAS design results. In the case of random and baseline, since the ”penalty” is not
defined, I denote it as ”Relative Complexity.”

3.5.1 Effect of the complexity-based penalty to the performance of con-

troller

To evaluate the controller’s performance and the effect of complexity-based penalty in

the search phase, I conduct three experiments.The first experiment uses a non-trained

controller, which generates a random controller sequence (denoted as Random). The

controller trained with the PSNR reward but without the complexity-based penalty is

denoted as Baseline, and the one including the complexity-based penalty is denoted as

CBP. I choose λ = 2 for the complexity-based penalty.

I sample 100 structures for each controller setting and measure the average and

the best performance, as shown in Table 3.3. Also, their distributions are illustrated in

49



Table 3.3: Performance comparison between controller settings.

Search setting Random Baseline CBP

Best
PSNR 35.62 35.92 35.89
Penalty 0.473 0.500 0.364

Mean
PSNR 35.34 35.29 35.32
Penalty 0.504 0.491 0.373

Table 3.4: PSNR of MBNASNet with/without gradient flow control weights α on the
public benchmark test data for ×2 SR tasks. I emphasize the difference between two
experiment by blue texts. I train each architecture for 1000epochs.

Model scale Set 5 Set 14 B100 Urban100

MBNASNet without α ×2
37.9426(-0.034) 33.5727(-0.050) 32.1357(-0.006) 31.9743(-0.052)

MBNASNet with α 37.9767 33.6230 32.1413 32.0264

Fig. 3.9, where blue dots are the results of the CBP with λ = 2, red dots correspond

to the Baseline, and the greens to the Random. I can see that the Baseline setting finds

better architectures than the Random in terms of PSNR, sometimes with increased

complexity. On the other hand, the CBP setting successfully generates lightweight

sequences that have comparable PSNR to the Baseline.

3.5.2 Effect of multi-branch structure and partial parameter sharing scheme

To compare and visualize the effect of multi-branch structure and partial parameter

sharing (PPS) scheme, I create three networks; single-branch, multi-branch without

PPS, multi-branch with PPS. I set the parameters of three experiments by ∼ 1, 000K

to fairly compare the results.

I measure the PSNR of each structure on the Set5 dataset. Fig. 3.10 shows the

results of three structures for 400 epochs. I can find that the multi-branch structure

converges faster than the single branch structure. Furthermore, with the partial pa-

rameter sharing scheme, I can successfully overcome the performance degradation
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Figure 3.10: The PSNR on Set5 for three structures. The red line indicates my MB-
NASNet structure, the green line is the multi-branch structure with separate parame-
ters, and the blue is the single branch structure.

phenomenon in the multi-branch structure.

3.5.3 Effect of gradient flow control weights and complexity-based penalty

coefficient

Gradient flow control weights allow MBNASNet to overcome the gradient vanish-

ing problem by adjusting the gradient magnitude in the back-propagation process. I

train MBNASNet with/without gradient flow control weights α and compare their per-

formance in Table 3.4 and Fig. 3.11. The results show that α helps the MBNASNet

converge to better point and achieve better performance.

To compare the effect of CBP weight λ, I train the controller with different λ values

(λ = 0.5, 1, 2, 4) and compare their search results in Table 3.5. I can see that the mean
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Figure 3.11: The PSNR on Set5 of MBNASNet architecture with/without gradient
flow control weights α. The red line indicates my MBNASNet structure with α, and
the blue is MBNASNet without α.

CBP value tends to decrease (a lighter network is found), and the mean PSNR slightly

decreases as the λ becomes larger. When the λ becomes too big (λ = 4), the controller

fails to find a promising network in the search space. The experiments validate that

the λ efficiently controls the trade-off between the performance and the number of

parameters until λ = 2, and hence I use λ = 2 in other experiments.

3.6 Summary

I have proposed a new NAS-based SR network, named as MBNASNet. I have at-

tempted to improve the performance of the NAS-based SR by adopting a multi-branch

network that can extract multi-scale features. In other words, I could obtain a better

SR model by expanding the search space. I also regularized the reward signal of RE-
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Table 3.5: Mean PSNR and complexity-based penalty on different λ. The PSNR is
calculated by Set5 benchmark dataset.

Experiment mean PSNR mean CBP

λ = 0.5 37.830 0.569
λ = 1 37.829 0.561
λ = 2 37.829 0.557
λ = 4 37.801 0.575

INFORCE algorithm with a complexity-based penalty to favor a lightweight network.

Besides, the partial parameter sharing scheme successfully reduces the number of pa-

rameters and helps the information transfer between each branch. It takes 24 hours to

find promising network structures, which is a lot faster than the existing NAS-based

design methods. The results show that the proposed method performs comparably to

the conventional hand-crafted structures and other NAS-based networks. I will release

my codes and more result images at https://github.com/Junem360/MBNASNet.
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Chapter 4

Meta-transfer learning for simultaneous search of vari-

ous scale image super-resolution

4.1 Introduction

restoration is widely used as a preprocessing algorithm of various vision tasks. Specif-

ically, single image super-resolution (SISR) which recovers high resolution (HR) re-

sults from low resolution (LR) images is applied to the tasks such as medical image

analysis [8], security image processing [10], satellite image recognition [9]. Recently,

researchers have been proposed deep-learning based methods [1–5, 13–18] and they

performs better than the conventional SISR methods [11, 12].

In general, the performance of deep-learning based SR methods increases as the

network gets deeper or more complex. However, it needs tremendous amount of atempts

and adjustments to find optimal structures when the structure goes deeper and compli-

cated. To reduce the efforts involved in these trial and error, the neural architecture

search (NAS) algorithm has been developed [19–26, 44].

Earlier NAS methods [19, 20, 23] concentrate on the image classification task and

they automate the network construction and evaluation process to decrease the time

used to create the optimal network for the purpose. Because It takes a long time to
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search optimal architectures by these methods, some researchers have developed ef-

ficient neural architecture search algorithms to reduce the search time. Specifically,

ENAS [21] and DARTS [25] adopt directed acyclic graph (DAG) and weight sharing

scheme and dramatically reduce the time for network search process.

Neural architecture search methods have been expanded to the image super-resolution

task [6,7,45,47] (MoreMNAS, FALSR, HNAS, DeCoNAS). MoreMNAS and FALSR

use reinforced evolution algorithm but they suffer from their long search time. To re-

duce the search time, HNAS, DeCoNAs and MBNAS applies efficient neural architec-

ture search [21] and find optimal networks in a short time. However, existing NAS-SR

method regard different scale super-resolution as an independent tasks, and network

search for arbitrary scale image super-resolution is not supported. Furthermore, when

I use weight sharing scheme to find optimal structure, there is a difference in per-

formance between evaluation and search phase. This phenomenon, so called search-

evaluation gap, causes the final performance degradation of the structures selected by

weight sharing architecture search method.

To simultaneously search the networks for various scale image super-resolution

task and alleviate the search-evaluation gap, I apply meta-transfer learning to the neu-

ral architecture search process. Specifically, I adopt model-agnostic meta-learning [62]

when searching for SR network. The meta-learning algorithm trains the controller net-

work to find optimal state that adapt fast to various scale image super-resolution task.

Also, the parameter of child network is trained by meta-learning scheme and the per-

formance of the child network in the search process approaches the actual performance

in evaluation phase.

My main contributions are summarized as follows:

1. New NAS-based SR: I propose a meta-learning based SR network design method,

named MetaNAS, which searches for the networks of various scale image super-

resolution task simultaneously.

2. Reduced search-evaluation gap : I train the child network with model-agnostic
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meta-learning algorithm to apply the actual performance in search phase and

reduce the search-evaluation gap phenomenon.

The rest of this chapter is organized as follows. I summarize the related works

about SISR, NAS and meta-learning methods in section 2. In section 3, I explain my

proposed MetaNAS for SISR. I precisely explain the details about my algorithm and

the implementation, followed by experiment results. Finally, I provide a summary and

conclusion in section 5.

4.2 Related Work

4.2.1 Single image super-resolution

Researchers have been proposed a number of deep learning based SR methods [1–5,

13–18]. As a pioneer work, Dong et al. [1] (SRCNN) proposed the network consist

of three shallow convolutional layers and outperformed the conventional SR methods.

FRCNN [13] and ESPCN [14] tried to reduce the feature map size and channel num-

ber by deconvolution and pixel-shuffle layer. VDSR [2] used very deep convolutional

neural network by adopting residual learning and gradient clipping strategy. Lim et

al. [15] increased the PSNR by proposing an internal residual learning with extensive

features (EDSR) and multi-scale structure (MDSR). MemNet [4], MSRN [18], and

DenseSR [16] proposed specific block architectures to achieve better performance.

SelNet [33] proposed selection unit and replacing the non-linear operation such as

Relu. Zhang et al. proposed feature fusion layer and residual dense block in their pa-

per [17] (RDN). RCAN [34] proposed a channel attention scheme and select important

feature channels among the output features, which successfully increase the PSNR re-

sult of the SR network.
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4.2.2 Neural architecture search

There are a number of hyper-parameters to create a deep neural architecture. For ex-

ample, I need the number of layers, channels, operations, connections, etc. to create

the deep learning architecture. Researchers have designed a lot of deep neural net-

works and evaluate them to find optimal architecture. Because this manual network

design and evaluation is a laborious task, researchers have been proposed the methods

to automate these processes, so called neural architecture search (NAS) [19–26].

At first, most of neural architecture search methods focus on simple image clas-

sification task. Zoph et al. [19] proposed a reinforcement learning (RL) based NAS

algorithm. At first, they designed A controller network and a child network. controller

network was consist of LSTM and generated the configure sequence for the child net-

work. the child network was created by the configure sequence from controller network

and evaluated. The controller network was trained by REINFORCE [28], which is a

kind of policy gradient algorithm. The performance of the child network was used as a

reward signal of the REINFORCE algorithm. Because they trained the child network

from scratch, it took a huge amount of time to evaluate performance and calculate the

reward. To reduce the time to get a reward signal, PNAS by Liu et al. [20] applied the

sequential model-based optimization (SMBO) and proposed a surrogate model which

predicts the network’s performance. On the one hand, Pham et al. [21] proposed effi-

cient NAS algorithm that shares the weight of child networks during search phase to

reduce the evaluation time. This method regard the search space as a super-graph and

configured each child network as a sub-graph of the search space. The trained parame-

ters of the child network were shared during the search phase and stored their weights

in the super-graph.

Evolutionary methods [22–24] are another main stream of the NAS. They selected

a hundred architectures randomly and encoded each network to binary codes. After

that, crossover or mutations are applied to the sequence and evaluate them to find

a promising structure. Lu et al. [23] applied Bayesian optimization algorithm to the
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evaluation process to take an advantage from previous search result. AmoebaNet [24]

applied an aging evolution algorithm to NAS to discard the old network.

There were some methods that adopted different algorithms from RL and evo-

lutionary methods [25, 26, 44, 48] (DARTS, SGAS, NAO, CSA-NAS). Specifically,

DARTS proposed gradient-based neural architecture search that applied continuous

relaxation to the neural architecture’s connections to find optimal network and the

filter weight simultaneously by gradient descent algorithm. SGAS adopted a greedy

algorithm to select operation on the DARTS baseline and found the optimal network

without retraining from scratch. NAO constructed a neural network which was trained

to project the configure code to the embedding space and chose the best architecture

as a result. CSA-NAS adopts a binary crow search algorithm to find the optimal archi-

tecture.

4.2.3 Image super-resolution with neural architecture search

There are some papers that expanded NAS method to image super-resolution task [6,

7, 45]. MoreMNAS [6] and FALSR [7] adopted reinforced evolution algorithm to find

optimal SR network. HNAS [45] applied efficient NAS [21] with a hierarchical search

algorithm that finds optimal cell structure and feature-upsampling positions. They also

considered the computational cost (FLOPS) to meet the resource budget.

However, above mentioned NAS-SR methods have some drawbacks. First of all,

they can find an optimal structure for the single scale image super-resolution task at a

time. This disadvantages critical for real-world image super-resolution. Furthermore,

fast NAS-SR algorithms such as HNAS adopt weight sharing scheme in search phase.

But the result of trained weights of shared parameters is differ from the non-shared pa-

rameters. This causes the search-evaluation gap that vary in performance during search

and measurement. To alleviate these problems, I combine meta-learning with NAS-SR

formulation. Specifically, I adopt model-agnostic meta-learning method when training

controller and child network in search phase. As a result, The controller is trained to
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Search procedure for various tasks 𝑻 = {𝑇1,𝑇2,⋯}

Meta-train the constructed 

child networks

Measure the performance 

and complexity based 

penalty to get a rewards 𝑟𝑖

Apply REINFORCE method 

to update the controller

Construct the child 

networks for 𝑇𝑖 by the 

sequences

Generate the child network 

configuration sequences for 

𝑇𝑖 using controller

Train procedure for task 𝑇𝑖

Train the optimal network 

from meta-parameter
Train the controller to adapt 

to the task 𝑇𝑖

Sample sequences from 

the controller and

Choose the best network

Figure 4.1: The overall procedure of MetaNAS. In the search phase, the controller and
constructed child network are trained alternatively with meta-learning scheme. In the
training phase, the searched final architecture is trained from pre-trained parameter.

adapt fast to various scale image super-resolution tasks. Also, I conduct several updates

when calculating reward from child network to reduce the search-evaluation gap.

4.2.4 Meta-learning

Various meta-learning algorithms have been proposed recently. They can be classified

to three types; metric-based, memory network-based and optimization-based meth-

ods. Metric-based algorithms [63–65] try to learn metric space that efficiently trained

by few samples. Memory network-based methods [66–68] trains memory network to

generalize well to unseen tasks. Optimization-based algorithms [62, 69–71] use gra-

dient descent directly to the meta-learner optimization. I choose MAML [62] as my

meta-learning method, which is the kind of optimization-based algorithms.

4.3 Method

The overall procedure of my MetaNAS is shown in Fig. 4.1. To search the optimal ar-

chitecture, I design the same search space, child network and controller as MBNASNet
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Figure 4.2: The child network structure of used in my method. It consists of a shal-
low feature extraction network (SFENet), a multi-branch network (MBNet), and an
upscaling network (UPNet). The result of each branch is combined and upsampled by
the periodic shuffling layer.

(chap. 3). Fig. 4.2 shows the child network structure of MBNAS used in my proposed

method. I apply MAML [62] algorithm to simultaneously search for various scale im-

age super-resolution task as shown in Fig. 4.3. Specifically, my method consist of three

steps: meta-learning, meta-transfer learning and transfer learning.

In meta-learning step, I train the parameters of child network w and controller

network θ to be sensitive and transferable to various scale image super-resolution task.

Next, I again train the θ and w to adapt well to the specific structure of selected scale

image super-resolution in meta-transfer learning step. Finally, I choose the optimal

structure from trained controller and train it from pre-trained parameter w to evaluate

the final performance.

4.3.1 Meta-learning

In this step, I seek to find the sensitive initial point for the parameters of the controller

and child network, θm and wm, where adapts well to the specific scale image super-

60



𝜽0, 𝒘0 𝜽𝑚, 𝒘𝑚

𝜽𝑇1 , 𝒘𝑇1

𝜽𝑇2 , 𝒘𝑇2

𝜽𝑇3 , 𝒘𝑇3

𝐷𝑚𝑒𝑡𝑎(𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑)

Meta-learning

Meta-transfer learning

𝒘𝑇1 ෝ𝒘

𝐷𝑡𝑟𝑎𝑖𝑛

Transfer learning

Figure 4.3: The overall meta-learning procedure of my proposed MetaNAS. From ran-
dom initial point θ0 and w0, meta-learning is applied to seek θm and wm. Meta-
transfer learning is conducted to get sensitive and transferable parameters with regard
to the scale and the structure.

resolution with a few gradient update. Inspired by MAML [62], I follows meta-training

of MAML with some differences.

I create the dataset Dmeta for meta-learning step. Dmeta consist of high-resolution

and low-resolution image pairs of various scale. Specifically, I use three scale (×2,

×3, ×4) LR/HR image pairs with same probability. To calculate the reward signal and

update the controller parameter θ, I should train the parameters of a child network first.

Without meta-learning, the child network’s parameter w is updated as

wi+1 = wi − α5w L(ci;w) (4.1)

where L(·) denotes the loss function for the task which is the L1 loss and ci denotes

a sampled child network by the controller’s policy. To apply MAML meta-training

shceme to Eq. 4.1, I divide Dmeta to two groups: Dtr for task-level training and Dte

for task-level test. I apply several gradient descent updates to w to conduct adaptation

to a new task Tj and one update process is expressed as

wj = w − α5w LtrTj (ci;w), (4.2)

where α is the task-level learning rate. After that, the child network’s parameters w
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are trained to reduce test error of Dte with respect to wj. Eventually, parameter update

is expressed as

w← w − β 5w

∑
Tj∼p(T )

LteTj (ci;wj), (4.3)

where β is the meta-learning rate.

After updating child network parameters for one epoch, Ie train the controller pa-

rameters θ. I calculate task-specific reward Rj as

Rj = p(c;wj)− λ× cb(c), (4.4)

where cb(c) is the complexity-based penalty of MBNAS (chap. 3) and wj is the child

network parameter which is adapted to task Tj .

Finally, the gradient update of the expected reward is defined as

θ ← θ + β 5w

∑
Tj∼p(T )

T∑
t=1

[5θ logP (at|at−1:1;θ)(Rj − b)], (4.5)

where a1:T is the configuration sequence for the child network c and b is the baseline

which is used to reduce the variance.

4.3.2 Meta-transfer learning

After finding the intermediate parameters wm and θm, I focus on one specific scale

image super-resolution task and conduct adaptation of wm and θm to make them sen-

sitively transform to the selected scale. The adaptation procedure is almost same as

meta-learning step, but the input and output data pair is fixed to the selected scale.

Because wm and θm is already sensitive to the various scale image super-resolution

task, I only need the small number of updates to find wTi and θTi , which is the final

parameters of specific scale image super-resolution task.
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4.3.3 Transfer-learning

In this step, I find the optimal network for image super-resolution task by trained con-

troller and child network. I sample the architectures from the controller and evaluate

each structure to choose the best network. Different from DeCoNAS and MBNAS

(chap. 3), I conduct an adaptation to the child network’s parameter to alleviate the

search-evaluation gap. Also, I use wTi as the initial point of the final evaluation to get

better result.

4.4 datasets and experiments

4.4.1 Settings

Datasets,and metrics

I use DIV2K [36] as a dataset for the training. The DIV2K dataset is widely used as

a training set of various vision tasks. It consist of 1,000 images, 800 for training, 100

for validation, and the other 100 images for test. The training images are used as Dtr

and the validation images are used as Dte in meta-learning process.

I measure the PSNR and SSIM [41] on four benchmarks to compare performance

with other methods; Set5 [37], Set14 [38], BSDS100 [39], and Urban100 [40]. I mea-

sure the PSNR and SSIM of the test image on the Y channel of YCbCr color domain.

The low-resolution image is created by Matlab’s imresize function [60].

Implemenatation details

For the controller and child network construction, I adopt the setting of MBNAS. The

controller consist of LSTM network with 64 hidden states. The child network also

follows MBNASNet structure with three branches, four multi-branch blocks and two

PSNs. The number of output feature channel is 32 and the number of intermediate

features in PSNs is 128.
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Hyper-parameter settings

In the meta-learning and meta-transfer learning step, the controller and child network

are trained alternatively for one epoch. The initial point of two structure, θ0 and w0 is

initialized by variance scaled initialization [43] with 0.02 scaling value. I train the con-

troller and the child network for 500 epochs in meta-learning step, and five epochs for

meta-transfer learning step. For one epoch, I apply 1000 iterations for the controller,

and 1,000 iterations for the child network. The task-level learning rate α is set to 0.01

and the meta-learning rate β for controller is fixed to 3 × 10−3. The meta-learning

rate of the child network initialized to 3 × 10−4 and decreased by half for every 100

epochs. The bath size of child network is 16 and the patch size of low-resolution image

is 64× 64. I use data augmentation that the patches are applied random horizontal flip

and 90°, 180°, 270° rotation. The λ in complexity based penalty is set to 2.

For the final evaluation, I sample 100 configuration sequences from the trained

controller and choose the optimal architecture which has the best PSNR on the DIV2K

validation set. I train the selected network for 1,000 epochs and finetune the trained

network for 1,000 more epochs. The hyper-parameter settings are the same as the

search phase except for the learning rate. The learning rate is initialized to 3 × 10−4

and decreased half for every 200 epochs.

4.4.2 Experiments on single image super-resolution (SISR)

Experiment about search-evaluation gap

I conduct the experiment to verify that my proposed algorithm alleviates the search-

evaluation gap compared to the existing method. I randomly sample 11 architectures

from controller and train all of them from scratch to get an exact evaluation perfor-

mance of each network. Then, I evaluate the sampled networks with three controllers.

The first controller is trained by baseline training. Second and third controller is trained

by transfer learning and meta-learning. As shown in the Fig. 4.4, the meta-learned con-
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Figure 4.4: The experiment about search-evaluation gap for each controller. I calculate
the kendall rank correlation coefficient to compare each settings by value.

troller’s search evaluation gap is smaller than others. To compare the search-evaluation

gap as a value, I calculate the kendall rank correlation coefficient. As expected, the

meta-learned controller has the highest value compared to the other two controllers.

MetaNAS search result

It takes about two hours to meta-transfer learning for specific scale image super-

resolution. I illustrate the search result of ×2 and ×3 image super-resolution task on

Fig. 4.5. As shown in the figure, I can find that the controller successfully adapted to

each image super-resolution task in a short time.
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Figure 4.5: The experiment about simultaneous search for various scale image super-
resolution task. By short time of adaptation process, the controller learns to sample
promising networks for each scale.

Image super-resolution results

I measure PSNR and SSIM on four public benchmark dataset to compare my method

with eleven state-of-the-art methods: SRCNN [1], VDSR [2], MemNet [4], MSAN [31],

SelNet [33], CARN [5], A2F [61], MoreMNAS [6], FALSR [7], HNAS [45], De-

CoNASNet [47] and MBNASNet (chap. 3). Among these, MoreMNAS, FALSR, De-

CoNASNet, HNAS, MBNASNet and mine is NAS-based aproaches. HNAS uses larger

training patch (96×96) than others and also applies self-ensemble scheme to increase

the performances.

As shown in Table 4.1, my proposed network performs comparable to hand-crafted

state-of-the-art methods and outperforms the NAS-based methods.

In Fig. 4.6, I compare the qualitative result of my method with existing methods.

MetaNASNet successfully restores the details of the images as shown in the figure.

4.5 Summary

I have proposed a new NAS-based SR network with meta-learning scheme, named

as MetaNASNet. I have attempted to alleviate the search-evaluation gap in the search

phase by applying model-agnostic meta-learning method. I also conduct simultane-
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Table 4.1: PSNR and SSIM on the public benchmark test data for ×2 SR tasks. I
emphasize the best and the second-best performances with the red and blue colors,
respectively. Methods with bold characters are NAS-based methods, and the ”Design
time” at the last column indicates the times taken for the search process. All the indi-
cated design times are calculated with the same GPU (NVIDIA Tesla V100). The +
sign at the HNAS denotes that they used self-ensemble, which generally gives higher
PSNR.

Model scale Params Set 5 Set 14 B100 Urban100 Design time
Bicubic

×2

- 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403 -
SRCNN [1] 57K 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946 -
VDSR [2] 665K 37.53 / 0.9587 33.03 / 0.9124 31.90 / 0.8960 30.76 / 0.9140 -
LapSRN [3] 813K 37.52 / 0.9591 33.08 / 0.9130 31.80 / 0.8950 30.41 / 0.9101 -
MemNet [4] 677K 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195 -
MSAN-X [31] 870K 37.86 / 0.8909 33.52 / 0.9167 32.12 / 0.8983 31.91 / 0.9255 -
SelNet [33] 970K 37.89 / 0.9598 33.61 / 0.9160 32.08 / 0.8984 - / - -
CARN [5] 1,582K 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256 -
A2F-M [61] 1,000K 38.04 / 0.9607 33.67 / 0.9184 32.18 / 0.8996 32.27 / 0.9294 -
HNAS-C+ [45] ∼400K 38.11 / 0.964 33.60 / 0.920 32.17 / 0.902 31.93 / 0.928 -
MoreMNAS-A [6] 1,039K 37.63 / 0.9584 33.23 / 0.9138 31.95 / 0.8961 31.24 / 0.9187 56 days
FALSR-A [7] 1,021K 37.82 / 0.9595 33.55 / 0.9168 32.12 / 0.8987 31.93 / 0.9256 24 days
DeCoNASNet [47] 1,713K 37.96 / 0.9594 33.63 / 0.9175 32.15 / 0.8986 32.03 / 0.9265 12 hours
MBNASNet (chap. 3) 999K 38.04 / 0.9595 33.70 / 0.9178 32.19 / 0.8992 32.17 / 0.9281 24 hours
MetaNASNet (mine) 1,151K 38.05 / 0.9597 33.70 / 0.9181 32.20 / 0.8993 32.20 / 0.9280 40 hours

ous search of various scale image super-resolution task by adopting meta-learning and

adaptation. It takes 40 hours to find promising network structures for ×2, 3, 4 image

super-resolution task, which is a lot faster than the existing NAS-based design meth-

ods. The results show that the proposed method performs comparably to the conven-

tional hand-crafted structures and other NAS-based networks.
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Chapter 5

Conclusion

I have proposed a new image super-resolution (SR) method using neural architecture

search (NAS) algorithm in this dissertation. In chapter 2, I have proposed a reinforcement-

learning based NAS algorithm for image SR, named as DeCoNAS. I show that the

proposed method find an optimal lightweight SR network with fast search time. I also

proposed a feature fusion search strategy to find optimal feature fusion layer con-

nection, which verified the importance of global/local fusion connection for the SR.

Furthermore, the proposed complexity-based penalty in reward signal efficiently re-

duce the network complexity and enabled searching lightweight network architecture.

Experiments show that the DeCoNASNet achieves higher performance with regard to

the computational complexity and the PSNR when compared to the existing SR ne-

toworks.

In chapter 3, I have proposed a new NAS-based multi-branch SR network, named

as MBNASNet. I have tried to increase the PSNR/SSIM of the NAS-SR method by ap-

plying a multi-branch network that can extract multi-scale features. I expand the search

space from single branch to the multi branch structure and obtain a better SR network.

Moreover, I partially shared the parameters in the network structure to increase infor-

mation transferablity and to reduce the number of parameters. It takes a day to find

optimal network structures, which is a lot faster than the existing NAS-based design
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methods. The results show that the proposed method outperforms existing NAS-based

networks.

In chapter 4, I have proposed a new NAS-based SR network with meta-learning

scheme, named as MetaNASNet. I adopt model-agnostic meta-learning scheme to alle-

viate the search-evaluation gap problem. I also achieve simultaneous search of various

scale image super-resolution task by an adaptation procedure. I find optimal structures

for ×2, 3, 4 image super-resolution task simultaneously in 40 hours. The results show

that the proposed method reduce the search-evaluation gap compared to the existing

NAS-SR methods.
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초록

이미지 복원은 다양한 영상처리 문제의 성능을 높이기 위한 전 처리 단계로 사

용할 수 있는 중요한 기술이다. 이미지 고해상도화는 이미지 복원방법 중 중요한

문제의하나로써저해상도의이미지를고해상도의이미지로복원하는방법이다.최

근에는컨벌루션신경망 (CNN)을사용하는딥러닝(deep learning)기반의방법들이

단일이미지고해상도화 (SISR)문제를푸는데많이사용되고있다.일반적으로이

미지고해상도화성능은CNN을깊게쌓거나복잡한구조를설계함으로써향상시킬

수있다.

그러나 주어진 문제에 대한 최적의 구조를 찾는 것은 해당 분야의 전문가라 할

지라도어렵고시간이오래걸리는작업이다.이러한이유로신경망구축절차를자

동화하는 신경망 구조 검색 (NAS) 방법이 도입되었다. 이 논문에서는 신경망 구조

검색 (NAS)방법을사용하여새로운단일이미지고해상도화방법을제안하였다.

이논문에서제안한방법은크게세가지로요약할수있다.이는효율적인신경

망검색기법(ENAS)을이용한이미지고해상도화,병렬신경망검색기법을이용한

이미지고해상도화,메타전송학습을이용하는신경망검색기법을통한이미지고

해상도화 이다. 우선, 우리는 주로 영상 분류에 쓰이던 신경망 검색 기법을 영상

고해상도화에적용하였으며, DeCoNASNet이라명명된신경망구조를설계하였다.

또한 계층적 검색 전략을 사용하여 지역/전역 피쳐(feature) 합병을 위한 최상의 연

결방법을검색하였다.이과정에서필요변수가적으면서좋은성능을낼수있도록

복잡성 기반 페널티 (complexity-based penalty) 를 정의하고 이를 REINFORCE 알

고리즘의 보상 신호에 추가하였다. 실험 결과 DeCoNASNet은 기존의 사람이 직접
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설계한 신경망과 신경망 검색 기법을 기반으로 설계된 최근의 고해상도화 구조의

성능을능가하는것을확인할수있었다.

우리는또한여러크기의피쳐(feature)를학습하기위해신경망검색기법의검

색 공간을 확대하여 병렬 신경망을 설계하는 방법을 제안하였다. 이 때, 병렬신경

망의 각 위치에서 매개 변수를 공유할 수 있도록 하여 병렬신경망의 각 구조끼리

정보를공유하고전체구조를설계하는데필요한매개변수를줄이도록하였다.실

험 결과 제안된 방법을 통해 매개 변수 크기 대비 성능이 좋은 신경망 구조를 찾을

수 있었다. 실험 결과를 통해 확장된 검색 공간에서 여러 크기의 피쳐 (feature)를

학습하였기때문에이전방법보다복잡한영역을더잘복원하는것을확인하였다.

마지막으로 메타 전송 학습(meta-transfer learning)을 신경망 검색에 적용하여

다양한 크기의 이미지 고해상도화 문제를 해결하는 방법을 제안하였다. 이 논문에

서는메타전송학습방법을통해제어기가여러크기의좋은신경망구조를동시에

찾을 수 있도록 설계하였다. 또한 메타 훈련된 신경망 구조는 최종 성능 평가 시

학습의 시작점으로 재사용 되어 최종 이미지 고해상도화 성능을 더욱 향상시킬 수

있었으며,효과적으로검색-평가괴리문제를해결하였다.

주요어:신경망검색기법,이미지고해상도화,이미지복원,합성곱신경망

학번: 2014-22565
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