creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Image restoration using neural
architecture search method

N A7 A 71 ALEE o]n] 4] 2
BY
AHN JOON YOUNG
AUGUST 2021

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Image restoration using neural architecture
search method

AT AR 34 Z1H & A olv)A E4

Asas = ¢ 9

o] =& FHAL =R ASY
2011 7 H

Meditta ojgrgl
A7-JuFoy
23

ety e] Feutal g8 =S AEY
201 6 |

Abstract

Image restoration is an important technology which can be used as a pre-processing
step to increase the performances of various vision tasks. Image super-resolution is one
of the important task in image restoration which restores a high-resolution (HR) im-
age from low-resolution (LR) observation. The recent progress of deep convolutional
neural networks has enabled great success in single image super-resolution (SISR). its
performance is also being increased by deepening the networks and developing more
sophisticated network structures. However, finding an optimal structure for the given
problem is a difficult task, even for human experts. For this reason, neural architec-
ture search (NAS) methods have been introduced, which automate the procedure of
constructing the structures. In this dissertation, I propose a new single image super-
resolution framework by using neural architecture search (NAS) method. As the per-
formance improves, the network becomes more complex and deeper, so I apply NAS
algorithm to find the optimal network while reducing the effort in network design.
In detail, the proposed scheme is summarized to three topics: image super-resolution
using efficient neural architecture search, multi-branch neural architecture search for
lightweight image super-resolution, and neural architecture search for image super-
resolution using meta-transfer learning.

At first, I expand the NAS to the super-resolution domain and find a lightweight
densely connected network named DeCoNASNet. I use a hierarchical search strategy
to find the best connection with local and global features. In this process, I define a
complexity-based-penalty and add it to the reward term of REINFORCE algorithm.
Experiments show that my DeCoNASNet outperforms the state-of-the-art lightweight
super-resolution networks designed by handcraft methods and existing NAS-based de-
sign.

I propose a new search space design with multi-branch structure to enlarge the

search space for capturing multi-scale features, resulting in better reconstruction on
grainy areas. I also adopt parameter sharing scheme in multi-branch network to share
their information and reduce the whole network parameter. Experiments show that
the proposed method finds an optimal SISR network about twenty times faster than
the existing methods, while showing comparable performance in terms of PSNR vs.
parameters. Comparison of visual quality validates that the proposed SISR network
reconstructs texture areas better than the previous methods because of the enlarged
search space to find multi-scale features.
Lastly, I apply meta-transfer learning to the NAS procedure for image super-resolution.

I train the controller and child network with the meta-learning scheme, which enables
the controllers to find promising network for several scale simultaneously. Further-
more, meta-trained child network is reused as the pre-trained parameters for final
evaluation phase to improve the final image super-resolution results even better and

search-evaluation gap problem is efficiently reduced.

keywords: Neural architecture search, image restoration, image super-resolution,
deep learning

student number: 2014-22565

ii

Contents

Abstract i
Contents iii
List of Tables vi
List of Figures viii
1 INTRODUCTION 1

1.1 contribution e 3

1.2 contents e 4

2 Neural Architecture Search for Image Super-Resolution Using Densely

Constructed Search Space: DeCoNAS 5
2.1 Introduction 5
22 ProposedMethod Lo 9
2.2.1 Overall structure of DeCoNASNet 9
2.2.2 Constructingthe DNB 11
2.2.3 Constructing controller for the DeCoNASNet 13
2.2.4 Training DeCoNAS and complexity-based penalty 13
2.3 Experimentalresults, 15
231 Settings e e 15
232 Results 16

iii

24

233 Ablationstudy oo 21

Summary e e e 22

Multi-Branch Neural Architecture Search for Lightweight Image Super-

resolution 23
3.1 Introduction 23
32 RelatedWork 26
3.2.1 Single image super-resolution 26
3.2.2 Neural architecture search 27
3.2.3 Image super-resolution with neural architecture search 29
33 Method 32
3.3.1 Overview of the Proposed MBNAS 32
3.3.2 Controller and complexity-based penalty 33
333 MBNASNet. 35
3.3.4 Multi-scale block with partially shared Nodes 37
335 MBNAS . . 38
3.4 datasets and experiments 39
341 Settings e 39
3.4.2 Experiments on single image super-resolution (SISR) 41
35 DisCUSSION . . . v oL e e e e e e 48

3.6

3.5.1 Effect of the complexity-based penalty to the performance of
controller 49

3.5.2 Effect of multi-branch structure and partial parameter sharing
scheme 50

3.5.3 Effect of gradient flow control weights and complexity-based
penalty coefficient 51

Summary e e 52

v

4 Meta-transfer learning for simultaneous search of various scale image

super-resolution

4.1 Introduction
42 Related Work
4.2.1 Single image super-resolution
4.2.2 Neural architecture search
4.2.3 Image super-resolution with neural architecture search
424 Meta-learningo
43 Method
43.1 Meta-learning
4.3.2 Meta-transfer learning oL
433 Transfer-learning
4.4 datasets and experiments e .o L.

441 Settings

45 Summary e e e

5 Conclusion

Abstract (In Korean)

54
54
56
56
57
58
59
59
60
62
63
63
63
64
66

69

80

2.1
2.2

3.1

3.2

List of Tables

Performance comparison between search settings.
Public benchmark test results (PSNR/SSIM) for x2 SR. The red color
means the best performance and the blue means the second best. The
“Design time” at the last column indicates the times taken by the NAS

approaches. e e

Mean and variance of searched networks from three controllers which
are trained from different randomseeds.
PSNR and SSIM on the public benchmark test data for x2 and x3
SR tasks. I emphasize the best and the second-best performances with
the red and blue colors, respectively. Methods with bold characters are
NAS-based methods, and the “Design time” at the last column indi-
cates the times taken for the search process. All four indicated design
times are calculated with the same GPU (NVIDIA Tesla V100). Other
NAS-based methods do not report more than x3 SR results due to
huge search times, whereas I could. *In the case of the HNAS, the
complexity is an estimated one because they do not explicitly reveal
the number of parameters. Also, the + sign at the HNAS denotes that
they used self-ensemble, which generally gives higher PSNR than the

baseline.

Vi

19

3.4 PSNR of MBNASNet with/without gradient flow control weights a on

35

4.1

the public benchmark test data for x2 SR tasks. I emphasize the dif-
ference between two experiment by blue texts. I train each architecture
for 1000epochs.
Mean PSNR and complexity-based penalty on different A\. The PSNR

is calculated by Set5 benchmark dataset.

PSNR and SSIM on the public benchmark test data for x2 SR tasks.
I emphasize the best and the second-best performances with the red
and blue colors, respectively. Methods with bold characters are NAS-
based methods, and the "Design time” at the last column indicates the
times taken for the search process. All the indicated design times are
calculated with the same GPU (NVIDIA Tesla V100). The + sign at
the HNAS denotes that they used self-ensemble, which generally gives
higher PSNR.

vii

68

2.1
2.2
23

24
25
2.6

2.7
2.8

List of Figures

The architecture of the proposed DeCoNASNet system.
Detailed structure of the densely connected network blocks (DNB).

The example structure of my Controller and DeCoNASNet structure
with 2 mix nodes (M = 2) and 3 DNBs (N = 3). (a) is the example
for mix nodes, and (b) is the example for feature fusion layers.
Scatter plot of 100 samples for each search setting.
My DeCoNASNet model found by controller.
Qualitative comparison of the conventional methods and mine. (a) HR
image, (b) bicubic LR image, (c) SRCNN [1], (d) VDSR [2], (e) Lap-
SRN [3], (f) MemNet [4], (g) CARN [5], (h) MoreMNAS [6], (i)
FALSR [7], (j) DeCoNASNet (mine).
Ablation analysis about effect of the complexity-based penalty.

Ablation analysis about the feature fusion search strategy.

viii

10

3.1

32

33

34

The overall structure of MBNASNet. It consists of a shallow feature
extraction network (SFENet), a multi-branch network (MBNet), and
an upscaling network (UPNet). The result of each branch is combined
and upsampled by the periodic shuffling layer. The MSB (multi-scale
block) is a basic building block, detailed in Fig. 3.2 LaTeX Error: Can
be used only in preambleSee the LaTeX manual or LaTeX Companion
for explanation.Your command was ignored.Type 1 jcommand;, jre-
turny, to replace it with another command,or jreturn;, to continue with-
outit.3.2(a).
The upper part of (a) shows details of my MSB, and the lower part
is illustrating that a controller determines the connections inside the
MSBs of branch 1 according to the controller sequence (outputs of
FC layers), with an example that there are two partially shared nodes
(PSNs) (M = 2) and two branches (B = 2). (b) shows the exam-
ple for branch 2, where the elements inside the MSB are differently
connected than the above case according to the corresponding con-
troller. Two branches share the parameters of the light purple box. The
dashed arrows and colored arrows mean that these connections are to
besearched. o oo
The overview of the search cycle and training. In the search phase, the

controller and constructed child network are trained alternatively. In

the training phase, the searched final architecture is trained from scratch. 33

The graphical result of conventional lightweight methods and my MB-
NASNet on Setl4 dataset. The Blue dots are conventional lightweight

methods, and the red star is my MBNASNet method.

ix

3.5

3.6

3.7

3.8

Qualitative result on the 4th image from the Urban100 dataset for x2
SR task. I compare my method with nine conventional SR methods.
(a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d) Lap-
SRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i) De-
CoNASNet. (j) Proposed.
Qualitative result on the 6th image from the Urban100 dataset for x2
SR task. I compare my method with nine conventional SR methods.
(a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d) Lap-
SRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i) De-
CoNASNet. (j) Proposed.
Qualitative result on the 30th image from the Urban100 dataset for
x2 SR task. I compare my method with nine conventional SR meth-
ods. (a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d)
LapSRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i)
DeCoNASNet. (j) Proposed.
Qualitative result on the 97th image from the Urban100 dataset for
x2 SR task. I compare my method with nine conventional SR meth-
ods. (a) ground truth. (b) bicubic downsampled image. (c) VDSR. (d)
LapSRN. (e) MemNet. (f) CARN. (g) MoreMNAS. (h) FALSR. (i)
DeCoNASNet. (j) Proposed.

3.9

3.10

4.1

4.2

4.3

The result of three experiments for the controller. The blue dots are
from the CBP, the reds are the Baseline, and the greens are Random
settings. The “Relative Complexity” is defined the same as cbp in
equation(3.3 LaTeX Error: Can be used only in preambleSee the La-
TeX manual or LaTeX Companion for explanation. Your command was
ignored.Type I jcommand;, jreturn; to replace it with another com-
mand,or jreturn; to continue without it.3.3), meaning the cbp in the
case of NAS design results. In the case of random and baseline, since
the ”penalty” is not defined, I denote it as “Relative Complexity.” . . . 49
The PSNR on Set5 for three structures. The red line indicates my MB-
NASNet structure, the green line is the multi-branch structure with
separate parameters, and the blue is the single branch structure. 51
The PSNR on Set5 of MBNASNet architecture with/without gradient
flow control weights a. The red line indicates my MBNASNet struc-
ture with «, and the blue is MBNASNet withoute. 52

The overall procedure of MetaNAS. In the search phase, the controller

and constructed child network are trained alternatively with meta-learning
scheme. In the training phase, the searched final architecture is trained

from pre-trained parameter. 59
The child network structure of used in my method. It consists of a
shallow feature extraction network (SFENet), a multi-branch network
(MBNet), and an upscaling network (UPNet). The result of each branch

is combined and upsampled by the periodic shuffling layer. 60
The overall meta-learning procedure of my proposed MetaNAS. From
random initial point 8¢ and wq, meta-learning is applied to seek 6,,

and w,,. Meta-transfer learning is conducted to get sensitive and trans-

ferable parameters with regard to the scale and the structure. 61

Xi

4.4

4.5

4.6

The experiment about search-evaluation gap for each controller. I cal-
culate the kendall rank correlation coefficient to compare each settings
byvalue.
The experiment about simultaneous search for various scale image
super-resolution task. By short time of adaptation process, the con-
troller learns to sample promising networks for each scale.
Qualitative result on the 4th image from the Urban100 dataset for x2
SR task. I compare my method with nine conventional SR methods. (a)
ground truth. (b) bicubic downsampled image. (c) VDSR. (d) Mem-
Net. (e) CARN. (f) MoreMNAS. (g) FALSR. (h) DeCoNASNet. (i)
MBNASNet. (j) Proposed.o oo

Xii

Chapter 1

INTRODUCTION

Nowadays, numerous images and videos are taken from smartphones and shared to
the internet. Due to the lack of mobile data, images and videos are compressed or
resized when they are uploaded to SNS. Once the image is resized to small size, the
information is disappeared and they can’t be up-sampled simply. The image super-
resolution algorithms are used in this situation, to reconstruct the high-resolution im-
age from low-resolution input. It is also an important technology that can be widely
used as a pre-processing step of various tasks such as medical image analysis [8], satel-
lite image recognition [9], security image processing [10], etc. with the development
of deep learning area, the SISR algorithms also change their paradigm from conven-
tional interpolation-based [11] or reconstructuion-based method [12] to learning-based
methods which train the neural networks with many LR-HR image pairs to create high-
resolution images.

Many deep neural networks for SISR have been proposed [1-5,13—-18]. The convo-
lution layer and its variants such as dilated convolution or depth-separable convolution
is used as a basic operation of the deep learning-based algorithms. Researchers have
proposed specific structures to achieve better performance.

However, in designing a deep network, I should select a considerable number of

network configurations such as connection, operation type, the number of feature chan-

nels, depth, etc. Researchers have designed their structures through a large number of
trials to achieve a competent performance. It is a tedious task and difficult to find an
optimal system for a given task. The NAS algorithms have been proposed to alleviate
this burden, especially in the case of image classification researches [19-26].

Some researchers expanded the neural architecture search scheme to the other tasks
such as object detection (Auto-deeplab) [27] and image SR (MoreMNAS, FALSR) [6,
7]. Specifically, they used a reinforced evolution algorithm and solved the image SR
task as a multi-objective problem. However, these reinforced evolution algorithms
need more than 1 GPU month to find optimal architectures. Furthermore, FALSR eval-
uated the network approximately because they did not use a complete training strategy.

To overcome these drawbacks, I propose a new NAS-based SR method by tak-
ing the idea of ENAS [21] as my baseline search framework. The ENAS consists of
two components: a controller and child network. The controller is composed of LSTM
blocks to generate a sequence used to construct child network. The REINFORCE [28]
algorithm is used to train the controller to create optimal child network which results
in high-quality SR results. As in the original ENAS for the classification problems,
child networks share their parameters during the training and evaluation. In addition,
I propose a complexity-based penalty to reduce the rewards of the networks that need
a large number of parameters. I exclude redundant hierarchical information by pre-
dicting connections for local and global feature fusion through the controller. I Also
create the densely connected search space on the baseline of residual dense network
(RDN) [17]. The proposed search space consists of mix nodes for densely connected
network blocks (DNB), local feature fusion, and global feature fusion. In addition to
the convolution layer with 3times3 filters in the baseline network, dilated convolu-
tion [29] and depth separable convolution [30] are included in the search space.

To further achieve better performance, I propose a new search space for image
super-resolution. I find that unlike most of earlier learning-based SR methods which

used single-branch network, some methods [15, 18,31, 32] constructed multi-branch

networks to extract multi-scale features from low-resolution input. These methods tend
to perform better with fewer parameters than single-branch networks. Based on this,
in this dissertation, I propose an automated multi-branch search space design for the
neural architecture search (NAS) scheme. To be specific, I propose a Multi-Branch
Neural Architecture Search (MBNAS) algorithm, which tries to find optimal connec-
tions in multi-branch structures. The MBNAS search space consists of partially shared
nodes (PSN) for multi-scale block, local feature fusion layer, and global feature fusion
layer. The PSNs share their parameters with different branches to transmit information
efficiently to them. For simplicity, I use only 3 x 3 convolution and 3 x 3 dilated con-
volution as the basic operation, and let the search algorithm find optimal connections.

Lastly, I adopt meta transfer-learning scheme to my NAS-SR method to con-
duct simultaneous search for image super-resolution of various scales. Existing NAS-
SR methods can only perform network search for one scale at a time. Unlike previ-
ous methods, I train the controller and the child network with meta-transfer learning
scheme. After meta-training, the parameters of the controller are able to adapt rapidly
to the image super-resolution task of specific scale. Furthermore, the parameters of
the child network can be used as the promising initial point for final evaluation and

achieve better result.

1.1 contribution

The main contributions of this dissertation are summarized as follows:

1. New NAS-based SR:I propose a new NAS-based SR network design, which
searches for networks with higher performance by combining hierarchical and

local information efficiently.

2. Complexity-based penalty: I propose a complexity-based penalty and add it to
the reward signal of the REINFORCE algorithm. This enables us to search for

an efficient network that has high performance with a lightweight structure.

3. Feature Fusion Layer Search: I search for connection of feature fusion layer.
instead of connecting all the global/local feature fusion layers. I design the con-
nection to be predicted through the controller, which removes redundant hierar-

chical information and hence reduce network complexity.

4. Multi-branch structure for multi-scale feature extraction: I construct the network
with a multi-branch structure, and each branch learns how to restore patterns of

different scales.

5. Partially shared node (PSN): I partially share the parameters of branches to con-
nect each other’s information and construct a lightweight structure. The partially
shared structure efficiently reduces the searched network’s parameter without

performance degradation.

6. Meta-transfer learning for simultaneous search of various scale image super-
resolution: I apply meta-transfer learning to the controller and the child network
of my framework, and find the promising structure for image SR network of

various scale at the same time.

1.2 contents

The rest of this dissertation is organized as follows. In chapter 2, the proposed NAS-
based image SR framework with single-branch structure, DeCoNAS is explained. I
search for multi-branch image SR network named as MBNASNet in chapter 3. In
chapter 4, I applied meta-learning scheme to the NAS-SR framework and achieve the
simultaneous architecture search for various scale image super-resolution. Finally, this

dissertation is concluded in chapter 5.

Chapter 2

Neural Architecture Search for Image Super-Resolution

Using Densely Constructed Search Space: DeCoNAS

2.1 Introduction

Single image super-resolution (SISR) is a task that creates a clearer high-resolution
image from a single low-resolution input. It is an important technology that can be
used as a pre-processing step to increase performances of various tasks such as medical
image analysis [8], satellite image recognition [9], security image processing [10], etc.
The SISR is an ill-posed problem because multiple HR images can be mapped to a
single LR image. Hence, learning-based methods trained with many LR-HR image
pairs are generally more effective than the interpolation-based [11] or reconstruction-
based methods [12].

Recently, many deep neural networks for SISR have been developed [1-5, 13-18],
where Dong et al.’s SRCNN [1] is the first convolutional neural network (CNN) for
the SISR. It consists of three convolution layers and yet outperformed conventional
non-learning methods by a large margin. FSRCNN [13] and ESPCN [14] tried to re-
duce the computational cost of the structure. They used LR images directly as the input

of their neural networks. Then, deconvolution and sub-pixel convolution layers were

used for upsampling their results. VDSR [2] dramatically increased the depth of the
model by residual learning and gradient clipping strategy. Lim et al. [15] further im-
proved performance by a residual block composed of extensive features (EDSR) and
multi-scale structure (MDSR). In MemNet [4], MSRN [18], and DenseSR [16], they
proposed specific blocks in their models, such as memory block, multi-scale residual
block or dense block. SelNet [33] used selection unit instead of conventional Relu op-
eration. Zhang et al. proposed RDN [17], which consists of residual dense block and
dense feature fusion that extract abundant information from the input. RCAN [34] ap-
plied channel attention mechanism to improve representational ability of CNNS. It is
believed that most of these networks have been designed through laborious trials of hu-
man experts, by tuning a large number of network hyperparameters such as operation
type, the number of channels, connection, depth, etc. However, a network designed by
human labor may not be optimal for the given resources.

In the case of image classification research fields, neural architecture search (NAS)
methods have been proposed [19-26], which automatically find an optimal network to
alleviate human labors [19-26]. As a pioneering study, Zoph et al. [19] proposed a
controller network that generates a child network structure based on reinforcement
learning (RL). The NAS trained the controller network by REINFORCE [28], which
is a kind of policy gradient algorithm. But, this method took a tremendous amount of
time to evaluate the candidate models because they trained the models from scratch.
To reduce the time it takes to measure the accuracy, Liu et al. [20] proposed the PNAS,
which used the sequential model-based optimization (SMBO) and learned a surrogate
model to predict its performance directly. Also, ENAS [21] reduced the evaluation
time by about a thousand times, by applying a weight sharing scheme. The ENAS
constructed a large graph and regarded each model as a sub-graph of the main graph.
In this way, child networks can share their parameters while being trained separately.

Another branch of NAS algorithms is the evolutionary-based methods [22-24],

which pick a population of neural networks randomly. Then, they encode the network

structures as binary sequences and apply genetic modifications such as mutation and
crossover to find better models. Additionally, NSGA-Net [23] used Bayesian optimiza-
tion to get an advantage from its search history. Real et al. [24] introduced Amoeba-
Net, which use an aging evolution algorithm to discard the earliest trained network.
DARTS [25] and NAO [26] are also promising architectures that are approached dif-
ferently from RL and evolutionary-based algorithm. DARTS optimized all parameters
and connections in the neural architecture jointly with a continuous relaxation of the
search space. NAO proposed a learnable embedding space of architectures and found
the best model from it.

Recently, some researchers expanded the NAS to other domains such as object
detection [27] (Auto-deeplab) and image SR [6] (MoreMNAS), [7] (FALSR). Specif-
ically, they used a reinforced evolution algorithm and solved the image SR task as a
multi-objective problem. However, these reinforced evolution algorithms need more
than 1 GPU month to find optimal architectures. Furthermore, FALSR evaluated the
network approximately because they did not use a complete training strategy.

To overcome these drawbacks, I take the idea of ENAS [21] as my baseline search
framework. The ENAS consists of a controller and child networks, where the con-
troller is composed of LSTM blocks to generate a child network sequence. I also use
the REINFORCE [28] algorithm to train the controller in the direction of increasing
PSNR of the SR results. As in the original ENAS for the classification problems, child
networks share their parameters during the training and evaluation. In addition, I pro-
pose a complexity-based penalty to reduce the rewards for the networks that need a
large number of parameters. I exclude redundant hierarchical information by predict-
ing connections for local and global feature fusion through the controller.

SR is a type of regression that generally needs a deeper and more complex network
than classification. Hence, in this dissertation, I search for a new SR architecture on the
densely constructed search space. Specifically, I propose a Densely Connected Neural

Architecture Search (DeCoNAS) method, which attempts to find optimal connections

1x1 conv

3x3 conv
Periodic shuffling

3x3 conv

c
S
3
=
E
©
Qo
c
o
©

Global Residual Learning

Figure 2.1: The architecture of the proposed DeCoNASNet system.

on the baseline of residual dense network (RDN) [17]. The proposed DeCoNAS search
space consists of mix nodes for densely connected network blocks (DNB), local feature
fusion, and global feature fusion. In addition to the convolution layer with 3 x 3 filters
in the baseline network, dilated convolution [29] and depth separable convolution [30]
are included in the search space for better performance. Experiments show that my
DeCoNASNet performs better than human-crafted networks and the existing NAS-
based SR network [6, 7]

my main contributions are summarized as follows:

1. A New NAS-Based SR: I propose a new NAS-based SR network design, named
DeCoNAS, which searches for networks with higher performance by combining

hierarchical and local information efficiently.

2. Complexity-Based Penalty: I design a complexity-based penalty and add it to
the reward of the REINFORCE algorithm, which enables us to search for an

efficient network that has high performance and fewer parameters.

3. Feature Fusion Layer Search: I also search for efficient feature fusion method.
Instead of connecting all the global/local feature fusion layers, I design the con-
nection to be predicted through the controller, which removes redundant hierar-

chical information and hence reduce network complexity.

&) i

2.2 Proposed Method

As a typical RL framework, the proposed architecture consists of two parts: a child
network (denoted as DeCoNASNet) for reward measurement and a controller for net-
work structure generation. Following ENAS [21], I try to save time by using parameter
sharing when training a child network. Also, I regard the SR as a multi-objective task.
That is, I design a complexity-based penalty to consider not only the PSNR but also
the parameter complexity of the network for calculating the reward.

I use a two-layer LSTM network in my controller to generate the DeCoNASNet
structure. Supposing that the child network ¢ consists of N blocks, M mix nodes, and

K mix node operations, the controller sequence S, for c is

SC:{SMasF})
Sy ={Sf}0<i<MO0<j<i0<k<K, 2.1)

Sp={9": 5™, 8, 5,1,

where Sjs is the sequence for mix node configuration, and Sr is the sequence for
the feature fusion layer. Sg consists of two sequences, S; and S,, which denote the

sequence for local feature fusion and global feature fusion, respectively.

2.2.1 Overall structure of DeCoNASNet

DeCoNASNet consists of three parts as shown in Fig. 2.1, inspired by the RDN [17]
architecture: shallow feature extractor network (SFENet), densely connected network

(DeCoNet), and UPNet. The output of SFENet can be represented as

Fo = Hspp2(Hsrei1(ILr)), (2.2)

where H (-) denotes the convolution operation. SFENet converts the input image /15

into a shallow feature Fp, which is used as the input to the DeCoNet. Then, the output

1x1 conv

Concatenation

=
[}
14
&
o
f=J
(J
2
<

Figure 2.2: Detailed structure of the densely connected network blocks (DNB).

of the d-th DNB in DeCoNet, denoted by Fy; is expressed as
Fy= HDNB’d(Hl(concat(Fo, ... ,Fdfl)))’ 2.3)

where Hpyp(+) denotes the DNB operation and H;(-) is 1 x 1 convolution to match
the input channels of DNBs. I will explain the operation Hpy p(+) in the next subsec-
tion. I omit H; () and concatenation operation in Fig. 2.1 for simplicity. The global
feature fusion layer follows after the /N-th DNB to combine the information of the
features of DNB. The output of the global feature fusion layer, denoted by Fp is

described as

For = Horr(Fo),

Fo = concat(Sgo o 7 SgN_l -Fn_1,FN),

(2.4)

where Hgrp(-) denotes the 1 x 1 convolution and 3 x 3 convolution operation,
Sgi denotes the output global feature fusion sequence of controller, and concat(-)
denotes the concatenation of features. I omit F; when concatenating features if ng‘ is
zero. All of the Sgi equal to one if I do not use the feature fusion search strategy. The
UPNet combines the output of DeCoNet and F_1, which is the shallow feature from
the SFENet. I use periodic shuffling operation and applied 3 x 3 convolution as in
Ralks L
10 e

ESPCN [14], to convert LR features to high-resolution images. I fix the SFENet and
the UPNet, while I search for the DeCoNet. In all of my figures, I use dashed arrows

to depict that the connection is to be searched.

2.2.2 Constructing the DNB

I apply the same operation Hpy () through all the DNBs. Each DNB consists of M
mix nodes as shown in Fig. 2.2, where there are three element candidates in the mix

node:
¢ 3 x 3 2D convolution,
* 3 X 3 depth separable convolution,
* 3 x 3 dilated convolution with rate 3.

Also, Iy, over the arrow is the output of the m-th mix node in the d-th DNB with K

candidate mix node operations, which are obtained as

. 0:K—1 .
Fd,m—la if Sm,O:m—l =0

Fd,m = 2.5
CA(Relu(average(Finier))), else

where

0:K—1
Fnt = Fam | | 2.6)
Fgm = Hi(concat(Sy, 0 Fa0,-- s Spm—1 Fam-1))

0:K—-1

where H;(-) denotes the i-th operation in K operations, and S, "~

1 1s the sequence
for the m-th mix node configuration. Same as the Eq. (2.4), I omit Fé,m or Fy,, if
S'fn,O:m—

network used in RCAN [34].

1 =0or anJ- = 0in Eq. (2.6). CA(-) in Eq. (2.5) denotes channel attention

11

's19A®] uoIsny aInjeaj 1oj spdwexa ay) SI (q) pue ‘sopou XIw 10} o[dwexa ay) st (&)

(¢ = N) SANd € PUe (g = A7) SOpou XIW g YIIm Inonns JONSYNO0DJ pue Jo[jonuo) Aw jo armonis ojdwexa oy, ;¢ 93y

i
X
fas
o
=]
=1
<

uoneusaeauod

gei
0019 WLST

(@

AUOD TXT

qua~do

uoneusleIU0D

29019 W1ST

(®)

qua~do

%0010 WLST #0019 WLST

cee qua~do
cee

9019 LS

(1-p) NA

uoneUIROU0D
‘une [puueyd

njey » abelany
‘une [auueyd

njay % abelany

E
—-

Ere—

g
oy

——

~

e

il

- "

12

2.2.3 Constructing controller for the DeCoNASNet
Controller output of the mix node

Ineed ¢ x K sequences to create the ¢-th mix node. Hence, my controller is composed
of Zf\i 1= M LSTM blocks, and K fully connected layers are connected to
each LSTM block. For example, As shown in Fig. 2.3(a), I use 3 LSTM blocks and 9

outputs to create the connections for two mix nodes.

Controller output of the feature fusion layer

There are two LSTM blocks for feature fusion layer search. These blocks are con-
nected to the last LSTM block for mix node, in order to include the information about
the mix node structure. Like the mix node, I connect N and M fully connected lay-
ers to two LSTM blocks, respectively. The output from each LSTM block denotes the
connection between the mix node and the feature fusion layer. Fig. 2.3(b) shows an

example connection of local/global feature fusion layer.

2.2.4 Training DeCoNAS and complexity-based penalty

Following ENAS [21], the DeCoNAS has two learnable parameters. The parameter
of the controller is 8, and the parameter of the child network is w. To learn € and w
alternately, I use a two-step learning strategy. In the first step, I train w using training
data. I use an RL scheme to train 0, with the reward signal consisting of peak signal to

noise ratio (PSNR) and complexity-based penalty.

Training child network

As the first step to training DeCoNAS, I need to learn w, which is the parameter of the

child network, ¢. This problem is defined as

min E [L(c;w)]. (2.7

W c~m(c;0)

13

To optimize w, I fix the controller’s policy 7(c; @) and use Adam optimizer [35]. In
this case, I use the L1 loss for L(c; w), calculated on training data and model ¢ gener-

ated by 7(c; 8). Gradient of E¢(c;9)[L(c; W)] is calculated by Monte Carlo estimate

M
1
v E LW~ 5 Z; VwL(ei; W), (2.8)

where ¢;’s are sampled by the controller’s policy 7(c;). As mentioned in ENAS [21],
w can be optimized by calculating the gradient for only one model ¢ generated by

7(c; @) for each mini-batch.

Training controller with performance reward and complexity-based penalty

In the second step, I need to train €, which is the controller’s parameter. This problem
is to maximize the expected reward as

mgtx EP(Gl:T§9) [R], (29)

where aq.7 is the controller output for the child network ¢, which follows the distribu-
tion of 7(c; @). I compute the gradient of the problem by using the approximation of

gradients in REINFORCE [28] as

T

Ve E [R] =) [Velog Plafar11;60)(R - b)] (2.10)
P(ai.7;0) P

where b is the baseline for reducing the variance, which is the moving average of the

reward. While ENAS used classification accuracy for R, I calculate it differently as
R = p(e,w)—a * cb(c), (2.11)

where p(c¢, w) is the PSNR of model c. I calculate the PSNR using the validation set

rather than the training set to prevent overfitting. Also, cb(c) is the complexity-based

14

penalty, calculated as
ch(e) = ™ 2.12)

Nem

where n,, denotes the number of parameters in the generated model ¢ and n.,, indi-
cates the number of parameters in the most complex model in the search space. I also
multiply « by ¢b(c¢), allowing the user to set a trade-off between the performance and

model complexity. Finally, I use Adam optimizer [35] to maximize the reward.

2.3 Experimental results

2.3.1 Settings
Datasets and metrics

I use DIV2K dataset [36] for the training, which has been widely used for training im-
age restoration networks. The DIV2K contains 800 training images, 100 validation im-
ages, and 100 test images. I use all images in the training set to train my DeCoNASNet,
and use all of the validation images when calculating the reward and training the con-
troller. Experiments are conducted on four benchmark datasets, Set5 [37], Set14 [38],
B100 [39], and Urban100 [40], where I compute PSNR and SSIM [41] on the Y chan-

nel.

Implemenation details

My proposed DeCoNASNet has 4 DNBs, and each DNB has 4 mix nodes. The output
channel of SFENet and DNB are both 64. The 3 x 3 convolution layer in UPNet also
has 64 output channels, and I conduct periodic shuffling on the feature maps. The
final convolution layer has 3 x 3 filters and three output channels to restore the high-
resolution images.

The LSTM block in the controller is made of two stacked LSTM layers with 64

hidden states. Fully connected layers for one operation in each LSTM block are sharing

15

their parameters. I tie the LSTM outputs with word embeddings [42] to make the input

of the next LSTM block.

Training setting

In the search phase, I need to train controller and DeCoNASNet together. [use variance
scaled initialization [43] with 0.02 scaling value for DeCoNASNet parameter w and
controller parameter 6. To train the controller, I apply 100 iterations for one epoch,
and the learning rate is fixed to 3 x 1074,

For training the DeCoNASNet, I randomly extract 16 LR patches of size 64 x 64
from the DIV2K training image as the input to the network. After extracting the
patches, I apply horizontal flip and 90°, 180°, 270° rotations to each patch randomly
for data augmentation. I conduct 1,000 backpropagation for an epoch, where Adam
optimizer [35] is used for updating parameters. The learning rate is initialized to 10~*
and decreased by half for every 5 x 10° iterations (50 epochs), and 200 epochs are
conducted for the search phase. I sample 100 candidate structures by the trained con-
troller and choose the best architecture as my DeCoNASNet structure. After choosing
the best architectures, I train the DeCoNASNet for 1,000 epochs. The learning rate is
initialized to 10~* and decreases by half for every 200 epochs. The other settings are

the same as the search phase.

2.3.2 Results
DeCoNAS search result

T'use 16 DNBs (/N = 16) and 8 mix nodes in each DNB (M = 8) to verify the effect of
feature fusion strategy and complexity-based penalty. Table 2.1 and Fig. 2.4 show the
performance of total 400 DeCoNAS structures in four settings (100 structures each).
The baseline setting (denoted as FFO_CBO0), which omitted the feature fusion search
(FF) and complexity-based penalty (CB), shows the best performance with 23.2 M
parameters. I add one of CB or FF to FFO_CB1 and FF1_CBO. From the results, I can

16

Table 2.1: Performance comparison between search settings.

Search setting | CBO_FF0 | CBO_FF1 | CB1_FF0 | CB1_FF1

Best PSNR 35.919 35.602 35.894 35.436
Parameters | 22.9M 254 M 18.0 M 259M
Mean PSNR 35.294 35.168 35.324 35.025
Parameters | 22.5M 28.4 M 171 M 24 9M
370 performance comparison between search settings
36.5 -
36.0 A A
o 4 ee o
5355_ -:-:t! e® :- . : Py
27 T R T SR
< © g% 0 ¥ gefae¥ 0,820
S8 35.0 - ° !4‘ o ‘o‘ Slxtng!!ﬂ!‘r -
e IR R B R
(_g ° ':.z‘. on o
34.5 S e * e CBO_FFO
CB1_FF1
340 CBO_FF1
e CB1_FFO
mean_architecture
33.5 T T T T T T
5 10 15 20 25 30 35 40
Parameters(M)

Figure 2.4: Scatter plot of 100 samples for each search setting.

also see that FFO_CB1 achieves almost the same performance as the baseline search
strategy, with 20% less parameters, and FF1_CBO has slightly lower performance with
large parameters. Finally, I apply both strategies, resulting in FF1_CB1, which is shown
to have fewer parameters than the FF1_CBO model, but yields inferior performance
than the others. Further discussions about CB and FF strategies are at the ablation
study section.

I use 4 DNBs (N = 4) and 4 mix nodes (M = 4) in each DNB to make De-

17

DNB (d-1)

concat B concat § concat
Dil. Sep.

conv
conv. conv. .

Average

i

concat M concat M concat
Dil. Sep G
conv conv .

Average & Relu

Z3pouxIN

Channel attn.

concat M concat | concat ;

Dil. Sep. i §

conv. conv o

— w

Average & Relu

Channel attn.

|
concat M concat M concat
Dil. Sep.

conv
conv conv :

¥ 3pouxIN

Average & Relu

Channel attn.

YYVYY

Concatenation

1x1 conv

DNB (d+1)

Figure 2.5: My DeCoNASNet model found by controller.

Table 2.2: Public benchmark test results (PSNR/SSIM) for x2 SR. The red color
means the best performance and the blue means the second best. The “Design time” at
the last column indicates the times taken by the NAS approaches.

Model ‘ Params ‘ Set 5 ‘ Set 14 ‘ B100 ‘ Uban100 ‘ Design time
Bicubic - 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88 /0.8403 -
SRCNN [1] 57K | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 -
VDSR [2] 665K | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76 /0.9140 -
LapSRN [3] 813K | 37.52/0.9591 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9101 -
MemNet [4] 677K | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 -
SelNet [33] 970K | 37.89/0.9598 | 33.61/0.9160 | 32.08 / 0.8984 -/- -
CARN [5] 1,582K | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 -
MoreMNAS-A [6] 1,039K | 37.63/0.9584 | 33.23/0.9138 | 31.95/0.8961 | 31.24/0.9187 | 56 GPU days
FALSR-A [7] 1,021K | 37.82/0.9595 | 33.55/0.9168 | 32.12/0.8987 | 31.93/0.9256 | 24 GPU days
DeCoNASNet (mine) | 1,713K | 37.96/0.9594 | 33.63/0.9175 | 32.15/0.8986 | 32.03/0.9265 | 12 GPU hours

Figure 2.6: Qualitative comparison of the conventional methods and mine. (a) HR
image, (b) bicubic LR image, (¢) SRCNN [1], (d) VDSR [2], (e) LapSRN [3], (f)
MemNet [4], (g) CARN [5], (h) MoreMNAS [6], (i) FALSR [7], (j) DeCoNASNet
(mine).

CoNASNet structure. I choose the best architecture which belongs to FFO_CB1 set-
ting. Fig. 2.5 shows the DNB structure of DeCoNASNet:{7, 6, 4, 3,0, 2, 2, 3, 4, 1}.
The local/global feature fusion connections are all connected because I do not use the
feature fusion search strategy. I regard three outputs of each controller LSTM block
as the binary number and convert it to a decimal number for simplicity. For example,
four in the sequence means {1, 0, 0} and six is {1, 1, 0}. It takes about 12 hours by 1
Titan XP GPU to search for the DeCoNASNet structure, which is far less than other
NAS-based methods.

].9 e i'

Ablation study about complexity based penalty

37.0
36.5
36.0
A A
o . ° °
E©1355 .::'.° Te | o} :
Z 9997 T3 bt - u 'u-.'- §3°°
2 t.:. :f :‘ !.!.;’ oo
5 LT T
S o 0®(8008,2" oo
T 35.0 1 s e ote O get
° (18 (] o
E []
> ° °
34.5
34.0 - e CBO_FFO
e CB1_FFO
mean_architecture
33.5 T T T T T T
5 10 15 20 25 30 35 40
Parameters(M)

Figure 2.7: Ablation analysis about effect of the complexity-based penalty.

Comparison with state-of-the-art methods

I compare my DeCoNASNet with six lightweight networks (SRCNN [1], VDSR [2],
MemNet [4], LapSRN [3], SelNet [33], CARN [5]) and two NAS-based methods
(MoreMNAS [6], FALSR [7]). The results are shown in Table 2.2, where I can see
that DeCoNASNet outperforms other hand-crafted lightweight models and existing
NAS-based ones while using somewhat more parameters, still within 2M. The most
important advantage of my method is that it finds the optimal structure within 16
hours, which is x50 faster than other NAS-based methods. I compare the visual results
of my model with the others (SRCNNN [1], VDSR [2], LapSRN [3], MemNet [4],
CARN [5], MoreMNAS [6], FALSR [7]) in Fig. 2.6. I find that DeCoNASNet suc-
cessfully restores the details in images. Specifically, DeCoNASNet and CARN restore

the double curves at the black arrow, while others do not.

20

Ablation study about feature fusion search

37.0
36.5
36.0
A
o °
o ° ° 3
[] L] []
£ 3551 esfie.ce g3tel
0 [X J LY ' [P)
o 0: l "" °® []
45 ..:0:' .. oo,
§ 35.0 : L] .:9
= o o L
g []
34.5
e CBO_FFO
340 CBO_FF1
best_architecture
mean_architecture
33.5 T T T T T T
5 10 15 20 25 30 35 40
Parameters(M)

Figure 2.8: Ablation analysis about the feature fusion search strategy.

2.3.3 Ablation study

Fig. 2.7 shows a comparison between different complexity-based penalty coefficients,
a. I conduct two experiments in the DeCoNAS search space (N = 16, M = 8) to
analyze the effect of the complexity-based penalty. The baseline strategy is denoted as
CBO0_FFO, and the other strategy using CB coefficient o = 2 is described as CB1_FFO0.
The parameters of the searched model are decreased, but the performance difference is
small when I change the CB strategy. Hence, I can validate that the complexity-based
penalty efficiently controls the trade-off between the performance and the number of
parameters. Users can choose « to find models that fit their purpose.

I also show the effect of feature fusion search (FF) strategy in Fig. 2.8. The red
and orange dots in the figure denote CBO_FF0 and CBO_FF1, respectively. It can be
seen that the FF strategy tends to find more complex models than no FF strategy. This

is mainly because the controller tries to compensate for the information loss from the

21

feature fusion layer disconnection. I can verify that the connections to the global/local

feature fusion layer are more important than the connections in the mix node.

2.4 Summary

I have proposed an RL-based neural architecture search algorithm for image SR, named
as DeCoNAS. It is shown that the proposed method can find a promising lightweight
SR network (DeCoNASNet) within 16 hours, which is a lot faster than other NAS-
based algorithms. I have also proposed a feature fusion search strategy in the proposed
searching scheme, which verified the importance of global/local fusion structure for
the SR. Moreover, the complexity-based penalty to the reward could reduce the net-
work complexity, which enabled lightweight network architecture. Experiments show
that the resulted DeCoNASNet yields higher performance in terms of PSNR vs. com-
plexity among the recent handcrafted lightweight SR networks and other NAS-based

ones.

22

Chapter 3

Multi-Branch Neural Architecture Search for Lightweight

Image Super-resolution

3.1 Introduction

Single image super-resolution (SISR) is a task that restores a high-resolution (HR)
image from a single low-resolution (LR) observation. It is widely used as a prepro-
cessing step of various tasks such as medical image analysis [8], security image pro-
cessing [10], satellite image recognition [9], etc. Most of the recent researches adopt
learning-based methods that use LR-HR image pairs for training [1-5, 13-18], which
generally show better performance than the classic interpolation-based [11] or reconstruction-
based [12] methods.

Most earlier learning-based SR methods used single-branch neural networks for
their simplicity and straightforwardness. However, when the single branch is deep-
ened to increase the performance, there can be a gradient vanishing problem, and the
resulting network needs too many parameters. Thus, instead of using the single branch
network, some methods exploited multi-branch networks for extracting multi-scale
features from the LR input [15,18,31,32], thereby achieving better performances with

fewer parameters. But due to the increased complexity of the network structure, it

23

needs many trials and errors to find the optimal connection between the elements man-
ually. Based on this, in this dissertation, I propose an automated multi-branch SISR
network design based on the neural architecture search (NAS) scheme [19], unlike the
conventional manual design of single-branch or multi-branch networks. I include the
multi-branch networks to expand the search space and propose a new NAS-based SISR
network design while existing search methods attempted to find the optimal connection
within the single-branch networks.

Neural architecture search (NAS) algorithm has been developed for the purpose
of reducing the effort put into designing the neural architecture of certain tasks [19—
26,44]. They focus on the image classification task and try to find promising network
automatically by adopting reinforcement learning, evolutionary algorithm or gradient
descent method.

Recently, researchers have expanded the NAS to other tasks such as image restora-
tion [6,7,45,46] (MoreMNAS, FALSR, HNAS, Improved DARTS), and object detec-
tion [27]. For the SISR, FALSR and MoreMNAS used a reinforced evolution algorithm
and solved the image SR task as a multi-objective problem. However, the reinforced
evolution method took a tremendous amount of time to derive an optimal network.
Additionally, FALSR did not use a complete training scheme, but they measured the
performance of the network approximately.

To alleviate these problems in my application, I adopt the weight-sharing scheme
of ENAS [21] as my baseline search algorith because it is known to provide faster de-
sign time than its predecesors. As in the original ENAS for the classification problems,
I configure a controller and a child network in the search process. The controller gener-
ates a sequence for a child network, and a child network is constructed by the generated
controller sequence. REINFORCE algorithm is used to train the controller network to
generate a better child network. For the SISR task, The reward signal in REINFORCE
is the PSNR between the generated child network’s output and the ground-truth. I share

the parameters of each child network during the search phase. In addition, I propose a

24

complexity-based penalty to reduce the reward from the network that needs a huge pa-
rameter. By applying the complexity-based penalty, the controller tends to recommend
powerful but lightweight networks.

Image super-resolution is a kind of regression task that generally requires a more
precise and complex network than a classification task. For this reason, I search for a
new SR architecture on a multi-branch search space as stated above. To be specific, |
propose a Multi-Branch Neural Architecture Search (MBNAS) algorithm, which tries
to find optimal connections of multi-scale features. The MBNAS search space consists
of partially shared nodes (PSN) for multi-scale block, local feature fusion layer, and
global feature fusion layer. The PSNs share their parameters with different network
branches to transmit information efficiently with fewer parameters. For simplicity, I
use only 3 x 3 convolution and 3 x 3 dilated convolutions [29] as basic building blocks,
and let the search algorithm find optimal connections. Still, I obtain an efficient archi-
tecture as a result of the search algorithm, which is validated by extensive experiments.
The experimental results show that my network obtained by the MBNAS, named as
MBNASNet, performs comparably to human-crafted networks and the existing NAS-
based SR networks [6,7,45].

My main contributions are summarized as follows:

1. New NAS-based SR: I propose a new NAS-based SR network design method,
named MBNAS, which searches for networks with higher performance by com-

bining multi-scale information efficiently. The resulting SR network is the MB-

NASNet.

2. Complexity-based penalty: I propose a complexity-based penalty and add it to
the reward signal of the REINFORCE algorithm. This enables us to search for

an efficient network that has high performance with a lightweight structure.

3. Multi-branch structure for multi-scale feature extraction: I construct the network

with a multi-branch structure, and each branch learns how to restore patterns of

25

different scales.

4. Partially shared node (PSN): I partially share the parameters of branches to con-
nect each other’s information and construct a lightweight structure. The partially
shared structure efficiently reduces the searched network’s parameter without

performance degradation.

I presented a preliminary work of NAS-based image super-resolution with a single-
branch network in [47], called DeCoNASNet. The major difference of this work from
my previous version is that I propose an expanded search space for NAS to capture
multi-scale information, which brings a significant performance gain with reduced pa-
rameters. For this, I modify the algorithm to include the multi-braches into the search
space. Also, I provide detailed analysis and explanations of the search process and
results, and exhibit more experimental results, including the results on higher rate SR.

The rest of this chapter is organized as follows. Section 2 summarizes related
works on the single image super-resolution and neural architecture search methods.
In section 3, I explain my proposed search method for SISR. Section 4 includes the
details about my implementation settings and dataset configurations, followed by ex-
periment results. I discuss my main contributions and conduct ablation experiments in

section 5. Finally, I provide a summary and concluding remarks in section 6.

3.2 Related Work

3.2.1 Single image super-resolution

A number of methods have been proposed for learning the mapping function from LR
images to the appropriate HR counterparts [1-5, 13—18]. Dong et al. proposed SR-
CNN [1], which is the first deep learning structure for the SISR. It used three layers of
convolutional neural networks (CNNs) and outperformed non-learning-based conven-

tional methods by a large margin. FRCNN [13] and ESPCN [14] used specific struc-

26

tures to reduce the computational cost of deep neural networks in the SISR networks.
They proposed deconvolution layers and sub-pixel convolution layers to upsample LR
features to an HR image. VDSR [2] used residual learning and gradient clipping strat-
egy to increase the depth and thus the performance. Lim et al. [15] introduced residual
blocks with extensive features (EDSR) and multi-scale structure (MDSR) to improve
the performance further. MemNet [4], MSRN [18], and DenseSR [16] proposed mem-
ory block, multi-scale residual block, and dense block, respectively, for a better SR
restoration. SelNet [33] improved the performance by replacing the Relu operation
with the selection unit. Zhang et al. proposed residual dense block and dense feature
fusion algorithm in RDN [17] to extract abundant information from the input image.
RCAN [34] proposed a channel attention scheme that improved the representational

ability of the neural network.

3.2.2 Neural architecture search

In designing a deep network, I should select a considerable number of network config-
urations such as connection, operation type, the number of feature channels, depth, etc.
Researchers have designed their structures through a large number of trials to achieve
a competent performance. However, it is a tedious task and difficult to find an opti-
mal system for a given task. The NAS algorithms have been proposed to alleviate this
burden, especially in the case of image classification researches [19-26].

As the first study of NAS, Zoph et al. [19] proposed a reinforcement learning (RL)
based algorithm. They configured a controller network to generate a child network
and trained it by REINFORCE [28], which is a kind of policy gradient algorithm.
The performance of the child network was used as a reward signal of the controller
network, where the child network was trained from scratch. Therefore, it took a huge
amount of time to get a reward signal from the child network. To reduce the time to
measure the performance, PNAS by Liu et al. [20] used the sequential model-based

optimization (SMBO) with a surrogate model which predicts its performance instantly.

27

On the other hand, Pham et al. [21] proposed ENAS that constructs a weight sharing
child network to reduce the reward calculation time. This method configured a large
graph and regarded each child network as a sub-graph. The parameters of the child
network were shared in the search phase by storing their weights in the main graph.

Evolutionary methods [22-24] are another trend of the NAS algorithm. They pick
a population of architectures randomly at first and then encode these networks as bi-
nary codes. Genetic modifications such as crossover or mutations are applied to the
sequence, suggesting a better structure. Lu et al. [23] proposed another method that
takes advantage of search history by using a Bayesian optimization algorithm. Amoe-
baNet [24] applies an aging evolution method to NAS to discard the earliest trained
network.

DARTS [25], SGAS [48], NAO [26] and CSA-NAS [44] proposed different ap-
proaches from RL and evolutionary methods. Specifically, DARTS applies continuous
relaxation to the neural architecture’s connections for optimizing the connections and
parameters simultaneously. SGAS applies a greedy operation selection method to the
DARTS and obtains the best architecture without retraining. NAO projects the encoded
sequence to the learnable embedding space of structures and recommends the best ar-
chitecture as a result. CSA-NAS adopts a binary crow search algorithm to find the
optimal architecture.

Regarding the search space design, neural architecture search methods can be cat-
egorized into two groups: methods dealing with (1) flat search space or (2) cell-based
search space. The methods with flat search space [19,21-23] aim to find the opti-
mal setting for the number of channels (width), number of layers (depth), types of
operations (convolution or max pooling) for the whole structure, while cell-based al-
gorithms [20, 21, 23-26] try to find a structure of the cell before stacking them to
form the final architecture. The cell-based search space design is inspired by the split-
transform-merge strategy used in Inception block [49], hence it can approximate the

optimal solution for a given task.

28

Unlike the above algorithms, CSNAS [50], UnNAS [51], and SSNAS [52] dis-
card supervised settings which suffer from the high cost of data labeling. CSNAS and
SSNAS adopt a self-supervised setting, and UnNAS applies unsupervised learning to
search for promising architectures with unlabeled data. Recently, researchers are also
trying to overcome the reproduction challenge and fairly compare search methods by
proposing benchmarks for the NAS and providing some important principles for sci-
entific research in the community [53-55].

There have been many NAS methods as stated above, among which I choose ENAS
as my SR design baseline for its fast design time and also for including the network
complexity in the design constraints. Regarding the design time, DARTS [25], FB-
Net [56], and FBNetV2 [57] also provide fast design time for practical use. But, I
choose ENAS as my SR design baseline because I can easily include the complexity
constraint into consideration within the ENAS framework. Specifically, as the ENAS is
based on the REINFORCE, I modify the reward signal of the REINFORCE to consider

the network complexity as well as the SR performance.

3.2.3 Image super-resolution with neural architecture search

Some researchers recently adopted NAS methods to design image super-resolution
CNNs [6,7,45]. MoreMNAS [6] adopted multi-objective genetic algorithm NSGA-
II [58] for the model generation and proposed a reinforced mutation method. FALSR [7]
used a hybrid controller instead of a reinforced controller and proposed an elastic
search space for macro and micro search. The search space complexity of both meth-
ods is 9.6 x 10'°. HNAS [45] adopted a hierarchical search algorithm with reinforce-
ment learning to simultaneously find promising cell structure and upsampling layer
positions. They also considered the computational cost (FLOPS) to meet the require-
ments about resources constraint. HNAS searches the network from 1.03 x 10? candi-
date networks.

Regarding the architecture and the search space thereof, these previous NAS-based

29

MBNet — — UPNet
Branch 1 = g
S 5
=1 —
- o~ fa) < o
o m o sl ,2
om0 05, B 5]
= = = o O
S5 —
(@] X
| Ll
SFENet]]
Branch 2 c
c S
2 ’
> 2 5| ’
= — o~ [a) © <]
S = S
g — :; —> g - 33) — — 53) —| % — 5 b——
F;
X s 7 s = f 3 o
n & c =
" 5
15} X
| L : X
Branch 3 =
=]
B=1 5
— o~ [a] z]
o o0 [aa] QL —
R g’ and 0 T b= S
= = > 3] o
= il
S x
| B | - Global feature
fusion layer

Figure 3.1: The overall structure of MBNASNet. It consists of a shallow feature ex-
traction network (SFENet), a multi-branch network (MBNet), and an upscaling net-
work (UPNet). The result of each branch is combined and upsampled by the periodic
shuffling layer. The MSB (multi-scale block) is a basic building block, detailed in
Fig. 3.2(a).

methods prepare basic building blocks, which consist of convolutional layers, ReLu,
etc., in cascade. Then, they let the NAS algorithm determine the number of layers
and connections inside the cells. Meanwhile, I prepare a sophisticated architecture to
have expanded search space, i.e., a structure with more different functional elements
to connect. Specifically, I prepare several branches of building blocks, consisting of
multi-rate dilated convolutions, ReLu, and attention, and let the NAS algorithm find the
connections among the various-scale convolutions. By expanding search space through
the multi-branch of dilated convolutions, I can exploit multi-scale features for better

SR reconstruction than conventional single-branch architecture.

30

Branch 1

= § >
2 S s g
x o
o conv with o ©
2 1e o
3 |8 x
O
L
{ o 1 1 0}
FC FC FC FC
LSTM block —— > LSTM block LSTM block LSTM block LR
Branch 2]
Partially shared node 1
‘ £

= il N .

= ; ‘ |5 ‘ z

i) / [adiaed | = s Sxadiated | \ g

g ‘conv with 2 G o

% /5 Rate 2 ;'

= = —

o
{1 1 A 1}
FC FC FC FC
eee LSTM block ———> LSTM block LSTM block LSTM block

(b)

MSB (d+1)

MSB (d+1)

Figure 3.2: The upper part of (a) shows details of my MSB, and the lower part is
illustrating that a controller determines the connections inside the MSBs of branch 1
according to the controller sequence (outputs of FC layers), with an example that there
are two partially shared nodes (PSNs) (M = 2) and two branches (B = 2). (b) shows
the example for branch 2, where the elements inside the MSB are differently connected
than the above case according to the corresponding controller. Two branches share the
parameters of the light purple box. The dashed arrows and colored arrows mean that

these connections are to be searched.

31

2 X2t gk

3.3 Method

3.3.1 Overview of the Proposed MBNAS

My MBNASNet (a child network) is shown in Fig. 3.1, whose components (MSBs) are
designed by a controller in Fig. 3.2, according to the MBNAS algorithm of Fig. 3.3.
The automated design cycle in Fig. 3.3 illustrates that the controller is trained to gen-
erate a potent network, and the child network is trained to get the performance, which
is used to calculate the reward signal.

Fig. 3.1 shows the overview of MBNASNet, which consists of a shallow fea-
ture extraction network (SFENet), an upscaling network (UPNet), and a multi-branch
network (MBNet). The MBNet is designed by the NAS, which consists of several
branches. The MSB (multi-scale block) in the figure is the basic building block de-
tailed in Fig. 3.2. I extract a shallow feature by the SFENet that is fed to each branch.
The partially shared parameters in each branch extract the multi-scale features with
different receptive fields. Results from each branch are combined and upsampled by
pixelshuffle layers [14] to create HR residual information. Finally, the residual infor-
mation is added to the upsampled LR input to make the final HR result.

Fig. 3.2 shows the details of MSB and illustrates their internal connections ac-
cording to sequences from the controller. In each of Fig. 3.2(a) and (b), the upper part
shows a branch of MBNASNet in Fig. 3.1, where three consecutive MSBs are shown.
The central part details the structure of the d-th MSB, and the left and right are the
(d — 1)-th and (d + 1)-th MSBs. The lower part shows the controller that outputs a
sequence to determine the internal connections of the MSB. Fig. 3.2(a) and (b) show
different examples of the output sequences from the controller and the corresponding
connections inside the MSBs.

I use Long Short Term Memory (LSTM) [59] to create the controller, where the
parameters are updated by REINFORCE algorithm. While conventional RL methods

calculate the reward signal of REINFORCE as the performance of validation sets, I

32

Search phase

Generate the child network
<+—— configuration sequence
using controller

Construct the child network Apply REINFORCE method
by the sequence to update the controller

Measure the performance
e and complexity based
penalty to get a reward

Train the constructed
child network

Train phase

Figure 3.3: The overview of the search cycle and training. In the search phase, the
controller and constructed child network are trained alternatively. In the training phase,
the searched final architecture is trained from scratch.

consider both performance and network complexity. For this, I design a complexity-
based penalty and add it to the reward signal to find a more efficient architecture. The
details of the controller, MBNASNet, and design procedure are explained in the rest

of this Section.

3.3.2 Controller and complexity-based penalty
Controller configuration

I use a two-layer LSTM as my controller as shown in the lower part of Fig. 3.2. It
generates a sequence for creating a child network at the end of the fully connected

layer (FC). The output sequence S, for a child network c is defined as

S[;:{So,Sl,...,Sb,...,SB}, (31)

sb = {(st)mmn},0<m <M, 0<n<N,

in the case that the child network consists of B branches, M PSNs in one multi-scale

block (MSB), and each node has N layers. S. consist of B sequences, and each s,

2 A2ty
33 e

denotes the sequence of the b-th branch structure. I need N sequences to create the
m-th PSN for one branch. As a result, my controller consists of M x N x B LSTM
blocks, where each block is followed by an FC layer. The FC layer has K outputs,
where K is the candidate operations of my network. The example sequence and the
constructed block architecture are shown in Fig. 3.2, which generate eight outputs for
a two-branch structure (B = 2) with two PSNs (M = 2) that have two layers (N = 2).

In my search space, the total number of possible directed acyclic graphs (DAGs)
is | K |BXM>*N The set of all possible neural architecture is enormously expanded by
a factor of | K|M>*Y when increasing the number of branches. The search space is also
expanded if I increase the number of PSNs or their layers. Hence, to limit the number
of possible architectures to a manageable size, I choose B = 3, M = 2and N = 2
in my MBNASNet. Because I have three candidate operations (|K| = 3), as will be
addressed in Sec. III-D, the possible set of the architecture is 5.3 x 10°. Finally, to
ensure that the number of parameters is less than 2M, I construct my MBNASNet with

four multi-scale blocks (D = 4).

Complexity-based penalty

The REINFORCE algorithm uses a reward signal to train the parameters of the con-
troller. While ENAS uses only a task performance as the reward signal, I modify the re-
ward signal to find a more powerful and lightweight architecture, as stated in overview
section. Specifically, I propose a complexity-based penalty to penalize a structure with

large parameters, and define a reward signal R as

R =p(c;w) — A x eb(c), (3.2)

34

where p(c; w) is the PSNR of model ¢ and w is the parameters of a child network. The

complexity-based penalty, cb(c) is defined as

Ne

cb(e) = 1 (3.3)

Nmax

where n,,4, denotes the number of the model’s parameters, which uses all candidates
in the search space, and n. is the number of parameters of the designed child network.
To set a trade-off between the parameters and the performance, I multiply A to the

complexity-based penalty.

3.3.3 MBNASNet

As shown in Fig. 3.1, I first extract a shallow feature Fj from an input low-resolution
image (/1. r) by the SFENet (3 x 3 convolution layers). The Fj is then fed to the first

MSB of each branch. Formally, the Fj is expressed as

Fo = H3(ILR) (3.4)

where H3(-) denotes the 3 x 3 convolution operation.

The MBNet is constructed to have B branches, where each branch is a cascade of
MSBs followed by their outputs’ concatenation and 1 x 1 convolution to make a fea-
ture map. The searched MSBs in each branch have different receptive fields, and thus
each branch learns multi-scale characteristics for image super-resolution. I multiply an
independent scalar weight to the outputs of each node and block to adjust the gradient
magnitude in back-propagation. A similar technique was used in [18]. I name these
weights as gradient flow control weights and denote them as «, as illustrated in the last

part of the MBNet block in Fig. 3.1.

35

Formally, the output of the d-th MSB in the b-th branch, Fj, 4 is

Fyq = (skip)b,d X Fpa—1+
3.5

(Otres)b,ax Hi(concat(Fy g, ... Fyanm)),

where F}, 4 ,, denotes the output of the m-th PSN of the d-th multi-scale block (MSB)
in the b-th branch, and H;(-) denotes the 1 x 1 convolution operation for the local
feature fusion layer. Also, a;p and a;.es are the gradient flow control weights for
residual feature and skip connection, respectively. F, 4 ,,, will be detailed in the fol-
lowing subsection, with Fig. 3.2 and Eq. 3.9.

Then, the output of the MBNet is a weighted sum of all the branch outputs:

B
Fup = (g x (Fypphy (3.6)
b=1
where
(Fyrf)o = Hi(concat(Fyq, ..., Fyp)), (3.7)

and (agyf)p is a gradient flow control weights for global feature fusion layer. Also,
(Fy¢f)b is the output of global feature fusion layer of the b-th branch.

Finally, I obtain the reconstructed high-resolution image Iz by combining the
up-sampled low-resolution image /1 r and residual information in the UPNet F;p.

Formally, the Iy g is computed as

Ing = Hps(ILr) + Hps(FuB), (3.8)

where Hy,,(-) denotes 3 x 3 convolution and periodic shuffling layer as in ESPCN [14].

I fix the structure of SFENet and UPNet while searching the connection of MBNet.

36

3.3.4 Multi-scale block with partially shared Nodes

I apply a cell structure for the MSB, which means that all MSBs in the same branch
have the same connection and operation. Each MSB consists of M PSNs as shown in
the upper part of Fig. 3.2 (a) and (b). The dashed arrows and colored arrows in Fig. 3.2
mean that these connections are to be searched. The candidate operations of the PSN

are
1. 3 x 3 convolution,
2. 3 x 3 dilated convolution with rate two,
3. 3 x 3 dilated convolution with rate three.

Following the signal flow in Fig. 3.2, I} 4 ,, in Eq. 3.5 is calculated as

Fyam = (skip)bdm % Fb.dm—1+
3.9

(awes)b7d7m X (Hb)PSN,m(Fb,d,m—l)a

where (Hp)psn,m(-) denotes the operation of the m-th PSN in the b-th branch. The

(Hp) psn,m(+) can be expressed as

(Hp)psn(-) = CA(H gy),, . (Relu(H,),. ,(*)))), (3.10)

where H(y,), . (-) denotes the k-th operation among K candidates, which is chosen
by the configuration sequence (sp)m, n. I construct the PSN with two operations and
one Relu activation as shown in Eq. 3.10. C'A() denotes channel attention layer of
RCAN [34].

To reduce the number of network parameters and spread the information through
the branches, the parameters of PSNs have common weights if the configuration se-
quence of different branches activates an identical position in their sequence. For ex-

ample, if two branches’ configuration sequences are 001’ and ’011,” the operation

37

corresponding to the first and the third digit share their weights. In Fig. 3.2, I empha-

size the shared positions in the controller sequence (FC outputs) by big bold digits.

3.3.5 MBNAS

Like conventional RL-based NAS methods [19,21], my algorithm has 8 and w, which
represents the parameter of the controller and the child network, respectively. In the
search phase, 6 and w are trained alternately for each epoch. After the search phase
is finished, I sample the sequences by the trained controller. Then, the best sequence

among the sampled ones is chosen and trained from scratch.

Training the child network

I first train the parameters of a child network to calculate the reward signal of the

controller. The problem is formulated as
H‘l"i/n]Ec~7r(c;0) [L(C; W)]a (3.11)

where L(-) denotes the loss function for the task which is the L1 loss in my setting.
The controller’s policy 7(c;) is fixed when training the child network. The Adam
optimizer [35] is used to optimize w. I estimate the gradient of E._(..)[L(c; W)]

with the Monte Carlo estimate
| M
VwEereo) L W) & 17 Vwllciw), (3.12)
i=1

where c¢; denotes a sampled child network by the controller’s policy. I choose M =1,

which means that I sample just one child network for each mini batch.

38

Training the controller

In the controller training phase, w is fixed, and 0 is trained by REINFORCE [28]
algorithm. I optimize @ to maximize the expectation of reward signal, which can be
expressed as

max Ep(a,.1:0)[F, (3.13)

where a7 is the configuration sequence for the child network c. In the REINFORCE,

the gradient of the expected reward is approximated as

T
VOB p(ay.r50) Bl = Y _[Velog Plarlar—11;60)(R —b)] (3.14)
t=1

where b is the baseline which is used to reduce the variance. The moving average of the
reward signal is used for the baseline in my algorithm. As explained with Eq. 3.2, [use
the PSNR of validation set and complexity-based penalty to calculate reward signal.

Adam [35] is used to optimize the reward.

3.4 datasets and experiments

3.4.1 Settings
Datasets, degradation methods, and metrics

I choose DIV2K [36] dataset for the training and validation. The DIV2K dataset is
widely used as a training set of various image restoration tasks. It contains 1,000 im-
ages, consisted of 800 for training, 100 for validation, and the other 100 images for test.
The validation images are used as the data for measuring reward signal of controller
network.
I'measure the performance on four different benchmark dataset; Set5 [37], Set14 [38],

BSDS100 [39], and Urban100 [40]. To compare the performances with others, I mea-
sure the PSNR and SSIM [41] of the test image on the Y channel of YCbCr color

39

domain. I create the synthetic low-resolution image by applying Matlab’s imresize

function [60].

Implemenatation details

I construct the controller by a two-stacked LSTM network with 64 hidden states. I
connect three fully connected layers to the end of each LSTM block to get the configure
sequence for the child network. I use word embedding [42] to make the input of the
LSTM layer from the previous LSTM block’s output.

I construct my MBNASNet with three branches (B = 3), four multi-branch blocks
(D = 4), and two PSNs (M = 2) which have three operations as the candidate
operations. The number of output feature maps for SFENet and MSNet is unified to
32. The number of intermediate features in PSNs is 128, which is four times bigger

than the number of the output feature maps.

Hyper-parameter settings

In the search phase, I alternatively train the controller and child network for one epoch
each. I initialize both the controller parameter 6 and the child network parameter w
by using the variance scaled initialization [43] with 0.02 scaling value. I train the
controller and the child network for 500 epochs. For one epoch, I apply 100 iterations
for the controller, and 1,000 iterations for the child network. The learning rate of the
controller is fixed to 3 x 10~%. The learning rate of the child network initialized to
3 x 10™* and decreased by half for every 100 epochs. I use 16 low-resolution image
patches of size 64 x 64 from DIV2K train images as a mini-batch of the child network. I
augment the patches by randomly applying horizontal flip and 90°, 180°, 270° rotation.
The X in Eq. 3.2 is set to 2, and p(c; w) is the validation PSNR of child network. I
randomly extract 1,000 low-resolution image patches from DIV2K validation images
and compute PSNR to calculate the reward.

In the training phase, I sample 500 configuration sequences from the trained con-

40

Table 3.1: Mean and variance of searched networks from three controllers which are
trained from different random seeds.

Experiment | mean PSNR | mean CBP | var. PSNR

1 34.134 0.561 0.00143
2 34.131 0.543 0.00096
3 34.130 0.554 0.00097

troller network and choose the architecture which has the best performance in the
DIV2K validation set as my MBNASNet. I train the selected network for 1,000 epochs
and finetune the trained network for 1,000 more epochs. The hyper-parameter settings
are the same as the search phase except for the learning rate. The learning rate of the

child network is initialized to 3 x 10~ and decreased half by 200 epochs.
3.4.2 Experiments on single image super-resolution (SISR)

MBNAS search reseult

The proposed MBNASNet has four multi-scale blocks (D = 4) and two PSNs (M =
2) with three branches (B = 3). I sample 500 architectures and choose the best archi-

tecture from them. For x2 scale, the configuration sequence of each branch is found

to be
S1 = {0707 172}7
sy = {0,0,1,2}, (3.15)
ss = {2,0,1,2}.

I note that my searched structure has two same blocks with different channel attention

and one block with a larger receptive field to capture multi-scale features efficiently.

41

On the other hand, the searched configuration sequence for x 3 scale is

S1 = {1717072})
sy = {1,1,0,2}, (3.16)
s3 = {1,1,2,2}.

The %3 scale SR task generally needs a larger receptive field than the X2 to extract
multi-scale features, and my searched x 3 network satisfies this property. It takes about
24 hours to train the controller and the child network by one Tesla V100 GPU in
the search phase, which is far less than other NAS-based methods such as MoreM-
NAS [6] and FALSR [7]. To show the robustness of my search algorithm, I search
three times from different random seeds. Table 3.1 indicates the mean and variance of
500 searched networks from three different controllers for x3 image super-resolution

of Set5.

Image super-resolution results

Bicubic image down-sampling is widely used as the image degradation setting of
super-resolution task. I measure PSNR and SSIM on four public benchmark dataset
to compare my method with eleven state-of-the-art methods: SRCNN [1], VDSR [2],
LapSRN [3], MemNet [4], MSAN [31], SelNet [33], CARN [5], A%2F [61], MoreM-
NAS [6], FALSR [7], HNAS [45], and DeCoNASNet [47]. Among these, MoreMNAS,
FALSR, DeCoNASNet, HNAS, and mine is NAS-based aproaches. HNAS uses large
training patch (96x96) when training and applies self-ensemble to get better perfor-
mances.

The proposed NAS-based approach has efficient search algorithm, which is about
twenty times faster than MoreMNAS and FALSR. For this reason, I can conduct exper-
iments on X3 super-resolution task while other NAS-based methods do not. As shown
in Table 3.2, MBNASNet performs comparable to hand-crafted state-of-the-art meth-

ods and outperforms the NAS-based methods for x2 and x3 super-resolution task.

42

PSNR of lightweight methods on Set14 dataset

34.00
33.75 1 MBNAS
PY A%F ®
| HNAS o ® QeCoNASHet
33.50 MSANERLSR-A CARN
°
33.25 1 °
= MemNet \oreMNAS-A
©
< °
% 33.00 1 VDSR
wn
o
32.75 1
32501 ¢
SRCNN
32.25 1
32-00 T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Number of Parameters(x 103K)

Figure 3.4: The graphical result of conventional lightweight methods and my MBNAS-
Net on Set14 dataset. The Blue dots are conventional lightweight methods, and the red
star is my MBNASNet method.

HNAS shows good performance for Set5 dataset, but MBNASNet performs better for
complex datasets such as Urban100 and B100 dataset because I extract multi-scale
features successfully.

Since different initial conditions may lead to different results, I perform the design
four times with different initial hyperparameters. But, there are just slight differences
for all the cases in Table 3.2, with PSNR variance under 10~*, validating the robust-
ness of my method against different initial conditions. Hence, I denote the best PSNR
among the four experiments, following the convention.

In Fig. 3.5 and Fig. 3.8, I display the qualitative result of my method and conven-
tional methods. As shown in the figures, MBNASNet successfully restores the struc-
tures of the images. Specifically, my network recovers the gray vertical lines and holes

in each image while other methods do not. In summary, I compare the overall x2

43

"pasodoid () IOINSYNODAJ (1) "USTVH (U) "SYNINIOIN
(3) 'N¥VO () 1ONWIN (3) "NYSdeT (P) "YSAA () -oFewr pajduresumop d1qndiq (q) "fnn punoid (e) 'SPOYIAW YS [EUONUA

-uo0d auru Yym poylowr Awr aredwod [Yse1 YS g X I0J 19seiep 00 ueqi() 9y} woly oSewl Yy 9y} Uo Insa1 aaneen() :G'¢ 2msng

0 0] ()] (3) (€]

44

"pasodoid () IOINSYNODAJ (1) "USTVH (U) "SYNINIOIN

(3) 'NIVD (&) 1oNwo (9) ‘N¥SdeT (p) “YSAA (o) oSewr pajdwresumop d1qnaiq (q) “ynn punois (e) SPoylow YS [BUONUIA
-U0d QUIU YIIMm poypouwr Awr aredwod T -sel YS g x JI0j Jaseiep (0Jueqin 2y} woij aewr Yig ay} uo Insar aaneyend) :9°¢ aIn3Ly

0 0] ()] (3)
() P)) (@

@

!
%,

45

"pasodoid (f) IOINSYNODAJ (1) "YSTVH (U) "SYNINIOIN
(3) "NIVD (@) 1PNWI (3) 'NYSdeT (p) “SAA (0) “oFewi pajduresumop d1qnaiq (q) 'yins punois () ‘spoyIow YS [BUONUIAUOD
umu yim popewr Awr aredwrod [ysel YS gx JIoJ 1oseiep QQTueqif) 9Y) WO Wl YIOE Y} UO I[NSAI dAneen() /'€ I3

® (O] () @) @
SO IJIJ IJJ I J TJ

e RSN S ee———

I\l\'\l\l\
lllll

| p— B . R e m— ——

v . Y

46

=
—-

.L%.
oy
it

~

‘pasodoxd (H) JONSYNODAQ (D "YSTVH (W) 'SYNWION -
(3) 'NAVD () IPNWIIN (3) "NYSAeT (P) “ISAA (9) -9Fewr pajdwresumop d1qnoiq (q) Yy punoid (v) ‘SpoyIou YS [BUONUSAUCD !

uru Pm poypowt Aw axedwod [YSel S g X JIoJ 19seiep (QJueqin) oyl woiy afewr yi g 9y U0 Insal aaneyens) 8¢ 2Indig n

® (O] (CY) @
_ _ _

©) ® ©) (@
1 !

47

Table 3.2: PSNR and SSIM on the public benchmark test data for x2 and x3 SR
tasks. I emphasize the best and the second-best performances with the red and blue
colors, respectively. Methods with bold characters are NAS-based methods, and the
“Design time” at the last column indicates the times taken for the search process. All
four indicated design times are calculated with the same GPU (NVIDIA Tesla V100).
Other NAS-based methods do not report more than x3 SR results due to huge search
times, whereas I could. *In the case of the HNAS, the complexity is an estimated one
because they do not explicitly reveal the number of parameters. Also, the + sign at the
HNAS denotes that they used self-ensemble, which generally gives higher PSNR than
the baseline.

Model scale | Params Set5 Set 14 B100 Urban100 Design time
Bicubic - 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88/0.8403 -
SRCNN [1] 57K | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 -
VDSR [2] 665K | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76 / 0.9140 -
LapSRN [3] 813K | 37.52/0.9591 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9101 -
MemNet [4] 677K | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 -
MSAN-X [31] 870K | 37.86/0.8909 | 33.52/0.9167 | 32.12/0.8983 | 31.91/0.9255 -
SelNet [33] %2 970K | 37.89/0.9598 | 33.61/0.9160 | 32.08/0.8984 -/- -
CARN [5] 1,582K | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 -
A?E-M [61] 1,000K | 38.04/0.9607 | 33.67/0.9184 | 32.18/0.8996 | 32.27/0.9294 -
*HNAS-C+ [45] ~400K | 38.11/0.964 | 33.60/0.920 | 32.17/0.902 | 31.93/0.928 -
MoreMNAS-A [6] 1,039K | 37.63/0.9584 | 33.23/0.9138 | 31.95/0.8961 | 31.24/0.9187 56 days
FALSR-A [7] 1,021K | 37.82/0.9595 | 33.55/0.9168 | 32.12/0.8987 | 31.93/0.9256 24 days
DeCoNASNet [47] 1,713K | 37.96/0.9594 | 33.63/0.9175 | 32.15/0.8986 | 32.03/0.9265 12 hours
MBNASNet(mine) 999K | 38.04/0.9595 | 33.70/0.9178 | 32.19/0.8992 | 32.17/0.9281 24 hours
Bicubic - 30.39/0.8682 | 27.55/0.7742 | 27.21/0.7385 | 24.46/0.7349 -
SRCNN [1] 57K | 32.75/0.9090 | 29.30/0.8215 | 28.41/0.7863 | 26.24 / 0.7989 -
VDSR [2] 665K | 33.66/0.9213 | 29.77/0.8314 | 28.82/0.7976 | 27.14/0.8279 -
MemNet [4] 3 677K | 34.09/0.9248 | 30.00/0.8350 | 28.96/0.8001 | 27.56/0.8376 -
MSAN-X [31] 1,054K | 34.19/0.9246 | 30.27/0.8403 | 29.03/0.8030 | 27.96/0.8473 -
SelNet [33] 1,159K | 34.27/0.9257 | 30.30/0.8399 | 28.97/0.8025 -/- -
CARN [5] 1,582K | 34.29/0.9255 | 30.29/0.8407 | 29.06/0.8034 | 28.06/0.8493 -
AF-M [61] 1,000K | 34.50/0.9278 | 30.39/0.8427 | 29.11/0.8054 | 28.28/0.8546 -
MBNASNet(mine) 1,003K | 34.30/0.9255 | 30.25/0.8415 | 29.08 /0.8042 | 28.08 /0.8501 30 hours

performance of lightweight models graphically in Fig. 3.4.

3.5 Discussion

In this section, I discuss the effect of the proposed method’s contributions; complexity-

based penalty, multi-branch structure, and partially shared parameters.

48

Performance comparison between controller settings

36.0
A A
i a _
35.8 S o ® ®
(I) 'l
", .’s
35.6
]
o ‘O‘ ‘h:ll
iy fif'?-ll.'W *
S 35.2 1
o
5 ’ " ’. ' ‘ ")
< 350 ® o ‘. ",
® @ Baseline (no cbp)
34.8 4 e © @ CBP with lambda=2
@ Random
o o best_architecture
34.6 1 T mean_architecture
0.2 0.3 0.4 0.5 0.6 0.7

Relative Complexity

Figure 3.9: The result of three experiments for the controller. The blue dots are from
the CBP, the reds are the Baseline, and the greens are Random settings. The "Relative
Complexity” is defined the same as cbp in equation(3.3), meaning the cbp in the case
of NAS design results. In the case of random and baseline, since the ”penalty” is not
defined, I denote it as “Relative Complexity.”

3.5.1 Effect of the complexity-based penalty to the performance of con-

troller

To evaluate the controller’s performance and the effect of complexity-based penalty in
the search phase, I conduct three experiments.The first experiment uses a non-trained
controller, which generates a random controller sequence (denoted as Random). The
controller trained with the PSNR reward but without the complexity-based penalty is
denoted as Baseline, and the one including the complexity-based penalty is denoted as
CBP. I choose A = 2 for the complexity-based penalty.

I sample 100 structures for each controller setting and measure the average and

the best performance, as shown in Table 3.3. Also, their distributions are illustrated in

A L) &

49

Table 3.3: Performance comparison between controller settings.

Search setting ‘ Random ‘ Baseline ‘ CBP

Best PSNR 35.62 35.92 | 35.89
Penalty | 0.473 0.500 | 0.364
Mea PSNR 35.34 35.29 | 35.32
Penalty | 0.504 0.491 0.373

Table 3.4: PSNR of MBNASNet with/without gradient flow control weights « on the
public benchmark test data for x2 SR tasks. I emphasize the difference between two
experiment by blue texts. I train each architecture for 1000epochs.

Model | scale | Set 5 \ Set 14 \ B100 | Urban100
MBNASNet without o | | 37.9426(-0.034) | 33.5727(-0.050) | 32.1357(-0.006) | 31.9743(-0.052)
MBNASNet with 37.9767 33.6230 32.1413 32.0264

Fig. 3.9, where blue dots are the results of the CBP with A = 2, red dots correspond
to the Baseline, and the greens to the Random. I can see that the Baseline setting finds
better architectures than the Random in terms of PSNR, sometimes with increased
complexity. On the other hand, the CBP setting successfully generates lightweight

sequences that have comparable PSNR to the Baseline.

3.5.2 Effect of multi-branch structure and partial parameter sharing scheme

To compare and visualize the effect of multi-branch structure and partial parameter
sharing (PPS) scheme, I create three networks; single-branch, multi-branch without
PPS, multi-branch with PPS. I set the parameters of three experiments by ~ 1, 000K
to fairly compare the results.

I measure the PSNR of each structure on the Set5 dataset. Fig. 3.10 shows the
results of three structures for 400 epochs. I can find that the multi-branch structure
converges faster than the single branch structure. Furthermore, with the partial pa-

rameter sharing scheme, I can successfully overcome the performance degradation

50

PSNR result of three structures on Set5 dataset

38 1
37
@ 36 A
i
14
Z
7
o
35 1
34 1 —— Single branch structure
—— Multi-branch w/o pps
—— Multi-branch with pps

0 50 100 150 200 250 300 350 400
Epoch

Figure 3.10: The PSNR on Set5 for three structures. The red line indicates my MB-
NASNet structure, the green line is the multi-branch structure with separate parame-
ters, and the blue is the single branch structure.

phenomenon in the multi-branch structure.

3.5.3 Effect of gradient flow control weights and complexity-based penalty

coefficient

Gradient flow control weights allow MBNASNet to overcome the gradient vanish-
ing problem by adjusting the gradient magnitude in the back-propagation process. I
train MBNASNet with/without gradient flow control weights o and compare their per-
formance in Table 3.4 and Fig. 3.11. The results show that o helps the MBNASNet
converge to better point and achieve better performance.

To compare the effect of CBP weight A, I train the controller with different A values

(A =0.5,1,2,4) and compare their search results in Table 3.5. I can see that the mean

51

ablation study about alpha on Set5 dataset

38.0

37.5

37.0

36.5

PSNR(dB)

36.0

35.5

—— w/o alpha
—— with alpha

35.0

0 200 400 600 800 1000
Epoch

Figure 3.11: The PSNR on Set5 of MBNASNet architecture with/without gradient
flow control weights . The red line indicates my MBNASNet structure with «, and
the blue is MBNASNet without .

CBP value tends to decrease (a lighter network is found), and the mean PSNR slightly
decreases as the A becomes larger. When the A becomes too big (A = 4), the controller
fails to find a promising network in the search space. The experiments validate that
the A efficiently controls the trade-off between the performance and the number of

parameters until A = 2, and hence [use A = 2 in other experiments.

3.6 Summary

I have proposed a new NAS-based SR network, named as MBNASNet. I have at-
tempted to improve the performance of the NAS-based SR by adopting a multi-branch
network that can extract multi-scale features. In other words, I could obtain a better

SR model by expanding the search space. I also regularized the reward signal of RE-

52

Table 3.5: Mean PSNR and complexity-based penalty on different A\. The PSNR is
calculated by Set5 benchmark dataset.

Experiment | mean PSNR | mean CBP

A=0.5 37.830 0.569
A=1 37.829 0.561
A=2 37.829 0.557
A=4 37.801 0.575

INFORCE algorithm with a complexity-based penalty to favor a lightweight network.
Besides, the partial parameter sharing scheme successfully reduces the number of pa-
rameters and helps the information transfer between each branch. It takes 24 hours to
find promising network structures, which is a lot faster than the existing NAS-based
design methods. The results show that the proposed method performs comparably to
the conventional hand-crafted structures and other NAS-based networks. I will release

my codes and more result images at https://github.com/Junem360/MBNASNet.

53

Chapter 4

Meta-transfer learning for simultaneous search of vari-

ous scale image super-resolution

4.1 Introduction

restoration is widely used as a preprocessing algorithm of various vision tasks. Specif-
ically, single image super-resolution (SISR) which recovers high resolution (HR) re-
sults from low resolution (LR) images is applied to the tasks such as medical image
analysis [8], security image processing [10], satellite image recognition [9]. Recently,
researchers have been proposed deep-learning based methods [1-5, 13-18] and they
performs better than the conventional SISR methods [11, 12].

In general, the performance of deep-learning based SR methods increases as the
network gets deeper or more complex. However, it needs tremendous amount of atempts
and adjustments to find optimal structures when the structure goes deeper and compli-
cated. To reduce the efforts involved in these trial and error, the neural architecture
search (NAS) algorithm has been developed [19-26, 44].

Earlier NAS methods [19, 20, 23] concentrate on the image classification task and
they automate the network construction and evaluation process to decrease the time

used to create the optimal network for the purpose. Because It takes a long time to

54

search optimal architectures by these methods, some researchers have developed ef-
ficient neural architecture search algorithms to reduce the search time. Specifically,
ENAS [21] and DARTS [25] adopt directed acyclic graph (DAG) and weight sharing
scheme and dramatically reduce the time for network search process.

Neural architecture search methods have been expanded to the image super-resolution
task [6,7,45,47] (MoreMNAS, FALSR, HNAS, DeCoNAS). MoreMNAS and FALSR
use reinforced evolution algorithm but they suffer from their long search time. To re-
duce the search time, HNAS, DeCoNAs and MBNAS applies efficient neural architec-
ture search [21] and find optimal networks in a short time. However, existing NAS-SR
method regard different scale super-resolution as an independent tasks, and network
search for arbitrary scale image super-resolution is not supported. Furthermore, when
I use weight sharing scheme to find optimal structure, there is a difference in per-
formance between evaluation and search phase. This phenomenon, so called search-
evaluation gap, causes the final performance degradation of the structures selected by
weight sharing architecture search method.

To simultaneously search the networks for various scale image super-resolution
task and alleviate the search-evaluation gap, I apply meta-transfer learning to the neu-
ral architecture search process. Specifically, I adopt model-agnostic meta-learning [62]
when searching for SR network. The meta-learning algorithm trains the controller net-
work to find optimal state that adapt fast to various scale image super-resolution task.
Also, the parameter of child network is trained by meta-learning scheme and the per-
formance of the child network in the search process approaches the actual performance
in evaluation phase.

My main contributions are summarized as follows:

1. New NAS-based SR: I propose a meta-learning based SR network design method,
named MetaNAS, which searches for the networks of various scale image super-

resolution task simultaneously.

2. Reduced search-evaluation gap : I train the child network with model-agnostic

55

meta-learning algorithm to apply the actual performance in search phase and

reduce the search-evaluation gap phenomenon.

The rest of this chapter is organized as follows. I summarize the related works
about SISR, NAS and meta-learning methods in section 2. In section 3, I explain my
proposed MetaNAS for SISR. I precisely explain the details about my algorithm and
the implementation, followed by experiment results. Finally, I provide a summary and

conclusion in section 5.

4.2 Related Work

4.2.1 Single image super-resolution

Researchers have been proposed a number of deep learning based SR methods [1-5,
13-18]. As a pioneer work, Dong et al. [1] (SRCNN) proposed the network consist
of three shallow convolutional layers and outperformed the conventional SR methods.
FRCNN [13] and ESPCN [14] tried to reduce the feature map size and channel num-
ber by deconvolution and pixel-shuffle layer. VDSR [2] used very deep convolutional
neural network by adopting residual learning and gradient clipping strategy. Lim et
al. [15] increased the PSNR by proposing an internal residual learning with extensive
features (EDSR) and multi-scale structure (MDSR). MemNet [4], MSRN [18], and
DenseSR [16] proposed specific block architectures to achieve better performance.
SelNet [33] proposed selection unit and replacing the non-linear operation such as
Relu. Zhang et al. proposed feature fusion layer and residual dense block in their pa-
per [17] (RDN). RCAN [34] proposed a channel attention scheme and select important
feature channels among the output features, which successfully increase the PSNR re-

sult of the SR network.

56

4.2.2 Neural architecture search

There are a number of hyper-parameters to create a deep neural architecture. For ex-
ample, I need the number of layers, channels, operations, connections, etc. to create
the deep learning architecture. Researchers have designed a lot of deep neural net-
works and evaluate them to find optimal architecture. Because this manual network
design and evaluation is a laborious task, researchers have been proposed the methods
to automate these processes, so called neural architecture search (NAS) [19-26].

At first, most of neural architecture search methods focus on simple image clas-
sification task. Zoph et al. [19] proposed a reinforcement learning (RL) based NAS
algorithm. At first, they designed A controller network and a child network. controller
network was consist of LSTM and generated the configure sequence for the child net-
work. the child network was created by the configure sequence from controller network
and evaluated. The controller network was trained by REINFORCE [28], which is a
kind of policy gradient algorithm. The performance of the child network was used as a
reward signal of the REINFORCE algorithm. Because they trained the child network
from scratch, it took a huge amount of time to evaluate performance and calculate the
reward. To reduce the time to get a reward signal, PNAS by Liu et al. [20] applied the
sequential model-based optimization (SMBO) and proposed a surrogate model which
predicts the network’s performance. On the one hand, Pham ef al. [21] proposed effi-
cient NAS algorithm that shares the weight of child networks during search phase to
reduce the evaluation time. This method regard the search space as a super-graph and
configured each child network as a sub-graph of the search space. The trained parame-
ters of the child network were shared during the search phase and stored their weights
in the super-graph.

Evolutionary methods [22-24] are another main stream of the NAS. They selected
a hundred architectures randomly and encoded each network to binary codes. After
that, crossover or mutations are applied to the sequence and evaluate them to find

a promising structure. Lu et al. [23] applied Bayesian optimization algorithm to the

57

evaluation process to take an advantage from previous search result. AmoebaNet [24]
applied an aging evolution algorithm to NAS to discard the old network.

There were some methods that adopted different algorithms from RL and evo-
lutionary methods [25, 26, 44, 48] (DARTS, SGAS, NAO, CSA-NAS). Specifically,
DARTS proposed gradient-based neural architecture search that applied continuous
relaxation to the neural architecture’s connections to find optimal network and the
filter weight simultaneously by gradient descent algorithm. SGAS adopted a greedy
algorithm to select operation on the DARTS baseline and found the optimal network
without retraining from scratch. NAO constructed a neural network which was trained
to project the configure code to the embedding space and chose the best architecture
as a result. CSA-NAS adopts a binary crow search algorithm to find the optimal archi-

tecture.

4.2.3 Image super-resolution with neural architecture search

There are some papers that expanded NAS method to image super-resolution task [6,
7,45]. MoreMNAS [6] and FALSR [7] adopted reinforced evolution algorithm to find
optimal SR network. HNAS [45] applied efficient NAS [21] with a hierarchical search
algorithm that finds optimal cell structure and feature-upsampling positions. They also
considered the computational cost (FLOPS) to meet the resource budget.

However, above mentioned NAS-SR methods have some drawbacks. First of all,
they can find an optimal structure for the single scale image super-resolution task at a
time. This disadvantages critical for real-world image super-resolution. Furthermore,
fast NAS-SR algorithms such as HNAS adopt weight sharing scheme in search phase.
But the result of trained weights of shared parameters is differ from the non-shared pa-
rameters. This causes the search-evaluation gap that vary in performance during search
and measurement. To alleviate these problems, I combine meta-learning with NAS-SR
formulation. Specifically, I adopt model-agnostic meta-learning method when training

controller and child network in search phase. As a result, The controller is trained to

58

Search procedure for various tasks T = {T; T, ---}

Construct the child Generate the child network
networks for T; by the <+—— configuration sequences for +——— Apg’;'*gg’igf;iﬂﬁﬁw
sequences T; using controller P

Measure the performance
=7 and complexity based
penalty to get a rewards 7;

Meta-train the constructed
child networks

Train procedure for task T;

Figure 4.1: The overall procedure of MetaNAS. In the search phase, the controller and
constructed child network are trained alternatively with meta-learning scheme. In the
training phase, the searched final architecture is trained from pre-trained parameter.

adapt fast to various scale image super-resolution tasks. Also, I conduct several updates

when calculating reward from child network to reduce the search-evaluation gap.

4.2.4 Meta-learning

Various meta-learning algorithms have been proposed recently. They can be classified
to three types; metric-based, memory network-based and optimization-based meth-
ods. Metric-based algorithms [63-65] try to learn metric space that efficiently trained
by few samples. Memory network-based methods [66—68] trains memory network to
generalize well to unseen tasks. Optimization-based algorithms [62, 69-71] use gra-
dient descent directly to the meta-learner optimization. I choose MAML [62] as my

meta-learning method, which is the kind of optimization-based algorithms.

4.3 Method

The overall procedure of my MetaNAS is shown in Fig. 4.1. To search the optimal ar-

chitecture, I design the same search space, child network and controller as MBNASNet

S Eas kg
59 R A

UPNet

MBNet

Branch 1

Concatenation

|

I

SFENet

|
3x3 conv
>
MSB 1
°|
MSB 2
‘v
MSB
el
g
Concatenation

I

MSB 1
MSB 2
!
+
MSB D
Concatenation

[1x1convolution | [11 cConvolution | [1 x 1 Convolution |

Global feature
fusion layer

I

Figure 4.2: The child network structure of used in my method. It consists of a shal-
low feature extraction network (SFENet), a multi-branch network (MBNet), and an
upscaling network (UPNet). The result of each branch is combined and upsampled by
the periodic shuffling layer.

(chap. 3). Fig. 4.2 shows the child network structure of MBNAS used in my proposed
method. I apply MAML [62] algorithm to simultaneously search for various scale im-
age super-resolution task as shown in Fig. 4.3. Specifically, my method consist of three
steps: meta-learning, meta-transfer learning and transfer learning.

In meta-learning step, I train the parameters of child network w and controller
network 6 to be sensitive and transferable to various scale image super-resolution task.
Next, I again train the @ and w to adapt well to the specific structure of selected scale
image super-resolution in meta-transfer learning step. Finally, I choose the optimal
structure from trained controller and train it from pre-trained parameter w to evaluate

the final performance.

4.3.1 Meta-learning

In this step, I seek to find the sensitive initial point for the parameters of the controller

and child network, 8,,, and w,,, where adapts well to the specific scale image super-

60

Dmeta(D,traiw Dvalid)

D train

| Meta-transfer learning
a'rl' wr,

Meta-learning

- .
0o, Wy O, Wiy Transfer learning

Or,wr, Wr, w

Figure 4.3: The overall meta-learning procedure of my proposed MetaNAS. From ran-
dom initial point 8y and wq, meta-learning is applied to seek 6,, and w,,. Meta-
transfer learning is conducted to get sensitive and transferable parameters with regard
to the scale and the structure.

resolution with a few gradient update. Inspired by MAML [62], I follows meta-training
of MAML with some differences.

I create the dataset Dyt for meta-learning step. Dietq consist of high-resolution
and low-resolution image pairs of various scale. Specifically, I use three scale (x2,
x 3, x4) LR/HR image pairs with same probability. To calculate the reward signal and
update the controller parameter 8, I should train the parameters of a child network first.

Without meta-learning, the child network’s parameter w is updated as
Wit1 = Wi — a Vw L(ci; w) 4.1)

where L(-) denotes the loss function for the task which is the L1 loss and ¢; denotes
a sampled child network by the controller’s policy. To apply MAML meta-training
shceme to Eq. 4.1, I divide D,,erq to two groups: Dy, for task-level training and Dy,
for task-level test. I apply several gradient descent updates to w to conduct adaptation

to a new task 7; and one update process is expressed as
W, =W—aVw L% (ci;w), “4.2)

where « is the task-level learning rate. After that, the child network’s parameters w

61

LR

11

are trained to reduce test error of Dy, with respect to wj. Eventually, parameter update

is expressed as

W w—BVw > L (cswy), (4.3)
Ti~p(T)

where [is the meta-learning rate.
After updating child network parameters for one epoch, Ie train the controller pa-

rameters 6. I calculate task-specific reward R; as
R; =p(c;w;) — A x ¢cb(c), 4.4)

where cb(c) is the complexity-based penalty of MBNAS (chap. 3) and w; is the child
network parameter which is adapted to task 7;.

Finally, the gradient update of the expected reward is defined as

T
0 0+8Vw > > [VelogPlaar11;60)(R;—b)], (4.5)
Tj~p(T) t=1
where a1.7 is the configuration sequence for the child network ¢ and b is the baseline

which is used to reduce the variance.

4.3.2 Meta-transfer learning

After finding the intermediate parameters w,, and 0,,, I focus on one specific scale
image super-resolution task and conduct adaptation of w,,, and 8,,, to make them sen-
sitively transform to the selected scale. The adaptation procedure is almost same as
meta-learning step, but the input and output data pair is fixed to the selected scale.
Because w,,, and 8., is already sensitive to the various scale image super-resolution
task, I only need the small number of updates to find w; and 67;, which is the final

parameters of specific scale image super-resolution task.

62

4.3.3 Transfer-learning

In this step, I find the optimal network for image super-resolution task by trained con-
troller and child network. I sample the architectures from the controller and evaluate
each structure to choose the best network. Different from DeCoNAS and MBNAS
(chap. 3), I conduct an adaptation to the child network’s parameter to alleviate the
search-evaluation gap. Also, I use w; as the initial point of the final evaluation to get

better result.

4.4 datasets and experiments

4.4.1 Settings
Datasets,and metrics

I use DIV2K [36] as a dataset for the training. The DIV2K dataset is widely used as
a training set of various vision tasks. It consist of 1,000 images, 800 for training, 100
for validation, and the other 100 images for test. The training images are used as Dy,
and the validation images are used as D;, in meta-learning process.

I measure the PSNR and SSIM [41] on four benchmarks to compare performance
with other methods; Set5 [37], Set14 [38], BSDS100 [39], and Urban100 [40]. I mea-
sure the PSNR and SSIM of the test image on the Y channel of YCbCr color domain.

The low-resolution image is created by Matlab’s imresize function [60].

Implemenatation details

For the controller and child network construction, I adopt the setting of MBNAS. The
controller consist of LSTM network with 64 hidden states. The child network also
follows MBNASNet structure with three branches, four multi-branch blocks and two
PSNs. The number of output feature channel is 32 and the number of intermediate

features in PSNs is 128.

63

Hyper-parameter settings

In the meta-learning and meta-transfer learning step, the controller and child network
are trained alternatively for one epoch. The initial point of two structure, 8y and wy is
initialized by variance scaled initialization [43] with 0.02 scaling value. I train the con-
troller and the child network for 500 epochs in meta-learning step, and five epochs for
meta-transfer learning step. For one epoch, I apply 1000 iterations for the controller,
and 1,000 iterations for the child network. The task-level learning rate « is set to 0.01
and the meta-learning rate 3 for controller is fixed to 3 x 1073, The meta-learning
rate of the child network initialized to 3 x 10~* and decreased by half for every 100
epochs. The bath size of child network is 16 and the patch size of low-resolution image
is 64 x 64. I use data augmentation that the patches are applied random horizontal flip
and 90°, 180°, 270° rotation. The A in complexity based penalty is set to 2.

For the final evaluation, I sample 100 configuration sequences from the trained
controller and choose the optimal architecture which has the best PSNR on the DIV2K
validation set. I train the selected network for 1,000 epochs and finetune the trained
network for 1,000 more epochs. The hyper-parameter settings are the same as the
search phase except for the learning rate. The learning rate is initialized to 3 x 1074

and decreased half for every 200 epochs.

4.4.2 Experiments on single image super-resolution (SISR)
Experiment about search-evaluation gap

I conduct the experiment to verify that my proposed algorithm alleviates the search-
evaluation gap compared to the existing method. I randomly sample 11 architectures
from controller and train all of them from scratch to get an exact evaluation perfor-
mance of each network. Then, I evaluate the sampled networks with three controllers.
The first controller is trained by baseline training. Second and third controller is trained

by transfer learning and meta-learning. As shown in the Fig. 4.4, the meta-learned con-

64

1 3 2 1

2 1 6 2

3 6 1 3

4 7 3 4

5 10 5 10

6 4 4 5

7 5 8 6

8 2 10 7

S 8 7 8

10 9 9 9

11 11 11 11

Evaluation Baseline Transfer learned Meta learned
NAS model model
Kendall T 0.455 0.673 0.818

Figure 4.4: The experiment about search-evaluation gap for each controller. I calculate
the kendall rank correlation coefficient to compare each settings by value.

troller’s search evaluation gap is smaller than others. To compare the search-evaluation
gap as a value, I calculate the kendall rank correlation coefficient. As expected, the

meta-learned controller has the highest value compared to the other two controllers.

MetaNAS search result

It takes about two hours to meta-transfer learning for specific scale image super-
resolution. I illustrate the search result of x2 and x3 image super-resolution task on
Fig. 4.5. As shown in the figure, I can find that the controller successfully adapted to

each image super-resolution task in a short time.

65

;)erformance comparison for x2 search result and random controller 3gerfnrmance comparison for x3 search result and random controller
8.0

. i
375 § i

o
37.01 : !
.

w
v

36.54

€

w
5

validation PSNR(dB)
validation PSNR(dB)

36.04

w
=]

35.5 J e Search x2 o Search_x3
¢ « Random « Random
mean_architecture mean_architecture
35.0 30 y - - :
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 08 1.0
Parameters(M) Parameters(M)

Figure 4.5: The experiment about simultaneous search for various scale image super-
resolution task. By short time of adaptation process, the controller learns to sample
promising networks for each scale.

Image super-resolution results

I measure PSNR and SSIM on four public benchmark dataset to compare my method
with eleven state-of-the-art methods: SRCNN [1], VDSR [2], MemNet [4], MSAN [31],
SelNet [33], CARN [5], A?F [61], MoreMNAS [6], FALSR [7], HNAS [45], De-
CoNASNet [47] and MBNASNet (chap. 3). Among these, MoreMNAS, FALSR, De-
CoNASNet, HNAS, MBNASNet and mine is NAS-based aproaches. HNAS uses larger
training patch (96x96) than others and also applies self-ensemble scheme to increase
the performances.

As shown in Table 4.1, my proposed network performs comparable to hand-crafted
state-of-the-art methods and outperforms the NAS-based methods.

In Fig. 4.6, I compare the qualitative result of my method with existing methods.

MetaNASNet successfully restores the details of the images as shown in the figure.

4.5 Summary

I have proposed a new NAS-based SR network with meta-learning scheme, named
as MetaNASNet. I have attempted to alleviate the search-evaluation gap in the search

phase by applying model-agnostic meta-learning method. I also conduct simultane-

66

"pasodoid (1) IPNSYNIIN (D) IPNSYNODRd (Y) ¥STVd
(3) "SYNINQIOI () "NV (9) IONWIA (P) “YSAA (9) -oFewr pajduresumop d1qnoiq (q) “ying punois (e) “Spoyoul Y§ [eUONUIA

-uo0d auru Yym poylowr Awr aredwod [Yse1 YS g X I0J 19seiep 00 ueqi() 9y} woly oSewl Yl 9y} Uo Insal aaneens) :9'y sy

® (O] @)

O () @

(Ch)

67

Table 4.1: PSNR and SSIM on the public benchmark test data for x2 SR tasks. I
emphasize the best and the second-best performances with the red and blue colors,
respectively. Methods with bold characters are NAS-based methods, and the “Design
time” at the last column indicates the times taken for the search process. All the indi-
cated design times are calculated with the same GPU (NVIDIA Tesla V100). The +
sign at the HNAS denotes that they used self-ensemble, which generally gives higher
PSNR.

Model scale | Params Set 5 Set 14 B100 Urban100 Design time
Bicubic - 33.66/0.9299 | 30.24/0.8688 | 29.56/0.8431 | 26.88 /0.8403 -
SRCNN [1] 57K | 36.66/0.9542 | 32.45/0.9067 | 31.36/0.8879 | 29.50/0.8946 -
VDSR [2] 665K | 37.53/0.9587 | 33.03/0.9124 | 31.90/0.8960 | 30.76/0.9140 -
LapSRN [3] 813K | 37.52/0.9591 | 33.08/0.9130 | 31.80/0.8950 | 30.41/0.9101 -
MemNet [4] 677K | 37.78/0.9597 | 33.28/0.9142 | 32.08/0.8978 | 31.31/0.9195 -
MSAN-X [31] 870K | 37.86/0.8909 | 33.52/0.9167 | 32.12/0.8983 | 31.91/0.9255 -
SelNet [33] 2 970K | 37.89/0.9598 | 33.61/0.9160 | 32.08 /0.8984 -/- -
CARN [5] 1,582K | 37.76/0.9590 | 33.52/0.9166 | 32.09/0.8978 | 31.92/0.9256 -
A’F-M [61] 1,000K | 38.04/0.9607 | 33.67/0.9184 | 32.18/0.8996 | 32.27/0.9294 -
HNAS-C+ [45] ~400K | 38.11/0.964 | 33.60/0.920 | 32.17/0.902 | 31.93/0.928 -
MoreMNAS-A [6] 1,039K | 37.63/0.9584 | 33.23/0.9138 | 31.95/0.8961 | 31.24/0.9187 56 days
FALSR-A [7] 1,021K | 37.82/0.9595 | 33.55/0.9168 | 32.12/0.8987 | 31.93/0.9256 24 days
DeCoNASNet [47] 1,713K | 37.96/0.9594 | 33.63/0.9175 | 32.15/0.8986 | 32.03/0.9265 12 hours
MBNASNet (chap. 3) 999K | 38.04/0.9595 | 33.70/0.9178 | 32.19/0.8992 | 32.17/0.9281 24 hours
MetaNASNet (mine) 1,151K | 38.05/0.9597 | 33.70/0.9181 | 32.20/0.8993 | 32.20/0.9280 | 40 hours

ous search of various scale image super-resolution task by adopting meta-learning and
adaptation. It takes 40 hours to find promising network structures for x2, 3,4 image
super-resolution task, which is a lot faster than the existing NAS-based design meth-
ods. The results show that the proposed method performs comparably to the conven-

tional hand-crafted structures and other NAS-based networks.

68

Chapter 5

Conclusion

I have proposed a new image super-resolution (SR) method using neural architecture
search (NAS) algorithm in this dissertation. In chapter 2, I have proposed a reinforcement-
learning based NAS algorithm for image SR, named as DeCoNAS. I show that the
proposed method find an optimal lightweight SR network with fast search time. I also
proposed a feature fusion search strategy to find optimal feature fusion layer con-
nection, which verified the importance of global/local fusion connection for the SR.
Furthermore, the proposed complexity-based penalty in reward signal efficiently re-
duce the network complexity and enabled searching lightweight network architecture.
Experiments show that the DeCoNASNet achieves higher performance with regard to
the computational complexity and the PSNR when compared to the existing SR ne-
toworks.

In chapter 3, I have proposed a new NAS-based multi-branch SR network, named
as MBNASNet. I have tried to increase the PSNR/SSIM of the NAS-SR method by ap-
plying a multi-branch network that can extract multi-scale features. I expand the search
space from single branch to the multi branch structure and obtain a better SR network.
Moreover, I partially shared the parameters in the network structure to increase infor-
mation transferablity and to reduce the number of parameters. It takes a day to find

optimal network structures, which is a lot faster than the existing NAS-based design

69

methods. The results show that the proposed method outperforms existing NAS-based
networks.

In chapter 4, I have proposed a new NAS-based SR network with meta-learning
scheme, named as MetaNASNet. I adopt model-agnostic meta-learning scheme to alle-
viate the search-evaluation gap problem. I also achieve simultaneous search of various
scale image super-resolution task by an adaptation procedure. I find optimal structures
for x2, 3,4 image super-resolution task simultaneously in 40 hours. The results show
that the proposed method reduce the search-evaluation gap compared to the existing

NAS-SR methods.

70

[1]

(2]

[3]

[4]

[5]

[6]

Bibliography

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional net-
work for image super-resolution,” in European conference on computer vision.

Springer, 2014, pp. 184-199.

J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using
very deep convolutional networks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 1646—-1654.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep laplacian pyramid net-
works for fast and accurate super-resolution,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2017, pp. 624-632.

Y. Tai, J. Yang, X. Liu, and C. Xu, “Memnet: A persistent memory network
for image restoration,” in Proceedings of the IEEE international conference on

computer vision, 2017, pp. 4539-4547.

N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight super-
resolution with cascading residual network,” in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 252-268.

X. Chu, B. Zhang, and R. Xu, “Multi-objective reinforced evolution in mo-
bile neural architecture search,” in European Conference on Computer Vision.

Springer, 2020, pp. 99-113.

71

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

X. Chu, B. Zhang, H. Ma, R. Xu, and Q. Li, “Fast, accurate and lightweight super-
resolution with neural architecture search,” in 2020 25th International Confer-

ence on Pattern Recognition (ICPR). 1EEE, 2021, pp. 59-64.

J. S. Isaac and R. Kulkarni, “Super resolution techniques for medical image pro-
cessing,” in 2015 International Conference on Technologies for Sustainable De-

velopment (ICTSD). 1EEE, 2015, pp. 1-6.

Y. Luo, L. Zhou, S. Wang, and Z. Wang, “Video satellite imagery super resolu-
tion via convolutional neural networks,” IEEE Geoscience and Remote Sensing

Letters, vol. 14, no. 12, pp. 2398-2402, 2017.

W. W. Zou and P. C. Yuen, “Very low resolution face recognition problem,” IEEE

Transactions on image processing, vol. 21, no. 1, pp. 327-340, 2011.

L. Zhang and X. Wu, “An edge-guided image interpolation algorithm via direc-
tional filtering and data fusion,” IEEE transactions on Image Processing, vol. 15,

no. 8, pp. 2226-2238, 2006.

K. Zhang, X. Gao, D. Tao, and X. Li, “Single image super-resolution with non-
local means and steering kernel regression,” IEEE Transactions on Image Pro-

cessing, vol. 21, no. 11, pp. 4544-4556, 2012.

C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolu-
tional neural network,” in European conference on computer vision. —Springer,

2016, pp. 391-407.

W. Shi, J. Caballero, F. Huszdr, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang, “Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 1874—-1883.

72

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, “Enhanced deep residual net-
works for single image super-resolution,” in Proceedings of the IEEE conference

on computer vision and pattern recognition workshops, 2017, pp. 136-144.

T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense skip
connections,” in Proceedings of the IEEE International Conference on Computer

Vision, 2017, pp. 4799-4807.

Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for
image super-resolution,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 2472-2481.

J. Li, F. Fang, K. Mei, and G. Zhang, “Multi-scale residual network for image
super-resolution,” in Proceedings of the European Conference on Computer Vi-

sion (ECCV), 2018, pp. 517-532.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”

arXiv preprint arXiv:1611.01578, 2016.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search,” in Proceed-

ings of the European Conference on Computer Vision (ECCV), 2018, pp. 19-34.

H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural architec-

ture search via parameter sharing,” arXiv preprint arXiv:1802.03268, 2018.

L. Xie and A. Yuille, “Genetic cnn,” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 1379-1388.

Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, and W. Banzhaf,
“Nsga-net: neural architecture search using multi-objective genetic algorithm,”

in Proceedings of the Genetic and Evolutionary Computation Conference, 2019,

pp. 419-427.

73

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search,” in Proceedings of the aaai conference on artificial

intelligence, vol. 33, 2019, pp. 4780-4789.

H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture search,”

arXiv preprint arXiv:1806.09055, 2018.

R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural architecture optimiza-
tion,” in Advances in neural information processing systems, 2018, pp. 7816—

7827.

C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and L. Fei-Fei,
“Auto-deeplab: Hierarchical neural architecture search for semantic image seg-
mentation,” in Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, 2019, pp. 82-92.

R.J. Williams, “Simple statistical gradient-following algorithms for connection-

ist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229-256, 1992.

F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,”

arXiv preprint arXiv:1511.07122, 2015.

F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

J. W. Soh and N. L. Cho, “Lightweight single image super-resolution with multi-
scale spatial attention networks,” IEEE Access, vol. 8, pp. 35383-35391, 2020.

C. Wang, Z. Li, and J. Shi, “Lightweight image super-resolution with adaptive
weighted learning network,” arXiv preprint arXiv:1904.02358, 2019.

74

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

J.-S. Choi and M. Kim, “A deep convolutional neural network with selection
units for super-resolution,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2017, pp. 154—-160.

Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution
using very deep residual channel attention networks,” in Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), 2018, pp. 286-301.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,

CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang, ‘“Ntire 2017
challenge on single image super-resolution: Methods and results,” in Proceedings

of the IEEE conference on computer vision and pattern recognition workshops,

2017, pp. 114-125.

M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A. Morel, “Low-complexity
single-image super-resolution based on nonnegative neighbor embedding,” in

British Machine Vision Conference (BMVC), 2012.

R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-
representations,” in International conference on curves and surfaces. Springer,

2010, pp. 711-730.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented
natural images and its application to evaluating segmentation algorithms and
measuring ecological statistics,” in Proceedings Eighth IEEE International Con-

ference on Computer Vision. ICCV 2001, vol. 2. 1EEE, 2001, pp. 416-423.

J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from trans-
formed self-exemplars,” in Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, 2015, pp. 5197-5206.

75

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE transactions on image

processing, vol. 13, no. 4, pp. 600-612, 2004.

H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and word classifiers:
A loss framework for language modeling,” in 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,

Conference Track Proceedings, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026-1034.

M. Ahmad, M. Abdullah, H. Moon, S. J. Yoo, and D. Han, “Image classification
based on automatic neural architecture search using binary crow search algo-

rithm,” IEEE Access, vol. 8, pp. 189 891-189 912, 2020.

Y. Guo, Y. Luo, Z. He, J. Huang, and J. Chen, “Hierarchical neural architec-
ture search for single image super-resolution,” IEEE Signal Processing Letters,

vol. 27, pp. 1255-1259, 2020.

Y. Weng, Z. Chen, and T. Zhou, “Improved differentiable neural architecture
search for single image super-resolution,” Peer-to-Peer Networking and Appli-

cations, vol. 14, no. 3, pp. 1806-1815, 2021.

J. Y. Ahn and N. L. Cho, “Neural architecture search for image super-
resolution using densely constructed search space: Deconas,” arXiv preprint

arXiv:2104.09048, 2021.

G. Li, G. Qian, I. C. Delgadillo, M. Muller, A. Thabet, and B. Ghanem, “Sgas:
Sequential greedy architecture search,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR), June 2020.

76

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015, pp. 1-9.

N. Nguyen and J. M. Chang, “Contrastive self-supervised neural architecture

search,” arXiv preprint arXiv:2102.10557, 2021.

C. Liu, P. Dollar, K. He, R. Girshick, A. Yuille, and S. Xie, “Are labels necessary
for neural architecture search?” in European Conference on Computer Vision.

Springer, 2020, pp. 798-813.

S. Kaplan and R. Giryes, “Self-supervised neural architecture search,” arXiv

preprint arXiv:2007.01500, 2020.

X. Dong, L. Liu, K. Musial, and B. Gabrys, “Nats-bench: Benchmarking nas al-
gorithms for architecture topology and size,” IEEE transactions on pattern anal-

ysis and machine intelligence, 2021.

M. Lindauer and F. Hutter, “Best practices for scientific research on neural ar-
chitecture search,” Journal of Machine Learning Research, vol. 21, no. 243, pp.

1-18, 2020.

C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter, “Nas-
bench-101: Towards reproducible neural architecture search,” in International

Conference on Machine Learning. PMLR, 2019, pp. 7105-7114.

B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia,
and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design via differen-
tiable neural architecture search,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, 2019, pp. 10734-10742.

A. Wan, X. Dai, P. Zhang, Z. He, Y. Tian, S. Xie, B. Wu, M. Yu, T. Xu, K. Chen

et al., “Fbnetv2: Differentiable neural architecture search for spatial and channel

77

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

dimensions,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 12 965-12 974.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,

vol. 6, no. 2, pp. 182197, 2002.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735-1780, 1997.

MATLAB, version 9.8.0.1298242 (R2020a). Natick, Massachusetts: The Math-
Works Inc., 2020.

X. Wang, Q. Wang, Y. Zhao, J. Yan, L. Fan, and L. Chen, “Lightweight single-
image super-resolution network with attentive auxiliary feature learning,” in Pro-

ceedings of the Asian Conference on Computer Vision, 2020.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adap-
tation of deep networks,” in International Conference on Machine Learning.

PMLR, 2017, pp. 1126-1135.

J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learn-
ing,” Advances in Neural Information Processing Systems, vol. 30, pp. 4077—

4087, 2017.

F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales, “Learning
to compare: Relation network for few-shot learning,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2018, pp. 1199-1208.

O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for
one shot learning,” Advances in neural information processing systems, vol. 29,

pp. 3630-3638, 2016.

78

[66]

[67]

[68]

[69]

[70]

[71]

N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural attentive

meta-learner,” in International Conference on Learning Representations, 2018.

B. N. Oreshkin, P. Rodriguez, and A. Lacoste, “Tadam: task dependent adaptive
metric for improved few-shot learning,” in Proceedings of the 32nd International

Conference on Neural Information Processing Systems, 2018, pp. 719-729.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-
learning with memory-augmented neural networks,” in International conference

on machine learning. PMLR, 2016, pp. 1842-1850.

C. Finn and S. Levine, “Meta-learning and universality: Deep representations
and gradient descent can approximate any learning algorithm,” in International

Conference on Learning Representations, 2018.

E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths, “Recasting gradient-
based meta-learning as hierarchical bayes,” in International Conference on

Learning Representations, 2018.

Y. Lee and S. Choi, “Gradient-based meta-learning with learned layerwise metric
and subspace,” in International Conference on Machine Learning. PMLR, 2018,

pp. 2927-2936.

79

o

o

il

b s A st o] ofu]

ZEE

1
p L

= o 2{d(deep learning) 7]

)

(CNN)= AH&-

14} 5} (SISR)

]

AE F=

=
gL

@9 ojn]7] 1

% gl

S}
=

L AL Fg Hope] 11E7}et

=K
min

oT
"
3

o

T Fo131 ZA ol o

A

:TL

A (NAS) -2 AF

A
~

)

o] =0l A] A
o} 714 7] H (ENAS)

=

N =st, der A

9

olu|z] 1

}91.2 ™, DeCoNASNeto] 2}

273

3|
~

A} St

S

=

to] 2]/ 9 1) A (feature)

5

2 A

A 7k

N

==
57

|

7

o

LES)

}3 ©]2 REINFORCE &

Ho)s

toich A% 23} DeCoNASNet2 7|

©

=
=

E] (complexity-based penalty)

=]
=

75t o
T Z0] BAF A5

of Akgrol 213

=
—

7t

=
a

80

<«

ol
o
o
el
K

1l
fife]

N
Jo
o
Jo

=

=

T7ro A o8] Z7]9] 1A (feature)

oju

o
L

Tor

el

<5 (meta-transfer learning)

S}
ol

= et A&

fl A1 7171 o3 2719

9

A [e]
SHHEF

Tor

el

A= vl

A€ siask

=
81

—

B7} 7))

o A2 oz AAE Ho] HF olu)A
2 74

3P 2014-22565

2

=]

1
ol

kel

	1 INTRODUCTION
	1.1 contribution
	1.2 contents

	2 Neural Architecture Search for Image Super-Resolution Using Densely Constructed Search Space: DeCoNAS
	2.1 Introduction
	2.2 Proposed Method
	2.2.1 Overall structure of DeCoNASNet
	2.2.2 Constructing the DNB
	2.2.3 Constructing controller for the DeCoNASNet
	2.2.4 Training DeCoNAS and complexity-based penalty

	2.3 Experimental results
	2.3.1 Settings
	2.3.2 Results
	2.3.3 Ablation study

	2.4 Summary

	3 Multi-Branch Neural Architecture Search for Lightweight Image Super-resolution
	3.1 Introduction
	3.2 Related Work
	3.2.1 Single image super-resolution
	3.2.2 Neural architecture search
	3.2.3 Image super-resolution with neural architecture search

	3.3 Method
	3.3.1 Overview of the Proposed MBNAS
	3.3.2 Controller and complexity-based penalty
	3.3.3 MBNASNet
	3.3.4 Multi-scale block with partially shared Nodes
	3.3.5 MBNAS

	3.4 datasets and experiments
	3.4.1 Settings
	3.4.2 Experiments on single image super-resolution (SISR)

	3.5 Discussion
	3.5.1 Effect of the complexity-based penalty to the performance of controller
	3.5.2 Effect of multi-branch structure and partial parameter sharing scheme
	3.5.3 Effect of gradient flow control weights and complexity-based penalty coefficient

	3.6 Summary

	4 Meta-transfer learning for simultaneous search of various scale image super-resolution
	4.1 Introduction
	4.2 Related Work
	4.2.1 Single image super-resolution
	4.2.2 Neural architecture search
	4.2.3 Image super-resolution with neural architecture search
	4.2.4 Meta-learning

	4.3 Method
	4.3.1 Meta-learning
	4.3.2 Meta-transfer learning
	4.3.3 Transfer-learning

	4.4 datasets and experiments
	4.4.1 Settings
	4.4.2 Experiments on single image super-resolution(SISR)

	4.5 Summary

	5 Conclusion
	Abstract (In Korean)

<startpage>16
1 INTRODUCTION 1
 1.1 contribution 3
 1.2 contents 4
2 Neural Architecture Search for Image Super-Resolution Using Densely Constructed Search Space: DeCoNAS 5
 2.1 Introduction 5
 2.2 Proposed Method 9
 2.2.1 Overall structure of DeCoNASNet 9
 2.2.2 Constructing the DNB 11
 2.2.3 Constructing controller for the DeCoNASNet 13
 2.2.4 Training DeCoNAS and complexity-based penalty 13
 2.3 Experimental results 15
 2.3.1 Settings 15
 2.3.2 Results 16
 2.3.3 Ablation study 21
 2.4 Summary 22
3 Multi-Branch Neural Architecture Search for Lightweight Image Super-resolution 23
 3.1 Introduction 23
 3.2 Related Work 26
 3.2.1 Single image super-resolution 26
 3.2.2 Neural architecture search 27
 3.2.3 Image super-resolution with neural architecture search 29
 3.3 Method 32
 3.3.1 Overview of the Proposed MBNAS 32
 3.3.2 Controller and complexity-based penalty 33
 3.3.3 MBNASNet 35
 3.3.4 Multi-scale block with partially shared Nodes 37
 3.3.5 MBNAS 38
 3.4 datasets and experiments 39
 3.4.1 Settings 39
 3.4.2 Experiments on single image super-resolution (SISR) 41
 3.5 Discussion 48
 3.5.1 Effect of the complexity-based penalty to the performance of controller 49
 3.5.2 Effect of multi-branch structure and partial parameter sharing scheme 50
 3.5.3 Effect of gradient flow control weights and complexity-based penalty coefficient 51
 3.6 Summary 52
4 Meta-transfer learning for simultaneous search of various scale image super-resolution 54
 4.1 Introduction 54
 4.2 Related Work 56
 4.2.1 Single image super-resolution 56
 4.2.2 Neural architecture search 57
 4.2.3 Image super-resolution with neural architecture search 58
 4.2.4 Meta-learning 59
 4.3 Method 59
 4.3.1 Meta-learning 60
 4.3.2 Meta-transfer learning 62
 4.3.3 Transfer-learning 63
 4.4 datasets and experiments 63
 4.4.1 Settings 63
 4.4.2 Experiments on single image super-resolution(SISR) 64
 4.5 Summary 66
5 Conclusion 69
Abstract (In Korean) 80
</body>

