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Abstract

In this thesis, we focus on deep learning methods to enhance the qual-

ity of a single image. We first categorize the image quality enhancement

problem into three tasks: denoising, deblurring, and super-resolution, then

introduce deep learning techniques optimized for each problem. To solve

these problems, we introduce a novel deep neural network suitable for

multi-scale analysis and propose efficient model-agnostic methods that

help the network extract information from high-frequency domains to re-

construct clearer images. Experiments on SIDD, Flickr2K, DIV2K, and

REDS datasets show that our method achieves state-of-the-art perfor-

mance on each task. Furthermore, we show that our model can over-

come the over-smoothing problem commonly observed in existing PSNR-

oriented methods and generate more natural high-resolution images by

applying adversarial training.

Key words: Image Deblurring, Image Denoising, Single Image Super-

Resolution, Image Enhancement, Deep Learning, Convolutional Neural

Network

Student Number: 2015-22685
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Chapter 1

Introduction

With the recent development of display technology, high-resolution display

devices such as 4K or 8K have become common, and demand for high-

resolution images has increased. The most effective way to obtain such

high-resolution images would be using filming devices with high-end qual-

ity. However, this is usually not a feasible option, mainly due to economic

problems. Besides the difficulty of equipping such high-end devices, there

remain some challenging problems such as ultra-zooming tasks or restor-

ing historical images where low-resolution images that should be converted

to high-resolution ones are already taken. There are so many images or

videos in SD, HD, or FHD resolution taken years ago that we need to

convert into 4K or 8K to adapt to modern display devices. Therefore, the

need for studies on analyzing low-resolution images’ characteristics and

enhancing their quality is increasing day by day.

Researches on the image quality enhancement problem are often di-

vided into image denoising, image deblurring, and super-resolution prob-

lems. For decades, most research has focused on statistical model-based

methods [6] such as Maximum A Posteriori Estimation (MAP) and Ex-

pectation Maximization algorithms (EM). However, with the recent de-

velopment of deep learning techniques along with GPU devices, the high

performance and potential of learning-based methods have drawn the at-

tention of researchers, and many studies have been proposed accordingly.

1



CHAPTER 1. INTRODUCTION

Most learning-based methods utilize the high capacity of deep neural

networks with remarkable ability to understand the content and style of

the image they have shown in visual recognition, including image clas-

sification and object detection. Using these high capacities and analytic

powers of deep neural networks, learning-based methods have been suc-

cessfully adapted to the field of image enhancement and have shown better

performances compared to traditional model-based methods in laboratory

environments.

When applied to real-world problems, however, most learning-based

methods have failed to produce such good results while model-based meth-

ods are more flexible and applicable to low-resolution images with various

kinds of blur and noises. This is because learning-based methods learn how

to enhance the quality of images only by analyzing relations between given

pairs of low-resolution images and their corresponding high-resolution ones

in the training phase. However, in real-world problems, only low-resolution

images are given and their high-resolution pairs are unknown. This means

that the models have to infer new relations that they have never learned,

which often leads to huge performance degradation when they solve real-

world problems.

Another problem called the “ill-posed problem” also makes solving

real-world problems more challenging; there are countless high-resolution

image candidates in solution spaces corresponding to a given low-resolution

image, while the number of high-resolution outputs human viewers per-

ceive natural is very small or unique. The ill-posed problem makes it very

difficult for deep neural networks to derive natural high-resolution outputs

when solving real-world problems. Research on mathematical ways to re-

duce the solution spaces in unsupervised environments has been recently

proposed to deal with the problem.

Figure 1.1 shows the achievements of recent learning-based studies on

Single Image Super-Resolution. As Figure 1.1 illustrates, many studies on

the architectural design of deep neural networks have been proposed over

the years and have shown great performances. However, they have recently

reached the limit; little progress has been made except for marginal im-

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Performances of recent super-resolution methods [36]. The

x-axis and the y-axis denote the number of operations and PSNR per-

formances, respectively, while the size of circle represents the number of

parameters of each networks.

provements on performances. This is because deep neural networks are

originally optimized for understanding the content of images based on the

high capacity of deeply stacked layers, so they are less capable of interpret-

ing and restoring detailed information of corrupted images. Accordingly,

recent studies are more focused on conveying mathematical properties of

images to the existing models rather than designing deeper networks.

In keeping with this trend, we not only propose novel architectures of

deep neural network for image enhancement problems but also introduce

some state-of-the-art model-agnostic methods to make networks capable

of producing sharper and more realistic images by providing abstract char-

acteristics and high-frequency components of images with a little modifi-

cation in the structure of existing models.
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Chapter 2

Preliminaries

Deep learning techniques have shown remarkable flexibility that they can

be applied to various vision tasks such as classifying or localizing ob-

jects by analyzing feature maps extracted from convolutional layers, as

well as the ability to transferring new styles to images or synthesizing

objects. Of course, such image analysis capability and the ability to gen-

erate and synthesize natural images are also beneficial for image qual-

ity enhancements such as denoising, deblurring, and super-resolutions.

In recent years, learning-based methods have demonstrated better per-

formances and proved to be more effective than traditional model-based

methods.

2.1 Image Denoising

2.1.1 Problem Formulation: AWGN

In the image enhancement problem, the relation between the low-resolution

image and the corresponding high-resolution image is often expressed as

follows:

ILR = (k ∗ IHR) ↓s +n (2.1.1)

4



CHAPTER 2. PRELIMINARIES

where k is the blur kernel, s is the scale factor, n is the additive noise,

and ILR and IHR are low-resolution image and its corresponding high-

resolution image, respectively.

The objective of the image denoising problem is to eliminate noise n

from Equation (2.1.1). To focus on removing n, most studies assume that k

and s are identity mapping. This makes denoising easier than deblurring or

super-resolution as the scale factor s = 1 makes input and output images

having the same size, and the damage to the pixels of each location is

relatively not severe as k is the identity kernel.

To successfully detach noise n from images, we need to know what

kind of noise has been added to the image. Most denoising studies assume

that additive white Gaussian noise, which is signal-independent, is given.

However, in a low-light condition, the image could have different kinds of

signal-dependent noises, such as Poisson-Gaussian noise.

Additive White Gaussian Noise. Most studies assume the additive

white gaussian noise (AWGN) which can be expressed as follows:

ILR(x, y) = IHR(x, y) + n(x, y) (2.1.2)

where noise n is independent and identically distributed and follows zero-

mean Gaussian distribution.

Multiplicative White Gaussian Noise. The most common signal-

dependent noise is multiplicative white Gaussian noise or speckle noise

that can be expressed as follows:

ILR(x, y) = IHR(x, y) + IHR(x, y)� n(x, y) (2.1.3)

where � is element-wise multiplication. Here, n follows a normal distribu-

tion, as in the case of AWGN, but the magnitude of the noise added to

the image is proportional to the pixel intensity.

Poisson-Gaussian Noise. The Poisson-Gaussian noise is given by

the sum of the signal-dependent Poisson noise and the signal-independent

5



CHAPTER 2. PRELIMINARIES

Gaussian noise, which can be expressed as follows:

ILR(x, y) = IHR(x, y) + np (IHR(x, y)) + ng(x, y) (2.1.4)

where np and ng denote the signal-dependent Poisson noise that is pro-

portional to the image and the signal-independent Gaussian noise, respec-

tively.

This thesis focuses on removing Additive White Gaussian Noise from

images as with most existing studies.

2.1.2 Existing Methods

The learning-based methods learn the characteristics of noisy images in

the spatial domain to find hidden deep image prior and use them to re-

construct noise-free images. In 2017, Zhang et al. [40] proposed DnCNN

with 17 or 20 convolutional layers with Batch Normalizations followed by

ReLU activation functions. The output of DnCNN is added to the origi-

nal noisy image to get the denoised image. That is, the model is trained

to predict noise maps from input images and subtract them to get noise-

free images. In 2018, Zhang et al. [41] proposed FFDNet, which takes a

tunable noise level map as input and deals with spatially variant noises.

Before forwarding through their model, they reshaped the input image to

four downsampled sub-images and added tunable noise level maps. They

put those noisy downsampled images into FFDNet together and outputs

four denoised sub-images, which are finally used to reconstruct the out-

put image. Park et al. [25] proposed DHDN, one of the state-of-the-art

denoising methods in the NTIRE 2019 Challenge. Inspired by U-Net [27],

which downsamples feature maps in the model instead of manually down-

sampling images, DHDN replaced convolutional layers with Densely Con-

nected Residual Blocks (DCR Blocks) to introduce dense connectivity [11]

and residual learning [10] to their model. These studies utilized neural net-

work’s ability to find deep image prior from the spatial domain. However,

some studies claimed that spectral analysis is much more reliable and

effective than spatial analysis.

6
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In 2019, Zhao et al. [45] proposedWDnCNN, a discrete wavelet DnCNN

which restores images from different parts of the frequency spectrum, argu-

ing that removing noise in the frequency spectra is more efficient because

noise mainly exhibits as high-frequency components. They also proposed

Batch Normalization Module (BNM) to normalize highly imbalanced co-

efficients from different frequency spectra.

2.2 Image Deblurring

2.2.1 Problem Formulation: Blind Deblur

As mentioned in section 2.1.1, we assume that the relation of low-resolution

images ILR and corresponding high-resolution images IHR can be ex-

pressed as following:

ILR = (k ∗ IHR) ↓s +n (2.1.1 revisited)

The research on the deblurring problem is mainly divided into two

categories: the Non-blind method and the Blind method. The Non-blind

method is to restore IHR where blur kernel k is given. On the other hand,

studies on the blind method assume that k is unknown, making the prob-

lem far more difficult to solve.

Most traditional model-based methods focused on restoring accurate

IHR by analyzing the mathematical properties of k in non-blind situations.

However, the learning-based methods, which analyze images by observing

various kinds of big data, focus more on studying end-to-end models that

can reconstruct IHR from different kinds of k with a single model in blind

situations rather than solving constrained problems where k is given.

2.2.2 Existing Methods

This section introduces some remarkable learning-based deblurring stud-

ies, divided into three categories: Non-blind method, Blind-Method, and

Blur Kernel Estimation.

7
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Non-Blind Methods. Many studies have attempted to solve the

Non-blind problem by combining recent deep learning techniques with tra-

ditional mathematical methods such as deconvolving images using Wiener

filters [37]. In 2017, Kruse et al. [15] proposed a method to restore IHR

by combining the improved Wiener filter for given blur kernel k with fea-

ture maps extracted from the CNN model. To combine feature maps with

Wiener filter, they proposed an FFT-based deconvolution which requires

the circular blur assumption. In 2018, Wang et al. [35] introduced a general

non-blind deconvolution method that can handle different types of k and

different levels of n. They first deconvolve ILR with regularized Wiener

filter and then input them to the neural network to predict residual maps,

which is a similar approach to USRNet that Zhang et al. [39] proposed

in 2020. Zhang et al. iteratively input ILR to deconvolution and USRNet

to make IHR estimation sharper. Though non-blind methods show great

performances in their studies, they are difficult to apply to real-world

problems because they cannot produce such good results where the blur

kernel k is unknown.

Blind Methods. Recent works are more focused on the blind methods

as they are more flexible and applicable to real-world problems. In 2017,

Nah et al. [22] proposed DeepDeblur, which takes the Gaussian pyramid

of downsampled blurry images as the input and outputs estimated la-

tent image pyramid. The model could estimate sharp latent features from

multi-scaled receptive fields by taking different scales of blurry images.

Similarly, in 2018, Tao et al. [33] also adapted the coarse-to-fine scheme

to their model. Instead of the Gaussian pyramid, they first input down-

sampled blurry images to their model and then upsample the output and

iteratively input them to the network until the output images and target

images have the same size. On the other hand, in 2018, Kupyn et al. [16]

proposed DeblurGAN, which uses a conditional GAN framework and con-

tent loss. In 2019, Kupyn et al. [17] developed their model by applying

FPN to the generator and global/local discriminators.

8
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Blur Kernel Estimation. Although some studies have attempted

to solve the deblurring problem without using any information about the

blur kernel, many researchers attempted to improve the performance of

blind methods by predicting the unknown blur kernel k from given ILR.

In 2019, Cornillère et al. [7] trained a kernel discriminator to analyze the

output image to determine whether the appropriate kernel was used. By

minimizing the error of the kernel discriminator, they could predict the

suitable blur kernels that fit best to deblur given images. Bel-Klingler et

al. [5] used patch GAN to generate natural downscaled fake patches from

images. Once the generator is sufficiently trained, the network gives us a

suitable blur kernel of the image.

2.3 Single Image Super-Resolution

2.3.1 Problem Formulation: SISR

Again, we express that the relation of low-resolution images ILR and cor-

responding high-resolution images IHR as following:

ILR = (k ∗ IHR) ↓s +n (2.1.1 revisited)

In the Single Image Super-Resolution, or SISR studies, scale factor s

are usually set to 2, 4, or 8. However, where s = 2, existing state-of-the-art

methods already perform so well and they produce very similar results,

which are often difficult to determine the differences for human viewers.

On the other hand, where s = 8, the damage to ILR is so severe that

it is not suitable for accurate performance comparisons between models.

Therefore our work mainly targets solving SISR problems with s = 4.

While researchers have proposed many different learning-based super-

resolution methods, when and how to upsample images have been one

of the main issues. Firstly, the answer to when to apply the upsam-

pling module is often divided into four choices [36]: pre-upsampling, post-

upsampling, progressive upsampling, and iterative upsampling.
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Figure 2.1: Upsample methods

Pre-Upsampling. The pre-upsampling method uses traditional meth-

ods such as bilinear or bicubic to make images larger and then insert them

into neural networks to eliminate artifacts including blur and noises. This

method has been popular because the structure is intuitive as the neural

networks only need to finetune the coarse images. However, as research

advances, the required scaling factor and the size of images to be pro-

cessed for super-resolution have increased, leading to a significant increase

in time and space complexity. For this reason, pre-upsampling frameworks

have not been used as much in recent years.

Post-Upsampling. The post-upsampling is a method to increase

computational efficiency by forwarding small-sized feature maps in neural

networks and then upscale those features just before yielding output im-

ages. In contrast to pre-upsampling, which computes feature maps with

the size of output images, post-upsampling analyzes the input-image-sized

feature maps and produces feature maps containing high-frequency infor-

mation. Using these feature maps, the model finally generates output im-

ages by applying upsampling modules such as pixel shuffle and transposed

convolution at the end of the neural networks. Thanks to its high com-

putational efficiency, post-upsampling has become one of the most widely

used mainstream frameworks.
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Progressive Upsampling. Progressive upsampling is similar to post-

upsampling in that it upsamples the feature maps already processed in

neural networks. However, unlike post-upsampling, which applies multi-

ple upsampling steps at once, progressive upsampling applies upsampling

modules step by step, stabilizing the optimization scheme for large scaling

factors. However, as most datasets do not contain upsampled ground-truth

for each step, it is not easy to optimize intermediate auxiliary branches. So

it is highly likely that artifacts might be generated due to the intermediate

upsampling modules, which can adversely affect the later part of neural

networks, damaging the quality of output images.

Iterative Upsampling. Iterative Upsampling is a framework that it-

erates upsample and downsample, which expects neural networks to per-

form a deeper analysis of the mutual relationships of low-resolution and

high-resolution images. However, the structure of neural networks often be-

comes complex, and optimization becomes unstabilized under this frame-

work, so it is not yet widely used. Nevertheless, as research on stabilizing

neural network structures and learning schemes develops, this framework

also has the potential to produce great performances in future research.

Secondly, upsampling techniques used by most studies are often di-

vided into two cases; transposed convolution [21] and pixel shuffle [29].

Transposed Convolution. A transposed convolution, also known as

a fractionally strided convolution [21], reverses the forward and backward

passes by transposing the matrix operation of convolutions to implement

the upsampling process.

fi+1 = k ∗ fi = Cfi (Convolution)Transposed (2.3.1)

fj+1 = CT fj (Transposed Convolution) (2.3.2)

where convolution with kernel k is expressed as multiplying a matrix C

with the feature map fi. Normally in deep learning, convolutions compute

the output in the manner of many-to-one. That is, multiplying by the
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matrix C reduces the dimension of feature maps. On the other hand, we

can expand the dimension by multiplying by the transposed matrix CT .

Although the transposed convolution has shown sharper results compared

to traditional upscaling methods such as bicubic interpolation, it is not

used much recently as it often yields checkerboard artifacts in the output.

Pixel Shuffle. Pixel shuffle, also known as the sub-pixel convolution

layer [29], upsamples images by rearranging feature map of shape (C ×
s2, H,W ) to (C,H × s,W × s). To upscale features with pixel shuffle,

the previous layer should have s2-times more channel than the number of

channels we want, which increases the computational cost. However, as the

upscaling process of pixel shuffle does not use any explicit interpolation

filter, the layer can implicitly learn the necessary features for upscaling.

Pixel shuffle has shown relatively stable performance in many novel studies

and has been widely used recently.

2.3.2 Existing Methods

In recent years, many studies have been proposed to solve the SISR prob-

lem using different deep-learning techniques. In 2015, Dong et al. [8] intro-

duced deep learning methods into the SISR problem, proposing SRCNN

that is a fully convolutional neural network that enables end-to-end map-

ping between input and output images. In 2016, Kim et al. [14] proposed

VDSR that utilizes contextual information spread over large patches of

images using large receptive fields to convolutional layers. In 2017, Tai et

al. [31] proposed a very deep network structure consisting of 52 convolu-

tional layers called DRRN by designing a recursive block with a multi-path

structure while Ledig et al. [18] proposed SRResNet with 16 blocks of deep

ResNet and also introduced GAN-based SRGAN which is optimized for

perceptual loss calculated on feature maps of the VGG [30] network.

In 2017, Lim et al. [20] proposed a novel model named EDSR. They re-

moved every batch normalization from their network and stacked 16 resid-

ual blocks, which extracts high-frequency information from low-resolution

images. In the same year, Tong et al. [34] proposed SRDenseNet, which

12
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consists of 8 dense blocks [11] and skip connections that combine feature

maps from different levels. In 2018, Zhang et al. [44] introduced a residual

dense block that allows direct connections from preceding blocks, leading

to a continuous memory mechanism. Zhang et al. [43] also proposed a

novel model called RCAN, which added channel attention to EDSR and

introduced a Residual in Residual module to construct a 10 times deeper

network. They used skip connections with various lengths to help their

model separately extract abundant low-frequency features and scarce but

important high-frequency information from low-resolution images.

Until 2019, studies have mainly focused on modifying networks’ archi-

tectural design by introducing or combining various kinds of neural blocks.

However, as the neural networks became sufficiently deep and wide, struc-

tural modifications alone could expect nothing but only small marginal

improvements. To overcome such issues, researchers have recently focused

on the intrinsic limitations of the SISR problem or attempted to combine

their neural networks with traditional model-based methods.

In 2020, Guo et al. [9] introduced cycle consistency to their network

to solve the intrinsic ill-posed problem; there are infinite high-resolution

images that can be downsampled to the given low-resolution input images.

They reconstructed the RCAB proposed by RCAN [43] into a UNet [27]

structure. In this process, they also produced images with 1/2 and 1/4

size of the target resolution from the low-resolution inputs, and then com-

pared them with downscaled output images. Through this process, which

is named dual regression, they could maintain cycle consistency and enable

their networks trained with unlabeled data at the same time. Pan et al. [23]

constrained their network with input information by utilizing a pixel sub-

stitution scheme from low-resolution images. They added degraded image

blurred by known blur kernel to the input image and forwarded them

iteratively into the deblurring network. From this process, they tried to

convert a given difficult blind kernel problem to an easy non-blind problem

so that their model can restore sharp images more easily.

Instead of solving the ill-posed problem by giving cycle consistency

to the network with constraint from input information, several attempts
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have been proposed to create a human interpretable network structure

by applying meaningful kernel to the convolutional layers of the network.

Huang et al. [12] introduced a Multi-Scale Hessian Filtering (MSHF) con-

sisting of kernels that extract edges from multi-scale, leading their model

to approach the high-frequency information of images from different angles

and scales. On the other hand, Shang et al. [28] uses rectangular-shaped

receptive fields such as 1 × 3 or 3 × 1 in parallel rather than randomly

initializing 3 × 3 convolutional kernels. In this way, their model, named

RFB-ESRGAN, becomes human interpretable and could adaptively ana-

lyze both horizontal and vertical information of images.

A study has also been proposed to apply knowledge distillation to

the SISR problem to enable models to use the rich information in high-

resolution images during the training phase. Lee et al. [19] forward the

encoded feature of HR images to the teacher network, which shares the

same structure as the student network, allowing the teacher network to

use privileged information to obtain better outcomes. The student network

then used variational information distillation [3] technique that allows the

teacher network to distill their encoded features to the student network

so it can learn how to extract privileged information, allowing the model

to extract more meaningful features from a given low-resolution input.

As EDSR [20] and RCAN [43] separately extract shallow and deep fea-

tures from the image on RGB color space, a study that tried to take a step

further from color domain to frequency domain and decompose high fre-

quency and low-frequency information has been proposed. Pang et al. [24]

split input images into high, medium, and low frequencies and passed them

to the network individually, and then aggregated each convoluted feature

map adaptively to generate high-resolution images. However, instead of

using mathematical methods such as FFT or DWT, they simply divided

the frequency domain using three convolutional layers, which is easy to

fail to extract valid and meaningful frequency information.
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Image Denoising

In this chapter, we propose novel modules that enhance the performance of

the denoising model. We introduce our proposed methods in Section 3.1,

and provide experimental results on DIV2K and SIDD dataset in Sec-

tion 3.2

3.1 Proposed Methods

This section introduces some novel techniques and architecture of a deep

neural network for state-of-the-art image denoising.

3.1.1 Multi-scale Edge Filtering

For successful denoising, it is important to understand the structure of im-

ages. In particular, we need to separate high-frequency and low-frequency

regions and make adaptively appropriate analyses for each region to suc-

cessfully detach the noise map from the original image. This is because

the distribution of pixel value appears different in each region; pixels in

high-frequency regions often have large variance while smaller variances

are more observed in low-frequency areas.

We propose a module that extracts edges from given images to ob-

tain information about high-frequency areas. The obtained information is
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transferred to the network and used to increase restoring performance by

focusing more on high-frequency regions that are difficult to reconstruct.

The module consists of convolutional layers initialized with pre-defined

filters, making the back-propagation scheme possible and enabling end-to-

end optimization when the network is training the data.

To illustrate the layers in our module, let us first look at how con-

volution works in deep neural networks. Mathematically, convolution is

expressed as Equation (3.1.1).

G(x, y) = ω ∗ F (x, y) =
w�

dx=−w

h�

dy=−h

ω(dx, dy)F (x+ dx, y + dy) (3.1.1)

Here, a kernel ω is given as a small matrix, usually in 3 × 3. As shown

in Equation (3.1.1), discrete operations are applied to ω with each recep-

tive field {F (x+ dx, y + dy)|dx ∈ [−w,w] and dy ∈ [−h, h]} to process the
feature map F (x, y).

Generally, elements of the kernel are randomly initialized in deep learn-

ing methods. However, by fixing those elements by Equation (3.1.2), (3.1.3)

or (3.1.4), it can be used to extract edge information from images. Also,

by increasing the kernel’s size to 5× 5 or 7× 7 rather than 3× 3, we can

easily extract the edge information in larger scales.

Gx =



1 0 −1

1 0 −1

1 0 −1


 and Gy =




1 1 1

0 0 0

−1 −1 −1


 (3.1.2)

Equation 3.2: Prewitt Filter

We extract multi-scale edge information from images as shown in Fig-

ure 3.1 using 9 convolutional layers that consist of 3× 3, 5× 5, and 7× 7-

sized kernels with fixed values initialized by second-order derivation filters

shown in Equation (3.1.4). Multi-scale edge information is combined with

deep feature maps extracted from the network and then is used to recon-

struct sharp images.
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Gx =



1 0 −1

2 0 −2

1 0 −1


 and Gy =




1 2 1

0 0 0

−1 −2 −1


 (3.1.3)

Equation 3.3: Sobel Filter

Gx =



0 0 0

1 −2 1

0 0 0


 , Gy =



0 1 0

0 −2 0

0 1 0


 and Gxy =




1 0 −1

0 0 0

−1 0 1




(3.1.4)

Equation 3.4: Second Order Derivation Filter

3.1.2 Feature Attention Module

As mentioned in Section 2.3.2, RCAN [43] achieved better results by

adding channel attention to residual blocks from EDSR [20]. Figure 3.2 (a)

illustrates the concept of channel attention. The channel attention takes

a vector pooled from feature maps as input and feed-forward it through

a series of convolutional layers. Here, the layers give us weights for each

channel by operating dot products for local channel-wise regions from the

average pooled vector. This process allows the network to determine the

importance between channels in the feature map and focus on channels

with more information.

EDSR and RCAN restore images using feature maps obtained by sum-

ming the shallow features and deep features. However, as they simply

added two features, they have failed to consider the relative importance of

shallow and deep features. Since shallow and deep features contain differ-

ent kinds of information, such as low and high-frequency, their importance

cannot be the same. Also, the characteristic of given image changes which
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Figure 3.1: Multi-Scale Edge Detection Module

feature contains more information. Therefore, it is necessary to introduce

a module that identifies the characteristics of given images and determines

each importance before adding feature maps with different information.

To solve this problem, we introduce the Feature Attention Module.

Before feature maps are added, the relative weights of importance are

estimated by our Feature Attention Module. We calculated weight of im-

portance in a vector form with the dimension of the channel in feature

maps, considering that each channel has different importance.

Figure 3.2 shows the structure of our feature attention module. First,

we concatenate vectors from each feature map by using the global average

pooling layer. Then we pad the stack of vectors and feed them into con-

volution in the feature-wise direction rather than the channel-wise way.

We padded the vectors to maintain the output dimension and make the

convolution to compute every feature evenly. By multiplying each feature

map in an element-wise way, we could finally obtain a weighted sum of

features depending on their importance.
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Figure 3.2: Feature Attention Module

3.1.3 Network Architecture

Figure 3.3 shows the structure of our proposed network for image denois-

ing. We designed a novel denoising network by combining our multi-scale

edge detecting module and feature attention module into the basic struc-

ture of RCAN. Our network extracts features from three parts: head, body,

and the multi-scale edge filtering module.

The head of the network consists of only one convolutional layer with-

out any activation function. It extracts simple low-frequency information,

e.g., shape of objects. Using only one layer allows our model to extract

low-level features without distorting the data by minimizing the process

of the image. On the other hand, the body of the network consists of 16
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Figure 3.3: Network Architecture of Our Proposed Model

Residual Channel Attention Blocks. It extracts complex and abstract high-

frequency information, such as textures or sharp patterns. These high-level

features help our model understand the image and provide the intuition

necessary to reconstruct areas corrupted by severe noises. However, since

the body contains a significant number of convolutions, these high-level

features inevitably include artifacts such as checkerboard or blurs which

make it difficult to restore sharp images from high-level features only. In

this reason, our model uses a combination of high-level features contain-

ing more abstract information and low-level feature with more intuitive

information.

Our model also utilizes features from our multi-scale edge filtering

module in addition to low-level and high-level features from the head and

body of the network. To combine three feature maps with different infor-

mation, we use the feature attention module described in Section 3.1.2. By

focusing on more important feature maps depending on the characteristics

of given images, our model could successfully remove the noise map from

images. Experimental results show that our network achieves notable per-

formance improvement, combined with our multi-scale edge filtering and

feature attention module. Detailed results are shown in Section 3.2.
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3.2 Experiments

This section shows our experimental results of our model on the synthetic

noisy dataset and real noisy dataset. We used DIV2K [2] image with addi-

tional white Gaussian noise as a synthetic noisy dataset, and the SIDD [1]

as a real noisy dataset.

3.2.1 Training Details

In the training phase, we trained our model for 200 epochs with Adam

optimizer and initial learning rate 10−4 with learning rate decay by 0.99

for every 1, 000 steps. For each iteration, 16 batches with 192× 192 sized

image patches cropped original large images were used. Lastly, L1 function

was used for the loss function.

3.2.2 Experimental Results on DIV2K+AWGN dataset

We first applied our model to a synthetic noisy dataset generated by

adding white Gaussian noise with σ = 10, 30, and 50 to DIV2K dataset,

respectively. In the training phase, we optimized our model for every vari-

ance of the noise at once. Using different kinds of noise together, our model

has become flexible to more diverse noise levels.

Table 3.1 shows a comparison of the results of our model and other

learning-based models using PSNR and SSIM scores. Our proposed model

proved the best performance in most cases, while interestingly, our model

without feature attention module showed the best result where σ = 50.

This means that it is hard for the network to determine which feature map

the model should attend when the input image feature maps are severely

damaged. Hence, if the input image is harshly corrupted or contains very

complex features, we need to remove the feature attention module from

our model and make the structure more intuitive.
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Table 3.1: Comparison of denoising results in PSNR and SSIM scores on

DIV2K + AWGN dataset. Best scores marked in bold.

Method
DIV2K + AWGN

σ = 10 σ = 30 σ = 50

Noisy Images 32.95 / 0.7037 23.41 / 0.3280 18.97 / 0.1909

DnCNN [40] 30.28 / 0.8753 26.74 / 0.6389 23.25 / 0.4343

MemNet [32] 33.36 / 0.8815 29.67 / 0.6619 22.46 / 0.3733

FFDNet [41] 30.06 / 0.8208 29.04 / 0.7795 27.32 / 0.6892

DHDN [25] 35.31 / 0.8900 29.74 / 0.7401 26.61 / 0.6168

Ours w/o Edge 38.64 / 0.9476 31.63 / 0.8325 27.71 / 0.7039

Ours w/o FeaAtt 38.62 / 0.9475 31.65 / 0.8313 28.14 / 0.7352

Ours 38.64 / 0.9483 31.67 / 0.8361 27.69 / 0.7074
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(a) DIV2K/806.png + AWGN (σ = 10) – PSNR: 40.18, SSIM: 0.9629

(b) DIV2K/884.png + AWGN (σ = 10) – PSNR: 38.12, SSIM: 0.9621

(c) DIV2K/887.png + AWGN (σ = 10) – PSNR: 37.35, SSIM: 0.9663

Figure 3.4: Denoising results with PSNR and SSIM scores for DIV2K

dataset with AWGN (σ = 10). From left to right: noisy image, our result,

and ground-truth. Best viewed on screen.
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(a) DIV2K/806.png + AWGN (σ = 30) – PSNR: 33.85, SSIM: 0.8872

(b) DIV2K/884.png + AWGN (σ = 30) – PSNR: 31.67, SSIM: 0.8611

(c) DIV2K/887.png + AWGN (σ = 30) – PSNR: 30.35, SSIM: 0.8931

Figure 3.5: Denoising results with PSNR and SSIM scores for DIV2K

dataset with AWGN (σ = 30). From left to right: noisy image, our result,

and ground-truth. Best viewed on screen.
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(a) DIV2K/806.png + AWGN (σ = 50) – PSNR: 28.99, SSIM: 0.7872

(b) DIV2K/884.png + AWGN (σ = 50) – PSNR: 27.74, SSIM: 0.7646

(c) DIV2K/887.png + AWGN (σ = 50) – PSNR: 26.04, SSIM: 0.7986

Figure 3.6: Denoising results with PSNR and SSIM scores for DIV2K

dataset with AWGN (σ = 50). From left to right: noisy image, our result,

and ground-truth. Best viewed on screen.
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3.2.3 Experimental Results on SIDD dataset

To evaluate our model on real noisy images, we used the Smartphone

Image Denoising Dataset, which is often called SIDD [1]. This dataset

consists of pairs of real noisy images taken under various conditions using

smartphone cameras and ground-truth images, of which defective pixels

are corrected manually. We showed that our model could solve real-world

denoising problems by training and evaluating our model on the SIDD

dataset.

Table 3.2 shows a comparison of the results of our model and other

learning-based models on the SIDD dataset.

Table 3.2: Comparison of denoising results in PSNR and SSIM scores on

SIDD dataset. Best scores marked in bold.

Method
SIDD

PSNR SSIM

Noisy Images 34.19 0.5472

DnCNN [40] 43.60 0.9275

MemNet [32] 44.24 0.9249

DHDN [25] 46.99 0.9677

Ours w/o Edge 47.14 0.9692

Ours w/o FeaAtt 47.12 0.9693

Ours 47.21 0.9693
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(a) SIDD/0015 – PSNR: 36.09, SSIM: 0.8700

(b) SIDD/0050 – PSNR: 36.44, SSIM: 0.7811

(c) SIDD/0145 – PSNR: 39.78, SSIM: 0.9088

(d) SIDD/0200 – PSNR: 42.60, SSIM: 0.9501

Figure 3.7: Denoising results with PSNR and SSIM scores for SIDD

dataset. From left to right: noisy image, our result, and ground-truth.

Best viewed on screen.
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Image Deblurring

In this chapter, we propose a novel network structure for image deblur-

ring. Our image deblurring network shares the basic structure with our

denoising network from Section 3.1.3, but is more capable of image anal-

ysis on multiple scales due to several modifications. We first introduce

some techniques added for image deblurring in Section 4.1, and present

experimental results on REDS and Flickr2K dataset in Section 4.2.

4.1 Proposed Methods

This section introduces some techniques that we added to our denoising

network to solve the image deblurring problem. We propose a kernel blind

deblurring method that sharpens blurry images without information about

the blur kernel. To this end, we introduce a neural network architecture

that can identify the global context as well as local patches in the image.

While many studies try to estimate blur kernel [5], and use the predicted

blur kernel to make the difficult blind problem easier [4], we chose to

solve the deblurring problem without estimating or using any information

about the blur kernel. Instead of predicting the blur kernel, our model

estimates the relationship between the blurry image and the target image

by analyzing the global context.
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4.1.1 Multi-Scale Feature Analysis

Image deblurring requires an understanding of the local and global con-

text of the blurry images. To this end, we modified the downsampling-

upsampling structure of U-Net [27] to let our network recognize images

at various scales. Unlike U-Net, however, which pools feature maps to ob-

tain downsampled features, we made our network take 1/2 and 1/4 sized

input images downsampled by bicubic interpolation. While damage such

as checkerboard artifacts are frequently observed in commonly used max-

pooling or strided convolution, we adopted bicubic interpolation because

it is relatively free from such corruption and thus maintains the context

of input images better than other methods.

We designed a neural network that analyzes images resized in multiple

scales, leading to extracting features in wider ranges than other models.

In addition, our model generates output images in multiple scales, corre-

sponding to sizes of reshaped input images. This allows our model to learn

how to restore images in various scales, which makes our model flexible so

it can be applied not only to deblurring but also to super-resolution.

4.1.2 Network Architecture

Figure 4.1 shows the structure of our proposed network. Our deblurring

model first resizes image into three different scales, then extracts low-

level and high-level features through its head and body for each scale,

respectively. The heads of the network consist of one convolutional layer

each, like our denoising model, while the bodies are composed of a different

number of Residual Channel Attention Blocks depending of the scale;

from largest to smallest scale, each body consists of 4, 16, and 64 blocks,

respectively. Here, we let bodies on smaller scales have more blocks with

deeper layers because they use less GPU memory as their computation is

relatively lower.

To take full advantage of deeply stacked bodies on smaller scale, we

combined low-level features from smaller scales with those from larger

scales through our feature attention module before we put them into each
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Multi-Scale Edge Filtering:
Filtering Multi-Scale Edge map from Image

Conv2d, k=3, p=1, s=1

Conv2d, k=3, p=1, s=2

Pixel Shuffle x2

Mean Shift

Add by Feature Attention

Postprocess:
MeanShift & Bicubic Upssample

Head:
Extract Shallow Features

Body:
Extract Deep Features

Upscaler:
Feature Attention & Pixel Shuffle

Tail:
Reconstruct Sharp Images

x4

x16

x64

Figure 4.1: Network Architecture of Our Proposed Model for Image De-

blurring

body. This allows deeper bodies for smaller scales take more diverse fea-

tures and generate richer high-level features.

After the bodies extract high-level features, we combine high-level fea-

tures with low-level and multi-scale edge filtering module for each scale

by feature attention. Here, we upscale and combine high-level features

from smaller scale to larger scales, which allows the tails for larger scale

take more features from diverse scales. To send features to different scales,

we use strided convolution for downscale and pixel shuffle to upscale the

features.

In the training phase, we compute the errors by comparing 1/2 and

1/4 sized output with bicubicly downsampled versions of ground-truth of

corresponding sizes. This can be expressed as following equation:

L = L1(IHR, ISR) + λ2L1(IHR×1/2
, ISR×1/2

) + λ4L1(IHR×1/4
, ISR×1/4

)

(4.1.1)

where weights are set proportional to the number of pixels in each scale,

that is, λ2 = (1/2)2 = 0.25 and λ4 = (1/4)2 = 0.0625.
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4.2 Experiments

This section shows our experimental results of our model on the two

dataset consisting of real and synthetic blurry images, respectively. We

used Flickr2K [20] image with randomly chosen blur kernel from set of

isotrocpic and anisotropic Gaussian blurs as a synthetic blurry dataset,

and the REDS dataset from “NTIRE 2021 Image Deblurring Challenge -

Track2. JPEG Artifacts” as a real blurry dataset.

4.2.1 Training Details

In the training phase, we trained our model for 800 epochs for small image

patches and 20 epochs for large image patches with Adam optimizer and

initial learning rate 10−4 decayed by multiplying 0.99 for every 1, 000

steps. For each iteration, we used 16 batches with 192×192 sized cropped

patches for epochs with small images where one batch with 1280 × 720

sized image was used for epochs with large images. Lastly, we used the L1

function to compute the loss of our prediction.

4.2.2 Experimental Results on Flickr2K dataset

We first trained and evaluated our deblurring model on Flickr2K dataset [20].

While REDS consists of similar images from several daily videos, Flickr2K

contains different images with various objects and detailed patterns. There-

fore, it is suitable for an extensive experiment to show that our model can

be applied to images with more diverse information.

To create blurry images in various conditions, we applied randomly

chosen blur kernels from set of isotropic and anisotropic Gaussian kernels

of various sizes and angles to randomly cropped and rotated patches. By

augmenting the blurry images, our model could observe and learn the

various blurring conditions on the limited images.

Table 4.1 shows our model achieves the state-of-the-art results on

Flickr2K dataset.
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Table 4.1: Comparison of deblurring results in PSNR and SSIM scores on

Flickr2K dataset. Best scores marked in bold.

Method
Flickr2K

PSNR SSIM MS-SSIM

Blurry Images 29.19 0.7655 0.9368

DeepDeblur [22] 33.75 0.8990 0.9841

SRN [33] 34.90 0.9070 0.9858

DeblurGANv2 [17] 30.78 0.8546 0.9746

Ours w/o Edge 36.32 0.9253 0.9903

Ours w/o FeaAtt 36.36 0.9252 0.9902

Ours 36.38 0.9264 0.9905

(a) Flickr2K image with isotrocpic Gaussian blur

Figure 4.2: Visual Comparison of SISR methods on Flickr2K validation

data. Best viewed on screen.

32



CHAPTER 4. IMAGE DEBLURRING

(a) Flickr2K image with anisotrocpic Gaussian blur

(b) Flickr2K image with anisotrocpic Gaussian blur

Figure 4.3: Visual Comparison of SISR methods on Flickr2K validation

data. Best viewed on screen.
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4.2.3 Experimental Results on REDS dataset

This section shows our experimental results on the REDS dataset from

“NTIRE 2021 Image Deblurring Challenge - Track2. JPEG Artifacts”.

Table 4.2 shows comparison of deblurring results of various state-of-

the-art models. We measured the performance of results in PSNR, SSIM,

and Multi-Scale SSIM scores.

We also provide the results of ablation studies that evaluate the effect

of our Multi-Scale Edge Filtering and Feature Attention Module. Abla-

tions studies show that our proposed model achieves top scores at PSNR,

SSIM and MS-SSIM. Considering that PSNR measures absolute errors

and SSIM measures the perceived change in structural information, based

on luminance and contrast of images, it can be inferred that the Feature

Attention Module helps the model understand the structural information.

Figure 4.4, 4.5, and 4.6 show some selected deblurring results of our

proposed model on REDS dataset. Our model successfully reconstruct

objects that are difficult to identify from the blurry image to identifiable

levels.

Table 4.2: Comparison of deblurring results in PSNR and SSIM scores on

REDS - JPEG dataset. Best scores marked in bold.

Method
REDS - NTIRE 2021 JPEG Artifact

PSNR SSIM MS-SSIM

Blurry Images 26.51 0.7063 0.8739

DeepDeblur [22] 28.68 0.7690 0.9148

SRN [33] 28.60 0.7588 0.9129

DeblurGANv2 [17] 26.82 0.7220 0.8875

Ours w/o Edge 29.56 0.7901 0.9309

Ours w/o FeaAtt 29.78 0.7959 0.9340

Ours 29.80 0.7966 0.9342
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(a) REDS/val blur jpeg/001/00000019.jpg – PSNR: 25.72, SSIM: 0.6696

(b) REDS/val blur jpeg/004/00000099.jpg – PSNR: 27.95, SSIM: 0.7700

(c) REDS/val blur jpeg/006/00000099.jpg – PSNR: 30.45, SSIM: 0.6756

Figure 4.4: Deblurring results with PSNR and SSIM scores for REDS

validation dataset from NTIRE 2021 Challenge - Track 2. JPEG Artifacts.

From left to right: blurry image, our result, and ground-truth. Best viewed

on screen.
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(a) REDS/val blur jpeg/008/000000529.jpg – PSNR: 26.67, SSIM: 0.7074

(b) REDS/val blur jpeg/022/00000049.jpg – PSNR: 22.85, SSIM: 0.5783

(c) REDS/val blur jpeg/023/00000009.jpg – PSNR: 27.08, SSIM: 0.7140

Figure 4.5: Deblurring results with PSNR and SSIM scores for REDS

validation dataset from NTIRE 2021 Challenge - Track 2. JPEG Artifacts.

From left to right: blurry image, our result, and ground-truth. Best viewed

on screen.
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(a) REDS/val blur jpeg/014/00000069.jpg – PSNR: 24.93, SSIM: 0.5693

(b) REDS/val blur jpeg/028/00000079.jpg – PSNR: 31.40, SSIM: 0.8666

(c) REDS/val blur jpeg/029/00000029.jpg – PSNR: 29.76, SSIM: 0.8294

Figure 4.6: Deblurring results with PSNR and SSIM scores for REDS

validation dataset from NTIRE 2021 Challenge - Track 2. JPEG Artifacts.

From left to right: blurry image, our result, and ground-truth. Best viewed

on screen.
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Chapter 5

Single Image

Super-Resolution

In this chapter, we introduce a novel learning-based method for Single

Image Super-Resolution. By combining methods discussed in Chapter 3

and 4 with techniques that we will introduce in this chapter, we could

obtain state-of-the-art results. We first introduce some novel methods and

network structures for SISR in Section 5.1, and then compare the results

of our method with other state-of-the-art methods on a various dataset in

Section 5.2.

5.1 Proposed Methods

This section introduces a novel structure of deep neural network and train-

ing schemes for state-of-the-art SISR. The structure of neural network for

SISR and its internal modules that process images are mostly the same

as those of our deblurring model. Only a small structural modification in

the head part of the model has been make because the size of the input

and the target images are different in SISR.

Furthermore, due to the large information loss of input images com-

pared to deblurring, the training required for SISR neural networks is
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generally more difficult. Therefore in this section, we mainly focus on

methods to increase the training efficiency of our model by recognizing

and weighting regions that are more difficult to train or contain more

critical information.

5.1.1 High-Pass Filtering Loss

Conv2d, k=3, p=1, s=1

ReLU activation

Figure 5.1: High-Pass Filtering with CNN Model

The concept of perceptual loss was first introduced by Johnson et

al. [13] who tried to solve the image transformation problem by com-

paring content and style discrepancies between two images. They used

VGG-16 [30] pre-trained for image classification as the loss network and

measured perceptual differences of output and ground-truth images. Mo-

tivated by their method, we propose a loss function that compares feature

differences in the high-frequency domain instead of comparing per-pixel

differences in a color space.

The commonly used perceptual loss uses the VGG-16 network pre-

trained on ImageNet dataset. However, the network trained on image

classification is optimized to extract feature representation that contains

information about the class of objects in images. The objective of network
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(a) Original Image (b) Frequency Spec-

trum of Original

Image

(c) High Pass Filtered

Frequency Spectrum

(d) High Pass Filtered

Image

(e) Convoluted Image

Figure 5.2: A visual example of high-pass filtering. (a) Original image.

(b) Frequency spectrum in the polar form where the spectrum is shifted

to place zero frequency at the center. (c) High-pass filtered Frequency

spectrum. (d) High-pass filtered image, or inverse Fourier transform of

(c). (e) High-frequency domain of original image from our model.

is to figure out what objects are in the image, not to extract detailed pat-

terns or complex high-frequency information. What we need, however, is

neural networks that extract such detailed patterns and high-frequency

information and feature representations of the networks that are needed

to extract such information. Because the commonly used perceptual loss is

not appropriate to our problem solving, we have trained a neural network

that is optimized to high-frequency extraction.

We first extracted high-frequency signals by applying a high-pass fil-
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ter to the image transformed into the frequency domain via Fast Fourier

Transform. Then, we trained a simple three-layered CNN, or high-pass

filtering network, which takes images as input and generates high-pass

filtered signals. Figure 5.2 shows an example of high-frequency signals ex-

tracted by a traditional high-pass filter using FFT and our high-pass fil-

tering network. Figure 5.1 shows a visualization of feature maps produced

by intermediate layers of the network during extracting high-frequency

signals.

We utilized this high-pass filtering network as the loss network and

defined the high-pass filtering loss function as following:

Lhf (ISR, IHR) = lossφconv.0(ISR, IHR) + lossφconv.1(ISR, IHR) (5.1.1)

where φ denotes the high-pass filtering network. The loss network φ ana-

lyzes images from various perspectives to generate high-frequency signals

where intermediate layers give us abstract feature maps, including edges.

We measure the feature difference of ISR and IHR by feed-forwarding

two images to fixed φ where the feature difference is trainable by back-

propagation as it is generated through convolutional layers. By minimizing

the high-pass filtering loss, high-frequency features are added to the ISR,

allowing us to obtain sharper images.

5.1.2 Gradient Magnitude Similarity Map Masking

The local perceptual quality of output images often varies by region. In

general, the lower perceptual quality is more observed in areas containing

detailed and irregular patterns, but these results depend on which model

is used. To learn models that perform evenly, we need to know which part

of the resulting image is poor, and therefore more training is needed.

Here, we adopted the Gradient Magnitude Similarity (GMS) map [38]

to evaluate the local quality of images. The gradient magnitude of given

image I is computed as follows:

GM(I) =
�

(I ∗Gx)2 + (I ∗Gy)2 (5.1.2)
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(a) Hard Gradient Magnitude Similarity Map Masking

(b) Soft Gradient Magnitude Similarity Map Masking

Figure 5.3: Visual examples of hard and soft version of Gradient Magnitude

Similarity map masking. From left to right: GMS map, binarized GMS

map, GMS map masked image, Hard/Soft GMS map masked image, and

Original Image.

where Gx and Gy denote prewitt filters given in Equation (3.1.2). With

the gradient magnitudes of IHR and ISR, we compute the GMS map as

follows:

GMS(IHR, ISR) = 1− 2GM(IHR)GM(ISR) + c

GM(IHR)2 +GM(ISR)2 + c
(5.1.3)

where we set c = 170 for pixel values in [0, 255]. Note that the value of the

GMS map is closer to zero where two images are similar while it is closer

to one where two images are different.

To give information about which area is more damaged and thus train-

ing should be weighted to the loss function, we multiply IHR and ISR with

the GMS map before we put them into our loss functions. However, since

the GMS map is calculated pixel-wise, it can be computed high for some

lucky locations with similar pixel values even where they are contained in

severely corrupted regions. So we first binarized the GMS map and then

remove tiny or trivial regions using the opening which is defined as erosion

followed by dilation.
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In the mathematical morphology, the opening of a binary image A by

the structuring element B is expressed as follows:

Erosion: A�B =
�

b∈B
A−b (5.1.4)

Dilation: A⊕B =
�

b∈B
Ab (5.1.5)

Opening: A ◦B = (A�B)⊕B (5.1.6)

where Ab denotes the translation of A by b. The opening is often applied to

coarse images to remove pixel-wise outliers and make them locally smooth.

Here, adopting the opening to the coarse GMS map allows us to eliminate

pixel noise and acquire more smooth labels while maintaining information

about the locally damaged area inside the image.

Two images on left side of Figure 5.3(a) shows an visual example

of applying the opening to GMS map. We can observe that the map

distinguishes between well-reconstructed and poorly-reconstructed area

smoother when the opening followed by thresholding is applied to the

coarse GMS map. Here, we use the opened-binarized GMS map, or the

hard GMS map, to mask images to let our network re-train only on poorly-

reconstructed areas.

5.1.3 Soft Gradient Magnitude Similarity Map Masking

The hard GMS map assigns each pixel a hard label whether to train or

not. In practice, however, it is more reasonable to express with score or

probability of how much pixel should be trained. Therefore, we transform

the discretized hard GMS map into soft GMS map so it represent the

pixel-wise score.

To soften the hard GMS map, we smoothed the boundaries between

different regions within the hard GMS map by applying blurring with

isotropic Gaussian kernel and additional image opening to remove outliers

in an iterative manner. In the soft GMS map, pixels at the center of well

or poorly-reconstructed area have more confident score close to 0 or 1,
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Conv2d, k=3, p=1, s=1

Conv2d, k=3, p=1, s=2

Pixel Shuffle x2

Mean Shift

Add by Feature Attention

Postprocess:
MeanShift & Bicubic Upssample

Head:
Extract Shallow Features

Body:
Extract Deep Features

Upscaler:
Feature Attention & Pixel Shuffle

Tail:
Reconstruct Sharp Images

x2

x8

x16

Multi Scale Edge Detection:
Detect Edge in 3 scales

Figure 5.4: Network Architecture of our proposed model

respectively, while scores close to 0.5 are assigned to pixels if they are

close to boundaries. Figure 5.3 show examples of masked results using the

hard and the soft GMS maps.

5.1.4 Network Architecture

Our proposed SISR model shares the network architecture with our image

deblurring network except for the data input part. Figure 5.4 illustrates

structure of our proposed SISR model. While our deblurring model down-

scales the input image, our SISR model upscales the input and then for-

wards them into the body part to analyze them in multi-scale. Here, we

adopted the bicubic interpolation method to resize input images.

Most learning-based models use transposed convolutions or pixel shuf-

fle to upscale the image; pixel shuffle is mainly used recently, as explained

in Section 2.3. Our model adopt the pixel shuffle method to upsample

image in the tail part of the network. However, our model also includes

upsampling process in the preprocessing part.

We compute the loss function by comparing not only desired ×4 sized

output but also ×1 and ×2 sized outputs with bicubicly downsampled ver-

44



CHAPTER 5. SINGLE IMAGE SUPER-RESOLUTION

(3
, 6

4)

(6
4,

 6
4)

(6
4,

 1
28

)

(1
28

, 1
28

)

(1
28

, 2
56

)

(2
56

, 2
56

)

(2
56

, 5
12

)

(5
12

, 5
12

)

(1
02

4,
 1

)

(5
12

×
W

×
H

, 1
02

4)

G

Conv2d, k=3, p=1, s=1

Conv2d, k=3, p=1, s=2

Leakey ReLU w/ n.slope 0.2

Batch Normalization

Fully Connected Layer

Sigmoid Activation

Flatten

Figure 5.5: Network Architecture of Discriminator model

sions of ground-truth images. This can be expressed as following equation:

L = L1(IHR, ISR) + λ2L1(IHR×1/2
, ISR×1/2

) + λ4L1(IHR×1/4
, ISR×1/4

)

(5.1.7)

where weights are set proportional to the number of pixels in each resized

image, that is, λ2 = (1/2)2 = 0.25 and λ4 = (1/4)2 = 0.0625.

5.1.5 Adversarial Training for Perceptual Generative Model

So far, we have trained our model based on the L1 loss function. This

method is useful for obtaining high PSNR scores as it aims to minimize

the absolute error of the result and the target image. However, such PSNR-

oriented methods often generate result images that are over-smooth and

perceptually unnatural when the resolution difference between ILR and

IHR is large.

In 2018, Zhang et al. [42] introduced a metric named LPIPS, the

Learned Perceptual Image Patch Similarity, to overcome such limitations

of PSNR measurement. However, Rad et al. [26] argues that LPIPS is

insufficient to assess the perceptual image quality as it shows a similar

trend to the traditional distortion-based SSIM method. Besides LPIPS,

many researchers have tried to develop suitable algorithms for the per-

ceptual image quality assessment that correlate well with MOS or Mean

opinion score. But it remains challenging, and no convincing results have
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been made yet.

In this thesis, we add the adversarial training phase to our proposed

model using the discriminator (illustrated in Figure 5.5), which enabled

our model to generate much more natural images and leave research on

finding effective methods for perceptual image quality assessment as future

studies.

Algorithm 1: Training Steps of Our Proposed Net

Input: Paired data: LR, HR;

while not convergent do

Sample labeled data {lri, hri}mi=1;

Get SR output;

for i = 1 to m do
sri = model(lri)

if psnr(sri, hri) > θ then
sri = Soft GMS Map Masking(sri)

hri = Soft GMS Map Masking(hri)

end

end

Update the model by back-propagating the Loss function:

Loss =
1

m

m�

i=1

L1(sri, hri) + λhfLhf (sri, hri) + λmeLme(sri, hri)

end
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Algorithm 2: Training Steps of Our Proposed GAN

Input: Paired data: LR, HR;

Load the pretrained model;

while not convergent do

Sample labeled data {lri, hri}mi=1;

Get SR output;

for i = 1 to m do
sri = model(lri)

end

Update the discriminator with the Loss function:

LossD =
−1

m

m�

i=1

[log(D(hri)) + log(1−D(sri))]

Update the generator with the Loss function:

LossG =
1

m

m�

i=1

[Lper(sri, hri)− λadv log(D(sri))]

end

5.2 Experiments

This section shows experimental results of our models: PSNR-oriented

version (Our Net) and perceptual version (Our GAN). We trained and

validated our models on the DIV2K dataset and then tested them on

Set5/Set14 dataset. We also applied our model on the REDS dataset from

“NTIRE 2021 Image Deblurring Challenge - Track 1. Low Resolution”.

The results are provided in Section 5.2.2, 5.2.3, and 5.2.4.

5.2.1 Training Details

In the training phase, we trained our model for 800 epochs for small image

patches and 20 epochs for large image patches with Adam optimizer and

initial learning rate 10−4 with learning rate decay by 0.99 by every 1, 000

steps. For each iteration, 16 batches with 192× 192 sized cropped patches
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from large images were used for epochs with small images where one batch

with 320 × 180 sized input image and 1280 × 720 sized target image was

used for epochs with large images. Lastly, L1 function was used for the

loss function.

5.2.2 Experimental Results on DIV2K dataset

As the DIV2K dataset provides ×2 and ×4 downsampled images, we

trained our model on each case and evaluated the results. Especially when

training ×2 images, we weighted the loss term on ×2 sized outputs in the

training phase and then extracted them as final results instead of changing

our model’s structure.

Compared to other blind SISR methods, our proposed net achieves

higher PSNR and SSIMS scores while our proposed GAN produces per-

ceptually more natural results. Figures from 5.6 to 5.10 show detailed

results of our models.
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Table 5.1: Comparison of SISR results on DIV2K dataset. Best scores

marked in bold.

Method Scale
DIV2K

PSNR ↑ SSIM ↑ LPIPS ↓
Bicubic

×2

31.07 0.8662 0.1769

EDSR [20] 34.31 0.9190 0.0679

RCAN [43] 34.68 0.9227 0.0630

Our Net w/o Edge 35.04 0.9251 0.0560

Our Net w/o FeaAtt 35.11 0.9279 0.0547

Our Net 35.10 0.9270 0.0540

Our GAN 31.97 0.8813 0.0257

Bicubic

×4

26.78 0.6839 0.4087

EDSR [20] 28.65 0.7594 0.2451

RCAN [43] 28.93 0.7680 0.2371

DRN [9] 28.91 0.7676 0.2363

Our Net w/o Edge 29.00 0.7705 0.2240

Our Net w/o FeaAtt 29.10 0.7740 0.2239

Our Net 29.11 0.7743 0.2225

Our GAN 25.79 0.6598 0.1096
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(a) DIV2K/808.png (b) DIV2K/808.png

(c) DIV2K/823.png (d) DIV2K/823.png

(e) DIV2K/825.png (f) DIV2K/818.png

Figure 5.6: Visual Comparison of SISR methods on DIV2K validation

data. Best viewed on screen.
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(a) DIV2K/830.png (b) DIV2K/830.png

(c) DIV2K/841.png (d) DIV2K/841.png

(e) DIV2K/854.png (f) DIV2K/828.png

Figure 5.7: Visual Comparison of SISR methods on DIV2K validation

data. Best viewed on screen.
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(a) DIV2K/806.png

(b) DIV2K/810.png

Figure 5.8: SISR results of our proposed methods on DIV2K validation

data. From left to right: bicubic interpolation (with ILR at the lower left

corner), our net, our GAN, and ground-truth. Best viewed on screen.
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(a) DIV2K/837.png

(b) DIV2K/851.png

Figure 5.9: SISR results of our proposed methods on DIV2K validation

data. From left to right: bicubic interpolation (with ILR at the lower left

corner), our net, our GAN, and ground-truth. Best viewed on screen.
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(a) DIV2K/852.png

(b) DIV2K/861.png

Figure 5.10: SISR results of our proposed methods on DIV2K validation

data. From left to right: bicubic interpolation (with ILR at the lower left

corner), our net, our GAN, and ground-truth. Best viewed on screen.
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5.2.3 Experimental Results on Set5/Set14 dataset

We used Set5/Set14 dataset to evaluate our models that are trained on

the DIV2K dataset. As Figure 5.12, 5.13 and Table 5.2 show, our proposed

net achieved the highest PSNR and SSIM scores while our proposed GAN

generated the most perceptually natural images.

Table 5.2: Comparison of SISR results on Set5 dataset. Best scores marked

in bold.

Method Scale
Set5

PSNR ↑ SSIM ↑ LPIPS ↓
Bicubic

×2

33.97 0.9125 0.1093

EDSR [20] 37.68 0.9425 0.0414

RCAN [43] 37.87 0.9421 0.0416

Our Net w/o Edge 38.10 0.9437 0.0378

Our Net w/o FeaAtt 38.22 0.9464 0.0371

Our Net 38.19 0.9450 0.0374

Our GAN 35.13 0.9158 0.0136

Bicubic

×4

26.46 0.7349 0.3157

EDSR [20] 31.69 0.8566 0.1413

RCAN [43] 31.98 0.8615 0.1368

DRN [9] 32.01 0.8619 0.1406

Our Net w/o Edge 32.07 0.8585 0.1379

Our Net w/o FeaAtt 32.04 0.8596 0.1385

Our Net 32.20 0.8645 0.1364

Our GAN 29.72 0.7869 0.0599
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Table 5.3: Comparison of SISR results on Set14 dataset. Best scores

marked in bold.

Method Scale
Set14

PSNR ↑ SSIM ↑ LPIPS ↓
Bicubic

×2

31.19 0.8343 0.1665

EDSR [20] 33.50 0.8742 0.0760

RCAN [43] 33.65 0.8767 0.0748

Our Net w/o Edge 33.76 0.8957 0.0684

Our Net w/o FeaAtt 33.84 0.8966 0.0689

Our Net 33.80 0.8966 0.0679

Our GAN 31.33 0.8508 0.0349

Bicubic

×4

25.13 0.6411 0.3908

EDSR [20] 28.17 0.7366 0.2405

RCAN [43] 28.38 0.7427 0.2365

DRN [9] 28.38 0.7429 0.2360

Our Net w/o Edge 28.44 0.7438 0.2304

Our Net w/o FeaAtt 28.46 0.7449 0.2315

Our Net 28.54 0.7473 0.2312

Our GAN 25.78 0.6510 0.1192

56



CHAPTER 5. SINGLE IMAGE SUPER-RESOLUTION

(a) Bicubic (29.10, 0.7970, 0.2440) (b) RCAN [43] (33.73, 0.8692,

0.1680)

(c) DRN [9] (33.69, 0.8684, 0.1707) (d) Our Net (33.82, 0.8703, 0.1767)

(e) Our GAN (31.91, 0.7730,

0.0787)

(f) Ground-Truth

Figure 5.11: Visual Comparison of SISR results on Set5 dataset with

PSNR, SSIM, and LPIPS scores. ILR at lower left corner of (a). Best

scores marked in bold. Best viewed on screen.
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(a) Bicubic 1 2 3 4 5 6 7 8

(20.91, 0.5326, 0.4812)

(b) RCAN [43] 1 2 3 4 5 6

(23.52, 0.7128, 0.2372)

(c) DRN [9] 1 2 3 4 5 6 7

(23.53, 0.7155, 0.2194)

(d) Our Net 1 2 3 4 5 6

(23.68, 0.7235, 0.2149)

(e) Our GAN 1 2 3 4 5 6

(20.96, 0.6133, 0.1295)

(f) Ground-Truth

Figure 5.12: Visual Comparison of SISR results on Set14 dataset with

PSNR, SSIM, and LPIPS scores. ILR at lower left corner of (a). Best

scores marked in bold. Best viewed on screen.
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(a) Bicubic (24.80, 0.6736, 0.3634) (b) RCAN [43] (28.18, 0.7863, 0.1768)

(c) DRN [9] (28.30, 0.7891, 0.1752) (d) Our Net (28.40, 0.7940, 0.1622)

(e) Our GAN (25.42, 0.6889, 0.0822) (f) Ground-Truth

Figure 5.13: Visual Comparison of SISR results on Set14 dataset with

PSNR, SSIM, and LPIPS scores. ILR at lower left corner of (a). Best

scores marked in bold. Best viewed on screen.
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5.2.4 Experimental Results on REDS dataset

This section shows our experimental results on the REDS dataset from

“NTIRE 2021 Image Deblurring Challenge - Track1. Low Resolution”.

As Figure 5.12, 5.13 and Table 5.2 show, our proposed net achieved the

highest PSNR and SSIM scores while our proposed GAN generated the

most perceptually natural images.

Table 5.4: Comparison of SISR results on REDS dataset. Best scores

marked in bold.

Method Scale
REDS - NTIRE 2021 Low Resolution

PSNR ↑ SSIM ↑ LPIPS ↓
Bicubic

×4

24.55 0.6313 0.4855

EDSR [20] 25.26 0.6775 0.3752

RCAN [43] 25.31 0.6797 0.3775

DRN [9] 25.30 0.6791 0.3773

Our Net w/o Edge 27.78 0.7648 0.2542

Our Net w/o FeaAtt 27.83 0.7660 0.2550

Our Net 27.83 0.7662 0.2540

Our GAN 24.19 0.6337 0.1489
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(a) REDS/val/X4/000/00000069.png

(b) REDS/val/X4/015/00000029.png

Figure 5.14: SISR results of our proposed methods on REDS validation

data. From left to right: bicubic interpolation (with ILR at the lower left

corner), our net, our GAN, and ground-truth. Best viewed on screen.
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(a) REDS/val/X4/021/00000049.png

(b) REDS/val/X4/023/00000079.png

Figure 5.15: SISR results of our proposed methods on REDS validation

data. From left to right: bicubic interpolation (with ILR at the lower left

corner), our net, our GAN, and ground-truth. Best viewed on screen.
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Chapter 6

Conclusion and Future

Works

This thesis introduces a novel deep learning method that generates high-

resolution images by increasing the quality of given images. We first divide

the image quality enhancement problem into denoising, deblurring, and

super-resolution and propose a deep learning model optimized for solving

each task step by step.

We propose multi-scale edge detection to solve the denoising problem,

which extracts high-frequency information from noisy images. This helps

our deep neural network perform statistical analysis and reconstruction

suitable for each region of the image. We also add feature attention mod-

ules to enable the network to determine feature maps containing more

important information.

Input images of deblurring and SISR problems are generally more dam-

aged, and the loss of information is more severe. We design a deep neural

network with a U-Net structure that can analyze images at multiple scales

so the model can learn the local and global contexts of the input image.

Furthermore, in the training phase, we introduce a high-pass filtering loss

function that compares feature maps generated from a high-pass filter-

ing network computing the high-frequency information of the results and
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ground truth images. Finally, our soft GMS masking helps the model iden-

tify which areas of the resulting image are more compromised and need to

be more focused on additional training processes.

Experimental results show that our model can achieve state-of-the-

art PSNR and SSIM scores compared to other learning-based methods.

However, when visualizing the results, over-smoothing problems have been

observed as in other PSNR-oriented methods. Adversarial training was

applied to pre-trained models using a discriminator that distinguishes real

and synthetic images, allowing the model to generate much more natural

images.

Images generated via GAN have high LPIPS scores, while PSNR and

SSIMS scores are very low. This is because the pixels are distorted when

the model generates synthetic patches to convert a small-sized low-resolution

image into a large-sized high-resolution image. We can overcome this prob-

lem to a certain level if the model learns enough information provided in

a low-resolution image. In future research, we will study learning-based

methods that achieve superior scores in both PSNR and LPIPS by en-

abling the model to extract sufficient information from low-resolution im-

ages.
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국문초록

본학위논문은단일영상의품질강화를위한딥러닝기법에대한연구를

다룬다. 영상 품질 강화를 손상된 이미지의 잡음 제거 및 디블러링과 저해상

도이미지를고해상도로변환하는초해상도문제로세분화한뒤,각각의문제

해결에 최적화된 딥러닝 기법을 단계별로 소개한다. 특히, 손상된 영상의 특

성을 효과적으로 분석하고 보다 깔끔한 고해상도 영상을 생성하기 위하여

주어진 영상을 다중 스케일로 분석하는 심층 신경망 구조를 제안하였으며,

이외에도 딥러닝 모델이 영상 내 복잡한 고주파수 영역에 대한 정보를 효과

적으로 추출하고 재건할 수 있도록 돕는 기법들을 소개한다. 우리는 제안된

기법들을 SIDD, Flickr2K, DIV2K, REDS 등 데이터셋에 적용하여 기존의

딥러닝 기반기법보다 향상된 성능을 실험적으로 증명하였다. 또한 초해상도

문제해결을위해학습된심층신경망에추가적인적대적학습을적용함으로

써 기존 딥러닝 기법들의 한계로 지적되었던 부분 평균화 문제를 극복하고

보다 자연스러운 고해상도 영상을 생성할 수 있음을 보였다.

주요어휘: 단일 영상 초해상도, 영상 강화, 딥러닝 기법, 합성곱 신경망, 영상

디블러링, 영상 잡음 제거

학번: 2015-22685



감사의 글

6년 간의 대학원을 마무리 지으며 이 학위 논문을 완성하게 되었습니다.

박사학위 기간 동안 많은 분들의 도움과 지도, 그리고 배려가 있었기에 가능

했습니다. 이렇게 짧은 글로나마 고마움을 담아 모든 분들께 감사의 말씀을

전하려 합니다.

먼저 지도교수님이신 강명주 교수님께 감사의 말씀을 드립니다. 교수님께서

바쁘신 와중에도 항상 많은 관심과 지원을 아낌없이 베풀어주셨기에 좋은

연구 환경에서 모자람이 없는 풍족한 대학원 생활을 보낼 수 있었습니다.

귀중한 시간 내주셔서 논문을 심사해주신 국웅 교수님, Ernest Ryu 교수님,

이병준 교수님, 곽지훈 박사님께도 진심으로 감사의 말씀을 드립니다.

짧지 않은 대학원 생활 동안 소중한 인연을 많이 만났습니다. 그들이 있었

기에 행복한 대학원 생활을 보냈고, 또한 즐겁게 마무리를 합니다. 대학원

입학동기이자졸업동기인성권이에게,그리고원조 112호식구인수진누나,

경민이형, 상연이형과 경현이에게 감사의 말을 전합니다. 한수형과 현이형,

효제를 비롯하여 계산과학과 수리과학부에서 열심히연구 중인, 그리고이미

졸업하고 여러 곳으로 진출하여 활약하고 계시는 우리 NCIA 연구실의 모든

선후배님들에게 고마운 마음을 전합니다. 대학원 생활 동안정말로 감사하고

본받고 싶은 소중한 인연을 참 많이 만났습니다. 일일이 감사의 말씀을 드리

고 싶지만 지면이 부족하기에 짧은 글을 빌어 여러분께 많이 감사하고 항상

응원한다는 말씀을 드립니다.

마지막으로항상저를응원해주고언제나든든한편이되어주는우리가족들,

부모님과 누나에게 가장감사하고 누구보다 더 사랑한다는 말씀을드립니다.

2021년 8월

노형민


	1. Introduction
	2. Preliminaries
	2.1 Image Denoising
	2.1.1 Problem Formulation: AWGN
	2.1.2 Existing Methods

	2.2 Image Deblurring
	2.2.1 Problem Formulation: Blind Deblur
	2.2.2 Existing Methods

	2.3 Single Image Super-Resolution
	2.3.1 Problem Formulation: SISR
	2.3.2 Existing Methods


	3. Image Denoising
	3.1 Proposed Methods
	3.1.1 Multi-scale Edge Filtering
	3.1.2 Feature Attention Module
	3.1.3 Network Architecture

	3.2 Experiments
	3.2.1 Training Details
	3.2.2 Experimental Results on DIV2K+AWGN dataset
	3.2.3 Experimental Results on SIDD dataset


	4. Image Deblurring
	4.1 Proposed Methods
	4.1.1 Multi-Scale Feature Analysis
	4.1.2 Network Architecture

	4.2 Experiments
	4.2.1 Training Details
	4.2.2 Experimental Results on Flickr2K dataset
	4.2.3 Experimental Results on REDS dataset


	5. Single Image Super-Resolution
	5.1 Proposed Methods
	5.1.1 High-Pass Filtering Loss
	5.1.2 Gradient Magnitude Similarity Map Masking
	5.1.3 Soft Gradient Magnitude Similarity Map Masking
	5.1.4 Network Architecture
	5.1.5 Adversarial Training for Perceptual Generative Model

	5.2 Experiments
	5.2.1 Training Details
	5.2.2 Experimental Results on DIV2K dataset
	5.2.3 Experimental Results on Set5/Set14 dataset
	5.2.4 Experimental Results on REDS dataset


	6. Conclusion and Future Works


<startpage>13
1. Introduction 1
2. Preliminaries 4
 2.1 Image Denoising 4
  2.1.1 Problem Formulation: AWGN 4
  2.1.2 Existing Methods 6
 2.2 Image Deblurring 7
  2.2.1 Problem Formulation: Blind Deblur 7
  2.2.2 Existing Methods 7
 2.3 Single Image Super-Resolution 9
  2.3.1 Problem Formulation: SISR 9
  2.3.2 Existing Methods 12
3. Image Denoising 15
 3.1 Proposed Methods 15
 3.1.1 Multi-scale Edge Filtering 15
  3.1.2 Feature Attention Module 17
  3.1.3 Network Architecture 19
 3.2 Experiments 21
  3.2.1 Training Details 21
  3.2.2 Experimental Results on DIV2K+AWGN dataset 21
  3.2.3 Experimental Results on SIDD dataset 26
4. Image Deblurring 28
 4.1 Proposed Methods 28
  4.1.1 Multi-Scale Feature Analysis 29
  4.1.2 Network Architecture 29
 4.2 Experiments 31
  4.2.1 Training Details 31
  4.2.2 Experimental Results on Flickr2K dataset 31
  4.2.3 Experimental Results on REDS dataset 34
5. Single Image Super-Resolution 38
 5.1 Proposed Methods 38
  5.1.1 High-Pass Filtering Loss 39
  5.1.2 Gradient Magnitude Similarity Map Masking 41
  5.1.3 Soft Gradient Magnitude Similarity Map Masking 43
  5.1.4 Network Architecture 44
  5.1.5 Adversarial Training for Perceptual Generative Model 45
 5.2 Experiments 47
  5.2.1 Training Details 47
  5.2.2 Experimental Results on DIV2K dataset 48
  5.2.3 Experimental Results on Set5/Set14 dataset 55
  5.2.4 Experimental Results on REDS dataset 60
6. Conclusion and Future Works 63
</body>

