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ABSTRACT 

 

Identification of Genomic Profiling of 

Multiple Myeloma Patients in Korea 

 

Nuri Lee 

Department of Medicine 

The Graduate School 

Seoul National University 

 

To investigate the prognostic value of gene variants and copy number variations 

(CNVs) in patients with newly diagnosed multiple myeloma (NDMM), an 

integrative genomic analysis was performed using conventional cytogenetics, 

fluorescent in situ hybridization, and whole-exome sequencing. Sixty-seven 

patients with NDMM exhibiting more than 60% plasma cells in the bone marrow 

aspirate were enrolled in the study. Whole-exome sequencing was performed 

on bone marrow nucleated cells. Mutation and CNV analyses were performed 

using the CNVkit and Nexus Copy Number software. Eighty-three driver gene 

mutations were detected in 63 patients with NDMM. The median number of 

mutations per patient was 2.0 (95% confidence interval [CI] = 2.0–3.0, range 

= 0–8). MAML2 and BHLHE41 mutations were associated with decreased 
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survival. CNVs were detected in 56 patients (72.7%; 56/67). The median 

number of CNVs per patient was 6.0 (95% CI = 5.7–7.0; range = 0–16). Among 

the CNVs, 1q gain, 6p gain, 6q loss, 8p loss, and 13q loss were associated with 

decreased survival. Additionally, 1q gain and 6p gain were independent adverse 

prognostic factors. Increased numbers of CNVs and driver gene mutations were 

associated with poor clinical outcomes. Cluster analysis revealed that patients 

with the highest number of driver mutations along with 1q gain, 6p gain, and 13q 

loss exhibited the poorest prognosis. In addition to the known prognostic factors, 

the integrated analysis of genetic variations and CNVs could contribute to 

prognostic stratification of patients with NDMM.  
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1. INTRODUCTION 

 

Multiple myeloma (MM) is the second most common hematological 

malignancy in Korea and the USA [1-3]. The incidence of MM in Korea has 

increased tenfold in the past 20 years and doubling in the last ten years [1]. 

The treatment outcomes of patients with MM have markedly improved owing to 

the development of novel therapeutic agents and the technical advances in 

molecular diagnostics and detection of minimal residual diseases [4, 5]. There 

is a consensus on the risk factors that aid in stratifying patients with MM. The 

methods to detect genetic variations include conventional karyotyping and 

fluorescent in situ hybridization (FISH) [6, 7].  

Recently, the genetic landscape of MM has expanded owing to the use 

of high throughput technologies, such as next generation sequencing for 

analyzing targeted genes and whole exome or genome [8-11]. Within the last 

five years, several next generation sequencing studies targeting large number 

of MM patients have been conducted. Niccolo B. et al. performed next 

generation sequencing and whole exome sequencing on 418 patients [9], and 

Brain A. W et al. also conducted whole exome sequencing on 1,273 patients 

[10]. Previous studies have revealed novel and frequently mutated genes, such 

as KRAS, NRAS, BRAF, and FAM46C in MM. Also, attempts have been made to 

find driver mutations among several MM related genes using various algorithms 

through frequency and/or functional based approaches. These studies found that 
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63 and 61 driver genes, respectively, would be significant in MM patients [8, 

10]. Additionally, the chronological evolution of multiple driver events has been 

demonstrated using serial patient specimens [8].  

However, the prognostic effect of most mutated genes, which have a low 

recurrence rate, has not been clearly identified [12]. There are limited studies 

on the comprehensive analysis of various cancer driver events and the 

correlation between structural variants and genomic events. Moreover, in most 

of the previous large cohort studies, the proportion of Asian patients was only 

about 2~4%. Such a low ethnical composition had limitations in analyzing the 

characteristics of genomic variations that reflected characteristics of Asians 

MM patients. For this reason, the differences between somatic mutations and 

copy number variations (CNVs) by ethnicity have not been clearly clarified. In 

particular, a few studies have investigated genomic features of Korean newly 

diagnosed multiple myeloma (NDMM). In case of CNVs,  single nucleotide 

polymorphism array chip [13] and conventional karyotyping [14] analysis was 

utilized to investigate the frequency and prognosis of structural variants in 

Korean MM patients. However, researches through massive sequencing are 

limited to a small number of patients [15, 16], and more in depth studies are 

required to identify the genomic profiles of Korean MM patients.  

Recent studies have performed clustering analysis that integrates 

various prognosis related genomic variations to classify patients with MM based 

on the characteristics of genomic alterations [8-10]. The heterogeneous nature 

of MM has warranted further studies on the multifaceted interpretation of 
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subgroups incorporating various genetic variations and their prognostic 

relevance. Several studies have utilized emerging technologies to examine the 

prognostic implications of genetic variations. These techniques include several 

clustering techniques to efficiently analyze the large amounts of data [17, 18]. 

In addition, various computational methods and tools to analyze structural 

variations based on NGS results have been developed [19, 20]. This analysis 

has an advantage of being able to simultaneously evaluate the somatic mutations 

and structural variations by detecting CNVs through strategies such as read 

depth, paired end mapping, and split read using SAM/BAM and FASTQ files 

obtained from the NGS process. Despite the fact that various analysis 

techniques have been explored so far, there are no consensus guidelines that 

include somatic variations and small structural variations. 

In this study, the genomic profile of Korean patients with NDMM was 

examined using whole exome sequencing (WES) to investigate the 

characteristics of somatic mutations and CNVs in Korean. This study was 

intended to establish a Korean NDMM genome database to provide information 

in determining the composition of the NGS gene panel required for the 

diagnostic evaluation of MM, and development of biomarkers for predicting 

responses to treatments and prognosis. In addition, correlation analysis among 

various mutations was implemented, and new prognosis subgroups were 

identified through integrated analysis of CNVs and somatic variants.  
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2. MATERIALS AND METHODS 

2.1. Patients 

In this study, 67 patients with NDMM exhibiting more than 60% plasma 

cells in the bone marrow (BM) aspiration were recruited at the Seoul National 

University Hospital between July 2004 and January 2018. Patients were 

diagnosed to NDMM based on BM aspiration and biopsy according to the 

international myeloma working group (IMWG) 2016 guideline [21]. A total of 

three laboratory hematologists reviewed the slide for diagnosis and differential 

counting of plasma cells. Patients with >60% plasma cells were included in this 

study to maximize representativeness of variants for genetic changes of plasma 

cells. In particular, since the revised IWMG guideline designated plasma cell 

count over 60% as biomarkers of active myeloma, 60% was established as the 

selection criteria. The clinical characteristics, including the age of disease onset, 

sex, CRAB (hypercalcemia, renal impairment, anemia, and bone disease) 

symptoms, chemotherapy regimens, and survival, as well as the laboratory 

findings, including complete blood count, blood urea nitrogen/creatinine, albumin, 

lactate dehydrogenase levels, BM histological findings, and cytogenetic findings 

(FISH and conventional cytogenetics [CG]), of each patient were recorded. 

This study was approved by the Institutional Review Board of Seoul National 

University Hospital (IRB No. 1312-102-544). All study subjects provided 

their informed consent to participate in the study. 
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2.2. DNA extraction and exome sequencing 

DNA isolated from the frozen BM mononuclear cells was used in the 

exome capture protocol. The SureSelectHuman All Exon V5+UTR probe set 

included 359,555 exons of 21,522 genes, and the size of the total targeted 

region was 75 Mb. To generate the standard exome capture libraries, the 

Agilent SureSelect Target Enrichment protocol was used for generating the 

Illumina paired-end sequencing library (ver. B.3, June 2015) with 3 µg input 

genomic DNA (gDNA). The quantity and quality of DNA were examined using 

PicoGreen  (Molecular Probes, OR, USA) and Nanodrop (ThermoFisher 

Scientific, MA, USA). DNA concentration ≥ 50 ng/uL, purity ≥ 1.7 

(A260/A280), volumn ≥ 20 uL and total amount ≥ 1 ug was passed for 

quality control criteria, and determined to acceptable for evaluation. The gDNA 

(1 µg) was fragmented using adaptive focused acoustic technology (AFA; 

Covaris). The fragmented DNA was repaired with an adenine ligated to the 3′ 

end, followed by ligation of the Agilent adapters. The adapter-ligated product 

was subjected to polymerase chain reaction (PCR). The final purified product 

was then quantified using quantitative real-time PCR (qRT-PCR) following the 

qPCR Quantification Protocol Guide and subjected to quality control using the 

Caliper LabChipHigh Sensitivity DNA (PerkinElmer, MA, USA). For exome 

capture, 250 ng of all exon capture libraries were mixed with hybridization 

buffers, blocking mixes, RNase block, and 5 µL of SureSelect, following the 

standard Agilent SureSelect Target Enrichment protocol. Hybridization to the 
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capture baits was performed at 65°C using a heated thermal cycler with the lid 

temperature maintained at 105°C for 24 h in a PCR machine. The captured 

DNA was amplified and the final purified product was quantified using qRT-

PCR according to the qPCR Quantification Protocol Guide. The amplified product 

was subjected to quality control using the TapeStationDNAscreentape (Agilent, 

CA, USA). The pooled DNA libraries were sequenced using the HiSeq™ 2500 

platform (Illumina, CA, USA). 

 

2.3. Bioinformatic evaluation of sequencing data 

FASTQ files were aligned to the reference human genome (hg19; 

GRC37) using the Burrows-Wheeler aligner (BWA, v0.62) [22]. Duplicate PCR 

reads were removed using Picard 1.98. Variant calling was performed using the 

“HaplotypeCaller” in Genome Analysis Toolkit 2.7–2 [23]. To detect the 

candidate gene mutations, a filtering strategy was used. Low-quality variants 

with a low total depth (<20) and a low altered allele count (<10) were filtered 

out. Synonymous and noncoding variants were discarded. The variants with an 

allele frequency of more than 0.01 when compared with those in the 1000 

Genomes Project (http://browser.1000genomes.org/), the Exome Aggregation 

Consortium (http://exac.broadinstitute.org/), and the NHLBI exome sequencing 

project (ESP6500, http://evs.gs.washington.edu/EVS/) databases were 

excluded. As a matched control sample was not included in this study, a 

stringent variant selection pipeline was applied to prioritize the high-confidence 

http://evs.gs.washington.edu/EVS/
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set of somatic mutations. The driver genes were selected based on two previous 

studies [8, 10]. Genes that were identified as driver genes in at least one of 

these two studies were selected as driver genes for this study (Table 1). 

Additionally, the in silico prediction algorithms, SIFT [24, 25], CADD [26] and 

PolyPhen2 [27] were used, and the clinical significance was interpreted 

according to the ASCO/AMP/CAP guidelines [28].  

 

Table 1. List of driver genes including the study  

No Driver gene selected for study 
Driver genes detected in this study 

(among selected genes)  

1 ABCF1 ABCF1 

2 ACTG1 ARID1A 

3 ARID1A ATM 

4 ARID2 ATRX 

5 ATM BHLHE41 

6 ATRX BRAF 

7 BCL7A C8orf34 

8 BHLHE41 CREBBP 

9 BRAF CYLD 

10 BTG1 DIS3 

11 C8ORF34 DNMT3A 

12 CCND1 DTX1 

13 CDKN1B DUSP2 

14 CDKN2C EGR1 

15 CREBBP EP300 

16 CYLD FAM46C 

17 DIS3 FGFR3 

18 DNMT3A HIST1H1B 

19 DTX1 HIST1H1D 

20 DUSP2 HIST1H1E 

21 EGR1 HUWE1 

22 EP300 IDH1 

23 FAM46C IDH2 
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24 FGFR3 IGLL5 

25 FUBP1 IRF1 

26 HIST1H1B IRF4 

27 HIST1H1D KDM6A 

28 HIST1H1E KLHL6 

29 HIST1H2BK KMT2C 

30 HUWE1 KRAS 

31 IDH1 LTB 

32 IDH2 MAFB 

33 IGLL5 MAML2 

34 IRF1 MAN2C1 

35 IRF4 NCOR1 

36 KDM5C NF1 

37 KDM6A NFKB2 

38 KLHL6 NFKBIA 

39 KMT2B NRAS 

40 KMT2C PABPC1 

41 KRAS PIM1 

42 LCE1D POT1 

43 LTB PRDM1 

44 MAF PRKD2 

45 MAFB PTPN11 

46 MAML2 RB1 

47 MAN2C1 RFTN1 

48 MAX RPL10 

49 NCOR1 SAMHD1 

50 NF1 SETD2 

51 NFKB SF3B1 

52 NFKB2 TBC1D29 

53 NFKBIA TET2 

54 NRAS TP53 

55 PABPC1 TRAF2 

56 PIK3CA TRAF3 

57 PIM1 UBR5 

58 POT1 ZNF292 

59 PRDM1  

60 PRKD2  

61 PTPN11  

62 RASA2  
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63 RB1  

64 RFTN1  

65 RPL10  

66 RPL5  

67 RPRD1B  

68 RPS3A  

69 SAMHD1  

70 SETD2  

71 SF3B1  

72 SP140  

73 TBC1D29  

74 TCL1A  

75 TET2  

76 TGDS  

77 TP53  

78 TRAF2  

79 TRAF3  

80 UBR5  

81 XBP1  

82 ZFP36L1  

83 ZNF292  

 

 

2.4. Copy number analysis 

Copy number alterations were analyzed using a CNVkit [20] and Nexus 

software version 5.0 (Biodiscovery, CA, USA). The copy number in the NDMM 

dataset was called against an MM-negative karyotype FISH panel. Heatmap 

plots were drawn with the “heatmap” command in CNVkit. Data were loaded 

into Nexus 5.0 and the copy number calls were generated genome-wide for 

each sample based on the fixed thresholds for deletions and duplications 

specified in the settings. SNP‐rank segmentation algorithm [29], a statistics-

based algorithm similar to the circular binary segmentation, applies both the 
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copy number value and the B‐allele frequency to the segmentation (Fig 1). 

GISTIC algorithms were used to determine the significance of focal somatic 

copy number alterations.  

 

Fig 1. Examples of copy number alteration in one patient. Patient #1 showed 

hemizygous deletion of 1p, 8q, 12p, 13q, 14q, and 21q, and duplication of 

chromosome 3. Log R ratio (upper) and B allele frequency (lower) were 

described on each chromosome.  
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2.5. Statistical analysis 

All statistical analyses were performed using the statistical R-project 

program (version 3.6.2), PASW statistics version 18 (SPSS Inc., IL, USA), and 

MedCalc version 12.0 (MedCalc Software, Mariakerke, Belgium). A pairwise 

correlation analysis between somatic mutations and CNVs was performed using 

the Fisher test. Cumulative overall survival (OS) curves for the groups with or 

without genomic variations were calculated using the Kaplan-Meier (KM) 

method and compared using the log-rank test and Breslow test. The Cox 

proportional hazards model was used to evaluate the prognostic impact of CNVs 

and mutated genes on OS. A multivariate analysis was performed on the full set 

of significant variables in the univariate analysis. The differences were 

considered significant at P < 0.05. 
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3. RESULTS 

3.1. Characteristics of the study population 

The demographic and clinical characteristics of the study population, 

including the laboratory tests performed on the day of MM diagnosis, are 

described in Table 1. The numbers of male and female patients were 34 and 33, 

respectively. The median age of the study population was 65 years. Among the 

total nucleated cells in the BM aspiration, the median percentage of BM plasma 

cells was 75.8%. The numbers of patients with ISS stage I, II, and III tumors 

were 7, 25, and 33, respectively (Table 2).   
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Table 2. Demographic and clinical characteristics of the study population 

Values are presented as median (Interquartile Range) 

Abbreviations: NDMM, newly diagnosed multiple myeloma; ISS, International staging 

system; NA, Not available; LDH, Lactate dehydrogenase; BM, Bone marrow; VAD, 

vincristine/doxorubicin/dexamethasone; VMP, bortezomib/ melphalan/prednisolone; 

VTD, bortezomib/ thalidomide/dexamethasone; TD, thalidomide/dexamethasone; MPT, 

melphalan/prednisolone/thalidomide 

*Other: four patients for bortezomib/dexamethasone, four patients for dexamethasone, 

two patients for ixzomib, one patients for lenalidomide, three patients are unknown for 

treatment regimen.  

 

  

Variables Baseline distribution of patients (N = 67) 

Sex (Male/Female) 34 (50.7%) / 33 (49.3%) 

Age (year) 65.0 (58.0–71.0) 

Stage ISS (I/II/III/NA) 7 (10.4%) / 25 (37.3%) / 33 (49.3%) / 2 (3.0%) 

Serum M protein (g/dL) 6.1 (4.3-9.1) 

β2-Microglobulin (mg/dL) 6.4 (3.7-15.3) 

Hemoglobin (g/dL) 8.3 (7.3-9.3) 

Calcium (mg/dL) 9.4 (8.6-10.0) 

BUN (mg/dL) 17.0 (14.0-24.8) 

Creatinine (mg/dL) 1.1 (0.9-1.9) 

Albumin  (mg/dL) 3.1 (2.7-3.5) 

LDH (U/L) 174 (137.5-221) 

Bone disease  45 (67.1%) 

BM plasma cell (%) 75.8 (66.2-85.4) 

Death (Yes/No) 31 (46.3%) / 36 (53.7%) 

Treatment 

VAD 

VMP 

VTD 

TD 

MP (MPT) 

Others* 

 

14 (21.9%) 

13 (20.3%) 

7 (10.9%) 

11 (17.2%) 

8 (12.5%) 

14 (20.9%) 
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3.2. Identification of CNVs in MM 

The gain and loss of the p arm, q arm, and both arms of chromosomes 1 

to 22 were analyzed. The most common chromosomal gain was 1q. Among the 

odd-numbered chromosomes, the most frequent whole-arm gain was observed 

in chromosomes 5, 7, 9, 15, and 19. The most common chromosome loss was 

13q loss, followed by the losses of 16q, 22q, 8p, 14q, 1p, and 6q (Table 3; Fig 

2). The frequency of the 1q gain, 6p gain, and 13q loss with cytoband 

information is represented in Table 4.  
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Table 3. Frequency of copy number alterations in patients with newly 

diagnosed multiple myeloma  

Chr 

Gain Loss 

p arm q arm whole 

arms 

Total (%) p arm q arm whole 

arms 

Total (%) 

1 0 35 0 35 (17.5) 13 3 0 16 (8.1) 

2 3 2 1 6 (3.0) 1 5 0 6 (3.0) 

3 0 4 8 12 (6.0) 0 0 0 0 (0.0) 

4 1 1 1 3 (1.5) 5 4 0 9 (4.5) 

5 1 0 14 15 (7.5) 0 1 0 1 (0.5) 

6 10 2 4 16 (8.0) 2 12 0 14 (7.1) 

7 0 4 11 15 (7.5) 4 0 0 4 (2.0) 

8 0 8 0 8 (4.0) 15 1 1 17 (8.1) 

9 1 3 14 18 (9.5) 2 0 0 2 (1.0) 

10 0 0 0 0 (0.0) 2 2 0 4 (2.0) 

11 1 6 6 13 (6.5) 2 4 1 7 (3.5) 

12 1 0 0 1 (0.5) 8 1 1 10 (5.1) 

13 0 0 0 0 (0.0) 0 33 0 33 (16.7) 

14 0 2 0 2 (1.0) 0 13 0 13 (6.6) 

15 0 2 12 14 (7.0) 0 0 0 0 (0.0) 

16 2 1 0 3 (1.5) 2 18 0 20 (10.1) 

17 0 2 1 3 (1.5) 3 2 0 5 (2.5) 

18 0 3 6 9 (4.5) 1 0 1 2 (1.0) 

19 6 0 11 17 (8.5) 5 0 4 9 (4.5) 

20 0 0 0 0 (0.0) 7 3 0 10 (5.1) 

21 0 1 6 7 (3.5) 0 0 0 0 (0.0) 

22 0 2 0 2 (1.0) 1 16 0 17 (8.6) 

Total 26 78 95 199 (100) 73 118 8 199 (100) 
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Fig 2. Summary plot of chromosomal gain and loss in 67 patients with newly 

diagnosed multiple myeloma determined using whole-exome sequencing and 

copy number analysis. (A) In the heatmap plot, each row represents one patient, 
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while each column represents chromosomes 1–23, X, and Y in order. (B) 

Ideogram with regions of chromosomal gain and loss. Copy number gains and 

deletions are marked as blue and red bars to the right and left side of the 

ideogram, respectively. 

 

Table 4. Frequency of chromosome gain and loss including cytoband information 

(A) 1q gain 

Region Number Percentage 

q21.1-q23.2 1 2.9% 

q21.1-q23.3 1 2.9% 

q21.1-q41 1 2.9% 

q21.1-q44 23 65.7% 

q21.2-q44 7 20.0% 

q23.2-q41 1 2.9% 

q31.3-q44 1 2.9% 

Total 35 100.0% 

 

(B) 6p gain 

Region Number Percentage 

Whole p arm 6 42.9% 

Whole p, q arms 4 28.6% 

p21.3 1 7.1% 

p25.3-p12.3 1 7.1% 

p25.3-p21.1 1 7.1% 

p25.3-p21.2 1 7.1% 

Total 14 100.0% 
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(C) 13q loss 

Region Number Percentage 

q11-q34 29 87.9 

q12.1-21.3 1 3.0% 

q12.1-q22.1 1 3.0% 

q13.3-q14.2 1 3.0% 

q33.1 - q34 1 3.0% 

Total 33 100.0% 

 

3.3. Analysis of selected driver gene mutations 

Driver gene mutations were detected in 58 of the 83 genes selected based on 

two previous studies [8, 10]. Variations classified as tier I, tier II, and tier III 

were separately selected based on the ASCO/AMP/CAP guidelines to analyze 

the frequency and mutation types of each gene (Fig 3). The most frequently 

mutated driver gene was IGLL5, which was detected in eight patients (11.9%). 

Additionally, seven patients (10.4%) had mutations in ATM, six patients (9.0%) 

had mutations in NRAS, KRAS, and DIS3, five patients (7.5%) had mutations in 

MAN2C1 and BHLHE41, four patients (6.0%) had mutations in MAML2, DUSP2, 

and BRAF, and three patients (4.5%) had mutations in TRAF2, TP53, TET2, 

and KDM6A. The diagram including the variation and domain for each gene is 

shown in Fig 4. The p.V600E variation in BRAF was detected in three patients, 

while the p.Q61R(L) variation in KRAS was detected in three patients. In NRAS, 

the p.G12D(V) and p.Q61L(K) variations were detected in two patients. 
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Mutations, such as p.S403L, p.L581V, and p.Q584X, were detected in ATM (Fig 

4).  
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Fig 3. Frequency and distribution of somatic mutations in patients with NDMM. 

Mutation burden per megabase (Mb) in tumor are represented (upper) and 

mutated genes are ranked by mutant frequency (lower). The heatmap 

showed individual mutations in patient samples, color-coded by type of 

mutation. Genes with significant somatic mutations (tier I, II, and II by 

ASCO/AMP/CAP guidelines) are represented.
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Fig 4. Diagrams for mutations for most frequent genes in NDMM patients. 

(A)-(G) is diagrams for BRAF, BHLHE41, KRAS, NRAS, IGLL5, ATM, and 

MAML2 respectively. In the case of the BRAF gene, p.V600E occurred in 3 

patients, and KRAS showed p.Q61R(L) in 3 patients. In the case of NRAS, 

p.G12D(V) and p.Q61L(K) were confirmed in each of 2 patients. In the ATM, 

mutations such as p.S403L, p.L581V, and p.Q584X occurred.  
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3.4. Correlation analysis of genomic variants  

CNVs were frequently detected with moderate or high correlation 

between each other. In patients with hyperdiploid MM, CNVs in odd-numbered 

chromosomes were highly correlated with each other. The CNVs between the 

following chromosome pairs that occurred simultaneously were highly 

correlated: chromosomes 5 and 9 (Pearson correlation coefficient [PCC] = 

0.745; P < 0.001), chromosomes 5 and 15 (PCC = 0.791; P < 0.001), 

chromosomes 5 and 19 (PCC = 0.791; P < 0.001), chromosomes 9 and 15 (PCC 

= 0.763; P < 0.001), and chromosomes 15 and 19 (PCC = 0.782; P < 0.001) 

(Fig 5A). Among patients with non-hyperdiploid MM, there was a high 

correlation between 1q gain and 13q loss (PCC = 0.734, P <0.001), and a 

moderate correlation between the following CNV pairs: 20 loss and 22q loss 

(PCC = 0.577, P <0.001); 6p gain and 6q loss (PCC = 0.553 and P <0.001). 

The analysis of correlations between genes with significant prognostic value 

among driver gene mutations revealed a significant correlation between BRAF 

and EGR1 mutations (PCC = 0.564, P <0.001). Additionally, the analysis of the 

correlation between CNVs and driver gene mutations revealed a significant 

correlation of MAML2 mutation with 17q loss (PCC = 0.485, P <0.001), 22q 

loss (PCC = 0.419, P = 0.004), 6q loss (PCC = 0.423, P = 0.004), and 6p gain 

(PCC = 0.373, P = 0.001). Additionally, EGR1 mutation was significantly 

correlated with 12p loss (PCC = 0.426, P = 0.004) and 1p loss (PCC = 0.324, 



27 

 

P = 0.03). The other driver gene mutations were not significantly correlated 

with CNVs (Fig 5B).   
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Fig 5. Pairwise associations between mutations and copy number variations. (A) 

In patients with hyperdiploid multiple myeloma, chromosome 5 variations were 

correlated with variations in chromosomes 9, 15, and 19, while chromosome 15 

variations were correlated with variations in chromosomes 9 and 19. (B) Among 

patients without hyperdiploid multiple myeloma, 1q gain was correlated with 

13q loss, BRAF mutation was correlated with EGR1 mutation, and MAML2 

mutation was correlated with 17q loss. 
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3.5. Prognostic impact of CNVs and somatic mutations  

3.5.1. Prognostic impact of each of the CNVs and somatic mutations  

The univariate analysis revealed that 1q gain (hazard ratio [HR] = 2.54; 95% 

confidence interval [CI] = 1.06–6.04; P = 0.036), 6p gain (HR = 3.50; 95% CI 

= 1.45–8.46; P = 0.005), 6q loss (HR = 3.33; 95% CI = 1.29–8.65; P = 0.013), 

8p loss (HR = 2.48; 95% CI = 1.06–5.78; P = 0.036), and 13q loss (HR = 2.25; 

95% CI = 0.99–5.08; P = 0.052) were associated with poor OS in patients with 

non-hyperdiploid MM. The multivariate analysis of these CNVs revealed that 

1q gain and 6p gain were significant independent prognostic markers (Table 5). 

Additionally, KM analysis revealed that patients with 1q gain (P = 0.03; Fig 6A), 

6p gain (P = 0.003; Fig 6B), 6q loss (P = 0.009; Fig 6C), 8p loss (P = 0.03; 

Fig 6D), and 13q loss (P = 0.046; Fig 6E) exhibited poor prognosis. In patients 

with driver gene mutations, univariate and multivariate analyses revealed that 

mutations in MAML2 (HR = 3.32; 95% CI = 1.34–8.27; P = 0.010) and 

BHLHE41 (HR = 5.16; 95% CI = 1.91–13.9; P = 0.001) were significantly 

associated with poor OS. The KM plot of patients with driver gene mutations is 

shown in Fig 7. Patients with BHLHE41 (P < 0.001; Fig 7A) and MAML2 (P = 

0.016; Fig 7B) mutations exhibited a significantly poor prognosis in the log-

rank test, while those with BRAF mutations exhibited a significantly poor 

prognosis in the Breslow test (P = 0.036; Fig 7C). Additionally, CREBBP (P < 

0.001), HIST1H1D (P = 0.044), PRDM1 (P = 0.025), KLHL6 (P < 0.001), 
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TRAF3 (P = 0.049), and UBR5 (P = 0.003) mutations, which were detected 

only in one or two patients, were significantly associated with poor prognosis.  

Table 5. Cox proportional hazards model for factors associated with overall 

survival.  

Variables N 
Univariable Multivariable 

HR (95% CI) P HR (95% CI) P 

CNV 

(Non-

hyperdiploid) 

 

1q gain 26 2.54 (1.06-6.04) 0.036 2.46 (1.02-5.92) 0.045 

6p gain 7 3.50 (1.45-8.46) 0.005 3.40 (1.38-8.38) 0.008 

6q loss 6 3.33 (1.29-8.65) 0.013   

8p loss 9 2.48 (1.06-5.78) 0.036   

13q loss 24 2.25 (0.99-5.08) 0.052   

Mutated 

driver genes 

MAML2 4 3.41 (1.19-9.82) 0.023 3.96 (1.35-11.67) 0.013 

BHLHE41 5 5.16 (1.91-13.90) 0.001 6.93 (2.21-21.73) 0.001 

Abbreviations: CNV, copy number variation; HR, hazard ratio; CI, confidential interval 
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Fig 6. Kaplan-Meier analysis of overall survival in patients with copy number 

variations. Patients with (A) 1q gain (P = 0.03), (B) 6p gain (P = 0.003), (C) 

6q loss (P = 0.009), (D) 8p loss (P = 0.03), and (E) 13q loss (P = 0.046) 

were significantly correlated with poor prognosis in the log-rank test. 

Abbreviations: w/o; without 

  



33 

 

 

Fig 7. Kaplan-Meier analysis of overall survival in patients with mutations in 

the driver genes. (A) BHLHE41 (P < 0.001) and (B) MAML2 (P = 0.016) 

mutations were significantly correlated with poor prognosis in the log-rank 

test, while (C) BRAF mutations (P = 0.036) were significantly correlated with 

poor prognosis only in the Breslow test. Abbreviations: w/o; without 
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3.5.2. Prognostic impact of CNVs identified through FISH, CG, and WES 

analyses 

Quantitative results of FISH and CG are shown in Table 6. Compared with 

the CG analysis of metaphase chromosomes, FISH and WES analyses revealed 

a higher frequency of abnormalities. CNV and FISH analyses identified 1q gain 

in 52.2% and 60.0% of the patients, respectively. Moreover, CNV and FISH 

analyses identified 13q deletion in 49.3% and 48.1% of the patients, 

respectively. Survival analysis of patients with or without copy number 

alterations identified through FISH, CG, and WES analyses was performed (Fig 

6). KM analysis revealed that 1q gain identified through FISH was not 

significantly correlated with OS (P = 0.831; Fig 6A). Similarly, 1q gain 

identified through FISH and CG analyses (FISH+CG) was not significantly 

associated with OS (P = 0.174; Fig 6B). Meanwhile, patients with 1q gain 

identified through WES (P = 0.03; Fig 4A) and FISH+CG+WES (P = 0.022; 

Fig 6C) analyses exhibited a significantly adverse OS. Furthermore, patients 

with 13q deletion identified through CNV exhibited poor OS (P = 0.046; Fig 4E). 

Patients with 13q deletion identified through FISH+CG+WES also exhibited 

poor OS (P = 0.013; Fig 6F). However, the genetic variations identified through 

FISH (P = 0.086; Fig 6D) and FISH+CG (P = 0.073; Fig 6E) were not 

significantly correlated with OS. 
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Table 6. Results of copy number variations and rearrangements by WES, FISH 

and CG in patients with NDMM 

Anomaly WES CNV* FISH* CG* FISH+CG*  FISH+CG+WES*  

1q (1q25) gain 
52.2% 

(35/67) 

60.0% 

(30/50) 

27.0% 

(17/63) 

46.3% 

(31/67) 
67.2% (45/67) 

13q (13q14, RB1) 

deletion 

49.3% 

(33/67) 

48.1% 

(25/52) 

34.9% 

(22/63) 

50.7% 

(34/67) 
58.2% (39/67) 

17p (17p13, p53) 

deletion 

7.5%  

(5/67) 

12.5% 

(3/24) 

1.6% 

(1/63) 

6.5% 

(4/62) 
9.0% (6/67) 

IGH/MAF 

rearrangement 
NA 

8.0% 

(2/25) 

3.2% 

(2/63) 

4.8% 

(3/62) 
NA 

IGH/FGFR3 

rearrangement 
NA 

18.5% 

(5/27) 

1.6% 

(1/63) 

9.7% 

(6/62) 
NA 

*In parentheses, number of patients with positive results/number of patients with total 

MM cases tested. 

Patients with positive on at least one of the tests were counted.  

Abbreviations: WES, whole-exome sequencing; CNV, copy number variation; FISH, 

flourescence in situ hybridization; CG, conventional cytogenetics; NDMM, newly 

diagnosed multiple myeloma 
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Fig 8. Kaplan-Meier survival curves of patients with copy number variations 

identified using fluorescent in situ hybridization (FISH), conventional 

cytogenetics (CG), and whole-exome sequencing (WES) analysis. Overall 

survival (OS) of patients with 1q gain identified through FISH (A) or FISH+CG 

(B) was not significantly different. Whereas, 1q gain identified through 

FISH+CG+WES analysis was significantly poor (C). Similarly, the OS of 

patients with 13q loss identified through FISH (D) and FISH+CG (E) was not 

significantly different. However, patients with 13q loss identified through 

FISH+CG+WES analysis exhibited significantly poor prognosis (F). 

 

3.5.3. Mutational burden (CNVs and driver gene mutations) as a 

prognostic factor 

The distribution of the number of mutated driver genes in each patient is 

shown in Fig. 9A. One or more mutations were detected in 63 patients (94%). 

The median number of total mutations was 2.0 (95% CI = 2.0–3.0; range = 0–

8). The distribution plot of only tier I, II, and III mutations is shown in Fig. 9B. 

The median number of mutations was 1.0 (95% CI = 1.0–2.0; range = 0–8). 

The CNVs were detected in 56 patients (83.6%). The median total CNV number 

in each patient was 6.0 (95% CI = 5.7–7.0; range 0–16; Fig 9C).  

KM analysis revealed that both CNVs and driver gene mutations were 

associated with poor prognosis in the group with a high mutational burden. 

Patients with ≥ 4 gene mutations exhibited lower OS than those with < 4 gene 
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mutations (P = 0.035; Fig 9D). Additionally, patients with ≥ 3 mutant driver 

genes (tier I, II, and III) exhibited poorer prognosis than patients with < 3 

mutant driver genes (P = 0.033; Breslow test; Fig 9E). The survival rate of 

patients with ≥ 4 CNVs was lower than that of patients with < 4 CNVs (P = 

0.035; Fig 9F).  
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Fig 9. Distribution of the number of mutated driver genes in each patient. 

Distribution plots for the total number of (A) driver mutations, (B) selected 

mutations with tier I, II, and III according to the ASCO/AMP/CAP guidelines, 

and (C) copy number variations in each patient. Kaplan-Meier plots revealed 

that patients with (D) > 5 gene variants, (E) > 4 selected gene mutations, and 

(F) > 5 copy number variations exhibited poor overall survival. 

 

3.6. Factors affecting OS in patients with hyperdiploid NDMM 

Among patients with hyperdiploid NDMM, patients with ≥ 5 trisomies 

exhibited better prognosis than those with < 5 trisomies (P = 0.037; Fig 8A). 

Patients with < 4 driver gene mutations exhibited a more favorable prognosis 

than those with ≥ 4 driver gene mutations (P = 0.004; Fig 8B). The survival 

analysis of patients with hyperdiploid NDMM with or without driver gene 

mutations revealed that patients without BRAF mutations exhibited a better 

prognosis than those with BRAF mutations (P < 0.001; Fig 8C).  
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Fig 10. Kaplan-Meier curves showing the overall survival of patients with hyperdiploid multiple myeloma (MM). Patients with 

hyperdiploid (HRD) MM were subdivided based on the (A) number of trisomies (≥ 5 vs. <5) (P = 0.037), (B) number of 

mutated driver genes (≥ 3 vs. <3) (P < 0.001), and (C) the presence of BRAF mutation (P < 0.001).



42 

 

3.7. OS of clusters classified based on K-means analysis 

Several factors affecting the survival rate of patients with NDMM identified 

in this study were classified according to the K-means clustering method. The 

following factors were included in the analysis: True-hyperdiploid (T-HRD) 

(>5 trisomy), 1q gain, 6q loss, 6p gain, 8p loss, 13q loss, 17 loss, t(4:14), 

t(14:16), and the total number of driver gene mutations for each patient. Upon 

classification into five clusters, 1q gain, 6p gain, 8p loss, 13q loss, and the 

number of driver gene mutations were identified as the significant clustering 

factors. Among them, the cluster 3 group with 1q gain, 6p gain, 13q loss, and 

driver gene mutation number of 7.5 as the clustering center was associated with 

poor prognosis. In contrast, the cluster 4 group with no CNVs and a low 

centering value with a driver gene mutation number of 1.8 exhibited the best 

prognosis. The cluster 5 group with driver gene mutation number of 5.6, 1q gain, 

and 13q loss exhibited significantly poorer OS than the cluster 4 group (P = 

0.033; Fig 11). 
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Fig 11. Kaplan-Meier curves for overall survival (OS) with subdivided driver 

groups. (A) The cluster 3 group exhibited significantly lower OS than clusters 

1, 2, 4, and 5 (P = 0.019). (B) Final cluster centers for variables, including 

those used for K-means analysis, are classified based on each cluster. The 
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significant clustering factors were 1q gain, 6p gain, 8p loss, 13q loss, and the 

number of driver gene mutations (P < 0.05). For example, the cluster 3 group, 

which exhibited the worst prognosis, had a clustering center with 1q gain, 6p 

gain, 13q loss, and driver gene mutation number of 7.5.  

*P-value was calculated using analysis of variance. 
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4. Discussion 

 

In this study, the CNV and somatic variant profiles of Korean patients 

with NDMM were identified using WES. We identified that 94.0% of enrolled 

patients had one or more driver gene mutations, and found frequently mutated 

genes including IGLL5, ATM, NRAS, KRAS, DIS3, MAN2C1, BHLHE41, 

MAML2, DUSP2, and BRAF.  A comprehensive analysis revealed that the gain 

of 1q and 6p chromosome arms and the loss of 6q, 8q, and 13q chromosome 

arms were associated with poor OS. Additionally, MAML2 and BHLHE41 

mutations were shown to have an adverse prognostic impact on OS. Patients 

with a high frequency of CNVs or a high number of mutations exhibited poor 

prognosis. Cluster analysis revealed that patients with the highest number of 

total driver gene mutations along with 1q gain, 6p gain, and 13q loss were 

associated with the poorest prognosis. These findings suggested the utility of 

integrated analysis of CNVs and somatic mutations in predicting prognosis. 

The differences in the genomic profile between different ethnic groups 

were examined. The genomic profile of Korean patients with NDMM was 

compared with that reported previously [30-33]. Among the CNVs, 1q gain 

(52.2%) and 13q loss (49.3%) were most frequently detected, followed by 

losses of 8p, 14q, 1p, and 6q. The prevalence of 6p gain and 1q gain (26–45%) 

in this study was higher than that reported in previous studies. The frequency 
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of 1q gain detection using FISH was high in Korean patients with 

myelodysplastic syndrome [34]. This indicated that 1q gain is a candidate CNV 

that is specific for Korean patients with myeloma. Among the somatic variants, 

the frequency of mutations in the following genes was higher than 6%: IGLL5, 

ATM, NRAS, KRAS, DIS3, MAN2C1, BHLHE41, MAML2, and BRAF. The 

frequency of IGLL5 mutation was high (18%), which is reported to occur 

exclusively with KRAS/NRAS mutation [35]. In contrast, the frequency of 

mutated genes in the MAPK pathway, such as KRAS, NRAS, and BRAF, was 

lower than that reported in previous studies on the Caucasian population (20–

36%) [9, 32, 36, 37]. This low frequency might be owing to the characteristics 

of the enrolled patients. Previously, Cifola et al. reported that the frequency of 

KRAS/NRAS mutations was low in plasma cell leukemia, which is the aggressive 

and high-risk form of plasma cell dyscrasia [38]. As this study performed 

integrative analysis on patients with ≥ 60% plasma cells in the BM aspirate, 

the characteristics of patients with advanced disease could contribute to the low 

frequency of KRAS/NRAS mutations in this study. Meanwhile, the incidence of 

other mutated genes in patients with NDMM varied in different studies. This 

variability might result from the heterogeneous composition of patients with 

myeloma rather than the ethnic difference.  

CNVs are considered to be one of the most important drivers of cancer 

development and progression [12-14, 31, 32, 37, 39, 40]. Recently, various 

methods have been developed for analyzing CNV through WES, which has 
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enabled the integrated analysis of CNVs and somatic mutations [41] in addition 

to overcoming the limitations of CNV detection through CG and/or FISH. In the 

case of NDMM, the prognostic relevance was not clearly revealed except for 

the well-known variants such as t(4;14) and del(17). The effects of these 

abnormalities, especially for 1q gain and 13q loss on prognosis are controversial, 

and only a few studies have included them for risk stratification criteria [42-

44]. The prognostic discrepancy could be caused by method sensitivity in 

addition to several unmeasuring confounding factors. A previous study showed 

that 5-53% of patients who were normal in FISH and cytogenetics had 

abnormality in chromosomal microarray test [45]. CNV detection through WES 

can overcome the limitations associated with low proliferative activity of cells 

or a low number of neoplastic plasma cells in the BM when compared with CNV 

detection through CG. Moreover, the detection of CNVs through single 

nucleotide polymorphism array or WES, which can encompass the entire 

chromosome, would be more helpful in predicting prognosis than FISH, which 

only detects small target chromosomal areas. In this study, 1q gain and 13q loss 

identified through WES analysis adversely affected OS, whereas 1q gain and 

13q loss identified through FISH and/or CG methods did not have prognostic 

relevance. The deletion of whole arm of 13q (N = 29; 87.9%) and the gain of 

whole arm of 1q (N = 30; 85.7%) were observed in a majority of patients with 

13q deletion and 1q gain in this study. Previously, Binder et al. analyzed the 

prognosis of patients with monosomy 13 and del(13q) separately in 1,181 
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NDMM patients, and reported that only patients with monosomy 13 had adverse 

prognosis [46]. Both of these studies suggest that the 13q loss, which had 

previously shown neutral or favorable results, may have included many patients 

with interstitial deletion rather than whole chromosome loss. Furthermore, it 

provides additional rationale for enabling the integration of WES and FISH tests 

to provide enhanced genetic information for risk stratification and improved 

prediction of outcomes. 

Additionally, WES could explore the regions that are not covered by 

routine FISH probes. Recently, CNVs including 6p gain, 6q loss, and 8p loss 

have been reported to emerging recurrent alterations in multiple myeloma [45]. 

As CNV detection technologies have been developed, interests in the clinical 

implications of these new and emerging marker have raised. In this study, 

patients with 6p gain, 6q loss, and 8p loss were statistically significantly 

associated with poor prognosis. Further studies are needed to validate these 

CNVs as adverse prognostic markers in a large cohort.  

In this study, BHLHE41 and MAML2 somatic mutations were associated 

with poor prognosis. BHLHE41, which is located at 12p12.1, is known as a 

helix-loop-helix superfamily domain that is involved in various cellular 

functions, such as proliferation, differentiation, tumorigenesis, and circadian 

rhythms [47]. The expression of BHLHE41 is reported to be upregulated in 

patients with Waldenstrom macroglobulinemia [48], and might be associated 

with poor prognosis in NDMM. MAML2 is located at 11q21. The prognostic 
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relevance of MECT1–MAML2 and CRTC1-MAML2 fusion oncogenes has been 

reported in mucoepidermoid carcinomas [49, 50]. In this study, MAML2 

mutations exhibited positive correlation with various CNVs including 17q loss 

and 22q loss, and these variations may aid in predicting the prognosis. TP53 

mutations are a well-known adverse prognostic factor in myeloma. Niccolo et 

al. demonstrated that TP53 mutations were associated with adverse 

progression-free survival (PFS) and OS and that a rare mutation in DNAH11 

affected OS [9]. Another study reported that TP53, ATR, ATM, and ZFHX4 

mutations are associated with poor PFS or OS [37]. Although TP53 did not 

show statistical significance in OS in this study (P = 0.613), it is presumed to 

be due to too small number of mutation-positive patients (N = 3). However, it 

could be owing to the differences in inclusion criteria, such as selecting only 

patients with >60% PC or targeting the Korean population. Most previous 

studies report the heterogeneous mutational landscape of MM. Some patients 

exhibited redundancy in gene mutations as two or more mutations were 

detected in genes involved in the same pathway [12, 51, 52]. Consistent with 

these findings, the current study suggested the heterogeneity of genomic 

variants in MM. We suggest that the prediction power of mutational burden in 

structural and somatic variants is higher than that of a single variation. 

In this study, we presented novel prognostic subgroups in patients with 

NDMM through K-means clustering analysis. The clusters were divided 

according to CNVs and mutations that affect OS. The “Cluster 3” exhibited 
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the highest number of driver gene mutations and CNVs, including 1q gain, 13q 

loss, and 6q loss. Although efforts to stratify potential subgroups according to 

OS were attempted previously [9, 10], the characteristics of each cluster group 

have not been distinguished. However, this study revealed that prognosis-

related CNVs, such as 1q gain, 13q loss, and 6q loss have clustering relevance, 

whereas somatic gene mutations have no clustering importance. The overall 

number of mutations in the driver gene panel played a significant role in 

stratifying each group.  

Recently, prognosis-related classifications are being reconsidered for 

patients with hyperdiploid MM [53, 54]. In this study, patients with hyperdiploid 

MM and more than five trisomies exhibited favorable OS, which was based on a 

review of hyperdiploid variations that affected prognosis. Moreover, patients 

with hyperdiploid MM and an increased number of driver gene mutations 

exhibited poor prognosis. These results suggest that the integrated analysis of 

mutation burden (both CNVs and somatic mutations) using WES could aid in 

precisely predicting the clinical outcomes of patients with MM.  

This study has several limitations: CD138 purification and sorting steps 

have not been implemented. Instead, only patients with >60% plasma cells in 

the BM aspirate were selected for the study. Most patients showed high 

numbers of plasma cells in the BM. Additionally, there were no control samples 

to remove the germline background. To overcome this limitation, the gene 

variants observed in healthy Korean individuals (n = 2,000) were removed. And, 
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we focused on the driver genes selected by multiple algorithms in several 

previous studies. Based on the ASCO/AMP/CAP guidelines, variants with tier I, 

II, and III were separately analyzed. Furthermore, CNVs under 2,500 kb were 

excluded in CNV analysis. However, this study demonstrated that large CNVs 

with size > 2,500 kb were poor prognostic factors. As CNV analysis cannot 

detect chromosomal translocations, the results of translocations, such as t(4;14) 

and t(14;16) were referenced for clustering integrated analysis. 

In conclusion, this study comprehensively analyzed the somatic 

mutations and CNVs of patients with NDMM using WES. Additionally, this study 

proposed a new method for classifying patient groups with poor prognosis and 

predicting OS. MM is a heterogeneous disease comprising several subclones, 

and multiple driver gene mutations are detected in one patient. Therefore, an 

integrated analysis through the application of WES in the future would aid in 

predicting the prognosis in a clinical setting. 
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국문 초록 

 

이번 연구는 처음 진단된 다발골수종 환자에서 유전자 변이 및 구조적 변이의 

예후를 분석하기 위해 기존의 세포유전학, 형광접합보인자법 및 

전체엑솜염기서열분석을 이용하여 통합적인 유전체 분석을 수행하였다. 

골수흡인액에서 60% 이상의 형질 세포를 보이는 다발골수종 환자 67 명을 

대상으로 골수 유핵 세포에서 전체엑솜염기서열분석을 수행하였다. 체세포 

돌연변이 및 구조적변이 분석에는 두 가지의 응용 프로그램(CNVkit 및 Nexus 

Copy Number)이 이용되었다. 63 명의 다발골수종 환자에서 83 개의 유발 유전자 

돌연변이가 발견되었다. 환자당 체세포 돌연변이 수의 중앙값은 2.0 이었다(95 % 

신뢰 구간 = 2.0–3.0, 범위 = 0–8). MAML2 및 BHLHE41 돌연변이는 짧은 

생존률과 관련이 있었다. 구조적 변이는 56 명의 환자 (72.7%; 56/67)에서 

발견되었다. 환자 당 구조적 변이 수의 중앙값은 6.0 (95 % CI = 5.7 – 7.0, 범위 

= 0 – 16)이었다. 구조적 변이 중 1q 증폭, 6p 증폭, 6q 결실, 8p 결실 및 13q 

결실은 생존 감소와 관련이 있었다. 또한 1q 증폭과 6p 증폭은 독립적인 불량한 

예후 인자였다. 한 환자에서 보이는 높은 빈도의 구조적 변이와 유발 유전자 

돌연변이는 불량한 임상 예후와 상관관계가 높았다. 클러스터링 분석을 통해 1q 

증폭, 6p 증폭 및 13q 결실과 함께 가장 높은 빈도의 유발 유전자 돌연변이를 가진 

환자가 가장 나쁜 예후를 나타냄을 알 수 있었다. 다발골수종 기존의 알려진 

예후인자와 함께, 체세포 돌연변이와 구조적변이의 통합 분석은 환자의 보다 

정확한 예후 예측 및 분류에 있어 의미가 높을 것으로 기대된다. 

 


	1. Introduction
	2. Materials and Methods.
	2.1. Patients
	2.2. DNA extraction and exome sequencing.
	2.3. Bioinformatic evaluation of sequencing data
	2.4. Copy number analysis . 
	2.5. Statistical analysis

	3. Results 
	3.1. Characteristics of the study population
	3.2. Identification of CNVs in MM
	3.3. Analysis of selected driver gene mutations.
	3.4. Correlation analysis of genomic variants.
	3.5. Prognostic impact of CNVs and somatic mutations.
	3.6. Factors affecting OS in patients with hyperdiploid NDMM.
	3.7. OS of clusters classified based on K-means analysis

	4. Discussions.
	References.
	Abstract in Korean


<startpage>12
1. Introduction 1
2. Materials and Methods. 4
 2.1. Patients 4
 2.2. DNA extraction and exome sequencing. 5
 2.3. Bioinformatic evaluation of sequencing data 6
 2.4. Copy number analysis .  9
 2.5. Statistical analysis 11
3. Results  12
 3.1. Characteristics of the study population 12
 3.2. Identification of CNVs in MM 14
 3.3. Analysis of selected driver gene mutations. 18
 3.4. Correlation analysis of genomic variants. 26
 3.5. Prognostic impact of CNVs and somatic mutations. 29
 3.6. Factors affecting OS in patients with hyperdiploid NDMM. 40
 3.7. OS of clusters classified based on K-means analysis 42
4. Discussions. 45
References. 52
Abstract in Korean 61
</body>

