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For most of the real-world networks, geometry plays an important role 

in organizing the network, and recent works have revealed that the 

geometry in the structural brain network is most likely to be hyperbolic. 

Therefore, it can be assumed that the geometry of the functional brain 

network would also be hyperbolic. In this study, we analyzed the 

functional connectomes from functional magnetic resonance imaging 

(fMRI) to prove this hypothesis and investigate the characteristics of the 

network by embedding it into the hyperbolic space, by utilizing human 

connectome project (HCP) dataset for healthy young adults and Autism 
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Brain Imaging Data Exchange II (ABIDE II) dataset for diseased autism 

subject and control group. 

Nodes of the network were defined at two different scales: by 

274 predefined ROIs and 6mm-sized voxels. The adjacency between the 

nodes was determined by computing the correlation of the time-series of 

the BOLD signal of brain regions and binarized by adopting threshold 

value. 

First, we aimed to find out whether the network was scale-free 

by investigating the degree distribution of the functional brain network. 

The probability distribution function (PDF) versus degree was plotted as 

a straight line at a log-log scale graph versus the degree of nodes. This 

indicates that degree distribution is roughly proportional to a power 

function of degree, or scale-free.  

To clarify the most fitting underlying geometry of the network, 

we then embedded the graph into manifolds of Euclidean, hyperbolic, or 

spherical spaces and compared the fidelity measures of embeddings. The 

embedding to the hyperbolic spaces yielded a better fidelity measure 

compared to other manifolds. 

To get a discrete and visible map and investigate the 

characteristics of the network, we embedded the network in a two-

dimensional hyperbolic disc by the 1/ℍ2 model. The radial and angular 

dimensions in the embedding is interpreted as popularity and similarity 
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dimensions, respectively. The ROI-wise analysis revealed that no nodes 

with particularly high popularity were found, which was revealed by a 

vacant area in the center of the disk. Nodes in the same lobe were more 

likely to be clustered in narrow similarity dimensions, and the nodes 

from the homotopic lobes were also functionally clustered. The results 

indicate the anatomic relevance of the functional brain network and the 

strong functional coherence of the homotopic area of the cerebral cortex. 

The voxel-wise analysis revealed additional features. A large 

number of voxels from the cerebellum were scattered in the whole 

angular position, which might reflect the functional heterogeneity of the 

cerebellum in the sub-ROI level. Additionally, multiple rod-shaped 

substructures of radial direction were found, which indicates sets of 

voxels with functional similarity. When compared with independent 

component analysis (ICA)-driven results, each large-scale component of 

the brain acquired by ICA showed a consistent pattern of embedding 

between the subjects. 

To find the abnormality of the network in the diseased patient, 

we utilized the autistic spectrum disorder (ASD) dataset. The two groups 

of ASD and the control group were found to be comparable in means of 

the quality of embedding. We calculated the hyperbolic distance between 

all edges of the network and searched for the alteration of the distance of 

the individual brain network. Among the variable results among the 
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networks of ASD group subjects, the alteration of the cortico-striatal 

pathway in an autism patient and posterior superior temporal sulcus 

(pSTS) in an Asperger’s syndrome patient were present, respectively.   

The two different anatomically-scaled layers of the network 

showed a certain degree of correspondence in terms of degree-degree 

correlation and spreading pattern of network. But anatomically 

parcellated ROI did not guarantee the functional similarity between the 

voxels composing it. 

Finally, to investigate the reproducibility of the embedding 

process, we repeatedly performed the embedding process and computed 

the variance of distance matrices. The result was stable except for end-

positioned non-popular nodes. Furthermore, to investigate consistency 

along time-series of fMRI, we compared network yielded by segments 

of the time series. The segmented networks showed similar results when 

divided into four frames, but the result lost consistency when divided 

into 30 frames of 30 seconds each.  

This study is the first to investigate the characteristics of the 

functional brain network on the basis of hyperbolic geometry. We 

suggest a new method applicable for assessing the network alteration in 

subjects with a neuropsychiatric disease, and these approaches grant us 

a new understanding in analyzing the functional brain network with a 

geometric perspective. 
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1. Introduction 
 

 

1.1. Human brain networks 
 

The understanding of the structure and mechanisms of the human brain, 

one of the most complicated systems of nature, has been the greatest 

challenge for scientists. Since the monumental work of Ramon y Cajal, 

which neuroanatomically identified that brains are networks of 

individual neuronal cells, a vast amount of research was performed over 

the past century.  

Previous studies have shown that intrinsic neural circuitry is 

related to development, aging, and individual difference in cognitive 

functions (Amer et al., 2016; Barber et al., 2013; Chai et al., 2014). 

Network science, a field that studies complex systems, either artificial or 

of nature, by representing these systems with their network counterparts 

(Voitalov et al., 2019), offers a new perspective on the brain’s networked 

architecture, known as connectomics (Sporns et al., 2014).  

In recent years, resting-state fMRI (rs-fMRI) studies have 

emerged as a promising tool to reveal intrinsic connectivity that underlies 

cognition and behavior (Keller et al., 2015; Kong et al., 2019; Bastos et 

al., 2016; Sala-Llonch et al., 2012). Current neuroimaging and image 

analytic techniques now grant a high-resolution image in real-time 
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(Roncal et al., 2013). In other words, a more direct approach is performed 

for the analysis of structural or functional brain network for the scientific 

communities.  

 

1.1.1. Geometry of human brain networks  

Recent works have revealed that structural brain networks, or 

connectomes, have topological properties with other real-world complex 

systems in common. Some of these features are modularity (Meunier et 

al., 2010), small-worldness (Bassett et al., 2017), and heavy-tailed 

distribution of the degree (Gastner et al., 2016). 

Network geometry, which serves as a theoretical framework of 

the topology of networks, can be used to achieve many useful objectives 

for unfolding the real-world networks, such as navigation of network 

(Papadopoulos et al., 2010), community detection (Serrano et al., 2012; 

García-Pérez et al., 2016) or link prediction (Kerrache et al., 2020; 

Kitsak et al., 2019). Recent studies of spatial information of neural 

structure reveal that also in the organization of the brain network, 

geometry plays an important role (Boguñá et al., 2020, Allard et al., 

2017), and also in communication processes along with the neural 

structures.  

However, Euclidean geometry by itself does not sufficiently 

explain the observed connectivity between brain regions. Instead, 
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hyperbolic geometry has emerged as the more appropriate explanation 

for the above-mentioned features of the brain network (Allard et al., 2020; 

Tadic et al., 2019).  

The exact relationship between structural and functional brain is 

still controversial, but an increasing amount of evidence suggests that the 

functional brain network closely relates to its structural counterpart 

(Meier et al., 2016; Markram et al., 2015; Sporns et al., 2013). So, it can 

be assumed that hyperbolic geometry would also serve as underlying 

geometry, a geometrical representation that dominates the probability of 

connections and formation of the network, of the functional brain 

network. 

 

1.2. Scale-free network 
 

Scale-free and power-law are well-known terms in the field of network 

science (Voitalov et al., 2019). One of the most basic properties of any 

network, among the network size and average degree, is the degree 

distribution. It is now well known that many real-world networks 

generated from different origin share the feature of scale-freeness, which 

denotes the degree distributions close to the power laws.  

The scale-freeness means that the distribution of degrees in a 

network does not have any characteristic scale. This class of network has 

a variety of structural and functional properties, which is represented by 
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small-worldness and hierarchial organization of nodes (Barabasi, 2016; 

Balogh et al., 2019; Dorogovtsev et al., 2008). 

 

1.2.1. Definition of a scale-free network 

However, the definition of scale-freeness is not widely agreed upon by 

scientists (Voitalov et al., 2019). In particular, it is not noticeably clear in 

the real-world network what it really means for a degree sequence to be 

power-law or “close” to a power law (Broido et al., 2019; Li. et al., 2005). 

One of the simplest formulas representing the power law is as 

simple as (Clauset et al., 2009): 

 P(k) ∼ k-γ. (1) 

Where the symbol “~” means “roughly proportional.” This 

means that the probability of distribution ὖ(Ὧ) of nodes of degree k in 

the network decreased with k as a power law with exponent γ, 

approximately. So far, many studies have plotted the probability density 

functions (PDFs) P(k) and complementary cumulative distribution 

functions (CCDFs) F(k) of degrees k on the log-log scale to find out that 

these functions are roughly straight lines, and the network is power-law 

(Sporns et al., 2004). In this work, we will follow this definition of scale-

freeness. 
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1.3. Embedding of the network in hyperbolic space  

Some geometric frameworks were developed to investigate the structure 

and function of complex real-world networks (Dorogovtsev et al., 2008; 

Bruno et al., 2019). As we will see later in this study, the hyperbolic 

geometry best fits with the functional brain networks. Although not very 

familiar to us, hyperbolic geometry is just for the world we are in. For 

example, the Minkowski spacetime is hyperbolic. On the other hand, as 

we show later, hyperbolic spaces can be regarded as smooth versions of 

tree-like networks with hierarchies (Clauset et al., 2008). As a result, the 

model with hyperbolic geometry produces scale-free networks with 

power-law degree distribution, of which process is shown in (Krioukov 

et al., 2010).  

In this study, we utilized some fidelity measures of embeddings 

in Riemannian manifolds of constant curvature. Furthermore, to get a 

discrete and visible map of the network, we adopted a two-dimensional 

hyperbolic disk model, called popularity-similarity optimization model, 

to explore and visualize the result of network embeddings via assessing 

the popularity and similarity of each nodes composing the network. 

 

1.3.1. Hyperbolic spaces and Poincaré disk 

The most notable property of hyperbolic geometry is that space grows 

exponentially as the radius increases (Figure 1). That is, the area of a 
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two-dimensional hyperbolic disk of radius r is roughly proportional to 

Ὡ . In the other words, the nodes with uniform density in hyperbolic 

space are seen as exponentially growing denser with the distance r grows 

farther from the origin (Kriouikov et al., 2009). 

And the Poincaré disk, ℍ2 is a model of two-dimensional 

hyperbolic geometry that projects the whole hyperbolic space in the unit 

disk and have equiconsistency with the Euclidean space, as visualized in 

(Figure 2). A natural generalization of ℍ2 is the Poincaré ball Hr, with 

elements inside the unit ball. One of the useful features that Poincaré 

models offer is conformal mapping to the Euclidean space. That means 

the preservation of angle. Distances, on the other hand, are not preserved 

but are given by  

 Ὠ (ὼ, ώ) = ὥὧέίℎ 1 + 2 || ||
( || || )( || || ) . (2) 

 

An interesting property of hyperbolic space comes out of a 

simple example that impacts the embedding of trees into the hyperbolic 

spaces (De Sa et al., 2018). When we the origin and the other two points 

with the same radial position ||x|| = ||ώ|| = ὸ for real positive t. As 

ὸ → 1, that is, both points move towards the outside of the disk, the value 

of ( , )
( , ) ( , )  approaches 1, that is, the hyperbolic distance of 

Ὠ (ὼ, ώ) gets closer to Ὠ (ὼ, 0) + Ὠ (0, ώ). Therefore, the length of 

the geodesic line between two points, x and y, are close to the distance of 
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the path via the origin of the disk. From a network perspective, this is 

comparable to the property of trees, in which the path between two 

daughter nodes is the path through their parent node. This property of 

hyperbolic space suggests that this space best fits to embed the tree-like 

structure of the network.  

However, in this study, we use convention of plain Euclidean 

polar coordinates, instead of specific model for hyperbolic space, for 

visualization of functional brain network embedded in 2-dimensional 

hyperbolic plane model. However, the two space is conformal and 

essentially shares same Poincaré metric which is commonly shared in 

hyperbolic geometry.  
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Figure 1. The exponential growth of hyperbolic space. This kaleidoscope 
demonstrates the expansion of hyperbolic space exponentially. All of these 
octagons occupy the same area. 

 

 

Figure 2. Poincaré disk and geodesics. As both points move towards the outside 
of the disk, the hyperbolic distance ▀╗(●, ◐) approaches ▀╗(●, ) + ▀╗( , ◐). 
That is, the length of the geodesic line between two points, x and y, are close to 
the distance of the path via the origin of the disk. 
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1.3.2. Geometric model of 1/ℍ2  

More similar nodes have a higher probability of connection, apart from 

the popularity of nodes. This effect, which is called homophily in the 

social network domain, is shared by many instances of the real-world 

networks. In the brain, for example, an individual neuron is not only 

thought to be connected with the functionally associative neuron but also 

with an anatomically adjacent one (Cacciola et al., 2017; Wu et al., 2020). 

Based on previous assumptions we made, we perform the 

embedding of the functional brain network in the hyperbolic space. 

These networks are assumed to be linked with their underlying geometry 

through the law of probability of connection, which defines the 

likelihood of how each of the brain regions is connected. The position of 

regions of interest or voxels in the hyperbolic disk could be inferred by 

means of the hyperbolic mapping (Boguñá et al., 2010). 

In this study, we perform mapping of nodes onto a two-

dimensional hyperbolic disk, ℍ2 model. In this model, the probability of 

connection is the function of only the distances between the nodes. For 

each of the nodes, the node is assigned a polar coordinate r and θ, i.e., 

the radial and angular position. These coordinates correspond to 

dimensions of popularity and similarity, respectively.  
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1.4. The aim of the present study  

In this study, to figure out the global characteristics of the functional 

brain network, 180 rs-fMRI images from healthy adults were analyzed. 

We expected that the hyperbolic geometry underlies the network, so it 

was demanded that the binarized network has a scale-free degree 

distribution. For this purpose, we conducted the correlation study of the 

time series of rs-fMRI signals from brain regions and binarized the 

network by adapting a specific correlation value. 

Then, we aimed to investigate the detail of the characteristics of 

the network, such as which region is popular, or which sets of regions 

are functionally similar. We implemented the embedding of the network 

onto a two-dimensional hyperbolic space and investigated the 

characteristics of the network based on the hyperbolic distance. And we 

aimed to assess the compatibility of our method with a previously 

established method, such as independent component analysis (ICA). 

Furthermore, we searched for clinical application in the diseased 

patient by adapting the method to the ABIDE II dataset for autistic 

spectrum disorder (ASD) patients. 

Finally, to show the reliability and reproducibility of the above-

mentioned method of embedding on the popularity-similarity model, we 

assessed the variance of the result of embedding between the different 

segment of time series (time variability) and between the repeated 
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embedding procedures of a network from the same subject 

(reproducibility of method).   
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2. Methods 
 

 

2.1. Subjects and image acquisition 

2.1.1. Human connectome project (HCP) dataset 

For the investigation of the general characteristics of functional brain 

network of normal young adult group, we utilized one hundred eighty 

resting-state fMRI datasets from 1200 public data release of healthy 

adults from the Human Connectome Project (HCP). Participants were 

between 22 and 35 years of age at the time of recruitment and did not 

have any documented history of psychiatric, neurological, or medical 

disorders known to influence brain function. A more detailed description 

of the inclusion and exclusion criteria for HCP is shown in (van Essen et 

al., 2012) 

The sample of participants included one hundred and eighty 

subjects (Mean age = 29.06, SD = 3.44), with 76 male and 104 female 

subjects.  

 

2.1.2. Autism Brain Imaging Data Exchange II (ABIDE II) dataset 

For the investigation of the characteristic of autistic spectrum disorder 

(ASD) diseased subject, we made use of 247 resting-state fMRI datasets 

from Autism Brain Imaging Data Exchange II (ABIDE II) datasets, 113 

from diseased subjects and 134 from the control group.  
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We selected data from the same age group as that of HCP 

datasets, whose age ranged between 20 and 35 years of age in the control 

group (Mean age = 26.84, SD = 3.81), and 20 to 39 years of age in the 

diseased group (Mean age = 27.92, SD = 4.91, M : F = 10 : 0). The male 

subjects were mostly included due to the male dominance of ASD. 

Among ten ASD subjects, eight were categorized as autism, one as 

Asperger’s syndrome, and the rest one was not otherwise specified. 

A more detailed description of the subject information and 

image acquisition protocol is described in (Di Martino et al., 2017).  
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2.2. Preprocessing for resting-state fMRI 

Statistical Parametric Mapping (SPM, 

www.fil.ion.ucl.ac.uk/spm/) was used for resting-state data 

preprocessing. After discarding five volumes, the motion parameters of 

time series fMRI data were estimated, and wavelet despiking was 

performed (Patel et al., 2014). Each subject’s rs-fMRI data were 

corrected for motion artifacts after slice timing correction. Images were 

coregistered to anatomical T1 weighted images and normalized to MNI 

space. Next, they underwent smoothing, and the intensity of gray matter 

was normalized to a whole-brain median of 1000 (Patel et al., 2014). then 

white matter, CSF, six motion parameters were regressed out, and 

bandpass filtering (0.01Hz-0.1Hz) was done. The overall preprocessing 

procedure of the HCP dataset is addressed in the (Glasser et al., 2013). 

We parcellated the whole brain in two ways: a) into 48 regions 

and 274 subregions of interest (ROIs) using the human Brainnetome 

Atlas (Fan et al., 2016). All of the 274 sub-ROIs were included in the 

analysis. Detailed information on ROIs, including full name, 

abbreviations are available in (https://atlas.brainnetome.org/). b) into 

cubic isotropic voxels of 6 × 6 × 6 mm3 size, the total number of 6,914. 

Voxel-based analysis was restricted into five randomly selected cases 

due to long computation time. 
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2.3. Resting-state networks and functional connectivity analysis 

Spontaneous fluctuations, both at the voxel- and ROI-level, were 

characterized by the variance of the population σ (ὢ) of the BOLD-

fMRI time-series X (Pannunzi et al., 2017). For the BOLD-fMRI time-

series X = (X1, ..., XN) of a given ROI/voxel, the variance was computed 

by the sample variance σ (ὢ) 

 
σ (ὢ)  =

1
ὔ − 1

(ὢ − ὢ)  (3) 

 

In Eq. (3), ὢ denotes the sample mean of ὢ. Functional connectivity 

was assessed by the Pearson correlation coefficient ρ:  

 
ρ(ὢ, ὣ) =

ὅέὺ(ὢ, ὣ)
σ(ὢ)σ(ὣ) (4) 

 

Where (ὢ, ὣ)  stands for the BOLD-fMRI time-series. For a pair of 

BOLD-fMRI time-series X = (X1, ..., XN) and Y = (Y1, ..., YN), ρ was 

estimated by the sample Pearson correlation coefficient ρ: 

 
ρ(ὢ, ὣ) =

1
ὔ − 1

(ὢ − ὢ)(ὣ − ὣ)
σ(ὢ)σ(ὣ)  (5) 

 

From the Pearson correlation coefficients, we obtained a square 

matrix of Pearson correlation coefficient X for each of the subjects. The 

connectivity matrix that consists of absolute values of negative 
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correlation coefficients was used to establish an adjacency matrix of the 

network. We applied multiple threshold values for each analysis and 

investigated the degree distribution and the average number of nodes 

consisting the largest connected component. We determined a fixed 

threshold value for each of the dataset and scale of observation (i.e. ROI-

wise and voxel-wise), by considering scale-freeness and maximal 

inclusion of nodes in the brain network.  

By considering edges with distances lower than the threshold 

value connected, we constructed an unweighted, undirected graph for 

each subject. 
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2.3.1. Analyzing degree distribution 

The degree distribution of the graph was then plotted in a log-log scale 

graph, and the estimation of the power-law coefficient, γ, was conducted 

via fitting the PDF to a straight line in the log-log scale. 

 

2.4. Assessing underlying geometry 

2.4.1. The three component spaces 

To embed the network into the component spaces, we implemented a 

Riemannian manifold composed of hyperbolic, spherical, and Euclidean 

components. A 2-dimensional example of three spaces is visualized in 

(Figure 4). Each component space of the combined space has the 

component curvature, which is conditioned to negative, positive, and 

zero, respectively. We implemented the method proposed by (Sala et al., 

2019), in which the constant curvature for each of the component spaces 

is learned along with the embedding via Riemannian optimization.  
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Figure 4. Visualization of the three component spaces. (A) Hyperboloid ℍ , (B) 
Sphere , (C) Euclidean plane . Each component space has constant 
curvature, which is -1, +1, and 0, respectively. 
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2.4.2. Embedding into spaces  

An embedding of the network is assigning nodes to representative low-

dimensional space, and it effectively preserves the network structure 

(Cui et al., 2018). Analytically, it means Ὢ: Ὗ → ὠ for spaces U, V with 

distances Ὠ , Ὠ   We measure the quality of embeddings with fidelity 

measures. The standard metric for graph embeddings is distortion D (De 

Sa et al., 2018). For an n-point embedding, 

 
D =

1 Ὠ Ὢ(ό), Ὢ(ὺ) − Ὠ (ό, ὺ)
Ὠ (ό, ὺ)

, ∈ :

 
(6) 

 

The best distortion is D(f) = 0, preserving the edge lengths 

exactly. Also, note that D(f) can be larger than 1. This is a global metric, 

as it depends directly on the value of hyperbolic distances rather than the 

local relationships, or ranks, between distances. 

Recent work performed by (Nickel & Kiela et al., 2017) 

proposes using the mean average precision (mAP). For a graph Ὃ =

(ὠ, Ὁ) , let ὥ ∈ ὠ  have neighborhood ׂﬞש = {ὦ , ὦ , ⋯ , ὦ ( )} , 

where ὨὩὫ(ὥ) denotes the degree of ὥ. In the embedding f, consider 

the points closest to f(a), and define Ὑ , to be the smallest set of such 

points that contains ὦ , i.e., Ὑ ,  is the smallest set of nearest points 

required to retrieve the ith neighbor of a in f (García-Pérez et al., 2020). 

Then, the mAP is defined to be 
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άὃὖ(Ὢ) =

1
|ὠ|

1
| |שׂﬞ Precision Ὑ ,

| |שׂﬞ

∈

=
1

|ὠ|
1

ὨὩὫ(ὥ)
שׂﬞ ∩ Ὑ ,

Ὑ ,

| |שׂﬞ

∈

 

(7) 

 

Note that mAP(f) ≤ 1. And the equal sign is the best case that 

preserves the rank of distances between the nodes. The mAP is not 

concerned with the exact value of underlying distances, but only the 

relative ranks between the distances of immediate neighbors. It is a local 

metric. 

To compute the quality of embeddings, we implemented the me

thod proposed by (Sala et al., 2019)1 to optimize the placement of poin

ts through an auxiliary loss function.  

The Riemannian stochastic gradient descent (R-SGD) algorithm, 

which was specialized to the manifold space by the authors, was used. 

This proceeds by first computing the loss function for the ambient space 

of the embedding, and then converting it to the Riemannian gradient by 

applying the Riemannian correction. The detailed strategy is described 

in (Nickel & Kiela et al., 2018; Wilson & Leimeister et al., 2018). 

 

                                            
1 Available at https://github.com/HazyResearch/hyperbolics 
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2.5. Embedding of the network in the 1/ℍ2 model 

The binary graph from each patient was then embedded into latent 

hyperbolic geometry of popularity-similarity 1/ℍ2 geometric network 

model. In the model, the probability of connection between two nodes Ὥ 

and Ὦ is determined by the hyperbolic distance between two nodes: 

 ὴ =
1

1 + Ὡ
 (8) 

 

where Ὠ  is the hyperbolic distance which has a good approximation: 

 
Ὠ ≅ ὶ + ὶ + 2 ὰὲ

Δθ
2  + ὕ

1
ὶ  (9) 

 

, β  is the clustering coefficient of network and Ὑ  is the outermost 

radial coordinate among the embedded nodes. The detail of 1/ℍ2 

geometric model is described in the Supplementary Material. To find 

the most appropriate geometric object (i.e. a hyperbolic disk) that is most 

likely to generate the binary adjacency graph we made, we implemented 

a software named Mercator2, introduced by (García-Pérez et al. 2019), 

which assumes that the structure of networks could be described by the 

1/ℍ2 geometric model. This software searches, for each non-directed, 

non-weighted adjacency matrix, the most appropriate radial and angular 

                                            
2 Available at https://github.com/networkgeometry/mercator 
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coordinates for ὔ  nodes (r , θ ), (r , θ ), ⋯ (r , θ )  and the 

clustering coefficient β, by means of the Laplacian Eigenmaps and the 

maximum likelihood estimation. The Supplementary Material briefly 

introduces the embedding techniques utilized by the Mercator. 

 

2.6. Comparison with ICA-driven method  

To assess the compatibility of the method with other established methods 

of analyzing the functional brain networks, we made use of 10 voxel data 

from HCP subjects and determined 12 network components by the 

independent component analysis (ICA) (van de Van et al., 2004). We 

plotted the resulted voxel of each component thresholded by z>6 on the 

embedded disk resulted by section 2.5. and assessed the similarity of 

each component and compared it between subjects. 

 

2.7. Assessing the quality of embedding 

We here suggest a method to assess how the original network is 

successfully embedded into the 1/ℍ2 model and the eligibility of intra-

subject comparison. We made use of absolute values of original 

correlation coefficients of edges calculated by Eq. (5) and compared it 

with the hyperbolic distances resulted from 1/ℍ2 embedding. 

To compare the hyperbolic distance and correlation coefficient 

in the same scale, we used the connection probabilities of edges, which 
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is a function of a single variable of hyperbolic distance, as in Eq. (5). 

Note that two values have the same tendencies, which is close to 0 when 

two regions are unlikely to be connected and close to 1 when they are 

more likely to be connected with each other. We made two triangular 

matrices of each value and subtracted one from another. We calculated 

the norm of the matrix by calculating the square root of the mean square 

value of matrix elements 

 ὖ  − ὅέὶὶ  (10) 

 

where ὖ  is the matrix of connection probability calculated 

by Eq. (8), and ὅέὶὶ  is the matrix of absolute values of correlation 

coefficients of edges. This value was calculated for each instance of 

embedding for an individual subject and compared along subjects to 

assess the comparability between subjects. 

 

2.8. Abnormality detection in the diseased subject 

To find the alteration of the functional brain network in ASD patients, 

we made use of the ABIDE II dataset and compared the networks 

embedded in the 1/ℍ2 model by the following process (Figure 5).  

After embedding the individual networks according to the 

geometry of 1/ℍ2 in the ROI scale, we computed the probability of 
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connection ὴ  determined by Eq. (8) between each ROIs for subjects 

in diseased and control group subjects. We set the distribution of distance 

for each edge by the control group dataset. For each of ASD group 

subject, we selected edges that have distance which is lower or higher 

than the aforementioned distribution of distances.  
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2.9. Assessing variability of analysis 

To assess the reliability and reproducibility of the network, we performed 

the following two analyses. Firstly, to investigate the reproducibility of 

the embedding process, we chose one sample case of the adjacency 

matrix and performed Mercator multiple times. Secondly, to investigate 

the time dependency, we divided the 15-minute time-series of fMRI into 

4 and 30 segments into 3.75 minutes and 30 seconds for each segment, 

respectively. And we composed the adjacency matrix for each segment 

independently and embedded each of the resulted networks into the 

1/ℍ2 geometry.  

Note that, in the 1/ℍ2 model, as evident from Eq. (8), the 

connection probability is a single-variable function of distance, which is 

calculated by the relative position on the hyperbolic disk. It follows that 

the resulting disk has two types of symmetry that preserve distance: the 

rotation symmetry and the angle inversion symmetry. In other words, the 

rotated or angularly inversed discs from a disc are essentially the same 

as the original one. Consequently, we need not consider the absolute 

position of nodes: we only have to consider the distance. 

We computed the hyperbolic distance between ROIs over 

multiple performances of embedding and computed the coefficient of 

variance for distance analog, which is correlated with connection 
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probability, 

 
Ὀ = Ὡ  (11) 

 

which appears denominator of the right term at Eq. (8) and is a simple 

increasing function ὼ , for each pair of nodes.  

For the absence of the null hypothesis, it was not possible to 

perform hypothesis testing for comparison between multiple 

performances of embedding. 
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3. Results 

 

3.1. Global characteristics of the network 

fMRI data from one hundred and eighty subjects from the human 

connectome project were examined. In the ROI-wise analysis, the 

distribution of Pearson’s correlation coefficient for all edges in the whole 

subjects is shown in (Figure 6(A)). A positive correlation between nodes 

was dominant in healthy adults, while a small portion of edges showed a 

negative correlation.  

A detailed square-matrix view of correlation coefficients from a 

representative case is shown in (Figure 6(B)). Horizontal and vertical 

lines with low correlation value (shown in thick green line) are the edges 

from and into bilateral subcortical nuclei. That is, bilateral subcortical 

nuclei showed a lower correlation of signal between the rest of the brain. 

Other subjects also showed a similar pattern of correlation. 
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3.1.1. The degree distribution 

After binarizing the matrices, the distributions of degree and their tail 

components were investigated via probability distribution functions 

(PDFs) and complementary cumulative distribution functions (CCDFs). 

The PDFs, CCDFs, and estimation of the tail components from five 

representative cases are shown in (Figure 7). All of the PDFs show a 

relatively straightly-dropping line in the log-log scaled axis, while the 

CCDF function drops concavely as the degree increases. 
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3.1.2. Determining the threshold value of network 

For the determination of threshold network, we performed thresholding 

for multiple threshold values for the correlation coefficient matrices to 

investigate degree distribution and the size of largest connected 

component of resulted binary network. 

The degree distribution and the average size of largest connected 

component of ABIDE II dataset used for determination of threshold 

value is shown in (Figure 8). In a threshold value of 0.35, in which more 

edges are preserved, the degree distribution forms a peak in the middle-

low degree. While, in a higher threshold value of 0.45, 4.8% of nodes, 

average of 13 nodes per network is dropped out from the largest 

component, which is considered as inappropriate for a whole-brain 

analysis. Therefore, the threshold value was determined as 0.40 for 

ABIDE dataset. For the HCP dataset, the threshold values were 0.64, 

0.36 for ROI-and voxel-wise network with the same process, 

respectively.  
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3.2. Graph embedding into spaces 

We considered the most natural ways to construct manifolds by 

minimizing the loss function by comparing the average distortion (Davg) 

and mean average precision (mAP) of embedding. Ten representative 

data in the HCP dataset and ABIDE dataset were used for embedding. 

The target manifolds were hyperbolic, spherical, and Euclidean 

manifolds of 10 and 2 dimensions, plus the single dimension of a 

spherical manifold  (i.e., circle). For the HCP dataset, embedding to 

the 2-dimensional hyperbolic space of ℍ  had significantly higher 

mean average precision (MAP) than embedding to 2 and . For 

ABIDE II dataset, embedding to 10-dimensional hyperbolic space of 

ℍ  had significantly lower distortion than embedding to 10. For both 

datasets, embedding to the 2-dimensional hyperbolic space of ℍ  had 

significantly lower distortion than embedding to 2 and . (Table 1 and 

2, Figure 9) 
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Embedded space 

Fidelity measures (Mean±SD) 

 Davg mAP 
 10-dimension spaces   
  10 0.2434 ± 0.0286  0.7743 ± 0.1016 
  ℍ  0.2181 ± 0.0351 0.8036 ± 0.1006 
   0.2278 ± 0.0317 0.7675 ± 0.0874 
 2- and 1-dimension spaces  
   0.2669 ± 0.0752 0.4854 ± 0.0740 
  ℍ  0.1993 ± 0.0234 0.6404 ± 0.0175 
   0.2798 ± 0.0607 0.4834 ± 0.0803 
   0.3443 ± 0.0581 0.3575 ± 0.0482 

Table 1. Fidelity measures of embedding into various manifolds for HCP dataset. 
Ten representative cases were used for embedding. For HCP dataset, embedding 
to the 2-dimensional hyperbolic space of ℍ  had significantly higher mean 
average precision (mAP) than embedding to 2 and . For both of datasets, 
embedding to the 2-dimensional hyperbolic space of ℍ  had significantly lower 
distortion than embedding to 2 and . 

 

 
Embedded space 

Fidelity measures (Mean±SD) 

 Davg mAP 
 10-dimension spaces   
  10 0.2253 ± 0.0166 0.8674 ± 0.0372 
  ℍ  0.1295 ± 0.0468 0.9030 ± 0.0318 
   0.1672 ± 0.0230 0.8316 ± 0.0237 
 2- and 1-dimension spaces  
   0.1487 ± 0.0511 0.7191 ± 0.1202 
  ℍ  0.0744 ± 0.0256 0.7081 ± 0.0674 
   0.1726 ± 0.0316 0.6925 ± 0.1020 
   0.2036 ± 0.0474 0.5793 ± 0.1477 

Table 2. Fidelity measures of embedding into various manifolds for ABIDE II 
dataset. For ABIDE II dataset, embedding to 10-dimensional hyperbolic space of 
ℍ  had significantly lower distortion than embedding to 10. For both of 
datasets, embedding to the 2-dimensional hyperbolic space of ℍ  had 
significantly lower distortion than embedding to 2 and . 
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3.3. 1/ℍ2 model analysis 

In the ROI-wise brain network, the largest component was embedded 

onto a hyperbolic plane, and the result of the embedding of the 

representative case is shown in (Figure 10). Color denotes the anatomic 

lobe, while the lobes within the right and left cerebral hemisphere are 

marked with circle and triangular markers, respectively. Edges in the 

original network are denoted with lines. 

In both ROI and voxelwise analysis, no particular nodes with a 

low radius (i.e., centered node) are found. In ROI-wise analysis, ROIs 

from the insula, subcortical, and cerebellum had single or two zones of 

narrow distribution of angular dimensions. ROIs from more large 

anatomic lobes (frontal, temporal, parietal) were located with relatively 

broader angular distributions. And ROIs from the same lobes of 

contralateral sides (for example, right and left frontal lobes) had similar 

distributions of angles. 

Validation of embedding was performed via plotting the inferred 

probability of connection and connection density of the original network, 

by rescaled distance … in (Figure 11 (A)). The angular density of the 

embedded node was also plotted (Figure 11 (B)).  

The following geometric parameters from adjacency matrices  

were inferred: including clustering coefficient β, average degree analog 
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μ, the radius of disks – that is, the maximal radius of embedded points 

for ℍ2 disks – for 1/ℍ2 disks and the minimum of the hidden degree, 

κ , which is always found at the outermost embedded node. In the 

embedding shown in Figure 11, the inferred parameters of the network 

were  = 1.97 , ‘ = 4.38 × 10 , Ὑℍ = 18.05 , ‖ = 3.84 ×

10 , respectively. 

The result of the same analysis in the scope of the voxel is 

demonstrated in (Figure 12), and its validation result is shown in (Figure 

13). The connection frequency of real networks in the high distance is 

deviated slightly higher compared to inferred probability. 

First, similar to the ROI-wise finding, no angular separation 

between the right and left hemispheres was found. Also, bilateral frontal 

and temporal lobes show rather wide angular distribution, but 

inhomogeneous along angle and dominant parts of (bilateral) lobe 

overlap each other. Meanwhile, most of the voxels within both occipital 

lobes, subcortical regions, and both insula were distributed in a single or 

a few narrow angular ranges of coordinates. However, a small portion of 

nodes was outside of the similarity range of anatomic lobes.  

On the other hand, while some of the cerebellar voxels were 

clustered narrowly, a large number of cerebellar nodes were 

disseminated in whole similarity coordinates. Finally, some voxels in the 
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frontal, temporal lobes, and insula form a rod-like distribution along the 

radial direction. In other words, the voxels aggregated are almost the 

same in similarity dimension, only differing in their popularity 

dimension, which indicates that they are connected densely along with 

the aggregates.  

Other embedded results of four representative cases are shown 

in ROI-wise (Figure 14) and voxel-wise (Figure 15) scales. 

For each of the 274 ROIs, hyperbolic plane visualization of 

voxels consisting each ROI is performed. We plotted some representative 

results in (Figure 16). 
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Figure 11. The validation of embedding for functional brain network (ROI-wise) 
in Figure 10. Validation was performed (A) via plotting the inferred probability 
of connection and connection density of the original network, by rescaled 
distance Ⱶ. (B) Angular density of the embedded node was also plotted. The 
computation process was performed by Mercator (García-Pérez et al., 2019). 
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Figure 13. Validation of embedding for functional brain network (voxelwise) in 
Figure 9. Validation was performed in the same way as plotted in Figure 8. The 
computation process was performed by Mercator (García-Pérez et al., 2019). 
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Then, we plotted each of the ICA components in the voxel-wise 

networks (Figure 17). The visual network (VN) tended to have narrow 

angular distribution in certain similarity distribution. To remove the 

arbitrariness of constant angle in the embedded disks, we adjusted the 

absolute angular position of the embedded disks in order for the mean 

angle of VN to have a value of 0. When the angles were adjusted, 

networks in each of the subjects had a similar pattern of distribution 

along with different subjects. However, the salience network (SN) 

showed a rather broad and nonspecific distribution (Figure 18). 
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3.4. Quality of the embedding 

We compared the absolute value of original correlation coefficients used 

for thresholding with connection probability between the edges. We 

computed the norm of the difference between the two matrices, as we 

suggested in section 2.8. The connection probability computed by 

hyperbolic distance showed a similar pattern with the absolute value of 

the correlation coefficient (Figure 19). The measure for quality of 

embedding ranged roughly from 0.15 to 0.20, which did not show a 

significant difference between two ABIDE II dataset groups (Figure 20). 
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3.5. Alteration of the network in the diseased subject 

We compared the ABIDE II control group dataset between individual 

ASD subjects and selected the edges with lower/higher connection 

probability on the 1/ℍ2 model or correlation coefficient than the control 

group. (p<0.05) Multiple comparison adjustment was not performed. 

Among the ASD group subjects, which showed variable pattern of 

alteration, a subject of autism showed a longer hyperbolic distance of 

edges connecting frontoparietal cortices and bilateral basal ganglia, 

which represents the cortico-striatal pathway, compared to the normal 

group ( (A)). This tendency was not prominent when the 

analysis was conducted in terms of the correlation coefficient of edges.  

A subject with Asperger’s syndrome showed a shorter 

hyperbolic distance of edges which connect bilateral posterior superior 

temporal sulcus (pSTS) and basal ganglia, and the correlation study 

showed similar pattern (Figure 21(B)).  
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Figure 21. Alteration of the network in an autism subject. The 274 ROIs were 
reduced to 51 brain subregions for the sake of clarity. The blue and red lines represent 
the longer hyperbolic distance/lower correlation, shorter hyperbolic distance/higher 
correlation, respectively. (A) One subject with autism showed a longer hyperbolic 
distance of edges connecting frontoparietal cortices and bilateral basal ganglia, which 
represents the cortico-striatal pathway, compared to the normal group. The pattern 
was not clear in the means of the correlation coefficients. (B) Another subject with 
Asperger’s syndrome showed a shorter hyperbolic distance of edges which connect 
bilateral posterior superior temporal sulcus (pSTS) and basal ganglia. Correlation 
study showed a similar pattern.
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3.6. Variability of results 

3.6.1. Reproducibility of Mercator 

In terms of coherence of anatomic lobes, the 100 disks showed a very 

similar pattern, except for the arbitrary angle of rotation (θ +  α) and the 

inverse of angle (−θ). We computed the CV (coefficients of variance) 

for the exponential function of distance analog of each edge, and the 

matrix view of CV values are shown in the (Figure 22).  

Note that CV can be greater than 1, but the limit of the CV of 

1.0 is set due to clear visualization. From the matrix, we can address that 

the pairs of nodes with high CV (denoted as red points in the figure), 

which mean aberrant hyperbolic distances in many instances of 

embeddings are shown in the horizontal and vertical streak, which means 

that specific nodes are embedded in aberrant position in ℍ2 disk model, 

which results in the high variance of distance between every other node. 

To investigate which node has a high variance of position, we 

averaged the CV value of edges assigned to each node (Figure 23). The 

positions of vertices are from one sample result of embedding, and each 

node is colored according to the average of CV values of edges 

connected to it. From the figure, it is apparent that the vertices which are 

positioned in the center, which is equivalent to “popular nodes,” have 

relatively low arbitrariness of position in repeated embedding procedure. 

In contrast, peripherally positioned nodes, which means nodes with low 
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popularity, tended to have a highly variable position. From this result, we 

can address that performance of Mercator is relatively stable in the 

popular nodes with high degrees. 
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Figure 22. Matrix view of the coefficient of variance (CV) for distance analog for 
each edge. The horizontal and vertical axis indicates the indices of vertices embedded 
in the hyperbolic model, which is ordered by lobes. 
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Figure 23. Disk visualization of the average of CV values for distance analog of 
each node (Repetition of Mercator). The positions of vertices are from one sample 
result of embedding, and each node is colored according to the average of CV values 
of edges connected to it. 
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3.6.2. Time variance of results 

We segmented the 15-minute time series of fMRI into separate 4 and 30 

segments and repeated the same process for the network resulted from 

each time segment. While the results of the 4-segmented time series 

sustained the coherence of ROIs within anatomic lobes addressed in 

section 3.3., the results of the 30-segmented series showed lost most of 

the coherence and showed an aberrant result of embedding. 

As in the previous section, we computed the CV value for each 

edge. However, in this case, as the correlation coefficient between time 

series was different along with time segments, nodes composing the 

largest segment were different along with cases. Some of the nodes were 

present in only a limited number of segments.  

Nevertheless, we computed the CV values for each edge and 

visualized the CV values for each of the existent edges among repetition 

and averaged for each node, respectively, as in section 3.5.1. In the disk 

representation, for template disk, we selected results with maximum 

node embedded and only visualized the nodes existent on it (Figure 24). 

Note that the range of the color bar is different from that in 

(Figure 23). The values of the CV of distance analog were overall larger 

in the 30-segment time series. The tendency of high CV in the non-

popular node was shown only in the 30-segment series, but not 
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prominent as in the repeated embedding of the same network in section 

3.7.1. 
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Figure 24. Disk visualization of the average of CV values for distance analog of 
each node (time segmentation). (A) Four segments of 3.75 min, (B) 30 segments 
of 0.50 min of MRI time series. We selected results with the maximum node 
included for the template disk and only visualized the node existent on it.  
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4. Discussion 

 

There has been an increasing number of works in implementing fMRI in 

assessing the functional connectivity of the brain (Kashyap et al., 2019). 

Time-series correlation between brain regions is already a popular tool 

to compose a network (Barabasi et al., 2003; Grecius et al., 2003). 

However, not much study has done a geometric analysis of the functional 

brain network. To the best of our knowledge, the present study is the first 

to investigate the characteristics of the functional brain network on the 

basis of hyperbolic geometry. 

 

4.1. Composition of the network 

We applied the absolute value of the Pearson correlation coefficient, 

which regards two brain regions with anticorrelated time series as 

connected, as same as the correlation of the same strength. This is 

theoretically based on the observations that anticorrelation between 

specific brain regions has a role in organizing functional brain 

architectures (Kucyi et al., 2018; Keller et al., 2015; De Havas et al., 

2012).  

Then, we used the thresholded network to acquire an adjacency 
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matrix for each network. Because thresholding binarizes the edge by the 

all-or-none fashion, network measures find unstable across the threshold 

(Garrison et al., 2015), the threshold has to be chosen carefully. In this 

study, we decided to adopt the same threshold among patients in a single 

analysis for comparability. 

Note that we have to use only the one largest component in 

embedding the network into the models. The higher the threshold value 

is, the adjacency networks become less sparse, which is not enough to 

validate the assumption of maximum likelihood estimation for the 

embedding process. On the other way, the lesser the value is, the more 

nodes are dropped out from the largest component, which makes it 

difficult to establish clinical meaning for the embedding of the whole-

brain network. Therefore, the threshold value was determined by the 

trade-off between sparsity and generality of the network, which makes 

the network most sparse while maintaining most of the brain regions in 

its largest component. 

 

4.2. Scale-freeness of brain network 

If the degree distribution of a network is regularly-varying, we call a 

distribution power-law. Rather than a pure power law, this constitutes a 

more general and realistic class of distributions. This class of distribution 
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has drawn the maximum domain of attraction, and a large amount of 

studies has been performed to unveil the issue of “straight line on the 

log-log scale” in real-world networks (Voitalov et al., 2019).  

We plotted the degree distribution in a given degree sequence of 

the network. Our results showed that the degree distribution of binarized 

brain networks shows a tendency of a straight downward line in the log-

log scale graph rather than a concave or convex line, which reveals that 

these networks have power-law degree sequences.  

The scale-freeness of the network indicates that most nodes have 

a small number of connections, while some nodes have a large number 

of functional connections with other nodes (Barabasi et al., 2003). This 

indicates the topological properties of the functional brain network of the 

brain, such as small-worldness and hierarchial organization of nodes 

(Sporns et al., 2004), as its structural counterpart (Faskowitz et al., 2018).  

The scale-freeness itself was investigated in previous works in a 

similar method more than a decade ago (Eguiluz et al., 2005; Sporns et 

al., 2004). Now with the advance of network science, evidence suggests 

that these properties, like heterogeneous degree distribution and 

clustering, are shared by the network with underlying hyperbolic 

geometry (Krioukov et al., 2010). As scale-freeness serve as the 

necessary condition for hyperbolic geometry (Muscoloni et al., 2017), 



 

 73 

we needed to embed these networks in various shapes of product 

manifolds and compare fidelity measures to assure the underlying 

geometries of networks. 

We have to note that it is impossible to perform hypothesis 

testing for scale-freeness. Therefore, we could not compute statistical 

weights (such as p-values) to the hypothesis that an observed network 

follows the power-law or not.  

 

4.3. The underlying geometry of brain network 

Many real-world networks are embedded in a physical space that 

corresponds to their structure and organization (Chami et al., 2020; 

Smith et al., 2019). In this study, the architecture of the functional brain 

network, of which structural counterpart lies in 3-D Euclidean space, was 

investigated by computing the distortion of the embedded network in 

manifolds. 

Spaces of hyperbolic, Euclidean and spherical networks were 

used to embeddings. Between the different total dimensions of spaces, 

the spaces with higher dimensions showed better embedding results, 

compared with spaces with lower dimension. Between the same 

dimensions, our result showed the lower average distortion values and a 

tendency of higher mean average precision of 2-dimensional hyperbolic 
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spaces compared with the Euclidean spaces.  

Other prior research about embedding into non-Euclidean 

spaces reports the hyperbolic space as the matching geometry to embed 

tree structures, employing the least distortion (Gu et al., 2019; De Sa et 

al., 2018). As discussed in the introduction, this follows from the nature 

of the hyperbolic space that the geodesic passes near the origin, as the 

shortest path in the tree passes their common parent node. 

This indicates the hierarchical nature of the functional brain 

network, as the previous literature indicates (Meunier et al., 2009; Power 

et al., 2011), however, apart from the modularity method from 

partitioning by subgraphs. 

While the values are not optimal compared with toy examples 

conducted with the ideal tree or cyclic networks in the literature, the 

result decently rationalizes the embedding of the network to the 

hyperbolic space. Results from other studies with embedding to multiple 

mixed spaces also showed only a small split of fidelity measures between 

spaces (Gu et al., 2019; Skopek et al., 2020). 

 As discussed earlier, this underlying geometry of brain 

networks reveals the tree-like nature of the network, which was 

repeatedly proposed by recent works in humans and other animals 

(Telesford et al., 2011; Bardella et al., 2016). The concrete explanation 
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of this hyperbolic geometry is that the graphs that represent the brain 

networks exhibit hierarchical and tree-like organization (Alvarez-Melis 

et al., 2020; Cruceru et al., 2020).  

 

4.4. Hyperbolic plane representation 

Since it has been known that many proportions of the real-world network 

have hyperbolic properties, many algorithms have been developed to 

figure out what hyperbolic model gives the most appropriate estimates 

to generate the given network (Keller-Ressel et al., 2020; Muscoloni et 

al., 2018; Papadopoulos et al., 2014; Suzuki et al., 2019). 

The present study makes use of Mercator (García-Pérez et al., 

2019), using Laplace eigenmaps (LE) for reduction of dimension and 

maximum likelihood estimation (MLE) techniques for a most likely 

model representing the original network. By this means, the hyperbolic 

plane with the conformal structural properties with the real-world 

network is explored (Papadopoulos et al., 2012; Papadopoulos et al., 

2015a; Papadopoulos et al., 2015b). 

The geometric interpretation of the popularity-similarity model 

is that the trade-off between popularity and similarity is represented by 

the hyperbolic distance between the nodes (Krioukov et al., 2010; 

Papadopoulos et al., 2012). Short hyperbolic distance correlates with a 
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high probability of connection, and this indicates that this process of 

embedding helps us to understand the topology of the network and 

dynamics for the growth of the system (Alanis-Lobato et al., 2016). 

The radial representation of the embedded nodes of the network 

represent is hubness or popularity. That is, nodes with a higher degree 

are located closer to the center of the disk. From this perspective, we can 

point out that in all of our embeddings, centers of embedded disks were 

vacant in both ROI- and voxelwise embedding. 

Previous similar studies performed with other kinds of real 

networks showed variable patterns. The network of world trade atlas in 

2013 (García-Pérez et al., 2016) showed two global hubs remarkably 

close to the center of the disk, named “USA” and “China”. These two 

nodes function as the global hub, which has remarkably high connection 

probability with any other nodes globally from the network. On the other 

hand, the embedded map of internet connection in (Boguñá et al., 2010) 

did not show heavily centered nodes, but several locally centered nodes 

among the cluster of nodes were seen; which are ‘middle parent nodes’ 

analog of a tree structure; to say, a semi-global hub. Finally, the map of 

the structural brain network (Allard et al., 2020) showed a relatively 

uniform distribution of radial coordinate without noticeably centered 

node.   
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Our results are most similar to the third one, which mapped the 

structural counterpart of the brain. Intuitively, it is indicated that there is 

no definite global hub connected with the vast of the substructures of the 

network. This might result from the fact that both structural and 

functional brain network is based on the real neuronal network of the 

brain, of which degree is realistically limited; that is, the maximum 

number of functional connection a brain region can have is limited by 

spatial or biological constraints. This is different from the real network 

of the former two, which is virtual (i.e., internet connection), or the hub 

node has a larger physical volume compared to other nodes, to say, in the 

international trade. However, the fact that an embedded disk does have 

radial variation means that the hierarchy does exist in the functional brain 

network. 

From the local perspective, the first thing we should note is that 

nodes from the same anatomic lobe tend to cluster in a similar section of 

angular coordinate. Nodes from relatively small anatomic regions such 

as the insula, subcortical regions, or occipital lobes showed relatively 

strong concentration in narrow sections of angular coordinates, while 

relatively larger lobes such as the frontal, parietal lobes show broader 

distribution, which would mean less similar, but rather broad functional 

coverage of the lobe. This is intuitive from the fact that these lobes are 

of a more associative (thus less specific) function. We could address a 
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certain degree of neuroanatomical relevance, which is reported by a vast 

of studies of functional brain networks (Power et al., 2011). However, 

this gives a new perspective from a geometric viewpoint. 

Another notable feature is that nodes from two contralateral 

lobes, which are also denoted as the homotopic area, tend to cluster in 

similar angular coordinates. This is markedly different from the map of 

the structural brain network (Allard et al., 2020), in which the different 

hemispheres showed separation of angular coordinates. Strong 

homotopic connectivity in the functional brain network. As homotopic 

connection in the brain is reported by previous literature (Mancuso et al., 

2011; Wei et al., 2017), our results suggest the stronger homotopic 

connection in functional connectivity, more than indicated by structural 

connection.  

 

4.4.1. Voxelwise approach 

Voxelwise analysis of the brain is crucial to investigate functional 

connectomics, in the sense that it neither requires the supervision of the 

investigator nor depends on specific anatomic landmarks (Rajtmajer et 

al., 2015). The choice of isotropic voxel size of 6 × 6 × 6 mm3 is the 

smallest size while maintaining the computation time for embedding to 

a realistic scope. 
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Voxelwise results showed a much raw and detailed view of the 

functional clustering of the network. The widely distributed and 

overlapping similarity dimension of bilateral frontal and parietal lobes of 

the brain indicates its wide-spread associative functions, and dense 

functional connectivity, or functional coherence between the two lobes. 

This overlapping is less prominent but also present in an ROI-wise 

approach of ours and similar ROI-wise popularity-similarity embedding 

of structural brain network analysis (Allard et al., 2020). In a 

neurophysiologic sense, it is a universally known fact that frontal and 

parietal cortices are functionally associated and critical for coordinate 

behavior and cognition (Marek et al., 2018). 

Another finding was the disseminated scattering of non-popular 

cerebellar voxels in an angularly homogeneous manner. This is also 

evident from the low angular coherence of voxels within cerebellar ROI, 

which reflects the functional dissimilarity within cerebellar regions at the 

sub-ROI level. This result is congruent with the prior research addressing 

functional heterogeneity of the cerebellum, depending on the 

parcellation of the brain (Yeo et al., 2011; Ren et al., 2019).  

The other feature that worth noting is the multiple rod-like 

structures of radial directions. These groups of nodes are combined 

structure of nodes from single or multiple anatomic lobes. The nodes in 

each group are extremely close in terms of the similarity dimension, and 
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this results in the low distance on the hyperbolic plane. Therefore, these 

nodes are highly likely to be functionally connected with each other. 

Therefore, it could be assumed that these clusters of voxels form 

functional substructures, of which function is correlated closely within 

the group. These substructures could be anatomically re-arranged and 

compared between the individuals to establish standardized results in 

further studies. 

 

4.4.2. Compatibility with ICA  

The independent component analysis (ICA) of the brain has 

been established as one of the most reliable and efficient tools for 

analyzing the functional brain network (Beckmann et al., 2005; 

Damoiseaux et al., 2006). Here we aimed to assess the reliability and 

eligibility of our result by assessing the similarity of voxels within a 

network component acquired by ICA. Among the ICA-driven 

components, the visual network (VN) showed a highly similar intra-

component pattern. The other component also showed similar patterns of 

distribution among subjects, while the salience network (SN) showed a 

rather broad and nonspecific pattern. This might have resulted from the 

wide connection between other large-scale network components and 

complex functions (Menon et al., 2010; Peters et al., 2016). While ICA 

needs group-wise analysis of data to acquire consistent results, the 
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embedding of the network model can be conducted in an individual 

manner, which could be addressed as the advantage of the method. 

 

4.5. Alteration of the network in ASD subjects 

The autism spectrum disorder (ASD) is a group of neurodevelopmental 

disorders with deficits in communication and social interaction and 

repetitive, restrictive behaviors (Baio et al., 2014). Despite its 

heterogeneous and complex nature (Kleinhans et al., 2008), 

neuroscientific studies in the past few decades have accumulated 

sufficient data to make clear that ASD is a disorder of altered 

connectivity of neurons, rather than neural dysfunction of a specific 

region (Belmonte et al., 2004; Bullmore et al., 2012; Just et al., 2004; 

Maximo et al., 2014). 

We assessed the clinical applicability of our method by detecting 

abnormalities of the network in the ASD subject compared with the 

control group. While most of the previous analysis was performed with 

the HCP dataset, we had to make use of the ABIDE II control dataset for 

comparison for the difference in image acquisition protocol. In order to 

secure the comparability along with the two groups of subjects, we 

proposed a measure for quality of embedding in terms of correlation 

coefficient and probability for connection, the latter of which is 
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computed from hyperbolic distances. While for most patients the two 

analysis showed a similar pattern, some results of the analysis showed 

more clinically significant results compared with correlation analysis. 

While the alteration of network among subjects were variable, 

some subjects showed results congruent with clinical context. Salience 

network (SN) is pointed as the key altered network in the 

pathophysiology of autism (Uddin et al., 2013; Green et al., 2016), and 

one of our subjects showed a consistent result with the previous literature 

by means of altered connectivity of cortico-striatal pathway. 

Asperger’s syndrome, which is a high-functioning form of ASD, 

is represented by high intelligence and better than average verbal skills, 

but impaired nonverbal communication and social interaction, with 

restrictive and repetitive behaviors as in classic autistic patient (Wing et 

al., 1981; Frith et al., 1992). Though our study has presented the case of 

a single subject with Asperger’s syndrome, and the results showed an 

altered connection pattern of edges connecting the bilateral posterior 

superior temporal gyrus (pSTS) and subcortical regions. The bilateral 

pSTS is known to be associated with social interactions (Isik et al., 2017; 

Materna et al., 2008), and some prior literature reports its relevance with 

ASD (Shih et al., 2011; von dem Hagen et al., 2011; Zilbovicius et al., 

2006). Our result of the alteration in pSTS is consistent with impairment 

of social interaction in high-functioning autism patients, while the 



 

 83 

cortico-striatal pathway was relatively intact. 

The limitation of this study includes reduced statistical 

significance due to not adjusting the multiple comparison. 

 

4.6. Variability and reproducibility of methods 

So far, we have proposed a brand-new methodology of investigating the 

features of the functional brain network by embedding it into the 

hyperbolic plane. For this method to be applicable for further studies of 

other kinds of brain networks in the future, we need to verify the 

reproducibility of generating the hyperbolic disk, i.e., by what degree the 

procedure generates the same hyperbolic disk with the same image, and 

how the result varies depending on the image acquisition time.  

Investigating the reproducibility of Mercator itself is essential 

because the procedure of embedding has a certain degree of randomness 

in the process of inserting the degree 1 nodes next to their neighbors 

(García-Pérez et al., 2015). Because the hyperbolic distance is crucial in 

determining the connection probability between two nodes, we utilized 

it to investigate the reproducibility of the network. For the popular nodes 

in the inner circle of the embedded disk, most of the nodes had a very 

similar distribution of distance, but the variation increased if the nodes 

were non-popular, i.e., the nodes are positioned in the outer region of the 
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disk.  

This arbitrariness is inevitable due to the intrinsic randomness 

of the procedure in embedding the degree 1 nodes. The position of the 

node itself would not have been crucial in the embedding process 

because the position of the non-popular node is valid in terms of 

maximizing the likelihood, only if it has an appropriate degree between 

its only neighbor. In other words, the non-popular nodes have more 

degrees of freedom because they have only one constraint. However, we 

need caution when we interpret the substructure of the network in terms 

of the similarity dimension. 

Investigating the time variability of a network is also crucial 

because the fMRI series have a certain degree of intrinsic temporal 

variance and are dynamic within the time-series (Chang et al., 2010). So, 

we need to know how different the different sub-series of fMRI are and 

by what length the sub-series are sufficiently long to yield a statistically 

reliable result. Our result suggests that the 4-divided sub-series of 3.75 

minutes varies between themselves but does not significantly change the 

pattern of node embedding. However, 30-divided sub-series of 30 

seconds have an aberrant result, losing the lobe-coherence pattern of the 

whole series. This might suggest that the time span of 30 seconds is not 

long enough to gain statistically stable results for correlation studies 

between time series. 
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4.7. Further applications 

Our study has numerous further applications. First, the substructure of 

the network investigated by embedding procedure could be generalized 

among the individual subjects by finding common features within the 

data. It is not simple to get a consistent result because the process has 

intrinsic arbitrariness in assigning the coordinates. If the result proves to 

be reliable in discriminating different substructures of the functional 

brain network, such as ICA, the results could be utilized in composing 

the new subsets of functional brain networks and investigating the 

alteration of subnetworks in various neurologic disease entities. 

Second, the clinical application of the method with the diseased 

subjects could be further performed. We could adapt the method into a 

vast amount of public dataset for neuropsychiatric diseases, such as the 

ADHD-200 dataset for attention deficit hyperactivity disorder (ADHD) 

patients (Milham et al., 2012) or the SchizConnect dataset for 

schizophrenia patients (Wang et al., 2016) could be utilized to detect 

anomalies in an individual patient in the broader disease entities. 

Furthermore, in ASD patients, the larger number of diseased and control 

group subjects could be utilized to get a more consistent and statistically 

significant result of the anomaly of the network. 
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5. Conclusion  

 

In this work, we aimed to investigate the geometric structure of the 

functional brain network, embed the network into hyperbolic space, and 

find the anomaly of the network in diseased subjects. It was found that 

the degree distribution of the network is scale-free. Furthermore, we 

embedded the network into various product manifolds and acquired 

better fidelity measures in hyperbolic spaces compared with Euclidean 

ones, which reflects that the brain network best fits the tree-like structure. 

To find out the structure of the network in the hyperbolic space, 

we embedded the network in the 2-dimensional space of the popularity-

similarity model. The result demonstrated the absence of a global hub, 

homotopic functional coherence, and a certain degree of anatomical 

relevance of functional network. The two differently scaled networks 

showed a similar pattern of popularity but did not necessarily correspond 

in terms of geometric similarity. When compared to ICA-driven results, 

the 1/ℍ2 embedding of the network showed a compatible pattern with 

the component of the brain network determined otherwise. 

Among the results of application to the diseased subjects, our 

result showed anomalies of the network in the corticostriatal pathway 

and pathways involving the posterior superior temporal sulcus (pSTS), 
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which is congruent with clinical context. This shows the eligibility for 

clinical application of the method for detecting abnormality in the brain 

networks of diseased subjects. 

The procedure is reproducible along with repeated instances of 

embedding, and when divided into multiple sub-series by time, a similar 

embedding result was granted by a certain length of time span. These 

methods grant us a new method for detecting network alteration in 

functional brain networks and understanding in analyzing the functional 

brain network with a geometric perspective. 
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분자의학 및 바이오제약학과 

서울대학교 대학원 

 
 

대부분의 실세계 네트워크에서 네트워크의 구성에 있

어서 기하학이 중요한 역할을 하며, 최근 연구에서 구조적 뇌 

네트워크는 쌍곡기하적 특성을 가지고 있음이 밝혀졌다. 뇌의 

구조와 기능은 밀접한 연관을 지니고 있으므로, 기능적 뇌 네

트워크 역시 쌍곡기하적 특성을 지니고 있음을 추정할 수 있

다. 이번 연구에서, 우리는 휴식기 뇌 자기공명영상(rs-fMRI)을 

통해 추출한 기능적 뇌 커넥톰(connectome)을 분석하여 이 가

설을 증명하고자 하였으며, 이를 쌍곡공간에 임베드(embed)함

으로써 기능적 뇌 네트워크의 특성을 새로이 조사하고자 하였

다. 

네트워크의 꼭지점은 274개의 미리 정의된 관심영역

(ROI) 혹은 6mm 크기의 복셀(voxel)의 두 가지 스케일로 정의
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되었으며, 꼭지점 사이의 연결성은 자기공명 영상에서 각 영역

의 시간에 따른 BOLD 신호의 상관관계를 측정하고 일정 문턱

값(threshold)을 적용함으로서 결정되었다. 

먼저 쌍곡기하 네트워크의 특징인 스케일-프리(scale-

free)를 만족함을 확인하기 위해, 네트워크의 차수(degree) 분포

의 급수성(power-law)을 평가하였다. 차수의 확률분포곡선은 로

그-로그 스케일의 그래프에서 우하향하는 직선 모양의 분포를 

보였으며, 이는 즉 차수 분포가 차수의 음의 급수함수에 의해 

나타내어짐을 의미한다. 

이어서 기능적 뇌 네트워크에 가장 적합한 기저 기하

를 확인하기 위하여, 그래프를 유클리드, 쌍곡, 구면적 틍성을 

가진 다양체들에 임베드하여 임베딩의 충실성 척도(fidelity 

measure)들을 비교하였다. 임베드 대상이 된 적 다양체들 중, 

10차원 및 2차원 쌍곡공간의 평균 뒤틀림(distortion)이 동일 차

원의 유클리드 다양체와 비교하여 더 낮았다. 

이어, 네트워크를 구체화 및 시각화하고 그 특징을 확

인하기 위하여, 네트워크를 이차원의 쌍곡 원판에 1/ℍ2 기하

학적 모델에 따라 임베드하였다. 이 이차원의 극좌표 형태의 

모델에서 반경 및 각 차원의 좌표는 각각 꼭지점의 연결 인기

도 및 유사도를 나타낸다. ROI 수준의 분석에서는 특별히 높은 
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인기도를 갖는 영역은 관찰되지 않아 임베드된 원판의 중심부

에 빈 공간으로 나타났다. 한편 같은 해부학적 엽(lobe)에 속한 

영역들은 비슷한 각도 영역 내에 밀집되었으며, 반대측 동일 

엽에 속한 영역들 역시 그 각좌표의 분포가 구분되지 않았다. 

이는 기능적 뇌 네트워크의 해부학적 연관성과 반대측 동일 

엽 간의 기능적 연관성을 나타내는 것으로 볼 수 있다. 

또한, 복셀 수준의 분석에서는 소뇌에 속한 복셀들 중 

다수가 넓은 각좌표 영역에 흩뿌려진 현상이 나타났으며, 이는 

개개 복셀의 기능적 이질성을 시사한다. 또한, 전 영역에 걸쳐 

매우 유사한 각좌표를 가진 방사형의 막대 모양의 점의 집합

이 관찰되었으며, 높은 기능적 유사성을 가진 복셀들로 볼 수 

있다. 복셀 수준의 네트워크에서 뇌의 독립성분 분석(ICA) 의 

결과로 나온 성분 네트워크들을 플로팅한 결과, 각 네트워크 

성분이 높은 밀집도를 보여 두 방법론 간 결과의 유사성을 확

인할 수 있었다. 

자폐스펙트럼장애의 ABIDE II 오픈 데이터셋을 이용하

여 1/ℍ2 모델에 근거하여, 대조군 환자 그룹과 질병군 환자 

개인의 네트워크를 비교하는 분석을 시행한 결과, 질병군에서 

다양한 패턴을 보였으나, 그 중 자폐증 진단을 받은 환자에서 

피질-선조체 경로의 이상이, 아스퍼거증후군 진단을 받은 환자
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에서 후위관자고랑 (posterior superior temporal sulcus) 을 포함하

는 경로의 이상을 발견할 수 있었다. 

분석의 재현성을 확인하기 위하여 같은 네트워크를 대

상으로 임베딩 과정을 반복 시행하였을 때, 네트워크 말단의 

일부 꼭지점을 제외하면 높은 재현성을 보였다. 영상의 시계열

(time series) 내 일관성을 확인하기 위하여 영상을 시간 구간에 

따라 분리하여 분석하였을 때, 4구간으로 나눈 시계열 영상에

서는 유사한 결과를 얻었으나 30초 길이의 30구간으로 나뉘었

을 때는 일관적인 결과가 관찰되지 않았다. 

이 연구는 뇌 기능적 네트워크에 대한 분석 중 최초로 

기하학적 관점에서 진행된 것이며, 이러한 새로운 관점 및 질

병군 대상에서 뇌 네트워크의 이상을 찾기 위한 새로운 방법

론을 제시한다는 의의가 있다. 

 

 

기능적 뇌 네트워크, 스케일-프리 네트워크, 쌍곡기

하, 네트워크 임베딩, 자폐스펙트럼장애, 1/ℍ2 모델

 

 
 


	1. Introduction
	1.1. Human brain networks
	1.1.1. Geometry of human brain networks

	1.2. Scale-free network
	1.2.1. Definition of a scale-free network

	1.3. Embedding of the network in hyperbolic space
	1.3.1. Hyperbolic spaces and Poincaré disk
	1.3.2. Geometric model of 𝕊1/ℍ2

	1.4. The aim of the present study

	2. Methods
	2.1. Subjects and image acquisition
	2.1.1. Human connectome project (HCP) dataset
	2.1.2. Autism Brain Imaging Data Exchange II (ABIDE II) dataset

	2.2. Preprocessing for resting-state fMRI
	2.3. Resting-state networks and functional connectivity analysis
	2.3.1. Analyzing degree distribution

	2.4. Assessing underlying geometry
	2.4.1. The three component spaces
	2.4.2. Embedding into spaces 

	2.5. Embedding of the network in the 𝕊1/ℍ2 model
	2.6. Comparison with ICA-driven method
	2.7. Assessing the quality of embedding
	2.8. Abnormality detection in the diseased subject
	2.9. Assessing variability of analysis

	3. Results
	3.1. Global characteristics of the network
	3.1.1. The degree distribution
	3.1.2. Determining the threshold value of network

	3.2. Graph embedding into spaces
	3.3. 𝕊1/ℍ2 model analysis
	3.4. Quality of the embedding
	3.5. Alteration of the network in the diseased subject
	3.6. Variability of results
	3.6.1. Reproducibility of Mercator
	3.6.2. Time variance of results


	4. Discussion
	4.1. Composition of the network
	4.2. Scale-freeness of brain network
	4.3. The underlying geometry of brain network
	4.4. Hyperbolic plane representation
	4.4.1. Voxelwise approach
	4.4.2. Compatibility with ICA

	4.5. Alteration of the network in ASD subjects
	4.6. Variability and reproducibility of methods
	4.7. Further applications

	5. Conclusion
	References
	국문 초록


<startpage>15
1. Introduction 1
 1.1. Human brain networks 1
  1.1.1. Geometry of human brain networks 2
 1.2. Scale-free network 3
  1.2.1. Definition of a scale-free network 4
 1.3. Embedding of the network in hyperbolic space 5
  1.3.1. Hyperbolic spaces and Poincaré disk 5
  1.3.2. Geometric model of 𝕊1/ℍ2 9
 1.4. The aim of the present study 10
2. Methods 12
 2.1. Subjects and image acquisition 12
  2.1.1. Human connectome project (HCP) dataset 12
  2.1.2. Autism Brain Imaging Data Exchange II (ABIDE II) dataset 12
 2.2. Preprocessing for resting-state fMRI 15
 2.3. Resting-state networks and functional connectivity analysis 16
  2.3.1. Analyzing degree distribution 18
 2.4. Assessing underlying geometry 18
  2.4.1. The three component spaces 18
  2.4.2. Embedding into spaces  20
 2.5. Embedding of the network in the 𝕊1/ℍ2 model 22
 2.6. Comparison with ICA-driven method 23
 2.7. Assessing the quality of embedding 23
 2.8. Abnormality detection in the diseased subject 24
 2.9. Assessing variability of analysis 27
3. Results 29
 3.1. Global characteristics of the network 29
  3.1.1. The degree distribution 31
  3.1.2. Determining the threshold value of network 34
 3.2. Graph embedding into spaces 36
 3.3. 𝕊1/ℍ2 model analysis 39
 3.4. Quality of the embedding 58
 3.5. Alteration of the network in the diseased subject 61
 3.6. Variability of results 63
  3.6.1. Reproducibility of Mercator 63
  3.6.2. Time variance of results 67
4. Discussion 70
 4.1. Composition of the network 70
 4.2. Scale-freeness of brain network 71
 4.3. The underlying geometry of brain network 73
 4.4. Hyperbolic plane representation 75
  4.4.1. Voxelwise approach 78
  4.4.2. Compatibility with ICA 80
 4.5. Alteration of the network in ASD subjects 81
 4.6. Variability and reproducibility of methods 83
 4.7. Further applications 85
5. Conclusion 87
References 89
국문 초록 106
</body>

