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ABSTRACT

Generative Adversarial Network
based Quantitative Cone Beam CT

for Bone Mineral Density

Tae-Hoon Yong

Department of Applied Bioengineering
Graduate School of Convergence Science and
Technology

Seoul National University

The purpose of this study was to directly and quantitatively measure
BMD from Cone-beam CT (CBCT) images by enhancing the linearity and
uniformity of the bone intensities based on a hybrid deep-learning model
(QCBCT-NET) of combining the generative adversarial network (Cycle-GAN)
and U-Net, and to compare the bone images enhanced by the QCBCT-NET with

those by Cycle-GAN and U-Net. We used two phantoms of human skulls
i



encased in acrylic, one for the training and validation datasets, and the other for

the test dataset. We proposed the QCBCT-NET consisting of Cycle-GAN with

residual blocks and a multi-channel U-Net using paired training data of

quantitative CT (QCT) and CBCT images. The BMD images produced by

QCBCT-NET significantly outperformed the images produced by the Cycle-

GAN or the U-Net in mean absolute difference (MAD), peak signal to noise

ratio (PSNR), normalized cross-correlation (NCC), structural similarity (SSIM),

and linearity when compared to the original QCT image. The QCBCT-NET

improved the contrast of the bone images by reflecting the original BMD

distribution of the QCT image locally using the Cycle-GAN, and also spatial

uniformity of the bone images by globally suppressing image artifacts and noise

using the two-channel U-Net. The QCBCT-NET substantially enhanced the

linearity, uniformity, and contrast as well as the anatomical and quantitative

accuracy of the bone images, and demonstrated more accuracy than the Cycle-

GAN and the U-Net for quantitatively measuring BMD in CBCT.

Keywords: Bone mineral density, Quantitative CBCT, Deep learning,
Generative adversarial network (GAN), U-Net
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INTRODUCTION

Trabecular bone density, a determinant of bone strength, is important
for the diagnosis of bone quality in bone diseases [1, 2]. Bone mineral density
(BMD) measurements are a direct method of estimating human bone mass for
diagnosing osteoporosis and predicting future fracture risk [3, 4]. Generally,
volumetric BMD can be assessed quantitatively through the calibration of
Hounsfield Units (HU) in CT, which is a method known as quantitative CT
(QCT) [5, 6]. The multi-detector CT (MDCT) with rapid acquisition of 3D
volume images enables QCT to be applied to clinically important sites for
assessing BMD [7].

For dental implant treatment, precise in vivo measurement of alveolar
bone quality is very important in determining the primary stability of dental
implants [8]. Therefore, the alveolar bone quality of the implant site needs to
be measured before surgery to determine whether the bone mineral density
(BMD) is sufficient to support the implant [9]. Recently, cone-beam CT
(CBCT) systems have been widely used for dental treatment and planning as

they offer many advantages over MDCTs, including a lower radiation dose to



the patient, shorter acquisition times, better resolution, and greater detail [10-

15]. However, the voxel intensity values in CBCT systems are arbitrary, and do

not allow for the assessment of bone quality as the systems do not correctly

show HUs [16-20]. The ability of the CBCT to assess the bone density is limited

as the HUs derived from CBCT data is clearly different from that of MDCT

data [5, 17-19, 21]. Several studies have been performed to resolve the

discrepancy in HUs between MDCT and CBCT data [15-17, 22]. Some studies

investigated the relationship between CBCT voxel intensity values and MDCT

HUs using a BMD calibration phantom with material inserts of different

attenuation coefficients [17, 23-27]. These studies showed that the use of the

phantoms in CBCT scanners would be difficult for correlating CBCT voxel

intensities with HUs because of the non-uniformity of the measurements and

the nonlinear relationship between CBCT voxel intensities and HUs [15].

CBCTs have also been widely used for accurate patient setups in

image-guided radiation therapy [28]. Many methods for correcting CBCT

images with high quality have been proposed to produce quantitative CBCTs in

the radiation therapy field, which do not require a calibration phantom during

an object scan. These methods can be classified as hardware corrections such



as anti-scatter grids, and model-based methods using Monte Carlo techniques

to model the scatter to CBCT projections [29-34]. Recently, the generative

adversarial network (GAN), a deep neural network model, has shown state-of-

the-art performance in many image processing tasks [28, 35, 36]. The GAN is

composed of two networks trained simultaneously with one focused on image

generation and the other on discrimination. The GAN has the capability of data

generation without explicitly modelling the probability density function [37].

In one study, a deep learning-based method using a modified GAN improved

image quality for generating corrected CBCT images, which integrated a

residual block concept into a Cycle-GAN framework [38]. Moreover, the U-

Net model of U-shape encoder-decoder architecture is widely applied in

biomedical image segmentation, image denoising [39-41], and image synthesis

[42-44]. The U-Net based approach could efficiently synthesize artifact-

suppressed CT-like CBCT images from CBCT images containing global

scattering and local artifacts [43, 44].

To date, these deep learning-based studies have mainly focused on the

improvement in voxel values of the soft tissues in CBCT images. As far as we

know, no previous studies have quantitatively measured BMD from CBCT



images through the improvement of the bone image using deep learning. We

hypothesized that a deep learning-based method could generate QCT-like

CBCT images from CBCT images for directly measuring BMD by learning the

pixel-wise mapping between QCT and CBCT images. The purpose of this study

was to directly and quantitatively measure BMD from CBCT images by

enhancing the linearity and uniformity of the bone intensities based on a hybrid

deep-learning model (QCBCT-NET) of combining the generative adversarial

network (Cycle-GAN) and U-Net, and to compare the bone images enhanced

by the QCBCT-NET with those by Cycle-GAN and U-Net.



MATERIALS AND METHODS

Data Acquisition and Preparation

We used two phantoms of human skulls encased in acrylic articulated
for medical use (Erler Zimmer Co., Lauf, Germany), one with and the other
without metal restorations causing streak artifacts (Figure 1(a)). The phantoms
have been used in our previous studies [45-48]. The images of the phantoms
were obtained with a MDCT (Somatom Sensation 10, Siemens AG, Erlangen,
Germany) and a CBCT (CS 9300, Carestream Health, Inc., Rochester, US),
respectively. We acquired the CT images with voxel sizes of 0.469x0.469x0.5
mm?, dimensions of 512x512 pixels, and 16 bit depth under condition of 120
kVp and 130 mA, while the CBCT images were obtained with voxel sizes of
0.3x0.3x0.3 mm?, dimensions of 559x559 pixels, and 16 bit depth under
conditions combined from 80 or 90 kVp and 8 or 10 mA (Table 1). In addition,
CT and CBCT images of a BMD calibration phantom (QRM-BDC Phantom
200 mm length, QRM GmbH, Moehrendorf, Germany) with calcium
hydroxyapatite inserts of three densities (0 (water), 100, and 200 mg/cm?®) were

also obtained under the same condition (Figure 1(b), Figure 2). The CT images



of the skull phantoms were then converted into quantitative CT (QCT) images

based on Hounsfield Units (HU) by linear calibration using the CT images of

the BMD calibration phantom (Figure 3(a)). The CBCT images of the skull

phantoms were also converted into calibrated CBCT (CAL_CBCT) images

using the corresponding images of the BMD calibration phantom for

comparisons with deep learning results afterwards (Figure 3(b)).



Table 1. The Technical factors for MDCT and CBCT.

Technical factor

MDCT

CBCT

Manufacturer

Voxel sizes
Dimensions
Depth
Kilovoltage

Tube current-time product

Somatom Sensation 10, Siemens AG,
Erlangen, Germany

0.469%0.469%0.5 mm’
512%512 pixels
16 bit
120 kVp
130 mA

CS 9300, Carestream Health, Inc.,
Rochester, US

0.3x0.3x0.3 mm*
559%559 pixels
16 bit
80 or 90 kVp
8 or 10 mA




Figure 1. (a) A phantom of human skulls encased in acrylic articulated for

medical use, and (b) a BMD calibration phantom.



Figure 2. (a) MDCT, and (b) CBCT images of BMD calibration phantom with

calcium hydroxyapatite inserts of three densities (0 (center circle), 100 (right

circle), and 200 (left circle) mg/cm?).



CT image it QCT image CBCT image 0 100 200 800 CAL CBCT image

Intensity value
(Patient) (Patient) f
CT image CBCT image
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Figure 3. The quantitative CT (QCT) and calibrated CBCT (CAL_CBCT) images based on Hounsfield Units (HU) by linear calibration using

the CT images of the BMD calibration phantom.
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The CT image for the skull phantom was matched to the CBCT image

by paired-point registration using a software (3D Slicer, MIT, Massachusetts,

US), where the six landmarks were localized manually at the vertex on the

lateral incisors, the buccal cusps of the first premolars, and the distobuccal

cusps of the first molars [49] (Figure 4). The matched CT and CBCT images

consisting of a matrix of 559x559%x264 pixels were cropped at the

maxillomandibular region, and then resized to images of 256x256x200 pixels

(Figure 5). To avoid adverse impacts from non-anatomical regions during

training, binary masks were applied to the CT and CBCT images to separate

the maxillomandibular region from the non-anatomical regions [44] (Figure 6).

The binary mask images were generated by using thresholding and

morphological operations. The edges of anatomical regions were extracted by

applying a local range filter to the paired CBCT and CT images [50], and the

morphological operations of opening and flood fill were applied to the

binarized edges obtained by thresholding to remove small blobs and fill the

inner area. The corresponding CBCT and CT images were multiplied by the

intersection of the two binary masks from CBCT and CT images. The voxel

11



values outside the masked region were replaced with Hounsfield Units (HUs)

of -1000.

For deep learning, we prepared the 800 pairs of axial slice images for

QCT and CBCTs from the skull phantom without metal restorations for the

training and validation datasets (obtained under four conditions combined from

80 or 90 kVp, and 8 or 10 mA), and independently, another 400 pairs for QCT

and CBCTs from the skull phantom with metal restorations for the test dataset

(obtained under two conditions of 80 kVp and 8 mA, and 90 kVp and 10 mA)

(Table 2).

12



Table 2. The Dataset configurations.

MDCT (slices) CBCT (slices)

Training and validation dataset 200 800

Test dataset 200 400

13
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Figure 4. The six landmarks (yellow dots) localized at the vertex on the lateral
incisors, the buccal cusps of the first premolars, and the distobuccal cusps of

the first molars for paired-point registration of CT and CBCT images.
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Figure 5. The matched CT and CBCT images cropped and resized at the maxillomandibular region.
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Figure 6. Binary masks applied to the CT and CBCT images to separate the maxillomandibular region from the non-anatomical regions.
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Hybrid Deep-Learning Model (QCBCT-NET) for Quantitative CBCT

images

We designed a hybrid deep-learning architecture (QCBCT-NET)

consisting of Cycle-GAN and U-Net to generate QCT-like images from the

conventional CBCT images (Figure 7), and also the Cycle-GAN and the U-Net

with the same architecture with QCBCT-NET, respectively, for performance

comparisons. We implemented Cycle-GAN with the residual blocks [38]

combined with a multi-channel U-Net model using paired training data. The

CycleGAN architecture contained two generators for yielding the CBCT to

QCT (G_(CBCT—QCT)) and QCT to CBCT (G_(QCT—CBCT)) mappings,

and two discriminators for distinguishing between real (D_QCT) and generated

(D_CBCT) images. We adopted a ResNet architecture with nine residual blocks

for the generators, and a PatchGAN of 70 x 70 patch for the discriminators.

17



The Cycle-GAN model was optimized using two part loss functions
consisting of an adversarial loss and a cycle consistency loss [36]. The
adversarial loss function relied on the output of the discriminators, which were
defined as:

LADV (GCBCT—>QCT) = DQCT(IQCT)2 + (DQCT (GCBCTAQCT(ICBCT)) - 1)29
LADV(GQCTHCBCT) = DCB’CT(ICBCT)2 + (DCBCT (GQCTHCBCT(IQCT)) - 1)2’

where Icger was the CBCT image, and ¢y, the QCT image.

To avoid mode collapse issues, we added a cycle consistency loss that reduced

the space of mapping functions. The cycle consistency loss was defined as:

Leye = |GQCT—>CBCT (GCBCTﬁQCT(ICBCT)) - ICBCT| + |GCBCT—>QCT (GQCT—>CBCT(1QCT)) - IQCT|!

where Icger was the CBCT image, and Igcr, the QCT image.
Finally, the loss function of Cycle-GAN was defined as:

Loan = LADV(GCBCT—>QCT) + LADV(GQCT—>CBCT) + ALcye,

where A controlled the relative importance of the adversarial losses, and the

used value of A was 10.

18
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Figure 7. The QCBCT-NET architecture combining Cycle-GAN and the multi-

channel U-net. The Cycle-GAN consisted of two generators of Gegper—octs
and Gocr—.cpers and two discriminators of Dcger, and Dgcer. In the

generators, the convolution block consisted of 7 x 7 and 3 x 3 convolution
layers with batch normalization and ReLU activation, and residual blocks were
embedded in the middle of the down-sampling and up-sampling layers. In
discriminators, the convolution block consisted of 4 x 4 convolution layers with
batch normalization and leaky ReLU activation followed by down-sampling
layers. The multi-channel U-Net had two-channel inputs of CBCT and
corresponding CYC CBCT images, consisting of 3 x 3 convolution layers with
batch normalization and ReLU activation, and had skip connections at each
layer level. Max-pooling was used for down-sampling and transposed

convolution was used for up-sampling.
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To generate QCBCT images, we implemented the multi-channel U-
Net with four skip-connections between an encoder and a decoder at each
resolution level using the two-channel inputs consisting of the original CBCT
image, and the corresponding output of the Cycle-GAN. The multi-channel U-
Net was optimized by the loss function consisting of the mean absolute
difference (MAD) and structural difference (SSIM) between QCBCT and QCT

images [43], which were defined as:

(ZMQCTHQCBCT+C1)(20QCT QCBCT+C2)
HZQCT+HZQCBCT+C1)(GZQCT+02QCBCT+Cz) ’

Lyap = |IQCT - IQCBCT|: Lssim = (

where Ipcpcr was the QCBCT image, Iocr, the QCT image, u, mean, o2,

variance, and C; and C,, variables to stabilize the division with weak

denominators.
Finally, the loss function of the multi-channel U-Net was defined as:
Lyner = (1 — a)Lyap + a(l — Lssim),
where the used value of o was 0.6.

The deep learning model was trained and tested using a workstation

with four GPUs of Nvidia GeForce GTX 1080 Ti and 11 GB of VRAM. The

20



Cycle-GAN model was trained by the Adam optimizer with a mini-batch size

of 8 and epoch number of 200. For the first 100 epochs, the learning rate was

maintained at 0.0002, and decreased linearly approaching zero for the next 100

epochs. The U-Net model was trained by the Adam optimizer with a mini-batch

size of 8 and epoch number of 200. The learning rate was set to 0.0001 with

momentum terms of 0.9 to stabilize the training.

To compare the performance of measuring BMD from QCBCT images

produced by the QCBCT-NET with those by the Cycle-GAN or the U-Net, we

used the same settings with QCBCT-NET for the Cycle-GAN and the U-Net,

and trained the networks with only CBCT as the network input, respectively.

21



Evaluation of Quantitative CBCT Images for Measuring BMD

To quantitatively evaluate the performance of measuring BMD from
CBCT images by the different deep learning models, we compared the mean
absolute difference (MAD), peak signal to noise ratio (PSNR), normalized
cross correlation (NCC), and structural similarity (SSIM) between the original
QCT image (the ground truth), and QCBCT image produced by QCBCT-NET,
CYC_CBCT image produced by Cycle-GAN, U_CBCT image produced by U-
NET, and CAL_CBCT image produced by only calibration for the CBCT
image of the test dataset obtained under two scanning conditions. The MAD
was defined as the mean of the absolute differences between the intensities of
the QCT and CBCT images, the PSNR as the logarithm of the maximum

possible intensity (MAX) over the root mean squared error (MSE) between the

intensities of the QCT and CBCT images (PSNR = 20 X log;g %), the

NCC as the multiplication between the intensities of the QCT and CBCT

Ugcr—kocr)U CBCT—MCBCT))
0QCTOCBCT

images divided by each standard deviation (NCC =

i)

and SSIM the same as described above. The quantitative measurements in each

slice were averaged over the whole maxilla and mandible. The higher values of

PSNR, SSIM, and NCC, and the lower MAE indicated better performance for
22



BMD measurement from CBCT images.

Spatial nonuniformity (SNU) of the CBCT images was measured as

the absolute difference between the maximum and the minimum of the BMD

values in rectangular ROIs around the maxilla and mandible. To evaluate the

linearity of BMD measurements in the CBCT images, we analyzed the

relationship between the voxel intensities of the QCT (the ground truth) and

CBCT images through a linear regression of the voxel intensities (Slope, slope

of linear regression) at the maxilla and mandible, respectively. The lower SNU,

and the higher Slope indicated better performance for BMD measurement from

CBCT images. We also performed the Bland—Altman analysis to analyze the

bias and agreement limits of the BMD between QCT (the ground truth) and

CBCT images at the maxilla and mandible.

We compared the performances between QCBCT and other CBCT images at

the maxilla and mandible under two conditions of 80 kVp and 8 mA, and 90

kVp and 10 mA with respect to the variations of BMD values of a bone

depending on their relative positions [51], and those affected by scanning

conditions. Paired two-tailed t-tests were used (SPSS v26, SPSS Inc., Chicago,

IL, USA) to compare the quantitative performances between QCBCT and

23



CYC_CBCT images, between QCBCT and U_CBCT images, and between

QCBCT and CAL_CBCT images. Statistical significance level was set at 0.01.
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RESULTS

Table 3 summarizes the means of the quantitative performance results
for measuring BMD from QCBCT images produced by QCBCT-NET,
CYC_CBCT produced by Cycle-GAN, U_CBCT produced by U-NET, and
CAL_CBCT produced by calibration for the CBCT images of test datasets
acquired for the skull phantom with metal restorations under conditions of 80
kVp and 8 mA, and 90 kVp and 10 mA. The BMD images of QCBCTs
significantly outperformed the CYC_CBCT and U_CBCT images in MAD,
PSNR, SSIM, and NCC at both the maxilla and mandible area when compared
to the original QCT images (Table 3). All performances from the QCBCT
images exhibited significant differences with those from the CYC_CBCT or
U_CBCT images at the maxilla and mandible (p < 0.01) except for the SNU
from the U_CBCT (p = 0.04) (Table 3). Compared to the BMD measurements
from the CYC_CBCT image, the BMD from the QCBCT showed increases of
38% MAD, 20% PSNR, 45% SSIM, 40% NCC, 80% SNU, and 84% Slope at
the maxilla, and 39% MAD, 20% PSNR, 50% SSIM, 40% NCC, 47% SNU,
and 102% Slope at the mandible for CBCT images under condition of 80 kVp
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and 8 mA (Table 4). Compared to the BMD measurement from the U_CBCT

image, increases of 59% MAD, 41% PSNR, 112% SSIM, 58% NCC, -17%

SNU, and 167% Slope at the maxilla, and 49% MAD, 33% PSNR, 81% SSIM,

54% NCC, -25% SNU, and 142% Slope at the mandible for CBCT images

under condition of 80 kVp and 8 mA (Table 4). Under the higher dose condition

of 90 kVp and 10 mA, the BMD from the QCBCT also showed higher

performances at both the maxilla and mandible compared to the CYC_CBCT

and U_CBCT (Table 4). Therefore, the BMDs from the QCBCT demonstrated

more accuracy than those from the CYC_CBCT and U_CBCT without regard

to relative positions of the bone, or effects from different scanning conditions.

Figure 8 shows the axial slices of the BMD images from the original

QCT, QCBCT, CYC CBCT, U CBCT, and CAL CBCT at the maxilla and

mandible. As shown in the subtraction images in Figure 8, the BMD image

quality of the QCBCTs for the two regions exhibited substantial improvement

over those of CYC_CBCT, U_CBCT, and CAL_CBCT in terms of BMD (voxel

intensity) differences compared to the original QCT images. The large

differences around the teeth and dense bone of higher voxel intensities (BMD)
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seen in the CAL CBCT were more reduced in the QCBCT than in the

CYC _CBCT or U_CBCT images.

Figure 9 shows the BMD (voxel intensity) profiles that were acquired

along the dental arch at the maxilla and mandible in the QCT and CBCT images

as shown in Figure 8. The BMD profile from the QCBCT images more closely

reflected the original QCT than the CYC_CBCT and U_CBCT images with

higher correlations with the QCT than other CBCT images, although the dental

implant and restoration showed higher voxel intensities compared to other

anatomical structures (Figure 9). Therefore, the QCBCT image exhibited more

improved structural preservation and edge sharpness of the bone than the

CYC_CBCT and U_CBCT images at both the maxilla and mandible. The BMD

distribution of the QCBCT also more closely restored the original QCT than

that of the CYC_CBCT and U_CBCT images in an axial slice at the maxilla

and mandible (Figure 10). The linear relationship between the QCT and

QCBCT images showed more contrast and correlation than that between QCT

and other CBCT images with the larger slope and better goodness of fit (Figure

11). The Bland-Altman plot between QCT and QCBCT images also showed

higher linear relationships and better agreement limits than that between QCT
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and other CBCT images (Figure 12). Therefore, the QCBCT images showed
more improvement in preservation for the original distribution and linear
relationship of the BMD values compared to CYC_CBCT and U_CBCT

images.
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Table 3. Quantitative performance of CBCT images produced by QCBCT-NET, Cycle-GAN, U-Net, and CAL_CBCT compared to the original
QCT images for measuring BMD values at the maxilla (1-81 slices) and mandible (82-200 slices) for test datasets under conditions of 80 kVp and
8 mA, and 90 kVp and 10 mA. MAD: mean absolute difference; PSNR: peak signal to noise ratio; SSIM: structural similarity; NCC: normalized

cross correlation; SNU: spatial nonuniformity; Slope: slope of linear regression between the voxel intensities. (Mean £ SD, *: significant difference

(p < 0.01) between QCBCT-NET and U-Net, 1: (p < 0.01) between QCBCT-NET and Cycle-GAN, and #: (p < 0.01) between QCBCT-NET and

CAL_CBCT.
Maxilla Mandible

MAD PSNR  SSIM  NCC SNU Slope MAD PSNR  SSIM NCC SNU Slope
QCBCINET  ap&rd ™ »emad " 0gm002 T 08%002 "  567SHT  0SM004 T | 1007034460  245R130  08BOO07 T 0B¥006 ¢ A&TTY 08016
@ OmeGAN  BUMS51  1004163  0GH007 06008  7O0A1348 045006 | 3131445868 X514 05308 0601l 415105 042000
W (e (000) (000) (000) (000) (000) (000) (000) (000) (000) (000) o )
8 UNet ABY514 169086 OO0 05008 13332 03W006 | 7068l 18531 04008 O05M0L 7smosd 03008
m (ke 000) (000) (000) (000) 004) (000) (000) (000) (000) (000) (000) (000)
CALCBCT 5045376 1563080 034008  06M008  GOA:I506 026006 | AOL4&SS5L  7331% 04006 06011 BI04 030008
(pvae) 000) (000) (000) (000) (000) (000) 000) (000) (000) (000) (000) (000)
QUBCENET  paaal T 2418 o700+ oss0® T z7ooma’  op004 | 236288 200% ¢ 079008 08015 1587424"  0ga0nl
@  OdeGAN  26Eu5303 210813 072004 076005 6304776 OS005 | 288286l 218207 06007 07014 FB2#8% 053009
Wp (ko 000) (000) (000) (000) o ) (000) (000) (000) (000) om )
8 UNet OASRET TAM0S 05006 06009  1g0m3030 03004 | SMEMOAS 1965268  05M007  06M014  pawdas 04006
mA (pale) 000) (000) (000) (000) 0m) (000) 000) (000) (000) (000) (000) (000)
CALCBCT  6GlABi6150 187078 02008 07006 722300 03006 | 53%®B¥ 161514 03208 072013 72443046 03006
(pvae) 000) (000) (000) (000) (000) (000) 000) (000) (000) (000) (000) (000)
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Table 4. Percentage increases of QCBCT-NET performance compared to Cycle-GAN and U-Net for measuring BMD values at the maxilla (1-81
slices) and mandible (82-200 slices) for CBCT images of test datasets under conditions of 80 kVp and 8 mA, and 90 kVp and 10 mA. MAD: mean
absolute difference; PSNR: peak signal to noise ratio; SSIM: structural similarity; NCC: normalized cross correlation; SNU: spatial nonuniformity;

Slope: slope of linear regression between the voxel intensities.

Maxilla (%0) Mandible (%)
MAD PSNR SSIM NCC SNU Slope MAD PSNR SSIM NCC SNU Slope
kE\l/)p vs. Cycle-GAN 3814 1971 4500 4032 8026 8444 3907 1979 5000 3968 4746 10238
n?A vs. U-Net 5881 4099 11220 58.18 -1650 167.74 4857 3258 8125 5439 2457 142.86
kg\(/)p . CycleGAN 1059 3R 972 1053 59.10 1273 1769 748 1449 1268 56.18 2453
nl]% vs. U-Net 4403 2598 58.00 2353 1347 63.16 3640 1689 3860 1940 23R 65.00
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Figure 8. The axial slices of BMD images from the original QCT, their
generations by deep learning methods (the first and third row), and their
subtractions from the original QCT images (the second and fourth row) at the
maxilla and the mandible. QCBCT produced by QCBCT-NET, CYC CBCT by
Cycle-GAN, U_CBCT by U-NET, and CAL_CBCT by only calibration from
(a) training datasets under condition of 90 kVp and 10 mA, (b) test datasets
under condition of 80 kVp and 8 mA, and (c) test datasets under condition of
90 kVp and 10 mA. The yellow squares shown in the QCT image were ROIs
for calculation of the spatial nonuniformity (SNU), the red curve shown in the
QCT image was the dental arch for BMD (voxel intensity) profiles, and the
white arrows shown in the QCT images indicated the dental implant at the

maxilla in (b), and the dental restorations at the maxilla in (c).
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Figure 9. The BMD (voxel intensity) profiles along the dental arch at the maxilla and the mandible in the QCT, and QCBCT, CYC_CBCT, U_CBCT,
and CAL_CBCT images shown in Figure 2. Pearson correlation coefficients of QCBCT, CYC CBCT, U_CBCT, and CAL_CBCT with the original
QCT were (a) 0.92, 0.65, 0.60, and 0.65, respectively, for the profile at the maxilla and, (b) 0.93, 0.70, 0.65, and 0.69, respectively, for the profile
at the mandible shown in Figure 2(b), and (c) 0.92, 0.89, 0.84, and 0.88, respectively, for the profile at the maxilla, and (d) 0.93, 0.81, 0.82, and
0.82, respectively, for the profile at the mandible shown in Figure 2(c).
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Figure 10. The BMD distribution in an axial slice of the original QCT, and QCBCT, CYC_CBCT, U_CBCT, and CAL_CBCT images. (a) CBCT
images at the maxilla under condition of 80 kVp and 8 mA, (b) at the mandible under condition of 80 kVp and 8 mA, (c) at the maxilla under

condition of 90 kVp and 10 mA, and (d) at the mandible under condition of 90 kVp and 10 mA.
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Figure 11. The linear relationships between the original QCT, and QCBCT,

CYC _CBCT, U_CBCT, and CAL CBCT images. (a)-(d) CBCT images at the

maxilla under condition of 80 kVp and 8 mA, (e)-(h) at the mandible under

condition of 80 kVp and 8 mA, (i)-(1) at the maxilla under condition of 90 kVp

and 10 mA, and (m)-(p) at the mandible under condition of 90 kVp and 10 mA.
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Figure 12. The linear relationships between the original QCT, and QCBCT,

CYC_CBCT, U_CBCT, and CAL CBCT images. (a)-(d) CBCT images at the

maxilla under condition of 80 kVp and 8 mA, (e)-(h) at the mandible under

condition of 80 kVp and 8 mA, (i)-(l) at the maxilla under condition of 90 kVp

and 10 mA, and (m)-(p) at the mandible under condition of 90 kVp and 10 mA.
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DISCUSSION

We developed a hybrid deep-learning model (QCBCT-NET)
consisting of Cycle-GAN and U-Net to quantitatively and directly measure
BMD from CBCT images. The BMD measurements of QCBCT images
produced by QCBCT-NET significantly outperformed the CYC CBCT images
produced by Cycle-GAN and U _CBCT images produced by U-Net at both the
maxilla and mandible area when compared to the original QCT. We used paired
training data in the Cycle-GAN implementation with the residual blocks, which
forced the network to focus on reducing image artifacts and enhancing bone
contrast, rather than focusing on bone structural mismatches. Through the
residual blocks in the generator architecture of the Cycle-GAN, the network
could learn the difference between the source and target based on the residual
image and generate corrected bone images more accurately [52]. In a study, a
Cycle-GAN was used to capture the relationship from CBCT to CT images
while simultaneously supervising an inverse of the CT to CBCT transformation
model [36]. The Cycle-GAN doubled the process of a typical GAN by

enforcing an inverse transformation, which doubly constrained the model and
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increased accuracy in the output images [38]. In our study, the Cycle-GAN can

learn both intensity and textural mapping from a source distribution of the

CBCT bone image to a target distribution of the QCT bone image.

In previous studies, U-Net architectures were used to directly

synthesize CT-like CBCT images for their corresponding CT images especially

on paired datasets [43, 44]. The U-Net could suppress global scattering artifacts

and local artifacts derived from CBCT images by capturing both global and

local features in the image spatial domain [43]. In addition, the spatial

uniformity of CT-like CBCT images was enhanced close to those of

corresponding CT images while maintaining the anatomical structures on the

CBCT images [44]. Therefore, in our results, the spatial uniformity of CBCT

images produced by U-Net was improved, but the contrast of the bone images

was reduced when compared to the CYC_ CBCT images by Cycle-GAN.

In our study, the two-channel U-Net, which learned spatial

information of CBCTs and corresponding CYC CBCT images simultaneously,

could improve image contrast and uniformity by suppressing beam hardening

artifacts and scattering noise [43]. The CYC CBCT images out of the two

inputs helped the U-Net to focus on learning pixel-wise correspondence (or
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mapping) between QCT and CBCT images while maintaining the original

intensity distribution of the bone structures. The combination loss of MAE and

SSIM in the U-Net facilitated faster convergence and better accuracy

considering the pixel-wise errors and structural similarity. As a result, the

BMDs (voxel intensities) from the QCBCT demonstrated more accuracy than

those from the CYC CBCT and U_CBCT without regard to relative positions

of the bone in the image volume [51], or effects from different radiation doses

or scanning conditions used in clinical settings.

We combined the Cycle-GAN with the two-channel U-Net model to

further improve the contrast and uniformity of the CBCT bone images. The

Cycle-GAN improved the contrast of the bone images by reflecting the original

BMD distribution of the QCT images locally, while the two-channel U-Net

improved the spatial uniformity of the bone images by globally suppressing the

image artifacts and noise. As a result, the Cycle-GAN and two-channel U-Net

worked to provide complementary benefits in improving the contrast and

uniformity of the bone image locally and globally. Consequently, the QCBCT-

NET could substantially enhance the linearity, uniformity, and contrast as well

as the anatomical and quantitative accuracy of the bone images in order to
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quantitatively measure BMD in CBCT. Although the BMD linear relationships

and agreement limits of QCBCT images were superior to those of CYC_CBCT

and U_CBCT images, the accuracy of our method should be further improved

for clinical applications.

Our study had some limitations. First, because paired CBCT and CT

images were acquired at different imaging situations typically, the bone

structures of the images were not perfectly aligned even after registration.

Therefore, the registration error of CBCT and CT images might cause adverse

impacts during network training. Second, our study had a potential limitation

of generalization ability due to using a relatively small number of training

dataset. Overfitting of the training CNN model, which resulted in the model

learning statistical regularity specific to the training dataset, could impact

negatively the model’s ability to generalize to a new dataset [53]. Third, the

results presented in this study were based on two human skull phantoms with

and without metal restorations instead of actual patients. Our method needs to

be validated for the dataset from actual patients having dental fillings and

restorations for its application in clinical research and practice, and compared

to the conventional scatter-based method in future studies.
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CONCLUSIONS

We proposed QCBCT-NET to directly and quantitatively measure
BMD from CBCT images based on a hybrid deep-learning model of combining
the generative adversarial network (GAN) and U-Net. The Cycle-GAN and
two-channel U-Net in QCBCT-Net provided complementary benefits of
improving the contrast and uniformity of the bone image locally and globally.
The BMD images produced by QCBCT-NET significantly outperformed the
images produced by Cycle-GAN or U-Net in MAD, PSNR, SSIM, NCC, and
linearity when compared to the original QCT. The QCBCT-NET substantially
enhanced the linearity, uniformity, and contrast as well as the anatomical and
quantitative accuracy of the bone images, and demonstrated more accuracy than
the Cycle-GAN and the U-Net for quantitatively measuring BMD in CBCT. In
future studies, we plan to evaluate the proposed method on the actual patient

dataset to prove its clinical efficacy.
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Aat7] Sl e ddsta g, =2
S dew drh
= Aol Add A A (Cycle—GAN) 3 151t
2 g3y Fxo U-Net & Agst sfolRg= Hyyd
2 (QCBCT-NET)S 7IWtez & 949 A34n +#949&
&A1 A  Cone—beam CT(CBCT) %#FelAl BMD & =AHZ
agla AgAor A3, QCBCT-NET © s8] A3AH
Aol st ojlu| x| e} 7]Ee] F4 A FokelA state—
of—the—art 7123k Cycle—GAN % U—Net ° & 73le =
FA= Hlustl ot adE EMl QI FUiEe 7 ddHe
ARESFR L, slve 2 HF HolH AERAM 5 FEE
AE AHolu, "E sy HAE dHolEH AHNEgfLoZAM I
TEES Edste] G4 S EAATI= A”HoH. fE=
QCT (quantitative CT)¢ CBCT oJujx]e] =& o]F &
|olE & AF8-3F] AF(residual) B85 2338t Cycle—GAN 2}
o2 F/4% QCBCT-NET & Actatalct.
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U—Net

A

=y



QCBCT—NET ] 93] A E BMD olu|A= Hi Auxk(MAD),

Hef As of FSRI(PSNR), Aatstd wxk A3 Al (NCO),
T22 A3 (SSIM) 28l A& A (linearity) ol 4] Cycle—GAN
= U-Net o 93 AP ouxrt AR 53 AHsS

Bttt QCBCT-NET & Cycle—GAN & A}£3to] QCT 949

49 BMD REE  HRHoR WYl

thH] &= (contrast) & FAIZ AL, BEAd U-Net & AH&ato] F4

2oy wo]lxE  HAFRoT  AAde] =T GAre]  F7HA
YA (uniformity) & FAA T QCBCT-NET & & 949
Sed W gl PEERW ohieh MY, A, dumE

A FAAIFH oW CBCT oA BMD & AHZHoR HAs:=

.
o JHEE meFuh

Cycle—=GAN % U-Net .t}

FQo] ¢ FUx, AA CBCT, Hald, AAAANAEAE, U A8
A7
8 W :2019-23327
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