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ABSTRACT 

 

Generative Adversarial Network 

based Quantitative Cone Beam CT 

for Bone Mineral Density 

 

Tae-Hoon Yong 

Department of Applied Bioengineering 

Graduate School of Convergence Science and 

Technology 

Seoul National University 

The purpose of this study was to directly and quantitatively measure 

BMD from Cone-beam CT (CBCT) images by enhancing the linearity and 

uniformity of the bone intensities based on a hybrid deep-learning model 

(QCBCT-NET) of combining the generative adversarial network (Cycle-GAN) 

and U-Net, and to compare the bone images enhanced by the QCBCT-NET with 

those by Cycle-GAN and U-Net. We used two phantoms of human skulls 
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encased in acrylic, one for the training and validation datasets, and the other for 

the test dataset. We proposed the QCBCT-NET consisting of Cycle-GAN with 

residual blocks and a multi-channel U-Net using paired training data of 

quantitative CT (QCT) and CBCT images. The BMD images produced by 

QCBCT-NET significantly outperformed the images produced by the Cycle-

GAN or the U-Net in mean absolute difference (MAD), peak signal to noise 

ratio (PSNR), normalized cross-correlation (NCC), structural similarity (SSIM), 

and linearity when compared to the original QCT image. The QCBCT-NET 

improved the contrast of the bone images by reflecting the original BMD 

distribution of the QCT image locally using the Cycle-GAN, and also spatial 

uniformity of the bone images by globally suppressing image artifacts and noise 

using the two-channel U-Net. The QCBCT-NET substantially enhanced the 

linearity, uniformity, and contrast as well as the anatomical and quantitative 

accuracy of the bone images, and demonstrated more accuracy than the Cycle-

GAN and the U-Net for quantitatively measuring BMD in CBCT. 

 

Keywords: Bone mineral density, Quantitative CBCT, Deep learning, 

Generative adversarial network (GAN), U-Net 

Student Number: 2019-23327 
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INTRODUCTION 

 

Trabecular bone density, a determinant of bone strength, is important 

for the diagnosis of bone quality in bone diseases [1, 2]. Bone mineral density 

(BMD) measurements are a direct method of estimating human bone mass for 

diagnosing osteoporosis and predicting future fracture risk [3, 4]. Generally, 

volumetric BMD can be assessed quantitatively through the calibration of 

Hounsfield Units (HU) in CT, which is a method known as quantitative CT 

(QCT) [5, 6]. The multi-detector CT (MDCT) with rapid acquisition of 3D 

volume images enables QCT to be applied to clinically important sites for 

assessing BMD [7]. 

For dental implant treatment, precise in vivo measurement of alveolar 

bone quality is very important in determining the primary stability of dental 

implants [8]. Therefore, the alveolar bone quality of the implant site needs to 

be measured before surgery to determine whether the bone mineral density 

(BMD) is sufficient to support the implant [9]. Recently, cone-beam CT 

(CBCT) systems have been widely used for dental treatment and planning as 

they offer many advantages over MDCTs, including a lower radiation dose to 
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the patient, shorter acquisition times, better resolution, and greater detail [10-

15]. However, the voxel intensity values in CBCT systems are arbitrary, and do 

not allow for the assessment of bone quality as the systems do not correctly 

show HUs [16-20]. The ability of the CBCT to assess the bone density is limited 

as the HUs derived from CBCT data is clearly different from that of MDCT 

data [5, 17-19, 21]. Several studies have been performed to resolve the 

discrepancy in HUs between MDCT and CBCT data [15-17, 22]. Some studies 

investigated the relationship between CBCT voxel intensity values and MDCT 

HUs using a BMD calibration phantom with material inserts of different 

attenuation coefficients [17, 23-27]. These studies showed that the use of the 

phantoms in CBCT scanners would be difficult for correlating CBCT voxel 

intensities with HUs because of the non-uniformity of the measurements and 

the nonlinear relationship between CBCT voxel intensities and HUs [15]. 

CBCTs have also been widely used for accurate patient setups in 

image-guided radiation therapy [28]. Many methods for correcting CBCT 

images with high quality have been proposed to produce quantitative CBCTs in 

the radiation therapy field, which do not require a calibration phantom during 

an object scan. These methods can be classified as hardware corrections such 
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as anti-scatter grids, and model-based methods using Monte Carlo techniques 

to model the scatter to CBCT projections [29-34]. Recently, the generative 

adversarial network (GAN), a deep neural network model, has shown state-of-

the-art performance in many image processing tasks [28, 35, 36]. The GAN is 

composed of two networks trained simultaneously with one focused on image 

generation and the other on discrimination. The GAN has the capability of data 

generation without explicitly modelling the probability density function [37]. 

In one study, a deep learning-based method using a modified GAN improved 

image quality for generating corrected CBCT images, which integrated a 

residual block concept into a Cycle-GAN framework [38]. Moreover, the U-

Net model of U-shape encoder-decoder architecture is widely applied in 

biomedical image segmentation, image denoising [39-41], and image synthesis 

[42-44]. The U-Net based approach could efficiently synthesize artifact-

suppressed CT-like CBCT images from CBCT images containing global 

scattering and local artifacts [43, 44]. 

To date, these deep learning-based studies have mainly focused on the 

improvement in voxel values of the soft tissues in CBCT images. As far as we 

know, no previous studies have quantitatively measured BMD from CBCT 
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images through the improvement of the bone image using deep learning. We 

hypothesized that a deep learning-based method could generate QCT-like 

CBCT images from CBCT images for directly measuring BMD by learning the 

pixel-wise mapping between QCT and CBCT images. The purpose of this study 

was to directly and quantitatively measure BMD from CBCT images by 

enhancing the linearity and uniformity of the bone intensities based on a hybrid 

deep-learning model (QCBCT-NET) of combining the generative adversarial 

network (Cycle-GAN) and U-Net, and to compare the bone images enhanced 

by the QCBCT-NET with those by Cycle-GAN and U-Net. 

 

  



5 

 

MATERIALS AND METHODS 

 

Data Acquisition and Preparation 

We used two phantoms of human skulls encased in acrylic articulated 

for medical use (Erler Zimmer Co., Lauf, Germany), one with and the other 

without metal restorations causing streak artifacts (Figure 1(a)). The phantoms 

have been used in our previous studies [45-48]. The images of the phantoms 

were obtained with a MDCT (Somatom Sensation 10, Siemens AG, Erlangen, 

Germany) and a CBCT (CS 9300, Carestream Health, Inc., Rochester, US), 

respectively. We acquired the CT images with voxel sizes of 0.469×0.469×0.5 

mm3, dimensions of 512×512 pixels, and 16 bit depth under condition of 120 

kVp and 130 mA, while the CBCT images were obtained with voxel sizes of 

0.3×0.3×0.3 mm3, dimensions of 559×559 pixels, and 16 bit depth under 

conditions combined from 80 or 90 kVp and 8 or 10 mA (Table 1). In addition, 

CT and CBCT images of a BMD calibration phantom (QRM-BDC Phantom 

200 mm length, QRM GmbH, Moehrendorf, Germany) with calcium 

hydroxyapatite inserts of three densities (0 (water), 100, and 200 mg/cm3) were 

also obtained under the same condition (Figure 1(b), Figure 2). The CT images 
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of the skull phantoms were then converted into quantitative CT (QCT) images 

based on Hounsfield Units (HU) by linear calibration using the CT images of 

the BMD calibration phantom (Figure 3(a)). The CBCT images of the skull 

phantoms were also converted into calibrated CBCT (CAL_CBCT) images 

using the corresponding images of the BMD calibration phantom for 

comparisons with deep learning results afterwards (Figure 3(b)). 
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Table 1. The Technical factors for MDCT and CBCT. 

 

Technical factor MDCT CBCT 

Manufacturer 
Somatom Sensation 10, Siemens AG, 

Erlangen, Germany 

CS 9300, Carestream Health, Inc., 

Rochester, US 

Voxel sizes 0.469×0.469×0.5 mm3 0.3×0.3×0.3 mm3 

Dimensions 512×512 pixels 559×559 pixels 

Depth 16 bit 16 bit 

Kilovoltage 120 kVp 80 or 90 kVp 

Tube current-time product 130 mA 8 or 10 mA 
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Figure 1. (a) A phantom of human skulls encased in acrylic articulated for 

medical use, and (b) a BMD calibration phantom. 
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Figure 2. (a) MDCT, and (b) CBCT images of BMD calibration phantom with 

calcium hydroxyapatite inserts of three densities (0 (center circle), 100 (right 

circle), and 200 (left circle) mg/cm3). 
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Figure 3. The quantitative CT (QCT) and calibrated CBCT (CAL_CBCT) images based on Hounsfield Units (HU) by linear calibration using 

the CT images of the BMD calibration phantom. 
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The CT image for the skull phantom was matched to the CBCT image 

by paired-point registration using a software (3D Slicer, MIT, Massachusetts, 

US), where the six landmarks were localized manually at the vertex on the 

lateral incisors, the buccal cusps of the first premolars, and the distobuccal 

cusps of the first molars [49] (Figure 4). The matched CT and CBCT images 

consisting of a matrix of 559×559×264 pixels were cropped at the 

maxillomandibular region, and then resized to images of 256×256×200 pixels 

(Figure 5). To avoid adverse impacts from non-anatomical regions during 

training, binary masks were applied to the CT and CBCT images to separate 

the maxillomandibular region from the non-anatomical regions [44] (Figure 6). 

The binary mask images were generated by using thresholding and 

morphological operations. The edges of anatomical regions were extracted by 

applying a local range filter to the paired CBCT and CT images [50], and the 

morphological operations of opening and flood fill were applied to the 

binarized edges obtained by thresholding to remove small blobs and fill the 

inner area. The corresponding CBCT and CT images were multiplied by the 

intersection of the two binary masks from CBCT and CT images. The voxel 
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values outside the masked region were replaced with Hounsfield Units (HUs) 

of -1000.  

For deep learning, we prepared the 800 pairs of axial slice images for 

QCT and CBCTs from the skull phantom without metal restorations for the 

training and validation datasets (obtained under four conditions combined from 

80 or 90 kVp, and 8 or 10 mA), and independently, another 400 pairs for QCT 

and CBCTs from the skull phantom with metal restorations for the test dataset 

(obtained under two conditions of 80 kVp and 8 mA, and 90 kVp and 10 mA) 

(Table 2). 
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Table 2. The Dataset configurations. 

 MDCT (slices) CBCT (slices) 

Training and validation dataset 200 800 

Test dataset 200 400 
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Figure 4. The six landmarks (yellow dots) localized at the vertex on the lateral 

incisors, the buccal cusps of the first premolars, and the distobuccal cusps of 

the first molars for paired-point registration of CT and CBCT images. 
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Figure 5. The matched CT and CBCT images cropped and resized at the maxillomandibular region. 
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Figure 6. Binary masks applied to the CT and CBCT images to separate the maxillomandibular region from the non-anatomical regions.  
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Hybrid Deep-Learning Model (QCBCT-NET) for Quantitative CBCT 

images 

We designed a hybrid deep-learning architecture (QCBCT-NET) 

consisting of Cycle-GAN and U-Net to generate QCT-like images from the 

conventional CBCT images (Figure 7), and also the Cycle-GAN and the U-Net 

with the same architecture with QCBCT-NET, respectively, for performance 

comparisons. We implemented Cycle-GAN with the residual blocks [38] 

combined with a multi-channel U-Net model using paired training data. The 

CycleGAN architecture contained two generators for yielding the CBCT to 

QCT (G_(CBCT→QCT)) and QCT to CBCT (G_(QCT→CBCT)) mappings, 

and two discriminators for distinguishing between real (D_QCT) and generated 

(D_CBCT) images. We adopted a ResNet architecture with nine residual blocks 

for the generators, and a PatchGAN of 70 × 70 patch for the discriminators. 
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The Cycle-GAN model was optimized using two part loss functions 

consisting of an adversarial loss and a cycle consistency loss [36]. The 

adversarial loss function relied on the output of the discriminators, which were 

defined as:  

𝐿𝐴𝐷𝑉(𝐺𝐶𝐵𝐶𝑇→𝑄𝐶𝑇) = 𝐷𝑄𝐶𝑇(𝐼𝑄𝐶𝑇)
2

+ (𝐷𝑄𝐶𝑇 (𝐺𝐶𝐵𝐶𝑇→𝑄𝐶𝑇(𝐼𝐶𝐵𝐶𝑇)) − 1)
2

, 

𝐿𝐴𝐷𝑉(𝐺𝑄𝐶𝑇→𝐶𝐵𝐶𝑇) =  𝐷𝐶𝐵𝐶𝑇(𝐼𝐶𝐵𝐶𝑇)2 + (𝐷𝐶𝐵𝐶𝑇 (𝐺𝑄𝐶𝑇→𝐶𝐵𝐶𝑇(𝐼𝑄𝐶𝑇)) − 1)
2

, 

where 𝐼𝐶𝐵𝐶𝑇 was the CBCT image, and 𝐼𝑄𝐶𝑇, the QCT image.  

To avoid mode collapse issues, we added a cycle consistency loss that reduced 

the space of mapping functions. The cycle consistency loss was defined as: 

𝐿𝐶𝑌𝐶 = |𝐺𝑄𝐶𝑇→𝐶𝐵𝐶𝑇 (𝐺𝐶𝐵𝐶𝑇→𝑄𝐶𝑇(𝐼𝐶𝐵𝐶𝑇)) − 𝐼𝐶𝐵𝐶𝑇| + |𝐺𝐶𝐵𝐶𝑇→𝑄𝐶𝑇 (𝐺𝑄𝐶𝑇→𝐶𝐵𝐶𝑇(𝐼𝑄𝐶𝑇)) − 𝐼𝑄𝐶𝑇|, 

where 𝐼𝐶𝐵𝐶𝑇 was the CBCT image, and 𝐼𝑄𝐶𝑇, the QCT image. 

Finally, the loss function of Cycle-GAN was defined as: 

𝐿𝐺𝐴𝑁 =  𝐿𝐴𝐷𝑉(𝐺𝐶𝐵𝐶𝑇→𝑄𝐶𝑇) + 𝐿𝐴𝐷𝑉(𝐺𝑄𝐶𝑇→𝐶𝐵𝐶𝑇) + 𝜆𝐿𝐶𝑌𝐶, 

where λ controlled the relative importance of the adversarial losses, and the 

used value of λ was 10.  
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Figure 7. The QCBCT-NET architecture combining Cycle-GAN and the multi-

channel U-net. The Cycle-GAN consisted of two generators of GCBCT→QCT, 

and GQCT→CBCT , and two discriminators of DCBCT , and DQCT . In the 

generators, the convolution block consisted of 7 × 7 and 3 × 3 convolution 

layers with batch normalization and ReLU activation, and residual blocks were 

embedded in the middle of the down-sampling and up-sampling layers. In 

discriminators, the convolution block consisted of 4 × 4 convolution layers with 

batch normalization and leaky ReLU activation followed by down-sampling 

layers. The multi-channel U-Net had two-channel inputs of CBCT and 

corresponding CYC_CBCT images, consisting of 3 × 3 convolution layers with 

batch normalization and ReLU activation, and had skip connections at each 

layer level. Max-pooling was used for down-sampling and transposed 

convolution was used for up-sampling. 
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To generate QCBCT images, we implemented the multi-channel U-

Net with four skip-connections between an encoder and a decoder at each 

resolution level using the two-channel inputs consisting of the original CBCT 

image, and the corresponding output of the Cycle-GAN. The multi-channel U-

Net was optimized by the loss function consisting of the mean absolute 

difference (MAD) and structural difference (SSIM) between QCBCT and QCT 

images [43], which were defined as: 

𝐿𝑀𝐴𝐷 = |𝐼𝑄𝐶𝑇 − 𝐼𝑄𝐶𝐵𝐶𝑇| , 𝐿SSIM =  
(2𝜇𝑄𝐶𝑇𝜇𝑄𝐶𝐵𝐶𝑇+𝐶1)(2𝜎𝑄𝐶𝑇 𝑄𝐶𝐵𝐶𝑇+𝐶2)

(𝜇2
𝑄𝐶𝑇+𝜇2

𝑄𝐶𝐵𝐶𝑇+𝐶1)(𝜎2
𝑄𝐶𝑇+𝜎2

𝑄𝐶𝐵𝐶𝑇+𝐶2)
 , 

where 𝐼𝑄𝐶𝐵𝐶𝑇  was the QCBCT image, 𝐼𝑄𝐶𝑇 , the QCT image, µ, mean, 𝜎 2, 

variance, and C1 and C2, variables to stabilize the division with weak 

denominators. 

Finally, the loss function of the multi-channel U-Net was defined as: 

𝐿𝑈𝑁𝑒𝑡 = (1 − 𝛼)𝐿MAD + 𝛼(1 − 𝐿SSIM), 

where the used value of α was 0.6. 

 The deep learning model was trained and tested using a workstation 

with four GPUs of Nvidia GeForce GTX 1080 Ti and 11 GB of VRAM. The 
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Cycle-GAN model was trained by the Adam optimizer with a mini-batch size 

of 8 and epoch number of 200. For the first 100 epochs, the learning rate was 

maintained at 0.0002, and decreased linearly approaching zero for the next 100 

epochs. The U-Net model was trained by the Adam optimizer with a mini-batch 

size of 8 and epoch number of 200. The learning rate was set to 0.0001 with 

momentum terms of 0.9 to stabilize the training.  

To compare the performance of measuring BMD from QCBCT images 

produced by the QCBCT-NET with those by the Cycle-GAN or the U-Net, we 

used the same settings with QCBCT-NET for the Cycle-GAN and the U-Net, 

and trained the networks with only CBCT as the network input, respectively. 
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Evaluation of Quantitative CBCT Images for Measuring BMD 

To quantitatively evaluate the performance of measuring BMD from 

CBCT images by the different deep learning models, we compared the mean 

absolute difference (MAD), peak signal to noise ratio (PSNR), normalized 

cross correlation (NCC), and structural similarity (SSIM) between the original 

QCT image (the ground truth), and QCBCT image produced by QCBCT-NET, 

CYC_CBCT image produced by Cycle-GAN, U_CBCT image produced by U-

NET, and CAL_CBCT image produced by only calibration for the CBCT 

image of the test dataset obtained under two scanning conditions. The MAD 

was defined as the mean of the absolute differences between the intensities of 

the QCT and CBCT images, the PSNR as the logarithm of the maximum 

possible intensity (MAX) over the root mean squared error (MSE) between the 

intensities of the QCT and CBCT images (𝑃𝑆𝑁𝑅 = 20 × 𝑙𝑜𝑔10
𝑀𝐴𝑋

√𝑀𝑆𝐸
), the 

NCC as the multiplication between the intensities of the QCT and CBCT 

images divided by each standard deviation (NCC =
(𝐼𝑄𝐶𝑇−𝜇𝑄𝐶𝑇)(𝐼𝐶𝐵𝐶𝑇−𝜇𝐶𝐵𝐶𝑇)

𝜎𝑄𝐶𝑇𝜎𝐶𝐵𝐶𝑇
), 

and SSIM the same as described above. The quantitative measurements in each 

slice were averaged over the whole maxilla and mandible. The higher values of 

PSNR, SSIM, and NCC, and the lower MAE indicated better performance for 
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BMD measurement from CBCT images. 

Spatial nonuniformity (SNU) of the CBCT images was measured as 

the absolute difference between the maximum and the minimum of the BMD 

values in rectangular ROIs around the maxilla and mandible. To evaluate the 

linearity of BMD measurements in the CBCT images, we analyzed the 

relationship between the voxel intensities of the QCT (the ground truth) and 

CBCT images through a linear regression of the voxel intensities (Slope, slope 

of linear regression) at the maxilla and mandible, respectively. The lower SNU, 

and the higher Slope indicated better performance for BMD measurement from 

CBCT images. We also performed the Bland–Altman analysis to analyze the 

bias and agreement limits of the BMD between QCT (the ground truth) and 

CBCT images at the maxilla and mandible. 

We compared the performances between QCBCT and other CBCT images at 

the maxilla and mandible under two conditions of 80 kVp and 8 mA, and 90 

kVp and 10 mA with respect to the variations of BMD values of a bone 

depending on their relative positions [51], and those affected by scanning 

conditions. Paired two-tailed t-tests were used (SPSS v26, SPSS Inc., Chicago, 

IL, USA) to compare the quantitative performances between QCBCT and 
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CYC_CBCT images, between QCBCT and U_CBCT images, and between 

QCBCT and CAL_CBCT images. Statistical significance level was set at 0.01.   
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RESULTS 

 

Table 3 summarizes the means of the quantitative performance results 

for measuring BMD from QCBCT images produced by QCBCT-NET, 

CYC_CBCT produced by Cycle-GAN, U_CBCT produced by U-NET, and 

CAL_CBCT produced by calibration for the CBCT images of test datasets 

acquired for the skull phantom with metal restorations under conditions of 80 

kVp and 8 mA, and 90 kVp and 10 mA. The BMD images of QCBCTs 

significantly outperformed the CYC_CBCT and U_CBCT images in MAD, 

PSNR, SSIM, and NCC at both the maxilla and mandible area when compared 

to the original QCT images (Table 3). All performances from the QCBCT 

images exhibited significant differences with those from the CYC_CBCT or 

U_CBCT images at the maxilla and mandible (p < 0.01) except for the SNU 

from the U_CBCT (p = 0.04) (Table 3). Compared to the BMD measurements 

from the CYC_CBCT image, the BMD from the QCBCT showed increases of 

38% MAD, 20% PSNR, 45% SSIM, 40% NCC, 80% SNU, and 84% Slope at 

the maxilla, and 39% MAD, 20% PSNR, 50% SSIM, 40% NCC, 47% SNU, 

and 102% Slope at the mandible for CBCT images under condition of 80 kVp 
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and 8 mA (Table 4). Compared to the BMD measurement from the U_CBCT 

image, increases of 59% MAD, 41% PSNR, 112% SSIM, 58% NCC, -17% 

SNU, and 167% Slope at the maxilla, and 49% MAD, 33% PSNR, 81% SSIM, 

54% NCC, -25% SNU, and 142% Slope at the mandible for CBCT images 

under condition of 80 kVp and 8 mA (Table 4). Under the higher dose condition 

of 90 kVp and 10 mA, the BMD from the QCBCT also showed higher 

performances at both the maxilla and mandible compared to the CYC_CBCT 

and U_CBCT (Table 4). Therefore, the BMDs from the QCBCT demonstrated 

more accuracy than those from the CYC_CBCT and U_CBCT without regard 

to relative positions of the bone, or effects from different scanning conditions. 

Figure 8 shows the axial slices of the BMD images from the original 

QCT, QCBCT, CYC_CBCT, U_CBCT, and CAL_CBCT at the maxilla and 

mandible. As shown in the subtraction images in Figure 8, the BMD image 

quality of the QCBCTs for the two regions exhibited substantial improvement 

over those of CYC_CBCT, U_CBCT, and CAL_CBCT in terms of BMD (voxel 

intensity) differences compared to the original QCT images. The large 

differences around the teeth and dense bone of higher voxel intensities (BMD) 
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seen in the CAL_CBCT were more reduced in the QCBCT than in the 

CYC_CBCT or U_CBCT images. 

Figure 9 shows the BMD (voxel intensity) profiles that were acquired 

along the dental arch at the maxilla and mandible in the QCT and CBCT images 

as shown in Figure 8. The BMD profile from the QCBCT images more closely 

reflected the original QCT than the CYC_CBCT and U_CBCT images with 

higher correlations with the QCT than other CBCT images, although the dental 

implant and restoration showed higher voxel intensities compared to other 

anatomical structures (Figure 9). Therefore, the QCBCT image exhibited more 

improved structural preservation and edge sharpness of the bone than the 

CYC_CBCT and U_CBCT images at both the maxilla and mandible. The BMD 

distribution of the QCBCT also more closely restored the original QCT than 

that of the CYC_CBCT and U_CBCT images in an axial slice at the maxilla 

and mandible (Figure 10). The linear relationship between the QCT and 

QCBCT images showed more contrast and correlation than that between QCT 

and other CBCT images with the larger slope and better goodness of fit (Figure 

11). The Bland-Altman plot between QCT and QCBCT images also showed 

higher linear relationships and better agreement limits than that between QCT 
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and other CBCT images (Figure 12). Therefore, the QCBCT images showed 

more improvement in preservation for the original distribution and linear 

relationship of the BMD values compared to CYC_CBCT and U_CBCT 

images. 
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Table 3. Quantitative performance of CBCT images produced by QCBCT-NET, Cycle-GAN, U-Net, and CAL_CBCT compared to the original 

QCT images for measuring BMD values at the maxilla (1-81 slices) and mandible (82-200 slices) for test datasets under conditions of 80 kVp and 

8 mA, and 90 kVp and 10 mA. MAD: mean absolute difference; PSNR: peak signal to noise ratio; SSIM: structural similarity; NCC: normalized 

cross correlation; SNU: spatial nonuniformity; Slope: slope of linear regression between the voxel intensities. (Mean ± SD, *: significant difference 

(p < 0.01) between QCBCT-NET and U-Net, †: (p < 0.01) between QCBCT-NET and Cycle-GAN, and ‡: (p < 0.01) between QCBCT-NET and 

CAL_CBCT. 

  Maxilla Mandible 

  MAD PSNR SSIM NCC SNU Slope MAD PSNR SSIM NCC SNU Slope 

80 

kVp 

8 

mA 

QCBCT-NET 203.45±27.24
*†‡

 23.87±1.34
*†‡

 0.87±0.02
*†‡

 0.87±0.02
*†‡

 15.60±7.85
†‡
 0.83±0.04

*†‡
 190.79±34.46

*†‡
 24.58±1.39

*†‡
 0.87±0.07

*†‡
 0.88±0.06

*†‡
 21.85±7.72

†‡
 0.85±0.16

*†‡
 

Cycle-GAN 

(p-value) 

328.91±55.12 

(0.00) 
19.94±1.63 

(0.00) 
0.60±0.07 

(0.00) 
0.62±0.08 

(0.00) 
79.04±13.48 

(0.00) 
0.45±0.06 

(0.00) 
313.14±58.68 

(0.00) 
20.52±1.42 

(0.00) 
0.58±0.08 

(0.00) 
0.63±0.11 

(0.00) 
41.59±10.56 

(0.00) 
0.42±0.09 

(0.00) 

U-Net 

(p-value) 

493.91±45.14 

(0.00) 
16.93±0.86 

(0.00) 
0.41±0.07 

(0.00) 
0.55±0.08 

(0.00) 
13.39±3.22 

(0.04) 
0.31±0.06 

(0.00) 
371.00±36.81 

(0.00) 
18.54±1.31 

(0.00) 
0.48±0.08 

(0.00) 
0.57±0.12 

(0.00) 
17.54±2.84

*
 

(0.00) 

0.35±0.08 

(0.00) 

CAL_CBCT 

(p-value) 

592.40±53.76 

(0.00) 
15.63±0.80 

(0.00) 
0.31±0.08 

(0.00) 
0.61±0.08 

(0.00) 
69.30±15.05 

(0.00) 
0.26±0.06 

(0.00) 
491.44±95.51 

(0.00) 
17.33±1.52 

(0.00) 
0.40±0.05 

(0.00) 
0.62±0.11 

(0.00) 
39.19±11.14 

(0.00) 
0.30±0.08 

(0.00) 

80 

kVp 

8 

mA 

QCBCT-NET 265.4±63.41
*†‡

 21.92±1.98
*†‡

 0.79±0.02
*†‡

 0.84±0.02
*†‡

 27.09±38.42
†‡
 0.62±0.04

*†‡
 236.25±68.62

*†‡
 22.98±2.36

*†‡
 0.79±0.08

*†‡
 0.80±0.15

*†‡
 15.87±4.24

†‡
 0.66±0.11

*†‡
 

Cycle-GAN 

(p-value) 

296.82±53.03 

(0.00) 
21.08±1.39 

(0.00) 
0.72±0.04 

(0.00) 
0.76±0.05 

(0.00) 
68.91±47.76 

(0.00) 
0.55±0.05 

(0.00) 
288.28±61.30 

(0.00) 
21.38±2.17 

(0.00) 
0.69±0.07 

(0.00) 
0.71±0.14 

(0.00) 
36.22±8.96 

(0.00) 
0.53±0.09 

(0.00) 

U-Net 

(p-value) 

474.15±52.87 

(0.00) 
17.40±0.88 

(0.00) 
0.50±0.06 

(0.00) 
0.68±0.09 

(0.00) 
16.02±30.39

*
 

(0.00) 

0.38±0.04 

(0.00) 
370.59±104.16 

(0.00) 
19.66±2.68 

(0.00) 
0.57±0.07 

(0.00) 
0.67±0.14 

(0.00) 
12.80±4.08

*
 

(0.00) 

0.40±0.06 

(0.00) 

CAL_CBCT 

(p-value) 

661.48±61.59 

(0.00) 
14.87±0.78 

(0.00) 
0.29±0.08 

(0.00) 
0.75±0.05 

(0.00) 
52.71±23.00 

(0.00) 
0.31±0.05 

(0.00) 
573.25±93.37 

(0.00) 
16.15±1.42 

(0.00) 
0.37±0.08 

(0.00) 
0.72±0.13 

(0.00) 
72.44±30.46 

(0.00) 
0.31±0.06 

(0.00) 
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Table 4. Percentage increases of QCBCT-NET performance compared to Cycle-GAN and U-Net for measuring BMD values at the maxilla (1-81 

slices) and mandible (82-200 slices) for CBCT images of test datasets under conditions of 80 kVp and 8 mA, and 90 kVp and 10 mA. MAD: mean 

absolute difference; PSNR: peak signal to noise ratio; SSIM: structural similarity; NCC: normalized cross correlation; SNU: spatial nonuniformity; 

Slope: slope of linear regression between the voxel intensities. 

 

  Maxilla (%) Mandible (%) 

  MAD PSNR SSIM NCC SNU Slope MAD PSNR SSIM NCC SNU Slope 

80 

kVp 

8 

mA 

vs. Cycle-GAN 38.14 19.71 45.00 40.32 80.26 84.44 39.07 19.79 50.00 39.68 47.46 102.38 

vs. U-Net 58.81 40.99 112.20 58.18 -16.50 167.74 48.57 32.58 81.25 54.39 -24.57 142.86 

90 

kVp 

10 

mA 

vs. CycleGAN 10.59 3.98 9.72 10.53 59.10 12.73 17.69 7.48 14.49 12.68 56.18 24.53 

vs. U-Net 44.03 25.98 58.00 23.53 -73.47 63.16 36.40 16.89 38.60 19.40 -23.98 65.00 
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Figure 8. The axial slices of BMD images from the original QCT, their 

generations by deep learning methods (the first and third row), and their 

subtractions from the original QCT images (the second and fourth row) at the 

maxilla and the mandible. QCBCT produced by QCBCT-NET, CYC_CBCT by 

Cycle-GAN, U_CBCT by U-NET, and CAL_CBCT by only calibration from 

(a) training datasets under condition of 90 kVp and 10 mA, (b) test datasets 

under condition of 80 kVp and 8 mA, and (c) test datasets under condition of 

90 kVp and 10 mA. The yellow squares shown in the QCT image were ROIs 

for calculation of the spatial nonuniformity (SNU), the red curve shown in the 

QCT image was the dental arch for BMD (voxel intensity) profiles, and the 

white arrows shown in the QCT images indicated the dental implant at the 

maxilla in (b), and the dental restorations at the maxilla in (c).
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Figure 9. The BMD (voxel intensity) profiles along the dental arch at the maxilla and the mandible in the QCT, and QCBCT, CYC_CBCT, U_CBCT, 

and CAL_CBCT images shown in Figure 2. Pearson correlation coefficients of QCBCT, CYC_CBCT, U_CBCT, and CAL_CBCT with the original 

QCT were (a) 0.92, 0.65, 0.60, and 0.65, respectively, for the profile at the maxilla and, (b) 0.93, 0.70, 0.65, and 0.69, respectively, for the profile 

at the mandible shown in Figure 2(b), and (c) 0.92, 0.89, 0.84, and 0.88, respectively, for the profile at the maxilla, and (d) 0.93, 0.81, 0.82, and 

0.82, respectively, for the profile at the mandible shown in Figure 2(c). 
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Figure 10. The BMD distribution in an axial slice of the original QCT, and QCBCT, CYC_CBCT, U_CBCT, and CAL_CBCT images. (a) CBCT 

images at the maxilla under condition of 80 kVp and 8 mA, (b) at the mandible under condition of 80 kVp and 8 mA, (c) at the maxilla under 

condition of 90 kVp and 10 mA, and (d) at the mandible under condition of 90 kVp and 10 mA. 
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Figure 11. The linear relationships between the original QCT, and QCBCT, 

CYC_CBCT, U_CBCT, and CAL_CBCT images. (a)-(d) CBCT images at the 

maxilla under condition of 80 kVp and 8 mA, (e)-(h) at the mandible under 

condition of 80 kVp and 8 mA, (i)-(l) at the maxilla under condition of 90 kVp 

and 10 mA, and (m)-(p) at the mandible under condition of 90 kVp and 10 mA.  
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Figure 12. The linear relationships between the original QCT, and QCBCT, 

CYC_CBCT, U_CBCT, and CAL_CBCT images. (a)-(d) CBCT images at the 

maxilla under condition of 80 kVp and 8 mA, (e)-(h) at the mandible under 

condition of 80 kVp and 8 mA, (i)-(l) at the maxilla under condition of 90 kVp 

and 10 mA, and (m)-(p) at the mandible under condition of 90 kVp and 10 mA. 
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DISCUSSION 

 

We developed a hybrid deep-learning model (QCBCT-NET) 

consisting of Cycle-GAN and U-Net to quantitatively and directly measure 

BMD from CBCT images. The BMD measurements of QCBCT images 

produced by QCBCT-NET significantly outperformed the CYC_CBCT images 

produced by Cycle-GAN and U_CBCT images produced by U-Net at both the 

maxilla and mandible area when compared to the original QCT. We used paired 

training data in the Cycle-GAN implementation with the residual blocks, which 

forced the network to focus on reducing image artifacts and enhancing bone 

contrast, rather than focusing on bone structural mismatches. Through the 

residual blocks in the generator architecture of the Cycle-GAN, the network 

could learn the difference between the source and target based on the residual 

image and generate corrected bone images more accurately [52]. In a study, a 

Cycle-GAN was used to capture the relationship from CBCT to CT images 

while simultaneously supervising an inverse of the CT to CBCT transformation 

model [36]. The Cycle-GAN doubled the process of a typical GAN by 

enforcing an inverse transformation, which doubly constrained the model and 
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increased accuracy in the output images [38]. In our study, the Cycle-GAN can 

learn both intensity and textural mapping from a source distribution of the 

CBCT bone image to a target distribution of the QCT bone image.  

In previous studies, U-Net architectures were used to directly 

synthesize CT-like CBCT images for their corresponding CT images especially 

on paired datasets [43, 44]. The U-Net could suppress global scattering artifacts 

and local artifacts derived from CBCT images by capturing both global and 

local features in the image spatial domain [43]. In addition, the spatial 

uniformity of CT-like CBCT images was enhanced close to those of 

corresponding CT images while maintaining the anatomical structures on the 

CBCT images [44]. Therefore, in our results, the spatial uniformity of CBCT 

images produced by U-Net was improved, but the contrast of the bone images 

was reduced when compared to the CYC_CBCT images by Cycle-GAN.  

In our study, the two-channel U-Net, which learned spatial 

information of CBCTs and corresponding CYC_CBCT images simultaneously, 

could improve image contrast and uniformity by suppressing beam hardening 

artifacts and scattering noise [43]. The CYC_CBCT images out of the two 

inputs helped the U-Net to focus on learning pixel-wise correspondence (or 
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mapping) between QCT and CBCT images while maintaining the original 

intensity distribution of the bone structures. The combination loss of MAE and 

SSIM in the U-Net facilitated faster convergence and better accuracy 

considering the pixel-wise errors and structural similarity. As a result, the 

BMDs (voxel intensities) from the QCBCT demonstrated more accuracy than 

those from the CYC_CBCT and U_CBCT without regard to relative positions 

of the bone in the image volume [51], or effects from different radiation doses 

or scanning conditions used in clinical settings.  

We combined the Cycle-GAN with the two-channel U-Net model to 

further improve the contrast and uniformity of the CBCT bone images. The 

Cycle-GAN improved the contrast of the bone images by reflecting the original 

BMD distribution of the QCT images locally, while the two-channel U-Net 

improved the spatial uniformity of the bone images by globally suppressing the 

image artifacts and noise. As a result, the Cycle-GAN and two-channel U-Net 

worked to provide complementary benefits in improving the contrast and 

uniformity of the bone image locally and globally. Consequently, the QCBCT-

NET could substantially enhance the linearity, uniformity, and contrast as well 

as the anatomical and quantitative accuracy of the bone images in order to 
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quantitatively measure BMD in CBCT. Although the BMD linear relationships 

and agreement limits of QCBCT images were superior to those of CYC_CBCT 

and U_CBCT images, the accuracy of our method should be further improved 

for clinical applications. 

Our study had some limitations. First, because paired CBCT and CT 

images were acquired at different imaging situations typically, the bone 

structures of the images were not perfectly aligned even after registration. 

Therefore, the registration error of CBCT and CT images might cause adverse 

impacts during network training. Second, our study had a potential limitation 

of generalization ability due to using a relatively small number of training 

dataset. Overfitting of the training CNN model, which resulted in the model 

learning statistical regularity specific to the training dataset, could impact 

negatively the model’s ability to generalize to a new dataset [53]. Third, the 

results presented in this study were based on two human skull phantoms with 

and without metal restorations instead of actual patients. Our method needs to 

be validated for the dataset from actual patients having dental fillings and 

restorations for its application in clinical research and practice, and compared 

to the conventional scatter-based method in future studies. 
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CONCLUSIONS 

 

We proposed QCBCT-NET to directly and quantitatively measure 

BMD from CBCT images based on a hybrid deep-learning model of combining 

the generative adversarial network (GAN) and U-Net. The Cycle-GAN and 

two-channel U-Net in QCBCT-Net provided complementary benefits of 

improving the contrast and uniformity of the bone image locally and globally. 

The BMD images produced by QCBCT-NET significantly outperformed the 

images produced by Cycle-GAN or U-Net in MAD, PSNR, SSIM, NCC, and 

linearity when compared to the original QCT. The QCBCT-NET substantially 

enhanced the linearity, uniformity, and contrast as well as the anatomical and 

quantitative accuracy of the bone images, and demonstrated more accuracy than 

the Cycle-GAN and the U-Net for quantitatively measuring BMD in CBCT. In 

future studies, we plan to evaluate the proposed method on the actual patient 

dataset to prove its clinical efficacy. 
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국 문 초 록 

 

골밀도 측정을 위한 

적대적생성신경망 기반 정량적 

CBCT 측정 

 

용태훈 

응용바이오공학전공 

서울대학교 융합과학기술대학원 

 

골다공증은 골의 밀도가 낮아 쉽게 골절되는 골격계 

질환이며, 골다공증은 그 자체만으로는 거의 증상을 일으키지 않고  
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뼈가 부러져서 골다공증을 발견하게 되는 경우가 많다. 골다공증을 

진단하고 향후 골절 위험을 예측하기 위한 방법으로 골밀도(bone 

mineral density)를 측정하는 방법이 있다. BMD 측정은 사람의 

골의 밀도를 추정하는 직접적인 방법이고, 정확한 골의 밀도 측정은 

매우 중요하다. 

골밀도를 측정하기 위해서는 CT 스캔 시, 골밀도 팬텀을 

함께 스캔한 후, QCT 방법을 사용하여 CT 영상의 Hounsfield 

Units 으로부터 BMD 를 정량적으로 계산하게 된다. 환자와 함께 

촬영한 골밀도 BMD 팬텀을 통해 Hounsfield Units 과 BMD 간의 

선형 관계를 측정함으로서 평가할 수 있다. 최근 CBCT 는 

MDCT 에 비해 낮은 방사선량과 짧은 획득 시간, 그리고 더 높은 

해상도 등 다양한 장점을 포함하여 많은 이점을 제공하기 때문에 

치과 치료 및 계획에 널리 사용되고 있지만, CBCT 시스템의 

복셀값은 임의적이며 정확한 HU 를 구할 수 없으므로 골밀도에 

대한 평가를 허용하지 않는 단점이 있다. CBCT 로부터 정확한 
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BMD 를 측정하기 위해서는 균일하고 정확한, 높은 퀄리티의 CBCT 

영상을 필요로 한다.  

본 연구에서는 적대적 생성 신경망(Cycle-GAN)과 인코더 

및 디코더 구조의 U-Net 을 결합한 하이브리드 딥러닝 

모델(QCBCT-NET)을 기반으로 골 영역의 선형성과 균일성을 

향상시켜 Cone-beam CT(CBCT) 영상에서 BMD 를 직접적 

그리고 정량적으로 측정하며, QCBCT-NET 에 의해 선형성과 

균일성이 강화된 골 이미지와 기존의 영상 생성 분야에서 state-

of-the-art 를 기록한 Cycle-GAN 및 U-Net 에 의해 강화된 골 

영상을 비교하였다. 아크릴로 둘러싸인 인간 두개골의 두 팬텀을 

사용하였고, 하나는 훈련 및 검증 데이터 세트로서 금속 수복물이 

없는 팬텀이고, 다른 하나는 테스트 데이터 세트용으로서 금속 

수복물을 포함하여 영상의 잡음을 발생시키는 팬텀이다. 우리는 

QCT(quantitative CT)와 CBCT 이미지의 짝을 이룬 학습 

데이터를 사용하여 잔차(residual) 블록을 포함하는 Cycle-GAN과 

다중 채널 U-Net 으로 구성된 QCBCT-NET 을 제안하였다. 
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QCBCT-NET 에 의해 생성된 BMD 이미지는 평균 절대차(MAD), 

최대 신호 대 잡음비(PSNR), 정규화된 교차 상관 계수(NCC), 

구조적 유사성(SSIM) 그리고 선형성(linearity)에서 Cycle-GAN 

또는 U-Net 에 의해 생성된 이미지보다 훨씬 우수한 성능을 

보였다. QCBCT-NET 은 Cycle-GAN 을 사용하여 QCT 영상의 

원래 BMD 분포를 국부적으로 반영하여 골 영상의 

대비도(contrast)를 향상시켰고, 다중채널 U-Net 을 사용하여 영상 

잡음과 노이즈를 전역적으로 억제하여 골 영상의 공간적 

균일성(uniformity)을 향상시켰다. QCBCT-NET 은 골 영상의 

해부학적 및 정량적 정확도뿐만 아니라 선형성, 균일성, 대비도를 

크게 향상시켰으며 CBCT 에서 BMD 를 정량적으로 측정하는 

Cycle-GAN 및 U-Net 보다 더 높은 정확도를 보여주었다. 

 

주요어 : 골밀도, 정량적 CBCT, 딥러닝, 적대적생성신경망, U 자형 

신경망 
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